WO2011030590A1 - アクティブマトリクス基板およびアクティブマトリクス型表示装置 - Google Patents

アクティブマトリクス基板およびアクティブマトリクス型表示装置 Download PDF

Info

Publication number
WO2011030590A1
WO2011030590A1 PCT/JP2010/058666 JP2010058666W WO2011030590A1 WO 2011030590 A1 WO2011030590 A1 WO 2011030590A1 JP 2010058666 W JP2010058666 W JP 2010058666W WO 2011030590 A1 WO2011030590 A1 WO 2011030590A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
trunk
trunk wiring
active matrix
layer
Prior art date
Application number
PCT/JP2010/058666
Other languages
English (en)
French (fr)
Inventor
菊池 哲郎
田中 信也
純也 嶋田
周郎 山崎
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/394,621 priority Critical patent/US8586987B2/en
Priority to JP2011530770A priority patent/JP5236812B2/ja
Priority to CN201080039896.4A priority patent/CN102483889B/zh
Priority to EP10815188.7A priority patent/EP2477172A4/en
Publication of WO2011030590A1 publication Critical patent/WO2011030590A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13458Terminal pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13454Drivers integrated on the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings

Definitions

  • the present invention relates to an active matrix substrate in which a drive circuit and its wiring are monolithically formed, and an active matrix display device using the substrate.
  • active matrix type display devices using active elements such as TFTs typified by organic EL display devices, such as liquid crystal display devices that are rapidly spreading instead of cathode ray tubes (CRT), are energy-saving, thin, lightweight, etc. It is widely used for TVs, monitors, mobile phones, etc., taking advantage of
  • GDM Gate Driver monolithic using amorphous silicon
  • Patent Document 1 discloses that a pixel transistor provided in a display region of a liquid crystal display device and a transistor in a gate driving circuit (gate driver) provided in a peripheral portion of the display region are made of the same amorphous silicon.
  • gate driver gate driving circuit
  • FIG. 10 is a plan view showing a gate drive circuit provided in the liquid crystal display device and a wiring region thereof.
  • a shift register driving transistor is formed in the right end region in the drawing, that is, in a region adjacent to the display region of the liquid crystal display device (not shown), while the left end in the drawing is shown.
  • a wiring region in which a plurality of main wirings 150 for applying signals to each shift register is formed.
  • a control transistor of the shift register is formed between the intermediate regions in the drawing, that is, between the wiring region and the region where the driving transistor is formed.
  • branch wiring 160 for electrically connecting the main wiring 150 to the drive transistor and the control transistor of each shift register is formed in a layer different from the main wiring 150.
  • the main wiring 150 is formed in the same layer as the pattern of the gate wiring and the gate electrode
  • the branch wiring 160 is formed in the same layer as the pattern of the data wiring and the source electrode.
  • the same layer as the main wiring 150 or the same layer as the branch wiring 160 is used for electrical connection between the control transistors, between the drive transistors, and between the control transistor and the drive transistors.
  • FIG. 11 is a cross-sectional view taken along the line GH in FIG. 10 and shows a state of a connection portion between the main wiring 150 and the branch wiring 160.
  • the main wiring 150 is formed on the insulating substrate 170, and the branch wiring 160 is formed on the gate insulating film 180 formed so as to cover the main wiring 150 and the insulating substrate 170. Has been.
  • a passivation film 190 is formed so as to cover the branch wiring 160 and the gate insulating film 180.
  • the holes formed in the gate insulating film 180 and the passivation film 190 so that the main wiring 150 is partially exposed are the first contact holes 200, while the passivation wiring 160 is partially exposed so that the branch wiring 160 is partially exposed.
  • a hole formed in the film 190 is the second contact hole 210.
  • the main wiring 150 and the branch wiring 160 are connected conductors 220 formed in the first contact hole 200 and the second contact hole 210 described above, that is, The pixel electrode electrically connected to the drain electrode of the pixel transistor provided in the display area of the liquid crystal display device is electrically connected by the same layer.
  • the gate driving circuit and the wiring thereof can be formed simultaneously with the display region using the process used for forming the display region of the liquid crystal display device as it is. It is described that the manufacturing cost can be reduced because the wiring can be integrated without adding a separate manufacturing process.
  • the gate driving circuit and its wiring are the main wiring 150, the various transistors provided in the gate driving circuit, and the part that electrically connects the main wiring 150 and the gate electrode or the source electrode of the various transistors.
  • the branch wiring 160 and a wiring for electrically connecting the gate electrodes or source electrodes of the various transistors are provided.
  • the gate driving circuit and its wiring are generally provided on the left and right frame portions which are non-display areas of the display device. Therefore, the width of the frame portion is determined by the size and number of components included in the gate driving circuit and the line width and interval of the wiring.
  • the width of the frame portion is desired to be small, in the display device in which the gate driving circuit is formed monolithically using amorphous silicon for the following reason, there is a problem that the width of the frame portion tends to be large. is there.
  • the transistor including the amorphous silicon layer has a low electron mobility, the transistor needs to be formed to have a large size in order to satisfy a necessary amount of current as a transistor for a gate driving circuit.
  • the main wiring 150 for supplying a clock signal or the like to the transistor of the gate driving circuit needs to reduce the wiring resistance of the main wiring 150 in order to prevent signal delay, and a wide wiring width is required.
  • Patent Document 1 it is difficult to reduce the width of the wiring formation region, and the width of the frame portion cannot be reduced.
  • the present invention has been made in view of the above problems, and in an active matrix substrate in which a drive circuit and its wiring are monolithically formed, the width of the frame portion on which the drive circuit and its wiring are formed is reduced.
  • An object of the present invention is to provide an active matrix substrate that can be used.
  • an active matrix substrate of the present invention includes an insulating substrate, and the insulating substrate has a display area including a plurality of pixel TFT elements and a reflective pixel electrode, and the pixel TFT element.
  • a peripheral region which is a peripheral region of the display region in which a plurality of driving TFT elements for driving the driving TFT element are provided, and the peripheral region further includes a branch electrically connected to the driving TFT element. Wiring and a first trunk wiring that is electrically connected to the branch wiring and inputs a signal from the outside.
  • the pixel TFT element and the driving TFT element include a gate electrode layer,
  • the reflective pixel electrode layer which is provided with the source and drain electrode layers and forms the reflective pixel electrode is a layer different from the gate electrode layer and the source and drain electrode layers.
  • a second trunk wiring which is a wiring formed along the longitudinal direction of the first trunk wiring, is formed, and the first trunk wiring and the second trunk wiring are formed.
  • Each of the wiring and the branch wiring is formed by a different layer selected from the gate electrode layer, the source and drain electrode layers, and the reflective pixel electrode layer.
  • the first trunk wiring, the second trunk wiring, and the branch wiring are selected from the gate electrode layer, the source and drain electrode layers, and the reflective pixel electrode layer, respectively. Since the second trunk line is formed in a different layer, and is formed along the longitudinal direction of the adjacent first trunk line, the first trunk line for inputting different signals from the outside Since there is no need to dispose the second trunk wires apart from each other, the number of the first trunk wires and the second trunk wires per unit width can be increased.
  • an active matrix substrate capable of reducing the width of the frame portion on which the drive circuit and the wiring are formed is realized. be able to.
  • the second trunk line being along the longitudinal direction of the adjacent first trunk line only means that the second trunk line and the first trunk line are formed in parallel. Instead, a case where the number of the first trunk wires per unit width and the number of the second trunk wires can be increased includes a case where the number is slightly deviated from parallel.
  • the active matrix display device of the present invention is characterized by including the active matrix substrate in order to solve the above-described problems.
  • an active matrix display device having a large display area can be realized by including an active matrix substrate in which the width of the frame portion on which the drive circuit is formed is reduced.
  • the active matrix substrate of the present invention includes an insulating substrate, and the insulating substrate has a display region provided with a plurality of pixel TFT elements and reflective pixel electrodes, and drives the pixel TFT elements.
  • a peripheral region that is a peripheral region of the display region in which the plurality of driving TFT elements are provided, and the peripheral region further includes branch wirings electrically connected to the driving TFT elements, And a first trunk wiring that is electrically connected to the branch wiring and for inputting a signal from the outside.
  • the pixel TFT element and the driving TFT element include a gate electrode layer, a source and a drain electrode.
  • a reflective pixel electrode layer that is provided with a layer and forms the reflective pixel electrode is a layer different from the gate electrode layer and the source and drain electrode layers
  • a second trunk wiring that is a wiring formed along the longitudinal direction of the first trunk wiring is formed in the region, and the first trunk wiring, the second trunk wiring, and the above
  • Each of the branch wirings is formed of a different layer selected from the gate electrode layer, the source and drain electrode layers, and the reflective pixel electrode layer.
  • the active matrix display device of the present invention has the above-described active matrix substrate.
  • an active matrix substrate capable of reducing the width of the frame portion on which the drive circuit is formed can be realized.
  • the width of the frame portion where the drive circuit is formed can be reduced, and an active matrix display device having a large display area can be realized.
  • FIG. 3 is a partially enlarged view showing a region where a gate drive circuit signal wiring is formed in the TFT array substrate of one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along line AB in a region where a first trunk wiring and a branch wiring are connected in a region where the gate driving circuit signal wiring shown in FIG. 1 is formed.
  • FIG. 4 is a cross-sectional view taken along line CD in a region where a first trunk wiring and a second trunk wiring overlap in a region where the gate drive circuit signal wiring shown in FIG. 1 is formed.
  • FIG. 7 is a cross-sectional view taken along the line EF in a region where the first trunk wiring and the second trunk wiring are in contact with each other in the region where the gate driving circuit signal wiring shown in FIG.
  • the drive TFT elements are electrically connected to each other, and (b) shows still another embodiment of the present invention, in which the drive TFT elements are formed in the same layer as the reflective pixel electrode. The case where it electrically connects using wiring is shown. It is a top view which shows the conventional gate drive circuit area
  • FIG. 12 is a cross-sectional view taken along line GH in FIG. 11 and shows a state of a connection portion between the main wiring and the branch wiring.
  • FIG. 5 is a diagram showing a schematic configuration of the TFT array substrate 1.
  • the TFT array substrate 1 is provided with a display region R1 and a peripheral region R2 located around the display region R1.
  • a pixel TFT element 2 and transparent pixel electrodes 3 and reflection pixel electrodes 4 (reflection pixel electrode layers) electrically connected to the pixel TFT elements 2 are provided in a matrix.
  • the pixel TFT element 2 includes a gate electrode layer 6 / Cs bus line 7 forming a gate bus line GL and a gate electrode, a gate insulating film 8, an amorphous silicon film 9 as a semiconductor film, a source on an insulating substrate 5.
  • the source and drain electrode layers 10 forming the electrode 10a, the drain electrode 10b and the data bus line DL, the protective film 12 and the interlayer insulating film 13 in which the contact hole 11 is formed, and the drain electrode 10b are electrically connected via the contact hole 11.
  • the transparent pixel electrodes 3 formed so as to be connected to each other are sequentially stacked.
  • an interlayer insulating film 13 formed in an uneven shape 14 whose upper surface is rounded is provided.
  • the concave-convex transparent pixel electrode 3 and the concave-convex reflective pixel electrode 4 made of a conductor having light reflectivity such as Al and Ag, are sequentially stacked.
  • the reflective pixel electrode 4 is electrically connected to the transparent pixel electrode 3.
  • the present invention is not limited to this, and the reflective pixel electrode is electrically connected to the transparent pixel electrode. It can also be provided on the insulating layer without being connected.
  • a transflective TFT array substrate 1 having a reflective pixel electrode 4 for reflecting external light incident from the opposite side of the provided side is used, but without providing the transparent pixel electrode 3,
  • a reflective TFT array substrate composed only of the reflective pixel electrodes 4 may be used.
  • the area ratio between the transparent pixel electrode 3 and the reflective pixel electrode 4 in one pixel can be changed as appropriate.
  • the pixel TFT element 2 is formed in a bottom gate type, but is not limited thereto, and may be a top gate type or the like. Of course.
  • the peripheral region R2 is provided with a gate drive circuit 15 monolithically formed using the amorphous silicon film 9 and a source drive circuit 16 formed using COG (Chip On Glass) technology. .
  • the gate driving circuit 15 is electrically connected to the gate bus line GL, and the source driving circuit 16 is electrically connected to the data bus line DL so as to control the pixel TFT element 2 in accordance with an external signal. It has become.
  • the trunk wiring such as the clock signal line and the power supply voltage line, and the trunk wiring and the gate driving circuit 15 are electrically connected.
  • a gate drive circuit signal wiring 17 made of branch wirings to be connected is provided.
  • the gate drive circuit 15 and the gate drive circuit signal wiring 17 are monolithically formed in the peripheral region R2 of the TFT array substrate 1.
  • FIG. 1 is a partially enlarged view showing a region in the TFT array substrate 1 where a gate drive circuit signal wiring 17 is formed.
  • the gate driving circuit signal wiring 17 includes a first trunk wiring 17a for supplying a clock signal, a power supply voltage and the like to the gate driving circuit 15, a first trunk wiring 17a, and the like.
  • the gate drive circuit 15 has a plurality of stages, and FIG. 1 shows one stage.
  • a plurality of branch wirings 17b electrically connected to a plurality of different first trunk wirings 17a are electrically connected to the gate driving circuit 15 in one stage.
  • five types of different signals (VSS / CK / CKB / VDD / VSS2) are sent to one stage gate drive circuit 15 via five different first trunk lines 17a and branch lines 17b.
  • the number is not particularly limited and can be changed as necessary.
  • a plurality of the one-stage gate drive circuits 15 are connected, and a certain one-stage output terminal is a gate bus line GL corresponding to the next-stage input terminal. And a plurality of gate bus lines GL are sequentially selected by an output signal from the output terminal.
  • the present invention is not limited to this, and a single-stage gate driving circuit is selected. A configuration in which a plurality of, for example, two output terminals are provided, one output terminal being electrically connected to the input terminal of the next stage, and the other output terminal being electrically connected to the gate bus line may be used.
  • another wiring 18 is formed between the gate drive circuit 15 and the five first trunk wirings 17a (five second trunk wirings 17c). Also good.
  • Other wiring 18 may be a display area wiring disconnection repair wiring, an inspection signal line, a counter (common) electrode wiring, an auxiliary capacitance wiring, or the like.
  • FIG. 2 shows a connection portion between the first trunk wiring 17a and the branch wiring 17b in the gate driving circuit signal wiring 17, and is a cross-sectional view taken along the line AB in FIG.
  • the first trunk wiring 17 a is formed in the same layer as the gate electrode layer 6 of the pixel TFT element 2 shown in FIG. 5, and the branch wiring 17 b is the same layer as the source and drain electrode layers 10.
  • the present invention is not limited to this, and the first trunk wiring 17a is formed in the same layer as the source and drain electrode layers 10, and the branch wiring 17b is formed in the same layer as the gate electrode layer 6. May be.
  • a first trunk wiring 17a is formed on the insulating substrate 5, and on the gate insulating film 8 formed so as to cover the insulating substrate 5 and the first trunk wiring 17a.
  • the branch wiring 17b is formed.
  • a protective film 12 and an interlayer insulating film 13 are formed so as to cover the gate insulating film 8 and the branch wiring 17b.
  • a first contact hole 19 is formed in the gate insulating film 8, the protective film 12, and the interlayer insulating film 13 on the first trunk wiring 17a so that the first trunk wiring 17a is partially exposed.
  • the second contact hole 20 is formed in the protective film 12 and the interlayer insulating film 13 so that the branch wiring 17b is partially exposed.
  • the first trunk wiring 17a, the second trunk wiring 17c, and the branch wiring 17b are connected conductors 3a formed in the same layer as the transparent pixel electrode 3 electrically connected to the pixel TFT element 2 shown in FIG. Are electrically connected.
  • the TFT array substrate 1 since the TFT array substrate 1 is a transflective type, the TFT array substrate 1 includes a transparent pixel electrode 3.
  • the first trunk wiring 17a and the second trunk wiring are provided.
  • a connection conductor 3a formed in the same layer as the transparent pixel electrode 3 is used for the electrical connection between 17c and the branch wiring 17b.
  • the first trunk wiring 17a and the connection conductor formed in the same layer as the reflective pixel electrode 4 are used.
  • the second trunk wiring 17c and the branch wiring 17b can be electrically connected.
  • connection conductor another conductive film may be used in addition to the transparent pixel electrode 3 and the reflective pixel electrode 4 described above.
  • the second trunk wiring 17 c is formed in the same layer as the reflective pixel electrode 4.
  • the first trunk wiring 17 a is formed in the same layer as the gate electrode layer 6 of the pixel TFT element 2, and the branch wiring 17 b is formed in the same layer as the source and drain electrode layers 10.
  • the second trunk wiring 17c is formed in the same layer as the reflective pixel electrode 4, but is not limited to this, and the first trunk wiring 17a, the second trunk wiring 17c, and the branch wiring 17b are These may be formed of different layers selected from the same layer as the gate electrode layer 6, the source and drain electrode layer 10, and the reflective pixel electrode 4, respectively.
  • the second trunk wiring 17c is formed of the same layer as the reflective pixel electrode 4, and the first trunk wiring 17a and the second trunk wiring 17c are electrically connected to the branch wiring 17b.
  • the connection conductor formed in the same layer as the reflective pixel electrode 4 is used, the first trunk wiring 17a and the branch wiring 17b are electrically connected by the second trunk wiring 17c.
  • FIG. 3 shows a region where the first trunk wiring 17a and the second trunk wiring 17c overlap, and is a cross-sectional view taken along line CD in FIG.
  • the second trunk wiring 17c is positioned in the longitudinal direction of the first trunk wiring 17a (in FIG. 1) so as to be positioned on the first trunk wiring 17a in plan view.
  • the first main wiring 17a is electrically connected via the connection conductor 3a.
  • the main wiring 150 for supplying an external clock signal or the like is formed in the same layer as the gate electrode, and in order to prevent signal delay, the wiring of the main wiring 150 is used.
  • the resistance needs to be lowered, and the width of the main wiring 150 is formed wide, and it is difficult to reduce the width of the wiring formation region in the driving circuit. Therefore, the width of the frame portion where the driving circuit is formed cannot be reduced.
  • the second trunk wiring 17c is formed in the same layer as the reflective pixel electrode 4, and the first trunk wiring 17a is formed. And are electrically connected.
  • the combined resistance value per unit width of the main wirings 17a and 17c in the first main wiring 17a electrically connected to the second main wiring 17c is electrically connected to the second main wiring 17c. It becomes smaller than the resistance value per unit width of the first trunk wiring 17a that is not present.
  • the resistance value per unit width can be reduced to 2/3 by adopting a configuration in which the second trunk wiring 17c is electrically connected to the first trunk wiring 17a.
  • FIG. 4A shows the gate drive circuit signal wiring when the trunk wiring is composed of only the first trunk wiring 17a
  • FIG. 4B shows the present embodiment.
  • the gate wiring circuit signal wiring is shown when the trunk wiring is composed of the first trunk wiring 17a and the second trunk wiring 17c.
  • the trunk wiring is composed of only the first trunk wiring 17a
  • it is perpendicular to the longitudinal direction of the first trunk wiring 17a.
  • the line width W1 in this direction is wide.
  • the resistance value per unit width is Since the resistance value per unit width is reduced, the line width W2 of the first trunk wiring 17a and the second trunk wiring 17c can be reduced.
  • the ratio between the line width W1 and the line width W2 is 3: 2.
  • the second trunk wiring 17c is arranged in an upper layer of the first trunk wiring 17a so that the second trunk wiring 17c and the first trunk wiring 17a overlap in plan view. Is formed.
  • the first trunk wiring 17a and the second trunk are used in order to more efficiently use the wiring formation region in which the first trunk wiring 17a and the second trunk wiring 17c are formed.
  • the wiring 17c has the same line width in the direction perpendicular to the longitudinal direction and the length in the longitudinal direction, but is not limited to this, and the first trunk wiring 17a and the first wiring As long as the second trunk wiring 17c overlaps in plan view, the shape of the second trunk wiring 17c may not be equal to the shape of the first trunk wiring 17a.
  • the width of the frame portion where the gate driving circuit signal wiring 17 is formed.
  • the TFT array substrate 1 that can reduce the size of the TFT array substrate 1 can be realized.
  • the first trunk wiring 17a that is, the gate electrode layer 6 can be formed of, for example, an Al alloy, but is not particularly limited. Ta, W, Ti, Mo Alternatively, an element selected from Al, Cu, Cr, Nd, or the like, or an alloy material or a compound material containing the above element as a main component may be used. Alternatively, a semiconductor film typified by polycrystalline silicon may be doped with impurities such as phosphorus and boron.
  • the branch wiring 17b that is, the source and drain electrode layers 10 can be formed of Al alloy, Mo, or a film in which these are laminated, but is not limited thereto, Ta, W, Ti, An element selected from Mo, Al, Cu, Cr, Nd, or the like, or an alloy material or a compound material containing the above element as a main component may be formed as a laminated structure as necessary.
  • a transparent conductive film such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) can be used.
  • the amorphous silicon film 9 is used as a semiconductor film provided in the pixel TFT element 2 and a driving TFT element described later.
  • the present invention is not limited to this, and amorphous germanium is used.
  • amorphous silicon / germanium, amorphous silicon / carbide, or the like may be used.
  • polycrystalline silicon, polycrystalline germanium, polycrystalline silicon / germanium, polycrystalline silicon / carbide, or the like can be used as the semiconductor film.
  • a driving TFT element including an amorphous semiconductor layer has a small electron mobility, so that the size of the driving TFT element is increased in order to satisfy a necessary amount of current as a TFT element for a driving circuit. Need to form.
  • the width of the frame portion in which the gate drive circuit 15 and the gate drive circuit signal wiring 17 are formed is reduced. Therefore, it is required to reduce the width of the gate drive circuit signal wiring 17.
  • the gate drive circuit 15 having the drive TFT element including the amorphous silicon film 9 which is an amorphous semiconductor layer and the gate drive circuit signal wiring 17 formed monolithically are provided.
  • the array substrate 1 it is possible to realize the TFT array substrate 1 capable of reducing the width of the frame portion on which the gate drive circuit signal wiring 17 is formed.
  • an inorganic film such as SiNx or SiOx can be used, but is not limited thereto.
  • the interlayer insulating film 13 can be formed of an inorganic film such as SiNx, but is not particularly limited, and may be formed of an inorganic film such as SiOx or SiON. Further, not only an inorganic film but also an organic film such as a transparent acrylic resin having photosensitivity can be used. Furthermore, a laminated structure of an inorganic film and an organic film may be used.
  • an organic film made of a transparent acrylic resin having photosensitivity is used in order to form a part of the upper surface of the interlayer insulating film 13 in a rounded concave-convex shape, and a heat treatment is performed after patterning into the concave-convex shape. Is melt-flowed to form a rounded uneven shape.
  • the transparent pixel electrode 3 and the reflective pixel electrode 4 having a fine rounded uneven shape are sequentially formed on the interlayer insulating film 13 formed in such a rounded uneven shape 14, light is transmitted to a certain level. It is possible to design to scatter within the angle range, and bright reflection characteristics can be obtained by using ambient light efficiently.
  • the TFT array substrate 1 of the present embodiment in which the gate drive circuit 15 and the gate drive circuit signal wiring 17 are monolithically formed has a transflective TFT array including a transparent pixel electrode 3 and a reflective pixel electrode 4. It can be manufactured using the substrate manufacturing process as it is.
  • the second trunk wiring 17c is formed of the same layer as the reflective pixel electrode 4, and the reflective pixel electrode 4 is electrically connected to the first trunk wiring 17a and the second trunk wiring 17c and the branch wiring 17b.
  • the TFT array substrate in which the gate driving circuit and the signal wiring for the gate driving circuit are monolithically formed using the connection conductor formed in the same layer is a manufacturing process of the conventional reflective TFT array substrate including the reflective pixel electrode 4. It can be used as it is.
  • the second trunk wiring 17c is formed along the longitudinal direction of the adjacent first trunk wiring 17a, and is not electrically connected to the first trunk wiring 17a. This is different from the first embodiment, and the other configuration is as described in the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • FIG. 6 is a partially enlarged view showing a region where the gate drive circuit signal wiring 17 ′ is formed in the TFT array substrate 1.
  • FIG. 7 shows a portion of the gate drive circuit signal wiring 17 ′ where the first trunk wiring 17a and the second trunk wiring 17c are formed in contact with each other. It is sectional drawing.
  • the second trunk wiring 17c is preferably formed along the longitudinal direction of the adjacent first trunk wiring 17a.
  • the second trunk wiring 17c is formed so as to be in contact with the adjacent first trunk wiring 17a on the right side in the drawing.
  • each main wiring 150 for inputting different signals from the outside is Since it is necessary to arrange them at intervals, it is difficult to reduce the interval between the main wirings 150.
  • the reflective pixel electrode 4 is a layer different from the first trunk wiring 17 a formed in the same layer as the gate electrode layer 6.
  • the second trunk wiring 17c formed in the same layer as the first trunk wiring 17c is provided so as to be in contact with the adjacent first trunk wiring 17a as a lower layer in a plan view.
  • first trunk line 17a and the second trunk line 17c for inputting different signals from the outside, so that the first trunk line 17a and the second trunk line per unit width are not required.
  • the number of trunk wires 17c can be increased.
  • the second trunk wiring 17c is the upper layer and the first trunk wiring 17a is the lower layer.
  • the first trunk wiring 17a and the second trunk wiring 17c are different layers.
  • the upper and lower relationship is not particularly limited.
  • the second trunk wiring 17c is disposed between the first trunk wirings 17a and 17a in plan view, but the present invention is not limited to this.
  • the second trunk wiring 17c only needs to be formed along the longitudinal direction of the adjacent first trunk wiring 17a.
  • the width of the frame portion where the gate driving circuit signal wiring 17 ′ is formed in the TFT array substrate 1 in which the gate driving circuit 15 and the gate driving circuit signal wiring 17 ′ are monolithically formed.
  • the TFT array substrate 1 that can reduce the size of the TFT array substrate 1 can be realized.
  • FIG. 3 a third embodiment of the present invention will be described with reference to FIG.
  • the second embodiment is different from the first and second embodiments in that the reflective pixel electrode 4 is formed in the same layer, and the other configurations are the same as described in the first embodiment.
  • members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the first trunk wiring 17a or the second trunk wiring 17c is electrically connected to any one of the gate electrode, the source electrode, and the drain electrode of the driving TFT elements T1 and T2.
  • At least one branch wiring 17b ′ is preferably formed in the same layer as the reflective pixel electrode 4.
  • FIG. 8A is electrically connected to the gate electrode of the driving TFT element T2 provided in the gate driving circuit 15 and the first trunk wiring 17a, and is formed in the same layer as the source and drain electrode layers 10.
  • FIG. An example in which the branch wiring 17b is electrically connected is shown.
  • the driving TFT elements T1 and T2 provided in the gate driving circuit 15 include a gate electrode formed of the gate electrode layer 6 and a source electrode and a drain electrode formed of the source and drain electrode layers 10. And are provided.
  • the branch wiring 17b is provided in the gate driving circuit 15. A part of the wiring L1 formed in the same layer as the gate electrode layer 6 electrically connected to the gate electrode of the third contact hole 21 and the driving TFT element T2 formed so as to be partially exposed is exposed. And a fourth contact hole 22 formed in the step.
  • the branch wiring 17b and the wiring L1 are electrically connected by a connection conductor 3a formed in the same layer as the transparent pixel electrode 3 electrically connected to the pixel TFT element 2 shown in FIG.
  • the electrical connection method is not limited to this.
  • the driving TFT element T1 includes the gate electrode formed of the gate electrode layer 6, the wiring L1 formed of the same layer as the gate electrode layer 6 needs to be electrically connected.
  • the drive TFT element T1 without a gap is arranged around the drive TFT element T1.
  • FIG. 8B shows that the gate electrode of the driving TFT element T2 provided in the gate driving circuit 15 is electrically connected to the first trunk wiring 17a and is formed in the same layer as the reflective pixel electrode 4.
  • An example in which the branch wiring 17b ′ is electrically connected is shown.
  • the branch wiring 17b ′ includes an electrode layer (gate electrode layer 6, source and drain electrode layer 10) provided in the driving TFT elements T1 and T2, and a gate electrode, a source electrode, and a drain electrode of the driving TFT elements (not shown).
  • the branch wiring 17b ′ electrically connects the driving TFT element T1 that does not need to be electrically connected, and the gate electrode, the source electrode, and the drain electrode of the driving TFT elements that are not shown. Even if the wiring to be bypassed is not detoured, no contact is made with the driving TFT element T1 and the wiring, so that the area occupied by the branch wiring 17b ′ and the wiring L1 in the gate driving circuit 15 can be reduced.
  • the first trunk wiring 17a and the wiring L1 are integrated.
  • the connection conductor 3a is formed on the contact holes 19 and 22, and the branch wiring 17b ′ is further formed on the connection conductor 3a.
  • the electrical connection method is not limited to this.
  • the width of the frame portion where the gate drive circuit 15 is formed is reduced.
  • a TFT array substrate 1 capable of achieving the above can be realized.
  • FIG. 4 a fourth embodiment of the present invention will be described based on FIG.
  • the present embodiment is different from the third embodiment in that at least one of the wirings L3 that electrically connect the driving TFT elements T2 and T3 is formed in the same layer as the reflective pixel electrode 4.
  • Other configurations are as described in the third embodiment.
  • members having the same functions as those shown in the drawings of the third embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • the wirings L3 that electrically connect the driving TFT elements T2 and T3 is formed in the same layer as the reflective pixel electrode 4.
  • FIG. 9A shows the source electrode and drain of the driving TFT elements T2 and T3 using the branch wiring 17b (wiring L2 in the gate driving circuit 15) formed in the same layer as the source and drain electrode layers 10.
  • FIG. An example in which electrodes are electrically connected is shown.
  • the driving TFT element T1 that does not need to be electrically connected is provided with a gate electrode formed of the gate electrode layer 6 and a source electrode and a drain electrode formed of the source and drain electrode layer 10.
  • the wiring L2 that electrically connects the source electrode and the drain electrode of the driving TFT elements T2 and T3 is arranged around the driving TFT element T1 that does not need to be electrically connected.
  • FIG. 9B shows an example in which the source and drain electrodes of the driving TFT elements T2 and T3 provided in the gate driving circuit 15 are electrically used by using the wiring L3 formed in the same layer as the reflective pixel electrode 4. An example in the case of connection is shown.
  • the wiring L3 for electrically connecting the driving TFT elements T2 and T3 is an electrode layer (the gate electrode layer 6 and the source and drain electrode layers 10) provided in the driving TFT elements T1, T2, and T3, and a driving (not shown).
  • Reflective pixel electrode 4 which is a different layer from the wiring (wiring formed in the same layer as gate electrode layer 6 and source and drain electrode layers 10) that electrically connects the gate electrode, source electrode, and drain electrode of TFT elements. Are formed in the same layer.
  • the wiring L3 is a wiring (gate electrode layer 6 and source electrode) that electrically connects the gate electrode, the source electrode, and the drain electrode of the driving TFT element T1 that does not need to be electrically connected and the driving TFT elements that are not illustrated.
  • the driving TFT element T1 and the wiring do not come into contact with each other. Therefore, the wiring for electrically connecting the driving TFT elements T2 and T3 to each other The area occupied by L3 in the gate drive circuit 15 can be reduced.
  • connection conductor 3a is formed on the third contact hole 21, and the wiring L3 is further formed on the connection conductor 3a.
  • the electrical connection method is not limited to this.
  • the width of the frame portion where the gate drive circuit 15 is formed is reduced.
  • a TFT array substrate 1 capable of achieving the above can be realized.
  • the liquid crystal display device which is an example of the active matrix display device of the present invention has a configuration including the TFT array substrate 1 described above.
  • the liquid crystal display device includes, for example, a TFT array substrate 1 and a color filter substrate facing the TFT array substrate 1, and has a configuration in which a liquid crystal layer is sealed between the substrates by a sealing material. ing.
  • the liquid crystal display device is used as an example of the active matrix display device.
  • the present invention is not limited thereto, and the TFT array substrate 1 is replaced with another active matrix display device such as an organic EL display device.
  • the present invention can also be applied.
  • the second trunk wiring is formed so as to at least partially overlap the first trunk wiring in a plan view.
  • the first trunk wiring and the second trunk wiring are formed so that at least a part thereof overlaps in plan view, the first trunk wiring and the second trunk wiring are formed.
  • the width of the frame portion on which the driving circuit and the wiring are formed can be reduced more efficiently by using the wiring formation region where the trunk wiring is formed.
  • the second trunk wiring is electrically connected to the first trunk wiring.
  • the second trunk line is electrically connected to the first trunk line.
  • the combined resistance value per unit width of the first trunk wiring electrically connected to the second trunk wiring is the unit width of the first trunk wiring not electrically connected to the second trunk wiring. It becomes smaller than the hit resistance value.
  • the sheet resistance ratio of the first trunk wiring and the second trunk wiring is 1: 2, from the equation when the resistance value per unit width of the first trunk wiring and the resistance are connected in parallel.
  • the ratio of the combined resistance value per unit width of the main line in the first main line electrically connected to the second main line that can be obtained is 3: 2.
  • the resistance value per unit width is changed to the resistance value of the first trunk wiring by configuring the second trunk wiring and the first trunk wiring to be electrically connected. Compared to 2/3.
  • the line width of the trunk wiring can be reduced by the amount of decrease in the resistance value per unit width.
  • the active matrix substrate in which the drive circuit and its wiring are monolithically formed, the active matrix substrate capable of reducing the width of the frame portion on which the drive circuit and its wiring are formed Can be realized.
  • the branch wiring is formed in the same layer as any one of the gate electrode layer and the source and drain electrode layers, and the first trunk wiring is the gate electrode.
  • the layer, the source and drain electrode layers, the electrode layer different from the electrode layer forming the branch wiring is formed in the same layer, and the second trunk wiring is formed in the same layer as the reflective pixel electrode layer.
  • the second trunk wiring is formed in the same layer as the reflective pixel electrode layer.
  • it is.
  • the active matrix substrate in which the drive circuit and its wiring are formed monolithically it is possible to realize an active matrix substrate capable of reducing the width of the frame portion on which the drive circuit and the wiring are formed. it can.
  • a transparent pixel electrode is further electrically connected to the pixel TFT element, and the first trunk wiring and the second trunk wiring, and the branch wiring are: It is preferable that they are electrically connected by a connection conductor formed in the same layer as the transparent pixel electrode.
  • the process used for forming the display area is used as it is.
  • the wiring and the second trunk wiring and the branch wiring can be electrically connected.
  • the first trunk wiring and the second trunk wiring have the same line width in the direction perpendicular to the longitudinal direction and the length in the longitudinal direction. It is preferable that one trunk wiring and the second trunk wiring overlap each other in a main portion in plan view.
  • the wiring in which the first trunk wiring and the second trunk wiring are formed since the first trunk wiring and the second trunk wiring are formed with the same line width, the wiring in which the first trunk wiring and the second trunk wiring are formed.
  • An active matrix substrate in which the formation region can be used more efficiently, and the width of the frame portion on which the drive circuit and its wiring are formed can be reduced in the active matrix substrate in which the drive circuit and its wiring are formed monolithically. Can be realized.
  • first trunk wiring and the second trunk wiring overlap each other in a main part in plan view
  • first trunk wiring and the second trunk wiring are It means an almost completely overlapping configuration.
  • At least one of the branch wirings that electrically connect the first trunk wiring or the second trunk wiring and the driving TFT element is formed of the reflective pixel electrode layer. It is preferable.
  • At least one of the branch wirings includes an electrode layer (gate electrode layer, source and drain electrode layer) provided in the driving TFT element and a wiring (electrical connection between the driving TFT elements).
  • the reflective pixel electrode which is a different layer from the gate electrode layer, the source and drain electrode layers), is formed in the same layer.
  • the branch wiring does not come into contact with the driving TFT element or the wiring without detouring the driving TFT element or the wiring for electrically connecting the driving TFT elements. It is possible to reduce the formation region of the branch wiring in FIG.
  • an active matrix substrate capable of reducing the width of the frame portion on which the drive circuit and its wiring are formed can be realized.
  • At least one of the wirings for electrically connecting the driving TFT elements is formed of the reflective pixel electrode layer.
  • the wiring for electrically connecting the drive TFT elements formed of the reflective pixel electrode layer is provided by the electrode layers (gate electrode layer, source and drain electrode layers) provided in the drive TFT element, It is formed of a layer different from other wiring (gate electrode layer, source and drain electrode layer) for electrically connecting the driving TFT elements.
  • the wiring that electrically connects the driving TFT elements formed of the reflective pixel electrode layer is the wiring that electrically connects the driving TFT elements or the driving TFT elements (the gate electrode layer, the source, and the wiring). Even if the drain electrode layer) is not detoured, contact with the driving TFT element and the other wiring does not occur. Therefore, the wiring for electrically connecting the driving TFT elements formed by the reflective pixel electrode layer is formed. The area can be reduced.
  • an active matrix substrate capable of reducing the width of the frame portion on which the drive circuit and its wiring are formed can be realized.
  • the pixel TFT element and the driving TFT element are preferably provided with an amorphous semiconductor layer.
  • the driving TFT element provided with the amorphous semiconductor layer has a low electron mobility, it is necessary to form a large size in order to satisfy a necessary amount of current as a TFT element for a driving circuit.
  • the drive circuit having the drive TFT element including the amorphous semiconductor layer has a large size, in order to reduce the width of the frame portion on which the drive circuit and the wiring are formed, the wiring formation region is provided. It is required to reduce the width of.
  • the frame portion in which the driving circuit and the wiring are formed An active matrix substrate capable of reducing the width of the substrate can be realized.
  • the present invention can be applied to an active matrix display device typified by a liquid crystal display device and an organic EL display device.
  • TFT array substrate active matrix substrate
  • pixel TFT element transparent pixel electrode
  • transparent pixel electrode 3a connecting conductor 4 reflective pixel electrode
  • insulating substrate 6 gate electrode layer 9 amorphous silicon film (amorphous semiconductor layer)
  • Source and drain electrode layers 15 Gate drive circuit (drive circuit) 17a First trunk wiring 17b, 17b 'Branch wiring 17c Second trunk wiring T1, T2, T3 Driving TFT elements L1, L2, L3 Wiring electrically connecting the driving TFT elements
  • Peripheral area W1, W2 Line width

Abstract

 第2の幹配線(17c)は、第1の幹配線(17a)とは異なる層である反射画素電極層により形成されるとともに、隣接する第1の幹配線(17a)の長手方向に沿って形成されている。したがって、ゲート駆動回路(15)およびその配線(17a・17b・17c・18)がモノリシックに形成されたTFTアレイ基板(1)において、ゲート駆動回路(15)およびその配線(17a・17b・17c・18)が形成される額縁部の幅を縮小することができるTFTアレイ基板(1)を実現できる。

Description

アクティブマトリクス基板およびアクティブマトリクス型表示装置
 本発明は、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板およびその基板を用いたアクティブマトリクス型表示装置に関するものである。
 近年、ブラウン管(CRT)に代わり急速に普及している液晶表示装置や、有機EL表示装置に代表されるTFTなどのアクティブ素子を用いたアクティブマトリクス型表示装置は、省エネ型、薄型、軽量型等の特徴を活かしテレビ、モニター、携帯電話等に幅広く利用されている。
 その中でも、特に携帯電話やPDA(Personal Digital Assistant)などのように、中小型の表示装置が備えられた電子機器においては、低コスト化を実現するため、非晶質シリコンを用いたゲートドライバーモノリシック(GDM)技術が採用され始めている。
 例えば、特許文献1には、液晶表示装置の表示領域に備えられた画素トランジスタと上記表示領域の周辺部に設けられたゲート駆動回路(ゲートドライバー)内のトランジスタとを、同一の非晶質シリコン層を用いて形成した液晶表示装置について記載されている。
 図10は、上記液晶表示装置に備えられたゲート駆動回路およびその配線領域を示す平面図である。
 図示されているように、図中の右端領域、すなわち、図示されてない上記液晶表示装置の表示領域に隣接した領域には、シフトレジスタの駆動トランジスタが形成されており、一方、図中の左端領域、すなわち、上記表示領域から最も離れた領域には、各シフトレジスタに信号を印加する複数の主配線150が形成されている配線領域が設けられている。
 また、図中の中間領域、すなわち、上記配線領域と上記駆動トランジスタが形成されている領域との間には、シフトレジスタの制御トランジスタが形成されている。
 なお、主配線150と上記各シフトレジスタの駆動トランジスタおよび制御トランジスタとを電気的に接続させるための分枝配線160は、主配線150とは異なる層で形成されており、上記特許文献1の構成においては、主配線150は、ゲート配線およびゲート電極のパターンと同じ層で形成され、分枝配線160は、データ配線およびソース電極のパターンと同じ層で形成されている。
 また、上記制御トランジスタ同士、上記駆動トランジスタ同士、上記制御トランジスタと上記駆動トランジスタとの電気的接続には、主配線150と同じ層または分枝配線160と同じ層が用いられる構成となっている。
 図11は、図10のG-H線断面図であり、主配線150と分枝配線160との接続部の様子を示す。
 図示されているように、絶縁基板170上には、主配線150が形成されており、分枝配線160は、主配線150および絶縁基板170を覆うように形成されたゲート絶縁膜180上に形成されている。
 さらに、分枝配線160とゲート絶縁膜180とを覆うようにパッシベーション膜190が形成されている。
 主配線150が一部露出するように、ゲート絶縁膜180とパッシベーション膜190とに形成されたホールが、第1コンタクトホール200であり、一方、分枝配線160が一部露出するように、パッシベーション膜190に形成されたホールが、第2のコンタクトホール210である。
 図10および図11に図示されているように、主配線150と分枝配線160とは、上述した第1コンタクトホール200と第2のコンタクトホール210とに形成された接続導体220、すなわち、上記液晶表示装置の表示領域に備えられた画素トランジスタのドレイン電極に電気的に接続された画素電極と同一層によって電気的に接続された構成となっている。
 上記構成によれば、上記ゲート駆動回路およびその配線を、上記液晶表示装置の表示領域の形成に用いられる工程をそのまま用いて、上記表示領域と同時に形成することができるため、上記ゲート駆動回路およびその配線を別途の製造工程を追加することなく、集積化することができるので、製造コストを下げることができると記載されている。
日本国公表特許公報「特表2005-527856号公報(2005年9月15日公表)」 日本国公開特許公報「特開2005-050502号公報(2005年2月24日公開)」 日本国公開特許公報「特開平8-087897号公報(1996年4月2日公開)」 日本国公表特許公報「特表平6-505605号公報(1994年6月23日公表)」
 上述したように、上記ゲート駆動回路およびその配線は、主配線150、上記ゲート駆動回路に備えられた各種トランジスタ、主配線150と上記各種トランジスタのゲート電極またはソース電極とを電気的に接続する分枝配線160、上記各種トランジスタ同士のゲート電極またはソース電極とを電気的に接続する配線を備えた構成となっている。
 このようなゲート駆動回路およびその配線をモノリシックに形成した液晶表示装置などの表示装置においては、上記ゲート駆動回路およびその配線は、一般的に上記表示装置の非表示領域である左右の額縁部に設けられるため、上記ゲート駆動回路に備えられる各構成のサイズや個数、そしてその配線の線幅や間隔などによって額縁部の幅が決まることとなる。
 上記額縁部の幅は、小さいことが望まれるが、以下の理由から非晶質シリコンを用いてゲート駆動回路をモノリシックに形成した表示装置においては、上記額縁部の幅が大きくなりやすいという問題がある。
 上記非晶質シリコン層を備えたトランジスタは、電子移動度が小さいため、ゲート駆動回路用のトランジスタとしての必要な電流量を満たすためには、そのサイズを大きく形成する必要がある。
 よって、非晶質シリコンを用いてゲート駆動回路をモノリシックに形成した表示装置において、上記額縁部の幅を縮小するためには、その配線形成領域の幅を縮小することが要求される。
 しかしながら、上記特許文献1の構成においては、全ての主配線150が、ゲート配線およびゲート電極のパターンと同じ層で形成されているため、外部からの異なる信号を入力する各主配線150は、間隔を離して配置する必要があるので、各主配線150間の間隔を縮小することは困難である。
 また、上記ゲート駆動回路のトランジスタに例えば、クロック信号などを供給する主配線150は、信号の遅延を防ぐために主配線150の配線抵抗を下げる必要があり、広い配線幅が要求される。
 したがって、上記特許文献1の構成においては、その配線形成領域の幅を縮小することは困難であり、上記額縁部の幅を縮小することはできない。
 本発明は、上記の問題点に鑑みてなされたものであり、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を提供することを目的とする。
 また、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができ、表示領域の大きいアクティブマトリクス型表示装置を提供することを目的とする。
 本発明のアクティブマトリクス基板は、上記の課題を解決するために、絶縁基板を備え、上記絶縁基板は、複数の画素TFT素子および反射画素電極が備えられた表示領域を有するとともに、上記画素TFT素子を駆動するための複数の駆動TFT素子が設けられている上記表示領域の周辺の領域である周辺領域を有し、上記周辺領域には、さらに、上記駆動TFT素子に電気的に接続された枝配線と、上記枝配線に電気的に接続され外部からの信号を入力するための第1の幹配線とが備えられており、上記画素TFT素子と上記駆動TFT素子とには、ゲート電極層、ソースおよびドレイン電極層が備えられ、上記反射画素電極を形成する層である反射画素電極層は、上記ゲート電極層、上記ソースおよびドレイン電極層とは異なる層であり、上記周辺領域には、上記第1の幹配線の長手方向に沿って形成されている配線である第2の幹配線が形成されており、上記第1の幹配線、上記第2の幹配線、および上記枝配線は、それぞれ、上記ゲート電極層、上記ソースおよびドレイン電極層、上記反射画素電極層の中から選択される異なる層で形成されていることを特徴としている。
 従来構成においては、外部からの信号などを供給する幹配線は、全てゲート電極と同一層で形成されていたため、外部からの異なる信号を入力する上記各幹配線は、間隔を離して配置する必要があるので、上記各幹配線間の間隔を縮小することは困難であった。
 よって、従来構成によっては、上記各幹配線が設けられる配線形成領域の幅を縮小することは困難であり、駆動回路およびその配線が形成される額縁部の幅を縮小することはできない。
 上記構成によれば、上記第1の幹配線、上記第2の幹配線、上記枝配線は、それぞれ、上記ゲート電極層、上記ソースおよびドレイン電極層、上記反射画素電極層の中から選択される異なる層で形成されるとともに、上記第2の幹配線は、隣接する上記第1の幹配線の長手方向に沿って形成されているので、外部からの異なる信号を入力する第1の幹配線と第2の幹配線間の間隔を離して配置する必要がなくなるので、単位幅当たりの上記第1の幹配線と上記第2の幹配線との数を増加させることができる。
 よって、上記構成によれば、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができる。
 なお、第2の幹配線が、隣接する第1の幹配線の長手方向に沿うとは、上記第2の幹配線と上記第1の幹配線とが平行に形成される場合のみを意味するのではなく、単位幅当たりの上記第1の幹配線と上記第2の幹配線との数を増加できる範囲内であれば、平行から多少ずれた場合も含むものである。
 本発明のアクティブマトリクス型表示装置は、上記の課題を解決するために、上記アクティブマトリクス基板を備えたことを特徴としている。
 上記構成によれば、上記駆動回路が形成される額縁部の幅が縮小されたアクティブマトリクス基板を備えることにより、表示領域の大きいアクティブマトリクス型表示装置を実現することができる。
 本発明のアクティブマトリクス基板は、以上のように、絶縁基板を備え、上記絶縁基板は、複数の画素TFT素子および反射画素電極が備えられた表示領域を有するとともに、上記画素TFT素子を駆動するための複数の駆動TFT素子が設けられている上記表示領域の周辺の領域である周辺領域を有し、上記周辺領域には、さらに、上記駆動TFT素子に電気的に接続された枝配線と、上記枝配線に電気的に接続され外部からの信号を入力するための第1の幹配線とが備えられており、上記画素TFT素子と上記駆動TFT素子とには、ゲート電極層、ソースおよびドレイン電極層が備えられ、上記反射画素電極を形成する層である反射画素電極層は、上記ゲート電極層、上記ソースおよびドレイン電極層とは異なる層であり、上記周辺領域には、上記第1の幹配線の長手方向に沿って形成されている配線である第2の幹配線が形成されており、上記第1の幹配線、上記第2の幹配線、および上記枝配線は、それぞれ、上記ゲート電極層、上記ソースおよびドレイン電極層、上記反射画素電極層の中から選択される異なる層で形成されている構成である。
 本発明のアクティブマトリクス型表示装置は、以上のように、上記アクティブマトリクス基板を備えた構成である。
 それゆえ、駆動回路がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができるという効果を奏する。
 また、上記駆動回路が形成される額縁部の幅を縮小することができ、表示領域の大きいアクティブマトリクス型表示装置を実現することができるという効果を奏する。
本発明の一実施の形態のTFTアレイ基板において、ゲート駆動回路用信号配線が形成されている領域を示す部分拡大図である。 図1に示すゲート駆動回路用信号配線が形成されている領域において、第1の幹配線と枝配線とが接続される領域におけるA-B線断面図である。 図1に示すゲート駆動回路用信号配線が形成されている領域において、第1の幹配線と第2の幹配線とが重なっている領域におけるC-D線断面図である。 ゲート駆動回路用信号配線が形成されている領域を示す図であり、(a)は、幹配線が、第1の幹配線のみで構成されている場合を示しており、(b)は、本実施の形態であり、幹配線が、第1の幹配線と第2の幹配線とで構成されている場合を示している。 本発明の一実施の形態のTFTアレイ基板の概略構成を示す図である。 本発明の他の実施の形態のTFTアレイ基板において、ゲート駆動回路用信号配線が形成されている領域を示す部分拡大図である。 図6に示すゲート駆動回路用信号配線が形成されている領域において、第1の幹配線と第2の幹配線とが接するように形成されている領域におけるE-F線断面図である。 ゲート駆動回路内に備えられた駆動TFT素子と枝配線とを電気的に接続する場合の一例を示す図であり、(a)は、駆動TFT素子のゲート電極と、ソースおよびドレイン電極層と同一層で形成された枝配線とを電気的に接続する場合を示しており、(b)は、本発明のさらに他の実施の形態であり、駆動TFT素子のゲート電極と、反射画素電極と同一層で形成された枝配線とを電気的に接続する場合を示している。 ゲート駆動回路内において、枝配線を用いて駆動TFT素子同士を電気的に接続する場合の一例を示す図であり、(a)は、ソースおよびドレイン電極層と同一層で形成された枝配線を用いて駆動TFT素子同士を電気的に接続する場合を示しており、(b)は、本発明のさらに他の実施の形態であり、駆動TFT素子同士を反射画素電極と同一層で形成された配線を用いて電気的に接続する場合を示している。 従来のゲート駆動回路領域および配線領域を示す平面図である。 図11のG-H線断面図であり、主配線と分枝配線との接続部の様子を示す。
 以下、図面に基づいて本発明の実施の形態について詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などはあくまで一実施形態に過ぎず、これらによってこの発明の範囲が限定解釈されるべきではない。
 〔実施の形態1〕
 以下、図5に基づき、本発明のアクティブマトリクス型表示装置の一例である液晶表示装置に備えられたアクティブマトリクス基板としてのTFTアレイ基板1の構成について説明する。
 図5は、TFTアレイ基板1の概略構成を示す図である。
 図示されているように、TFTアレイ基板1には、表示領域R1と表示領域R1の周辺に位置する周辺領域R2とが備えられている。
 表示領域R1には、画素TFT素子2と画素TFT素子2に電気的に接続された透明画素電極3と反射画素電極4(反射画素電極層)とがマトリクス状に設けられている。
 画素TFT素子2は、絶縁基板5上に、ゲートバスラインGLとゲート電極とを形成するゲート電極層6・Csバスライン7、ゲート絶縁膜8、半導体膜としての非晶質シリコン膜9、ソース電極10aとドレイン電極10bとデータバスラインDLとを形成するソースおよびドレイン電極層10、コンタクトホール11が形成された保護膜12および層間絶縁膜13、コンタクトホール11を介してドレイン電極10bと電気的に接続されるように形成された透明画素電極3が順に積層された構成となっている。
 さらに、Csバスライン7が形成されている領域上には、その上面が丸まった凹凸状14に形成された層間絶縁膜13が設けられている。
 その上面が丸まった凹凸状14に形成された層間絶縁膜13上には、凹凸状の透明画素電極3とAlやAgなどの光反射率を有する導電体からなる凹凸状の反射画素電極4とが順に積層されている。
 なお、本実施の形態においては、反射画素電極4が、透明画素電極3と電気的に接続されているが、これに限定されることはなく、反射画素電極を、透明画素電極と電気的に接続せず、絶縁層上に設けることもできる。
 すなわち、本実施の形態においては、絶縁基板5における上記各層が形成されている側の反対側に設けられる図示されてないバックライトからの光を透過するための透明画素電極3と上記バックライトが設けられている側の反対側から入射される外光を反射するための反射画素電極4とを備えた半透過型のTFTアレイ基板1を用いているが、透明画素電極3を設けることなく、反射画素電極4のみで構成される反射型のTFTアレイ基板を用いてもよい。
 なお、半透過型のTFTアレイ基板1において、1画素における透明画素電極3と反射画素電極4との面積比は、適宜変えることができるのは勿論である。
 また、図示されているように、本実施の形態においては、画素TFT素子2は、ボトムゲート型で形成しているが、これに限定されることはなく、トップゲート型などであってもよいのは勿論である。
 一方、周辺領域R2には、非晶質シリコン膜9を用いてモノリシックに形成されたゲート駆動回路15と、COG(Chip On Glass)技術を用いて形成されたソース駆動回路16が設けられている。
 ゲート駆動回路15は、ゲートバスラインGLと電気的に接続され、上記ソース駆動回路16は、データバスラインDLと電気的に接続され、外部からの信号に応じて画素TFT素子2を制御するようになっている。
 また、周辺領域R2における、ゲート駆動回路15が形成されている領域の図中左側には、クロック信号線や電源電圧線などの幹配線と、上記幹配線とゲート駆動回路15とを電気的に接続する枝配線からなるゲート駆動回路用信号配線17が設けられている。
 以上のように、TFTアレイ基板1の周辺領域R2には、ゲート駆動回路15およびゲート駆動回路用信号配線17がモノリシックに形成されている。
 図1は、TFTアレイ基板1において、ゲート駆動回路用信号配線17が形成されている領域を示す部分拡大図である。
 図1に図示されているように、ゲート駆動回路用信号配線17は、クロック信号や電源電圧などをゲート駆動回路15に供給するための第1の幹配線17aと、第1の幹配線17aとゲート駆動回路15とを電気的に接続する枝配線17bと、第1の幹配線17aに電気的に接続され、かつ第1の幹配線17aと平面視において重なる領域内に形成される第2の幹配線17cとで構成されている。
 ゲート駆動回路15は、図示されてないが、複数段で構成されており、図1においては、その一段を示している。
 図示されているように、一段のゲート駆動回路15には、複数本の異なる第1の幹配線17aにそれぞれ電気的に接続された複数本の枝配線17bが電気的に接続されるようになっており、本実施の形態においては、5種類の異なる信号(VSS/CK/CKB/VDD/VSS2)を5本の異なる第1の幹配線17aおよび枝配線17bを介して一段のゲート駆動回路15に送る構成を用いているが、上記本数は、特に限定されることなく、適宜必要に応じて変えることができるのは勿論である。
 なお、図示は省略するが、本実施の形態においては、上記一段のゲート駆動回路15は、複数個連結されており、ある一段の出力端子は、次段の入力端子と対応するゲートバスラインGLとに電気的に接続されており、上記出力端子からの出力信号によって、複数のゲートバスラインGLを順次選択するようになっているが、これに限定されることはなく、一段のゲート駆動回路に複数、例えば2個の出力端子が備えられ、1つの出力端子は次段の入力端子へ、もう1つの出力端子はゲートバスラインへ電気的に接続される構成を用いることもできる。
 なお、図示されているように、ゲート駆動回路15と、5本の第1の幹配線17a(5本の第2の幹配線17c)との間には、他の配線18が形成されていてもよい。
 他の配線18は、表示領域配線の断線リペア用配線、検査信号線、対向(共通)電極用配線、補助容量配線などであってもよい。
 以下、図2および図3に基づいて、ゲート駆動回路用信号配線17についてさらに詳しく説明する。
 図2は、ゲート駆動回路用信号配線17における第1の幹配線17aと枝配線17bとの接続部を示しており、図1におけるA-B線断面図である。
 本実施の形態においては、第1の幹配線17aは、図5に図示した画素TFT素子2のゲート電極層6と同一層で形成し、枝配線17bは、ソースおよびドレイン電極層10と同一層で形成しているが、これに限定されることはなく、第1の幹配線17aをソースおよびドレイン電極層10と同一層で形成し、枝配線17bをゲート電極層6と同一層で形成してもよい。
 図示されているように、絶縁基板5上には第1の幹配線17aが形成されており、絶縁基板5と第1の幹配線17aとを覆うように形成されたゲート絶縁膜8上には、枝配線17bが形成されている。
 さらに、ゲート絶縁膜8と枝配線17bとを覆うように保護膜12と層間絶縁膜13が形成されている。
 また、第1の幹配線17a上には、第1の幹配線17aが一部露出するように、ゲート絶縁膜8、保護膜12および層間絶縁膜13に第1のコンタクトホール19が形成されており、一方、枝配線17b上には、枝配線17bが一部露出するように、保護膜12および層間絶縁膜13に第2のコンタクトホール20が形成されている。
 第1の幹配線17aおよび第2の幹配線17cと枝配線17bとは、図5に図示した画素TFT素子2に電気的に接続された透明画素電極3と同一層で形成される接続導体3aによって電気的に接続されている。
 図5に図示されているようにTFTアレイ基板1は、半透過型であるため、透明画素電極3を備えており、本実施の形態においては、第1の幹配線17aおよび第2の幹配線17cと枝配線17bとの電気的な接続に透明画素電極3と同一層で形成される接続導体3aを用いている。
 一方、反射型のように透明画素電極3の代わりに反射画素電極4が備えられている構成においては、反射画素電極4と同一層で形成される接続導体を用いて第1の幹配線17aおよび第2の幹配線17cと枝配線17bとを電気的に接続することもできる。
 なお、上記接続導体としては、上述した透明画素電極3や反射画素電極4以外に別の導電膜を用いてもよい。
 透明画素電極3と同一層で形成される接続導体3a上には、第2の幹配線17cが反射画素電極4と同一層によって形成されている。
 なお、本実施の形態においては、第1の幹配線17aは、画素TFT素子2のゲート電極層6と同一層で形成し、枝配線17bは、ソースおよびドレイン電極層10と同一層で形成し、第2の幹配線17cは、反射画素電極4と同一層で形成しているが、これに限定されることはなく、第1の幹配線17a、第2の幹配線17cおよび枝配線17bは、それぞれ、ゲート電極層6、ソースおよびドレイン電極層10、反射画素電極4と同一層の中から選択される異なる層で形成されていればよい。
 なお、図示はしてないが、第2の幹配線17cが反射画素電極4と同一層によって形成され、第1の幹配線17aおよび第2の幹配線17cと枝配線17bとの電気的な接続にも反射画素電極4と同一層で形成される接続導体を用いる場合には、第2の幹配線17cで、第1の幹配線17aと枝配線17bとを電気的に接続することとなる。
 図3は、第1の幹配線17aと第2の幹配線17cとが重なっている領域を示しており、図1におけるC-D線断面図である。
 図2および図3に図示されているように、第2の幹配線17cは、平面視において第1の幹配線17a上に位置するように、第1の幹配線17aの長手方向(図1の上下方向)に沿って形成されており、第1の幹配線17aとは、接続導体3aを介して電気的に接続されている。
 図11に図示されている従来構成においては、外部からのクッロク信号などを供給する主配線150は、ゲート電極と同一層で形成されており、信号の遅延を防ぐためには、主配線150の配線抵抗を下げる必要があり、主配線150の配線幅は広く形成され、駆動回路における配線形成領域の幅を小さくするのは困難であるため、駆動回路が形成される額縁部の幅は縮小できない。
 一方、図2および図3に示すように、本実施の形態の構成によれば、第2の幹配線17cは、反射画素電極4と同一層で形成され、かつ、上記第1の幹配線17aと電気的に接続されている。
 よって、第2の幹配線17cに電気的に接続された第1の幹配線17aにおける幹配線17a・17cの単位幅当たりの合成抵抗値は、上記第2の幹配線17cに電気的に接続されてない第1の幹配線17aの単位幅当たりの抵抗値より小さくなる。
 本実施の形態のように、第1の幹配線17aがゲート電極層6と同一層で形成されている場合、第1の幹配線17aと第2の幹配線17cのシート抵抗比が1:2であるとすると、第1の幹配線17aの単位幅当たりの抵抗値と抵抗の並列連結時の式(1/R=1/R1+1/R2)から求めることができる第2の幹配線17cに電気的に接続された第1の幹配線17aにおける幹配線17a・17cの単位幅当たりの合成抵抗値との比は、3:2となる。
 すなわち、上記構成によれば、第2の幹配線17cを第1の幹配線17aに電気的に接続させる構成とすることにより、単位幅当たりの抵抗値を2/3にすることができる。
 図4の(a)は、幹配線が、第1の幹配線17aのみで構成されている場合のゲート駆動回路用信号配線を示しており、図4の(b)は、本実施の形態であり、幹配線が、第1の幹配線17aと第2の幹配線17cとで構成されている場合のゲート駆動回路用信号配線を示している。
 図4の(a)に図示されているように、幹配線が、第1の幹配線17aのみで構成されている場合においては、配線抵抗を下げるため第1の幹配線17aの長手方向に垂直な方向の線幅W1が広く形成されている。
 一方、図4の(b)に図示されているように、幹配線が、第1の幹配線17aと第2の幹配線17cとで構成されている場合においては、単位幅当たりの抵抗値を2/3にすることができるため、単位幅当たりの抵抗値が減少した分、第1の幹配線17aおよび第2の幹配線17cの線幅W2を縮小することができる。
 よって線幅W1と線幅W2の比は、3:2となる。
 なお、本実施の形態においては、第2の幹配線17cが、第1の幹配線17aの上層に配置され、平面視において第2の幹配線17cと第1の幹配線17aとが重なるように形成されている。
 また、本実施の形態においては、第1の幹配線17aと第2の幹配線17cとが形成される配線形成領域をより効率的に利用するため、第1の幹配線17aと第2の幹配線17cとは、それぞれの長手方向に垂直な方向の線幅およびそれぞれの長手方向の長さを同じに形成しているが、これに限定されることはなく、第1の幹配線17aと第2の幹配線17cとが平面視において重なるのであれば、第2の幹配線17cの形状は、第1の幹配線17aの形状と等しくなくてもよい。
 以上のように、上記構成によれば、ゲート駆動回路15およびゲート駆動回路用信号配線17がモノリシックに形成されたTFTアレイ基板1において、ゲート駆動回路用信号配線17が形成される額縁部の幅を縮小することができるTFTアレイ基板1を実現することができる。
 なお、本実施の形態においては、第1の幹配線17a、すなわち、ゲート電極層6は、例えば、Al合金などで形成することができるが、特に限定はされず、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは上記元素を主成分とする合金材料もしくは化合物材料で形成してもよい。また、多結晶シリコンなどに代表される半導体膜にリン、ボロンなどの不純物をドーピングしたものでもよい。
 また、枝配線17b、すなわち、ソースおよびドレイン電極層10は、Al合金または、Moまたは、これらを積層した膜で形成することができるがこれらに限定されることはなく、Ta、W、Ti、Mo、Al、Cu、Cr、Ndなどから選ばれた元素、あるいは上記元素を主成分とする合金材料もしくは化合物材料で、必要に応じて積層構造として形成してもよい。
 また、透明画素電極3や透明画素電極3と同一層である接続導体3aとしてはITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの透明導電膜を用いることができる。
 また、本実施の形態においては、画素TFT素子2や後述する駆動TFT素子に備えられる半導体膜として非晶質シリコン膜9を用いているが、これに限定されることはなく、非晶質ゲルマニウム、非晶質シリコン・ゲルマニウム、非晶質シリコン・カーバイドなどを用いてもよい。
 さらには、上記半導体膜として多結晶シリコン、多結晶ゲルマニウム、多結晶シリコン・ゲルマニウム、多結晶シリコン・カーバイドなどを用いることもできる。
 本実施の形態のように、非晶質半導体層を備えた駆動TFT素子は、電子移動度が小さいため、駆動回路用のTFT素子としての必要な電流量を満たすためには、そのサイズを大きく形成する必要がある。
 よって、非晶質半導体層を備えた駆動TFT素子を有するゲート駆動回路15はそのサイズが大きくなるため、ゲート駆動回路15およびゲート駆動回路用信号配線17が形成される額縁部の幅を縮小するためには、そのゲート駆動回路用信号配線17の幅を縮小することが要求される。
 したがって、上述した構成によれば、非晶質半導体層である非晶質シリコン膜9を備えた駆動TFT素子を有するゲート駆動回路15およびそのゲート駆動回路用信号配線17がモノリシックに形成されたTFTアレイ基板1において、ゲート駆動回路用信号配線17が形成される額縁部の幅を縮小することができるTFTアレイ基板1を実現することができる。
 また、ゲート絶縁膜8や保護膜12としては、例えば、SiNxやSiOxなどの無機膜を用いることができるが、これに限定されることはない。
 なお、層間絶縁膜13は、例えば、SiNxなどの無機膜で形成することができるが、特に限定はされず、SiOx、SiONなどの無機膜で形成してもよい。また、無機膜だけでなく、感光性を有する透明なアクリル樹脂などの有機膜を用いることもできる。さらには、無機膜と有機膜の積層構造であってもよい。
 本実施の形態においては、層間絶縁膜13の一部上面を丸まった凹凸状14に形成するため、感光性を有する透明なアクリル樹脂からなる有機膜を用いており、凹凸形状にパターニング後に、熱処理によってメルトフロウさせ、丸まった凹凸形状にしている。
 このような丸まった凹凸状14に形成された層間絶縁膜13上には、微細な丸まった凹凸形状を有する透明画素電極3と反射画素電極4とが順に形成されているため、光をある一定の角度範囲に散乱するように設計することが可能となり,効率よく周囲光を利用することで明るい反射特性を得ることができる。
 なお、ゲート駆動回路15およびそのゲート駆動回路用信号配線17がモノリシックに形成された本実施の形態のTFTアレイ基板1は、透明画素電極3と反射画素電極4とを備えた半透過型TFTアレイ基板の製造工程をそのまま用いて製造することができる。また、第2の幹配線17cが反射画素電極4と同一層によって形成され、第1の幹配線17aおよび第2の幹配線17cと枝配線17bとの電気的な接続にも反射画素電極4と同一層で形成される接続導体を用いてゲート駆動回路およびそのゲート駆動回路用信号配線をモノリシックに形成したTFTアレイ基板は、反射画素電極4を備えた従来の反射型TFTアレイ基板の製造工程をそのまま用いて製造することができる。
 〔実施の形態2〕
 次に、図6に基づいて、本発明の第2の実施形態について説明する。本実施の形態は、第2の幹配線17cが、隣接する第1の幹配線17aの長手方向に沿って形成されており、第1の幹配線17aとは電気的に接続されてない点において実施の形態1とは異なっており、その他の構成については実施の形態1において説明したとおりである。説明の便宜上、上記の実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 図6は、TFTアレイ基板1において、ゲート駆動回路用信号配線17’が形成されている領域を示す部分拡大図である。
 図7は、ゲート駆動回路用信号配線17’において、第1の幹配線17aと第2の幹配線17cとが、接するように形成されている部分を示しており、図6におけるE-F線断面図である。
 第2の幹配線17cは、隣接する第1の幹配線17aの長手方向に沿って形成されていることが好ましい。
 図6においては、この一例として、第2の幹配線17cが、隣接する図中右側の第1の幹配線17aに平面視において接するように形成されている。
 図10に図示する従来構成においては、外部からの信号などを供給する主配線150は、全てゲート電極と同一層で形成されているため、外部からの異なる信号を入力する各主配線150は、間隔を離して配置する必要があるので、各主配線150間の間隔を縮小することは困難である。
 よって、従来構成によっては、各主配線150が設けられる配線形成領域の幅を縮小することは困難であり、ゲート駆動回路およびその配線が形成される額縁部の幅を縮小することはできない。
 一方、本実施の形態の上記構成においては、図7に図示されているように、ゲート電極層6と同一層で形成される第1の幹配線17aとは、異なる層である反射画素電極4と同一層で形成される第2の幹配線17cが、下層である隣接する第1の幹配線17aと平面視において接するように備えられている。
 よって、外部からの異なる信号を入力する第1の幹配線17aと第2の幹配線17c間の間隔を離して配置する必要がなくなるので、単位幅当たりの第1の幹配線17aと第2の幹配線17cとの数を増加させることができる。
 なお、本実施の形態においては、第2の幹配線17cが上層、第1の幹配線17aが下層となっているが、第1の幹配線17aと第2の幹配線17cとが異なる層であればよく、その上下関係は特に限定されない。
 また、本実施の形態においては、図6に図示されているように、第2の幹配線17cが、平面視において第1の幹配線17a・17a間に配置されているが、これに限定されることはなく、第2の幹配線17cは、隣接する第1の幹配線17aの長手方向に沿って形成されていればよい。
 したがって、上記構成によれば、ゲート駆動回路15およびそのゲート駆動回路用信号配線17’がモノリシックに形成されたTFTアレイ基板1において、ゲート駆動回路用信号配線17’が形成される額縁部の幅を縮小することができるTFTアレイ基板1を実現することができる。
 〔実施の形態3〕
 次に、図8に基づいて、本発明の第3の実施形態について説明する。本実施の形態は、第1の幹配線17aまたは、第2の幹配線17cとゲート駆動回路15に備えられた駆動TFT素子T1・T2とを電気的に接続する枝配線17b’の少なくとも1本が、反射画素電極4と同一層で形成されている点において実施の形態1および実施の形態2とは異なっており、その他の構成については実施の形態1において説明したとおりである。説明の便宜上、上記の実施の形態1の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 本実施の形態のTFTアレイ基板1においては、第1の幹配線17aまたは第2の幹配線17cと駆動TFT素子T1・T2のゲート電極、ソース電極およびドレイン電極の何れかとを電気的に接続する枝配線17b’の少なくとも1本は、反射画素電極4と同一層で形成されていることが好ましい。
 図8の(a)は、ゲート駆動回路15内に備えられた駆動TFT素子T2のゲート電極と第1の幹配線17aに電気的に接続され、ソースおよびドレイン電極層10と同一層で形成された枝配線17bとを電気的に接続する場合の一例を示している。
 なお、図示しないが、ゲート駆動回路15内に備えられた駆動TFT素子T1・T2には、ゲート電極層6で形成されたゲート電極とソースおよびドレイン電極層10で形成されたソース電極およびドレイン電極とが備えられている。
 図示されているように、ソースおよびドレイン電極層10と同一層で形成された枝配線17bを駆動TFT素子T2のゲート電極と電気的に接続するために、ゲート駆動回路15内に、枝配線17bを一部露出するように形成された第3のコンタクトホール21と駆動TFT素子T2のゲート電極に電気的に接続されたゲート電極層6と同一層で形成された配線L1を一部露出するように形成された第4のコンタクトホール22とが形成されている。
 そして、枝配線17bと配線L1とは、図5に図示した画素TFT素子2に電気的に接続された透明画素電極3と同一層で形成される接続導体3aによって電気的に接続されているが、電気的な接続方法は、これに限定されることはない。
 上述したように、駆動TFT素子T1には、ゲート電極層6で形成されたゲート電極が備えられているため、ゲート電極層6と同一層で形成された配線L1は、電気的に接続する必要のない駆動TFT素子T1を迂回して配置されている。
 よって、ゲート駆動回路15内において、配線L1の占める面積が増加するため、ゲート駆動回路15を縮小するのが困難となる。
 一方、図8の(b)は、ゲート駆動回路15内に備えられた駆動TFT素子T2のゲート電極と、第1の幹配線17aに電気的に接続され、反射画素電極4と同一層で形成された枝配線17b’とを電気的に接続する場合の一例を示している。
 枝配線17b’は、駆動TFT素子T1・T2に備えられた電極層(ゲート電極層6、ソースおよびドレイン電極層10)や図示されてない駆動TFT素子同士のゲート電極、ソース電極、ドレイン電極を電気的に接続する配線(ゲート電極層6、ソースおよびドレイン電極層10と同一層で形成される配線)とは異なる層である反射画素電極4と同一層で形成されている。
 よって、図示されているように、枝配線17b’は、電気的に接続する必要のない駆動TFT素子T1や図示されてない駆動TFT素子同士のゲート電極、ソース電極、ドレイン電極を電気的に接続する配線を迂回しなくても、駆動TFT素子T1や上記配線とは接触が生じないので、ゲート駆動回路15内において、枝配線17b’と配線L1との占める面積を小さくすることができる。
 なお、図示されているように、第1の幹配線17aまたは配線L1と枝配線17b’とを電気的に接続させるため、本実施の形態においては、第1の幹配線17aおよび配線L1が一部露出するように第1のコンタクトホール19および第4のコンタクトホール22を形成した後、これらのコンタクトホール19・22上に接続導体3aを形成し、さらに、接続導体3a上に枝配線17b’を形成する構成を用いているが、電気的な接続方法は、これに限定されることはない。
 上記構成によれば、ゲート駆動回路15およびそのゲート駆動回路用信号配線17・17’がモノリシックに形成されたTFTアレイ基板1において、ゲート駆動回路15が形成される額縁部の幅を縮小することができるTFTアレイ基板1を実現することができる。
 〔実施の形態4〕
 次に、図9に基づいて、本発明の第4の実施形態について説明する。本実施の形態は、駆動TFT素子T2・T3同士を電気的に接続する配線L3の少なくとも1本が、反射画素電極4と同一層で形成されている点において実施の形態3とは異なっており、その他の構成については実施の形態3において説明したとおりである。説明の便宜上、上記の実施の形態3の図面に示した部材と同じ機能を有する部材については、同じ符号を付し、その説明を省略する。
 本実施の形態のTFTアレイ基板1においては、駆動TFT素子T2・T3同士を電気的に接続する配線L3の少なくとも1本は、反射画素電極4と同一層で形成されていることが好ましい。
 図9の(a)は、ソースおよびドレイン電極層10と同一層で形成された枝配線17b(ゲート駆動回路15内においては、配線L2)を用いて駆動TFT素子T2・T3のソース電極やドレイン電極を電気的に接続する場合の一例を示している。
 電気的に接続する必要のない駆動TFT素子T1には、ゲート電極層6で形成されたゲート電極とソースおよびドレイン電極層10で形成されたソース電極およびドレイン電極とが備えられているため、図示されているように、駆動TFT素子T2・T3のソース電極やドレイン電極を電気的に接続する配線L2は、電気的に接続する必要のない駆動TFT素子T1を迂回して配置されている。
 よって、ゲート駆動回路15内において、配線L2の占める面積が増加するため、ゲート駆動回路15を縮小するのが困難となる。
 一方、図9の(b)は、ゲート駆動回路15内に備えられた駆動TFT素子T2・T3のソース電極やドレイン電極を反射画素電極4と同一層で形成された配線L3を用いて電気的に接続する場合の一例を示している。
 駆動TFT素子T2・T3同士を電気的に接続する配線L3は、駆動TFT素子T1・T2・T3に備えられた電極層(ゲート電極層6およびソースおよびドレイン電極層10)や図示されてない駆動TFT素子同士のゲート電極、ソース電極、ドレイン電極を電気的に接続する配線(ゲート電極層6およびソースおよびドレイン電極層10と同一層で形成される配線)とは異なる層である反射画素電極4と同一層で形成されている。
 よって、配線L3は、電気的に接続する必要のない駆動TFT素子T1や図示されてない駆動TFT素子同士のゲート電極、ソース電極、ドレイン電極を電気的に接続する配線(ゲート電極層6およびソースおよびドレイン電極層10と同一層で形成される配線)を迂回しなくても、駆動TFT素子T1や上記配線とは接触が生じないので、駆動TFT素子T2・T3同士を電気的に接続する配線L3が、ゲート駆動回路15内において、占める面積を小さくすることができる。
 なお、図示されているように、配線L3と駆動TFT素子T2・T3のソース電極やドレイン電極に電気的に接続された配線L2とを電気的に接続させるため、本実施の形態においては、配線L2が一部露出するように第3のコンタクトホール21を形成した後、第3のコンタクトホール21上に接続導体3aを形成し、さらに、接続導体3a上に配線L3を形成する構成を用いているが、電気的な接続方法は、これに限定されることはない。
 上記構成によれば、ゲート駆動回路15およびそのゲート駆動回路用信号配線17・17’がモノリシックに形成されたTFTアレイ基板1において、ゲート駆動回路15が形成される額縁部の幅を縮小することができるTFTアレイ基板1を実現することができる。
 本発明のアクティブマトリクス型表示装置の一例である液晶表示装置は、上述したTFTアレイ基板1を備えた構成である。
 よって、上記構成によれば、表示領域の大きい液晶表示装置を実現することができる。
 図示は省略するが、上記液晶表示装置は、例えば、TFTアレイ基板1と、これに対向するカラーフィルタ基板とを備え、これらの基板の間に液晶層がシール材によって封入された構成を有している。
 以上では、アクティブマトリクス型表示装置の一例として液晶表示装置を用いて説明を行ったが、これらに限定されることはなく、TFTアレイ基板1を有機EL表示装置などの他のアクティブマトリクス型表示装置にも適用できることは勿論である。
 本発明のアクティブマトリクス基板において、上記第2の幹配線は、平面視において上記第1の幹配線と少なくともその一部が重なるように形成されていることが好ましい。
 上記構成によれば、上記第1の幹配線と上記第2の幹配線とは、平面視において少なくともその一部が重なるように形成されているため、上記第1の幹配線と上記第2の幹配線とが形成される配線形成領域をより効率的に利用でき、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができる。
 本発明のアクティブマトリクス基板において、上記第2の幹配線は、上記第1の幹配線と電気的に接続されていることが好ましい。
 上記構成によれば、上記第2の幹配線は、上記第1の幹配線に電気的に接続されている。
 上記第2の幹配線に電気的に接続された第1の幹配線の単位幅当たりの合成抵抗値は、上記第2の幹配線に電気的に接続されてない第1の幹配線の単位幅当たりの抵抗値より小さくなる。
 さらに詳しく説明すると、例えば、第1の幹配線と第2の幹配線のシート抵抗比を1:2とすると、第1の幹配線の単位幅当たりの抵抗値と抵抗の並列連結時の式から求めることができる上記第2の幹配線に電気的に接続された第1の幹配線における幹配線の単位幅当たりの合成抵抗値との比は、3:2となる。
 すなわち、上記例によれば、上記第2の幹配線と上記第1の幹配線とを電気的に接続させる構成とすることにより、単位幅当たりの抵抗値を第1の幹配線の抵抗値に比べ2/3にすることができる。
 よって、単位幅当たりの抵抗値が減少した分、幹配線の線幅を縮小することができる。
 以上のように、上記構成によれば、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができる。
 本発明のアクティブマトリクス基板において、上記枝配線は、上記ゲート電極層、上記ソースおよびドレイン電極層中、何れか一個の電極層と同一層で形成され、上記第1の幹配線は、上記ゲート電極層、上記ソースおよびドレイン電極層中、上記枝配線を形成する電極層とは異なる電極層と同一層で形成され、上記第2の幹配線は、上記反射画素電極層と同一層で形成されていることが好ましい。
 上記構成によれば、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができる。
 本発明のアクティブマトリクス基板において、上記画素TFT素子には、さらに、透明画素電極が電気的に接続されており、上記第1の幹配線および上記第2の幹配線と、上記枝配線とは、上記透明画素電極と同一層で形成された接続導体により電気的に接続されていることが好ましい。
 上記構成によれば、上記表示領域に反射画素電極と透明画素電極とが備えられた半透過タイプのアクティブマトリクス基板において、上記表示領域の形成に用いられる工程をそのまま用いて、上記第1の幹配線および上記第2の幹配線と上記枝配線とを電気的に接続することができる。
 本発明のアクティブマトリクス基板において、上記第1の幹配線と上記第2の幹配線とは、それぞれの長手方向に垂直な方向の線幅およびそれぞれの長手方向の長さが同じであり、上記第1の幹配線と上記第2の幹配線とが、平面視において、互いの主たる部分において重なりあっていることが好ましい。
 上記構成によれば、上記第1の幹配線と上記第2の幹配線とは同じ線幅で形成されているため、上記第1の幹配線と上記第2の幹配線とが形成される配線形成領域をより効率的に利用でき、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができる。
 なお、上記第1の幹配線と上記第2の幹配線とが、平面視において、互いの主たる部分において重なりあっているとは、上記第1の幹配線と上記第2の幹配線とが、ほぼ完全に重なり合う構成を意味する。
 本発明のアクティブマトリクス基板において、上記第1の幹配線または上記第2の幹配線と、上記駆動TFT素子とを電気的に接続する枝配線の少なくとも1本は、上記反射画素電極層で形成されていることが好ましい。
 上記構成によれば、上記枝配線の少なくとも1本は、上記駆動TFT素子に備えられた電極層(ゲート電極層、ソースおよびドレイン電極層)や上記駆動TFT素子同士を電気的に接続する配線(ゲート電極層、ソースおよびドレイン電極層)とは異なる層である反射画素電極と同一層で形成されている。
 よって、上記枝配線は、上記駆動TFT素子や上記駆動TFT素子同士を電気的に接続する配線を迂回しなくても、上記駆動TFT素子や上記配線とは接触が生じないので、上記駆動回路内における上記枝配線の形成領域を縮小することができる。
 したがって、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができる。
 本発明のアクティブマトリクス基板において、上記駆動TFT素子同士を電気的に接続する配線の少なくとも1本は、上記反射画素電極層で形成されていることが好ましい。
 上記構成によれば、上記反射画素電極層で形成された駆動TFT素子同士を電気的に接続する配線は、上記駆動TFT素子に備えられた電極層(ゲート電極層、ソースおよびドレイン電極層)や駆動TFT素子同士を電気的に接続する他の配線(ゲート電極層、ソースおよびドレイン電極層)とは異なる層で形成されている。
 よって、上記反射画素電極層で形成された駆動TFT素子同士を電気的に接続する配線は、上記駆動TFT素子や上記駆動TFT素子同士を電気的に接続する他の配線(ゲート電極層、ソースおよびドレイン電極層)を迂回しなくても、上記駆動TFT素子や上記他の配線とは接触が生じないので、上記反射画素電極層で形成された駆動TFT素子同士を電気的に接続する配線の形成領域を縮小することができる。
 したがって、駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板において、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができる。
 本発明のアクティブマトリクス基板において、上記画素TFT素子および上記駆動TFT素子には、非晶質半導体層が備えられていることが好ましい。
 非晶質半導体層を備えた駆動TFT素子は、電子移動度が小さいため、駆動回路用のTFT素子としての必要な電流量を満たすためには、そのサイズを大きく形成する必要がある。
 よって、非晶質半導体層を備えた駆動TFT素子を有する駆動回路はそのサイズが大きくなるため、上記駆動回路およびその配線が形成される額縁部の幅を縮小するためには、その配線形成領域の幅を縮小することが要求される。
 したがって、上記構成によれば、非晶質半導体層を備えた駆動TFT素子を有する駆動回路およびその配線がモノリシックに形成されたアクティブマトリクス基板においても、上記駆動回路およびその配線が形成される額縁部の幅を縮小することができるアクティブマトリクス基板を実現することができる。
 本発明は上記した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 本発明は、液晶表示装置や、有機EL表示装置に代表されるアクティブマトリクス型表示装置に適用することができる。
  1        TFTアレイ基板(アクティブマトリクス基板)
  2        画素TFT素子
  3        透明画素電極
  3a       接続導体
  4        反射画素電極
  5        絶縁基板
  6        ゲート電極層
  9        非晶質シリコン膜(非晶質半導体層)
  10       ソースおよびドレイン電極層
  15       ゲート駆動回路(駆動回路)
  17a      第1の幹配線
  17b、17b’ 枝配線
  17c      第2の幹配線
  T1、T2、T3 駆動TFT素子
  L1、L2、L3 駆動TFT素子同士を電気的に接続する配線
  R1       表示領域
  R2       周辺領域
  W1、W2    線幅

Claims (10)

  1.  絶縁基板を備え、
     上記絶縁基板は、複数の画素TFT素子および反射画素電極が備えられた表示領域を有するとともに、
     上記画素TFT素子を駆動するための複数の駆動TFT素子が設けられている上記表示領域の周辺の領域である周辺領域を有し、
     上記周辺領域には、さらに、上記駆動TFT素子に電気的に接続された枝配線と、上記枝配線に電気的に接続され外部からの信号を入力するための第1の幹配線とが備えられており、
     上記画素TFT素子と上記駆動TFT素子とには、ゲート電極層、ソースおよびドレイン電極層が備えられ、
     上記反射画素電極を形成する層である反射画素電極層は、上記ゲート電極層、上記ソースおよびドレイン電極層とは異なる層であり、
     上記周辺領域には、上記第1の幹配線の長手方向に沿って形成されている配線である第2の幹配線が形成されており、
     上記第1の幹配線、上記第2の幹配線、および上記枝配線は、それぞれ、上記ゲート電極層、上記ソースおよびドレイン電極層、上記反射画素電極層の中から選択される異なる層で形成されていることを特徴とするアクティブマトリクス基板。
  2.  上記第2の幹配線は、平面視において上記第1の幹配線と少なくともその一部が重なるように形成されていることを特徴とする請求項1に記載のアクティブマトリクス基板。
  3.  上記第2の幹配線は、上記第1の幹配線と電気的に接続されていることを特徴とする請求項1または2に記載のアクティブマトリクス基板。
  4.  上記枝配線は、上記ゲート電極層、上記ソースおよびドレイン電極層中、何れか一個の電極層と同一層で形成され、
     上記第1の幹配線は、上記ゲート電極層、上記ソースおよびドレイン電極層中、上記枝配線を形成する電極層とは異なる電極層と同一層で形成され、
     上記第2の幹配線は、上記反射画素電極層と同一層で形成されていることを特徴とする請求項1から3の何れか1項に記載のアクティブマトリクス基板。
  5.  上記画素TFT素子には、さらに、透明画素電極が電気的に接続されており、
     上記第1の幹配線および上記第2の幹配線と、上記枝配線とは、上記透明画素電極と同一層で形成された接続導体により電気的に接続されていることを特徴とする請求項1から4の何れか1項に記載のアクティブマトリクス基板。
  6.  上記第1の幹配線と上記第2の幹配線とは、
     それぞれの長手方向に垂直な方向の線幅およびそれぞれの長手方向の長さが同じであり、
     上記第1の幹配線と上記第2の幹配線とが、平面視において、互いの主たる部分において重なりあっていることを特徴とする請求項2に記載のアクティブマトリクス基板。
  7.  上記第1の幹配線または上記第2の幹配線と、上記駆動TFT素子とを電気的に接続する枝配線の少なくとも1本は、上記反射画素電極層で形成されていることを特徴とする請求項1から3の何れか1項に記載のアクティブマトリクス基板。
  8.  上記駆動TFT素子同士を電気的に接続する配線の少なくとも1本は、上記反射画素電極層で形成されていることを特徴とする請求項1から7の何れか1項に記載のアクティブマトリクス基板。
  9.  上記画素TFT素子および上記駆動TFT素子には、非晶質半導体層が備えられていることを特徴とする請求項1から8の何れか1項に記載のアクティブマトリクス基板。
  10.  請求項1から9の何れか1項に記載のアクティブマトリクス基板を備えたことを特徴とするアクティブマトリクス型表示装置。
PCT/JP2010/058666 2009-09-11 2010-05-21 アクティブマトリクス基板およびアクティブマトリクス型表示装置 WO2011030590A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/394,621 US8586987B2 (en) 2009-09-11 2010-05-21 Active matrix substrate and active matrix display device
JP2011530770A JP5236812B2 (ja) 2009-09-11 2010-05-21 アクティブマトリクス基板およびアクティブマトリクス型表示装置
CN201080039896.4A CN102483889B (zh) 2009-09-11 2010-05-21 有源矩阵基板和有源矩阵型显示装置
EP10815188.7A EP2477172A4 (en) 2009-09-11 2010-05-21 ACTIVE MATRIX SUBSTRATE AND ACTIVE MATRIX DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-210387 2009-09-11
JP2009210387 2009-09-11

Publications (1)

Publication Number Publication Date
WO2011030590A1 true WO2011030590A1 (ja) 2011-03-17

Family

ID=43732267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058666 WO2011030590A1 (ja) 2009-09-11 2010-05-21 アクティブマトリクス基板およびアクティブマトリクス型表示装置

Country Status (5)

Country Link
US (1) US8586987B2 (ja)
EP (1) EP2477172A4 (ja)
JP (1) JP5236812B2 (ja)
CN (1) CN102483889B (ja)
WO (1) WO2011030590A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293727A (zh) * 2012-06-29 2013-09-11 上海中航光电子有限公司 液晶显示装置的阵列基板
WO2018062023A1 (ja) * 2016-09-27 2018-04-05 シャープ株式会社 表示パネル
US10866471B2 (en) 2017-02-23 2020-12-15 Sharp Kabushiki Kaisha Drive circuit, matrix substrate, and display device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150081871A (ko) 2014-01-07 2015-07-15 삼성디스플레이 주식회사 표시 장치
US9589521B2 (en) * 2014-11-20 2017-03-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Liquid crystal display apparatus having wire-on-array structure
WO2018043424A1 (ja) * 2016-09-01 2018-03-08 シャープ株式会社 アクティブマトリクス基板および表示装置
CN108803172B (zh) * 2018-06-29 2021-08-10 上海中航光电子有限公司 一种阵列基板、显示面板及显示装置
US10852591B2 (en) * 2018-06-29 2020-12-01 Sharp Kabushiki Kaisha Image display device
CN111091775B (zh) * 2020-03-22 2020-09-01 深圳市华星光电半导体显示技术有限公司 一种显示面板以及电子设备
US11526232B2 (en) * 2021-03-26 2022-12-13 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display module and display device
US11605359B2 (en) * 2021-07-30 2023-03-14 Sharp Display Technology Corporation Display apparatus and display panel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150264A (ja) * 1991-11-29 1993-06-18 Seiko Epson Corp ドライバ内蔵型液晶表示パネルおよびその製造方法
JPH06505605A (ja) 1991-02-28 1994-06-23 トムソン−エルセーデー 液晶ディスプレイの選択線走査器として使用されるシフトレジスタ
JPH0887897A (ja) 1994-08-12 1996-04-02 Thomson Multimedia Sa シフト・レジスタおよびスキャン・レジスタ
JPH10288797A (ja) * 1997-04-15 1998-10-27 Semiconductor Energy Lab Co Ltd 反射型液晶パネル及び反射型液晶パネルを用いた装置
JP2003316284A (ja) * 2002-04-24 2003-11-07 Sanyo Electric Co Ltd 表示装置
JP2004062160A (ja) * 2002-06-07 2004-02-26 Seiko Epson Corp 電気光学装置及び電子機器
JP2005018031A (ja) * 2003-06-02 2005-01-20 Seiko Epson Corp 電気光学装置及びこれを備えた電子機器
JP2005050502A (ja) 2003-07-09 2005-02-24 Samsung Electronics Co Ltd シフトレジスタとこれを有するスキャン駆動回路及び表示装置
JP2005527856A (ja) 2002-05-28 2005-09-15 サムスン エレクトロニクス カンパニー リミテッド 非晶質シリコン薄膜トランジスタ−液晶表示装置及びそれの製造方法
JP2009015049A (ja) * 2007-07-05 2009-01-22 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3647542B2 (ja) * 1996-02-20 2005-05-11 株式会社半導体エネルギー研究所 液晶表示装置
JP2776376B2 (ja) * 1996-06-21 1998-07-16 日本電気株式会社 アクティブマトリクス液晶表示パネル
JPH10198292A (ja) * 1996-12-30 1998-07-31 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP4036923B2 (ja) * 1997-07-17 2008-01-23 株式会社半導体エネルギー研究所 表示装置およびその駆動回路
JP3897873B2 (ja) * 1997-09-11 2007-03-28 株式会社半導体エネルギー研究所 液晶表示装置の駆動回路
US6066860A (en) * 1997-12-25 2000-05-23 Seiko Epson Corporation Substrate for electro-optical apparatus, electro-optical apparatus, method for driving electro-optical apparatus, electronic device and projection display device
GB9825314D0 (en) * 1998-11-20 1999-01-13 Koninkl Philips Electronics Nv Active matrix liquid crystal display devices
KR100685945B1 (ko) * 2000-12-29 2007-02-23 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 제조방법
JP4058695B2 (ja) * 2004-02-16 2008-03-12 セイコーエプソン株式会社 電気光学装置及び電子機器
KR101109963B1 (ko) * 2005-02-18 2012-02-24 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
KR20070003178A (ko) * 2005-06-30 2007-01-05 엘지.필립스 엘시디 주식회사 액정표시소자
KR101326594B1 (ko) * 2006-12-15 2013-11-07 삼성디스플레이 주식회사 표시 장치
US8686422B2 (en) 2009-07-16 2014-04-01 Sharp Kabushiki Kaisha Active matrix substrate and active matrix display device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06505605A (ja) 1991-02-28 1994-06-23 トムソン−エルセーデー 液晶ディスプレイの選択線走査器として使用されるシフトレジスタ
JPH05150264A (ja) * 1991-11-29 1993-06-18 Seiko Epson Corp ドライバ内蔵型液晶表示パネルおよびその製造方法
JPH0887897A (ja) 1994-08-12 1996-04-02 Thomson Multimedia Sa シフト・レジスタおよびスキャン・レジスタ
JPH10288797A (ja) * 1997-04-15 1998-10-27 Semiconductor Energy Lab Co Ltd 反射型液晶パネル及び反射型液晶パネルを用いた装置
JP2003316284A (ja) * 2002-04-24 2003-11-07 Sanyo Electric Co Ltd 表示装置
JP2005527856A (ja) 2002-05-28 2005-09-15 サムスン エレクトロニクス カンパニー リミテッド 非晶質シリコン薄膜トランジスタ−液晶表示装置及びそれの製造方法
JP2004062160A (ja) * 2002-06-07 2004-02-26 Seiko Epson Corp 電気光学装置及び電子機器
JP2005018031A (ja) * 2003-06-02 2005-01-20 Seiko Epson Corp 電気光学装置及びこれを備えた電子機器
JP2005050502A (ja) 2003-07-09 2005-02-24 Samsung Electronics Co Ltd シフトレジスタとこれを有するスキャン駆動回路及び表示装置
JP2009015049A (ja) * 2007-07-05 2009-01-22 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2477172A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293727A (zh) * 2012-06-29 2013-09-11 上海中航光电子有限公司 液晶显示装置的阵列基板
WO2018062023A1 (ja) * 2016-09-27 2018-04-05 シャープ株式会社 表示パネル
US10866471B2 (en) 2017-02-23 2020-12-15 Sharp Kabushiki Kaisha Drive circuit, matrix substrate, and display device

Also Published As

Publication number Publication date
EP2477172A4 (en) 2016-03-23
CN102483889A (zh) 2012-05-30
JP5236812B2 (ja) 2013-07-17
EP2477172A1 (en) 2012-07-18
JPWO2011030590A1 (ja) 2013-02-04
CN102483889B (zh) 2014-09-03
US20120168762A1 (en) 2012-07-05
US8586987B2 (en) 2013-11-19

Similar Documents

Publication Publication Date Title
JP5236812B2 (ja) アクティブマトリクス基板およびアクティブマトリクス型表示装置
US10338443B2 (en) Amorphous silicon thin film transistor-liquid crystal display device and method of manufacturing the same
TWI274936B (en) Display device
KR102159830B1 (ko) 표시소자
KR100461485B1 (ko) 액정 표시 장치
JP5220918B2 (ja) 表示装置
US9529217B1 (en) Display device
KR20030091357A (ko) 액정 표시 장치용 박막 트랜지스터 기판
WO2011007479A1 (ja) アクティブマトリクス基板およびアクティブマトリクス型表示装置
TWI397756B (zh) 主動陣列基板、液晶顯示面板及製造主動陣列基板之方法
KR20120061129A (ko) 표시 장치
WO2011052258A1 (ja) 表示パネル及び表示装置
US20200321356A1 (en) Array substrate and display device
US9807881B2 (en) Semiconductor device
KR20070041934A (ko) 액정 표시 장치
KR101687227B1 (ko) 씨오지 타입 어레이 기판
KR20010076728A (ko) 액정 표시 장치 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039896.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530770

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13394621

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010815188

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010815188

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE