WO2014106884A1 - 導電性高分子組成物 - Google Patents

導電性高分子組成物 Download PDF

Info

Publication number
WO2014106884A1
WO2014106884A1 PCT/JP2013/007635 JP2013007635W WO2014106884A1 WO 2014106884 A1 WO2014106884 A1 WO 2014106884A1 JP 2013007635 W JP2013007635 W JP 2013007635W WO 2014106884 A1 WO2014106884 A1 WO 2014106884A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
conductive polymer
polymer composition
carbon atoms
composition according
Prior art date
Application number
PCT/JP2013/007635
Other languages
English (en)
French (fr)
Inventor
真吾 小野寺
西村 剛
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to KR1020157017999A priority Critical patent/KR101730285B1/ko
Priority to EP13870317.8A priority patent/EP2942372B1/en
Priority to US14/759,142 priority patent/US9754697B2/en
Priority to CN201380069394.XA priority patent/CN104919005B/zh
Publication of WO2014106884A1 publication Critical patent/WO2014106884A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/128Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a conductive polymer composition.
  • Conductive polymers are used for electrolytic capacitors, backup batteries for electronic devices, electrodes for lithium ion batteries used in mobile phones and notebook computers, and the like.
  • polyaniline a kind of conductive polymer, can be synthesized relatively easily from inexpensive aniline, and has the advantage of exhibiting excellent stability against oxygen and the like in a conductive state And having characteristics.
  • a polyaniline solution can be easily obtained by the method described in Patent Document 1. By being a solution, it can be used for many applications. Depending on the application, it is required to be a polar solvent instead of a nonpolar solvent, and polyaniline can be obtained not only as a nonpolar solvent solution but also as a polar solvent polyaniline solution (see, for example, Patent Document 2).
  • An object of the present invention is to provide a conductive polymer composition that can suppress an increase in the viscosity of a solution and has little weight loss.
  • the following conductive polymer composition is provided.
  • the conductive polymer composition according to 2, wherein the polyaniline complex is a complex of an unsubstituted polyaniline and a sulfosuccinic acid derivative represented by the following formula (III).
  • M is a hydrogen atom, an organic free radical or an inorganic free radical
  • m ′ is a valence of M
  • R 13 and R 14 are each independently a hydrocarbon group or — (R 15 O) r —R 16 group
  • R 15 is independently a hydrocarbon group or a silylene group
  • R 16 is a hydrogen atom, a hydrocarbon group or an R 17 3 Si— group
  • R 17 is each independently a carbon atom.
  • a hydrogen group, and r is an integer of 1 or more.
  • n is an integer of 1 to 5
  • R is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, or 3 to 10 carbon atoms, respectively.
  • the present invention by using a combination of two or more specific solvents as the solvent, it is possible to provide a conductive polymer composition that suppresses changes in viscosity and weight over time.
  • the conductive polymer composition of the present invention contains a conductive polymer and at least two solvents selected from the solvent represented by the following formula (1).
  • R 1 —O—R 2 —OH (1) (In the formula, R 1 is a linear alkyl group or a branched alkyl group, and R 2 is a linear alkylene group or a branched alkylene group.)
  • the composition of this invention contains at least 2 sort (s) selected from the compound represented by the said Formula (1).
  • the solvent can be classified into the following four groups depending on the combination of R 1 and R 2 .
  • Group A R 1 is a linear alkyl group, R 2 is a linear alkylene group (linear alkylene residue)
  • Group B R 1 is a branched alkyl group, R 2 is a linear alkylene group
  • Group C R 1 is a linear alkyl group, R 2 is a branched alkylene group
  • Group D R 1 is a branched alkyl group, R 2 is a branched alkylene group
  • both of the two solvents are R 1 in the formula (1) is a linear alkyl group and R 2 is a linear alkylene group, that is, both of the two solvents are the group A Is not the present invention.
  • Other combinations for example, when the two solvents are both selected from the same group other than Group A, or are selected one by one from different groups, belong to the present invention.
  • the linear alkyl group represented by R 1 preferably has 1 to 24 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly 1 carbon atom. It is preferably 4 to 4. This is because when the carbon number is small, the balance between the hydrophilic portion and the lipophilic portion of the whole molecule is improved, and the solubility of the polyaniline complex is improved. Specific examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, hexyl group, heptyl group, octyl group and the like.
  • the branched alkyl group represented by R 1 preferably has 3 to 24 carbon atoms, more preferably 3 to 12 carbon atoms, and particularly preferably 3 to 8 carbon atoms.
  • Specific examples include isopropyl group, isobutyl group, sec butyl group, tertiary butyl group (t-butyl group), isopentyl group, neopentyl group, tertiary pentyl group, isohexyl group and the like. Of these, a t-butyl group is preferable.
  • the linear alkylene group represented by R 2 preferably has 1 to 24 carbon atoms, more preferably 1 to 8 carbon atoms, and particularly preferably 1 to 4 carbon atoms. preferable. Specific examples include a methylene group, an ethylene group, a propylene group, and an n-butylene group.
  • R 2 is, if linear, the bonding position of the hydroxyl group and alkoxy groups is not limited. For example, when R 2 is an n-butylene group, the hydroxyl group and the alkoxy group may be bonded to any of four carbons.
  • the branched alkylene group represented by R 2 has 4 or more carbon atoms, and at least carbon other than the terminal carbon of the above-described linear alkylene group [— (CH 2 ) n —: n is an integer of 3 or more].
  • One hydrogen is a group having a structure substituted with the above-mentioned linear or branched alkyl group.
  • the branched alkylene group represented by R 2 preferably has 4 to 24 carbon atoms, more preferably 4 to 12 carbon atoms, and particularly preferably 4 to 8 carbon atoms.
  • examples of the group A include 3-methoxy-1-butanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, and 2-methoxyethanol.
  • group B examples include ethylene glycol mono-tert-butyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monoisobutyl ether, 1- (1-methylethoxy) ethanol, 3- (1-methylethoxy) butane-1- All, 3- (2,2-dimethylpropoxy) butan-1-ol, 1- (2,2-dimethylpropoxy) propanol, 2-isopropoxypropan-2-ol and the like.
  • group C examples include 3-methoxy-3-methylbutanol.
  • Examples of the group D include 2- (2,2-dimethylpropoxy) -2-methylpropan-1-ol.
  • the two kinds of solvents used are not solvents in which R 1 is a branched alkyl group and R 2 is a branched alkylene group in the formula (1). That is, it is preferable to select two or more kinds of solvents from the groups A, B and C. In particular, it is preferable to select one or more from each of groups A and B, or one or more from each of groups A and C.
  • the mixing ratio of the two solvents is preferably 1:99 to 99: 1 by mass, more preferably 20:80 to 80:20, and particularly preferably 30:60 to 60:30.
  • the conductive polymer is preferably a ⁇ -conjugated polymer composite in which a ⁇ -conjugated polymer is doped with a dopant.
  • a polyaniline composite in which a substituted or unsubstituted polyaniline is doped with a dopant
  • a polypyrrole composite in which a substituted or unsubstituted polypyrrole is doped with a dopant
  • a substituted or unsubstituted polythiophene with a dopant is a doped polythiophene complex.
  • a polyaniline composite in which substituted or unsubstituted polyaniline is doped with a dopant is preferable.
  • the polyaniline complex is one in which substituted or unsubstituted polyaniline molecules are doped with a dopant.
  • the weight average molecular weight (hereinafter referred to as molecular weight) of the polyaniline molecule is preferably 20,000 or more. If the molecular weight is less than 20,000, the strength and stretchability of the conductive article obtained from the contained liquid may be reduced.
  • the molecular weight is preferably 20,000 to 500,000, more preferably 20,000 to 300,000, and still more preferably 20,000 to 200,000.
  • the molecular weight is, for example, 50,000 to 200,000, 53,000 to 200,000.
  • the weight average molecular weight is not the molecular weight of the polyaniline complex but the molecular weight of the polyaniline molecule.
  • the molecular weight distribution of the polyaniline molecule is preferably 1.5 or more and 20.0 or less, more preferably 1.5 or more and 5.0 or less, still more preferably 1.5 or more and 4.5 or less, and particularly preferably. Is 1.5 or more and 4.0 or less, and most preferably 1.5 or more and 3.6 or less.
  • the molecular weight distribution is not the molecular weight distribution of the polyaniline complex, but the molecular weight distribution of the polyaniline molecules, as described above.
  • the molecular weight distribution is a value represented by weight average molecular weight / number average molecular weight, and the molecular weight distribution is preferably smaller from the viewpoint of electrical conductivity.
  • the said weight average molecular weight and molecular weight distribution are obtained as a polystyrene conversion value which can be measured with a gel permeation chromatograph (GPC).
  • Examples of the substituent of the substituted polyaniline include linear or branched hydrocarbon groups such as methyl group, ethyl group, hexyl group and octyl group; alkoxy groups such as methoxy group and ethoxy group; aryloxy groups such as phenoxy group; Halogenated hydrocarbons such as a fluoromethyl group (—CF 3 group) are exemplified.
  • the polyaniline molecule is preferably an unsubstituted polyaniline molecule from the viewpoint of versatility and economy.
  • Examples of the dopant of the polyaniline complex include Bronsted acid ions generated from Bronsted acid or Bronsted acid salts, preferably organic acid ions generated from organic acids or salts of organic acids, and more preferably the following formula: It is an organic acid ion generated from the compound (proton donor) represented by (I).
  • the dopant when the dopant is expressed as a specific acid, and when the dopant is expressed as a specific salt, the specific acid ion generated from the specific acid or the specific salt may be used.
  • the polyaniline molecule mentioned above is doped.
  • M in the formula (I) is a hydrogen atom, an organic radical or an inorganic radical.
  • the organic free radical include a pyridinium group, an imidazolium group, and an anilinium group.
  • examples of the inorganic free radical include lithium, sodium, potassium, cesium, ammonium, calcium, magnesium, and iron.
  • X in the formula (I) is an anion group, for example, —SO 3 — group, —PO 3 2- group, —PO 4 (OH) 2 — group, —OPO 3 2- group, —OPO 2 (OH) — Group, —COO 2 — group, and —SO 3 — group is preferable.
  • a in formula (I) is a substituted or unsubstituted hydrocarbon group.
  • the hydrocarbon group is a chain or cyclic saturated aliphatic hydrocarbon group, a chain or cyclic unsaturated aliphatic hydrocarbon group, or an aromatic hydrocarbon group.
  • Examples of the chain saturated aliphatic hydrocarbon group include a linear or branched saturated aliphatic hydrocarbon group. Carbon number is 1 or more and 24 or less, for example, and 2 or more and 8 or less.
  • Examples of the cyclic saturated aliphatic hydrocarbon group include cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the cyclic saturated aliphatic hydrocarbon group may be a condensation of a plurality of cyclic saturated aliphatic hydrocarbon groups. Examples thereof include a norbornyl group, an adamantyl group, and a condensed adamantyl group.
  • Examples of the aromatic hydrocarbon group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • Examples of the chain unsaturated aliphatic hydrocarbon include a linear or branched alkenyl group.
  • A is a substituted hydrocarbon group
  • the substituent is alkyl group, cycloalkyl group, vinyl group, allyl group, aryl group, alkoxy group, halogen group, hydroxy group, amino group, imino group, nitro group.
  • R in formula (I) is bonded to A, and each independently represents —H, —R 1 , —OR 1 , —COR 1 , —COOR 1 , — (C ⁇ O) — (COR 1 ).
  • hydrocarbon group for R 1 examples include a chain or cyclic saturated aliphatic hydrocarbon group, a chain or cyclic unsaturated aliphatic hydrocarbon group, and an aromatic hydrocarbon group. Specific examples include methyl group, ethyl group, linear or branched butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, pentadecyl group and eicosanyl group.
  • the substituent of the hydrocarbon group is an alkyl group, a cycloalkyl group, a vinyl group, an allyl group, an aryl group, an alkoxy group, a halogen group, a hydroxy group, an amino group, an imino group, a nitro group, or an ester group.
  • the hydrocarbon group for R 3 is the same as R 1 .
  • Examples of the alkylene group for R 2 include a methylene group, an ethylene group, and a propylene group.
  • N in the formula (I) is an integer of 1 or more, and m in the formula (I) is a valence of M / a valence of X.
  • dialkylbenzenesulfonic acid dialkylnaphthalenesulfonic acid, or a compound containing two or more ester bonds is preferable.
  • the compound containing two or more ester bonds is more preferably a sulfophthalic acid ester or a compound represented by the following formula (II).
  • M and X are the same as those in formula (I).
  • X is preferably a —SO 3 — group.
  • R 4 , R 5 and R 6 in formula (II) are each independently a hydrogen atom, a hydrocarbon group or an R 9 3 Si— group (wherein R 9 is a hydrocarbon group and three R 9 are They may be the same or different).
  • Examples of the hydrocarbon group when R 4 , R 5 and R 6 are hydrocarbon groups include linear or branched alkyl groups having 1 to 24 carbon atoms, aryl groups containing aromatic rings, and alkylaryl groups. It is done.
  • the hydrocarbon group for R 9 is the same as in the case of R 4 , R 5 and R 6 .
  • R 7 and R 8 in formula (II) are each independently a hydrocarbon group or — (R 10 O) q —R 11 group [where R 10 is a hydrocarbon group or a silylene group, and R 11 is A hydrogen atom, a hydrocarbon group or R 12 3 Si— (wherein R 12 is a hydrocarbon group, and three R 12 may be the same or different), and q is an integer of 1 or more] .
  • Examples of the hydrocarbon group when R 7 and R 8 are hydrocarbon groups include a chain or cyclic saturated aliphatic hydrocarbon group, a chain or cyclic unsaturated aliphatic hydrocarbon group, or an aromatic hydrocarbon group Etc. Examples thereof include a linear or branched alkyl group having 1 to 24 carbon atoms, preferably 4 to 24 carbon atoms, an aryl group containing an aromatic ring, and an alkylaryl group.
  • Specific examples of the hydrocarbon group when R 7 and R 8 are hydrocarbon groups include, for example, a linear or branched butyl group, pentyl group, hexyl group, octyl group, and decyl group. Preferably, it is a linear or branched octyl group. More preferred is a 2-ethylhexyl group.
  • Examples of the hydrocarbon group when R 10 in R 7 and R 8 is a hydrocarbon group include a linear or branched alkylene group having 1 to 24 carbon atoms, an arylene group containing an aromatic ring, an alkylarylene group, An arylalkylene group.
  • R 7 and R 8 when R 11 and R 12 are hydrocarbon groups, the hydrocarbon group is the same as in R 4 , R 5 and R 6 , and q is 1 to 10 Preferably there is.
  • the compound represented by the above formula (II) is more preferably a sulfosuccinic acid derivative represented by the following formula (III).
  • M is the same as in formula (I).
  • M ′ is the valence of M.
  • R 13 and R 14 in formula (III) are each independently a hydrocarbon group or — (R 15 O) r —R 16 group [wherein R 15 is independently a hydrocarbon group or a silylene group, R 16 is a hydrogen atom, a hydrocarbon group or an R 17 3 Si— group (wherein R 17 is independently a hydrocarbon group, and r is an integer of 1 or more).
  • the hydrocarbon group when R 13 and R 14 are hydrocarbon groups is the same as R 7 and R 8 .
  • a linear saturated aliphatic hydrocarbon group or a linear or branched alkyl group having 4 to 24 carbon atoms include a linear or branched butyl group, pentyl group, hexyl group, octyl group, and decyl group.
  • it is a linear or branched octyl group. More preferred is a 2-ethylhexyl group.
  • the hydrocarbon group when R 15 is a hydrocarbon group is the same as R 10 described above.
  • the hydrocarbon group in the case where R 16 and R 17 are hydrocarbon groups is the same as R 4 , R 5 and R 6 described above.
  • r is preferably from 1 to 10.
  • R 13 and R 14 are a — (R 15 O) r —R 16 group are the same as those for — (R 10 O) q —R 11 in R 7 and R 8 .
  • the hydrocarbon group for R 13 and R 14 is the same as R 7 and R 8 and is preferably a butyl group, a hexyl group, a 2-ethylhexyl group, or a decyl group.
  • the conductivity of the polyaniline complex and the solubility in a solvent can be controlled by changing the structure of the above dopant (Japanese Patent No. 338466).
  • an optimum dopant can be selected according to required characteristics for each application.
  • di-2-ethylhexylsulfosuccinate and sodium di-2-ethylhexylsulfosuccinate are preferable.
  • the dopant of the present invention is preferably di-2-ethylhexyl sulfosuccinate ion.
  • the dopant of the polyaniline complex is doped to the substituted or unsubstituted polyaniline by ultraviolet / visible / near-infrared spectroscopy or X-ray photoelectron spectroscopy. As long as it has sufficient acidity to generate odor, it can be used without any restriction on the chemical structure.
  • the polyaniline complex can be produced by a known production method. For example, it can be produced by chemical oxidative polymerization of a substituted or unsubstituted aniline in a solution containing a proton donor, phosphoric acid, and an emulsifier different from the proton donor and having two liquid phases. Moreover, it can manufacture by adding an oxidation polymerization agent in the solution which contains the emulsifier different from a substituted or unsubstituted aniline, a proton donor, phosphoric acid, and a proton donor, and has two liquid phases. In addition, it is thought that the emulsifier plays the role which prevents the phase inversion mentioned later.
  • phase inversion is a phenomenon in which the liquid phase that was a continuous phase changes to a dispersed phase, and the other liquid phase that was a dispersed phase changes to a continuous phase.
  • the “solution having two liquid phases” means a state in which two liquid phases that are incompatible with each other exist in the solution. For example, it means a state in which a “high polarity solvent phase” and a “low polarity solvent phase” exist in the solution.
  • a solution having two liquid phases includes a state in which one liquid phase is a continuous phase and the other liquid phase is a dispersed phase. For example, a state where the “high polarity solvent phase” is a continuous phase and the “low polarity solvent phase” is a dispersed phase, and the “low polarity solvent phase” is a continuous phase and the “high polarity solvent phase” is a dispersed phase. Is included.
  • the high polarity solvent used in the method for producing the polyaniline complex water is preferable, and as the low polarity solvent, aromatic hydrocarbons such as toluene and xylene are preferable.
  • the proton donor is preferably a compound represented by the above formula (I), more preferably a compound represented by the above formula (II), and further preferably a compound represented by the above formula (III).
  • the emulsifier can be either an ionic emulsifier whose hydrophilic part is ionic or a nonionic emulsifier whose non-ionic hydrophilic part is used, or a mixture of one or more emulsifiers. May be used.
  • the ionic emulsifier examples include a cationic emulsifier, an anionic emulsifier, and a zwitter emulsifier.
  • Specific examples of the anionic emulsifier include fatty acids, disproportionated rosin soaps, higher alcohol esters, polyoxyethylene alkyl ether phosphates, alkenyl succinic acids, sarcosinates, and salts thereof.
  • Specific examples of the cationic emulsifier (cationic emulsifier) include alkyl dimethyl benzyl ammonium salt and alkyl trimethyl ammonium salt.
  • zwitterionic emulsifier both ion emulsifier
  • alkyl betaine type alkyl betaine type
  • alkyl amide betaine type amino acid type
  • amine oxide type alkyl betaine type
  • nonionic emulsifier include polyoxyethylene alkyl ether, polypropylene glycol polyethylene glycol ether, polyoxyethylene glycerol borate fatty acid ester, and polyoxyethylene sorbitan fatty acid ester.
  • anionic emulsifiers and nonionic emulsifiers are preferred.
  • anionic emulsifier an anionic emulsifier having a phosphate ester structure is more preferable.
  • nonionic emulsifier a nonionic emulsifier having a polyoxyethylene sorbitan fatty acid ester structure is more preferable.
  • the amount of proton donor to be used is preferably 0.1 to 0.5 mol, more preferably 0.3 to 0.45 mol, still more preferably 0.35 to 0, per 1 mol of aniline monomer. .4 mol.
  • the amount of the proton donor used is larger than the above range, for example, there is a possibility that the “high-polar solvent phase” and the “low-polar solvent phase” cannot be separated after completion of the polymerization.
  • the concentration of phosphoric acid used is 0.3 to 6 mol / L, more preferably 1 to 4 mol / L, still more preferably 1 to 2 mol / L with respect to the highly polar solvent.
  • the amount of the emulsifier used is preferably 0.001 to 0.1 mol, more preferably 0.002 to 0.02 mol, and still more preferably 0.003 to 0.01 mol with respect to 1 mol of the aniline monomer. is there.
  • the “high polar solvent phase” and the “low polar solvent phase” may not be separated after the completion of the polymerization.
  • Oxidizing agents used for chemical oxidative polymerization include peroxides such as sodium persulfate, potassium persulfate, ammonium persulfate, and hydrogen peroxide; ammonium dichromate, perchloric acid. Ammonium, potassium iron sulfate (III), iron trichloride (III), manganese dioxide, iodic acid, potassium permanganate, iron paratoluenesulfonate, etc. can be used, and persulfates such as ammonium persulfate are preferred. These oxidizing agents may be used alone or in combination of two or more.
  • the amount of the oxidizing agent used is preferably 0.05 to 1.8 mol, more preferably 0.8 to 1.6 mol, and still more preferably 1.2 to 1.4 mol with respect to 1 mol of the aniline monomer. It is. A sufficient degree of polymerization can be obtained by setting the amount of the oxidizing agent used within the above range. Further, since aniline is sufficiently polymerized, it is easy to recover the liquid separation, and there is no possibility that the solubility of the polymer is lowered.
  • the polymerization temperature is usually ⁇ 5 to 60 ° C., preferably ⁇ 5 to 40 ° C. The polymerization temperature may be changed during the polymerization reaction. Side reactions can be avoided when the polymerization temperature is within this range.
  • the polyaniline complex can be produced by the following method.
  • a solution in which a proton donor and an emulsifier are dissolved in toluene is placed in a separable flask placed in a stream of inert atmosphere such as nitrogen, and a substituted or unsubstituted aniline is added to the solution.
  • phosphoric acid containing no chlorine is added to the solution, and the solution temperature is cooled. Stirring is performed after cooling the internal temperature of the solution.
  • a solution in which ammonium persulfate is dissolved in phosphoric acid is dropped using a dropping funnel and reacted. Thereafter, the solution temperature is raised and the reaction is continued. After completion of the reaction, the aqueous phase separated into two phases by standing is separated.
  • Toluene is added to the organic phase side and washed with phosphoric acid and ion-exchanged water to obtain a polyaniline complex (protonated polyaniline) toluene solution. Some insolubles contained in the obtained complex solution are removed, and a toluene solution of the polyaniline complex is recovered. The solution is transferred to an evaporator, heated and decompressed to evaporate and remove volatile components, whereby a polyaniline complex is obtained.
  • Polyaniline molecules that are not polyaniline complexes can be produced by well-known methods.
  • a specific example is the production method described in JP-A-3-28229. While maintaining the temperature of aniline in a solvent at a temperature of, for example, 5 ° C. or lower in the presence of a protonic acid, one mole of oxidant and one molecule of oxidant are reduced per mole of aniline.
  • the aniline oxidation polymer doped with the protonic acid is formed by gradually adding, for example, 2 equivalents or more, in an equivalent amount defined as the number of electrons divided by the number of electrons required for the formation of the polymer. It can be produced by undoping with a basic substance.
  • a polyaniline molecule solution can be produced by mixing the polyaniline complex described above with a 1M aqueous sodium hydroxide solution to produce a dedoped polyaniline powder and dissolving it in NMP (N-methylpyrrolidone). .
  • the conductive polymer is polypyrrole
  • the molecular weight of polypyrrole, the molecular weight distribution, and the substituent of the substituted polypyrrole are the same as those of the polyaniline.
  • the acceptor type dopant used suitably for the conductive polymer which generally contains the polymer of a pyrrole and / or a pyrrole derivative can be used suitably.
  • Typical examples include polystyrene sulfonic acid, paratoluene sulfonic acid, methane sulfonic acid, trifluoromethane sulfonic acid, anthraquinone sulfonic acid, benzene sulfonic acid, naphthalene sulfonic acid, sulfosalicylic acid, dodecylbenzene sulfonic acid, allyl sulfonic acid.
  • Sulfonic acids such as perchloric acid, halogens such as chlorine and bromine, Lewis acids, proton acids and the like. These may be in the acid form or in the salt form.
  • tetrabutylammonium perchlorate Preferred from the viewpoint of solubility in monomers, tetrabutylammonium perchlorate, tetraethylammonium perchlorate, tetrabutylammonium tetrafluoroborate, tetrabutylammonium trifluoromethanesulfonate, tetrabutylammonium trifluorosulfonimide, dodecylbenzene Examples thereof include sulfonic acid and p-toluenesulfonic acid.
  • the amount of the dopant used is preferably an amount of 0.01 to 0.3 molecules of dopant per pyrrole polymer unit unit.
  • the amount is 0.01 molecule or less, the amount of dopant necessary to form a sufficient conductive path is insufficient, and it is difficult to obtain high conductivity.
  • addition of 0.3 molecule or more does not improve the doping rate, so the addition of 0.3 molecule or more dopant is not economically preferable.
  • the pyrrole polymer unit unit refers to a repeating portion corresponding to one molecule of a pyrrole polymer monomer obtained by polymerizing a pyrrole monomer.
  • the conductive polymer is polythiophene
  • the molecular weight of the polythiophene, the molecular weight distribution, and the substituent of the substituted polythiophene are the same as those of the polyaniline.
  • the substituted polythiophene polyethylenedioxythiophene (PEDOT) is preferable.
  • Examples of the dopant of the polythiophene complex include organic acid ions and inorganic acid ions of an anionic surfactant.
  • Examples of the organic acid ions of the anionic surfactant include sulfonic acid ions and esterified sulfate ions.
  • Examples of inorganic acid ions include sulfate ions, halogen ions, nitrate ions, perchlorate ions, hexacyanoferrate ions, phosphate ions, and phosphomolybdate ions.
  • the ratio of the conductive polymer in the solvent is not particularly limited, but is usually 900 g / kg or less, preferably 0.01 g / kg, relative to 1 kg of the composition.
  • a compound having a phenolic hydroxyl group (hereinafter sometimes referred to as a phenolic compound) may be added as the second dopant.
  • the compound is not particularly limited as long as it is a compound having a phenolic hydroxyl group.
  • the compound having a phenolic hydroxyl group is a polymer compound composed of a compound having one phenolic hydroxyl group, a compound having a plurality of phenolic hydroxyl groups, and a repeating unit having one or more phenolic hydroxyl groups.
  • the compound having one phenolic hydroxyl group is preferably a compound represented by the following formulas (A), (B) and (C). (Wherein n is an integer of 1 to 5, preferably 1 to 3, more preferably 1.
  • R is an alkyl group, alkenyl group, cycloalkyl group, aryl group, alkylaryl group or arylalkyl group having 1 to 20 carbon atoms. )
  • the —OR substitution position is preferably a meta position or a para position with respect to the phenolic hydroxyl group.
  • phenolic compound represented by the formula (A) examples include methoxyphenol (for example, 4-methoxyphenol), ethoxyphenol, propoxyphenol, isopropoxyphenol, butyloxyphenol, isobutyloxyphenol, and tertiary butyloxyphenol. Can be mentioned.
  • n is an integer of 0 to 7, preferably 0 to 3, more preferably 1.
  • R is an alkyl group having 1 to 20 carbon atoms, an alkenyl group, an alkylthio group, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group, or an arylalkyl group.
  • Specific examples of the phenolic compound represented by the formula (B) include hydroxynaphthalene.
  • R is an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 1 to 20 carbon atoms, an alkylthio group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, An alkylaryl group having 7 to 20 carbon atoms or an arylalkyl group having 7 to 20 carbon atoms.
  • Specific examples of the compound represented by the formula (C) include o-, m- or p-cresol, o-, m- or p-ethylphenol, o-, m- or p-propylphenol (eg, 4-isopropyl Phenol), o-, m- or p-butylphenol, o-, m- or p-pentylphenol (for example, 4-tert-pentylphenol).
  • the alkyl group having 1 to 20 carbon atoms is preferably an alkyl group having 1 to 8 carbon atoms, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, Examples include tertiary butyl.
  • Examples of the alkenyl group include groups having an unsaturated bond in the molecule of the alkyl group described above.
  • Examples of the cycloalkyl group include cyclopentane and cyclohexane.
  • the aryl group include phenyl and naphthyl.
  • Examples of the alkylaryl group and the arylalkyl group include groups obtained by combining the above-described alkyl group and aryl group.
  • Examples of the compound having one phenolic hydroxyl group are shown.
  • Specific examples of the substituted phenols include phenol, o-, m- or p-chlorophenol, salicylic acid, and hydroxybenzoic acid.
  • Specific examples of the compound having a plurality of phenolic hydroxyl groups include catechol, resorcinol, and a compound represented by the following formula (D).
  • R is a hydrocarbon group, a hetero atom-containing hydrocarbon group, a halogen atom, a carboxylic acid group, an amino group, an SH group, a sulfonic acid group, or a hydroxyl group.
  • N may be an integer of 0 to 6)
  • the phenolic compound represented by the formula (D) preferably has two or more hydroxyl groups that are not adjacent to each other.
  • Specific examples of the phenolic compound represented by the formula (D) include 1,6 naphthalenediol, 2,6 naphthalenediol, and 2,7 naphthalenediol.
  • polymer compound composed of a repeating unit having one or more phenolic hydroxyl groups include phenol resin, polyphenol, and poly (hydroxystyrene).
  • the content of the phenolic compound is preferably 1% by mass to 40% by mass, and more preferably 10% by mass to 30% by mass of the entire composition.
  • the electroconductivity when polyaniline is made into a thin film will fall, and solubility will fall.
  • it becomes 50 mass% or more there exists a possibility that the viscosity of a solution may become high and may gelatinize.
  • the composition of the present invention may contain a heat resistance stabilizer.
  • the heat stabilizer is an acidic substance or a salt of an acidic substance, and the acidic substance may be an organic acid (an acid of an organic compound) or an inorganic acid (an acid of an inorganic compound).
  • the composition of the present invention may contain a plurality of heat stabilizers.
  • the acidic substance is preferably a compound different from the proton donor of the polyaniline complex
  • the salt of the acidic substance is preferably a compound different from the proton donor of the polyaniline complex.
  • the composition contains both an acidic substance and an acidic substance salt as a heat stabilizer, preferably at least one of the acidic substance and the acidic substance salt is a compound different from the proton donor. .
  • the acidic substance is different from the phenolic compound.
  • the composition contains only a salt of an acidic substance as a heat stabilizer, preferably the salt of the acidic substance is different from the phenolic compound.
  • the composition contains both an acidic substance and an acidic substance salt as a heat stabilizer, preferably at least one of the acidic substance and the acidic substance salt is different from the phenolic compound.
  • the acidic substance that is a heat-resistant stabilizer is preferably an organic acid, more preferably an organic acid having one or more sulfonic acid groups, carboxy groups, phosphoric acid groups, or phosphonic acid groups, and more preferably sulfonic acid.
  • the organic acid having one or more sulfonic acid groups is preferably a cyclic, linear or branched alkylsulfonic acid, substituted or unsubstituted aromatic sulfonic acid, or polysulfonic acid having one or more sulfonic acid groups.
  • alkylsulfonic acid include methanesulfonic acid, ethanesulfonic acid, and di-2-ethylhexylsulfosuccinic acid.
  • the alkyl group here is preferably a linear or branched alkyl group having 1 to 18 carbon atoms.
  • aromatic sulfonic acid examples include a sulfonic acid having a benzene ring, a sulfonic acid having a naphthalene skeleton, a sulfonic acid having an anthracene skeleton, a substituted or unsubstituted benzenesulfonic acid, a substituted or unsubstituted naphthalenesulfonic acid, and a substituted
  • unsubstituted anthracene sulfonic acid may be mentioned, and naphthalene sulfonic acid is preferable.
  • naphthalene sulfonic acid examples include naphthalene sulfonic acid, dodecylbenzene sulfonic acid, and anthraquinone sulfonic acid. These may be used by adding a hydrate to the composition.
  • the substituent is, for example, a substituent selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, a nitro group, a carboxy group, and an acyl group, and one or more substituents may be substituted.
  • the polysulfonic acid is a sulfonic acid in which a plurality of sulfonic acid groups are substituted on the main chain or side chain of the polymer chain. For example, polystyrene sulfonic acid is mentioned.
  • the organic acid having one or more carboxy groups is preferably a cyclic, linear or branched alkyl carboxylic acid, substituted or unsubstituted aromatic carboxylic acid, or polycarboxylic acid having one or more carboxy groups.
  • alkyl carboxylic acid include undecylenic acid, cyclohexane carboxylic acid, and 2-ethylhexanoic acid.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 18 carbon atoms.
  • the substituted or unsubstituted aromatic carboxylic acid include substituted or unsubstituted benzene carboxylic acid and naphthalene carboxylic acid.
  • the substituent is, for example, a substituent selected from the group consisting of a sulfonic acid group, an alkyl group, an alkoxy group, a hydroxy group, a nitro group, and an acyl group, and one or more substituents may be substituted.
  • substituents include salicylic acid, benzoic acid, naphthoic acid, and trimesic acid.
  • the organic acid having at least one phosphoric acid group or phosphonic acid group is preferably a cyclic, linear or branched alkylphosphoric acid or alkylphosphonic acid having at least one phosphoric acid group or phosphonic acid group; substituted or unsubstituted aromatic An aromatic phosphoric acid or an aromatic phosphonic acid; a polyphosphoric acid or a polyphosphonic acid.
  • Examples of the alkyl phosphoric acid or alkylphosphonic acid include dodecyl phosphoric acid and bis (2-ethylhexyl) hydrogen phosphate.
  • the alkyl group is preferably a linear or branched alkyl group having 1 to 18 carbon atoms.
  • aromatic phosphoric acid and aromatic phosphonic acid examples include substituted or unsubstituted benzene sulfonic acid or phosphonic acid, and naphthalene sulfonic acid or phosphonic acid.
  • the substituent is, for example, a substituent selected from the group consisting of an alkyl group, an alkoxy group, a hydroxy group, a nitro group, a carboxy group, and an acyl group, and one or more substituents may be substituted.
  • An example is phenylphosphonic acid.
  • Examples of the salt of the acidic substance contained in the conductive polymer composition include the salt of the acidic substance.
  • the conductive polymer composition may contain two or more acidic substances and / or salts of acidic substances that are heat resistance stabilizers. Specifically, the composition may include different acidic substances and / or salts of different acidic substances.
  • the acidic substance is preferably the same or different sulfonic acid as the proton donor.
  • the salt of the acidic substance is preferably a sulfonic acid salt that is the same as or different from the proton donor of the polyaniline complex.
  • the conductive polymer composition includes an acidic substance and a salt of the acidic substance as a heat resistance stabilizer
  • at least one of the acidic substance and the salt of the acidic substance is the same or different from the proton donor or the sulfonic acid or sulfonic acid It is preferable that it is a salt.
  • the conductive polymer composition contains only sulfonic acid as the heat stabilizer, it is preferable to satisfy the formula (12), and when the composition contains only the salt of sulfonic acid as the heat stabilizer. Preferably, the formula (13) is satisfied.
  • the formula (14) is preferably satisfied.
  • S 2 is the total number of moles of sulfur atoms of all acidic substances contained in the conductive polymer composition
  • N 2 is all polyaniline contained in the conductive polymer composition. This means the total number of moles of nitrogen atoms in the composite
  • S 3 is the total number of moles of sulfur atoms in the salts of all acidic substances contained in the conductive polymer composition
  • N 3 is conductive.
  • S 4 are all acidic substance and acidic substance contained in the conductive polymer composition of the salt (The total number of moles of sulfur atoms, and N 4 means the total number of moles of nitrogen atoms in all polyaniline complexes contained in the conductive polymer composition.)
  • the composition of the present invention satisfies any of the above formulas (12), (13), or (14), the composition preferably further satisfies the following formula (11). 0.36 ⁇ S 1 / N 1 ⁇ 1.15 (11) (Here, S 1 is the number of moles of sulfur atoms contained in the conductive polymer composition, and N 1 is the number of moles of nitrogen atoms contained in the conductive polymer composition.)
  • the acidity (pKa) of the acidic substance is preferably 5.0 or less.
  • the lower limit of the acidity is not particularly limited. For example, when an acidic substance having an acidity of ⁇ 4.0 or less is contained, the polyaniline complex may be deteriorated.
  • the acidity of the salt of the acidic substance is preferably 5.0 or less. About the minimum of acidity, it is the same as that of the said acidic substance.
  • the conductive polymer composition includes both an acidic substance and an acidic substance salt, at least one of the acidic substance salt having an acidity of 5.0 or less and an acidity of 5.0 or less. It is preferable to satisfy.
  • the lower limit of acidity is the same as described above.
  • Acidity is defined by computational chemistry methods. A. Journal of Physical Chemistry 1995, Vol. 99, p. 50, which calculates the charge density on the surface of a molecule by quantum chemical calculation developed by Klamt et al. The method described in 2224 is used. Specifically, using “TURBOMOLE Version 6.1” (manufactured by COSMO logic), the structure is optimized using TZVP as a basis function, and the COSMO-RS method calculation is performed using this structure using “COSMO therm version C2”. .1 Release 01.10 "(manufactured by COSMO logic).
  • the pKa is calculated by inputting the conditions of 25 ° C. in an aqueous solvent, the chemical formula of the molecule, and the chemical formula of the deprotonated molecule in “COSMO thermion C2.1 Release 01.10”. be able to.
  • the content of the heat stabilizer is preferably 1 to 1000 parts by weight, more preferably 10 to 100 parts by weight, and still more preferably 100 parts by weight of the conductive polymer. Is 10 to 40 parts by mass.
  • the conductive polymer composition of the present invention may further contain additives such as other resins, inorganic materials, curing agents, plasticizers, and organic conductive materials.
  • additives such as other resins, inorganic materials, curing agents, plasticizers, and organic conductive materials.
  • Other resin is added as a binder base material, a plasticizer, and a matrix base material, for example.
  • resins include, for example, polyolefins such as polyethylene and polypropylene, chlorinated polyolefins, polystyrene, polyester, polyamide, polyacetal, polyethylene terephthalate, polycarbonate, polyethylene glycol, polyethylene oxide, polyacrylic acid, polyacrylic acid ester, Examples thereof include polymethacrylic acid ester and polyvinyl alcohol.
  • thermosetting resin such as an epoxy resin, a urethane resin, or a phenol resin, or a precursor capable of forming these thermosetting resins may be included.
  • the inorganic material is added, for example, for the purpose of improving strength, surface hardness, dimensional stability and other mechanical properties, or improving electrical properties such as conductivity.
  • Specific examples of the inorganic material include, for example, silica (silicon dioxide), titania (titanium dioxide), alumina (aluminum oxide), Sn-containing In 2 O 3 (ITO), Zn-containing In 2 O 3 , and In 2 O 3 .
  • Examples include co-substituted compounds (oxides in which tetravalent elements and divalent elements are substituted with trivalent In), Sb-containing SnO 2 (ATO), ZnO, Al-containing ZnO (AZO), and Ga-containing ZnO (GZO). .
  • the curing agent is added for the purpose of, for example, improving strength, surface hardness, dimensional stability, and other mechanical properties.
  • Specific examples of the curing agent include a thermosetting agent such as a phenol resin, and a photocuring agent using an acrylate monomer and a photopolymerization initiator.
  • the plasticizer is added for the purpose of improving mechanical properties such as tensile strength and bending strength.
  • specific examples of the plasticizer include phthalic acid esters and phosphoric acid esters.
  • examples of the organic conductive material include carbon materials such as carbon black and carbon nanotubes, and conductive polymers other than the polyaniline obtained in the present invention.
  • the conductive polymer composition is composed of, for example, 90% by weight or more, 95% by weight or more, 98% by weight or more, and 100% by weight of the conductive polymer, solvent, optionally phenolic compound, heat stabilizer, etc. These may be additives such as resins, inorganic materials, curing agents, plasticizers, and organic conductive materials.
  • the method for producing the composition of the present invention containing the above components is not particularly limited, and can be prepared by a known method.
  • the composition of the present invention can be prepared, for example, by the method disclosed in WO05 / 052058.
  • a molded product from the conductive polymer composition of the present invention, a molded product, a conductive laminate (surface conductive article), a conductive article, a conductive film and the like are obtained.
  • a molded body can be obtained by drying the composition of the present invention and removing the solvent.
  • the shape of the molded body may be any shape such as a plate shape or a rod shape.
  • a conductive laminate having a conductive film is produced by applying the composition of the present invention to a substrate such as glass, a resin film, a sheet, or a nonwoven fabric having a desired shape and removing the solvent. Can do.
  • a conductive article can be manufactured.
  • the substrate is preferably a resin film, a sheet, or a nonwoven fabric.
  • the thickness of the conductive film (conductive film) of the present invention is usually 1 mm or less, preferably 10 nm or more and 50 ⁇ m or less.
  • a film having a thickness in this range is advantageous in that it does not easily crack during film formation and has uniform electrical characteristics.
  • the coating film may be heated depending on the type of solvent. For example, it is heated at a temperature of 250 ° C. or lower, preferably 50 or higher and 200 ° C. or lower under an air stream, and further heated under reduced pressure as necessary.
  • the heating temperature and the heating time are not particularly limited and may be appropriately selected depending on the material to be used.
  • composition of the present invention can also be a self-supporting molded article having no substrate.
  • a molded body having a desired mechanical strength can be obtained when the composition contains the other resin described above.
  • Production Example 1 [Production of polyaniline complex] 37.8 g of aerosol OT (sodium di-2-ethylhexylsulfosuccinate) (AOT) and 1.47 g of sorbon T-20 (manufactured by Toho Chemical Co., Ltd.) which is a nonionic emulsifier having a polyoxyethylene sorbitan fatty acid ester structure are added to toluene. The solution dissolved in 600 mL was placed in a 6 L separable flask placed under a nitrogen stream, and 22.2 g of aniline was further added to this solution. Thereafter, 1800 mL of 1M phosphoric acid was added to the solution, and the temperature of the solution having two liquid phases of toluene and water was cooled to 5 ° C.
  • aerosol OT sodium di-2-ethylhexylsulfosuccinate
  • sorbon T-20 manufactured by Toho Chemical Co., Ltd.
  • Example 1 As a solvent, 3.5 g of 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries) and 3.5 g of ethylene glycol mono-tert-butyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.), p-tert-amyl as a phenolic compound 3 g of phenol (manufactured by Wako Pure Chemical Industries, Ltd.) was mixed and stirred until uniform. After adding 0.1 g of the polyaniline / AOT composite obtained in Production Example 1 to 9.9 g of the obtained mixed solvent, stirring and mixing, the insoluble matter was removed with 5C filter paper, and the polyaniline / AOT composite solution (conductivity) Polymer composition) was prepared.
  • the viscosity of the composition was measured immediately after storage and after 4 hours.
  • the viscosity of the solution was measured at room temperature using a tuning fork type vibration viscometer SV-1H (manufactured by A & D). Further, immediately after storage, 4 hours and 8 hours later, the weight of the composition was measured to determine the weight reduction rate. The measurement results are shown in Table 1.
  • Example 2 Preparation of the mixed solvent was performed by 4 g of 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries), 2 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), ethylene glycol mono-tert-butyl ether (manufactured by Tokyo Chemical Industry Co., Ltd.) A polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the amount was changed to 4 g. The results are shown in Table 1.
  • Example 3 The mixed solvent was prepared by preparing 2 g of 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries), 3 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), ethylene glycol mono-tert-butyl ether (Tokyo Chemical Industry Co., Ltd.). A polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the product was changed to 5 g. The results are shown in Table 1.
  • Example 4 The mixed solvent was prepared by 3 g of 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries), 2 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), ethylene glycol mono-tert-butyl ether (Tokyo Chemical Industry Co., Ltd.).
  • a polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the product was changed to 5 g. The results are shown in Table 1.
  • Example 5 The mixed solvent was prepared by 3 g of 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries), 1 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), ethylene glycol mono-tert-butyl ether (Tokyo Chemical Industry Co., Ltd.).
  • a polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the product was changed to 6 g. The results are shown in Table 1.
  • Example 6 The mixed solvent was prepared by preparing 2 g of 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries), 1 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), ethylene glycol mono-tert-butyl ether (Tokyo Chemical Industry Co., Ltd.). A polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the product was changed to 7 g. The results are shown in Table 1.
  • Example 7 The mixed solvent was prepared by 2.5 g of 3-methoxy-3-methylbutanol (manufactured by Wako Pure Chemical), 2.5 g of p-tert-amylphenol (manufactured by Wako Pure Chemical), ethylene glycol mono-tert-butyl ether ( A polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that Tokyo Chemical Industry Co., Ltd. was changed to 5 g. The results are shown in Table 1.
  • Example 8 The mixed solvent was prepared by 3 g of 3-methoxy-3-methylbutanol (manufactured by Wako Pure Chemical Industries), 1 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), ethylene glycol mono-tert-butyl ether (Tokyo Chemical Industry Co., Ltd.) A polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the product was changed to 6 g. The results are shown in Table 1.
  • Example 9 Preparation of the mixed solvent was conducted by using 3.5 g of 3-methoxy-3-methylbutanol (manufactured by Wako Pure Chemical Industries), 3 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), 3-methoxy-1-butanol (Tokyo Chemical Industries).
  • a polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the amount was changed to 3.5 g. The results are shown in Table 1.
  • Example 10 Preparation of the mixed solvent was performed by 4 g of 3-methoxy-3-methylbutanol (manufactured by Wako Pure Chemical Industries), 2 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), 3-methoxy-1-butanol (Tokyo Chemical Industry Co., Ltd.) A polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the product was changed to 4 g. The results are shown in Table 1.
  • Comparative Example 1 Preparation of mixed solvent was changed to 3 g of 3-methoxy-1-butanol (manufactured by Wako Pure Chemical), 4 g of p-tert-amylphenol (manufactured by Wako Pure Chemical), and 3 g of isopropyl alcohol (manufactured by Wako Pure Chemical). Except for the above, a polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Example 2 The mixed solvent was prepared by adding 3.5 g of 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries), 3 g of p-tert-amylphenol (manufactured by Wako Pure Chemical Industries), and 3. A polyaniline / AOT complex solution was prepared and evaluated in the same manner as in Example 1 except that the amount was changed to 5 g. The results are shown in Table 1.
  • Comparative Example 6 The mixed solvent was prepared in the same manner as in Example 1, except that 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries) was changed to 8 g and p-tert-amylphenol (manufactured by Wako Pure Chemical Industries) was changed to 2 g. AOT complex solution was prepared. However, after stirring, precipitation occurred at the bottom, the solubility was not sufficient, and a uniform polyaniline / AOT complex solution could not be prepared.
  • Comparative Example 7 The mixed solvent was prepared except that 3-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries) was changed to 3 g, p-tert-amylphenol (manufactured by Wako Pure Chemical Industries) was changed to 4 g, and 1-methoxy-2-propanol was changed to 3 g.
  • 3-methoxy-1-butanol manufactured by Wako Pure Chemical Industries
  • p-tert-amylphenol manufactured by Wako Pure Chemical Industries
  • 1-methoxy-2-propanol was changed to 3 g.
  • Comparative Example 8 The mixed solvent was prepared except that 4-methoxy-1-butanol (manufactured by Wako Pure Chemical Industries) was changed to 4 g, p-tert-amylphenol (manufactured by Wako Pure Chemical Industries) was changed to 2 g, and 1-methoxy-2-propanol was changed to 4 g.
  • the conductive polymer composition of the present invention is used in the field of power electronics and optoelectronics. Electrostatic and antistatic materials, transparent electrodes and conductive film materials, electroluminescent element materials, circuit materials, electromagnetic wave shielding materials, and electromagnetic wave absorbing materials. It can be used for noise suppression materials, capacitor dielectrics and electrolytes, electrode materials for solar cells and secondary batteries, fuel cell separator materials, etc., or for plating bases and rust inhibitors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

導電性高分子と、下記式(1)で表される溶媒から選択される少なくとも2種の溶媒と、を含有する、導電性高分子組成物(但し、2種の溶媒がともに、式(1)においてRが直鎖状アルキル基であり、かつRが直鎖状アルキレン基である場合を除く。)。 R-O-R-OH (1) (式中、Rは直鎖状アルキル基又は分岐状アルキル基であり、Rは直鎖状アルキレン基又は分岐状アルキレン基である。)

Description

導電性高分子組成物
 本発明は、導電性高分子組成物に関する。
 導電性高分子は、電解コンデンサや電子機器のバックアップ用電池、携帯電話やノート型パソコンに使用されているリチウムイオン電池の電極等に使用されている。
 導電性高分子の一種であるポリアニリンは、その電気的な特性に加え、安価なアニリンから比較的簡便に合成でき、且つ導電性を示す状態で酸素等に対して優れた安定性を示すという利点及び特性を有する。また、例えば特許文献1に記載の方法によって、簡便にポリアニリン溶液を得ることが出来る。溶液であることにより、多くの用途に用いることができる。
 用途によっては非極性溶媒ではなく極性溶媒であることが要求されるところ、ポリアニリンは非極性溶媒の溶液のみならず、極性溶媒のポリアニリン溶液も得られる(例えば、特許文献2参照。)。
WO2005/052058号公報 WO2011/027578号公報
 極性溶媒のポリアニリン溶液として、溶媒にイソプロピルアルコール(IPA)を用いたものがある。この溶液について、開放下に従来組成の溶液を放置すると、溶液の粘度が上昇し、重量が減少する。そのため、作業性、歩留まりが低下するという問題、即ち、ポットライフが悪いという問題があった。
 本発明の目的は、溶液の粘度の上昇を抑制でき、重量減少の少ない、導電性高分子組成物を提供することを目的とする。
 本発明によれば、以下の導電性高分子組成物が提供される。
1.導電性高分子と、下記式(1)で表される溶媒から選択される少なくとも2種の溶媒と、を含有する、導電性高分子組成物(但し、前記2種の溶媒がともに、式(1)においてRが直鎖状アルキル基であり、かつRが直鎖状アルキレン基である場合を除く。)。
  R-O-R-OH   (1)
(式中、Rは直鎖状アルキル基又は分岐状アルキル基であり、Rは直鎖状アルキレン基又は分岐状アルキレン基である。)
2.前記導電性高分子が、置換又は無置換のポリアニリンの複合体である、1に記載の導電性高分子組成物。
3.前記ポリアニリン複合体が、無置換ポリアニリンと下記式(III)で表されるスルホコハク酸誘導体の複合体である、2に記載の導電性高分子組成物。
Figure JPOXMLDOC01-appb-C000001
(式中、Mは、水素原子、有機遊離基又は無機遊離基であり、m’は、Mの価数であり、R13及びR14は、それぞれ独立に、炭化水素基又は-(R15O)-R16基であり、R15はそれぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-基あり、R17はそれぞれ独立に炭化水素基であり、rは1以上の整数である。)
4.前記R13及びR14は、それぞれ独立に、鎖状の飽和脂肪族炭化水素基である3に記載の導電性高分子組成物。
5.前記R13及びR14は、それぞれ独立に、炭素数4以上24以下の直鎖又は分岐状のアルキル基である3に記載の導電性高分子組成物。
6.前記R13及びR14は2-エチルヘキシル基である3に記載の導電性高分子組成物。
7.さらに、フェノール性水酸基を有する化合物を含有する、1~6のいずれかに記載の導電性高分子組成物。
8.前記フェノール性水酸基を有する化合物が、下記式(C)で表される、7に記載の導電性高分子組成物。
Figure JPOXMLDOC01-appb-C000002
(式中、nは1~5の整数であり、Rは、それぞれ炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアルキルアリール基又は炭素数7~20のアリールアルキル基である。)
9.前記nは1であり、Rは炭素数1~8のアルキル基である8に記載の導電性高分子組成物。
10.前記フェノール性水酸基を有する化合物が、p-tert-アミルフェノールである、7に記載の導電性高分子組成物。
11.前記R及びRの炭素数が、それぞれ8以下である、1~10のいずれかに記載の導電性高分子組成物。
12.前記Rがt-ブチル基である溶媒を含む、1~11のいずれかに記載の導電性高分子組成物。
13.前記2種の溶媒がいずれも、前記式(1)においてRが分岐状アルキル基であり、かつRが分岐状アルキレン基である溶媒ではない、1~12のいずれかに記載の導電性高分子組成物。
14.前記2種の溶媒が、3-メトキシ-1-ブタノール及びエチレングリコールモノ-tert-ブチルエーテルである、1~13のいずれかに記載の導電性高分子組成物。
15.上記1~14のいずれかに記載の導電性高分子組成物から得られる成形体。
16.基材と、上記1~14のいずれかに記載の導電性高分子組成物から得られる導電層とを有する、導電性積層体。
17.上記16に記載の導電性積層体を成形して得られる導電性物品。
 本発明によれば、溶媒として2種以上の特定溶媒を組み合わせて使用することにより、経時的な粘度変化及び重量変化を抑制した導電性高分子組成物が提供できる。
 本発明の導電性高分子組成物は、導電性高分子と、下記式(1)で表される溶媒から選択される少なくとも2種の溶媒と、を含有する。
  R-O-R-OH   (1)
(式中、Rは直鎖状アルキル基又は分岐状アルキル基であり、Rは直鎖状アルキレン基又は分岐状アルキレン基である。)
 本発明の組成物は、上記式(1)で表される化合物から選択される、少なくとも2種を含有する。溶媒は、R及びRの組み合わせにより、以下の4つのグループに分類できる。
 グループA:Rが直鎖状アルキル基、Rが直鎖状アルキレン基(直鎖状アルキレン残基)
 グループB:Rが分岐状アルキル基、Rが直鎖状アルキレン基
 グループC:Rが直鎖状アルキル基、Rが分岐状アルキレン基
 グループD:Rが分岐状アルキル基、Rが分岐状アルキレン基
 ここで、2種の溶媒がともに、式(1)においてRが直鎖状アルキル基であり、かつRが直鎖状アルキレン基である場合、即ち、2種の溶媒がともに上記グループAに属する場合は、本発明ではない。その他の組み合わせ、例えば、2種の溶媒がともに、グループA以外の同一のグループから選択される場合や、異なるグループから1種ずつ選択される場合は、本発明に属する。
 これら溶媒を用いることで、主としてIPAを用いた組成物とほぼ同様の溶解性を維持することができ、かつ溶媒の揮発を抑制できる。
 式(1)において、Rが示す直鎖状アルキル基としては、その炭素数が1~24であることが好ましく、さらに炭素数が1~8であることが好ましく、特に、炭素数が1~4であることが好ましい。炭素数が小さいと、分子全体の親水性部分と親油性部分のバランスが良くなり、ポリアニリン複合体の溶解性が向上するためである。
 具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、ヘキシル基、ヘプチル基、オクチル基等が挙げられる。
 Rが示す分岐状アルキル基としては、その炭素数が3~24であることが好ましく、さらに炭素数が3~12であることが好ましく、特に、炭素数が3~8であることが好ましい。
 具体的には、イソプロピル基、イソブチル基、secブチル基、ターシャリーブチル基(t-ブチル基)、イソペンチル基、ネオペンチル基、ターシャリーペンチル基、イソヘキシル基等が挙げられる。なかでもt-ブチル基が好ましい。
 Rが示す直鎖状アルキレン基としては、その炭素数が1~24であることが好ましく、さらに炭素数が1~8であることが好ましく、特に、炭素数が1~4であることが好ましい。具体的には、メチレン基、エチレン基、プロピレン基、n-ブチレン基が挙げられる。
 尚、Rが直鎖状であれば、水酸基及びアルコキシ基の結合位置は問わない。例えば、Rがn-ブチレン基である場合、水酸基及びアルコキシ基は、4つの炭素のいずれに結合していてもよい。
 Rが示す分岐状アルキレン基は、炭素数が4以上であり、上述した直鎖状アルキレン基[-(CH-:nは3以上の整数]の、末端炭素以外の炭素の少なくとも1つの水素が、上述した直鎖状又は分岐状アルキル基で置換された構造を有する基である。Rが示す分岐状アルキレン基の炭素数は4~24であることが好ましく、さらに炭素数は4~12であることが好ましく、特に、炭素数4~8であることが好ましい。
 溶媒の具体例として、上記グループAの例としては、3-メトキシ-1-ブタノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ―2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、3-メトキシ-1-プロパノール、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記グループBの例としては、エチレングリコールモノ-tert-ブチルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノイソブチルエーテル、1-(1-メチルエトキシ)エタノール、3-(1-メチルエトキシ)ブタン-1-オール、3-(2,2-ジメチルプロポキシ)ブタン-1-オール、1-(2,2-ジメチルプロポキシ)プロパノール、2-イソプロポキシプロパン-2-オール等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記グループCの例としては、3-メトキシ-3-メチルブタノール等が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 上記グループDの例としては、2-(2,2-ジメチルプロポキシ)-2-メチルプロパン-1-オール等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 本発明では、使用する2種の溶媒がいずれも、式(1)においてRが分岐状アルキル基であり、かつRが分岐状アルキレン基である溶媒ではないことが好ましい。即ち、溶媒は上記グループA、B及びCのうちから2種以上を選択することが好ましい。
 特に、グループA及びBからそれぞれ1種ずつ以上、又は、グループA及びCからそれぞれ1種ずつ以上選択することが好ましい。
 2種の溶媒の混合比率は、質量比で1:99~99:1が好ましく、さらに、20:80~80:20が好ましく、特に、30:60~60:30が好ましい。
 導電性高分子(ポリマー)としては、π共役ポリマーがドーパントによってドープされているπ共役ポリマー複合体が好ましい。具体的には、置換又は無置換のポリアニリンがドーパントによってドープされているポリアニリン複合体、置換又は無置換のポリピロールがドーパントによってドープされているポリピロール複合体、及び、置換又は無置換のポリチオフェンがドーパントによってドープされているポリチオフェン複合体が挙げられる。なかでも、置換又は無置換のポリアニリンがドーパントによってドープされているポリアニリン複合体が好ましい。
 ポリアニリン複合体は、置換又は無置換のポリアニリン分子がドーパントによってドープされているものである。
 ポリアニリン分子の重量平均分子量(以下、分子量という)は好ましくは20,000以上である。分子量が20,000未満であると、含有液から得られる導電性物品の強度や延伸性が低下するおそれがある。分子量は、好ましくは20,000~500,000であり、より好ましくは20,000~300,000であり、さらに好ましくは20,000~200,000である。分子量は、例えば50,000~200,000、53,000~200,000である。ここで、上記の重量平均分子量はポリアニリン複合体の分子量ではなく、ポリアニリン分子の分子量である。
 ポリアニリン分子の分子量分布は、好ましくは1.5以上20.0以下であり、より好ましくは1.5以上5.0以下であり、さらに好ましくは1.5以上4.5以下であり、特に好ましくは1.5以上4.0以下であり、最も好ましくは1.5以上3.6以下である。ここで、上記の分子量分布は、上記と同様に、ポリアニリン複合体の分子量分布ではなく、ポリアニリン分子の分子量分布である。
 分子量分布は重量平均分子量/数平均分子量で表わされる値であり、導電率の観点から、分子量分布は小さい方が好ましい。また、上記重量平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフ(GPC)により測定できるポリスチレン換算値として得られる。
 置換ポリアニリンの置換基としては、例えばメチル基、エチル基、ヘキシル基、オクチル基等の直鎖又は分岐の炭化水素基;メトキシ基、エトキシ基等のアルコキシ基;フェノキシ基等のアリールオキシ基;トリフルオロメチル基(-CF基)等のハロゲン化炭化水素が挙げられる。
 ポリアニリン分子は、汎用性及び経済性の観点から無置換のポリアニリン分子が好ましい。
 ポリアニリン複合体のドーパントとしては、例えばブレンステッド酸又はブレンステッド酸の塩から生じるブレンステッド酸イオンが挙げられ、好ましくは有機酸又は有機酸の塩から生じる有機酸イオンであり、さらに好ましくは下記式(I)で示される化合物(プロトン供与体)から生じる有機酸イオンである。
 尚、本発明において、ドーパントが特定の酸であると表現する場合、及びドーパントが特定の塩であると表現する場合も有るが、いずれも特定の酸又は特定の塩から生じる特定の酸イオンが、上述したポリアニリン分子にドープするものとする。
  M(XARn)m   (I)
 式(I)のMは、水素原子、有機遊離基又は無機遊離基である。
 上記有機遊離基としては、例えば、ピリジニウム基、イミダゾリウム基、アニリニウム基が挙げられる。また、上記無機遊離基としては、例えば、リチウム、ナトリウム、カリウム、セシウム、アンモニウム、カルシウム、マグネシウム、鉄が挙げられる。
 式(I)のXは、アニオン基であり、例えば-SO 基、-PO 2-基、-PO(OH)基、-OPO 2-基、-OPO(OH)基、-COO基が挙げられ、好ましくは-SO 基である。
 式(I)のAは、置換又は無置換の炭化水素基である。
 上記炭化水素基は、鎖状若しくは環状の飽和脂肪族炭化水素基、鎖状若しくは環状の不飽和脂肪族炭化水素基、又は芳香族炭化水素基である。
 鎖状の飽和脂肪族炭化水素基としては、直鎖若しくは分岐状の飽和脂肪族炭化水素基が挙げられる。炭素数は、例えば1以上24以下、2以上8以下である。
 環状の飽和脂肪族炭化水素基としては、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等のシクロアルキル基が挙げられる。環状の飽和脂肪族炭化水素基は、複数の環状の飽和脂肪族炭化水素基が縮合していてもよい。例えば、ノルボルニル基、アダマンチル基、縮合したアダマンチル基が挙げられる。
 芳香族炭化水素基としては、フェニル基、ナフチル基、アントラセニル基が挙げられる。鎖状の不飽和脂肪族炭化水素としては、直鎖若しくは分岐状のアルケニル基が挙げられる。
 ここで、Aが置換の炭化水素基である場合の置換基は、アルキル基、シクロアルキル基、ビニル基、アリル基、アリール基、アルコキシ基、ハロゲン基、ヒドロキシ基、アミノ基、イミノ基、ニトロ基、シリル基又はエステル基である。
 式(I)のRは、Aと結合しており、それぞれ独立して、-H、-R、-OR、-COR、-COOR、-(C=O)-(COR)、又は-(C=O)-(COOR)で表わされる置換基あり、Rは、置換基を含んでもよい炭化水素基、シリル基、アルキルシリル基、-(RO)x-R基、又は-(OSiR )x-OR(Rはそれぞれ独立にアルキレン基、Rはそれぞれ独立に炭化水素基であり、xは1以上の整数である)である。
 Rの炭化水素基としては、例えば鎖状若しくは環状の飽和脂肪族炭化水素基、鎖状若しくは環状の不飽和脂肪族炭化水素基、又は芳香族炭化水素基が挙げられる。具体例として、メチル基、エチル基、直鎖若しくは分岐のブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、エイコサニル基が挙げられる。また、上記炭化水素基の置換基は、アルキル基、シクロアルキル基、ビニル基、アリル基、アリール基、アルコキシ基、ハロゲン基、ヒドロキシ基、アミノ基、イミノ基、ニトロ基又はエステル基である。Rの炭化水素基もRと同様である。
 Rのアルキレン基としては、例えばメチレン基、エチレン基、プロピレン基等が挙げられる。
 式(I)のnは1以上の整数であり、式(I)のmは、Mの価数/Xの価数である。
 式(I)で示される化合物としては、ジアルキルベンゼンスルフォン酸、ジアルキルナフタレンスルフォン酸、又はエステル結合を2以上含有する化合物が好ましい。
 上記エステル結合を2以上含有する化合物は、スルホフタール酸エステル、又は下記式(II)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、M及びXは、式(I)と同様である。Xは、-SO 基が好ましい。)
 式(II)のR、R及びRは、それぞれ独立して水素原子、炭化水素基又はR Si-基(ここで、Rは炭化水素基であり、3つのRは同一又は異なっていてもよい)である。
 R、R及びRが炭化水素基である場合の炭化水素基としては、炭素数1~24の直鎖若しくは分岐状のアルキル基、芳香環を含むアリール基、アルキルアリール基等が挙げられる。
 Rの炭化水素基としては、R、R及びRの場合と同様である。
 式(II)のR及びRは、それぞれ独立に、炭化水素基又は-(R10O)-R11基[ここで、R10は炭化水素基又はシリレン基であり、R11は水素原子、炭化水素基又はR12 Si-(R12は、炭化水素基であり、3つのR12は同一又は異なっていてもよい)であり、qは1以上の整数である]である。
 R及びRが炭化水素基である場合の炭化水素基としては、鎖状若しくは環状の飽和脂肪族炭化水素基、鎖状若しくは環状の不飽和脂肪族炭化水素基、又は芳香族炭化水素基等が挙げられる。例えば、炭素数1~24、好ましくは炭素数4以上24以下の直鎖若しくは分岐状のアルキル基、芳香環を含むアリール基、アルキルアリール基が挙げられる。R及びRが炭化水素基である場合の炭化水素基の具体例としては、例えば、直鎖又は分岐状のブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基が挙げられる。好ましくは、直鎖又は分岐状のオクチル基である。さらに好ましくは、2-エチルヘキシル基である。
 R及びRにおける、R10が炭化水素基である場合の炭化水素基としては、例えば炭素数1~24の直鎖若しくは分岐状のアルキレン基、芳香環を含むアリーレン基、アルキルアリーレン基、アリールアルキレン基である。また、R及びRにおける、R11及びR12が炭化水素基である場合の炭化水素基としては、R、R及びRの場合と同様であり、qは、1~10であることが好ましい。
 R及びRが-(R10O)-R11基である場合の式(II)で表わされる化合物(M,mは除く)の具体例としては、下記式で表わされる2つの化合物である。
Figure JPOXMLDOC01-appb-C000008
(式中、Xは式(I)と同様である。)
 上記式(II)で表わされる化合物は、下記式(III)で示されるスルホコハク酸誘導体であることがさらに好ましい。
Figure JPOXMLDOC01-appb-C000009
(式中、Mは、式(I)と同様である。m’は、Mの価数である。)
 式(III)のR13及びR14は、それぞれ独立に、炭化水素基又は-(R15O)-R16基[ここで、R15はそれぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-基(ここで、R17はそれぞれ独立に炭化水素基である)であり、rは1以上の整数である]である。
 R13及びR14が炭化水素基である場合の炭化水素基としては、R及びRと同様である。例えば、鎖状の飽和脂肪族炭化水素基、炭素数4以上24以下の直鎖若しくは分岐状のアルキル基である。具体的には、直鎖若しくは分岐状のブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基が挙げられる。好ましくは、直鎖又は分岐状のオクチル基である。さらに好ましくは、2-エチルヘキシル基である。
 R13及びR14において、R15が炭化水素基である場合の炭化水素基としては、上記R10と同様である。また、R13及びR14において、R16及びR17が炭化水素基である場合の炭化水素基としては、上記R、R及びRと同様である。
 rは、1~10であることが好ましい。
 R13及びR14が-(R15O)-R16基である場合の具体例としては、R及びRにおける-(R10O)-R11と同様である。
 R13及びR14の炭化水素基としては、R及びRと同様であり、ブチル基、ヘキシル基、2-エチルヘキシル基、デシル基が好ましい。
 上記ドーパントはその構造を変えることにより、ポリアニリン複合体の導電性や、溶剤への溶解性をコントロールできることが知られている(特許第3384566号)。本発明においては、用途毎の要求特性によって最適なドーパントを選択できる。
 式(I)で示される化合物としては、ジ-2-エチルヘキシルスルホコハク酸、ジ-2-エチルヘキシルスルホコハク酸ナトリウムが好ましい。本発明のドーパントとしては、ジ-2-エチルヘキシルスルホコハク酸イオンが好ましい。
 ポリアニリン複合体のドーパントが、置換又は無置換のポリアニリンにドープしていることは、紫外・可視・近赤外分光法やX線光電子分光法によって確認することができ、当該ドーパントは、ポリアニリンにキャリアを発生させるに十分な酸性を有していれば、特に化学構造上の制限なく使用できる。
 ポリアニリン複合体は、周知の製造方法で製造することができる。例えば、プロトン供与体、リン酸、及びプロトン供与体とは異なる乳化剤を含み、2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合することにより製造できる。また、置換又は無置換のアニリン、プロトン供与体、リン酸、及びプロトン供与体とは異なる乳化剤を含み、2つの液相を有する溶液中に、酸化重合剤を加えることにより製造できる。
 尚、乳化剤は、後述する転相を防ぐ役割を担っていると考えられる。プロトン供与体及びリン酸を含み2つの液相を有する溶液中で、置換又は無置換のアニリンを化学酸化重合してポリアニリン複合体を製造すると、リン酸ではなく塩酸を用いていた場合に比べて、低分子量成分が増えてしまう。ここでリン酸を用いた際の重合中の様子から、上記2つの液相は重合中に転相を起こしていると考えられる。そして、この転相が低分子量成分を増やす理由と考えられる。この転相という現象は、連続相であった液相が分散相へ、分散相であった他方の液相が連続相へ変化する現象である。
 ここで「2つの液相を有する溶液」とは、溶液中に相溶しない2つの液相が存在する状態を意味する。例えば、溶液中に「高極性溶媒の相」と「低極性溶媒の相」が存在する状態、を意味する。
 また、「2つの液相を有する溶液」は、片方の液相が連続相であり、他方の液相が分散相である状態も含む。例えば「高極性溶媒の相」が連続相であり「低極性溶媒の相」が分散相である状態、及び「低極性溶媒の相」が連続相であり「高極性溶媒の相」が分散相である状態が含まれる。
 ポリアニリン複合体の製造方法に用いる高極性溶媒としては、水が好ましく、低極性溶媒としては、例えばトルエン、キシレン等の芳香族炭化水素が好ましい。
 上記プロトン供与体は、好ましくは上記式(I)で表わされる化合物であり、より好ましくは上記式(II)で表わされる化合物であり、さらに好ましくは上記式(III)で表わされる化合物である。
 上記乳化剤は、親水性部分がイオン性であるイオン性乳化剤、及び親水性部分が非イオン性である非イオン性乳化剤のどちらでも使用でき、また、1種又は2種以上の乳化剤を混合して使用してもよい。
 イオン性乳化剤としては、カチオン性乳化剤、アニオン性乳化剤及び双性乳化剤が挙げられる。
 アニオン性乳化剤(陰イオン乳化剤)の具体例としては、脂肪酸、不均化ロジン石けん、高級アルコールエステル、ポリオキシエチレンアルキルエーテルリン酸、アルケニルコハク酸、ザルコシネート、及びそれらの塩が挙げられる。
 カチオン性乳化剤(陽イオン乳化剤)の具体例としては、アルキルジメチルベンジルアンモニウム塩、アルキルトリメチルアンモニウム塩が挙げられる。
 双性乳化剤(両イオン乳化剤)の具体例としては、アルキルベタイン型、アルキルアミドベタイン型、アミノ酸型、アミンオキサイド型が挙げられる。
 非イオン乳化剤の具体例としては、ポリオキシエチレンアルキルエーテル、ポリプロピレングリコールポリエチレングリコールエーテル、ポリオキシエチレングリセロールボレート脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルが挙げられる。
 上記乳化剤のうち、アニオン性乳化剤及び非イオン乳化剤が好ましい。
 アニオン性乳化剤としては、リン酸エステル構造を有するアニオン性乳化剤がさらに好ましい。また、非イオン乳化剤としては、ポリオキシエチレンソルビタン脂肪酸エステル構造を有する非イオン乳化剤がさらに好ましい。
 プロトン供与体の使用量は、アニリン単量体1molに対して、好ましくは0.1~0.5molであり、より好ましくは0.3~0.45molであり、さらに好ましくは0.35~0.4molである。
 プロトン供与体の使用量が当該範囲より多い場合、重合終了後に例えば「高極性溶剤の相」と「低極性溶剤の相」を分離することができないおそれがある。
 リン酸の使用濃度は、高極性溶媒に対して0.3~6mol/Lであり、より好ましくは1~4mol/Lであり、さらに好ましくは1~2mol/Lである。
 乳化剤の使用量は、アニリン単量体1molに対して好ましくは0.001~0.1molであり、より好ましくは0.002~0.02molであり、さらに好ましくは0.003~0.01molである。
 乳化剤の使用量が当該範囲より多い場合、重合終了後に「高極性溶剤の相」と「低極性溶剤の相」を分離することができないおそれがある。
 化学酸化重合に用いる酸化剤(以下、酸化重合剤という場合がある)としては、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、過酸化水素のような過酸化物;二クロム酸アンモニウム、過塩素酸アンモニウム、硫酸カリウム鉄(III)、三塩化鉄(III)、二酸化マンガン、ヨウ素酸、過マンガン酸カリウム、あるいはパラトルエンスルホン酸鉄等が使用でき、好ましくは過硫酸アンモニウム等の過硫酸塩である。
 これら酸化剤は単独で使用しても、2種以上を併用してもよい。
 酸化剤の使用量は、アニリン単量体1molに対して好ましくは0.05~1.8molであり、より好ましくは0.8~1.6molであり、さらに好ましくは1.2~1.4molである。酸化剤の使用量を当該範囲とすることで、十分な重合度が得られる。また、アニリンが十分に重合しているので、分液回収が容易であり、また重合体の溶解性が低下するおそれもない。
 重合温度は通常-5~60℃で、好ましくは-5~40℃である。また、重合温度は重合反応の途中に変えてもよい。重合温度が当該範囲であることで、副反応を回避することができる。
 ポリアニリン複合体は、具体的には以下の方法で製造することができる。
 プロトン供与体及び乳化剤をトルエンに溶解した溶液を、窒素等の不活性雰囲気の気流下においたセパラブルフラスコに入れ、さらにこの溶液に、置換又は無置換のアニリンを加える。その後、塩素を含まないリン酸を溶液に添加し、溶液温度を冷却する。
 溶液内温を冷却した後、攪拌を行う。過硫酸アンモニウムをリン酸に溶解した溶液を、滴下ロートを用いて滴下し、反応させる。その後、溶液温度を上昇させ、反応を継続する。反応終了後、静置することで二相に分離した水相側を分液する。有機相側にトルエンを追加し、リン酸及びイオン交換水で洗浄を行うことでポリアニリン複合体(プロトネーションされたポリアニリン)トルエン溶液が得られる。
 得られた複合体溶液に含まれる若干の不溶物を除去し、ポリアニリン複合体のトルエン溶液を回収する。この溶液をエバポレーターに移し、加温及び減圧することにより、揮発分を蒸発留去し、ポリアニリン複合体が得られる。
 ポリアニリン複合体ではないポリアニリン分子は、周知の方法で製造することができる。具体例として、特開平3-28229に記載の製造方法が挙げられる。プロトン酸の存在下、溶剤中にてアニリンに温度を例えば5℃以下の温度に保持しつつ、酸化剤の水溶液をアニリン1モル当りに、酸化剤の1モルを、酸化剤1分子を還元するのに必要な電子数で割った量として定義される当量で、例えば2当量以上、徐々に加えて、上記プロトン酸にてドーピングされたアニリンの酸化重合体を生成させ、次いで、この重合体を塩基性物質によって脱ドーピングすることによって製造することができる。
 また、先に述べたポリアニリン複合体を1M水酸化ナトリウム水溶液と混合して脱ドープしたポリアニリン粉末を作り、NMP(N-メチルピロリドン)に溶解させることにより、ポリアニリン分子の溶液を製造することができる。
 導電性高分子がポリピロールの場合、ポリピロールの分子量、分子量分布、置換ポリピロールの置換基は上記ポリアニリンと同様である。
 ポリピロール複合体のドーパントとしては、特に制限はなく、一般的にピロール及び/又はピロール誘導体の重合体を含んでなる導電性ポリマーに好適に用いられるアクセプター性ドーパントを適宜使用できる。
 代表的なものとしては、例えば、ポリスチレンスルホン酸、パラトルエンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、アントラキノンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、スルホサリチル酸、ドデシルベンゼンスルホン酸、アリルスルホン酸等のスルホン酸類、過塩素酸、塩素、臭素等のハロゲン類、ルイス酸、プロトン酸等がある。これらは、酸形態であってよいし、塩形態にあることもできる。モノマーに対する溶解性の観点から好ましいものは、過塩素酸テトラブチルアンモニウム、過塩素酸テトラエチルアンモニウム、テトラフルオロホウ酸テトラブチルアンモニウム、トリフルオロメタンスルホン酸テトラブチルアンモニウム、トリフルオロスルホンイミドテトラブチルアンモニウム、ドデシルベンゼンスルホン酸、パラトルエンスルホン酸等である。
 ドーパントを使用する場合のドーパントの使用量は、ピロール重合体単位ユニット当たりドーパント0.01~0.3分子となる量が好ましい。0.01分子以下では、十分な導電性パスを形成するに必要なドーパント量としては不十分であり、高い導電性を得ることが難しい。一方、0.3分子以上加えてもドープ率は向上しないから、0.3分子以上のドーパントの添加は経済上好ましくない。ここでピロール重合体単位ユニットとは、ピロールモノマーが重合して得られるピロール重合体のモノマー1分子に対応する繰返し部分のことを指す。
 導電性高分子がポリチオフェンの場合、ポリチオフェンの分子量、分子量分布、置換ポリチオフェンの置換基は上記ポリアニリンと同様である。置換ポリチオフェンとしては、ポリエチレンジオキシチオフェン(PEDOT)が好ましい。
 ポリチオフェン複合体のドーパントとしては、アニオン系界面活性剤の有機酸イオン、無機酸イオンが挙げられる。アニオン系界面活性剤の有機酸イオンとしては、スルホン酸系イオン、エステル化された硫酸イオン等が挙げられる。無機酸イオンとしては、硫酸イオン、ハロゲンイオン、硝酸イオン、過塩素酸イオン、ヘキサシアノ鉄酸イオン、リン酸イオン、リンモリブデン酸イオン等が挙げられる。
 本発明の導電性高分子組成物において、溶媒中の導電性高分子の割合は、特に限定はないが、通常、組成物1kgに対して、900g/kg以下であり、好ましくは0.01g/kg以上300g/kg以下であり、より好ましくは10g/kg以上300g/kg以下であり、さらに好ましくは30g/kg以上300g/kg以下の範囲である。
 導電性高分子がポリアニリン複合体の場合、第2ドーパントとしてフェノール性水酸基を有する化合物(以下、フェノール性化合物ということがある。)を添加してもよい。該化合物は、フェノール性水酸基を有する化合物であれば特に限定されない。フェノール性水酸基を有する化合物とは、フェノール性水酸基を1つ有する化合物、フェノール性水酸基を複数有する化合物、及びフェノール性水酸基を1つ又は複数有する繰り返し単位から構成される高分子化合物である。
 フェノール性水酸基を1つ有する化合物は、好ましくは下記式(A)、(B)及び(C)で表わされる化合物である。
Figure JPOXMLDOC01-appb-C000010
(式中、nは1~5の整数であり、好ましくは1~3であり、より好ましくは1である。
 Rは、炭素数1~20のアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルアリール基又はアリールアルキル基である。)
 式(A)で表されるフェノール性化合物において、-ORの置換位置はフェノール性水酸基に対し、メタ位、又はパラ位であることが好ましい。-ORの置換位置をメタ位又はパラ位とすることにより、フェノール性水酸基の立体障害が低減され、組成物の導電性をより高めることができる。
 式(A)で表わされるフェノール性化合物の具体例としては、メトキシフェノール(例えば4-メトキシフェノール)、エトキシフェノール、プロポキシフェノール、イソプロポキシフェノール、ブチルオキシフェノール、イソブチルオキシフェノール、ターシャルブチルオキシフェノールが挙げられる。
Figure JPOXMLDOC01-appb-C000011
(式中、nは0~7の整数であり、好ましくは0~3であり、より好ましくは1である。
 Rは、それぞれ炭素数1~20のアルキル基、アルケニル基、アルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、アルキルアリール基又はアリールアルキル基である。)
 式(B)で表わされるフェノール性化合物の具体例としては、ヒドロキシナフタレンが挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式中、nは1~5の整数であり、好ましくは1~3であり、より好ましくは1である。
 Rは、それぞれ炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアルキルアリール基又は炭素数7~20のアリールアルキル基である。)
 式(C)で表わされる化合物の具体例としては、o-,m-若しくはp-クレゾール、o-,m-若しくはp-エチルフェノール、o-,m-若しくはp-プロピルフェノール(例えば4-イソプロピルフェノール)、o-,m-若しくはp-ブチルフェノール、o-,m-若しくはp-ペンチルフェノール(例えば、4-tert-ペンチルフェノール)が挙げられる。
 式(A)、(B)及び(C)のRについて、炭素数1~20のアルキル基としては、炭素数1~8のアルキル基が好ましく、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、ターシャルブチル等が挙げられる。
 アルケニル基としては、上述したアルキル基の分子内に不飽和結合を有する基が挙げられる。
 シクロアルキル基としては、シクロペンタン、シクロヘキサン等が挙げられる。
 アリール基としては、フェニル、ナフチル等が挙げられる。
 アルキルアリール基、及びアリールアルキル基としては、上述したアルキル基とアリール基を組み合わせて得られる基等が挙げられる。
 上記フェノール性水酸基を1つ有する化合物の例を示したが、置換フェノール類の具体例としてはフェノール、o-,m-若しくはp-クロロフェノール、サリチル酸、ヒドロキシ安息香酸が挙げられる。フェノール性水酸基を複数有する化合物の具体例としてはカテコール、レゾルシノール、下記式(D)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、Rは炭化水素基、ヘテロ原子含有炭化水素基、ハロゲン原子、カルボン酸基、アミノ基、SH基、スルホン酸基、又は水酸基であり、複数のRはそれぞれ互いに同一であっても異なっていてもよい。nは0~6の整数である。)
 式(D)で表わされるフェノール性化合物は、互いに隣接しない2以上の水酸基を有することが好ましい。
 また、式(D)で表されるフェノール性化合物の具体例としては、1,6ナフタレンジオール、2,6ナフタレンジオール、2,7ナフタレンジオールが挙げられる。
 フェノール性水酸基を1つ又は複数有する繰り返し単位から構成される高分子化合物の具体例としては、フェノール樹脂、ポリフェノール、ポリ(ヒドロキシスチレン)が挙げられる。
 本発明の導電性高分子組成物において、フェノール系化合物の含有量は組成物全体の1質量%~40質量%が好ましく、より好ましくは10質量%~30質量%である。フェノール系化合物の含有量が少なすぎると、ポリアニリンを薄膜下したときの導電性が低下しかつ溶解性が低下する。また、例えば50質量%以上となると溶液の粘度が高くなり、ゲル化してしまうおそれがある。
 本発明の組成物は、耐熱安定化剤を含んでいてもよい。該耐熱安定化剤とは、酸性物質又は酸性物質の塩であり、酸性物質は有機酸(有機化合物の酸)、無機酸(無機化合物の酸)のいずれでもよい。
 また、本発明の組成物は、複数の耐熱安定化剤を含んでいてもよい。
 ポリアニリン複合体を含む組成物であって、該組成物が耐熱安定化剤として酸性物質のみを含む場合には、好ましくは当該酸性物質は、ポリアニリン複合体のプロトン供与体と異なる化合物であり、組成物が酸性物質の塩のみを含む場合には、好ましくは当該酸性物質の塩は、ポリアニリン複合体のプロトン供与体と異なる化合物である。また、組成物が耐熱安定化剤として酸性物質及び酸性物質の塩の両方を含む場合には、好ましくは当該酸性物質及び酸性物質の塩のうち、少なくとも1つはプロトン供与体と異なる化合物である。
 組成物が、耐熱安定化剤として酸性物質のみを含む場合には、好ましくは当該酸性物質は、フェノール性化合物とは異なる。組成物が、耐熱安定化剤として酸性物質の塩のみを含む場合には、好ましくは当該酸性物質の塩は、フェノール性化合物とは異なる。また、組成物が、耐熱安定化剤として酸性物質及び酸性物質の塩の両方を含む場合には、好ましくは当該酸性物質及び酸性物質の塩のうち少なくとも1つは、フェノール性化合物と異なる。
 耐熱安定化剤である酸性物質は、好ましくは有機酸であり、より好ましくはスルホン酸基、カルボキシ基、リン酸基、又はホスホン酸基を1以上有する有機酸であり、さらに好ましくは、スルホン酸基を1以上有する有機酸である。
 上記スルホン酸基を1以上有する有機酸は、好ましくはスルホン酸基を1以上有する、環状、鎖状若しくは分岐のアルキルスルホン酸、置換若しくは無置換の芳香族スルホン酸、又はポリスルホン酸である。
 上記アルキルスルホン酸としては、例えば、メタンスルホン酸、エタンスルホン酸、ジ2-エチルヘキシルスルホコハク酸が挙げられる。ここでのアルキル基は、好ましくは炭素数が1~18の直鎖又は分岐のアルキル基である。
 上記芳香族スルホン酸としては、例えば、ベンゼン環を有するスルホン酸、ナフタレン骨格を有するスルホン酸、アントラセン骨格を有するスルホン酸、置換又は無置換のベンゼンスルホン酸、置換又は無置換のナフタレンスルホン酸及び置換又は無置換のアントラセンスルホン酸が挙げられ、好ましくはナフタレンスルホン酸である。具体例としては、ナフタレンスルホン酸、ドデシルベンゼンスルホン酸、アントラキノンスルホン酸が挙げられる。尚、これらは水和物を組成物に添加することにより用いてもよい。
 ここで置換基は、例えば、アルキル基、アルコキシ基、ヒドロキシ基、ニトロ基、カルボキシ基、アシル基からなる群から選択される置換基であり、1以上置換していてもよい。
 上記ポリスルホン酸は、高分子鎖の主鎖又は側鎖に複数のスルホン酸基が置換したスルホン酸である。例えば、ポリスチレンスルホン酸が挙げられる。
 上記カルボキシ基を1以上有する有機酸は、好ましくはカルボキシ基を1以上有する、環状、鎖状若しくは分岐のアルキルカルボン酸、置換若しくは無置換の芳香族カルボン酸、又はポリカルボン酸である。
 上記アルキルカルボン酸としては、例えばウンデシレン酸、シクロヘキサンカルボン酸、2-エチルヘキサン酸が挙げられる。ここでアルキル基は好ましくは炭素数が1~18の直鎖又は分岐のアルキル基である。
 上記置換若しくは無置換の芳香族カルボン酸としては、例えば、置換又は無置換のベンゼンカルボン酸及びナフタレンカルボン酸が挙げられる。ここで置換基は、例えば、スルホン酸基、アルキル基、アルコキシ基、ヒドロキシ基、ニトロ基、アシル基からなる群から選択される置換基であり、1以上置換していてもよい。具体例としては、サリチル酸、安息香酸、ナフトエ酸、トリメシン酸が挙げられる。
 上記リン酸基又はホスホン酸基を1以上有する有機酸は、好ましくはリン酸基又はホスホン酸基を1以上有する環状、鎖状若しくは分岐のアルキルリン酸若しくはアルキルホスホン酸;置換若しくは無置換の芳香族リン酸若しくは芳香族ホスホン酸;ポリリン酸若しくはポリホスホン酸である。
 上記アルキルリン酸又はアルキルホスホン酸としては、例え、ドデシルリン酸、リン酸水素ビス(2-エチルヘキシル)が挙げられる。ここでアルキル基は好ましくは炭素数が1~18の直鎖又は分岐のアルキル基である。
 上記芳香族リン酸及び芳香族ホスホン酸としては、置換又は無置換のベンゼンスルホン酸又はホスホン酸、及びナフタレンスルホン酸又はホスホン酸等が挙げられる。ここで置換基は、例えば、アルキル基、アルコキシ基、ヒドロキシ基、ニトロ基、カルボキシ基、アシル基からなる群から選択される置換基であり、1以上置換していてもよい。例えば、フェニルホスホン酸が挙げられる。
 導電性高分子組成物が含む酸性物質の塩としては、上記酸性物質の塩が挙げられる。
 導電性高分子組成物は、耐熱安定化剤である酸性物質及び/又は酸性物質の塩を2つ以上含んでもよい。具体的には、組成物は、異なる複数の酸性物質及び/又は異なる複数の酸性物質の塩を含んでいてもよい。
 ポリアニリン複合体のプロトン供与体がスルホン酸であり、組成物が耐熱安定化剤として酸性物質のみを含む場合には、当該酸性物質がプロトン供与体と同一又は異なるスルホン酸であることが好ましい。また、組成物が耐熱安定化剤として酸性物質の塩のみを含む場合には、その酸性物質の塩が、ポリアニリン複合体のプロトン供与体と同一又は異なるスルホン酸の塩であることが好ましい。
 導電性高分子組成物が耐熱安定化剤として酸性物質及び前記酸性物質の塩を含む場合には、酸性物質及び酸性物質の塩のうち少なくとも1つがプロトン供与体と同一又は異なるスルホン酸又はスルホン酸の塩であることが好ましい。
 導電性高分子組成物が耐熱安定化剤としてスルホン酸のみを含む場合には、好ましくは式(12)を満たすとよく、組成物が耐熱安定化剤としてスルホン酸の塩のみを含む場合には、好ましくは式(13)を満たすとよく、組成物が耐熱安定化剤としてスルホン酸及びスルホン酸の塩を含む場合には、好ましくは式(14)を満たすとよい。
   0.01≦S/N≦0.5   (12)
   0.01≦S/N≦0.5   (13)
   0.01≦S/N≦0.5   (14)
(ここで、Sは導電性高分子組成物に含まれている全ての酸性物質の硫黄原子のモル数の合計であり、Nは導電性高分子組成物に含まれている全てのポリアニリン複合体の窒素原子のモル数の合計を意味し、Sは導電性高分子組成物に含まれている全ての酸性物質の塩の硫黄原子のモル数の合計であり、Nは導電性高分子組成物に含まれている全てのポリアニリン複合体の窒素原子のモル数の合計を意味し、Sは導電性高分子組成物に含まれている全ての酸性物質及び酸性物質の塩の硫黄原子のモル数の合計であり、Nは導電性高分子組成物に含まれている全てのポリアニリン複合体の窒素原子のモル数の合計を意味する。)
 本発明の導電性高分子組成物が上記式(12)、(13)又は(14)のいずれかを満たす場合、当該組成物は、好ましくはさらに下記式(11)を満たす。
   0.36≦S/N≦1.15   (11)
(ここで、Sは導電性高分子組成物に含まれる硫黄原子のモル数であり、Nは導電性高分子組成物に含まれる窒素原子のモル数を意味する。)
 導電性高分子組成物が酸性物質のみを含む場合、当該酸性物質の酸性度(pKa)が5.0以下であることが好ましい。尚、酸性度の下限は特に制限されないが、例えば、酸性度が-4.0以下の酸性物質を含む場合では、ポリアニリン複合体が劣化するおそれがある。
 導電性高分子組成物が酸性物質の塩のみを含む場合、当該酸性物質の塩の酸性度が5.0以下であることが好ましい。酸性度の下限については、上記酸性物質と同様である。
 導電性高分子組成物が酸性物質及び酸性物質の塩の両方を含む場合、当該酸性物質の酸性度が5.0以下及び酸性度が5.0以下の酸性物質の塩のうち、少なくとも1つを満たすことが好ましい。酸性度の下限については、上記と同様である。
 酸性度(pKa)は、計算化学法によって定義される。即ちA.Klamtらが開発した量子化学計算により分子表面の電荷密度を計算し、異種分子間の相互作用を活量係数として算出するJournal of Physical Chemistryの1995年、第99巻、p.2224に記載された方法を用いる。
 具体的には、「TURBOMOLE Version 6.1」(COSMO logic社製)を用いて、基底関数にTZVPを用いて構造を最適化し、この構造を用いてCOSMO-RS法計算を「COSMO therm Version C2.1 Release 01.10」(COSMO logic社製)により行う。
 ここで、「COSMO therm Version C2.1 Release 01.10」に25℃の水溶媒中との条件と、分子の化学式と、脱プロトンした分子の化学式と、を入力することで、pKaを算出することができる。
 導電性高分子組成物において、耐熱安定化剤の含有量は、好ましくは導電性高分子100質量部に対して1~1000質量部であり、より好ましくは10~100質量部であり、さらに好ましくは10~40質量部である。
 本発明の導電性高分子組成物は、さらに他の樹脂、無機材料、硬化剤、可塑剤、有機導電材料等の添加剤を含んでもよい。
 他の樹脂は、例えば、バインダー基材、可塑剤、マトリックス基材として添加される。
 他の樹脂の具体例としては、例えば、ポリエチレンやポリプロピレン等のポリオレフィン、塩素化ポリオレフィン、ポリスチレン、ポリエステル、ポリアミド、ポリアセタール、ポリエチレンテレフタレート、ポリカーボネート、ポリエチレングリコール、ポリエチレンオキサイド、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリビニルアルコールが挙げられる。
 また上記樹脂の代わりに、また樹脂と共に、エポキシ樹脂、ウレタン樹脂、フェノール樹脂等の熱硬化性樹脂、もしくはこれら熱硬化性樹脂を形成し得る前駆体を含んでもよい。
 無機材料は、例えば、強度、表面硬度、寸法安定性その他の機械的物性の向上、あるいは導電性等の電気特性を向上する目的で添加される。
 無機材料の具体例としては、例えば、シリカ(二酸化ケイ素)、チタニア(二酸化チタン)、アルミナ(酸化アルミニウム)、Sn含有In(ITO)、Zn含有In、Inの共置換化合物(4価元素及び2価元素が3価のInに置換した酸化物)、Sb含有SnO(ATO)、ZnO、Al含有ZnO(AZO)、Ga含有ZnO(GZO)等が挙げられる。
 硬化剤は、例えば、強度、表面硬度、寸法安定性その他の機械的物性の向上等の目的で添加される。硬化剤の具体例としては、例えば、フェノール樹脂等の熱硬化剤、アクリレート系モノマーと光重合性開始剤による光硬化剤が挙げられる。
 可塑剤は、例えば、引張強度や曲げ強度等の機械的特性の向上等の目的で添加される。
 可塑剤の具体例としては、例えば、フタル酸エステル類やリン酸エステル類が挙げられる。有機導電材料としては、カーボンブラック、カーボンナノチューブのような炭素材料、あるいは、本発明で得られるポリアニリン以外の、導電性ポリマー等が挙げられる。
 導電性高分子組成物は、例えば、90%重量以上、95重量%以上、98重量%以上、100重量%が、上記導電性高分子、溶媒、任意にフェノール性化合物、耐熱安定化剤、他の樹脂、無機材料、硬化剤、可塑剤、有機導電材料等の添加剤であってもよい。
 上記成分を含む本発明の組成物の製造方法は特に限定されず、公知の方法で調製することができる。本発明の組成物は、例えばWO05/052058に開示の方法により調製することができる。
 本発明の導電性高分子組成物から、成形体、導電性積層体(表面導電性物品)、導電性物品、導電性フィルム等が得られる。
 例えば、本発明の組成物を乾燥し、溶剤を除去することによって成形体が得られる。当該成形体の形状は板状、棒状等どのような形状であってもよい。例えば、本発明の組成物を、所望の形状を有するガラスや樹脂フィルム、シート、不織布等の基材に塗布し、溶剤を除去することによって、導電性膜を有する導電性積層体を製造することができる。当該導電性積層体を真空成型や圧空成形等の公知の方法により所望の形状に加工することにより、導電性物品を製造することができる。成形の観点からは、基材は樹脂フィルム又はシート、不織布が好ましい。
 本発明の導電性膜(導電性フィルム)の厚さは、通常1mm以下、好ましくは10nm以上50μm以下の範囲である。この範囲の厚みの膜は、成膜時にひび割れが生じにくく、電気特性が均一である等の利点を有する。
 組成物の基材への塗布方法としては、キャスト法、スプレー法、ディップコート法、ドクターブレード法、バーコート法、スピンコート法、エレクトロスピニング法、スクリーン印刷、グラビア印刷法等、公知の方法を用いることができる。
 上記塗布膜を乾燥する際、溶剤の種類によっては、塗布膜を加熱してもよい。例えば、空気気流下250℃以下、好ましくは50以上200℃以下の温度で加熱し、さらに、必要に応じて、減圧下に加熱する。加熱温度及び加熱時間は、特に制限されず、用いる材料に応じて適宜選択すればよい。
 本発明の組成物は、基材を有しない自己支持型成形体とすることもできる。
 自己支持型成形体とする場合には、好ましくは、組成物が上述した他の樹脂を含むようにすると、所望の機械的強度を有する成形体を得ることができる。
製造例1
[ポリアニリン複合体の製造]
 エーロゾルOT(ジ-2-エチルヘキシルスルホコハク酸ナトリウム)(AOT)37.8g及びポリオキシエチレンソルビタン脂肪酸エステル構造を有する非イオン乳化剤であるソルボンT-20(東邦化学工業株式会社製)1.47gをトルエン600mLに溶解した溶液を、窒素気流下においた6Lのセパラブルフラスコに入れ、さらにこの溶液に、22.2gのアニリンを加えた。その後、1Mリン酸1800mLを溶液に添加し、トルエンと水の2つの液相を有する溶液の温度を5℃に冷却した。
 溶液内温が5℃に到達した時点で、毎分390回転で撹拌した。65.7gの過硫酸アンモニウムを1Mリン酸600mLに溶解した溶液を、滴下ロートを用いて2時間かけて滴下した。滴下開始から18時間、溶液内温を5℃に保ったまま反応を実施した。その後、反応温度を40℃まで上昇させ、1時間反応を継続した。その後、静置し、トルエン相を分離した。得られたトルエン相にトルエンを1500ml添加し、1Mリン酸500mL1回、イオン交換水500mLで3回洗浄し、トルエン相を静置分離し、濃度調整のための濃縮を行い、ポリアニリン複合体トルエン溶液900gを得た。このポリアニリン複合体トルエン溶液のポリアニリン複合体濃度は5.7重量%であった。
 ポリアニリン/AOT複合体トルエン溶液を60℃の湯浴で、減圧乾燥し、乾固しポリアニリン複合体を51.3g得た。
実施例1
 溶媒として、3-メトキシ-1-ブタノール(和光純薬製)3.5g、及びエチレングリコールモノ-tert-ブチルエーテル(東京化成工業株式会社製)3.5g、フェノール性化合物として、p-tert-アミルフェノール(和光純薬製)3gを、混合し、均一になるまで撹拌した。得られた混合溶剤9.9gに製造例1で得たポリアニリン/AOT複合体0.1g添加し、撹拌混合後、5Cのろ紙にて不溶分を除去し、ポリアニリン/AOT複合体溶液(導電性高分子組成物)を調製した。
 この溶液に2-ナフタレンスルホン酸水和物(東京化成工業株式会社製)を0.0165g添加し、30℃で30min撹拌した。その後、ステンレス製の容器に入れ、窒素置換したグローブボックス内に保管した。
 保管直後及び4時間後に、組成物の粘度を測定した。尚、溶液の粘度の測定は、室温で、音叉型振動式粘度計SV-1H(A&D製)を用いて実施した。
 また、保管直後、4時間後及び8時間後に、組成物の重量を測定し重量減少率を求めた。
 測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1中、溶媒及びフェノール性化合物の略称は、以下の化合物を表す。
 3MB:3-メトキシ-1-ブタノール
 EGtBu:エチレングリコールモノ-tert-ブチルエーテル
 MMB:3-メトキシ-3-メチルブタノール
 IPA:イソプロピルアルコール
 ECH:エチルシクロヘキサン
 tAP:p-tert-アミルフェノール
 1M2P:1-メトキシ-2-プロパノール
実施例2
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)4g、p-tert-アミルフェノール(和光純薬製)2g、エチレングリコールモノ-tert-ブチルエーテル(東京化成工業株式会社製)4gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
実施例3
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を2g、p-tert-アミルフェノール(和光純薬製)を3g、エチレングリコールモノ-tert-ブチルエーテル(東京化成工業株式会社製)を5gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
実施例4
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を3g、p-tert-アミルフェノール(和光純薬製)を2g、エチレングリコールモノ-tert-ブチルエーテル(東京化成工業株式会社製)を5gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
実施例5
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を3g、p-tert-アミルフェノール(和光純薬製)を1g、エチレングリコールモノ-tert-ブチルエーテル(東京化成工業株式会社製)を6gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
実施例6
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を2g、p-tert-アミルフェノール(和光純薬製)を1g、エチレングリコールモノ-tert-ブチルエーテル(東京化成工業株式会社製)を7gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
実施例7
 混合溶剤の調製を、3-メトキシ-3-メチルブタノール(和光純薬製)を2.5g、p-tert-アミルフェノール(和光純薬製)を2.5g、エチレングリコールモノ-tert-ブチルエーテル(東京化成工業株式会社製)を5gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。   
実施例8
 混合溶剤の調製を、3-メトキシ-3-メチルブタノール(和光純薬製)を3g、p-tert-アミルフェノール(和光純薬製)を1g、エチレングリコールモノ-tert-ブチルエーテル(東京化成工業株式会社製)を6gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
実施例9
 混合溶剤の調製を、3-メトキシ-3-メチルブタノール(和光純薬製)を3.5g、p-tert-アミルフェノール(和光純薬製)を3g、3-メトキシ-1-ブタノール(東京化成工業株式会社製)を3.5gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
実施例10
 混合溶剤の調製を、3-メトキシ-3-メチルブタノール(和光純薬製)を4g、p-tert-アミルフェノール(和光純薬製)を2g、3-メトキシ-1-ブタノール(東京化成工業株式会社製)を4gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
比較例1
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を3g、p-tert-アミルフェノール(和光純薬製)を4g、イソプロピルアルコール(和光純薬製)を3gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
比較例2
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を3.5g、p-tert-アミルフェノール(和光純薬製)を3g、エチルシクロヘキサン(和光純薬製)を3.5gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
比較例3
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を4g、p-tert-アミルフェノール(和光純薬製)を2g、エチルシクロヘキサン(和光純薬製)を4gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
比較例4
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を5g、p-tert-アミルフェノール(和光純薬製)を3g、エチルシクロヘキサン(和光純薬製)を2gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
比較例5
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を6g、p-tert-アミルフェノール(和光純薬製)を2g、エチルシクロヘキサン(和光純薬製)を2gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製し、評価した。結果を表1に示す。
比較例6
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を8g、p-tert-アミルフェノール(和光純薬製)を2gに変更した以外は、実施例1と同様にポリアニリン/AOT複合体溶液を調製した。しかし、撹拌後、底部に沈殿が生じ、溶解性が十分ではなく、均一なポリアニリン/AOT複合体溶液を調製することができなかった。
比較例7
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を3g、p-tert-アミルフェノール(和光純薬製)を4g、1-メトキシ-2-プロパノールを3gに変更した以外は実施例1と同様にポリアニリン/AOT複合体溶液を調製した。しかし、撹拌後、底部に沈殿が生じ、溶解性が十分ではなく、均一なポリアニリン/AOT複合体溶液を調製することができなかった。
比較例8
 混合溶剤の調製を、3-メトキシ-1-ブタノール(和光純薬製)を4g、p-tert-アミルフェノール(和光純薬製)を2g、1-メトキシ-2-プロパノールを4gに変更した以外は実施例1と同様にポリアニリン/AOT複合体溶液を調製した。しかし、撹拌後、底部に沈殿が生じ、溶解性が十分ではなく、均一なポリアニリン/AOT複合体溶液を調製することができなかった。
 本発明の導電性高分子組成物は、パワーエレクトロニクス、オプトエレクトロニクス分野において、静電及び帯電防止材料、透明電極及び導電性フィルム材料、エレクトロルミネッセンス素子の材料、回路材料、電磁波遮蔽材料、電磁波吸収材料、ノイズ抑制材料、コンデンサの誘電体及び電解質、太陽電池及び二次電池の極材料、燃料電池セパレータ材料等に、又はメッキ下地、防錆剤等に利用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (17)

  1.  導電性高分子と、
     下記式(1)で表される溶媒から選択される少なくとも2種の溶媒と、を含有する、導電性高分子組成物(但し、前記2種の溶媒がともに、式(1)においてRが直鎖状アルキル基であり、かつRが直鎖状アルキレン基である場合を除く。)。
      R-O-R-OH   (1)
    (式中、Rは直鎖状アルキル基又は分岐状アルキル基であり、Rは直鎖状アルキレン基又は分岐状アルキレン基である。)
  2.  前記導電性高分子が、置換又は無置換のポリアニリンの複合体である、請求項1に記載の導電性高分子組成物。
  3.  前記ポリアニリン複合体が、無置換ポリアニリンと下記式(III)で表されるスルホコハク酸誘導体の複合体である、請求項2に記載の導電性高分子組成物。
    Figure JPOXMLDOC01-appb-C000014
    (式中、Mは、水素原子、有機遊離基又は無機遊離基であり、m’は、Mの価数であり、R13及びR14は、それぞれ独立に、炭化水素基又は-(R15O)-R16基であり、R15はそれぞれ独立に炭化水素基又はシリレン基であり、R16は水素原子、炭化水素基又はR17 Si-基あり、R17はそれぞれ独立に炭化水素基であり、rは1以上の整数である。)
  4.  前記R13及びR14は、それぞれ独立に、鎖状の飽和脂肪族炭化水素基である請求項3に記載の導電性高分子組成物。
  5.  前記R13及びR14は、それぞれ独立に、炭素数4以上24以下の直鎖又は分岐状のアルキル基である請求項3に記載の導電性高分子組成物。
  6.  前記R13及びR14は2-エチルヘキシル基である請求項3に記載の導電性高分子組成物。
  7.  さらに、フェノール性水酸基を有する化合物を含有する、請求項1~6のいずれかに記載の導電性高分子組成物。
  8.  前記フェノール性水酸基を有する化合物が、下記式(C)で表される、請求項7に記載の導電性高分子組成物。
    Figure JPOXMLDOC01-appb-C000015
    (式中、nは1~5の整数であり、Rは、それぞれ炭素数1~20のアルキル基、炭素数1~20のアルケニル基、炭素数1~20のアルキルチオ基、炭素数3~10のシクロアルキル基、炭素数6~20のアリール基、炭素数7~20のアルキルアリール基又は炭素数7~20のアリールアルキル基である。)
  9.  前記nは1であり、Rは炭素数1~8のアルキル基である請求項8に記載の導電性高分子組成物。
  10.  前記フェノール性水酸基を有する化合物が、p-tert-アミルフェノールである、請求項7に記載の導電性高分子組成物。
  11.  前記R及びRの炭素数が、それぞれ8以下である、請求項1~10のいずれかに記載の導電性高分子組成物。
  12.  前記Rがt-ブチル基である溶媒を含む、請求項1~11のいずれかに記載の導電性高分子組成物。
  13.  前記2種の溶媒がいずれも、前記式(1)においてRが分岐状アルキル基であり、かつRが分岐状アルキレン基である溶媒ではない、請求項1~12のいずれかに記載の導電性高分子組成物。
  14.  前記2種の溶媒が、3-メトキシ-1-ブタノール及びエチレングリコールモノ-tert-ブチルエーテルである、請求項1~13のいずれかに記載の導電性高分子組成物。
  15.  請求項1~14のいずれかに記載の導電性高分子組成物から得られる成形体。
  16.  基材と、
     請求項1~14のいずれかに記載の導電性高分子組成物から得られる導電層とを有する、導電性積層体。
  17.  請求項16に記載の導電性積層体を成形して得られる導電性物品。
PCT/JP2013/007635 2013-01-07 2013-12-26 導電性高分子組成物 WO2014106884A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020157017999A KR101730285B1 (ko) 2013-01-07 2013-12-26 도전성 고분자 조성물
EP13870317.8A EP2942372B1 (en) 2013-01-07 2013-12-26 Conductive polymer composition
US14/759,142 US9754697B2 (en) 2013-01-07 2013-12-26 Conductive polymer composition
CN201380069394.XA CN104919005B (zh) 2013-01-07 2013-12-26 导电性高分子组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013000572A JP5955786B2 (ja) 2013-01-07 2013-01-07 導電性高分子組成物
JP2013-000572 2013-01-07

Publications (1)

Publication Number Publication Date
WO2014106884A1 true WO2014106884A1 (ja) 2014-07-10

Family

ID=51062207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007635 WO2014106884A1 (ja) 2013-01-07 2013-12-26 導電性高分子組成物

Country Status (7)

Country Link
US (1) US9754697B2 (ja)
EP (1) EP2942372B1 (ja)
JP (1) JP5955786B2 (ja)
KR (1) KR101730285B1 (ja)
CN (1) CN104919005B (ja)
TW (1) TWI588179B (ja)
WO (1) WO2014106884A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228831A1 (ja) * 2022-05-24 2023-11-30 出光興産株式会社 組成物、導電性膜、コンデンサ及び電池

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111601855A (zh) * 2018-01-22 2020-08-28 出光兴产株式会社 组合物、和使用其的氧化还原材料
JP6476480B1 (ja) * 2018-03-30 2019-03-06 エーアイシルク株式会社 導電性高分子導電体、及び、その製造方法
EP3792315A4 (en) * 2018-05-08 2022-03-16 Idemitsu Kosan Co.,Ltd. COMPOSITION, METHOD OF MAKING CONDUCTIVE FILM, CONDUCTIVE FILM AND CAPACITOR
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
WO2020033819A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
JP2020059791A (ja) * 2018-10-09 2020-04-16 国立大学法人 東京大学 熱硬化体形成用組成物、熱硬化体、熱硬化体を有する構造体
CN113196429A (zh) 2018-12-11 2021-07-30 阿维科斯公司 含有本征导电聚合物的固体电解电容器
DE112020004416T5 (de) 2019-09-18 2022-06-15 KYOCERA AVX Components Corporation Festelektrolytkondensator zur Verwendung bei hohen Spannungen
DE112020006028T5 (de) 2019-12-10 2022-10-06 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine Vorbeschichtung und ein intrinsisch leitfähiges Polymer enthält
WO2021119088A1 (en) 2019-12-10 2021-06-17 Avx Corporation Tantalum capacitor with increased stability
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
CN113417144B (zh) * 2021-05-31 2022-05-24 苏州大学 一种聚噻吩复合尼龙导电纤维及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328229A (ja) 1988-09-30 1991-02-06 Nitto Denko Corp 有機重合体又は導電性有機重合体組成物のフィルム,繊維又は複合体の製造方法
JP2001160407A (ja) * 1999-09-20 2001-06-12 Honda Motor Co Ltd プロトン伝導性ポリマーおよびその製造方法、高分子固体電解質、ならびに電極
JP3384566B2 (ja) 1991-06-12 2003-03-10 デュポン ディスプレイス, インコーポレイテッド 加工し得る形態の導電性ポリアニリンおよびそれから形成された導電性生成品
WO2005052058A1 (ja) 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
JP2006520994A (ja) * 2003-01-06 2006-09-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子デバイスに使用するための可変抵抗ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホネート)
JP2006527277A (ja) * 2003-04-22 2006-11-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高分子酸コロイドにより製造された水分散性ポリチオフェン
WO2011027578A1 (ja) 2009-09-07 2011-03-10 出光興産株式会社 導電性組成物
JP2012158620A (ja) * 2011-01-28 2012-08-23 Idemitsu Kosan Co Ltd ポリアニリン組成物、及びそれからなる成形体
JP2012180395A (ja) * 2011-02-28 2012-09-20 Shin Etsu Polymer Co Ltd 導電性高分子複合体およびその製造方法、ならびに導電性高分子溶液および帯電防止膜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478987B1 (en) * 1999-09-20 2002-11-12 Honda Giken Kogyo Kabushiki Kaisha Proton conducting polymer, method for producing the same, solid polymer electrolyte and electrode
WO2003080708A1 (en) * 2002-03-21 2003-10-02 Council Of Scientific And Industrial Research Process for the preparation of polyaniline salt
JP4509787B2 (ja) 2002-09-24 2010-07-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリマー酸コロイドを伴って製造される水分散性ポリチオフェン
US7390438B2 (en) 2003-04-22 2008-06-24 E.I. Du Pont De Nemours And Company Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids
US20060261314A1 (en) * 2003-05-19 2006-11-23 Lang Charles D Hole transport composition
US20070004899A1 (en) 2003-09-24 2007-01-04 Che-Hsiung Hsu Water dispersible polythiophenes made with polymeric acid colloids

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328229A (ja) 1988-09-30 1991-02-06 Nitto Denko Corp 有機重合体又は導電性有機重合体組成物のフィルム,繊維又は複合体の製造方法
JP3384566B2 (ja) 1991-06-12 2003-03-10 デュポン ディスプレイス, インコーポレイテッド 加工し得る形態の導電性ポリアニリンおよびそれから形成された導電性生成品
JP2001160407A (ja) * 1999-09-20 2001-06-12 Honda Motor Co Ltd プロトン伝導性ポリマーおよびその製造方法、高分子固体電解質、ならびに電極
JP2006520994A (ja) * 2003-01-06 2006-09-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電子デバイスに使用するための可変抵抗ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホネート)
JP2006527277A (ja) * 2003-04-22 2006-11-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高分子酸コロイドにより製造された水分散性ポリチオフェン
WO2005052058A1 (ja) 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. 導電性ポリアニリン組成物、その製造方法及びそれからなる成形体
WO2011027578A1 (ja) 2009-09-07 2011-03-10 出光興産株式会社 導電性組成物
JP2012158620A (ja) * 2011-01-28 2012-08-23 Idemitsu Kosan Co Ltd ポリアニリン組成物、及びそれからなる成形体
JP2012180395A (ja) * 2011-02-28 2012-09-20 Shin Etsu Polymer Co Ltd 導電性高分子複合体およびその製造方法、ならびに導電性高分子溶液および帯電防止膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF PHYSICAL CHEMISTRY, vol. 99, 1995, pages 2224

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023228831A1 (ja) * 2022-05-24 2023-11-30 出光興産株式会社 組成物、導電性膜、コンデンサ及び電池

Also Published As

Publication number Publication date
US20150340119A1 (en) 2015-11-26
TWI588179B (zh) 2017-06-21
TW201439149A (zh) 2014-10-16
JP5955786B2 (ja) 2016-07-20
JP2014132055A (ja) 2014-07-17
EP2942372A1 (en) 2015-11-11
CN104919005B (zh) 2017-08-08
KR101730285B1 (ko) 2017-04-25
EP2942372A4 (en) 2016-09-07
EP2942372B1 (en) 2017-09-13
KR20150105325A (ko) 2015-09-16
CN104919005A (zh) 2015-09-16
US9754697B2 (en) 2017-09-05

Similar Documents

Publication Publication Date Title
JP5955786B2 (ja) 導電性高分子組成物
JP6129371B2 (ja) ポリアニリン複合体、その製造方法及び組成物
JP6539270B2 (ja) ポリアニリン複合体組成物の製造方法及びポリアニリン複合体組成物
JP5710388B2 (ja) ポリアニリン導電性組成物
JP6069420B2 (ja) π共役高分子組成物
JP5608443B2 (ja) 導電性組成物
TWI512025B (zh) Conductive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870317

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013870317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013870317

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14759142

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157017999

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE