WO2011026712A2 - Verfahren und vorrichtung zur herstellung eines metallbauteils - Google Patents

Verfahren und vorrichtung zur herstellung eines metallbauteils Download PDF

Info

Publication number
WO2011026712A2
WO2011026712A2 PCT/EP2010/061495 EP2010061495W WO2011026712A2 WO 2011026712 A2 WO2011026712 A2 WO 2011026712A2 EP 2010061495 W EP2010061495 W EP 2010061495W WO 2011026712 A2 WO2011026712 A2 WO 2011026712A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel part
tool
sections
different
steel
Prior art date
Application number
PCT/EP2010/061495
Other languages
English (en)
French (fr)
Other versions
WO2011026712A3 (de
Inventor
Sascha Sikora
Kai Schmitz
Axel GRÜNEKLEE
Original Assignee
Thyssenkrupp Steel Europe Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Europe Ag filed Critical Thyssenkrupp Steel Europe Ag
Priority to EP10740648.0A priority Critical patent/EP2473297B1/de
Priority to ES10740648.0T priority patent/ES2536288T3/es
Priority to KR1020127008413A priority patent/KR101792176B1/ko
Priority to CN201080038844.5A priority patent/CN102481613B/zh
Priority to JP2012527266A priority patent/JP5827621B2/ja
Publication of WO2011026712A2 publication Critical patent/WO2011026712A2/de
Publication of WO2011026712A3 publication Critical patent/WO2011026712A3/de
Priority to US13/410,071 priority patent/US8980020B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/01Selection of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets

Definitions

  • the invention relates to a method for producing a metal component, in particular a motor vehicle component, in which a steel part is hot formed and at least partially cured by contact with a tool surface and wherein the steel part is cooled during curing in at least two subregions with different cooling rates, so that the subregions differ in their microstructure after hardening.
  • the invention also relates to a tool and a batch furnace for producing such a metal component.
  • B-pillars and B-pillar reinforcements are often made from high-strength, hot-formed manganese-boron steel.
  • high yield and tensile strengths in the component can be achieved, so that the required sheet thickness compared to conventional steel components are significantly reduced and thus a
  • Hot-formed metal components is that the elongation at break of a hot-formed metal component is relatively low. Therefore, hot-formed metal components may be well in
  • cross-used areas are used, since here the high strength, in particular the yield strength, a
  • Metal components would allow and a material failure at a relatively low energy consumption would result.
  • Furnace chambers are tempered differently, so that
  • This method has the disadvantage that only two to three different zones with respect to the strength and the
  • Elongation at break in the metal component can be achieved. These can also be formed only in the direction of passage of the board beyond.
  • the passage direction of a steel part or a circuit board usually corresponds to the largest
  • the forming tool for hot forming comprises means for tempering, with which a steel part in different temperature zones can be tempered during the forming to different, predetermined temperature values.
  • the Microstructure in the metal component to influence locally, so that metal components can be produced with location-dependent material properties.
  • location-dependent material properties is understood that the material properties in at least two sub-areas of the metal component
  • the present invention is therefore based on the technical object of providing a method and a device for producing a metal component, which permits a local adjustment of the microstructure in the metal component and at the same time is cost-effective and easy to carry out.
  • Forming tool surface is affected. Under the
  • Thermal conductivity is in particular the
  • Tool surface can be the number of
  • Tempering elements i. reduce the heating or cooling elements, so that there is a cost savings.
  • Ferritic-bainitic and ferritic-pearlitic structures have a tensile strength below 860 MPa.
  • the tool consists of different ones in the region of the at least two sections of the tool surface
  • the thermal conductivity of the tool surface can be influenced in a simple way.
  • adjacent sections with greatly different thermal conductivities can be produced in this way.
  • the number of sections is generally not limited to two, but can be any size.
  • at least three sections are provided, so that in
  • a particularly favorable thermal conductivity combined with sufficient stability for use in a tool is achieved in a further preferred embodiment in that the sections made of steels,
  • At least one of the two sections of the tool surface has a
  • Coating metal components with different adapted microstructures can be produced. According to a second teaching of the present invention, the above-mentioned object in a method for producing a metal component, in particular a
  • Automotive component in which a steel part is heated, wherein the heated steel part is at least partially cured by cooling in a tool, wherein the
  • Steel part after hardening has at least two subregions with different microstructure, be solved in that the steel part is tempered prior to curing in a batch oven having at least two areas, wherein the areas have different temperatures from each other.
  • a batch furnace is understood to mean a furnace in which the steel part to be heated is essentially not moved during the heating process.
  • the batch furnace thus stands in contrast to the continuous furnace, in which the steel part is moved continuously through the furnace during heating.
  • Microstructure in the metal component to be produced can be achieved in a simple manner by localizing the steel part locally before hardening in a batch oven
  • the method has the advantage over the known from the prior art method that the temperatures of the steel part before curing very local and without
  • the effect on the microstructure of the metal component can be increased, so that, for example, very different microstructures in adjacent portions of the
  • Metal component can be produced. Prefers
  • the arrangement of the areas of the batch furnace corresponds to the arrangement of the sections of the tool surface. However, deviating arrangements are also conceivable.
  • a more efficient heating or tempering of the steel part is achieved by heating the steel part in a batch furnace, in particular in a continuous furnace, before tempering in the batch furnace.
  • a second furnace in particular a homogeneous heating, preferably to a temperature in the
  • the partial areas of the steel part can then reach the target temperatures for the subsequent hardening process heated or cooled.
  • the cooling is preferably carried out in such a way that premature hardening of the steel component does not yet occur.
  • the second furnace may in particular be designed as a continuous furnace. This way will be a fast and continuous
  • the steel part is hardened in a pressing tool. In this way, can be a high remuneration of the steel part
  • the hardening of the steel part is preferably carried out immediately after the temperature control in the batch furnace in order to avoid an equalization of the different tempered portions by the heat conduction of the steel part.
  • a continuous course of the material properties in the metal component is achieved in a preferred embodiment of the method in that the batch furnace has at least one region with a temperature gradient.
  • the steel part is cooled in at least a portion of the batch furnace by controllable gas nozzles, in particular with nitrogen.
  • the areas are realized in the simplest way with mutually different temperatures in the batch furnace.
  • the number of heating elements can be reduced.
  • Controllability of the gas nozzles a flexible adjustment of the temperatures in the batch furnace possible. So can by the Controls various areas for various metal components can be adjusted.
  • the controllable gas nozzles can be used as an alternative to controllable heating elements or in combinations with these. Nitrogen is the preferred cooling gas because it is cheap and inert.
  • the steel part is directly or indirectly
  • the steel part is formed in at least two steps, preferably first by cold working and then by hot working. In a direct
  • Indirect hot forming can be advantageous, especially at high draw depths.
  • a particularly flexible design of the metal component is achieved in a further embodiment in that at least one boundary between the subregions extends transversely or obliquely to the greatest longitudinal extent of the steel part and / or non-linearly.
  • the method thus allows a substantially arbitrary adjustment of the subregion boundaries to each other.
  • the boundaries between the subregions are furthermore preferably outside of joining regions of the
  • the method is a semi-finished steel part, in particular a tailored blank, a tailored-welded blank, a patchwork blank or a tailored-rolled blank, or a
  • the method thus allows maximum flexibility in the production of a metal component with location-dependent material properties.
  • a tailored blank is understood to mean a sheet metal blank, which is composed of different material grades and / or sheet thicknesses. In a Tailored-Welded-Blank different sheet metal blanks are welded together.
  • Tailored Rolled Blank has different sheet thicknesses produced by a flexible rolling process.
  • a patchwork blank consists of a board, on which patch-like further sheets are joined. Very good material properties of the metal component are in a preferred
  • Embodiment achieved in that a steel part of manganese-boron steel, in particular MBW 1500, MBW 1700 or
  • MBW 1900 preferably in combination with a
  • microalloyed steel for example MHZ 340
  • / or a microalloyed steel for example MHZ 340.
  • the steel part has an organic coating
  • a lacquer coating e.g. one
  • Verzurtungstik preferably a solvent or water-based, one-, two- or multi-component
  • the Steel part an inorganic coating, preferably an aluminum or aluminum-silicon Basier 'coating, in particular a hot-dip aluminized coating (fal), and / or a zinc-based coating comprise.
  • an inorganic coating preferably an aluminum or aluminum-silicon Basier 'coating, in particular a hot-dip aluminized coating (fal), and / or a zinc-based coating comprise.
  • adjustable material properties of the metal components can be optimally adapted to the loads in a motor vehicle, in particular for improving the crash behavior.
  • the technical problem is solved according to a fourth teaching of the present invention in a tool for hot forming and hardening of steel parts, in particular for carrying out one of the methods described above, according to the invention in that the in contact with the steel part
  • passing tool surface has several sections, which differ in their leit shiften.
  • the difference in the thermal conductivity can be achieved in a preferred embodiment of the tool in that the sections consist of different materials, in particular steels, steel alloys and / or ceramics, with different jacketleitf capabilities.
  • the tool surface coming into contact with the steel part is arranged at least partially on different exchangeable segments and / or tool inserts of the tool. In this way it is possible to replace the exchangeable segments or
  • Tool attachments in the tool flexibly on or rearrange, so that with a tool metal components with different structural arrangements and consequently with different
  • the technical object is according to a fifth teaching of the present invention further in a batch furnace for heating a steel part for a hot forming process and / or press-hardening process, in particular for carrying out one of the methods described above, according to the invention achieved in that the batch furnace has at least two areas in which mutually different temperatures can be adjusted.
  • At least one region of the batch furnace has controllable gas nozzles for cooling. This allows the areas with the different
  • Fig. 2 shows a first embodiment of a
  • Fig. 3 shows two further embodiments of a
  • FIG. 4 shows a third embodiment of a
  • 5 shows an embodiment of a batch furnace or method according to the invention
  • Fig. 6 shows another embodiment of a
  • Fig. 7 shows another embodiment of a
  • FIG. 8 shows a first metal component produced by a method according to the invention
  • FIG 10 shows a third metal component produced by a method according to the invention.
  • Fig. 1 shows a tool for producing a
  • the tool 2 is designed as a hot forming tool and has a lower punch 4, an upper punch 6 and two Flanschpen 8 and 10. The facing each other
  • the flange portions 20 of the steel part 16 can be trimmed by lowering the flange blades 8 and 10. Due to the uneven arrangement of the Temper effetsimplantation 18, the tool 2 has a
  • FIG. 2 shows a first embodiment of a tool or method according to the invention in longitudinal section.
  • the tool 30 differs from the tool 2 shown in FIG. 1 in that the lower punch 4 has different sections 32, 34, 36, 38 made of different materials
  • the upper punch 6 may consist of several sections made of different materials. The sections can also only in the area of the surfaces 12 and 14 of different
  • Thermal conductivity of the individual sections 32, 34, 36, 38 occurs during the hot forming or hardening of a steel part 16 at different cooling rates and thus the formation of different microstructures within the steel part 16th
  • FIGS 3a and 3b show two more
  • Embodiments of a tool or method according to the invention in longitudinal section an alternative lower punch for a tool, for example, the tool shown in Fig. 2 is shown in each case.
  • the lower punch 50 in Fig. 3a consists of a plurality of separate segments 52a to 52p, which may consist of different materials with different bathleitzuen.
  • the entire surface 54 of the punch 50 thus has a location-dependent thermal conductivity, so that with a, this stamp 50-containing tool at a
  • Hot forming or hardening process different cooling rates can be effected in the steel part.
  • Some or all of the segments 52a to 52p may be essentially arbitrarily exchanged or swapped.
  • the segments 52f and 52 replaced by other segments 52q and 52r of a different material. Furthermore, the segments 52d and 52e and the segments 52g and 52h are reversed in position. Depending on the number of segments and the materials available, it is easy to find the different sections of the heat sinks
  • Fig. 4 shows another embodiment of a
  • Surface coatings 74, 76 and 78 are coated.
  • the surface coatings 74, 76 and 78 reduce or increase the thermal conductivity of the surface 14 in the respective section.
  • the surface coatings may, for example, be paints, in particular temperature-resistant paints,
  • preferably high-temperature-resistant paints act.
  • the various coatings cause different cooling rates in the steel part 16, so that the
  • Microstructure is changed depending on location.
  • Surface coatings are preferably removable again and can be adapted flexibly and as needed.
  • Fig. 5 shows an embodiment of a batch furnace according to the invention in supervision or another
  • the batch furnace 90 has three areas 92, 94 and 96, which differ in their temperatures. For example, in region 96, a temperature above the
  • the region 92 has a temperature gradient symbolized by an arrow 98, i. that the
  • Fig. 6 shows another embodiment of a
  • the batch furnace 114 has
  • Heating elements 116 and 118 with which the arranged in the batch furnace 114 board 120 is heated.
  • the board 120 rests on rollers 122, with which they in the direction of
  • the gas nozzles 124 further comprise controls 128, with which the gas flow flowing through the gas nozzles 124 can be adjusted. In this way it is possible to cool the board in the region of a gas nozzle, so that in this area of the
  • Batch furnace 114 is an effectively lower temperature
  • the gas nozzles 124 are preferably individually or in groups controllable, so that the temperature profile of
  • FIG. 7 shows a further embodiment of the
  • inventive method as a flowchart.
  • a third step 140 which preferably directly follows the second step 136, the steel part is hot-formed in a tool and / or press-hardened.
  • Thermoforming and / or press hardening may also be preferred as
  • the first step 136 is optional and may be omitted.
  • FIG. 8 shows a metal component 150 produced by a method according to the invention in the form of a one-part side wall of a motor vehicle.
  • the metal component 150 has two partial regions 152 and 154 which, during the hardening of the metal component 150, have different temperature profiles
  • the portion 152 was heated at a high cooling rate from a temperature above the
  • Austenitizing cooled. He has a predominantly martensitic structure and thus a large
  • metal component 160 in the form of a side wall has a more complex location dependence of the microstructures and is better at the Loading stresses in the motor vehicle adapted.
  • section 162 predominantly martensitic structure
  • the illustrated B-pillar 166 is a Tailored blank of two in
  • inventive tool or batch furnace can be made cheap and easy.
  • Fig. 10 is a third with an inventive
  • the metal member 170 has a nonlinear boundary 173 which separates a first region 172 of high strength from a second region 171 of low strength and high ductility.
  • Non-linear boundaries between two areas within the meaning of the present invention may be borderlines that are only partially rectilinear or at least partially curved, that is, application-specific.
  • the metal component 170 illustrates that the regions having different material properties, For example, different strengths, and / or the transitions between the areas can be set individually with the inventive method. The method according to the invention allows an ideal,

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung eines Metallbauteils, insbesondere eines Kraftfahrzeugbauteils, bei dem ein Stahlteil (16, 104) warmumgeformt und zumindest abschnittsweise durch den Kontakt mit einer Werkzeugoberfläche (14) gehärtet wird, bei dem das Stahlteil (16, 104) während des Härtens in mindestens zwei Teilbereichen (152, 154, 162, 164) mit voneinander verschiedenen Kühlraten gekühlt wird, so dass sich die Teilbereiche (152, 154, 162, 164) nach dem Härten in ihrer Gefügestruktur unterscheiden, wobei die voneinander verschiedenen Kühlraten durch zu den Teilbereichen (152, 154, 162, 164) des Stahlteils (16, 104) korrespondierende Sektionen (32, 34, 36, 38, 66, 68, 70, 72) der Werkzeugoberfläche (14) bewirkt werden, welche sich in ihrer Wärmeleitfähigkeiten voneinander unterscheiden. Außerdem betrifft die Erfindung ein weiteres Verfahren zur Herstellung eines Metallbauteils, sowie ein Werkzeug und einen Chargenofen.

Description

Verfahren und Vorrichtung zur Herstellung eines
Metallbauteils
Die Erfindung betrifft ein Verfahren zur Herstellung eines Metallbauteils, insbesondere eines Kraftfahrzeugbauteils, bei dem ein Stahlteil warmumgeformt und zumindest abschnittsweise durch den Kontakt mit einer Werkzeugoberfläche gehärtet wird und bei dem das Stahlteil während des Härtens in mindestens zwei Teilbereichen mit voneinander verschiedenen Kühlraten gekühlt wird, so dass sich die Teilbereiche nach dem Härten in ihrer Gefügestruktur unterscheiden. Die Erfindung betrifft auch ein Werkzeug und einen Chargenofen zur Herstellung eines solchen Metallbauteils.
Warmumgeformte Metallbauteile finden in der
Automobilindustrie, insbesondere bei Crash relevanten, hohen Querbeanspruchungen ausgesetzten Bereichen der Karosserie weit verbreitete Anwendung. So werden B-Säulen bzw. B- Säulenverstärkungen häufig aus hochfestem, warmumgeformtem Mangan-Borstahl gefertigt. Durch die Verarbeitung solcher Werkstoffe in einem Warmumformprozess können hohe Streck- und Zugfestigkeiten im Bauteil erreicht werden, so dass die notwenige Blechdicke gegenüber konventionell hergestellten Stahlbauteilen deutlich reduziert werden und somit ein
Beitrag zum Leichtbau und damit zur C02-Reduktion erzielt werden kann. Der Nachteil vollständig warmumgeformter
Metallbauteile liegt darin, dass die Bruchdehnung eines warmumgeformten Metallbauteils relativ gering ist. Daher können warmumgeformte Metallbauteile zwar gut in
querbeanspruchten Bereichen eingesetzt werden, da hier die hohen Festigkeiten, insbesondere die Streckgrenze, ein
Knicken des Metallbauteils vermeidet. Bei längsbeanspruchten Metallbauteilen, wie beispielsweise Längsträgern, können warmumgeformte Metallbauteile jedoch nicht eingesetzt werden, da die geringe Bruchdehnung kein regelmäßiges Falten der
Metallbauteile erlauben würde und ein Werkstoffversagen bei einer relativ niedrigen Energieaufnahme die Folge wäre.
In der DE 102 56 621 B3 wird eine Platine in einem
Durchlaufofen unterschiedlich erwärmt, so dass sich aufgrund der verschiedenen Werkstofftemperaturen nach der Umformung verschiedene Festigkeiten im Metallbauteil ergeben. Bei diesem Verfahren wird die Platine im Durchlauf in zwei
Ofenkammern unterschiedlich temperiert, so dass sich
unterschiedliche Gefügebereiche im Härteprozess einstellen. Dieses Verfahren hat den Nachteil, dass nur zwei bis drei unterschiedliche Zonen bezüglich der Festigkeit und der
Bruchdehnung im Metallbauteil zu erzielen sind. Diese können darüber hinaus auch nur in Durchlaufrichtung der Platine ausgebildet werden. Die Durchlaufrichtung eines Stahlteils bzw. einer Platine entspricht in der Regel der größten
Längserstreckung des Stahlteils bzw. der Platine.
Mit dem Ziel, warmumgeformte Metallbauteile auch in
längsbeanspruchten Bereichen einzusetzen, offenbart die
DE 10 2006 019 395 AI eine Vorrichtung und ein Verfahren zum Umformen von Platinen aus höher und höchstfesten Stählen. Das Verfahren ist dadurch gekennzeichnet, dass das Umformwerkzeug zur Warmumformung Mittel zur Temperierung aufweist, mit denen ein Stahlteil in verschiedenen Temperaturzonen während des Umformens auf verschiedene, vorgegebene Temperaturwerte temperiert werden kann. Auf diese Weise ist es möglich, die Gefügestruktur im Metallbauteil lokal zu beeinflussen, so dass Metallbauteile mit ortsabhängigen Materialeigenschaften herstellbar sind. Unter ortsabhängigen Materialeigenschaften wird verstanden, dass sich die Materialeigenschaften in mindestens zwei Teilbereichen des Metallbauteils
unterscheiden. Die verschiedenen Gefügearten werden durch unterschiedliche Abkühlraten des Materials erreicht. Die Umformwerkzeuge mit den Mitteln zur Temperierung sind jedoch relativ aufwendig herzustellen und daher kostenaufwendig.
Der vorliegenden Erfindung liegt daher die technische Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Herstellung eines Metallbauteils zur Verfügung zu stellen, welches eine lokale Einstellung des Gefüges im Metallbauteil erlaubt und gleichzeitig kostengünstig und einfach durchzuführen ist.
Diese Aufgabe wird gemäß einer ersten Lehre der vorliegenden Erfindung bei einem gattungsgemäßen Verfahren dadurch gelöst, dass die voneinander verschiedenen Kühlraten durch zu den Teilbereichen des Stahlteils korrespondierende Sektionen der Werkzeugoberfläche bewirkt werden, welche sich in ihrer
Wärmeleitfähigkeiten voneinander unterscheiden.
Es wurde erkannt, dass die Abkühlung des Stahlteils in dem Umformwerkzeug stark durch die Wärmeleitfähigkeit der
Umformwerkzeugoberfläche beeinflusst wird. Unter der
Wärmeleitfähigkeit wird dabei insbesondere der
Wärmeleitkoeffizient verstanden. Bei einer hohen Wärmeleitfähigkeit der angrenzenden
Oberfläche erfolgt eine schnelle Abkühlung des Stahlteils, während bei einer niedrigen Leitfähigkeit das Stahlteil langsamer abgekühlt wird. Aufgrund der Einstellung der
Abkühlrate durch die Wärmeleitfähigkeit der
Werkzeugoberfläche lässt sich die Zahl der
Temperierungselemente, d.h. der Heiz- oder Kühlelemente reduzieren, so dass sich eine Kostenersparnis ergibt.
Weiterhin kann auf eine ungleichmäßige Anordnung bzw. eine notwendige Ansteuerbarkeit der Temperierungselemente
verzichtet werden. Auch hieraus ergibt sich eine
Kostenreduzierung .
Durch die verschiedenen Abkühlraten wird im Stahlteil bzw. im hergestellten Metallbauteil das Vorhandensein verschiedener Gefügearten bewirkt. Beträgt die Kühlrate in einem
Teilbereich des Metallbauteils mehr als 27 K/s, ergibt sich dort ein vorwiegend martensitisches Gefüge mit einer hohen Festigkeit und geringer Bruchdehnung. Bei einer geringeren Abkühlrate entsteht ein ferritisch-bainitisches Gefüge mit einer mittleren Festigkeit und einer mittleren Bruchdehnung, ein ferritisch-perlitisches Gefüge mit einer geringen
Festigkeit und einer hohen Bruchdehnung oder ein Gemisch daraus. Ferritisch-bainitische und ferritisch-perlitische Gefüge weisen eine Zugfestigkeit unterhalb von 860 MPa auf.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens besteht das Werkzeug im Bereich der mindestens zwei Sektionen der Werkzeugoberfläche aus verschiedenen
Werkstoffen mit verschiedenen Wärmeleitfähigkeiten. Durch die Wahl verschiedener Werkstoffe kann auf einfache Weise die Wärmeleitfähigkeit der Werkzeugoberfläche beeinflusst werden. Insbesondere sind auf diese Weise benachbarte Sektionen mit stark unterschiedlichen Wärmeleitfähigkeiten herstellbar. Die Zahl der Sektionen ist generell natürlich nicht auf zwei beschränkt, sondern kann beliebig groß sein. Bevorzugt werden mindestens drei Sektionen vorgesehen, so dass sich im
Metallbauteil drei Teilbereiche mit unterschiedlichen
Gefügearten bzw. Festigkeiten einstellen, wobei mindestens ein Teilbereich ein überwiegend martensitisches Gefüge und mindestens zwei weitere Teilbereiche überwiegend ferritisch- bainitisches und/oder ferritisch-perlitisches Gefüge
aufweisen .
Eine besonders günstige Wärmeleitfähigkeit bei gleichzeitig ausreichender Stabilität für den Einsatz in einem Werkzeug wird in einem weiteren bevorzugten Ausführungsbeispiel dadurch erreicht, dass die Sektionen aus Stählen,
Stahllegierungen und/oder Keramiken bestehen.
In einem weiteren bevorzugten Ausführungsbeispiel des erfindungsgemäßen Verfahrens weist mindestens eine der zwei Sektionen der Werkzeugoberfläche eine
Wärmeleitf higkeitsreduzierende oder -erhöhende
Oberflächenbeschichtung auf. Auf diese Weise wird die
Wärmeleitung der Werkzeugoberfläche durch die
Oberflächenbeschichtung modifiziert. Dies erlaubt sehr komplexe und lokale Änderungen der Wärmeleitfähigkeit und somit die Herstellung von Metallbauteilen mit komplexer und lokal variierender Gefügestruktur. Ein weiterer Vorteil ergibt sich dadurch, dass eine Beschichtung einer
Werkzeugoberfläche leicht nachzurüsten und/oder zu verändern ist. So können mit einem Werkzeug durch Änderung der
Beschichtung Metallbauteile mit verschiedenen angepassten Gefügestrukturen hergestellt werden. Gemäß einer zweiten Lehre der vorliegenden Erfindung kann die oben genannte Aufgabe bei einem Verfahren zur Herstellung eines Metallbauteils, insbesondere eines
Kraftfahrzeugbauteils, bei dem ein Stahlteil erwärmt wird, bei dem das erwärmte Stahlteil durch eine Abkühlung in einem Werkzeug mindestens teilweise gehärtet wird, wobei das
Stahlteil nach dem Härten mindestens zwei Teilbereiche mit unterschiedlicher Gefügestruktur aufweist, dadurch gelöst werden, dass das Stahlteil vor dem Härten in einem mindestens zwei Bereiche aufweisenden Chargenofen temperiert wird, wobei die Bereiche voneinander verschiedene Temperaturen aufweisen.
Unter einem Chargenofen wird ein Ofen verstanden, in dem das zu erwärmende Stahlteil während des Erwärmungsvorgangs im Wesentlichen nicht bewegt wird. Der Chargenofen steht damit im Gegensatz zum Durchlaufofen, bei dem das Stahlteil während des Erwärmens kontinuierlich durch den Ofen bewegt wird.
Es ist erkannt worden, dass eine Beeinflussung der
Gefügestruktur im herzustellenden Metallbauteil auf einfache Weise dadurch erreicht werden kann, dass das Stahlteil vor dem Härten in einem Chargenofen lokal auf verschiedene
Temperaturen temperiert wird. Die sich daraus ergebenen lokal variierenden Temperaturdifferenzen zur Oberfläche des
Härtwerkzeugs führen zu unterschiedlichen
Abkühlgeschwindigkeiten und daher zur Ausbildung
verschiedenartiger Gefügestrukturen im Stahlteil bzw.
Metallbauteil. Weiterhin kann durch eine lokale Temperatur unterhalb der Austenitisierungstemperatur und das
nachfolgende Abkühlen im Härtwerkzeug gezielt ein ferritisch- perlitisches Gefüge erzeugt werden. Das Verfahren hat gegenüber den aus dem Stand der Technik bekannten Verfahren den Vorteil, dass die Temperaturen des Stahlteils vor dem Härten sehr lokal und ohne
Richtungsbeschränkung eingestellt werden können. Insbesondere ist mit diesem Verfahren eine Vielzahl verschiedener
Sektionen mit voneinander verschiedenen Temperaturen möglich. Weiterhin kann auf den Einsatz kostenaufwändiger
Umformwerkzeuge mit ungleichmäßig angeordneten oder
angesteuerten Temperierungsmitteln verzichtet werden.
In einer bevorzugten Ausführung des Verfahrens wird
zusätzlich ein Verfahren gemäß der ersten Lehre der
vorliegenden Erfindung durchgeführt. Durch die Kombination der ersten Lehre mit der zweiten Lehre der Erfindung, lässt sich der Effekt auf die Gefügestruktur des Metallbauteils verstärken, so dass beispielsweise stark unterschiedliche Gefügestrukturen in benachbarten Teilbereichen des
Metallbauteils hergestellt werden können. Bevorzugt
entspricht die Anordnung der Bereiche des Chargenofens der Anordnung der Sektionen der Werkzeugoberfläche. Es sind jedoch auch voneinander abweichende Anordnungen denkbar.
Eine effizientere Erwärmung bzw. Temperierung des Stahlteils wird in einer bevorzugten Ausführungsform dadurch erreicht, dass das Stahlteil vor dem Temperieren im Chargenofen in einem zweiten Ofen, insbesondere in einem Durchlaufofen, erwärmt wird. In diesem zweiten Ofen kann insbesondere eine homogene Erwärmung, vorzugsweise auf eine Temperatur im
Bereich oder oberhalb der Austenitisierungstemperatur bzw. der ÄC3~Temperatur durchgeführt werden. Bei der Temperierung im Chargenofen können die Teilbereiche des Stahlteils dann auf die Zieltemperaturen für den nachfolgenden Härtevorgang erwärmt bzw. gekühlt werden. Dabei erfolgt insbesondere die Kühlung vorzugsweise derart, dass es noch nicht zu einer vorzeitigen Härtung des Stahlbauteils kommt. Der zweite Ofen kann insbesondere als Durchlaufofen ausgebildet sein. Auf diese Weise wird eine schnelle und kontinuierliche
Bereitstellung der Metallbauteile für den Chargenofen
ermöglicht .
In einer weiteren bevorzugten Ausführungsform des Verfahrens wird das Stahlteil in einem Presswerkzeug gehärtet. Auf diese Weise lässt sich eine hohe Vergütung des Stahlteils
erreichen. Das Härten des Stahlteils erfolgt vorzugsweise unmittelbar nach der Temperierung im Chargenofen, um ein Angleichen der verschieden temperierten Teilbereiche durch die Wärmeleitung des Stahlteils zu vermeiden.
Ein kontinuierlicher Verlauf der Materialeigenschaften im Metallbauteil wird in einer bevorzugten Ausführungsform des Verfahrens dadurch erreicht, dass der Chargenofen mindestens einen Bereich mit einem Temperaturgradienten aufweist.
In einer bevorzugten Ausführungsform des Verfahrens wird das Stahlteil in mindestens einem Teilbereich des Chargenofens durch ansteuerbare Gasdüsen, insbesondere mit Stickstoff, gekühlt.
Durch die Kühlung mittels der Gasdüsen werden auf einfachste Weise die Bereiche mit voneinander verschiedenen Temperaturen im Chargenofen realisiert. Insbesondere kann die Zahl an Heizelementen reduziert werden. Weiterhin ist durch die
Ansteuerbarkeit der Gasdüsen eine flexible Einstellung der Temperaturen im Chargenofen möglich. So können durch die Ansteuerungen verschiedene Bereiche für verschiedenartige Metallbauteile eingestellt werden. Die ansteuerbaren Gasdüsen können alternativ zu ansteuerbaren Heizelementen oder in Kombinationen mit diesen eingesetzt werden. Als bevorzugtes Kühlgas wird Stickstoff verwendet, da dies preisgünstig und inert ist.
Die nachfolgenden Ausführungsbeispiele sind sowohl auf die erste Lehre als auch auf die zweite Lehre der vorliegenden Erfindung anzuwenden.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das Stahlteil direkt oder indirekt
warmumgeformt und/oder pressgehärtet. Auf diese Weise wird eine große Flexibilität bei der Durchführung des
Herstellungsverfahrens ermöglicht. Bei einer indirekten
Warmumformung wird das Stahlteil in mindestens zwei Schritten umgeformt, bevorzugt zunächst durch eine Kaltumformung und dann durch eine Warmumformung. Bei einer direkten
Warmumformung erfolgt die Umformung hingegen in einem
einzigen Warmumformschritt. Die indirekte Warmumformung kann besonders bei hohen Ziehtiefen vorteilhaft sein.
Eine besonders flexible Gestaltung des Metallbauteils wird in einer weiteren Ausführungsform dadurch erreicht, dass mindestens eine Grenze zwischen den Teilbereichen quer oder schräg zur größten Längserstreckung des Stahlteils und/oder nicht linear verläuft. Das Verfahren erlaubt mithin eine im Wesentlichen beliebige Einstellung der Teilbereichsgrenzen zueinander. Die Grenzen zwischen den Teilbereichen sind weiterhin bevorzugt außerhalb von Fügebereichen des
Stahlteils angeordnet, um eine Beeinträchtigung von Fügeverbindungen, insbesondere Schweißnähten, durch den
Übergangsbereich im Bereich einer Grenze zu vermeiden.
In einer weiteren Ausführungsform des erfindungsgemäßen
Verfahrens wird als Stahlteil ein Halbzeug, insbesondere ein Tailored-Blank, ein Tailored-Welded-Blank, ein Patchwork- Blank oder ein Tailored-Rolled-Blank, oder eine
zugeschnittene Platine verwendet. Das Verfahren erlaubt folglich eine maximale Flexibilität bei der Herstellung eines Metallbauteils mit ortsabhängigen Materialeigenschaften.
Unter einem Tailored-Blank wird eine Blechplatine verstanden, welche aus verschiedenen Werkstoffgüten und/oder Blechdicken zusammengesetzt ist. Bei einem Tailored-Welded-Blank sind verschiedene Blechplatinen aneinander geschweißt. Ein
Tailored-Rolled-Blank weist durch ein flexibles Walzverfahren hergestellte unterschiedliche Blechdicken auf. Ein Patchwork- Blank besteht aus einer Platine, auf welche flickenartig weitere Bleche gefügt sind. Sehr gute Materialeigenschaften des Metallbauteils werden in einer bevorzugten
Ausführungsform dadurch erreicht, dass ein Stahlteil aus Mangan-Borstahl, insbesondere MBW 1500, MBW 1700 oder
MBW 1900, vorzugsweise in Kombination mit einem
mikrolegierten Stahl, beispielsweise MHZ 340, und/oder aus einem mikrolegierten Stahl, beispielsweise MHZ 340, verwendet wird.
In einer weiteren bevorzugten Ausführungsform des Verfahrens weist das Stahlteil eine organische Beschichtung,
insbesondere eine Lackbeschichtung, z.B. einen
Verzunderungsschutz, vorzugsweise einen lösemittel- oder wasserbasierten, ein-, zwei- oder mehrkomponentigen
Verzunderungsschutz auf. Alternativ oder zusätzlich kann das Stahlteil eine anorganische Beschichtung, vorzugsweise eine Aluminium- oder Aluminium-Silizium-basier'ende Beschichtung, insbesondere eine feueraluminierte Beschichtung (fal), und/oder eine Zink-basierende Beschichtungaufweisen . Auf diese Weise ist eine Funktionalisierung der Oberfläche des Metallbauteils möglich, so dass die Materialeigenschaften noch flexibler angepasst werden können.
Die technische Aufgabe wird gemäß einer dritten Lehre der vorliegenden Erfindung durch eine Verwendung eines
Metallbauteils, hergestellt nach einem der zuvor
beschriebenen Verfahren, in einem Kraftfahrzeug, insbesondere als A-, B- oder C-Säule, Seitenwand, Dachrahmen oder
Längsträger, gelöst. Durch die flexibel und lokal
einstellbaren Materialeigenschaften der Metallbauteile können diese optimal an die Belastungen in einem Kraftfahrzeug, insbesondere zur Verbesserung des Crashverhaltens, angepasst werden . Die technische Aufgabe wird gemäß einer vierten Lehre der vorliegenden Erfindung bei einem Werkzeug zum Warmumformen und Härten von Stahlteilen, insbesondere zur Durchführung eines der zuvor beschriebenen Verfahren, erfindungsgemäß dadurch gelöst, dass die mit dem Stahlteil in Kontakt
tretende Werkzeugoberfläche mehrere Sektionen aufweist, welche sich in ihren Wärmeleitfähigkeiten unterscheiden.
Durch diese verschiedenen Sektionen werden auf einfache Weise verschiedene Kühlraten bei der Härtung eines Stahlteils und somit verschiedene Gefügearten im hergestellten Metallbauteil erreicht. Insbesondere kann die Zahl der Temperierungselemente, z.B. die Zahl der Heizelemente in dem Werkzeug reduziert werden.
Der Unterschied in der Wärmeleitfähigkeit kann in einer bevorzugten Ausführungsform des Werkzeugs dadurch erreicht werden, dass die Sektionen aus verschiedenen Werkstoffen, insbesondere Stählen, Stahllegierungen und/oder Keramiken, mit verschiedenen Wärmeleitf higkeiten bestehen. In einer weiteren bevorzugten Ausführungsform ist die mit dem Stahlteil in Kontakt tretende Werkzeugoberfläche zumindest teilweise auf verschiedenen austauschbaren Segmenten und/oder Werkzeugeinsätzen des Werkzeugs angeordnet. Auf diese Weise ist es möglich, die austauschbaren Segmente oder
Werkzeugeinsätze im Werkzeug flexibel an- bzw. umzuordnen, so dass mit einem Werkzeug Metallbauteile mit verschiedenen Gefügeanordnungen und folglich mit verschiedenen
Eigenschaften hergestellt werden können. Eine einfache Realisierung der verschiedenen
Wärmeleitfähigkeiten wird in einer weiteren Ausführungsform des Werkzeugs dadurch erreicht, dass mindestens eine der Sektionen eine wärmeleitfähigkeitreduzierende oder -erhöhende Oberflächenbeschichtung aufweist. Auf diese Weise können insbesondere sehr lokale Änderungen der Wärmeleitfähigkeit erreicht werden. Weiterhin kann die Oberflächenbeschichtung entfernt und bedarfsgerecht neu aufgebracht werden.
Die technische Aufgabe wird gemäß einer fünften Lehre der vorliegenden Erfindung weiterhin bei einem Chargenofen zum Erwärmen eines Stahlteils für ein Warmumformverfahren und/oder Presshärtverfahren, insbesondere zur Durchführung eines der zuvor beschriebenen Verfahren, erfindungsgemäß dadurch gelöst, dass der Chargenofen mindestens zwei Bereiche aufweist, in denen voneinander verschiedene Temperaturen eingestellt werden können.
Auf diese Weise kann ein Stahlteil auf verschiedene
Temperaturen temperiert werden, so dass bei einem
nachfolgenden Härtvorgang verschiedene Gefügearten im
hergestellten Metallbauteil erreicht werden.
In einer bevorzugten Ausführungsform weist mindestens ein Bereich des Chargenofens ansteuerbare Gasdüsen zur Kühlung auf. Dadurch können die Bereiche mit den verschiedenen
Temperaturen flexibel und einfach realisiert werden.
Weitere Merkmale und Vorteile der Erfindung können der nachfolgenden Beschreibung mehrerer Ausführungsbeispiele entnommen werden, wobei auf die beigefügte Zeichnung Bezug genommen wird. In der Zeichnung zeigen
Fig. 1 ein Werkzeug zur Herstellung eines Metallbauteils aus dem Stand der Technik,
Fig . 2 ein erstes Ausführungsbeispiel eines
erfindungsgemäßen Werkzeugs bzw. Verfahrens,
Fig. 3 zwei weitere Ausführungsbeispiele eines
erfindungsgemäßen Werkzeugs bzw. Verfahrens, Fig. 4 ein drittes Ausführungsbeispiel eines
erfindungsgemäßen Werkzeugs bzw. Verfahrens, Fig. 5 ein Ausführungsbeispiel eines erfindungsgemäßen Chargenofens bzw. Verfahrens,
Fig. 6 ein weiteres Ausführungsbeispiel eines
erfindungsgemäßen Chargenofens bzw. Verfahrens,
Fig. 7 ein weiteres Ausführungsbeispiel eines
erfindungsgemäßen Verfahrens, Fig. 8 ein erstes mit einem erfindungsgemäßen Verfahren hergestelltes Metallbauteil,
Fig. 9 ein zweites mit einem erfindungsgemäßen Verfahren hergestelltes Metallbauteil und
Fig. 10 ein drittes mit einem erfindungsgemäßen Verfahren hergestelltes Metalibauteil.
Fig. 1 zeigt ein Werkzeug zur Herstellung eines
Metallbauteils aus dem Stand der Technik im Längsschnitt. Das Werkzeug 2 ist als Warmumformwerkzeug ausgebildet und weist einen unteren Stempel 4, einen oberen Stempel 6 sowie zwei Flanschschneiden 8 und 10 auf. Die einander zugewandten
Oberflächen 12 und 14 des unteren bzw. oberen Stempels 4, 6 weisen ein Profil auf, welches der Außenkontur des aus einem Stahlteil 16 herzustellenden Metallbauteils entspricht. Im oberen Stempel 6 sind weiterhin Temperierungselemente 18 vorgesehen, mit denen die Temperatur im Bereich der
Oberfläche 14 des oberen Stempels 6 eingestellt werden kann. Vergleichbare Temperierungselemente können auch im unteren Stempel 4 vorgesehen sein. Die Abstände zwischen den
benachbarten Temperierungselementen 18 unterscheiden sich voneinander, so dass die Oberfläche 14 ein ortsabhängiges Temperaturprofil aufweist. Bei den Herstellungsverfahren aus dem Stand der Technik wird das als Platine ausgebildete
Stahlteil 16 zwischen dem auseinandergefahrenen Stempel 4 und 6 angeordnet und der Stempel 6 auf den Stempel 4 abgesenkt. Auf diese Weise wird die Platine gleichzeitig warmumgeformt und erfährt eine Abkühlung mit ortsabhängigen Abkühlraten. Dies führt zu einer entsprechend ortsabhängigen
Gefügeänderung im Stahlteil. Die Flanschbereiche 20 des Stahlteils 16 können durch Senken der Flanschschneiden 8 und 10 beschnitten werden. Durch die ungleichmäßige Anordnung der Temperierungselemente 18 weist das Werkzeug 2 einen
komplizierten Aufbau auf, der insbesondere den Einsatz einer hohen Zahl von Temperierelementen erfordert.
Fig. 2 zeigt nun ein erstes Ausführungsbeispiel eines erfindungsgemäßen Werkzeugs bzw. Verfahrens im Längsschnitt. Mit der Darstellung in Fig. 1 übereinstimmende Teile sind in dieser und in den folgenden Figuren mit denselben
Bezugszeichen versehen. Das Werkzeug 30 unterscheidet sich von dem in Fig. 1 dargestellten Werkzeug 2 dadurch, dass der untere Stempel 4 verschiedene Sektionen 32, 34, 36, 38 aufweist, die aus verschiedenen Werkstoffen mit
unterschiedlichen Wärmeleitfähigkeiten bestehen. Als
Werkstoffe werden bevorzugt Stähle, Stahllegierungen und/oder Keramiken eingesetzt. Alternativ oder zusätzlich kann auch der obere Stempel 6 aus mehreren Sektionen aus verschiedenen Werkstoffen bestehen. Die Sektionen können auch lediglich im Bereich der Oberflächen 12 und 14 aus verschiedenen
Werkstoffen bestehen. Durch die unterschiedliche
Wärmeleitfähigkeit der einzelnen Sektionen 32, 34, 36, 38 kommt es bei der Warmumformung bzw. Härtung eines Stahlteils 16 zu unterschiedlichen Abkühlraten und damit zur Ausbildung verschiedener Gefügestrukturen innerhalb des Stahlteils 16.
Die Figuren 3a und 3b zeigen zwei weitere
Ausführungsbeispiele eines erfindungsgemäßen Werkzeugs bzw. Verfahrens im Längsschnitt. In den Figuren ist jeweils ein alternativer unterer Stempel für ein Werkzeug, beispielsweise das in Fig. 2 gezeigte Werkzeug, dargestellt. Der untere Stempel 50 in Fig. 3a besteht aus einer Mehrzahl separater Segmente 52a bis 52p, welche aus verschiedenen Werkstoffen mit verschiedenen Wärmeleitfähigkeiten bestehen können. Die gesamte Oberfläche 54 des Stempels 50 weist damit eine ortsabhängige Wärmleitfähigkeit auf, so dass mit einem, diesen Stempel 50 beinhaltenden Werkzeug bei einem
Warmumform- bzw. Härteverfahren unterschiedliche Abkühlraten im Stahlteil bewirkt werden können. Einige oder alle Segmente 52a bis 52p können im Wesentlichen beliebig ausgetauscht oder vertauscht werden. So sind bei dem in Fig. 3b dargestellten unteren Stempel 56 eines Ausführungsbeispiels eines
erfindungsgemäßen Werkzeugs die Segmente 52f und 52 durch andere Segmente 52q und 52r aus einem anderen Werkstoff ersetzt. Weiterhin sind die Segmente 52d und 52e sowie die Segmente 52g und 52h in ihrer Position vertauscht. Abhängig von der Zahl der Segmente und der zur Verfügung stehenden Werkstoffe können so auf einfache Weise die sich in ihren Wärmeleitfähigkeiten unterscheidenden Sektionen der
Oberfläche 54 der unteren Stempel 50, 56 flexibel angepasst werden. Alternativ können natürlich auch der obere Stempel bzw. beide Stempel aus separaten Segmenten bestehen.
Fig. 4 zeigt ein weiteres Ausführungsbeispiel eines
erfindungsgemäßen Werkzeugs bzw. eines erfindungsgemäßen Verfahrens im Längsschnitt. Bei dem Werkzeug 64 weist die Oberfläche 14 des unteren Stempels 4 Sektionen 66, 68, 70 und 72 auf, von denen die Sektionen 66, 70 und 72 mit
Oberflächenbeschichtungen 74, 76 und 78 beschichtet sind. Die Oberflächenbeschichtungen 74, 76 und 78 reduzieren oder erhöhen die Wärmeleitfähigkeit der Oberfläche 14 in der jeweiligen Sektion. In der unbeschichteten Sektion 68
entspricht die Wärmeleitfähigkeit der des Stempelmaterials. Bei den Oberflächenbeschichtungen kann es sich beispielsweise um Lacke, insbesondere um temperaturbeständige Lacke,
vorzugsweise um hochtemperaturbeständige Lacke, handeln. Bei der Herstellung eines Metallbauteils mit dem Werkzeug 64 bewirken die verschiedenen Besch!chtungen unterschiedliche Abkühlungsraten in dem Stahlteil 16, so dass die
Gefügestruktur ortsabhängig verändert wird. Die
Oberflächenbeschichtungen sind vorzugsweise wieder entfernbar und können flexibel und bedarfsgerecht angepasst werden.
Fig. 5 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Chargenofens in Aufsicht bzw. ein weiteres
Ausführungsbeispiel eines erfindungsgemäßen Verfahrens. Der Chargenofen 90 weist drei Bereiche 92, 94 und 96 auf, die sich in ihren Temperaturen unterscheiden. So kann in dem Bereich 96 beispielsweise eine Temperatur oberhalb der
Austenitisierungstemperatur vorliegen, während die Temperatur im Bereich 94 unterhalb der Austenitisierungstemperatur liegt. Der Bereich 92 weist einen durch einen Pfeil 98 symbolisierten Temperaturgradienten auf, d.h. dass die
Temperatur von der linken Seite 100 zur rechten Seite 102 des Bereichs 92 zunimmt. Durch die ortsabhängigen Temperaturen im Chargenofen 90 wird ein im Chargenofen 90 angeordnetes, als Platine ausgebildetes Stahlteil 104 lokal auf verschiedene Temperaturen erwärmt bzw. gekühlt. Im Änschluss daran wird die Platine in Richtung des Pfeils 106 aus dem Chargenofen zu einem Härtewerkzeug, insbesondere zu einem Presswerkzeug, transportiert. In diesem erfährt die Platine beim Umformen bzw. Härten aufgrund der lokalen unterschiedlichen
Temperaturen unterschiedliche Gefügeübergänge, so dass sich ein Metallbauteil mit ortsabhängiger Gefügestruktur und somit ortsabhängigen Eigenschaften ergibt. Fig. 6 zeigt ein weiteres Ausführungsbeispiels eines
erfindungsgemäßen Chargenofens bzw. eines erfindungsgemäßen Verfahrens im Längsschnitt. Der Chargenofen 114 weist
Heizelemente 116 und 118 auf, mit denen die im Chargenofen 114 angeordnete Platine 120 erwärmt wird. Die Platine 120 liegt auf Rollen 122 auf, mit denen sie in Richtung der
Pfeile 123 in den Chargenofen 114 hinein- und herausbefördert werden kann. In dem Heizelement 116 sind Gasdüsen 124 vorgesehen, welche durch eine Leitung 126 mit Gas,
insbesondere Stickstoff, versorgt werden. Die Gasdüsen 124 weisen weiterhin Steuerungen 128 auf, mit denen der durch die Gasdüsen 124 strömende Gasfluss eingestellt werden kann. Auf diese Weise ist es möglich, die Platine im Bereich einer Gasdüse zu kühlen, so dass sich in diesem Bereich des
Chargenofens 114 eine effektiv geringere Temperatur
einstellt. Die Gasdüsen 124 sind vorzugsweise einzeln oder in Gruppen ansteuerbar, so dass das Temperaturprofil der
Bereiche und/oder die Anordnung der Bereiche mit
verschiedenen Temperaturen flexibel wählbar sind. Fig. 7 zeigt ein weiteres Ausführungsbeispiel des
erfindungsgemäßen Verfahrens als Ablaufdiagramm. Bei dem Verfahren 134 wird ein Stahlteil in einem ersten Schritt 136 in einem Ofen auf eine Temperatur im Bereich der
Austenitisierungstemperatur erwärmt. In einem zweiten Schritt 138 wird das Stahlteil dann in einem erfindungsgemäßen
Chargenofen temperiert, so dass das Stahlteil Teilbereiche mit verschiedenen Temperaturen aufweist. In einem dritten Schritt 140, der vorzugsweise unmittelbar an den zweiten Schritt 136 anschließt, wird das Stahlteil in einem Werkzeug warmumgeformt und/oder pressgehärtet. Das Werkzeug zum
Warmformen und/oder Presshärten kann bevorzugt auch als
Werkzeug gemäß der vierten Lehre der vorliegenden Erfindung ausgebildet sein. Der erste Schritt 136 ist optional und kann auch entfallen.
Fig. 8 zeigt ein mit einem erfindungsgemäßen Verfahren hergestelltes Metallbauteil 150 in Form einer einteiligen Seitenwand eines Kraftfahrzeugs. Das Metallbauteil 150 weist zwei Teilbereiche 152 und 154 auf, welche bei der Härtung des Metallbauteils 150 verschiedene Temperaturverläufe
durchlaufen haben. Der Teilbereich 152 wurde mit einer hohen Abkühlrate von einer Temperatur oberhalb der
Austenitisierungstemperatur abgekühlt. Er weist dadurch ein vorwiegend martensitisches Gefüge und somit eine große
Festigkeit auf. Der Teilbereich 154 wurde mit einer
geringeren Abkühlungsrate und/oder von einer Temperatur unterhalb der Austenitisierungstemperatur abgekühlt. Er weist somit ein ferritsch-bainistisch oder ferrisch-perlitisches Gefüge und folglich eine höhere Bruchdehnung auf.
Das in Fig. 9 dargestellte, ebenfalls mit einem
erfindungsgemäßen Verfahren hergestellte Metallbauteil 160 in Form einer Seitenwand weist eine komplexere Ortsabhängigkeit der Gefügestrukturen auf und ist so besser an die Belastungsbeanspruchungen im Kraftfahrzeug angepasst. Während der Teilbereich 162 vorwiegend martensitisches Gefüge
aufweist, weist der Teilbereich 164, der insbesondere den Fuß der B-Säule 166 sowie ferritsch-perlitisches Gefüge und somit eine höhere Bruchdehnung auf. Diese ist beim Seitenschweiler 168 aufgrund der strukturmechanischen Beanspruchungen beim seitlichen Poletest notwendig, am Fuß der B-Säule 166 ist diese erforderlich, um den bei einem IIHS-Crash auftretenden hohen Deformationen Stand halten zu können. Die dargestellte B-Säule 166 ist aus einem Tailored-Blank aus zwei im
Stumpfstoß gefügten Platinenzuschnitten aus einem Mangan-Bor- und einem mikrolegierten Stahl hergestellt. Im Vergleich zu der in Fig. 8 dargestellten Seitenwand ist die in Fig. 9 gezeigte Seitenwand aufgrund der komplexeren
Teilbereichsanordnung und der entsprechenden komplexeren ortsabhängigen Materialeigenschaften insgesamt besser an die Beanspruchungen im Kfz angepasst. Derartige Metallbauteile können mit dem erfindungsgemäßen Verfahren bzw. dem
erfindungsgemäßen Werkzeug bzw. Chargenofen günstig und einfach hergestellt werden.
In Fig. 10 ist ein drittes mit einem erfindungsgemäßen
Verfahren hergestelltes Metallbauteil 170 dargestellt. Das Metallbauteil 170 weist eine nicht linear verlaufende Grenze 173 auf, welche einen ersten Bereich 172 von hoher Festigkeit von einem zweiten Bereich 171 von geringer Festigkeit und hoher Duktilität trennt. Nicht linear verlaufende Grenzen zwischen zwei Bereichen im Sinne der vorliegenden Erfindung können Grenzverläufe die nur teilweise geradlinig oder zumindest teilweise kurvenförmig, also anwendungsspezifisch verlaufen, sein. Das Metallbauteil 170 veranschaulicht, dass die Bereiche mit verschiedenen Materialeigenschaften, beispielsweise verschiedenen Festigkeiten, und/oder die Übergänge zwischen den Bereichen mit dem erfindungsgemäßen Verfahren individuell eingestellt werden können. Das erfindungsgemäße Verfahren erlaubt eine ideale,
bedarfsgerechte Anpassung der unterschiedlichen
Gefügestrukturen in den herzustellenden Metallbauteilen, insbesondere für den Kraftfahrzeugbau.

Claims

Patentansprüche
Verfahren zur Herstellung eines Metallbauteils,
insbesondere eines Kraftfahrzeugbauteils, bei dem ein Stahlteil (16, 104) warmumgeformt und zumindest
abschnittsweise durch den Kontakt mit einer
Werkzeugoberfläche (14) gehärtet wird, bei dem das
Stahlteil (16, 104) während des Härtens in mindestens zwei Teilbereichen (152, 154, 162, 164) mit voneinander verschiedenen Kühlraten gekühlt wird, so dass sich die Teilbereiche (152, 154, 162, 164) nach dem Härten in ihrer Gefügestruktur unterscheiden,
d a d u r c h g e k e n n z e i c h n e t, d a s s die voneinander verschiedenen Kühlraten durch zu den Teilbereichen (152, 154, 162, 164) des Stahlteils (16, 104) korrespondierende Sektionen (32, 34, 36, 38, 66, 68, 70, 72) der Werkzeugoberfläche (14) bewirkt werden, welche sich in ihrer Wärmeleitfähigkeiten voneinander unterscheiden .
Verfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t, d a s s das Werkzeug (30, 64) im Bereich der mindestens zwei Sektionen (32, 34, 36, 38, 66, 68, 70, 72) der
Werkzeugoberfläche (14) aus verschiedenen Werkstoffen mit verschiedenen Wärmeleitfähigkeiten besteht.
Verfahren nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Sektionen (32, 34, 36, 38, 66, 68, 70, 72) aus
Stählen, Stahllegierungen und/oder Keramiken bestehen. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, d a s s mindestens eine der zwei Sektionen (32, 34, 36, 38, 66, 68, 70, 72) der Werkzeugoberflache (14) eine
Wärmeleitfähigkeitsreduzierende oder -erhöhende
Oberflächenbeschichtung aufweist .
Verfahren zur Herstellung eines Metallbauteils,
insbesondere eines Kraftfahrzeugbauteils , bei dem ein Stahlteil (16, 104) erwärmt wird, bei dem das erwärmte Stahlteil (16, 104) durch eine Abkühlung in einem
Werkzeug (2, 30, 64) mindestens teilweise gehärtet wird, wobei das Stahlteil (16, 104) nach dem Härten mindestens zwei Teilbereiche (152, 154, 162, 164) mit
unterschiedlicher Gefügestruktur aufweist,
d a d u r c h g e k e n n z e i c h n e t, d a s s das Stahlteil (16, 104) vor dem Härten in einem
mindestens zwei Bereiche (92, 94, 96) aufweisenden
Chargenofen (90, 114) temperiert wird, wobei die Bereiche (92, 94, 96) voneinander verschiedene Temperaturen aufweisen .
Verfahren nach Anspruch 5,
d a d u r c h g e k e n n z e i c h n e t, d a s s zusätzlich ein Verfahren nach einem der Ansprüche 1 bis 4 durchgeführt wird.
Verfahren nach einem der Ansprüche 1 bis 6,
d a d u r c h g e k e n n z e i c h n e t, d a s s das Stahlteil (16, 104) vor dem Temperieren im Chargenofen (90, 114) in einem zweiten Ofen, insbesondere einem Durchlaufofen, erwärmt wird.
Verfahren nach einem der Ansprüche 1 bis 7,
d a d u r c h g e k e n n z e i c h n e t, d a s s das Stahlteil (16, 104) in einem Presswerkzeug gehärtet wird .
Verfahren nach einem der Ansprüche 1 bis 8,
d a d u r c h g e k e n n z e i c h n e t, d a s s der Chargenofen (90, 114) mindestens einen Bereich (92) mit einem Temperaturgradienten aufweist.
Verfahren nach einem, der Ansprüche 1 bis 9,
d a d u r c h g e k e n n z e i c h n e t, d a s s das Stahlteil (16, 104) in mindestens einem Teilbereich (152, 154, 162, 164) des Chargenofens durch ansteuerbare Gasdüsen (124), insbesondere mit Stickstoff, gekühlt wird.
Verfahren nach einem der Ansprüche 1 bis 10,
d a d u r c h g e k e n n z e i c h n e t, d a s s das Stahlteil (16, 104) direkt oder indirekt
warmumgeformt und/oder pressgehärtet wird.
Verfahren nach einem der Ansprüche 1 bis 11,
d a d u r c h g e k e n n z e i c h n e t, d a s s mindestens eine Grenze zwischen den Teilbereichen (152, 154, 162, 164) quer oder schräg zu größten
Längserstreckung des Stahlteils (16, 104) und/oder nicht linear verläuft.
13. Verfahren nach einem der Ansprüche 1 bis 12,
d a d u r c h g e k e n n z e i c h n e t, d a s s als Stahlteil (16, 104) ein Halbzeug, insbesondere ein Tailored-Blank, ein Tailored-Welded-Blank, ein Patchwork- Blank oder ein Tailored-Rolled-Blank, oder eine
zugeschnittene Platine verwendet wird.
14. Verfahren nach einem der Ansprüche 1 bis 13,
d a d u r c h g e k e n n z e i c h n e t, d a s s ein Stahlteil (16, 104) aus MBW 1500, MBW 1700 oder
MB 1900, vorzugsweise in Kombination mit einem
mikrolegierten Stahl, beispielsweise MHZ 340, und/oder aus einem mikrolegierten Stahl, beispielsweise MHZ 340, verwendet wird.
15. Verfahren nach einem der Ansprüche 1 bis 14,
d a d u r c h g e k e n n z e i c h n e t, d a s s das Stahlteil (16, 104) eine organische Beschichtung, insbesondere einen Verzunderungsschutz , vorzugsweise einen lösemittel- oder wasserbasierten, ein-, zwei- oder mehrkomponentigen Verzunderungsschutz , und/oder eine anorganische Beschichtung, vorzugsweise eine Aluminiumoder Aluminium-Silizium-basierende Beschichtung,
insbesondere eine feueraluminierte Beschichtung, und/oder einer Zink-basierende Beschichtung, aufweist.
16. Verwendung eines Metallbauteils, hergestellt nach einem der Ansprüche 1 bis 15, in einem Kraftfahrzeug,
insbesondere als A-, B- oder C-Säule, Seitenwand,
Dachrahmen oder Längsträger.
17. Werkzeug zum Warmumformen und Härten von Stahlteilen, insbesondere zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 15,
d a d u r c h g e k e n n z e i c h n e t, d a s s die mit dem Stahlteil (16, 104) in Kontakt tretende
Werkzeugoberfläche (14) mehrere Sektionen (32, 34, 36, 38, 66, 68, 70, 72) aufweist, welche sich in ihrer
Wärmeleitfähigkeit unterscheiden . 18. Werkzeug nach Anspruch 17,
d a d u r c h g e k e n n z e i c h n e t, d a s s die mindestens eine der Sektionen (32, 34, 36, 38, 66, 68, 70, 72) eine Wärmeleitfähigkeitsreduzierende oder - erhöhende Oberflächenbescnichtung (74, 76, 78) aufweist.
19. Werkzeug nach Anspruch 17 oder 18,
d a d u r c h g e k e n n z e i c h n e t, d a s s die Sektionen (32, 34, 36, 38, 66, 68, 70, 72) aus verschiedenen Werkstoffen, insbesondere Stählen,
Stahllegierungen und/oder Keramiken, mit verschiedenen
Wärmeleitfähigkeiten bestehen .
20. Werkzeug nach einem der Ansprüche 17 bis 19,
d a d u r c h g e k e n n z e i c h n e t, d a s s die mit dem Stahlteil (16, 104) in Kontakt tretende
Werkzeugoberfläche (14) zumindest teilweise auf
verschiedenen austauschbaren Segmenten (52a-r) und/oder Werkzeugeinsätzen des Werkzeugs (2, 30, 64) angeordnet ist .
21. Chargenofen zum Erwärmen eines Stahlteils für ein
Warmumformverfahren und/oder Presshärtverfahrens,
insbesondere zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 15,
d a d u r c h g e k e n n z e i c h n e t, d a s s der Chargenofen (90, 114) mindestens zwei Bereiche (92, 94, 96) aufweist, in denen voneinander verschiedene
Temperaturen eingestellt werden können. 22. Chargenofen nach Anspruch 21,
d a d u r c h g e k e n n z e i c h n e t, d a s s mindestens ein Bereich (92, 94, 96) des Chargenofens (90, 114) ansteuerbare Gasdüsen (124) zur Kühlung,
insbesondere mit Stickstoff, aufweist.
PCT/EP2010/061495 2009-09-01 2010-08-06 Verfahren und vorrichtung zur herstellung eines metallbauteils WO2011026712A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10740648.0A EP2473297B1 (de) 2009-09-01 2010-08-06 Verfahren und vorrichtung zur herstellung eines metallbauteils und verwendung eines solchen metallbauteils
ES10740648.0T ES2536288T3 (es) 2009-09-01 2010-08-06 Procedimiento y dispositivo para la fabricación de un componente metálico y uso de tal componente metálico
KR1020127008413A KR101792176B1 (ko) 2009-09-01 2010-08-06 금속 부품의 제조 방법 및 장치
CN201080038844.5A CN102481613B (zh) 2009-09-01 2010-08-06 用于制造金属零件的方法和装置
JP2012527266A JP5827621B2 (ja) 2009-09-01 2010-08-06 金属構造コンポーネントの製造方法および製造装置
US13/410,071 US8980020B2 (en) 2009-09-01 2012-03-01 Method and device for producing a metal component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009043926.9 2009-09-01
DE102009043926A DE102009043926A1 (de) 2009-09-01 2009-09-01 Verfahren und Vorrichtung zur Herstellung eines Metallbauteils

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/410,071 Continuation US8980020B2 (en) 2009-09-01 2012-03-01 Method and device for producing a metal component

Publications (2)

Publication Number Publication Date
WO2011026712A2 true WO2011026712A2 (de) 2011-03-10
WO2011026712A3 WO2011026712A3 (de) 2011-07-21

Family

ID=43304833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/061495 WO2011026712A2 (de) 2009-09-01 2010-08-06 Verfahren und vorrichtung zur herstellung eines metallbauteils

Country Status (7)

Country Link
US (1) US8980020B2 (de)
EP (2) EP2473297B1 (de)
JP (2) JP5827621B2 (de)
KR (1) KR101792176B1 (de)
DE (1) DE102009043926A1 (de)
ES (1) ES2536288T3 (de)
WO (1) WO2011026712A2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102319835A (zh) * 2011-10-17 2012-01-18 机械科学研究总院先进制造技术研究中心 一种变强度热冲压件的成形方法及模具
CN102554048A (zh) * 2011-12-13 2012-07-11 吉林大学 一种变强度超高强钢热冲压件的成形方法
EP2570205A1 (de) * 2011-09-15 2013-03-20 Dieter Uschkoreit Werkzeug zum Warmumformen und Härten einer Blechplatine
CN103182452A (zh) * 2011-12-30 2013-07-03 上海汽车集团股份有限公司 用于成形汽车金属部件的模具及方法
JP2014533608A (ja) * 2011-11-23 2014-12-15 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 薄鋼板製ワーク、特に亜鉛めっきされた薄鋼板製ワーク、を熱間成形およびプレス硬化する方法および成形工具
CN104220606A (zh) * 2012-03-29 2014-12-17 爱信高丘株式会社 金属加工方法和采用该加工方法加工出的金属加工品
DE102013108046A1 (de) * 2013-07-26 2015-01-29 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum partiellen Härten von Halbzeugen
DE102013013575A1 (de) * 2013-08-14 2015-02-19 Manuela Braun Fahrzeugsitz

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE530228C2 (sv) * 2006-08-25 2008-04-01 Gestamp Hardtech Ab Sätt att varmforma och härda en plåtdetalj, samt en B-stolpe till ett fordon
DE102011007937B4 (de) * 2011-01-03 2015-09-10 Benteler Automobiltechnik Gmbh Verfahren zum Herstellen eines Strukturbauteils einer Kraftfahrzeugkarosserie
DE102011009891A1 (de) * 2011-01-31 2012-08-02 Benteler Automobiltechnik Gmbh Verfahren zum Herstellen von Blechbauteilen sowie Vorrichtung zur Durchführung des Verfahrens
DE102011109010A1 (de) * 2011-07-30 2013-01-31 GEDIA Gebrüder Dingerkus GmbH Verfahren zur Verbindung eines Warmformteils mit einem weiteren Teil aus beliebigem Werkstoff
DE102011053118C5 (de) * 2011-08-30 2021-08-05 Kirchhoff Automotive Deutschland Gmbh Verfahren zum Herstellen eines pressgehärteten Formteils sowie Presshärtwerkzeug
DE102011116714B4 (de) * 2011-10-22 2022-12-22 Volkswagen Aktiengesellschaft Verfahren und Werkzeug zum Warmformen eines Blechmaterials
DE102012012518A1 (de) * 2012-06-22 2013-12-24 GEDIA Gebrüder Dingerkus GmbH Warmumformwerkzeug zur Herstellung von Formteilen
DE102012210958A1 (de) * 2012-06-27 2014-04-03 Bayerische Motoren Werke Aktiengesellschaft Gekühltes Werkzeug zum Warmumformen und/oder Presshärten eines Blechmaterials sowie Verfahren zur Herstellung einer Kühleinrichtung für dieses Werkzeug
KR101438453B1 (ko) * 2012-12-10 2014-09-12 (주)지엔에스쏠리텍 블랭크의 성형 및 트리밍용 핫 스탬핑 가공 방법 및 금형 장치
JP5740419B2 (ja) * 2013-02-01 2015-06-24 アイシン高丘株式会社 鋼板の赤外線加熱方法、加熱成形方法、赤外炉および車両用部品
MX2015009724A (es) * 2013-03-13 2016-03-31 Magna Int Inc Procesamiento de partes estampadas en caliente.
DE102013005080B4 (de) * 2013-03-23 2020-12-10 Volkswagen Aktiengesellschaft Formwerkzeug zum Warmumformen und/oder Presshärten eines Blechmaterials, sowie Verfahren zum Herstellen eines kühlbaren Formwerkzeugsegments
JP6194526B2 (ja) * 2013-06-05 2017-09-13 高周波熱錬株式会社 板状ワークの加熱方法及び加熱装置並びにホットプレス成形方法
DE102013110299A1 (de) * 2013-09-18 2015-03-19 Benteler Automobiltechnik Gmbh Partiell gekühltes Warmformwerkzeug
WO2015077185A1 (en) 2013-11-25 2015-05-28 Magna International Inc. Structural component including a tempered transition zone
DE102014101159B4 (de) * 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Verfahren zur Oberflächenbehandlung von Werkstücken
DE102014107210A1 (de) * 2014-05-22 2015-11-26 Benteler Automobiltechnik Gmbh Modulares Warmformwerkzeug
DE102014109553A1 (de) * 2014-07-08 2016-01-14 Thyssenkrupp Ag Härtewerkzeug und Verfahren zum Herstellen gehärteter Profilformteile
WO2016027293A1 (ja) 2014-08-22 2016-02-25 日新製鋼株式会社 Zn系めっき部品の加工方法
KR101665797B1 (ko) * 2014-12-23 2016-10-13 주식회사 포스코 프레스 성형 방법 및 장치
DE102014119545A1 (de) 2014-12-23 2016-06-23 Benteler Automobiltechnik Gmbh Federnd gelagertes segmentiertes Warmumformwerkzeug und Verfahren zur Herstellung eines warmumform- und pressgehärteten Stahlbauteils mit scharf berandetem Übergangsbereich
DE102015100100A1 (de) * 2015-01-07 2016-07-07 Thyssenkrupp Ag Werkzeug zum Warmumformen eines Werkstücks und Verfahren zum bereichsselektiven Warmumformen eines Werkstücks
DE102015203644A1 (de) 2015-03-02 2016-09-08 Bayerische Motoren Werke Aktiengesellschaft Pressgehärtetes Blechformteil mit unterschiedlichen Blechdicken und Festigkeiten
US10981208B2 (en) 2015-04-23 2021-04-20 Magna International Inc. Laser sintered die surface for a tool
CN104942111A (zh) * 2015-07-01 2015-09-30 上海凌云汽车模具有限公司 生产变强度热成型零件的方法及模具的下模座
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
WO2017017483A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017484A1 (en) 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
MX2018008950A (es) * 2016-03-29 2018-09-03 Magna Int Inc Pilar b con propiedades a medida.
JP6357196B2 (ja) * 2016-07-19 2018-07-11 東亜工業株式会社 熱間プレス装置、熱間プレス方法及び自動車車体部品の製造方法
WO2018039789A1 (en) 2016-08-30 2018-03-08 Magna International Inc. Tool with heater for forming part with tailored properties
KR101865741B1 (ko) * 2016-11-18 2018-06-08 현대자동차 주식회사 일체형 핫 스탬핑 조립체 및 그의 조립 방법
KR101881893B1 (ko) * 2016-12-09 2018-07-26 주식회사 엠에스 오토텍 열간 성형부품 제조방법
US11141769B2 (en) * 2017-06-16 2021-10-12 Ford Global Technologies, Llc Method and apparatus for forming varied strength zones of a vehicle component
DE102017216177A1 (de) * 2017-09-13 2019-03-14 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Zusammenbau-Formteils mittels einer vorkonditionierten Fremdstruktur und Zusammenbau-Formteil
WO2019166852A1 (en) * 2018-02-27 2019-09-06 Arcelormittal Method for producing a press-hardened laser welded steel part and press-hardened laser welded steel part
JP7018832B2 (ja) * 2018-06-21 2022-02-14 本田技研工業株式会社 部分的に強度が異なる車体部材の製造方法及びこれに用いる金型
JP6651057B1 (ja) * 2018-08-15 2020-02-19 ユニプレス株式会社 プレス成形装置、及び製造方法
JP7050640B2 (ja) * 2018-09-28 2022-04-08 株式会社アイシン ピニオンピンの製造方法
JP7077198B2 (ja) * 2018-09-28 2022-05-30 株式会社アイシン 歯車部品の製造方法
KR102218422B1 (ko) * 2019-09-24 2021-02-19 주식회사 포스코 휠 디스크 및 그 제조방법
CN115397578A (zh) 2020-04-03 2022-11-25 日本制铁株式会社 热压生产线和热压成形品的制造方法
EP4129519A4 (de) 2020-04-03 2023-09-20 Nippon Steel Corporation Heisspressvorrichtung und verfahren zur herstellung eines heisspressgeformten artikels
CN111589920B (zh) * 2020-05-11 2022-04-19 首钢集团有限公司 一种热冲压方法
CN112280962B (zh) * 2020-10-22 2021-07-20 燕山大学 一种钢管逐层冷却装置及冷却方法
KR102440768B1 (ko) * 2020-12-18 2022-09-08 주식회사 포스코 후강판 제조 장치 및 방법
DE102021203291A1 (de) 2021-03-31 2022-10-06 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10256621B3 (de) 2002-12-03 2004-04-15 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität und Durchlaufofen hierfür
DE102006019395A1 (de) 2006-04-24 2007-10-25 Thyssenkrupp Steel Ag Vorrichtung und Verfahren zum Umformen von Platinen aus höher- und höchstfesten Stählen

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE890035C (de) * 1943-10-31 1953-09-17 Daimler Benz Ag Verfahren und Vorrichtung zum Verhindern des Auffederns von Blechpressteilen nach dem Kaltpressen
JPS5339915A (en) * 1976-09-25 1978-04-12 Nippon Steel Corp Heating furnace for steel piece
JPS61272380A (ja) * 1985-05-28 1986-12-02 Sumitomo Electric Ind Ltd 熱間加工用被覆超硬合金工具
JPS63169322A (ja) * 1987-01-06 1988-07-13 Yoshiaki Yokoyama 連続熱処理炉
SE9602257L (sv) 1996-06-07 1997-12-08 Plannja Hardtech Ab Sätt att framställa ståldetalj
JP3305952B2 (ja) * 1996-06-28 2002-07-24 トヨタ自動車株式会社 センターピラーリーンフォースの高周波焼入れ強化方法
DE19743802C2 (de) * 1996-10-07 2000-09-14 Benteler Werke Ag Verfahren zur Herstellung eines metallischen Formbauteils
JP4362978B2 (ja) * 2001-01-23 2009-11-11 パナソニック株式会社 トナー及び電子写真装置
JP2002241835A (ja) * 2001-02-20 2002-08-28 Aisin Takaoka Ltd ワークの部分強化方法
JP3671200B2 (ja) * 2001-11-20 2005-07-13 新日鐵住金ステンレス株式会社 鋼の熱間圧延方法
DE10208216C1 (de) * 2002-02-26 2003-03-27 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines metallischen Bauteils
JP4135397B2 (ja) * 2002-05-13 2008-08-20 日産自動車株式会社 プレス部品の焼入れ方法および焼入れ装置
DE10300371B3 (de) * 2003-01-06 2004-04-08 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Formbauteils aus härtbarem Stahl mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität
DE102004026762A1 (de) 2004-06-02 2006-02-09 Bayerische Motoren Werke Ag Umform- und/oder Trennwerkzeug
JP2005342776A (ja) * 2004-06-07 2005-12-15 Nippon Steel Corp 高強度部品の製造方法および高強度部品
JP4542435B2 (ja) * 2005-01-14 2010-09-15 新日本製鐵株式会社 金属板材の熱間プレス成形方法およびその装置
DE102005032113B3 (de) * 2005-07-07 2007-02-08 Schwartz, Eva Verfahren und Vorrichtung zum Warmumformen und partiellen Härten eines Bauteils
DE102005055494B3 (de) 2005-11-18 2007-05-24 Thyssenkrupp Steel Ag Verfahren zum Herstellen von einem Bauteil aus einem metallischen Flachprodukt durch Pressumformen
JP2007216257A (ja) * 2006-02-16 2007-08-30 Toyota Motor Corp 高強度部品製造方法、高強度部品製造方法に用いられる熱間プレス成形型及び高強度部品製造方法における中間成形品
DE102007057855B3 (de) * 2007-11-29 2008-10-30 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität
FR2927828B1 (fr) * 2008-02-26 2011-02-18 Thyssenkrupp Sofedit Procede de formage a partir de flan en materiau trempant avec refroidissement differentiel
DE102008051471B4 (de) 2008-09-30 2012-01-26 Elisabeth Braun Verfahren zur Erwärmung von Blechteilen
DE102009018798A1 (de) * 2009-04-24 2009-10-29 Daimler Ag Vorrichtung zum Warmumformen eines Werkstückes, insbesondere von Metallblech

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10256621B3 (de) 2002-12-03 2004-04-15 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung eines Formbauteils mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität und Durchlaufofen hierfür
DE102006019395A1 (de) 2006-04-24 2007-10-25 Thyssenkrupp Steel Ag Vorrichtung und Verfahren zum Umformen von Platinen aus höher- und höchstfesten Stählen

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2570205A1 (de) * 2011-09-15 2013-03-20 Dieter Uschkoreit Werkzeug zum Warmumformen und Härten einer Blechplatine
CN102319835A (zh) * 2011-10-17 2012-01-18 机械科学研究总院先进制造技术研究中心 一种变强度热冲压件的成形方法及模具
JP2014533608A (ja) * 2011-11-23 2014-12-15 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG 薄鋼板製ワーク、特に亜鉛めっきされた薄鋼板製ワーク、を熱間成形およびプレス硬化する方法および成形工具
CN102554048A (zh) * 2011-12-13 2012-07-11 吉林大学 一种变强度超高强钢热冲压件的成形方法
CN103182452A (zh) * 2011-12-30 2013-07-03 上海汽车集团股份有限公司 用于成形汽车金属部件的模具及方法
CN104220606A (zh) * 2012-03-29 2014-12-17 爱信高丘株式会社 金属加工方法和采用该加工方法加工出的金属加工品
DE102013108046A1 (de) * 2013-07-26 2015-01-29 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum partiellen Härten von Halbzeugen
EP3024952B1 (de) * 2013-07-26 2018-06-20 ThyssenKrupp Steel Europe AG Verfahren und vorrichtung zum partiellen härten von halbzeugen
US10378089B2 (en) 2013-07-26 2019-08-13 Thyssenkrupp Steel Europe Ag Method and device for partially hardening semifinished products
DE102013013575A1 (de) * 2013-08-14 2015-02-19 Manuela Braun Fahrzeugsitz
DE102013013575A9 (de) * 2013-08-14 2015-04-16 Manuela Braun Fahrzeugsitz

Also Published As

Publication number Publication date
US20120186705A1 (en) 2012-07-26
DE102009043926A1 (de) 2011-03-10
EP2473297B1 (de) 2015-02-11
JP2015226936A (ja) 2015-12-17
EP2896466A1 (de) 2015-07-22
ES2536288T3 (es) 2015-05-22
KR20120093189A (ko) 2012-08-22
WO2011026712A3 (de) 2011-07-21
KR101792176B1 (ko) 2017-10-31
CN102481613A (zh) 2012-05-30
EP2473297A2 (de) 2012-07-11
JP5827621B2 (ja) 2015-12-02
JP2013503748A (ja) 2013-02-04
US8980020B2 (en) 2015-03-17

Similar Documents

Publication Publication Date Title
EP2473297B1 (de) Verfahren und vorrichtung zur herstellung eines metallbauteils und verwendung eines solchen metallbauteils
EP2324938B1 (de) Verfahren und Warmumformanlage zur Herstellung eines gehärteten, warm umgeformten Werkstücks
EP2993241B1 (de) Verfahren und presse zur herstellung wenigstens abschnittsweise gehärteter blechbauteile
DE102005032113B3 (de) Verfahren und Vorrichtung zum Warmumformen und partiellen Härten eines Bauteils
EP2182082B1 (de) Verfahren und Vorrichtung zur Temperierung eines Stahlblechkörpers
WO2012120123A1 (de) Ofensystem zur gezielten wärmebehandlung von blechbauteilen
DE202010018370U1 (de) Vorrichtung zur Herstellung von Formteilen mit mindestens zwei Gefügebereichen unterschiedlicher Duktilität
WO2010133526A9 (de) Verfahren zur herstellung eines metallbauteils aus einem warmverprägten ausgangsmaterial
DE102005041741B4 (de) Verfahren zum Herstellen eines pressgehärteten Bauteils
WO2013189597A1 (de) Verfahren und vorrichtung zur herstellung eines pressgehärteten metallbauteils
DE10120063A1 (de) Verfahren zur Herstellung von metallischen Profilbauteilen für Kraftfahrzeuge
WO2010020212A1 (de) Verfahren zum formhärten mit zwischenkühlung
EP3265365A1 (de) Pressgehärtetes blechformteil mit unterschiedlichen blechdicken und festigkeiten
DE102010004823B4 (de) Verfahren zur Herstellung eines metallischen Formbauteils für Kraftfahrzeugkomponenten
DE102005055494B3 (de) Verfahren zum Herstellen von einem Bauteil aus einem metallischen Flachprodukt durch Pressumformen
EP2169084B1 (de) Verfahren zur Herstellung eines Formbauteils mit Bereichen unterschiedlicher Festigkeit aus Kaltband
EP2730346A1 (de) Warmformlinie zur Herstellung warmumgeformter und pressgehärteter Stahlblechprodukte
DE102009051822B3 (de) Verfahren und Vorrichtung zum Herstellen von Blechformteilen
EP1263540B1 (de) Verfahren zur herstellung von dünnwandigen bauteilen aus stahl und danach hergestellte bauteile
DE102015113056B4 (de) Verfahren zum kontaktlosen Kühlen von Stahlblechen und Vorrichtung hierfür
AT15624U1 (de) Wärmebehandlungsverfahren und Wärmebehandlungsvorrichtung
DE102013104299B4 (de) Wirkmedienbasierte Tieftemperaturumformung
AT509597B1 (de) Verfahren und vorrichtung zum herstellen eines formbauteils
DE102007030388A1 (de) Verfahren und Vorrichtung zur Herstellung eines gehärteten Blechbauteils sowie ein gehärtetes Blechbauteil
DE102011009891A1 (de) Verfahren zum Herstellen von Blechbauteilen sowie Vorrichtung zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038844.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10740648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010740648

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012527266

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127008413

Country of ref document: KR

Kind code of ref document: A