WO2011030611A1 - 固定子鉄心及びその製造方法 - Google Patents

固定子鉄心及びその製造方法 Download PDF

Info

Publication number
WO2011030611A1
WO2011030611A1 PCT/JP2010/061626 JP2010061626W WO2011030611A1 WO 2011030611 A1 WO2011030611 A1 WO 2011030611A1 JP 2010061626 W JP2010061626 W JP 2010061626W WO 2011030611 A1 WO2011030611 A1 WO 2011030611A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
piece
magnetic pole
pole piece
thickness direction
Prior art date
Application number
PCT/JP2010/061626
Other languages
English (en)
French (fr)
Inventor
彰博 橋本
裕介 蓮尾
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Priority to KR1020117027581A priority Critical patent/KR101253689B1/ko
Priority to CN201080023750.0A priority patent/CN102449880B/zh
Priority to US13/377,413 priority patent/US8552612B2/en
Priority to EP10815209.1A priority patent/EP2445086B1/en
Publication of WO2011030611A1 publication Critical patent/WO2011030611A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K37/00Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors
    • H02K37/02Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type
    • H02K37/04Motors with rotor rotating step by step and without interrupter or commutator driven by the rotor, e.g. stepping motors of variable reluctance type with rotors situated within the stators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine

Definitions

  • the present invention relates to a stator core used in, for example, a stepping motor that can be plated from a plate-like material (for example, a magnetic metal plate) with a high yield and is excellent in productivity, and a method for manufacturing the same.
  • a plate-like material for example, a magnetic metal plate
  • a laminated iron core for a stepping motor has a very small air gap between the rotor core and the stator core. It may be pulled out twice without falling down. In addition, the mold may be damaged due to the catching of scrap. In addition, if the teeth formed on the outside of the rotor core piece and the small teeth formed on the inside of the stator core piece cannot be punched into a single plate-like material in a desired shape, the rotor core piece and There was a problem that the stator core pieces had to be punched with separate molds, resulting in a decrease in material yield and a very high cost.
  • Patent Document 1 As a conventional technique for solving the above-described problem, for example, as described in Patent Document 1, at least one surface of a rotor core piece and a stator core piece is pressed thinly in a plate thickness direction and flattened. There has been proposed a structure in which a rotor mold and a stator core piece can be taken together with a single mold.
  • Patent Document 1 Since the technique described in Patent Document 1 is pressing from one side in the plate thickness direction when forming a thin portion, particularly when the magnetic pole tip is extended radially inward, the magnetic pole piece is warped. Then, it is necessary to forcibly return the warp in the subsequent caulking, and there is a problem that the caulking accuracy and the inner diameter accuracy of the core are not stable. In addition, this problem has a negative effect on the product quality because the warpage increases when the pressure is deeply applied to increase the stretch amount.
  • the present invention has been made in view of such circumstances, and it is possible to eliminate the curvature of the magnetic pole piece when forming the thin-walled portion and extending the magnetic pole piece, and the caulking accuracy and the rotor core piece and the stator iron core can be eliminated. It is an object of the present invention to provide a stator core that improves the dimensional accuracy of a laminated core at the time of taking pieces together, and a method for manufacturing the same.
  • a stator core according to a first invention that meets the above-mentioned object is a stator core in which stator core pieces formed by punching out a magnetic metal plate from which a rotor core piece located at the center is punched are stacked.
  • the magnetic pole piece portion of the stator core piece is provided with a thin portion formed by pressing from both sides in the thickness direction, and the magnetic pole piece portion extends radially inward.
  • the thin portion is preferably formed by pressing the same portion of the magnetic pole piece portion from both sides in the thickness direction, and the thickness of the magnetic pole piece portion. It is more preferable that the cross-sectional shape of the thin-walled grooves formed on both sides in the direction is the same.
  • the cross-sectional shape of the thin-walled groove may be a rectangle, or the cross-sectional shape of the thin-walled groove bottom may be an arc.
  • the rectangle includes not only a regular rectangle but also a rectangle with rounded corners.
  • the stator core manufacturing method according to the second invention that meets the above-mentioned object is a stator core in which stator core pieces are formed by punching from a magnetic metal plate from which a rotor core piece located in the center is removed.
  • a manufacturing method of The same or different portions of the magnetic pole piece portion of the stator core piece are pressed from both sides in the thickness direction to form a thin portion, and the magnetic pole piece portion is extended radially inward by a predetermined length.
  • the pressing from both sides in the thickness direction may be performed once or a plurality of times.
  • stator core manufacturing method according to the second aspect of the present invention it is preferable that the thin portion is formed on a straight piece portion of the magnetic pole piece portion.
  • the magnetic pole piece of the stator core piece is pressed from both sides in the thickness direction (to the same place or different places) to form a thin part, and the pole piece is radiused. Since it is not necessary to press the punch deeply from the surface of one side as in the past, it is possible to prevent bending (warping) of the magnetic pole piece, and to improve the caulking accuracy and the inner diameter accuracy of the stator core during co-capping. To do. Furthermore, by forming the thin portion by pressing both sides in the thickness direction, it is possible to extend the inner side in the radial direction longer without changing the magnetic characteristics than when only one side in the thickness direction is pressed to form the thin portion. Moreover, the magnetic characteristics are further improved while obtaining the same amount of stretching as when the pole piece is stretched by pressing only one side in the thickness direction.
  • FIG. 1 is a perspective view of a stator core and a rotor core paired with the stator core according to an embodiment of the present invention.
  • (A) is a plan view of a stator core piece used for the stator core
  • (B) is a cross-sectional view taken along line AA. It is process drawing which shows the manufacturing method of the stator core which concerns on one Example of this invention.
  • (A) is an explanatory view of one step of the manufacturing method of the stator core, and (B) to (D) are explanatory views showing a cross-sectional shape of a groove according to a modification.
  • (A), (B) is explanatory drawing of the test piece performed in order to confirm the effect
  • a stator core 10 As shown in FIG. 1, a stator core 10 according to an embodiment of the present invention is used for a stepping motor, and a plurality of magnetic pole portions 12 are provided inside an annular yoke portion 11.
  • the magnetic pole portion 12 has a winding portion 13 and pole teeth 14 provided on the radially inner side of the winding portion 13, and a plurality of small teeth 15 are provided on the radially inner side of each pole tooth 14.
  • the stator core 10 is formed by caulking and stacking a plurality of stator core pieces 17 (see FIG. 2) via caulking portions 16, and the shape of the stator core piece 17 is a stator core 10 in plan view.
  • the yoke piece portion 18 is provided around the periphery, and a plurality of magnetic pole piece portions 19 are provided inside the yoke piece portion 18.
  • the magnetic pole piece portion 19 includes a straight piece portion 20 that is laminated to form the winding portion 13, and a pole tooth piece portion 21 that is formed radially inside the straight piece portion 20.
  • the small teeth 22 are formed.
  • the straight piece portion 20 of the magnetic pole piece portion 19 is provided with a thin portion 24 formed by pressing the same portion from both sides in the thickness direction.
  • Grooves 25 and 26 having a rectangular cross section are formed on the front and back of the thin portion 24.
  • the grooves 25 and 26 have the same shape, the groove depth b is 2 to 20% of the plate thickness (for example, when the plate thickness is 0.5 mm), and the groove width a is 1 to 6 for example. It is about double.
  • the caulking portion 16 may be half-cut caulking or V-shaped caulking.
  • the thin portion 24 is formed on the inner side in the radial direction of the straight piece portion 20, but may be disposed on the central portion or the outer side in the radial direction of the straight piece portion 20.
  • FIG. 1 shows a rotor core 28 that is paired with the stator core 10.
  • the rotor core 28 has a shaft hole 29 in the center and a large number of teeth 30 around it.
  • the tips of the teeth 30 have a slight gap from the tips of the small teeth 15 of the stator core 10 so that the rotor core 28 can rotate in the stator core 10.
  • the manufacturing method of the stator core which concerns on one Example of this invention is demonstrated, referring FIG.
  • the stator core manufacturing apparatus to which the stator core manufacturing method according to one embodiment of the present invention is applied has stations A to I.
  • the thickness is, for example, 0.3.
  • Pilot holes 33 are formed in a long magnetic metal plate 32 of about 1 mm.
  • the shaft hole 29 is formed in the magnetic metal plate 32 positioned by the four pilot holes 33.
  • the caulking portion 35 is formed around the shaft hole 29, and in the station D, the rotor core piece 36 is removed from the outer shape and laminated in a mold to manufacture the rotor core 28.
  • slots 37 forming the outlines of the magnetic pole piece portions 19 of the stator core piece 17 are punched out from the magnetic metal plate 32 from which the rotor core piece 36 in the central portion has been removed.
  • the straight piece 20 constituting each magnetic pole piece 19 is partially pressed (coined) to form the thin portion 24.
  • the thin portions 24 are each arcuate and are on the same circle as a whole, but the thin portions may be linear.
  • the rotor core piece 36 and the stator core piece 17 are formed concentrically.
  • FIG. 4 (A) This state is shown in FIG. 4 (A).
  • the straight piece 20 is pressed from above and below by punches (convex molds) 38 and 39 to form grooves 25 and 26 having a predetermined width and a predetermined depth. .
  • the outer side in the radial direction of the straight piece 20 is constrained by the yoke piece 18, so that the straight piece 20 extends inward in the radial direction.
  • the material may be pressed and fixed on the die with a wedge-shaped V-ring 20a. Good. Of course, it is possible to omit the V-ring 20a.
  • wide grooves 40 and 41 can be formed as shown in FIG. 4 (B) by a punch that presses (coines) the straight piece portion 20 from the upper and lower sides to the same place, as shown in FIG. 4 (C).
  • narrow grooves 42 and 43 can be formed.
  • the groove bottom surfaces 44 and 45 may be formed into grooves 46 and 47 having arcuate cross sections.
  • a wide groove can be formed by pressing a plurality of times with a small punch (for example, a narrow punch).
  • the extending length L of the pole piece 19 is substantially proportional to the total volume of the upper and lower grooves. That is, it substantially corresponds to (total cross-sectional area of upper and lower grooves) ⁇ (groove width). If the depth of the groove is increased to reduce the thickness of the thin portion, the magnetic resistance increases and the magnetic properties of the stator core 10 deteriorate. Therefore, the total cross-sectional area of the upper and lower grooves and the thickness of the thin portion must be taken into consideration. Design the shape of the upper and lower grooves.
  • the caulking portion 16 necessary for the straight piece portion 20 and the pole tooth piece portion 19 is formed.
  • a caulking portion can also be formed on the yoke piece portion 18.
  • the pole tooth piece 21 is punched and formed inside the magnetic pole piece 19. In this case, since the magnetic pole piece portion 19 extends radially inward, the pole tooth piece portion 21 having the small teeth 22 on the radially inner side can be formed.
  • the outer shape is removed at the station I, and the stator core pieces 17 are caulked and laminated in a mold, whereby the stator core 10 is manufactured.
  • FIG. 5 (A) a groove 51 having a width of 1 mm and a depth of 0.225 mm is formed from one side in the center of an iron core piece (electromagnetic steel plate) 50 having a length of 120 mm, a width of 30 mm, and a thickness of 0.5 mm.
  • FIG. 5B shows a test piece having a width of 1 mm and a depth of 0. 0 in the center of an iron core piece 52 made of the same material as the iron core piece 50 having a length of 120 mm, a width of 30 mm, and a thickness of 0.5 mm.
  • FIGS. 5 (A) and 5 (B) The test piece which formed the groove
  • Reference numeral 51a denotes a corner of the groove 51
  • reference numerals 53a and 54a denote corners of the grooves 53 and 54, respectively.
  • the flow of magnetic flux when a magnetic field of 50 Hz and 224 A / m was applied to the core pieces 50 and 52 was confirmed by magnetic field analysis.
  • the magnetic flux is generated at the corners 53a and 54a of the grooves 53 and 54.
  • the core piece 50 had a magnetic flux amount 0.2T less than that of the core piece 52. From this, it can be seen that the magnetic properties of the iron core piece 52 provided with the grooves 53 and 54 from both sides are improved.
  • the present invention is not limited to the above-described embodiments, and the present invention can be applied even if the number of magnetic poles and the shape of the pole teeth are changed without departing from the gist of the present invention.
  • the thin part pressed the same location of the magnetic pole piece part from the thickness direction both sides, the different location (including the case where it overlaps partially) of a magnetic pole piece part is pressed from the thickness direction both sides.
  • the present invention is also applied to cases.
  • the magnetic pole piece portion is formed by pressing the magnetic pole piece portion of the stator core piece from both sides in the thickness direction (to the same location or different locations). Are uniformly stretched radially inward. And an effective machining allowance is given by the pole tooth piece part, and a more accurate stator core piece can be manufactured.
  • By pressing both sides in the thickness direction to form a thin part it can be stretched longer in the radial direction without changing the magnetic characteristics than when only one side in the thickness direction is pressed to form a thin part, more efficient A good motor can be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

中央部に位置する回転子鉄心片36が抜き落された磁性金属板32から打ち抜き形成された固定子鉄心片17を積層した固定子鉄心10及びその製造方法であって、固定子鉄心片17の磁極片部19に厚み方向両側から押圧して形成する薄肉部24を設けて、磁極片部19を半径方向内側に延伸する。これによって、磁極片部19の反りをなくすことが可能となり、かしめ精度及び回転子鉄心片36と固定子鉄心片17の共取り時の積層鉄心の寸法精度を向上する。

Description

固定子鉄心及びその製造方法
本発明は、板状材料(例えば、磁性金属板)から歩留りよく板取りすることができ、かつ生産性にも優れた例えばステッピングモータに使用される固定子鉄心及びその製造方法に関する。
従来、ステッピングモータ用の積層鉄心は、回転子鉄心と固定子鉄心のエアギャップが非常に小さいため、両鉄心片間の打ち抜きカスが幅狭となって、抜き途中で破断し、金型のダイ下方に落下せずに2度抜きすることがある。また、スクラップの引っ掛かりに起因して金型が破損する恐れもある。また、回転子鉄心片の外側に形成される歯と、固定子鉄心片の内側に形成される小歯が一枚の板状材料に所望の形状で打ち抜きできない場合には、回転子鉄心片と固定子鉄心片を別々の金型で打ち抜かねばならず、材料歩留りが低下し、非常にコストがかかるという問題があった。
上記した問題を解決するための従来技術として、例えば、特許文献1に記載のように、回転子鉄心片及び固定子鉄心片の少なくとも一方の表面に、板厚方向に押圧して平たく伸ばした薄肉箇所を設け、一つの金型で回転子鉄心片と固定子鉄心片の共取りを可能にしたものが提案されていた。
特許第2955804号公報
しかしながら、特許文献1に記載の技術は、薄肉箇所を形成する際に、特に磁極先端部を半径方向内側に延伸する場合に、板厚方向片側から押圧しているので、磁極片部に反りが出てしまい、その後のかしめ形成で強制的に反りを戻す必要があり、かしめ精度及びコアの内径精度が安定しないという問題があった。また、この問題は延伸量を増やそうと押圧を深くいれた場合は反りも大きくなってしまい、製品品質に悪影響を与えていた。
本発明はかかる事情に鑑みてなされたもので、薄肉箇所を形成して磁極片部を延伸するに際して、磁極片部の反りをなくすことが可能となり、かしめ精度及び回転子鉄心片と固定子鉄心片の共取り時の積層鉄心の寸法精度を向上する固定子鉄心及びその製造方法を提供することを目的とする。
前記目的に沿う第1の発明に係る固定子鉄心は、中央部に位置する回転子鉄心片が抜き落された磁性金属板から打ち抜き形成された固定子鉄心片を積層した固定子鉄心であって、前記固定子鉄心片の磁極片部に厚み方向両側から押圧して形成する薄肉部を設け、前記磁極片部が半径方向内側に延伸されている。
ここで、第1の発明に係る固定子鉄心において、前記薄肉部は、前記磁極片部の同一箇所を厚み方向両側から押圧して形成されているのが好ましく、また、前記磁極片部の厚み方向両側に形成された薄肉部の溝の断面形状は同一であることが更に好ましい。
また、第1の発明に係る固定子鉄心において、前記薄肉部の溝の断面形状は矩形、又は前記薄肉部の溝底の断面形状が円弧であってもよい。なお、ここで、矩形には正四角形の他、角部が丸くなった四角形も含まれる。
前記目的に沿う第2の発明に係る固定子鉄心の製造方法は、中央部に位置する回転子鉄心片が抜き落された磁性金属板から打ち抜き形成された固定子鉄心片を積層する固定子鉄心の製造方法であって、
前記固定子鉄心片の磁極片部の同一箇所又は異なる箇所を厚み方向両側から押圧して薄肉部を形成して、前記磁極片部を半径方向内側に所定長さだけ延伸する。この厚み方向両側からの押圧は一回であってもよいし、複数回であってもよい。
第2の発明に係る固定子鉄心の製造方法において、前記薄肉部は前記磁極片部の同一箇所又は異なる箇所を厚み方向両側から複数回に分けて押圧されて形成されている場合であっても本発明は適用される。
そして、第2の発明に係る固定子鉄心の製造方法において、前記薄肉部は前記磁極片部のストレート片部に形成されているのが好ましい。
本発明に係る固定子鉄心及びその製造方法においては、固定子鉄心片の磁極片部に厚み方向両側から(同一箇所又は異なる箇所に)押圧して薄肉部を形成して、磁極片部を半径方向内側に延伸し、従来のように片側表面からパンチを深く押圧する必要がないので、磁極片部の湾曲(反り)を防止し、かしめ精度及び共取り時の固定子鉄心の内径精度が向上する。
更に、厚み方向両側を押圧して薄肉部を形成することによって、厚み方向片側のみを押圧して薄肉部を形成した場合より磁気的特性を変えずに半径方向内側により長く延伸させることができる。また、厚み方向片側のみを押圧して磁極片部を延伸させた場合と同様の延伸量を得ながらも、磁気的特性は更に向上する。
本発明の一実施例に係る固定子鉄心と該固定子鉄心と対となる回転子鉄心の斜視図である。 (A)は同固定子鉄心に用いる固定子鉄心片の平面図、(B)はA-A矢視断面図である。 本発明の一実施例に係る固定子鉄心の製造方法を示す工程図である。 (A)は同固定子鉄心の製造方法の一工程の説明図であり、(B)~(D)は変形例に係る溝の断面形状を示す説明図である。 (A)、(B)は本発明に係る固定子鉄心の作用及び効果を確認するために行った試験片の説明図である。 従来例と実験例に係る鉄心片における磁束の流れを示す説明図である。
図1に示すように、本発明の一実施例に係る固定子鉄心10は、ステッピングモータに使用されるもので、環状のヨーク部11の内側に複数の磁極部12が設けられている。磁極部12は捲線部13と、捲線部13の半径方向内側に設けられた極歯14とを有し、各極歯14の半径方向内側には複数の小歯15が設けられている。
固定子鉄心10は複数枚の固定子鉄心片17(図2参照)をかしめ部16を介してかしめ積層して形成されたもので、固定子鉄心片17の形状は平面視した固定子鉄心10の形状と同一であり、周囲にヨーク片部18、その内側に複数の磁極片部19を備えている。磁極片部19は積層されて捲線部13を構成するストレート片部20と、ストレート片部20の半径方向内側に形成される極歯片部21とを有し、極歯片部21の内側には小歯22が形成されている。
図2(A)、(B)に示すように、磁極片部19のストレート片部20には、厚み方向両側から同一箇所に押圧して形成された薄肉部24がそれぞれ設けられている。薄肉部24の表裏には、断面矩形の溝25、26が形成されている。溝25、26は同一形状となって、その溝深さbは板厚(例えば、板厚を0.5mmとした場合)の、2~20%となって、溝幅aは例えば1~6倍程度となっている。
かしめ部16は半抜きかしめであってもよいし、V字かしめであってもよい。この実施例においては、薄肉部24をストレート片部20の半径方向内側に形成したが、ストレート片部20の中央部又は半径方向外側に配置することもできる。
図1にこの固定子鉄心10と対となる回転子鉄心28が示されているが、回転子鉄心28は中央に軸孔29が、周囲に多数の歯30が形成されている。この歯30の先端部は、固定子鉄心10の小歯15の先端とは僅少の隙間を有して回転子鉄心28が固定子鉄心10内を回転できる構造となっている。
続いて、図3を参照しながら、本発明の一実施例に係る固定子鉄心の製造方法について説明する。
図3に示すように、本発明の一実施例に係る固定子鉄心の製造方法を適用する固定子鉄心の製造装置は、ステーションA~Iを有し、ステーションAでは、厚みが例えば0.3~1mm程度の長尺の磁性金属板32にパイロット孔33を形成する。ステーションBでは、4つのパイロット孔33で位置決めされた磁性金属板32に軸孔29を形成する。
ステーションCでは、軸孔29の周囲にかしめ部35を形成し、ステーションDでは回転子鉄心片36を外形抜きし、金型内で積層し、回転子鉄心28を製造する。ステーションEでは、中央部の回転子鉄心片36が抜き落とされた磁性金属板32から固定子鉄心片17の各磁極片部19の輪郭を形成するスロット37を打ち抜く。そして、ステーションFでは、各磁極片部19を構成するストレート片部20に一部に押圧(コイニング)を行い、薄肉部24を形成する。この実施例では薄肉部24はそれぞれ円弧状となって、全体として同一円上にあるが、薄肉部を直線状としてもよい。なお、回転子鉄心片36と固定子鉄心片17は同心上に形成される。
この様子を、図4(A)に示すが、ストレート片部20を上下からパンチ(凸形金型)38、39で押圧し、所定幅で所定深さの溝25、26を形成している。これによって、ストレート片部20の半径方向外側はヨーク片部18で拘束されているので、ストレート片部20は半径方向内側に伸びることになる。また、材料の延性を高めるため、ファインブランキングの加工のように、例えば、図4(A)に示すように、楔状のVリング20aで材料をダイの上に圧接固定して押圧してもよい。なお、Vリング20aを省略することは当然可能である。
なお、ストレート片部20を上下から同一箇所に押圧(コイニング)するパンチによって、図4(B)に示すように幅広の溝40、41を形成することもできるし、図4(C)に示すように、幅狭の溝42、43を形成することもできる。また、図4(D)に示すように溝底面44、45の断面が円弧状の溝46、47とすることもできる。また、金型のレイアウトから溝が幅広なパンチによる押圧が可能となる場合は、小型のパンチ(例えば、幅狭のパンチ)で複数回押圧することで幅広の溝を形成することもできる。
磁極片部19の延伸する長さLは、上下の溝の合計体積に略比例する。つまり、(上下の溝の合計断面積)×(溝の幅)に略一致する。溝の深さを深くして薄肉部の厚みを薄くすると、磁気抵抗が増し固定子鉄心10の磁気的特性が悪くなるので、上下の溝の合計断面積と薄肉部の厚みを十分考慮して上下の溝の形状を設計する。
次のステーションGでは、ストレート片部20及び極歯片部19に必要なかしめ部16を形成する。なお、ヨーク片部18にかしめ部を形成することもできる。
ステーションHでは、磁極片部19の内側に極歯片部21を打ち抜き形成する。この場合、磁極片部19は半径方向内側に延伸しているので、より半径方向内側に小歯22を有する極歯片部21を形成できる。ステーションIで外形抜きを行って、固定子鉄心片17を金型内でかしめ積層し、固定子鉄心10が製造される。
実験例
続いて、図5、図6を参照しながら、本発明の固定子鉄心の製造方法の作用効果の補足説明を行う。
図5(A)に、長さが120mm、幅が30mm、厚みが0.5mmの鉄心片(電磁鋼板)50の中央に、幅が1mmで深さが0.225mmの溝51を片側から形成した試験片を示し、図 5(B)に長さが120mm、幅が30mm、厚みが0.5mmの鉄心片50と同一材料の鉄心片52の中央に、幅が1mmで深さが0.1125mmの溝53、54を両側から形成した試験片を示す。
なお、図6は図5(A)、(B)において、鉄心片50、52を矩形A位置から側面視したときの磁束の流れを示す。51aは溝51の角部を示し、53a、54aはそれぞれ溝53、54の角部を示す。
図6に示すように、この鉄心片50、52に50Hz、224A/mの磁界を与えた時の磁束の流れを磁界解析により確認したところ、鉄心片50の場合は、溝51の角部51aで急激に磁束が曲がらなければならなくなるため、磁束の漏れが発生し、結果的に流れる磁束が少なくなってしまうが、鉄心片52の場合は、溝53、54の角部53a、54aでは磁束の漏れが発生せず、鉄心片50は鉄心片52よりも0.2T少ない磁束量になっていることを確認した。このことから、両側から溝53、54を設けた鉄心片52の方が磁気的特性が改善されることが判る。
本発明は前記した実施例に限定されるものではなく、本発明の要旨を変更しない範囲で、磁極の数、極歯の形状を変更したものであっても本発明は適用される。また、前記実施例においては、薄肉部は磁極片部の同一箇所を厚み方向両側から押圧したが、磁極片部の表裏の異なる箇所(一部重複する場合も含む)を厚み方向両側から押圧する場合も本発明が適用される。
本発明に係る固定子鉄心及びその製造方法においては、固定子鉄心片の磁極片部に厚み方向両側から(同一箇所又は異なる箇所に)押圧して薄肉部を形成しているので、磁極片部を半径方向内側に均一に延伸する。そして、極歯片部により有効な加工代を与え、より精度の高い固定子鉄心片を製造できる。厚み方向両側を押圧して薄肉部を形成することによって、厚み方向片側のみを押圧して薄肉部を形成した場合より磁気的特性を変えずに半径方向内側により長く延伸させることができ、より効率のよいモータを製造できる。
10:固定子鉄心、11:ヨーク部、12:磁極部、13:捲線部、14:極歯、15:小歯、16:かしめ部、17:固定子鉄心片、18:ヨーク片部、19:磁極片部、20:ストレート片部、20a:Vリング、21:極歯片部、22:小歯、24:薄肉部、25、26:溝、28:回転子鉄心、29:軸孔、30:歯、32:磁性金属板、33:パイロット孔、35:かしめ部、36:回転子鉄心片、37:スロット、38、39:パンチ、40~43:溝、44、45:溝底面、46、47:溝、50:鉄心片、51:溝、51a:角部、52:鉄心片、53、54:溝、53a、54a:角部

Claims (9)

  1. 中央部に位置する回転子鉄心片が抜き落された磁性金属板から打ち抜き形成された固定子鉄心片を積層した固定子鉄心であって、
    前記固定子鉄心片の磁極片部に厚み方向両側から押圧して形成する薄肉部を設け、前記磁極片部が半径方向内側に延伸されていることを特徴とする固定子鉄心。
  2. 請求項1記載の固定子鉄心において、前記薄肉部は、前記磁極片部の同一箇所を厚み方向両側から押圧して形成されていることを特徴とする固定子鉄心。
  3. 請求項1又は2記載の固定子鉄心において、前記磁極片部の厚み方向両側に形成された薄肉部の溝の断面形状は同一であることを特徴とする固定子鉄心。
  4. 請求項3記載の固定子鉄心において、前記薄肉部の溝の断面形状は、矩形であることを特徴とする固定子鉄心。
  5. 請求項3記載の固定子鉄心において、前記薄肉部の溝底の断面形状は円弧であることを特徴とする固定子鉄心。
  6. 中央部に位置する回転子鉄心片が抜き落された磁性金属板から打ち抜き形成された固定子鉄心片を積層する固定子鉄心の製造方法であって、
    前記固定子鉄心片の磁極片部に厚み方向両側から押圧して薄肉部を形成して、前記磁極片部を半径方向内側に所定長さだけ延伸することを特徴とする固定子鉄心の製造方法。
  7. 請求項6記載の固定子鉄心の製造方法において、前記薄肉部は、前記磁極片部の同一箇所を厚み方向両側から押圧して形成することを特徴とする固定子鉄心の製造方法。
  8. 請求項6又は7記載の固定子鉄心の製造方法において、前記薄肉部は厚み方向両側から複数回に分けて押圧されて形成されていることを特徴とする固定子鉄心の製造方法。
  9. 請求項6~8のいずれか1記載の固定子鉄心の製造方法において、前記薄肉部は、前記磁極片部のストレート片部に形成されていることを特徴とする固定子鉄心の製造方法。
PCT/JP2010/061626 2009-09-09 2010-07-08 固定子鉄心及びその製造方法 WO2011030611A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117027581A KR101253689B1 (ko) 2009-09-09 2010-07-08 고정자 철심 및 그 제조 방법
CN201080023750.0A CN102449880B (zh) 2009-09-09 2010-07-08 定子铁心及其制造方法
US13/377,413 US8552612B2 (en) 2009-09-09 2010-07-08 Stator core and method of manufacturing same
EP10815209.1A EP2445086B1 (en) 2009-09-09 2010-07-08 Stator core and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-208352 2009-09-09
JP2009208352A JP5875746B2 (ja) 2009-09-09 2009-09-09 固定子鉄心の製造方法

Publications (1)

Publication Number Publication Date
WO2011030611A1 true WO2011030611A1 (ja) 2011-03-17

Family

ID=43732287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061626 WO2011030611A1 (ja) 2009-09-09 2010-07-08 固定子鉄心及びその製造方法

Country Status (6)

Country Link
US (1) US8552612B2 (ja)
EP (1) EP2445086B1 (ja)
JP (1) JP5875746B2 (ja)
KR (1) KR101253689B1 (ja)
CN (1) CN102449880B (ja)
WO (1) WO2011030611A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574389A (zh) * 2017-03-07 2018-09-25 上海鸣志电器股份有限公司 一种步进电机

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850937B2 (en) * 2011-06-30 2014-10-07 GM Global Technology Operations LLC Method of manufacturing segmented stator cores
KR101162294B1 (ko) 2011-11-03 2012-07-04 지인호 발전기 및 모터의 고정자와 회전자 구조
CN104953780A (zh) 2012-08-03 2015-09-30 埃塞克科技有限公司 模块化旋转横向磁通发电机
US9559559B2 (en) 2012-09-24 2017-01-31 Eocycle Technologies Inc. Transverse flux electrical machine stator with stator skew and assembly thereof
CA2829812A1 (en) 2012-10-17 2014-04-17 Eocycle Technologies Inc. Transverse flux electrical machine rotor
JP6094146B2 (ja) * 2012-10-26 2017-03-15 株式会社デンソー 回転電機の固定子鉄心の製造方法
JP6169505B2 (ja) * 2013-02-19 2017-07-26 株式会社三井ハイテック 回転子積層鉄心の製造方法
US10855161B2 (en) * 2017-03-15 2020-12-01 Lin Engineering, Inc. Hybrid step motor with greater number of stator teeth than rotor teeth to deliver more torque
KR20200086087A (ko) * 2019-01-08 2020-07-16 엘지이노텍 주식회사 모터
CN113937917A (zh) * 2021-08-27 2022-01-14 浙江大学 游标电机及包含其的控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380741A (ja) * 1986-09-24 1988-04-11 Hitachi Ltd 電動機用固定子鉄心の製造方法
JPH077895A (ja) * 1993-06-21 1995-01-10 Mitsui High Tec Inc 積層鉄心の製造方法
JPH08149761A (ja) * 1994-11-14 1996-06-07 Tamagawa Seiki Co Ltd ステータ及びその製造方法
JPH10322980A (ja) * 1997-05-15 1998-12-04 Toyota Motor Corp ステータ用積層板の成形方法
JP2955804B2 (ja) 1992-10-23 1999-10-04 株式会社三井ハイテック 電動機の積層鉄心
JP2005185081A (ja) * 2003-03-05 2005-07-07 Nissan Motor Co Ltd 回転機用回転子鋼板、回転機用回転子、回転機、およびこれを搭載した車両、ならびに回転機用回転子鋼板の製造装置および製造方法
JP2009089482A (ja) * 2007-09-28 2009-04-23 Denso Corp 回転電機のステータコアおよびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886383A (en) * 1974-04-01 1975-05-27 Rohr Industries Inc Compressed back iron linear motor laminated core
JPS61158909U (ja) * 1985-03-25 1986-10-02
JP2633309B2 (ja) * 1988-07-07 1997-07-23 ローム 株式会社 チップ部品用セラミック製基板
US6249072B1 (en) * 1997-10-17 2001-06-19 Seiko Epson Corporation Motor laminated core, method of manufacturing same, motor and ink jet recording device
JP3341987B2 (ja) * 1998-07-27 2002-11-05 中村製作所株式会社 金属板への凹陥部の形成法
JP2001327129A (ja) * 2000-05-18 2001-11-22 Mitsui High Tec Inc 積層鉄心の製造方法
JP2006166637A (ja) * 2004-12-08 2006-06-22 Matsushita Electric Ind Co Ltd スピンドルモータ
JP5172367B2 (ja) * 2008-01-23 2013-03-27 三菱電機株式会社 積層コア、積層コアの製造方法、積層コアの製造装置およびステータ
GB0813032D0 (en) * 2008-07-16 2008-08-20 Cummins Generator Technologies Axial flux machine
JP5583391B2 (ja) * 2009-12-01 2014-09-03 株式会社三井ハイテック 固定子積層鉄心
JP5352445B2 (ja) * 2009-12-28 2013-11-27 株式会社三井ハイテック 積層鉄心の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380741A (ja) * 1986-09-24 1988-04-11 Hitachi Ltd 電動機用固定子鉄心の製造方法
JP2955804B2 (ja) 1992-10-23 1999-10-04 株式会社三井ハイテック 電動機の積層鉄心
JPH077895A (ja) * 1993-06-21 1995-01-10 Mitsui High Tec Inc 積層鉄心の製造方法
JPH08149761A (ja) * 1994-11-14 1996-06-07 Tamagawa Seiki Co Ltd ステータ及びその製造方法
JPH10322980A (ja) * 1997-05-15 1998-12-04 Toyota Motor Corp ステータ用積層板の成形方法
JP2005185081A (ja) * 2003-03-05 2005-07-07 Nissan Motor Co Ltd 回転機用回転子鋼板、回転機用回転子、回転機、およびこれを搭載した車両、ならびに回転機用回転子鋼板の製造装置および製造方法
JP2009089482A (ja) * 2007-09-28 2009-04-23 Denso Corp 回転電機のステータコアおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2445086A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574389A (zh) * 2017-03-07 2018-09-25 上海鸣志电器股份有限公司 一种步进电机

Also Published As

Publication number Publication date
JP2011061959A (ja) 2011-03-24
KR20120020125A (ko) 2012-03-07
US20120086302A1 (en) 2012-04-12
EP2445086A1 (en) 2012-04-25
CN102449880B (zh) 2014-05-28
EP2445086B1 (en) 2014-10-22
EP2445086A4 (en) 2013-05-01
US8552612B2 (en) 2013-10-08
KR101253689B1 (ko) 2013-04-11
JP5875746B2 (ja) 2016-03-02
CN102449880A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
WO2011030611A1 (ja) 固定子鉄心及びその製造方法
JP5583391B2 (ja) 固定子積層鉄心
JP6400833B2 (ja) 積層鉄心の製造方法および積層鉄心の製造装置
US8286331B2 (en) Method for manufacturing laminated core
JP5719979B1 (ja) 積層鉄心製造装置および積層鉄心の製造方法
JP4898240B2 (ja) 鉄心片の製造方法
WO2001089065A1 (fr) Procede de fabrication de noyaux de fer lamines
JP2016005404A (ja) 積層鉄心の製造方法
JP2006340491A (ja) 固定子積層鉄心の製造方法
JP2010178487A (ja) 積層鉄心の製造方法および順送り金型装置
JP2014176127A (ja) 積層鉄心及びその製造方法
JP4989877B2 (ja) 回転子積層鉄心の製造方法
JP5202577B2 (ja) 固定子積層鉄心の製造方法
JP5291774B2 (ja) 積層鉄心の製造方法及び製造装置
JP4630858B2 (ja) 積層鉄心およびその製造方法
JP4482550B2 (ja) 積層鉄心
JP2010104154A (ja) 磁石装着型回転子鉄心の製造方法
JP4578460B2 (ja) 固定子積層鉄心の製造方法
JP2008061315A (ja) 積層鉄心の製造方法および製造装置
JP2017192244A (ja) 回転電機の積層鉄心、および回転電機の積層鉄心の製造方法
JP4245128B2 (ja) 積層鉄心の製造方法
JP4002876B2 (ja) 固定子
JP6316783B2 (ja) 積層鉄心の製造方法及び製造装置
JP5462675B2 (ja) 積層鉄心の製造方法
JP2013005502A (ja) 鉄心の製造方法および製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023750.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117027581

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010815209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13377413

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE