WO2011027578A1 - 導電性組成物 - Google Patents

導電性組成物 Download PDF

Info

Publication number
WO2011027578A1
WO2011027578A1 PCT/JP2010/005477 JP2010005477W WO2011027578A1 WO 2011027578 A1 WO2011027578 A1 WO 2011027578A1 JP 2010005477 W JP2010005477 W JP 2010005477W WO 2011027578 A1 WO2011027578 A1 WO 2011027578A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
substituted
formula
polyaniline
Prior art date
Application number
PCT/JP2010/005477
Other languages
English (en)
French (fr)
Inventor
戸塚翔太
板東徹
山尾忍
中村師健
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020127005909A priority Critical patent/KR101807325B1/ko
Priority to EP10813529.4A priority patent/EP2476732B1/en
Priority to CN201080039775.XA priority patent/CN102482503B/zh
Priority to JP2011529825A priority patent/JP5701761B2/ja
Publication of WO2011027578A1 publication Critical patent/WO2011027578A1/ja
Priority to US13/414,159 priority patent/US8535812B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/792Post-treatment doping with low-molecular weight dopants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • the present invention relates to a conductive composition.
  • Polyaniline is a well-known material as a conductive polymer. In addition to its electrical properties, polyaniline has the advantage that it can be synthesized relatively easily from inexpensive aniline, and exhibits excellent stability against air or the like in a state of conductivity.
  • Patent Document 1 and Patent Document 2 describe a method of polymerizing aniline on an electrode.
  • electrolytic oxidation polymerization a film having excellent electrical characteristics and the like can be obtained.
  • the production cost is higher than that of chemical oxidative polymerization, it is not suitable for mass production, and it is difficult to obtain a molded article having a complicated shape.
  • a dopant is added to polyaniline in a non-conductive base state (so-called emeraldine base state) to perform protonation.
  • emeraldine base state a non-conductive base state
  • polyaniline in a nonconductive base state is not suitable for industrial production because it hardly dissolves in most organic solvents.
  • the conductive polyaniline (so-called emeraldine salt state) generated after the protonation is substantially insoluble and infusible, and it is difficult to easily manufacture a conductive composite material and a molded body thereof.
  • Non-Patent Document 1 describes that excellent electrical characteristics are exhibited by using a proton acid having affinity for an organic solvent such as dodecylbenzenesulfonic acid or camphorsulfonic acid (CSA) as a dopant.
  • Patent Document 3 describes a method in which polyaniline in a non-conductive base state is dissolved in m-cresol using, for example, adamantane sulfonic acid as a dopant.
  • Non-Patent Document 2 for example, in a special solvent (halogen-based strong acid) such as 2,2-dichloroacetic acid, with 2-acrylamido-2-methyl-propanesulfonic acid as a dopant, a non-conductive base state
  • a special solvent halogen-based strong acid
  • 2,2-dichloroacetic acid is used as a solvent
  • di (2-ethylhexyl) ester of sulfosuccinic acid is used as a dopant to dope polyaniline in a nonconductive base state.
  • a method is described.
  • the molded article made of conductive polyaniline obtained by the methods described in Patent Documents 1 to 4 and Non-Patent Documents 1 and 2 is necessarily excellent in electrical characteristics such as electrical conductivity.
  • Patent Document 5 discloses (a) a protonated substituted or unsubstituted polyaniline complex dissolved in an organic solvent that is substantially immiscible with water, And (b) a conductive polyaniline composition comprising a compound having a phenolic hydroxyl group.
  • Patent Document 5 discloses that the amount of (b) phenolic compound added is usually 0.01 to 1000% by mass, preferably 0.5%, based on (a) the protonated substituted or unsubstituted polyaniline complex.
  • Patent Document 5 aniline is polymerized in the presence of hydrochloric acid because higher conductivity can be obtained by synthesizing conductive polyaniline by polymerizing aniline in the presence of hydrochloric acid.
  • Non-Patent Document 3 describes that conductive polyaniline having a high molecular weight cannot be produced unless aniline is polymerized in the presence of hydrochloric acid.
  • a polymer material has a close correlation between molecular weight and material properties. For example, when a film is formed, the higher the molecular weight, the stronger the film.
  • hydrochloric acid an industrially superior material can be obtained.
  • the metal part may be corroded, and in recent years, chlorine-free has been demanded in order to strengthen global environmental regulations.
  • An object of the present invention is to provide a conductive composition having a low chlorine content and high conductivity.
  • the following conductive compositions and the like are provided.
  • Solvent A ⁇ -conjugated conductive polymer having a chlorine content of 0.6% by weight or less; A compound represented by the following formula (1); Including The ⁇ -conjugated conductive polymer is dissolved, The weight ratio of the compound represented by the formula (1) and the ⁇ -conjugated conductive polymer (compound represented by the formula (1) / ⁇ -conjugated conductive polymer) is 0.01 to 22.0.
  • a conductive composition is 0.01 to 22.0.
  • R is an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkylthio group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms. ) 2.
  • Solvent A ⁇ -conjugated conductive polymer having a chlorine content of 0.6% by weight or less; A compound represented by the following formula (2); Including The ⁇ -conjugated conductive polymer is dissolved, The weight ratio of the compound represented by the formula (2) and the ⁇ -conjugated conductive polymer (compound represented by the formula (2) / ⁇ -conjugated conductive polymer) is 0.01 to 5.0.
  • a conductive composition A ⁇ -conjugated conductive polymer having a chlorine content of 0.6% by weight or less; A compound represented by the following formula (2); Including The ⁇ -conjugated conductive polymer is dissolved, The weight ratio of the compound represented by the formula (2) and the ⁇ -conjugated conductive polymer (compound represented by the formula (2) / ⁇ -conjugated conductive polymer) is 0.01 to 5.0.
  • a conductive composition A conductive composition.
  • R is an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkylthio group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms. ) 3.
  • Solvent A dissolved ⁇ -conjugated conductive polymer; and A compound represented by the following formula (1); Including The weight ratio of the compound represented by the formula (1) to the ⁇ -conjugated conductive polymer (compound represented by the formula (1) / ⁇ -conjugated conductive polymer) is 0.01 to 22.0. , A conductive composition having a chlorine content of 0.02% by weight or less.
  • R is an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkylthio group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms. ) 4).
  • Solvent A dissolved ⁇ -conjugated conductive polymer; and A compound represented by the following formula (2); Including The weight ratio of the compound represented by the formula (2) to the ⁇ -conjugated conductive polymer (compound represented by the formula (2) / ⁇ -conjugated conductive polymer) is 0.01 to 5.0. , A conductive composition having a chlorine content of 0.02% by weight or less.
  • R is an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkylthio group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms.
  • 5. 5 The conductive composition according to any one of 1 to 4, wherein the ⁇ -conjugated conductive polymer is a ⁇ -conjugated conductive polymer doped with an organic sulfonic acid. 6).
  • the ⁇ -conjugated conductive polymer is a protonated substituted or unsubstituted polyaniline, 7.
  • the solvent is an alcohol having 3 or more carbon atoms;
  • the weight ratio of the alcohol and the substituted or unsubstituted polyaniline is 5.0 to 27.0, 1 or 3 wherein the weight ratio of the compound represented by the formula (1) and the substituted or unsubstituted polyaniline (compound represented by the formula (1) / substituted or unsubstituted polyaniline) is 5.0 to 20.0.
  • the electroconductive composition as described in. 9.
  • R is an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkylthio group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms. ) 10.
  • Substituted or unsubstituted polyaniline A compound represented by the following formula (1); An alcohol having 3 or more carbon atoms, Including The weight ratio of the alcohol and the substituted or unsubstituted polyaniline (alcohol / substituted or unsubstituted polyaniline) is 12.0 to 27.0, The weight ratio of the compound represented by the formula (1) and the substituted or unsubstituted polyaniline (compound represented by the formula (1) / substituted or unsubstituted polyaniline) is 5.0 to 20.0, The substituted or unsubstituted polyaniline is dissolved; A conductive composition having a chlorine content of 0.02% by weight or less.
  • R is an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkylthio group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms.
  • R 1 is a carboxylic acid, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkoxy group, an alkanoyl group, an alkylthio group, an alkylthioalkyl group, an alkylaryl group, an alkylaryl group, an alkylsulfinyl group, An alkoxyalkyl group, an alkylsulfonyl group, an alkoxycarbonyl group, or an alkyl succinic acid.
  • 14 The conductive composition according to any one of 9 to 13, wherein the substituted or unsubstituted polyaniline contains phosphorus. 15.
  • a substrate Comprising a conductive layer comprising the conductive composition according to any one of 1 to 15, A conductive laminate formed by laminating the conductive layer on a substrate. 17.
  • a capacitor comprising the conductive composition according to any one of 20.1 to 15.
  • a conductive composition having a low chlorine content and high conductivity can be provided.
  • the first conductive composition of the present invention includes a solvent, a ⁇ -conjugated conductive polymer having a chlorine content of 0.6% by weight or less, and a compound represented by the following formula (1):
  • the ⁇ -conjugated conductive polymer is dissolved, and the weight ratio of the compound represented by the formula (1) and the ⁇ -conjugated conductive polymer (the compound represented by the formula (1) / ⁇ -conjugated system).
  • Conductive polymer is 0.01 to 22.0.
  • R is an alkyl group having 2 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkylthio group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 30 carbon atoms or an arylalkyl group having 7 to 30 carbon atoms.
  • the first conductive composition of the present invention contains a “compound represented by the formula (1)” (hereinafter referred to as “phenolic compound” as appropriate) and a “conductive polymer having a low chlorine content”. A molded article having high conductivity can be obtained.
  • the ⁇ -conjugated conductive polymer contained in the first conductive composition of the present invention has a chlorine content of 0.6% by weight or less, the first conductive composition of the present invention is a metal. There is little possibility to corrode.
  • the ⁇ -conjugated conductive polymer contained in the first conductive composition of the present invention is dissolved.
  • “dissolved” means that the ⁇ -conjugated conductive polymer is uniformly dissolved in a solvent in molecular units. Thereby, when the composition is dried, a uniform ⁇ -conjugated conductive polymer film free from grain boundaries can be obtained. It is considered that the ⁇ -conjugated conductive polymer is dissolved in a mixture of a solvent and a “compound represented by the formula (1)”.
  • the chlorine content of the ⁇ -conjugated conductive polymer contained in the first conductive composition of the present invention is 0.6% by weight or less, preferably 0.1% by weight or less, and 0.04% by weight or less. More preferably, it is 0.0001 weight% or less.
  • the value of chlorine content is a value measured by combustion-ion chromatography. When the chlorine content of the ⁇ -conjugated conductive polymer is more than 0.6% by weight, the metal part in contact with the ⁇ -conjugated conductive polymer may be corroded.
  • the ⁇ -conjugated conductive polymer contained in the first conductive composition of the present invention preferably has a weight average molecular weight of 1,000 or more, more preferably 1,000 to 1,000,000.
  • Specific examples of the ⁇ -conjugated conductive polymer include substituted or unsubstituted polyaniline, polypyrrole, polythiophene, poly (p-phenylene), poly (p-phenylene vinylene), and derivatives thereof.
  • the weight average molecular weight of the polyaniline is preferably 20,000 or more, more preferably 50,000 or more. More preferably, they are 50,000 or more and 1,000,000 or less. If the weight molecular weight of polyaniline is less than 20,000, the strength and stretchability of the conductive article obtained from the composition may be reduced.
  • the molecular weight distribution is preferably 1.5 to 10.0. From the viewpoint of electrical conductivity, a smaller molecular weight distribution is preferable.
  • the molecular weight and molecular weight distribution are values measured by gel permeation chromatograph (GPC).
  • substituent of the substituted polyaniline examples include linear or branched hydrocarbon groups such as a methyl group, an ethyl group, a hexyl group and an octyl group; an alkoxyl group such as a methoxy group and a phenoxy group; an aryloxy group; a CF 3 group and the like And halogen-containing hydrocarbon groups.
  • the ⁇ -conjugated conductive polymer is preferably doped with an electron accepting substance.
  • the electron-accepting substance can be used without any limitation in terms of chemical structure as long as it has sufficient electron-accepting ability to generate carriers in the ⁇ -conjugated conductive polymer.
  • it is doped with an electron accepting substance such as Bronsted acid or Lewis acid. More preferably, it is doped with an organic sulfonic acid.
  • alkylsulfonic acids such as methanesulfonic acid and ethanesulfonic acid
  • aromatic sulfonic acids such as paratoluenesulfonic acid, dodecylbenzenesulfonic acid and isopropylnaphthalenesulfonic acid
  • succinic sulfonic acids such as sodium salts
  • the doping rate a of the doped ⁇ -conjugated conductive polymer is preferably 0.42 to 0.60, more preferably 0.43 to 0.57. More preferably, it is 0.44 to 0.55.
  • the solubility in an organic solvent may not be increased.
  • the ⁇ -conjugated polymer is polypyrrole, 0 ⁇ a ⁇ 0.5 is preferable, and 0.25 ⁇ a ⁇ 0.35 is more preferable.
  • the doping rate is generally defined by (number of moles of dopant molecules doped in the conductive polymer) / (monomer unit of the conductive polymer).
  • a dopant doping rate a of 0.5 means that one molecule of dopant is doped per two molecules of nitrogen,
  • the conductivity is highest at this value and in the vicinity thereof.
  • the doped ⁇ -conjugated conductive polymer is preferably a protonated substituted or unsubstituted polyaniline, a protonated substituted or unsubstituted polypyrrole, or a protonated substituted or unsubstituted polythiophene, more preferably a proto Nated substituted or unsubstituted polyaniline.
  • the substituted or unsubstituted polyaniline is preferably a substituted or unsubstituted polyaniline doped with an electron accepting substance, more preferably a substituted or non-substituted polyaniline that is protonated with an organic protonic acid represented by the following formula (3) or a salt thereof.
  • AR 1 (3) (In the formula, A represents sulfonic acid (SO 3 H), selenic acid (SeO 3 H), phosphonic acid (PO 3 H), carboxylic acid (CO 2 H), hydrogen sulfate (SO 3 Na, etc.), selenium It is an oxyhydrogen salt (SeO 3 Na or the like) or a hydrogen phosphate salt (PO 3 Na or the like).
  • R 1 is carboxylic acid, alkyl group having 1 to 20 carbon atoms, alkenyl group, alkoxy group, alkanoyl group, alkylthio group, alkylthioalkyl group, alkylaryl group, alkylaryl group, alkylsulfinyl group, alkoxyalkyl group, alkylsulfonyl Group, an alkoxycarbonyl group, an alkyl succinic acid, or a substituent represented by the following formula (4). ) (Wherein R 11 and R 12 are each a linear or branched alkyl group having 1 to 12 carbon atoms. m and m ′ are each 0 to 3. A is bonded to —CH—. )
  • the organic protonic acid represented by the formula (3) or a salt thereof is preferably represented by the following formula (5).
  • R 01 is a single bond or an alkylene group having 1 to 4 carbon atoms.
  • R 02 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 05 and R 06 are each a methine group or an ethyne group, preferably an ethyne group.
  • R 01 , R 02 , R 05 and R 06 may form a cyclic structure, and the cyclic structure is preferably a cycloalkane, preferably a cycloalkane having 4 to 8 carbon atoms.
  • R 03 and R 04 are each a hydrogen atom or an alkyl group having 4 to 24 carbon atoms.
  • the alkyl group is preferably a branched alkyl group.
  • A is the same as equation (3).
  • alkyl group, alkylene group, and cycloalkane of R 01 to R 06 may further have a substituent.
  • the alkyl group and the alkylene group may be branched.
  • the electron-accepting substance include those similar to the electron-accepting substance used for the above-described ⁇ -conjugated conductive polymer.
  • the substituted or unsubstituted polyaniline which is a ⁇ -conjugated conductive polymer, is preferably a polyaniline obtained by polymerization in the presence of a chlorine-free acid, such as polyaniline obtained by polymerization in the presence of phosphoric acid. It is done. Thereby, the chlorine content of substituted or unsubstituted polyaniline can be made lower.
  • the substituted or unsubstituted polyaniline obtained by polymerization in the presence of phosphoric acid is preferably a substituted or unsubstituted polyaniline doped with an electron accepting substance.
  • high conductivity can be obtained by blending a substituted or unsubstituted polyaniline doped with an electron accepting substance and a compound represented by the formula (1) or (2) at a predetermined blending ratio.
  • Preferred substances as the electron accepting substance are as described above.
  • the substituted or unsubstituted polyaniline may or may not contain phosphorus.
  • the phosphorus content is, for example, 10 ppm to 5000 ppm by weight.
  • the phosphorus content can be measured by ICP emission spectrometry.
  • the phosphorus content is more preferably 1000 ppm or less, still more preferably 500 ppm or less, and most preferably 250 ppm by weight or less.
  • the first conductive composition of the present invention may or may not contain phosphorus. When phosphorus is contained, it is preferably 100 ppm by weight or less.
  • the substituted or unsubstituted polyaniline preferably does not contain a Group 12 element (for example, zinc) as an impurity.
  • the substitution position of R is preferably a meta position or a para position with respect to the phenolic hydroxyl group.
  • Examples of the alkyl group having 2 to 10 carbon atoms for R include ethyl, propyl, isopropyl, butyl, isobutyl, and tertiary butyl.
  • Examples of the alkenyl group for R include an alkenyl group having an unsaturated bond in the molecule of the alkyl group described above.
  • Examples of the cycloalkyl group include cyclopentyl, cyclohexyl and the like.
  • Examples of the alkylthio group include methylthio and ethylthio.
  • Examples of the aryl group include phenyl and naphthyl.
  • Examples of the alkylaryl group and the arylalkyl group include groups obtained by combining the above-described alkyl group and aryl group.
  • R is preferably an alkyl group having 2 to 10 carbon atoms, more preferably an alkyl group having 2 to 8 carbon atoms, and still more preferably an alkyl group having 2 to 5 carbon atoms.
  • the weight ratio of the “compound represented by the formula (1)” to the ⁇ -conjugated conductive polymer is 0.01 to 22.0.
  • the weight ratio is within the range of 0.01 to 22.0, and the composition ratio can be arbitrarily set according to the required characteristics for each application, but is preferably 0.01 from the viewpoint of the balance between conductivity and film strength. Is 10.0 to 10.0, and more preferably 0.05 to 5.0. Alternatively, in the case of increasing the conductivity, 5.0 to 22.0 is preferable.
  • the compound represented by the formula (1) / ⁇ -conjugated conductive polymer means ⁇ the compound (g) represented by the formula (1) contained in the first conductive composition of the present invention.
  • the said weight ratio is less than 0.01, there exists a possibility that electrical conductivity may not become high.
  • it exceeds 22.0 the strength of the film obtained from the conductive composition may be lowered.
  • the solvent may be an inorganic solvent or an organic solvent, and an organic solvent is preferable.
  • the organic solvent may be an organic solvent that is substantially immiscible with water (a water-immiscible organic solvent) or a water-soluble organic solvent.
  • water-immiscible organic solvents include hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and tetralin; halogen-containing solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and tetrachloroethane; ethyl acetate and the like And ester solvents.
  • toluene, xylene, chloroform, trichloroethane, and ethyl acetate are preferable in that the solubility of the doped polyaniline is excellent.
  • the water-soluble organic solvent include alcohols having 3 or more carbon atoms; ketones such as acetone and methyl ethyl ketone; polar ethers such as tetrahydrofuran and dioxane; and aprotic polar solvents such as N-methylpyrrolidone.
  • the solvent is an alcohol having 3 or more carbon atoms.
  • the alcohol having 3 or more carbon atoms is preferably an alkyl alcohol or cycloalkyl alcohol having 3 or more carbon atoms. More preferably, it is an alkyl alcohol having 3 to 10 carbon atoms, or a cycloalkyl alcohol. More preferred are alkyl alcohols having 3 to 8 carbon atoms, or cycloalkyl alcohols. Most preferably, it is an alkyl alcohol having 3 to 6 carbon atoms, or a cycloalkyl alcohol.
  • the alkyl alcohol may or may not have a substituent, and may or may not have a branch.
  • the cycloalkyl alcohol may or may not have a substituent.
  • n-propanol isopropanol, 1-butanol, 2-methylpropanol, 2-butanol, tert-butanol, 1-pentanol, 2-methylbutanol, 3-methylbutanol, 4-methylbutanol, 2- Methyl-2-butanol, 3-methyl-2-butanol, 2,2′-dimethylpropanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2-methylpentanol, 2-methyl-2- Examples include pentanol, 3-methylpentanol, 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methylpentanol, 4-methyl-2-pentanol, cyclohexanol and the like.
  • a mixed organic solvent of a water-immiscible organic solvent and a water-soluble organic solvent is preferably used in a mass ratio of 99 to 50: 1 to 50.
  • a low polar organic solvent can be used as the water-immiscible organic solvent of the mixed organic solvent.
  • toluene and chloroform are preferable.
  • a highly polar organic solvent can be used as a water-soluble organic solvent of a mixed organic solvent.
  • alcohols such as methanol, ethanol, isopropyl alcohol, 2-methoxyethanol and 2-ethoxyethanol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; tetrahydrofuran or diethyl ether are preferable.
  • the ratio of the ⁇ -conjugated conductive polymer in the conductive composition is not limited as long as the ⁇ -conjugated conductive polymer is dissolved in the conductive composition.
  • the ratio of the ⁇ -conjugated conductive polymer in the conductive composition for dissolving the ⁇ -conjugated conductive polymer in the conductive composition is usually 900 g / kg or less depending on the type of solvent, and the lower limit is Although not particularly limited, it is preferably in the range of 0.01 to 900 g / kg, more preferably 0.01 to 300 g / kg.
  • the content of the ⁇ -conjugated conductive polymer is too large, the solution state cannot be maintained, the handling of the molded body becomes difficult, the uniformity of the molded body is impaired, and consequently the electrical properties of the molded body and There is a risk of lowering mechanical strength and transparency.
  • the content of the ⁇ -conjugated conductive polymer is too small, when a conductive film is formed by the method described later, only a very thin film can be manufactured, which may make it difficult to manufacture a uniform conductive film. There is.
  • the ratio of the ⁇ -conjugated conductive polymer in the conductive composition is more preferably 10 g / kg or more and 300 g / kg or less, and most preferably 30 g / kg or more and 300 g / kg or less.
  • the second conductive composition of the present invention includes a solvent, a ⁇ -conjugated conductive polymer having a chlorine content of 0.6% by weight or less, and a compound represented by the following formula (2):
  • the ⁇ -conjugated conductive polymer is dissolved, and the weight ratio of the compound represented by the formula (2) and the ⁇ -conjugated conductive polymer (compound represented by the formula (2) / ⁇ -conjugated system) Conductive polymer) is 0.01 to 5.0.
  • n is an integer of 0 to 6.
  • R is an alkyl group having 2 to 10 carbon atoms, an alkenyl group, an alkylthio group, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, or an arylalkyl group.
  • the second conductive composition of the present invention is different from the first conductive composition of the present invention in that the “compound represented by the formula (1)” represented by the formula (1) is “ The point changed to “sex compound represented by formula (2)” and the weight ratio of “compound represented by formula (1)” to ⁇ -conjugated conductive polymer is “compound represented by formula (2)”. Since it is the same except that it is changed to a ⁇ -conjugated conductive polymer (the ratio is also different), only different items are described, and the description of the same items is omitted.
  • the 2nd electroconductive composition of this invention contains the compound shown by Formula (2), and a conductive polymer with low chlorine content, a molded object with high electroconductivity can be obtained.
  • the ⁇ -conjugated conductive polymer contained in the other conductive composition of the present invention has a chlorine content of 0.6% by weight or less. There is little risk of corroding metals. Note that the ⁇ -conjugated conductive polymer is considered to be dissolved in a mixture of the compound represented by the formula (2) and a solvent.
  • R of the compound represented by the formula (2) is the same as R of the compound represented by the formula (1).
  • the weight ratio of the “compound represented by formula (2)” to the ⁇ -conjugated conductive polymer (compound represented by formula (2) / ⁇ -conjugated conductive) Polymer) is 0.01 to 5.0.
  • the weight ratio can be arbitrarily set within the range of 0.01 to 5.0 according to the required characteristics for each application, but is preferably 0.01 from the viewpoint of the balance between conductivity and film strength. ⁇ 2.0.
  • the said weight ratio is less than 0.01, there exists a possibility that the high electroconductivity obtained by adding the compound represented by Formula (2) may not be obtained.
  • it exceeds 5.0 the strength of the film obtained from the conductive composition may be lowered.
  • the chlorine content of the third and fourth conductive compositions of the present invention is 0.02% by weight or less, more preferably 0.01% by weight or less, and further preferably 0.005% by weight or less. More preferably, it is 0.0001% by weight or less.
  • the value of chlorine content can be measured by combustion-ion chromatography.
  • the first conductive composition of the present invention has a chlorine content of 0.6% by weight or less in the ⁇ -conjugated conductive polymer, whereas the third conductive composition of the present invention is ⁇ -conjugated.
  • the amount of chlorine in the conductive polymer is not limited, and the amount of chlorine in the conductive composition is 0.02% by weight or less.
  • the first conductive composition of the invention is otherwise the same.
  • the second conductive composition of the present invention has a chlorine content of 0.6% by weight or less in the ⁇ -conjugated conductive polymer, whereas the fourth conductive composition of the present invention is ⁇ -conjugated.
  • the amount of chlorine in the conductive polymer is not limited, the difference is that the amount of chlorine in the conductive composition is 0.02% by weight or less, and the fourth conductive composition of the present invention is the same as the fourth conductive composition.
  • the conductive composition of 2 is the same in other configurations. Therefore, the description of the configuration of the third conductive composition of the present invention that is the same as the configuration of the first conductive composition of the present invention is omitted. In addition, among the configurations of the fourth conductive composition of the present invention, the description of the same matters as those of the second conductive composition of the present invention is omitted.
  • the first conductive composition of the present invention, the second conductive composition of the present invention, the third conductive composition of the present invention, and the fourth conductive composition of the present invention are ⁇ -conjugated conductive.
  • the polymer is preferably a protonated substituted or unsubstituted polyaniline, and the substituted or unsubstituted polyaniline may contain phosphorus.
  • the first conductive composition of the present invention and the third conductive composition of the present invention are preferably substituted or unsubstituted polyaniline in which the ⁇ -conjugated conductive polymer is protonated, and the solvent Is preferably an alcohol having 3 or more carbon atoms, and the weight ratio of the alcohol to the substituted or unsubstituted polyaniline (alcohol / substituted or unsubstituted polyaniline) is preferably 5.0 to 27.0,
  • the weight ratio of the compound represented by the formula (1) and the substituted or unsubstituted polyaniline (compound represented by the formula (1) / substituted or unsubstituted polyaniline) is preferably 5.0 to 20.0. .
  • the chlorine content is low, and the solvent is alcohol. And high electrical conductivity can be realized. Moreover, it can be set as a composition with less odor compared with the case where an aromatic compound is used for a solvent by making a solvent into alcohol.
  • the term “alcohol / substituted or unsubstituted polyaniline” means “amount of alcohol contained in the conductive composition (g) /“ substituted or unsubstituted polyaniline ”(g) contained in the conductive composition”.
  • the alcohol having 3 or more carbon atoms is as described above.
  • the ⁇ -conjugated conductive polymer of the composition of the present invention can be produced, for example, as follows.
  • a ⁇ -conjugated conductive polymer for example, a substituted or unsubstituted polyaniline that has been protonated
  • a ⁇ -conjugated conductive polymer can be obtained by a two-layer polymerization method using a solvent that does not substantially dissolve in water and phosphoric acid.
  • a salt of an electron-accepting substance for example, sodium sulfosuccinate
  • arinin is added, and phosphoric acid is further added to form a ⁇ -conjugated system.
  • Conductive polymers eg, protonated substituted or unsubstituted polyaniline
  • the conductive composition of the present invention containing alcohol as a solvent is preferably substituted or unsubstituted with a chlorine content of 0.6% by weight or less.
  • Polyaniline, a phenolic compound represented by the formula (1), and an alcohol having 3 or more carbon atoms, and a weight ratio of the alcohol having 3 or more carbon atoms and a substituted or unsubstituted polyaniline (alcohol / substituted or unsubstituted) Of polyaniline) is 5.0 to 27.0, and the weight ratio of phenolic compound and substituted or unsubstituted polyaniline (phenolic compound / substituted or unsubstituted polyaniline) is 5.0 to 22.0.
  • the substituted or unsubstituted polyaniline is dissolved.
  • the substituted or unsubstituted polyaniline may be dissolved in a mixture of alcohol and phenolic compound.
  • alcohol By using alcohol as all or part of the solvent, a composition with less odor can be obtained as compared with the case where an aromatic compound is used as the solvent.
  • the first alcohol-containing conductive composition has a chlorine content of 0.6% by weight or less in the substituted or unsubstituted polyaniline
  • the second alcohol-containing conductive composition of the present invention is The amount of chlorine in the substituted or unsubstituted polyaniline is not limited, and the amount of chlorine in the second alcohol-containing conductive composition is 0.02% by weight or less.
  • the second alcohol-containing conductive composition is the same in other configurations.
  • the alcohol having 3 or more carbon atoms is preferably an alcohol having 3 to 10 carbon atoms, more preferably 3 to 8 carbon atoms, and most preferably 3 to 6 carbon atoms. In the case of alcohol having 3 to 6 carbon atoms, excellent solubility and conductivity can be obtained. These alcohols may be alcohols having a linear structure or alcohols having a branched structure.
  • alcohol having 3 or more carbon atoms include n-propanol, isopropanol, 1-butanol, 2-methylpropanol, 2-butanol, tert-butanol, 1-pentanol, 2-methylbutanol, and 3-methylbutanol.
  • the phenolic compound is preferably a monohydric phenol, more preferably a mononuclear monohydric phenol. These phenols have excellent solubility in alcohol and good electrical conductivity can be obtained. Specific examples of the phenolic compound include ethylphenol, propylphenol, isopropylphenol, butylphenol, tert-butylphenol, pentylphenol, hexylphenol, octylphenol and the like.
  • the weight ratio of alcohol and substituted or unsubstituted polyaniline is 12.0 to 27.0, preferably 5 to 22. If the weight ratio is less than 10.0, a uniform solution may not be obtained. On the other hand, when the weight ratio is more than 27.0, film formation may be difficult.
  • the first to fourth conductive compositions of the present invention and the first and second alcohol-containing conductive compositions may or may not contain phosphorus. Also good.
  • phosphorus is included, the content of phosphorus is, for example, not less than 10 ppm by weight and not more than 5000 ppm by weight. The phosphorus content can be measured by ICP emission spectrometry.
  • the ⁇ -conjugated conductive polymer, the phenolic compound represented by the formula (1) or the naphthalene ring represented by the formula (2) is substituted with a hydroxyl group. It may consist essentially of the above-mentioned compound and solvent, or may consist solely of these components.
  • the first and second alcohol-containing conductive compositions of the present invention substantially comprise the above-described substituted or unsubstituted polyaniline, the phenolic compound represented by the formula (1), and an alcohol having 3 or more carbon atoms. It may also consist of only these components.
  • the composition of the present invention may contain other resins, inorganic materials, curing agents, plasticizers and the like as long as the effects of the present invention are not impaired.
  • resins are added as, for example, a binder base material, a plasticizer, a matrix base material, and specific examples thereof include polyolefins such as polyethylene and polypropylene, polystyrene, polyester, polyamide, polyacetal, polyethylene terephthalate, polycarbonate, polyethylene glycol, Examples include polyethylene oxide, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, and polyvinyl alcohol. Moreover, you may use the precursor which can form thermosetting resins, such as an epoxy resin, a urethane resin, and a phenol resin, instead of resin or with resin.
  • thermosetting resins such as an epoxy resin, a urethane resin, and a phenol resin, instead of resin or with resin.
  • Inorganic materials are added for the purpose of, for example, improving strength, surface hardness, dimensional stability, and other mechanical properties. Specific examples thereof include silica (silicon dioxide), titania (titanium oxide), and alumina (aluminum oxide). Etc.
  • Curing agents are added for the purpose of, for example, improving strength, surface hardness, dimensional stability and other mechanical properties. Specific examples thereof include thermosetting agents such as phenol resins, acrylate monomers and photopolymerizable initiators. And a photo-curing agent.
  • Plasticizers are added for the purpose of improving mechanical properties such as tensile strength and bending strength, and specific examples thereof include phthalates and phosphates.
  • composition of the present invention can be prepared by a known method, for example, by the method disclosed in WO05 / 052058.
  • a conductive molded body is obtained from the composition of the present invention.
  • the composition of the present invention is applied to a substrate such as a glass, a resin film, a sheet, or a nonwoven fabric having a desired shape, and an organic solvent is removed to remove the organic solvent.
  • a conductive article can be obtained by processing the conductive laminate of the present invention into a desired shape by a known method such as vacuum forming or pressure forming.
  • the substrate is preferably a resin film or sheet.
  • a method for applying the composition to the substrate known methods such as a casting method, a spray method, a dip coating method, a doctor blade method, a barcode method, a spin coating method, an electrospinning method, screen printing, and gravure printing Can be used.
  • the coating film When drying the coating film, the coating film may be heated depending on the type of organic solvent. For example, heating is performed at a temperature of 250 ° C. or less, preferably 50 to 200 ° C. in an air stream, and further, heating is performed under reduced pressure as necessary.
  • the heating temperature and the heating time are not particularly limited and may be appropriately selected depending on the material to be used.
  • a conductive film can be produced by removing the organic solvent from the composition of the present invention.
  • the thickness thereof is usually 1 mm or less, preferably in the range of 10 nm to 50 ⁇ m.
  • a film having a thickness in this range is advantageous in that it does not easily crack during film formation and has uniform electrical characteristics.
  • the composition of this invention is good also as a conductive article by mixing with a base material.
  • the base material include polyolefins such as polyethylene and polypropylene; thermoplastic resins such as polystyrene, polyester, polyamide, polyacetal, polycarbonate, polyethylene glycol, polyethylene oxide, polyacrylic acid, polyacrylic acid ester, polymethacrylic acid ester, and polyvinyl alcohol.
  • thermosetting resins such as epoxy resins, phenol resins, and urethane resins.
  • the composition of the present invention can be a self-supporting molded article having no substrate.
  • a self-supporting molded body preferably, if the composition contains the other resin described above, a molded body having a desired mechanical strength can be obtained.
  • Chlorine measurement in this method cannot be performed when the chlorine content is 0.0001% by weight or less, and the measurement result of the polyaniline complex 1 is below the detection limit. Therefore, the chlorine content of the polyaniline complex 1 is 0.0001% by weight. It turns out that it is the following.
  • ICP method ICP emission spectroscopic analysis
  • the ICP method was performed using SPS5100 manufactured by SSI Nanotechnology. The ICP method in this method cannot be measured when the amount of phosphorus is 100 ppm by weight or less, so that it is 100 ppm by weight or less when it is below the measurement limit.
  • the obtained concentrated residue was dissolved in 1 L in an ethyl acetate / hexane mixed solution, 250 g of silica gel was added and stirred, and the solution was separated by filtration. Further, extraction was performed twice from silica gel with 1 L of ethyl acetate / hexane solution, and the filtrates were combined and concentrated under reduced pressure.
  • This concentrated solution was purified by column chromatography (silica gel 1500 g, developing solvent: ethyl acetate / hexane), the purified product was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 3,4-bis [(2- Ethylhexyl) oxycarbonyl] sodium cyclohexanesulfonate (a compound represented by the following formula) (52.4 g) was obtained.
  • the reaction was carried out while maintaining the internal temperature of the solution at 5 ° C. for 18 hours from the start of dropping. Thereafter, 125 mL of toluene was added, the reaction temperature was raised to 25 ° C., and the reaction was continued for 4 hours. Then, the aqueous phase side separated into two phases by standing was separated, and the toluene phase side was washed twice with 50 mL of ion-exchanged water and once with 50 mL of 1N hydrochloric acid to give a polyaniline complex (protonated polyaniline). ) A toluene solution was obtained.
  • Example 1 The polyaniline complex 1 prepared in Production Example 1 was redissolved in 0.1 g of toluene (first grade manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a 5% by weight solution. To this solution, 0.1 g of 3-ethylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a second dopant, and the mixture was stirred and mixed at 30 ° C. for 2 hours. The obtained solution was formed into a film by the spin coat method, a conductive film was formed on the ITO (indium tin oxide) substrate by the spin coat method, and the intrinsic conductivity was measured by the four-terminal method. The results are shown in Table 1. The chlorine content of the polyaniline solution was 0.0001% by weight or less. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 2 A conductive film was formed in the same manner as in Example 1 except that the amount of 3-ethylphenol added was 0.4 g, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 3 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of 4-ethylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 4 A conductive film was formed in the same manner as in Example 1 except that 0.4 g of 4-ethylphenol was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 5 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of 3-isopropylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 6 A conductive film was formed in the same manner as in Example 1 except that 0.4 g of 3-isopropylphenol was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 7 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of 4-isopropylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 8 A conductive film was formed in the same manner as in Example 1 except that 0.4 g of 4-isopropylphenol was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 9 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of 3-tert-butylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 10 A conductive film was formed in the same manner as in Example 1 except that 0.4 g of 3-tert-butylphenol was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 11 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of 4-tert-butylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 12 A conductive film was formed in the same manner as in Example 1 except that 0.4 g of 4-tert-butylphenol was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 13 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of 4-amylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 14 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of 4-tert-pentylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. .
  • the results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 15 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of ⁇ -naphthol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 16 A conductive film was formed in the same manner as in Example 1 except that 0.4 g of ⁇ -naphthol was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 17 0.1 g of polyaniline complex 2 prepared in Production Example 2 was redissolved in toluene to prepare a 5 wt% solution. To this solution, 0.4 g of 4-tert-butylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a second dopant, and the mixture was stirred and mixed at 30 ° C. for 2 hours. This solution was formed into a film by a spin coat method, a conductive film was formed on an ITO (indium tin oxide) substrate by a spin coat method, and the intrinsic conductivity was measured by a four-terminal method. The results are shown in Table 1. The chlorine content of the polyaniline solution was 0.0001% by weight or less. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • 4-tert-butylphenol manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 18 A conductive film was formed in the same manner as in Example 17 except that 0.4 g of ⁇ -naphthol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 4-tert-butylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 19 0.1 g of polyaniline complex 3 prepared in Production Example 3 was redissolved in toluene to prepare a 5 wt% solution. To this solution, 0.1 g of 4-tert-butylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a second dopant, and the mixture was stirred and mixed at 30 ° C. for 2 hours. This solution was formed into a film by a spin coat method, a conductive film was formed on an ITO (indium tin oxide) substrate by a spin coat method, and the intrinsic conductivity was measured by a four-terminal method. The results are shown in Table 1. The chlorine content of the polyaniline solution was 0.004% by weight. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • 4-tert-butylphenol manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 20 A conductive film was formed in the same manner as in Example 19 except that 0.1 g of ⁇ -naphthol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 4-tert-butylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1.
  • the chlorine content of the polyaniline solution was 0.004% by weight.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Comparative Example 1 A conductive film was formed in the same manner as in Example 1 except that 3-ethylphenol was not added, and the intrinsic conductivity was measured. The results are shown in Table 1. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Comparative Example 2 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of m-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. The results are shown in Table 1. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Comparative Example 3 0.1 g of polyaniline complex 4 prepared in Production Example 4 was redissolved in toluene (first grade manufactured by Wako Pure Chemical Industries, Ltd.) to prepare a 5 wt% solution. To this solution, 0.1 g of m-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added as a second dopant, and the mixture was stirred and mixed at 30 ° C. for 2 hours to produce a polyaniline solution. The chlorine content of this polyaniline solution was 0.03% by weight.
  • This solution was formed into a film by a spin coat method, a conductive film was formed on an ITO (indium tin oxide) substrate by a spin coat method, and the intrinsic conductivity was measured by a four-terminal method.
  • the results are shown in Table 1.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Comparative Example 4 A conductive film was formed in the same manner as in Comparative Example 3 except that 0.1 g of 4-tert-butylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of m-cresol, and the intrinsic conductivity was measured. The results are shown in Table 1. The chlorine content of the polyaniline solution was 0.031% by weight. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 21 To 2.5 g of isopropyl alcohol (IPA) (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.7 g of para-tert-butylphenol (pTBPh) (manufactured by Tokyo Chemical Industry Co., Ltd.) is added and dissolved. When 0.1 g of the polyaniline complex 1 was added and stirred, a uniformly dissolved solution was obtained. A thin film of this solution was formed on a glass substrate by a spin coating method, and the conductivity was measured by a four-probe method (Lorestar GP manufactured by Mitsubishi Chemical Corporation). The results are shown in Table 2. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • IPA isopropyl alcohol
  • pTBPh para-tert-butylphenol
  • Example 22 A thin film was formed in the same manner as in Example 21 except that propanol (PrOH) was added instead of IPA, and the conductivity was measured. The results are shown in Table 2. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 23 A thin film was formed in the same manner as in Example 21 except that octanol (OcOH) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of IPA, and the conductivity was measured. The results are shown in Table 2. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • OcOH octanol
  • Example 24 A thin film was formed in the same manner as in Example 21 except that the amount of IPA added was 1.6 g, and 1.6 g of 4-ethylphenol (4EtPh) was added instead of pTBPh, and the conductivity was measured. The results are shown in Table 2. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 25 A thin film was formed in the same manner as in Example 24 except that 4-isopropylphenol (4IPPh) (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 4EtPh, and the conductivity was measured. The results are shown in Table 2.
  • 4IPPh 4-isopropylphenol
  • Comparative Example 5 An attempt was made to prepare a solution in the same manner as in Example 21 except that the addition amount of IPA was 2.9 g and the addition amount of pTBPh was 0.3 g, but the polyaniline complex 1 was not dissolved and a thin film was formed. I could't. The results are shown in Table 2. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 26 A conductive film was formed in the same manner as in Example 1 except that 0.1 g of 4-tert-amylphenol (manufactured by Tokyo Chemical Industry Co., Ltd.) was added instead of 3-ethylphenol, and the intrinsic conductivity was measured. However, it was 56 S / cm.
  • the chlorine content of the polyaniline solution was 0.0001% by weight or less.
  • the content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • Example 27 0.5 g of polyaniline complex 1 prepared in Production Example 1, 3.3 g of isopropyl alcohol (Tokyo Chemical Industry Co., Ltd.), and 3.3 g of 4-tert-amylphenol (Tokyo Chemical Industry Co., Ltd.) are mixed and stirred. A homogeneous solution was prepared. When this was formed into a film by the same operation as Example 1 and the intrinsic conductivity was measured, it was 42 S / cm. The chlorine content of the polyaniline solution was 0.0001% by weight or less. The content of phosphorus in the polyaniline solution was 100 ppm by weight or less, which is below the measurement limit of this method.
  • the conductive composition of the present invention is used in the field of power electronics and optoelectronics. Electrostatic and antistatic materials, transparent electrodes and conductive film materials, electroluminescent element materials, circuit materials, electromagnetic wave shielding materials, capacitor dielectrics and It can be used for electrolytes, solar cell and secondary battery electrode materials, fuel cell separator materials, etc., plating bases, rust inhibitors, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

 溶剤と、塩素含有量が0.6重量%以下であるπ共役系導電性高分子と、下記式(1)で表される化合物とを含み、前記π共役系導電性高分子は溶解しており、前記式(1)で表される化合物と前記π共役系導電性高分子の重量比(式(1)で表される化合物/π共役系導電性高分子)が0.01~22.0である導電性組成物。

Description

導電性組成物
 本発明は、導電性組成物に関する。
 導電性高分子として、ポリアニリン等は周知の材料である。ポリアニリンは、その電気的特性に加え、安価なアニリンから比較的簡便に合成でき、且つ導電性を示す状態で、空気等に対して優れた安定性を示すという利点を有する。
 ポリアニリンの製造方法としては、アニリン又はアニリン誘導体を電解酸化重合する方法又は化学酸化重合する方法が知られている。
 電解酸化重合については、電極上でアニリンを重合する方法が、特許文献1や特許文献2に記載されている。電解酸化重合では、電気的特性等に優れたフィルムが得られる。しかしながら、一般に、化学酸化重合に比べて製造コストが高く、大量生産には適しておらず、また、複雑な形状の成形体を得ることも困難である。
 一方、化学酸化重合によって、アニリン又はアニリン誘導体の導電性重合体を得るためには、一般に、非導電性塩基状態(いわゆるエメラルディン塩基状態)のポリアニリンにドーパント(ドーピング剤)を加えてプロトネーションする工程が必要である。
 しかしながら、非導電性塩基状態のポリアニリンは、大部分の有機溶剤に殆ど溶解しないため、工業的な製造に適するものではない。また、プロトネーション後に生成する導電性のポリアニリン(いわゆるエメラルディン塩状態)は、実質的に不溶不融であり、導電性の複合材料及びその成形体を簡便に製造することは難しい。
 このような状況下、非導電性塩基状態のポリアニリンのドーピング、及びドーピング後の導電性ポリアニリンの有機溶剤に対する親和性を改善する方法として、幾つかの提案がなされている。
 例えば、非特許文献1では、ドデシルベンゼンスルホン酸や、ショウノウスルホン酸(CSA)等の、有機溶剤に親和性のあるプロトン酸をドーパントとして使用することで優れた電気的特性を示すことが記載されている。
 特許文献3には、非導電性塩基状態のポリアニリンを、例えば、アダマンタンスルホン酸をドーパントとし、これをm-クレゾールに溶解する方法が記載されている。
 非特許文献2には、例えば、2,2-ジクロロ酢酸のような特殊な溶媒(ハロゲン系の強酸)中で、2-アクリルアミド-2-メチル-プロパンスルホン酸をドーパントとして、非導電性塩基状態のポリアニリンをドーピングする方法が記載されている。
 特許文献4には、例えば、特許文献2と同様に、溶媒として2,2-ジクロロ酢酸を用い、スルホコハク酸のジ(2-エチルヘキシル)エステルをドーパントとして、非導電性塩基状態のポリアニリンをドーピングする方法が記載されている。
 しかしながら、特許文献1~4及び非特許文献1,2に記載の方法で得られた導電性ポリアニリンからなる成形体は、電気伝導率等の電気的特性が必ずしも優れているとは言えなかった。
 導電性ポリアニリンからなる成形体の導電性を高くするため、特許文献5は、実質的に水と混和しない有機溶剤に溶解している、(a)プロトネーションされた置換又は未置換ポリアニリン複合体、及び(b)フェノール性水酸基を有する化合物を含む導電性ポリアニリン組成物を開示している。また、特許文献5は、(b)フェノール類化合物の添加量は、(a)プロトネーションされた置換又は未置換ポリアニリン複合体に対して、通常0.01~1000質量%、好ましくは0.5~500質量%の範囲であると開示し、さらに、トルエンにジイソオクチルスルホコハク酸ナトリウム及びアニリンを溶解し、塩酸を加え、氷水浴にてフラスコを冷却し、過硫酸アンモニウムを塩酸に溶解した溶液を、滴下してアニリンの重合を行う方法を開示する。
 特許文献5において、塩酸の存在下でアニリンの重合を行っているのは、塩酸の存在下でアニリンを重合して導電性ポリアニリンを合成したほうが、より高い導電性を得られるためである。また、非特許文献3には、塩酸の存在下でアニリンの重合を行わないと高い分子量を有する導電性ポリアニリンができない旨記載されている。一般に高分子材料では分子量と材料物性に密接な相関があり、例えば成膜した際の膜強度は、分子量が高い方が強靭になる。このようにポリアニリンにおいては塩酸を用いて重合した場合に、工業的に優位な材料が得られる。しかしながら電子部品分野では、塩素を含有する材料を用いると金属部分が腐食するおそれがあることや、さらに近年では世界的な環境規制強化のため、塩素フリーが求められている。
特開昭62-230825号公報 特開昭62-149724号公報 特開平7-70312号公報 特開2003-183389号公報 国際公開WO05/052058
Synthetic metals,48,1992,91-97頁 J.Phys.:Condens.Matter,10,1998,8293-8303頁 POLYMER : 30,1989,2305-2311
 本発明の目的は、塩素の含有量が少なく、且つ導電性が高い導電性組成物を提供することである。
 本発明によれば、以下の導電性組成物等が提供される。
1. 溶剤と、
 塩素含有量が0.6重量%以下であるπ共役系導電性高分子と、
 下記式(1)で表される化合物と、
を含み、
 前記π共役系導電性高分子は溶解しており、
 前記式(1)で表される化合物と前記π共役系導電性高分子の重量比(式(1)で表される化合物/π共役系導電性高分子)が0.01~22.0である導電性組成物。
Figure JPOXMLDOC01-appb-C000001
(式中、nは1~5の整数である。
 Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
2.溶剤と、
 塩素含有量が0.6重量%以下であるπ共役系導電性高分子と、
 下記式(2)で表される化合物と、
を含み、
 前記π共役系導電性高分子は溶解しており、
 前記式(2)で表される化合物と前記π共役系導電性高分子の重量比(式(2)で表される化合物/π共役系導電性高分子)が0.01~5.0である導電性組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、nは0~6の整数である。
 Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
3.溶剤と、
 溶解しているπ共役系導電性高分子と、
 下記式(1)で表される化合物と、
を含み、
 前記式(1)で表される化合物とπ共役系導電性高分子の重量比(式(1)で表される化合物/π共役系導電性高分子)が0.01~22.0であり、
 塩素含有量が0.02重量%以下である導電性組成物。
Figure JPOXMLDOC01-appb-C000003
(式中、nは1~5の整数である。
 Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
4.溶剤と、
 溶解しているπ共役系導電性高分子と、
 下記式(2)で表される化合物と、
を含み、
 前記式(2)で表される化合物とπ共役系導電性高分子の重量比(式(2)で表される化合物/π共役系導電性高分子)が0.01~5.0であり、
 塩素含有量が0.02重量%以下である導電性組成物。
Figure JPOXMLDOC01-appb-C000004
(式中、nは0~6の整数である。
 Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
5.前記π共役系導電性高分子が、有機スルホン酸でドープされたπ共役系導電性高分子である1~4のいずれかに記載の導電性組成物。
6.前記π共役系導電性高分子が、プロトネーションされた置換もしくは非置換ポリアニリン、プロトネーションされた置換もしくは非置換ポリピロール、又はプロトネーションされた置換もしくは非置換ポリチオフェンのいずれかである1~5のいずれかに記載の導電性組成物。
7.前記π共役系導電性高分子が、プロトネーションされた置換もしくは非置換のポリアニリンであり、
 前記置換もしくは非置換のポリアニリンがリンを含む1~6のいずれかに記載の導電性組成物。
8.前記π共役系導電性高分子がプロトネーションされた置換もしくは非置換のポリアニリンであり、
 前記溶剤が炭素数3以上のアルコールであり、
 前記アルコール及び前記置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が5.0~27.0であり、
 前記式(1)で表わされる化合物及び前記置換もしくは非置換のポリアニリンの重量比(式(1)で示される化合物/置換もしくは非置換のポリアニリン)が5.0~20.0である1又は3に記載の導電性組成物。
9.塩素含有量が0.6重量%以下である置換もしくは非置換のポリアニリンと、
 下記式(1)で表される化合物と、
 炭素数が3以上のアルコールと、
を含み、
 前記アルコール及び前記置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が12.0~27.0であり、
 前記式(1)で表わされる化合物及び前記置換もしくは非置換のポリアニリンの重量比(式(1)で表わされる化合物/置換もしくは非置換のポリアニリン)が5.0~20.0であり、
 前記置換もしくは非置換のポリアニリンが溶解している導電性組成物。
Figure JPOXMLDOC01-appb-C000005
(式中、nは1~5の整数である。
 Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
10.置換もしくは非置換のポリアニリンと、
 下記式(1)で表される化合物と、
 炭素数が3以上のアルコールと、
を含み、
 前記アルコール及び前記置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が12.0~27.0であり、
 前記式(1)で表される化合物及び前記置換もしくは非置換のポリアニリンの重量比(式(1)で表される化合物/置換もしくは非置換のポリアニリン)が5.0~20.0であり、
 前記置換もしくは非置換のポリアニリンが溶解し、
 塩素含有量が0.02重量%以下である導電性組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、nは1~5の整数である。
Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
11.前記置換もしくは非置換ポリアニリンの塩素含有量が0.1重量%以下である9又は10に記載の導電性組成物。
12.前記置換もしくは非置換ポリアニリンが有機酸でドープされてなる9~11のいずれかに記載の導電性組成物。
13.前記置換もしくは非置換ポリアニリンが下記式(3)で表される有機プロトン酸又はその塩でプロトネーションされてなる9~12のいずれかに記載の導電性組成物。
   A-R   (3)
(式中、Aは、スルホン酸、セレン酸、ホスホン酸、カルボン酸、硫酸水素塩、セレン酸水素塩、又はリン酸水素塩である。
 Rは、カルボン酸、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、アルコキシ基、アルカノイル基、アルキルチオ基、アルキルチオアルキル基、アルキルアリール基、アルキルアリール基、アルキルスルフィニル基、アルコキシアルキル基、アルキルスルホニル基、アルコキシカルボニル基、又はアルキルコハク酸である。)
14.前記置換もしくは非置換のポリアニリンがリンを含む9~13のいずれかに記載の導電性組成物。
15.さらにリンを含む1~14のいずれかに記載の導電性組成物。
16.基材と、
 1~15のいずれかに記載の導電性組成物からなる導電層を含み、
 前記導電層が基材上に積層してなる導電性積層体。
17.基材と、
 1~15のいずれかに記載の導電性組成物から製造される導電層を含み、
 前記導電層が基材上に積層してなる導電性積層体。
18.前記基材が樹脂フィルムである16又は17に記載の導電性積層体。
19.16~18のいずれかに記載の導電性積層体を成形して得られる導電性物品。
20.1~15のいずれかに記載の導電性組成物を含むコンデンサ。
21.1~15のいずれかに記載の導電性組成物を成形してなる導電性フィルム。
22.1~15のいずれかに記載の導電性組成物及び基材を混合してなる導電性物品。
 本発明によれば、塩素の含有量が少なく、且つ導電性が高い導電性組成物が提供できる。
 本発明の第1の導電性組成物は、溶剤と、塩素含有量が0.6重量%以下であるπ共役系導電性高分子と、下記式(1)で表される化合物とを含み、前記π共役系導電性高分子は溶解しており、前記式(1)で表される化合物と前記π共役系導電性高分子の重量比(式(1)で表される化合物/π共役系導電性高分子)が0.01~22.0である。
Figure JPOXMLDOC01-appb-C000007
(式中、nは1~5の整数である。
 Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
 本発明の第1の導電性組成物は、「式(1)で示される化合物」(以下、適宜「フェノール性化合物」という。)と「塩素含有量が低い導電性高分子」とを含むので、導電性の高い成形体を得られる。また、本発明の第1の導電性組成物が含むπ共役系導電性高分子は、塩素の含有量が0.6重量%以下であるので、本発明の第1の導電性組成物は金属を腐食させるおそれが少ない。
 本発明の第1の導電性組成物が含むπ共役系導電性高分子は溶解している。ここで「溶解している」とは、π共役系導電性高分子が分子単位で均一に溶剤に溶けていることを意味する。これにより、組成物を乾燥した際に、粒界がない、均一なπ共役系導電性高分子の被膜を得ることができる。
 尚、π共役系導電性高分子は溶剤と「式(1)で示される化合物」の混合物に溶解していると考えられる。
 本発明の第1の導電性組成物が含むπ共役系導電性高分子の塩素含有量は、0.6重量%以下であり、0.1重量%以下が好ましく、0.04重量%以下がより好ましく、さらに好ましくは0.0001重量%以下である。尚、塩素含有量の値は、燃焼-イオンクロマト法によって測定した値である。
 π共役導電性高分子の塩素含有量が0.6重量%超の場合、このπ共役系導電性高分子と接触する金属部分が腐食するおそれがある。
 本発明の第1の導電性組成物が含むπ共役系導電性高分子は、好ましくは重量平均分子量が1,000以上であり、より好ましくは1,000~1,000,000である。
 π共役導電性高分子の具体例としては、置換又は非置換の、ポリアニリン、ポリピロール、ポリチオフェン、ポリ(p-フェニレン)、ポリ(p-フェニレンビニレン)、及びこれらの誘導体等が挙げられる。
 π共役導電性高分子が置換又は非置換のポリアニリンである場合、ポリアニリンの重量平均分子量は、好ましくは20,000以上であり、より好ましくは50,000以上である。さらに好ましくは、50,000以上1,000,000以下である。ポリアニリンの重量分子量が20,000未満であると、組成物から得られる導電性物品の強度や延伸性が低下するおそれがある。
 また、分子量分布は、好ましくは、1.5~10.0である。導電率の観点から、分子量分布は小さい方が好ましい。
 上記分子量及び分子量分布は、ゲルパーミエーションクロマトグラフ(GPC)により測定した値である。
 上記置換ポリアニリンの置換基としては、例えば、メチル基、エチル基、ヘキシル基、オクチル基等の直鎖又は分岐の炭化水素基;メトキシ基、フェノキシ基等のアルコキシル基;アリーロキシ基;CF基等の含ハロゲン炭化水素基等が挙げられる。
 π共役導電性高分子は、電子受容性物質によってドープされていることが好ましい。ここで、電子受容性物質は、π共役系導電性高分子にキャリアを発生させるに十分な電子受容能を有していれば、特に化学構造上の制限なく使用できる。好ましくは、ブレンステッド酸、ルイス酸等の電子受容性物質によってドープされている。より好ましくは、有機スルホン酸によってドープされている。例えば、メタンスルホン酸、エタンスルホン酸等のアルキルスルホン酸類;パラトルエンスルホン酸、ドデシルベンゼンスルホン酸、イソプロピルナフタレンスルホン酸等の芳香族スルホン酸類;及びコハクスルホン酸類等が挙げられる。又、これら酸の塩(ナトリウム塩等)でもよい。
 上記ドーパントはその構造を変えることにより、π共役系導電性高分子の導電性や、溶剤への溶解性をコントロールできることが知られている(特許第3384566号)。本発明においては、用途毎の要求特性によって最適なドーパントを選択できる。
 ドープされたπ共役導電性高分子のドープ率aは、上記π共役系高分子がポリアニリンの場合、好ましくは0.42~0.60であり、より好ましくは0.43~0.57であり、さらに好ましくは0.44~0.55である。ポリアニリンのドープ率aが0.42以下である場合は、有機溶剤への溶解性が高くならないおそれがある。
 また、π共役系高分子がポリピロールの場合、好ましくは0<a<0.5であり、より好ましくは0.25<a<0.35である。
 尚、上記ドープ率とは、一般に(導電性高分子にドープしているドーパント分子のモル数)/(導電性高分子のモノマーユニット)で定義される。例えばドープされたπ共役高分子がポリアニリン複合体である場合に、ドーパントのドープ率aが、0.5であることは、窒素2分子に対して1分子のドーパントがドープすることを意味し、好ましくはこの値及びその近傍において、導電率が最も高くなる。
 ドープされたπ共役導電性高分子は、好ましくはプロトネーションされた置換もしくは非置換ポリアニリン、プロトネーションされた置換もしくは非置換ポリピロール、又はプロトネーションされた置換もしくは非置換ポリチオフェンであり、より好ましくはプロトネーションされた置換もしくは非置換ポリアニリンである。
 置換もしくは非置換ポリアニリンは、好ましくは電子受容性物質がドープした置換もしくは非置換ポリアニリンであり、より好ましくは下記式(3)で表される有機プロトン酸又はその塩でプロトネーションされた置換もしくは非置換ポリアニリンである。
   A-R   (3)
(式中、Aは、スルホン酸(SOH)、セレン酸(SeOH)、ホスホン酸(POH)、カルボン酸(COH)、硫酸水素塩(SONa等)、セレン酸水素塩(SeONa等)、又はリン酸水素塩(PONa等)である。
 Rは、カルボン酸、炭素数1~20のアルキル基、アルケニル基、アルコキシ基、アルカノイル基、アルキルチオ基、アルキルチオアルキル基、アルキルアリール基、アルキルアリール基、アルキルスルフィニル基、アルコキシアルキル基、アルキルスルホニル基、アルコキシカルボニル基、アルキルコハク酸、又は下記式(4)で表される置換基である。)
Figure JPOXMLDOC01-appb-C000008
(式中、R11及びR12は、それぞれ炭素数1~12の直鎖又は分岐のアルキル基である。
 m及びm’は、それぞれ0~3である。Aとは、-CH-と結合する。)
 式(3)で表される有機プロトン酸又はその塩は、好ましくは下記式(5)で表される。
Figure JPOXMLDOC01-appb-C000009
(式中、R01は、単結合、又は炭素数1~4のアルキレン基である。
 R02は、水素原子、又は炭素数1~4のアルキル基である。
 R05及びR06は、それぞれメチン基又はエチン基であり、好ましくはエチン基である。
 R01、R02、R05及びR06で環状構造を形成してもよく、当該環状構造は好ましくはシクロアルカンであり、好ましくは炭素数4~8のシクロアルカンである。
 R03及びR04は、それぞれ水素原子、又は炭素数4~24のアルキル基である。R03及びR04がアルキル基である場合、当該アルキルキ基は、好ましくは分岐アルキル基である。
 Aは、式(3)と同様である。)
 尚、R01~R06のアルキル基、アルキレン基及びシクロアルカンは、さらに置換基を有していてもよい。また、アルキル基、アルキレン基は分岐していてもよい。
 上記電子受容性物質の具体例としては、上述のπ共役導電性高分子に用いる電子受容性物質と同様のものが挙げられる。
 π共役系導電性高分子である置換もしくは非置換ポリアニリンは、塩素を含まない酸の存在下で重合して得られるポリアニリンが好ましく、例えば、リン酸の存在下で重合して得られるポリアニリンが挙げられる。これにより、置換もしくは非置換ポリアニリンの塩素含有量をより低くすることができる。
 ここで、リン酸の存在下で重合して得られる置換もしくは非置換ポリアニリンは、電子受容性物質がドープした置換もしくは非置換ポリアニリンであることが好ましい。また、電子受容性物質がドープした置換もしくは非置換ポリアニリンと式(1)又は(2)で示される化合物を所定の配合比で配合することにより高電導性を得ることができる。
 電子受容性物質として好ましい物質は上記の通りである。
 置換もしくは非置換ポリアニリンは、リンを含んでも含まなくてもよい。リンを含む場合には、リンの含有量は例えば10重量ppm以上5000重量ppm以下である。リンの含有量は、ICP発光分光分析法で測定することができる。
 上記のリンの含有量は、より好ましくは1000ppm以下、さらに好ましくは500ppm以下、最も好ましくは250重量ppm以下である。
 また、本発明の第1の導電性組成物は、リンを含んでいても含んでいなくても良い。
 リンを含む場合には、100重量ppm以下であることが好ましい。また、置換もしくは非置換ポリアニリンは、不純物として第12族元素(例えば亜鉛)を含まないことが好ましい。
 本発明の第1の導電性組成物が含む式(1)で表される化合物において、Rの置換位置は、好ましくはフェノール性水酸基に対し、メタ位、又はパラ位である。
 Rの置換位置を、メタ位又はパラ位とすることにより、フェノール性水酸基の立体障害が低減され、より高い導電性を有する組成物が得られる。
 Rの炭素数2~10のアルキル基としては、エチル、プロピル、イソプロピル、ブチル、イソブチル、ターシャルブチル等が挙げられる。
 Rのアルケニル基としては、上述したアルキル基の分子内に不飽和結合を有するアルケニル基が挙げられる。
 シクロアルキル基としては、シクロペンチル、シクロヘキシル等が挙げられる。
 アルキルチオ基としては、メチルチオ、エチルチオ等が挙げられる。
 アリール基としては、フェニル、ナフチル等が挙げられる。
 アルキルアリール基、及びアリールアルキル基としては、上述したアルキル基とアリール基を組み合わせて得られる基等が挙げられる。
 Rは、好ましくは炭素数2~10のアルキル基であり、より好ましくは炭素数2~8のアルキル基であり、さらに好ましくは炭素数2~5のアルキル基である。
 本発明の第1の導電性組成物において、上記「式(1)で示される化合物」とπ共役系導電性高分子の重量比(式(1)で示される化合物/π共役系導電性高分子)は、0.01~22.0である。当該重量比は、0.01~22.0の範囲内で、用途毎の要求特性に応じて組成比を任意に設定できるが、導電性と膜強度のバランスの観点から、好ましくは0.01~10.0であり、より好ましくは0.05~5.0である。
 あるいは、導電性を高くする場合には、5.0~22.0が好ましい。
 ここで、(式(1)で示される化合物/π共役系導電性高分子)とは、{本発明の第1の導電性組成物中に含まれる式(1)で示される化合物(g)}/{本発明の第1の導電性組成物中に含まれるπ共役系導電性高分子(g)}を意味する。
 尚、上記重量比が0.01未満の場合、導電度が高くならないおそれがある。一方、22.0超の場合、導電性組成物から得られる膜の強度が低下する場合がある。
 溶剤は、無機溶剤でも有機溶剤でもよく、有機溶剤が好ましい。有機溶剤は、実質的に水に混和しない有機溶剤(水不混和性有機溶剤)でも、水溶性有機溶剤でもよい。
 水不混和性有機溶剤としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の炭化水素系溶剤;塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、テトラクロロエタン等の含ハロゲン系溶剤;酢酸エチル等のエステル系溶剤等が挙げられる。これらの中では、ドープされたポリアニリンの溶解性に優れる点でトルエン、キシレン、クロロホルム、トリクロロエタン及び酢酸エチルが好ましい。
 水溶性有機溶剤としては、炭素数3以上のアルコール類;アセトン、メチルエチルケトンのようなケトン類;テトラヒドロフラン、ジオキサン等の極性エーテル類;Nメチルピロリドン等の非プロトン性極性溶剤等が挙げられる。
 溶剤として好ましくは、炭素数が3以上のアルコールである。
 上記炭素数3以上のアルコールは、好ましくは炭素数3以上のアルキルアルコール、シクロアルキルアルコールである。より好ましくは、炭素数3以上10以下のアルキルアルコール、またはシクロアルキルアルコールである。さらに好ましくは炭素数3以上8以下のアルキルアルコール、またはシクロアルキルアルコールである。もっとも好ましくは、炭素数3以上6以下のアルキルアルコール、またはシクロアルキルアルコールである。アルキルアルコールは、置換基を有していてもいなくても良く、分岐を有していてもいなくても良い。
 また、シクロアルキルアルコールは置換基を有していてもいなくてもよい。
 具体例としては、n―プロパノール、イソプロパノール、1-ブタノール、2-メチルプロパノール、2-ブタノール、tert―ブタノール、1-ペンタノール、2-メチルブタノール、3-メチルブタノール、4-メチルブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2,2‘-ジメチルプロパノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチルペンタノール、2-メチル-2-ペンタノール、3-メチルペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチルペンタノール、4-メチル-2-ペンタノール、シクロヘキサノール等が挙げられる。
 溶剤には、水不混和性有機溶剤と水溶性有機溶剤との混合有機溶剤を99~50:1~50の質量比で用いることが好ましい。これにより、本発明の組成物を保存する際に、ゲル等の発生を防止できる場合がある。
 混合有機溶剤の水不混和性有機溶剤としては、低極性有機溶剤が使用できる。例えば、トルエンやクロロホルムが好ましい。また、混合有機溶剤の水溶性有機溶剤としては、高極性有機溶剤が使用できる。例えば、メタノール,エタノール,イソプロピルアルコール,2-メトキシエタノール,2-エトキシエタノール等のアルコール類;アセトン,メチルエチルケトン,メチルイソブチルケトン等のケトン類;テトラヒドロフラン又はジエチルエーテルが好ましい。
 導電性組成物中のπ共役導電性高分子の割合は、π共役導電性高分子が導電性組成物中に溶解していれば制限されない。π共役導電性高分子が導電性組成物中に溶解するための導電性組成物中のπ共役導電性高分子の割合は、溶剤の種類によるが、通常、900g/kg以下であり、下限は特に制限されないが、好ましくは、0.01以上900g/kg以下、より好ましくは0.01~300g/kgの範囲である。π共役導電性高分子の含有量が多すぎると、溶液状態が保持できなくなり、成形体を成形する際の取り扱いが困難になり、成形体の均一性が損なわれ、ひいては成形体の電気特性や機械的強度、透明性の低下を生じるおそれがある。一方、π共役導電性高分子の含有量が少なすぎると、後述する方法により導電性膜を成膜したときに、非常に薄い膜しか製造できず、均一な導電性膜の製造が難しくなるおそれがある。導電性組成物中のπ共役導電性高分子の割合は、さらに好ましくは10g/kg以上300g/kg以下、最も好ましくは30g/kg以上300g/kg以下である。
 本発明の第2の導電性組成物は、溶剤と、塩素含有量が0.6重量%以下であるπ共役系導電性高分子と、下記式(2)で表される化合物とを含み、前記π共役系導電性高分子は溶解しており、前記式(2)で表される化合物及び前記π共役系導電性高分子の重量比(式(2)で表される化合物/π共役系導電性高分子)が0.01~5.0である。
Figure JPOXMLDOC01-appb-C000010
(式中、nは0~6の整数である。
 Rは、それぞれ炭素数2~10のアルキル基、アルケニル基、アルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、アルキルアリール基又はアリールアルキル基である。)
 ここで、本発明の第2の導電性組成物は、本発明の第1の導電性組成物と異なる点は、式(1)で表される「式(1)で示される化合物」を「式(2)で表される性化合物」に変更した点、および「式(1)で示される化合物」とπ共役系導電性高分子の重量比を「式(2)で示される化合物」とπ共役系導電性高分子に変更した点(割合も異なる。)以外同一であるため、異なる事項のみ記載し、同一の事項の記載を省略する。
 本発明の第2の導電性組成物は、式(2)で示される化合物と塩素含有量が低い導電性高分子を含むので、導電性の高い成形体を得られる。また、本発明の第1の導電性組成物と同様に、本発明の他の導電性組成物が含むπ共役系導電性高分子は、塩素の含有量が0.6重量%以下であるので、金属を腐食させるおそれが少ない。
 尚、π共役系導電性高分子は、式(2)で表される化合物と溶剤の混合物に溶解しているものと考える。
 式(2)で表される化合物のRは、式(1)で表される化合物のRと同様である。
 本発明の第2の導電性組成物において、「式(2)で表される化合物」とπ共役系導電性高分子の重量比(式(2)で表される化合物/π共役系導電性高分子)は、0.01~5.0である。当該重量比は、0.01~5.0の範囲内で、用途毎の要求特性に応じて重量比を任意に設定できるが、導電性と膜強度のバランスの観点から、好ましくは0.01~2.0である。
 尚、上記重量比が0.01未満の場合、式(2)で表される化合物を添加することにより得られる高導電性を得られないおそれがある。一方、5.0超の場合、導電性組成物から得られる膜の強度が低下する場合がある。
 本発明の第3及び第4の導電性組成物の塩素含有量は、それぞれ0.02重量%以下であり、より好ましくは0.01重量%以下であり、さらに好ましくは0.005重量%以下であり、よりさらに好ましくは0.0001重量%以下である。
 尚、塩素含有量の値は、燃焼-イオンクロマト法によって測定できる。
 尚、本発明の第1の導電性組成物がπ共役系導電性高分子中の塩素量が0.6重量%以下であるのに対し、本発明の第3の導電性組成物はπ共役系導電性高分子中の塩素量は限定しておらず、該導電性組成物中の塩素量が0.02重量%以下である点が異なり、本発明の第3の導電性組成物と本発明の第1の導電性組成物はそれ以外の構成においては同一である。
 尚、本発明の第2の導電性組成物がπ共役系導電性高分子中の塩素量が0.6重量%以下であるのに対し、本発明の第4の導電性組成物はπ共役系導電性高分子中の塩素量は限定しておらず、該導電性組成物中の塩素量が0.02重量%以下である点が異なり、本発明の第4の導電性組成物と第2の導電性組成物はそれ以外の構成においては同一である。
 従って、本発明の第3の導電性組成物の構成のうち、本発明の第1の導電性組成物の構成と同一の事項は記載を省略する。
 また、本発明の第4の導電性組成物の構成のうち、本発明の第2の導電性組成物の構成と同一の事項は記載を省略する。
 本発明の第1の導電性組成物、本発明の第2の導電性組成物、本発明の第3の導電性組成物及び本発明の第4の導電性組成物は、π共役系導電性高分子が、プロトネーションされた置換もしくは非置換のポリアニリンであることが好ましく、置換もしくは非置換のポリアニリンがリンを含んでいても良い。
 本発明の第1の導電性組成物及び本発明の第3の導電性組成物は、前記π共役系導電性高分子がプロトネーションされた置換もしくは非置換のポリアニリンであることが好ましく、前記溶剤が炭素数3以上のアルコールであることが好ましく、前記アルコールと前記置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が5.0~27.0であることが好ましく、前記式(1)で示される化合物と前記置換もしくは非置換のポリアニリンの重量比(式(1)で表わされる化合物/置換もしくは非置換のポリアニリン)が5.0~20.0であることが好ましい。
 アルコールと前記置換もしくは非置換のポリアニリンの重量比と式(1)で示される化合物と前記置換もしくは非置換のポリアニリンの重量比とが所定の範囲になることにより塩素含有量が少なく、溶媒をアルコールにすることができ、かつ高い電導度を実現することができる。
 また、溶剤をアルコールにすることにより溶剤に芳香族化合物を用いる場合に比べて、より臭気の少ない組成物とすることができる。
「アルコール/置換もしくは非置換のポリアニリン」は、『導電性組成物に含まれるアルコールの量(g)/導電性組成物に含まれる「置換もしくは非置換のポリアニリン」(g)』を意味する。
 炭素数3以上のアルコールは上記した通りである。
 尚、「式(1)で示される化合物/置換もしくは非置換のポリアニリン」は、『導電性組成物に含まれる「式(1)で示される化合物」(g)/導電性組成物に含まれる置換もしくは非置換のポリアニリン(g)』を意味する。
 本発明の組成物のπ共役系導電性高分子は、例えば、次のように製造することができる。
 水に実質的に溶解しない溶剤とりん酸を用いた二層重合法によりπ共役系導電性高分子(例えば、プロトネーションされた置換もしくは非置換のポリアニリン)を得ることができる。
 上記二層重合法は、例えば、電子受容性物質の塩(例えば、スルホコハク酸ナトリウム)を実質的に水に溶解しない溶剤に溶解し、アリニンを添加し、さらにりん酸を添加してπ共役系導電性高分子(例えば、プロトネーションされた置換もしくは非置換のポリアニリン)を得ることができる。
 溶剤としてアルコールを含む本発明の導電性組成物(以下、適宜「第1のアルコール含有導電性組成物」という。)は、好ましくは塩素含有量が0.6重量%以下である置換もしくは非置換のポリアニリン、式(1)で表されるフェノール性化合物、及び炭素数が3以上のアルコールを含み、炭素数が3以上のアルコール及び置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が5.0~27.0であり、フェノール性化合物及び置換もしくは非置換のポリアニリンの重量比(フェノール性化合物/置換もしくは非置換のポリアニリン)が5.0~22.0である導電性組成物である。この導電性組成物において、置換もしくは非置換のポリアニリンは、溶解している。
 ここで、置換もしくは非置換のポリアニリンは、アルコールとフェノール性化合物の混合物に溶解している可能性がある。
 溶剤の全部又は一部としてアルコールを用いることにより、溶剤に芳香族化合物を用いる場合に比べて、より臭気の少ない組成物とすることができる。
 尚、上記第1のアルコール含有導電性組成物が、置換もしくは非置換のポリアニリン中の塩素量が0.6重量%以下であるのに対し、本発明の第2のアルコール含有導電性組成物は、置換もしくは非置換のポリアニリン中の塩素量を限定しておらず、該第2のアルコール含有導電性組成物中の塩素量が0.02重量%以下である点が異なり、第2のアルコール含有導電性組成物は、上記第2のアルコール含有導電性組成物はそれ以外の構成において同一である。
 上記炭素数3以上のアルコールは、好ましくは、炭素数3以上10以下、より好ましくは炭素数3以上8以下、もっとも好ましくは炭素数3~6のアルコールである。炭素数3~6のアルコールの場合、優れた溶解性及び導電性を得ることができる。
 尚、これらアルコールは直鎖構造を有するアルコールであっても、分岐構造を有するアルコールでもよい。
 上記炭素数3以上のアルコールの具体例としては、n―プロパノール、イソプロパノール、1-ブタノール、2-メチルプロパノール、2-ブタノール、tert―ブタノール、1-ペンタノール、2-メチルブタノール、3-メチルブタノール、4-メチルブタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、2,2‘-ジメチルプロパノール、シクロペンタノール、1-ヘキサノール、2-ヘキサノール、3-ヘキサノール、2-メチルペンタノール、2-メチル-2-ペンタノール、3-メチルペンタノール、3-メチル-2-ペンタノール、3-メチル-3-ペンタノール、4-メチルペンタノール、4-メチル-2-ペンタノール、シクロヘキサノール等が挙げられる。
 上記フェノール性化合物は、好ましくは1価フェノールであり、より好ましくは1核1価フェノールである。これらフェノールは、アルコールに対する優れた溶解性を有し、良好な導電性が得られる。
 フェノール性化合物の具体例としては、エチルフェノール、プロピルフェノール、イソプロピルフェノール、ブチルフェノール、tert-ブチルフェノール、ペンチルフェノール、ヘキシルフェノール、オクチルフェノール等が挙げられる。
 上記アルコール含有導電性組成物において、アルコール及び置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が12.0~27.0であり、好ましくは5~22である。
 上記重量比が10.0未満の場合、均一な溶液が得られなくなるおそれがある。一方、上記重量比が27.0超の場合、膜形成が困難となるおそれがある。
 本発明の第1~第4の導電性組成物並びに第1及び第2のアルコール含有導電性組成物(以下、これらをまとめて本発明の組成物という)は、リンを含んでも、含まなくてもよい。
 リンを含む場合には、リンの含有量は、例えば10重量ppm以上5000重量ppm以下である。リンの含有量は、ICP発光分光分析法で測定することができる。
 本発明の第1~第4の導電性組成物は、上述したπ共役導電性高分子、式(1)で表されるフェノール性化合物もしくは式(2)で表されるナフタレン環に水酸基が置換した化合物、及び溶剤から実質的になっていてもよく、また、これらの成分のみからなっていてもよい。
 本発明の第1及び第2のアルコール含有導電性組成物は、上述の置換もしくは非置換のポリアニリン、式(1)で表わされるフェノール性化合物、炭素数が3以上のアルコールから実質的になっていてもよく、また、これらの成分のみからなっていてもよい。
 本発明の組成物は、これら成分の他に、本発明の効果を損なわない範囲で、他の樹脂、無機材料、硬化剤、可塑剤等を含んでもよい。
 他の樹脂は、例えばバインダー基材や可塑剤、マトリックス基材等として添加され、その具体例としては、ポリエチレンやポリプロピレン等のポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレングリコール、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリビニルアルコール等が挙げられる。
 また樹脂の代わりに、又は樹脂と共に、エポキシ樹脂、ウレタン樹脂、フェノール樹脂等の熱硬化性樹脂を形成し得る前駆体を用いてもよい。
 無機材料は、例えば強度、表面硬度、寸法安定性その他の機械的物性の向上等の目的で添加され、その具体例としては、シリカ(二酸化ケイ素)、チタニア(酸化チタン)、アルミナ(酸化アルミニウム)等が挙げられる。
 硬化剤は、例えば強度、表面硬度、寸法安定性その他の機械的物性の向上等の目的で添加され、その具体例としては、フェノール樹脂等の熱硬化剤、アクリレート系モノマーと光重合性開始剤による光硬化剤等が挙げられる。
 可塑剤は、例えば引張強度や曲げ強度等の機械的特性の向上等の目的で添加され、その具体例としては、フタル酸エステル類やリン酸エステル類等が挙げられる。
 本発明の組成物は、公知の方法で調製することができ、例えばWO05/052058に開示の方法により調製することができる。
 本発明の組成物から導電性成形体が得られる。例えば、本発明の組成物を、所望の形状を有するガラスや樹脂フィルム、シート、不織布等の基材に塗布し、有機溶剤を除去することによって導電性膜を有する導電性積層体(表面導電性物品)を製造できる。
 例えば、本発明の導電性積層体を真空成型や圧空成形等、公知の方法により所望の形状に加工することにより、導電性物品が得られる。成形の観点からは、基材は樹脂フィルム又はシートが好ましい。
 組成物を基材に塗布する方法としては、キャスト法、スプレー法、ディップコート法、ドクターブレード法、バーコード法、スピンコート法、エレクトロスピニング法、スクリーン印刷、グラビア印刷法等、公知の一般的な方法を用いることができる。
 塗布膜を乾燥する際、有機溶剤の種類によっては、塗布膜を加熱してもよい。例えば、空気気流下250℃以下、好ましくは50~200℃の温度で加熱し、さらに、必要に応じて、減圧下に加熱する。加熱温度及び加熱時間は、特に制限されず、用いる材料に応じて適宜選択すればよい。
 また、例えば、本発明の組成物から有機溶剤を除去することによって導電性フィルムを製造できる。本発明の成形体が膜又はフィルムである場合、これらの厚さは、通常1mm以下、好ましくは10nm~50μmの範囲である。この範囲の厚みの膜は、成膜時にひび割れが生じにくく、電気特性が均一である等の利点を有する。
 また、本発明の組成物は、基材と混合して導電性物品としてもよい。
 上記基材としては、ポリエチレンやポリプロピレン等のポリオレフィン;ポリスチレン、ポリエステル、ポリアミド、ポリアセタール、ポリカーボネート、ポリエチレングリコール、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリビニルアルコール等の熱可塑性樹脂;及びエポキシ樹脂、フェノール樹脂、ウレタン樹脂等の熱硬化性樹脂が挙げられる。
 さらに、本発明の組成物は、基材を有しない自己支持型成形体とすることもできる。自己支持型成形体とする場合には、好ましくは、組成物が上述した他の樹脂を含むようにすると、所望の機械的強度を有する成形体を得ることができる。
製造例1
[ポリアニリン複合体1の製造]
 エーロゾルOT(ジイソオクチルスルホコハク酸ナトリウム)1.8gをトルエン50mLに溶解し、窒素気流下においた500mLのセパラブルフラスコに溶液を入れ、さらにこの溶液に、1.8mLのアニリンを加えた。その後、1mol/lリン酸150mLを溶液に添加し、溶液温度を5℃に冷却した。溶液内温が5℃に到達した時点で、3.6gの過硫酸アンモニウムを1mol/lリン酸50mLに溶解した溶液を、滴下ロートを用いて2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、トルエン125mLを追加し、反応温度を25℃まで上昇させ4時間、反応を継続した。その後、静置により二相に分離した水相側を分液し、トルエン相側をイオン交換水50mLで2回、1mol/lリン酸50mLで1回洗浄を行うことでポリアニリン複合体(プロトネーションされたポリアニリン)トルエン溶液を得た。
 得られた複合体溶液に含まれる若干の不溶物を#5Cの濾紙により除去し、ポリアニリン複合体のトルエン溶液を回収した。この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、1.25gのポリアニリン複合体1を得た。
 調製したポリアニリン複合体1を燃焼-イオンクロマト法により塩素含有量を測定した結果、塩素含有量が0.0001重量%以下であることを確認した。従って、ポリアニリン複合体1中の塩素含有量は、0.0001重量%以下である。
 ここで、燃焼-イオンクロマト法は、DIONEX社製のDX-120を用いて行った。
 本法における塩素測定は、塩素量が0.0001重量%以下では測定できず、ポリアニリン複合体1の測定結果が検出限界以下であったため、ポリアニリン複合体1の塩素含有量は0.0001重量%以下であることがわかった。
 また、調製したポリアニリン複合体1をICP発光分光分析法(以下、「ICP法」という。)によりリン原子含有量を測定した結果、リン原子含有量が250重量ppmであることを確認した。
 ここで、ICP法は、SSIナノテクノロジー社製のSPS5100を用いて行った。
 本法におけるICP法は、りんの量が100重量ppm以下では測定できないため、測定限界以下である場合には、100重量ppm以下であることが分かる。
製造例2
[ポリアニリン複合体2の製造]
(1)3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウムの合成
 アルゴンガス気流下、4-シクロヘキセン-1,2-ジカルボン酸ジ(2-エチルヘキシル)エステル(東京化成社製)80gとイソプロピルアルコール900mLを仕込み、亜硫酸水素ナトリウム(和光純薬製)42.3gの水660mL溶液を添加した。この溶液を還流の温度まで加熱し、80~83℃で16時間攪拌した。この間、還流開始から、1~5時間後までの1時間毎、その後、9時間後、10時間後に2,2’-アゾビス(イソブチロニトリル)(和光純薬製)1.66gをそれぞれ添加した。反応液を室温まで冷却したのち、減圧下に濃縮を行った。
 得られた濃縮残渣を酢酸エチル/ヘキサン混合溶液に1Lに溶解し、シリカゲル250gを加えて攪拌し、溶液を濾別した。さらに、シリカゲルから1Lの酢酸エチル/ヘキサン溶液で2回抽出を行い、濾液を合せて減圧下に濃縮した。この濃縮液をカラムクロマトグラフィ(シリカゲル1500g、展開溶媒:酢酸エチル/ヘキサン)で精製し、精製物を無水硫酸ナトリウムで乾燥後、溶剤を減圧留去することで、3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウム(下記式に示す化合物)52.4gを得た。
Figure JPOXMLDOC01-appb-C000011
(2)ポリアニリン複合体の製造
 エーロゾルOTの代わりに、(1)で合成した3,4-ビス[(2-エチルヘキシル)オキシカルボニル]シクロヘキサンスルホン酸ナトリウム2.0gを用いた他は、製造例1と同様にしてポリアニリン複合体2を1.32g得た。
 調製したポリアニリン複合体2を上記と同様に燃焼-イオンクロマト法により塩素含有量を測定した結果、塩素含有量が上記測定限界以下であり、塩素含有量が0.0001重量%以下であることがわかった。
 また、調製したポリアニリン複合体2を上記と同様にICP法によりリン原子含有量を測定した結果、リン原子含有量が180重量ppmであることを確認した。
製造例3
[ポリアニリン複合体3の製造]
 エーロゾルOT(ジイソオクチルスルホコハク酸ナトリウム)1.8gをトルエン50mLに溶解し、窒素気流下においた500mLのセパラブルフラスコに溶液を入れ、さらにこの溶液に、1.8mLのアニリンを加えた。その後、0.1N塩酸150mLを溶液に添加し、溶液温度を5℃に冷却した。溶液内温が5℃に到達した時点で、3.6gの過硫酸アンモニウムを0.1N塩酸50mLに溶解した溶液を、滴下ロートを用いて2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、トルエン125mLを追加し、反応温度を25℃まで上昇させ4時間、反応を継続した。その後、静置により二相に分離した水相側を分液し、トルエン相側をイオン交換水50mLで2回、0.1N塩酸50mLで1回洗浄を行うことでポリアニリン複合体(プロトネーションされたポリアニリン)トルエン溶液を得た。
 得られた複合体溶液に含まれる若干の不溶物を#5Cの濾紙により除去し、ポリアニリン複合体のトルエン溶液を回収した。この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、1.25gのポリアニリン複合体3を得た。
 調製したポリアニリン複合体3を上記と同様に燃焼-イオンクロマト法により塩素含有量を測定した結果、塩素含有量が800重量ppmであることを確認した。
 また、調製したポリアニリン複合体3を上記と同様にICP法によりリン原子含有量を測定した結果、リン原子含有量が本法の測定限界以下である100重量ppm以下であることを確認した。
製造例4
[ポリアニリン複合体4の製造]
 エーロゾルOT(ジイソオクチルスルホコハク酸ナトリウム)1.8gをトルエン50mLに溶解し、窒素気流下においた500mLのセパラブルフラスコに溶液を入れ、さらにこの溶液に、1.8mLのアニリンを加えた。その後、1N塩酸150mLを溶液に添加し、溶液温度を5℃に冷却した。
 溶液内温が5℃に到達した時点で、3.6gの過硫酸アンモニウムを1N塩酸50mLに溶解した溶液を、滴下ロートを用いて2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、トルエン125mLを追加し、反応温度を25℃まで上昇させ4時間、反応を継続した。その後、静置により二相に分離した水相側を分液し、トルエン相側をイオン交換水50mLで2回、1N塩酸50mLで1回洗浄を行うことでポリアニリン複合体(プロトネーションされたポリアニリン)トルエン溶液を得た。
 得られた複合体溶液に含まれる若干の不溶物を#5Cの濾紙により除去し、ポリアニリン複合体のトルエン溶液を回収した。この溶液をエバポレーターに移し、60℃の湯浴で加温し、減圧することにより、揮発分を蒸発留去し、1.25gのポリアニリン複合体4を得た。
 調製したポリアニリン複合体4を上記と同様に燃焼-イオンクロマト法により塩素含有量を測定した結果、塩素含有量が6200重量ppmであることを確認した。
 また、調製したポリアニリン複合体4を上記と同様にICP法によりリン原子含有量を測定した結果、リン原子含有量が本法の測定限界以下である100重量ppm以下であることを確認した。
 以下の実施例での塩素含有量の測定方法及びりん含有量の測定方法は上記と同様であるため、その記載を省略する。
実施例1
 製造例1で調製したポリアニリン複合体1を0.1g、トルエン(和光純薬工業株会社製1級)に再溶解し、5重量%の溶液を調製した。この溶液に第2ドーパントとして3-エチルフェノール(東京化成工業株式会社製)を0.1g添加し、30℃で2時間、攪拌混合した。得られた溶液をスピンコート法により製膜し、ITO(インジウム錫酸化物)基板上にスピンコート法で導電性膜を成膜し、4端子法により固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例2
 3-エチルフェノールの添加量を0.4gとした他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例3
 3-エチルフェノールの代わりに4-エチルフェノール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例4
 3-エチルフェノールの代わりに4-エチルフェノールを0.4g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例5
 3-エチルフェノールの代わりに3-イソプロピルフェノール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例6
 3-エチルフェノールの代わりに3-イソプロピルフェノールを0.4g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例7
 3-エチルフェノールの代わりに4-イソプロピルフェノール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例8
 3-エチルフェノールの代わりに4-イソプロピルフェノールを0.4g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例9
 3-エチルフェノールの代わりに3-tert-ブチルフェノール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例10
 3-エチルフェノールの代わりに3-tert-ブチルフェノールを0.4g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例11
 3-エチルフェノールの代わりに4-tert-ブチルフェノール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例12
 3-エチルフェノールの代わりに4-tert-ブチルフェノールを0.4g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例13
 3-エチルフェノールの代わりに4-アミルフェノール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例14
 3-エチルフェノールの代わりに4-tert-ペンチルフェノール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例15
 3-エチルフェノールの代わりにα-ナフトール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例16
 3-エチルフェノールの代わりにα-ナフトールを0.4g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例17
 製造例2で調製したポリアニリン複合体2を0.1g、トルエンに再溶解し、5重量%の溶液を調製した。この溶液に第2ドーパントとして4-tert-ブチルフェノール(東京化成工業株式会社製)を0.4g添加し、30℃で2時間、攪拌混合した。この溶液をスピンコート法により製膜し、ITO(インジウム錫酸化物)基板上にスピンコート法で導電性膜を成膜し、4端子法により固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例18
 4-tert-ブチルフェノールの代わりにα-ナフトール(東京化成工業株式会社製)を0.4g添加した他は実施例17と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例19
 製造例3で調製したポリアニリン複合体3を0.1g、トルエンに再溶解し、5重量%の溶液を調製した。この溶液に第2ドーパントとして4-tert-ブチルフェノール(東京化成工業株式会社製)を0.1g添加し、30℃で2時間、攪拌混合した。この溶液をスピンコート法により製膜し、ITO(インジウム錫酸化物)基板上にスピンコート法で導電性膜を成膜し、4端子法により固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.004重量%であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例20
 4-tert-ブチルフェノールの代わりにα―ナフトール(東京化成工業株式会社製)を0.1g添加した他は実施例19と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。尚、ポリアニリン溶液の塩素含有量は0.004重量%であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
比較例1
 3-エチルフェノールを添加しなかった他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
比較例2
 3-エチルフェノールの代わりにm-クレゾール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
比較例3
 製造例4で調製したポリアニリン複合体4を0.1g、トルエン(和光純薬工業株会社製1級)に再溶解し、5重量%の溶液を調製した。この溶液に第2ドーパントとしてm-クレゾール(東京化成工業株式会社製)を0.1g添加し、30℃で2時間、攪拌混合してポリアニリン溶液を製造した。このポリアニリン溶液の塩素含有量は0.03重量%であった。この溶液をスピンコート法により製膜し、ITO(インジウム錫酸化物)基板上にスピンコート法で導電性膜を成膜し、4端子法により固有伝導率を測定した。結果を表1に示す。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
比較例4
 m-クレゾールの代わりに4-tert-ブチルフェノール(東京化成工業株式会社製)を0.1g添加した他は比較例3と同様にして導電性膜を成膜し、固有伝導率を測定した。結果を表1に示す。
 尚、ポリアニリン溶液の塩素含有量は0.031重量%であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
Figure JPOXMLDOC01-appb-T000001
実施例21
 イソプロピルアルコール(IPA)(東京化成工業株式会社製)2.5gに、パラ-tert-ブチルフェノール(pTBPh)(東京化成工業株式会社製)0.7gを添加して溶解させ、さらに製造例1で調製したポリアニリン複合体1を0.1g加えて攪拌したところ、均一に溶解した溶液が得られた。この溶液をスピンコート法でガラス基板上に薄膜を成膜し、4探針法(三菱化学社製ロレスターGP)により電導度を測定した。結果を表2に示す。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例22
 IPAの代わりにプロパノール(PrOH)を添加した他は実施例21と同様にして薄膜を成膜し、電導度を測定した。結果を表2に示す。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例23
 IPAの代わりにオクタノール(OcOH)(東京化成工業株式会社製)を添加した他は実施例21と同様にして薄膜を成膜し、電導度を測定した。結果を表2に示す。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例24
 IPAの添加量を1.6gとし、pTBPhの代わりに4-エチルフェノール(4EtPh)を1.6g添加した他は実施例21と同様にして薄膜を成膜し、電導度を測定した。結果を表2に示す。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例25
 4EtPhの代わりに4-イソプロピルフェノール(4IPPh)(東京化成工業株式会社製)を添加した他は実施例24と同様にして薄膜を成膜し、電導度を測定した。結果を表2に示す。
比較例5
 IPAの添加量を2.9gとし、pTBPhの添加量を0.3gとした他は実施例21と同様にして溶液の調製を試みたが、ポリアニリン複合体1が溶解せず、薄膜を成膜することができなかった。結果を表2に示す。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例26
 3―エチルフェノールの代わりに4-tert-アミルフェノール(東京化成工業株式会社製)を0.1g添加した他は実施例1と同様にして導電性膜を成膜し、固有伝導率を測定したところ、56S/cmであった。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
実施例27
 製造例1で調整したポリアニリン複合体1を0.5g、イソプロピルアルコール(東京化成工業株式会社製)3.3g、4-tert-アミルフェノール(東京化成工業株式会社製)3.3gを混合、攪拌し、均一な溶液を調合した。これを実施例1と同様な操作で成膜して、固有伝導率を測定したところ、42S/cmであった。尚、ポリアニリン溶液の塩素含有量は0.0001重量%以下であった。
 ポリアニリン溶液のりんの含有量は本法の測定限界以下である100重量ppm以下であった。
 本発明の導電性組成物は、パワーエレクトロニクス、オプトエレクトロニクス分野において、静電及び帯電防止材料、透明電極及び導電性フィルム材料、エレクトロルミネッセンス素子の材料、回路材料、電磁波遮蔽材料、コンデンサの誘電体及び電解質、太陽電池及び二次電池の極材料、燃料電池セパレータ材料等に、又はメッキ下地、防錆剤等に利用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (22)

  1.  溶剤と、
     塩素含有量が0.6重量%以下であるπ共役系導電性高分子と、
     下記式(1)で表される化合物と、
    を含み、
     前記π共役系導電性高分子は溶解しており、
     前記式(1)で表される化合物と前記π共役系導電性高分子の重量比(式(1)で表される化合物/π共役系導電性高分子)が0.01~22.0である導電性組成物。
    Figure JPOXMLDOC01-appb-C000012
    (式中、nは1~5の整数である。
     Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
  2.  溶剤と、
     塩素含有量が0.6重量%以下であるπ共役系導電性高分子と、
     下記式(2)で表される化合物と、
    を含み、
     前記π共役系導電性高分子は溶解しており、
     前記式(2)で表される化合物と前記π共役系導電性高分子の重量比(式(2)で表される化合物/π共役系導電性高分子)が0.01~5.0である導電性組成物。
    Figure JPOXMLDOC01-appb-C000013
    (式中、nは0~6の整数である。
     Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
  3.  溶剤と、
     溶解しているπ共役系導電性高分子と、
     下記式(1)で表される化合物と、
    を含み、
     前記式(1)で表される化合物とπ共役系導電性高分子の重量比(式(1)で表される化合物/π共役系導電性高分子)が0.01~22.0であり、
     塩素含有量が0.02重量%以下である導電性組成物。
    Figure JPOXMLDOC01-appb-C000014
    (式中、nは1~5の整数である。
     Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
  4.  溶剤と、
     溶解しているπ共役系導電性高分子と、
     下記式(2)で表される化合物と、
    を含み、
     前記式(2)で表される化合物とπ共役系導電性高分子の重量比(式(2)で表される化合物/π共役系導電性高分子)が0.01~5.0であり、
     塩素含有量が0.02重量%以下である導電性組成物。
    Figure JPOXMLDOC01-appb-C000015
    (式中、nは0~6の整数である。
     Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
  5.  前記π共役系導電性高分子が、有機スルホン酸でドープされたπ共役系導電性高分子である請求項1~4のいずれかに記載の導電性組成物。
  6.  前記π共役系導電性高分子が、プロトネーションされた置換もしくは非置換ポリアニリン、プロトネーションされた置換もしくは非置換ポリピロール、又はプロトネーションされた置換もしくは非置換ポリチオフェンのいずれかである請求項1~5のいずれかに記載の導電性組成物。
  7.  前記π共役系導電性高分子が、プロトネーションされた置換もしくは非置換のポリアニリンであり、
     前記置換もしくは非置換のポリアニリンがリンを含む請求項1~6のいずれかに記載の導電性組成物。
  8.  前記π共役系導電性高分子がプロトネーションされた置換もしくは非置換のポリアニリンであり、
     前記溶剤が炭素数3以上のアルコールであり、
     前記アルコール及び前記置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が5.0~27.0であり、
     前記式(1)で表わされる化合物及び前記置換もしくは非置換のポリアニリンの重量比(式(1)で示される化合物/置換もしくは非置換のポリアニリン)が5.0~20.0である請求項1又は3に記載の導電性組成物。
  9.  塩素含有量が0.6重量%以下である置換もしくは非置換のポリアニリンと、
     下記式(1)で表される化合物と、
     炭素数が3以上のアルコールと、
    を含み、
     前記アルコール及び前記置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が12.0~27.0であり、
     前記式(1)で表わされる化合物及び前記置換もしくは非置換のポリアニリンの重量比(式(1)で表わされる化合物/置換もしくは非置換のポリアニリン)が5.0~20.0であり、
     前記置換もしくは非置換のポリアニリンが溶解している導電性組成物。
    Figure JPOXMLDOC01-appb-C000016
    (式中、nは1~5の整数である。
     Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
  10.  置換もしくは非置換のポリアニリンと、
     下記式(1)で表される化合物と、
     炭素数が3以上のアルコールと、
    を含み、
     前記アルコール及び前記置換もしくは非置換のポリアニリンの重量比(アルコール/置換もしくは非置換のポリアニリン)が12.0~27.0であり、
     前記式(1)で表される化合物及び前記置換もしくは非置換のポリアニリンの重量比(式(1)で表される化合物/置換もしくは非置換のポリアニリン)が5.0~20.0であり、
     前記置換もしくは非置換のポリアニリンが溶解し、
     塩素含有量が0.02重量%以下である導電性組成物。
    Figure JPOXMLDOC01-appb-C000017
    (式中、nは1~5の整数である。
    Rは、それぞれ炭素数2~10のアルキル基、炭素数2~10のアルケニル基、炭素数2~10のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~30のアルキルアリール基又は炭素数7~30のアリールアルキル基である。)
  11.  前記置換もしくは非置換ポリアニリンの塩素含有量が0.1重量%以下である請求項9又は10に記載の導電性組成物。
  12.  前記置換もしくは非置換ポリアニリンが有機酸でドープされてなる請求項9~11のいずれかに記載の導電性組成物。
  13.  前記置換もしくは非置換ポリアニリンが下記式(3)で表される有機プロトン酸又はその塩でプロトネーションされてなる請求項9~12のいずれかに記載の導電性組成物。
       A-R   (3)
    (式中、Aは、スルホン酸、セレン酸、ホスホン酸、カルボン酸、硫酸水素塩、セレン酸水素塩、又はリン酸水素塩である。
     Rは、カルボン酸、炭素数1~20のアルキル基、炭素数1~20のアルケニル基、アルコキシ基、アルカノイル基、アルキルチオ基、アルキルチオアルキル基、アルキルアリール基、アルキルアリール基、アルキルスルフィニル基、アルコキシアルキル基、アルキルスルホニル基、アルコキシカルボニル基、又はアルキルコハク酸である。)
  14.  前記置換もしくは非置換のポリアニリンがリンを含む請求項9~13のいずれかに記載の導電性組成物。
  15.  さらにリンを含む請求項1~14のいずれかに記載の導電性組成物。
  16.  基材と、
     請求項1~15のいずれかに記載の導電性組成物からなる導電層を含み、
     前記導電層が基材上に積層してなる導電性積層体。
  17.  基材と、
     請求項1~15のいずれかに記載の導電性組成物から製造される導電層を含み、
     前記導電層が基材上に積層してなる導電性積層体。
  18.  前記基材が樹脂フィルムである請求項16又は17に記載の導電性積層体。
  19.  請求項16~18のいずれかに記載の導電性積層体を成形して得られる導電性物品。
  20.  請求項1~15のいずれかに記載の導電性組成物を含むコンデンサ。
  21.  請求項1~15のいずれかに記載の導電性組成物を成形してなる導電性フィルム。
  22.  請求項1~15のいずれかに記載の導電性組成物及び基材を混合してなる導電性物品。
PCT/JP2010/005477 2009-09-07 2010-09-07 導電性組成物 WO2011027578A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127005909A KR101807325B1 (ko) 2009-09-07 2010-09-07 도전성 조성물
EP10813529.4A EP2476732B1 (en) 2009-09-07 2010-09-07 Electrically conductive composition
CN201080039775.XA CN102482503B (zh) 2009-09-07 2010-09-07 导电性组合物
JP2011529825A JP5701761B2 (ja) 2009-09-07 2010-09-07 導電性組成物
US13/414,159 US8535812B2 (en) 2009-09-07 2012-03-07 Electrically conductive composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-206034 2009-09-07
JP2009206034 2009-09-07
JP2009-277807 2009-12-07
JP2009277807 2009-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/414,159 Continuation US8535812B2 (en) 2009-09-07 2012-03-07 Electrically conductive composition

Publications (1)

Publication Number Publication Date
WO2011027578A1 true WO2011027578A1 (ja) 2011-03-10

Family

ID=43649132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005477 WO2011027578A1 (ja) 2009-09-07 2010-09-07 導電性組成物

Country Status (7)

Country Link
US (1) US8535812B2 (ja)
EP (1) EP2476732B1 (ja)
JP (1) JP5701761B2 (ja)
KR (1) KR101807325B1 (ja)
CN (1) CN102482503B (ja)
TW (1) TWI478957B (ja)
WO (1) WO2011027578A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127106A (ja) * 2011-12-19 2013-06-27 Idemitsu Kosan Co Ltd めっき積層体の製造方法
JP2014043502A (ja) * 2012-08-24 2014-03-13 Tosoh Corp フェノール誘導体を含有するポリチオフェン組成物、及びそれからなる導電性被覆物
WO2014106884A1 (ja) 2013-01-07 2014-07-10 出光興産株式会社 導電性高分子組成物

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701861B2 (ja) * 2010-04-22 2015-04-15 出光興産株式会社 有機薄膜トランジスタ
JP5754444B2 (ja) * 2010-11-26 2015-07-29 Jsr株式会社 感放射線性組成物
JP5827203B2 (ja) * 2012-09-27 2015-12-02 三ツ星ベルト株式会社 導電性組成物
CN103570943B (zh) * 2013-10-18 2016-02-10 中国科学院长春应用化学研究所 无卤素超高分子量聚苯胺及其制备方法
KR102405380B1 (ko) * 2014-07-11 2022-06-03 이데미쓰 고산 가부시키가이샤 폴리아닐린 복합체 조성물의 제조 방법 및 폴리아닐린 복합체 조성물
US10283476B2 (en) * 2017-03-15 2019-05-07 Immunolight, Llc. Adhesive bonding composition and electronic components prepared from the same
KR20210007962A (ko) * 2018-05-08 2021-01-20 이데미쓰 고산 가부시키가이샤 조성물, 도전성 막의 제조 방법, 도전성 막 및 콘덴서
WO2020033820A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
JP7426986B2 (ja) 2018-08-10 2024-02-02 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション ポリアニリンを含む固体電解キャパシタ
CN112889123A (zh) 2018-08-10 2021-06-01 阿维科斯公司 包含本征导电聚合物的固体电解电容器
WO2020123577A1 (en) 2018-12-11 2020-06-18 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
CN114521278A (zh) 2019-09-18 2022-05-20 京瓷Avx元器件公司 用于高电压下使用的固体电解电容器
WO2021119088A1 (en) 2019-12-10 2021-06-17 Avx Corporation Tantalum capacitor with increased stability
CN114787952A (zh) 2019-12-10 2022-07-22 京瓷Avx元器件公司 包含预涂层和本征导电聚合物的固体电解电容器
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149724A (ja) 1985-12-24 1987-07-03 Bridgestone Corp ポリアニリンの製造方法
JPS62230825A (ja) 1986-03-31 1987-10-09 Toyota Central Res & Dev Lab Inc フイルム状ポリアニリン及びその製造方法
JPH0770312A (ja) 1993-09-07 1995-03-14 Nec Corp 導電性高分子化合物及びその溶液、並びに固体電解 コンデンサ及びその製造方法
JP3384566B2 (ja) 1991-06-12 2003-03-10 デュポン ディスプレイス, インコーポレイテッド 加工し得る形態の導電性ポリアニリンおよびそれから形成された導電性生成品
JP2003183389A (ja) 2001-10-10 2003-07-03 Commiss Energ Atom ポリアニリンおよび導電性ポリアニリンベース複合材料のドーパントとしてのスルホン酸、ホスホン酸およびリン酸の使用
WO2005052058A1 (ja) 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
JP2008075039A (ja) * 2006-09-25 2008-04-03 Idemitsu Kosan Co Ltd 導電性ポリアニリン複合体の製造方法
JP2009120762A (ja) * 2007-11-16 2009-06-04 Idemitsu Kosan Co Ltd ポリアニリン複合体、その組成物及び成形体
WO2009084418A1 (ja) * 2007-12-27 2009-07-09 Idemitsu Kosan Co., Ltd. ポリアニリン複合体、その組成物及び成形体
JP2010111837A (ja) * 2008-11-10 2010-05-20 Tokai Rubber Ind Ltd 導電性エラストマーの製造方法
WO2010095650A1 (ja) * 2009-02-17 2010-08-26 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5783111A (en) * 1993-09-03 1998-07-21 Uniax Corporation Electrically conducting compositions
US5520852A (en) * 1994-06-08 1996-05-28 Neste Oy Processible electrically conducting polyaniline compositions
WO2005085355A1 (ja) * 2004-03-10 2005-09-15 Japan Science And Technology Agency 導電性ポリアニリン組成物、その製造方法およびポリアニリンドーパント
JP4689222B2 (ja) * 2004-09-22 2011-05-25 信越ポリマー株式会社 導電性塗布膜およびその製造方法
US7842196B2 (en) * 2004-10-08 2010-11-30 Shin-Etsu Polymer Co., Ltd. Conductive composition and production method thereof, antistatic coating material, antistatic coating, antistatic film, optical filter, and optical information recording medium, and capacitors and production method thereof
JP5492413B2 (ja) * 2006-08-10 2014-05-14 出光興産株式会社 導電性ポリアニリン組成物及びその製造方法
JP2009126949A (ja) 2007-11-22 2009-06-11 Idemitsu Kosan Co Ltd 導電性ポリアニリン組成物、その製造方法及びそれから得られる成形体
JPWO2009084419A1 (ja) 2007-12-27 2011-05-19 出光興産株式会社 ポリアニリン複合体、その組成物及び成形体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149724A (ja) 1985-12-24 1987-07-03 Bridgestone Corp ポリアニリンの製造方法
JPS62230825A (ja) 1986-03-31 1987-10-09 Toyota Central Res & Dev Lab Inc フイルム状ポリアニリン及びその製造方法
JP3384566B2 (ja) 1991-06-12 2003-03-10 デュポン ディスプレイス, インコーポレイテッド 加工し得る形態の導電性ポリアニリンおよびそれから形成された導電性生成品
JPH0770312A (ja) 1993-09-07 1995-03-14 Nec Corp 導電性高分子化合物及びその溶液、並びに固体電解 コンデンサ及びその製造方法
JP2003183389A (ja) 2001-10-10 2003-07-03 Commiss Energ Atom ポリアニリンおよび導電性ポリアニリンベース複合材料のドーパントとしてのスルホン酸、ホスホン酸およびリン酸の使用
WO2005052058A1 (ja) 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
JP2008075039A (ja) * 2006-09-25 2008-04-03 Idemitsu Kosan Co Ltd 導電性ポリアニリン複合体の製造方法
JP2009120762A (ja) * 2007-11-16 2009-06-04 Idemitsu Kosan Co Ltd ポリアニリン複合体、その組成物及び成形体
WO2009084418A1 (ja) * 2007-12-27 2009-07-09 Idemitsu Kosan Co., Ltd. ポリアニリン複合体、その組成物及び成形体
JP2010111837A (ja) * 2008-11-10 2010-05-20 Tokai Rubber Ind Ltd 導電性エラストマーの製造方法
WO2010095650A1 (ja) * 2009-02-17 2010-08-26 綜研化学株式会社 複合導電性高分子組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J. PHYS.: CONDENS. MATTER, vol. 10, 1998, pages 8293 - 8303
POLYMER, vol. 30, 1989, pages 2305 - 2311
See also references of EP2476732A4
SYNTHETIC METALS, vol. 48, 1992, pages 91 - 97

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127106A (ja) * 2011-12-19 2013-06-27 Idemitsu Kosan Co Ltd めっき積層体の製造方法
JP2014043502A (ja) * 2012-08-24 2014-03-13 Tosoh Corp フェノール誘導体を含有するポリチオフェン組成物、及びそれからなる導電性被覆物
WO2014106884A1 (ja) 2013-01-07 2014-07-10 出光興産株式会社 導電性高分子組成物
JP2014132055A (ja) * 2013-01-07 2014-07-17 Idemitsu Kosan Co Ltd 導電性高分子組成物
US9754697B2 (en) 2013-01-07 2017-09-05 Idemitsu Kosan Co., Ltd. Conductive polymer composition

Also Published As

Publication number Publication date
EP2476732A4 (en) 2014-04-30
EP2476732A1 (en) 2012-07-18
TWI478957B (zh) 2015-04-01
JP5701761B2 (ja) 2015-04-15
CN102482503B (zh) 2015-05-13
JPWO2011027578A1 (ja) 2013-02-04
KR101807325B1 (ko) 2017-12-08
KR20120079059A (ko) 2012-07-11
EP2476732B1 (en) 2022-11-02
US20120225310A1 (en) 2012-09-06
US8535812B2 (en) 2013-09-17
CN102482503A (zh) 2012-05-30
TW201120096A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5701761B2 (ja) 導電性組成物
US7771621B2 (en) Sulfosuccinate protonated conductive polyaniline composition, process for producing the same, and molded object thereof
US9384866B2 (en) Polyaniline composite, method for producing same, and composition
US9754697B2 (en) Conductive polymer composition
JP6069420B2 (ja) π共役高分子組成物
CN106459463B (zh) 聚苯胺复合物组合物的制造方法以及聚苯胺复合物组合物
JPWO2009084419A1 (ja) ポリアニリン複合体、その組成物及び成形体
JP5710388B2 (ja) ポリアニリン導電性組成物
JP5608443B2 (ja) 導電性組成物
JPWO2009084418A1 (ja) ポリアニリン複合体、その組成物及び成形体
JP5731974B2 (ja) 導電性組成物
US20240084134A1 (en) Electric conductive polymer composition
JP2010100838A (ja) 導電性コーティング組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080039775.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813529

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529825

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127005909

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010813529

Country of ref document: EP