WO2011024926A1 - 有機電界発光素子及びカルバゾール化合物 - Google Patents
有機電界発光素子及びカルバゾール化合物 Download PDFInfo
- Publication number
- WO2011024926A1 WO2011024926A1 PCT/JP2010/064535 JP2010064535W WO2011024926A1 WO 2011024926 A1 WO2011024926 A1 WO 2011024926A1 JP 2010064535 W JP2010064535 W JP 2010064535W WO 2011024926 A1 WO2011024926 A1 WO 2011024926A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituent
- general formula
- organic
- compound represented
- Prior art date
Links
- 0 CC(C)(C)CC(C)(*)c(cc1c2c3ccc(C(C)(*)CC(C)(C)C)c2)ccc1[n]3-c1ccccc1 Chemical compound CC(C)(C)CC(C)(*)c(cc1c2c3ccc(C(C)(*)CC(C)(C)C)c2)ccc1[n]3-c1ccccc1 0.000 description 2
- KFJWLBAYNHRQFO-UHFFFAOYSA-N CC(C)(c1ccccc1)c(cc1)ccc1-[n]1c(ccc(C(C)(C)c2ccccc2)c2)c2c2cc(C(C)(C)c3ccccc3)ccc12 Chemical compound CC(C)(c1ccccc1)c(cc1)ccc1-[n]1c(ccc(C(C)(C)c2ccccc2)c2)c2c2cc(C(C)(C)c3ccccc3)ccc12 KFJWLBAYNHRQFO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/86—Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
Definitions
- the present invention relates to an organic electroluminescent device containing a carbazole compound having a specific structure, and particularly relates to an organic electroluminescent device in which the material is formed by wet film formation.
- an organic electroluminescent element As a device using an organic material, an organic electroluminescent element (hereinafter also referred to as OLED) has been actively researched.
- the organic electroluminescence device is expected to be developed as a lighting application as a solid light-emitting large-area full-color display device or an inexpensive large-area surface light source.
- an organic electroluminescent element is composed of an organic compound layer including a light emitting layer and a pair of counter electrodes sandwiching the organic compound layer.
- a voltage is applied to such an organic electroluminescent device, electrons are injected from the cathode and holes are injected from the anode into the organic compound layer.
- the electrons and holes recombine in the light emitting layer, and light is emitted by releasing energy as light when the energy level returns from the conduction band to the valence band.
- a device using such an organic material is conventionally formed by a vacuum deposition process. It has been pointed out that the vacuum deposition process is difficult to produce a large area device, has a low material utilization efficiency, and uses a lot of energy in the manufacturing process. On the other hand, the wet film-forming process has the characteristics that a large-area device can be easily manufactured, the material utilization efficiency is high, and it can be formed at normal pressure, so that not much energy is used in the manufacturing process. Therefore, many studies have been made on the creation of an organic device using a wet film-forming process, but there are problems such as failure to obtain an organic device with higher efficiency and stability than vacuum deposition. .
- Carbazole compounds are widely known as skeletons that give relatively high performance as organic electroluminescent devices, and examples of application to wet film forming processes have been reported so far, but sufficient performance cannot be obtained.
- Patent Document 4 In particular, compounds with specific substituents introduced at the 3- and 6-positions have been reported for the purpose of improving solubility with respect to the carbazole skeleton, but sufficient performance may not be obtained.
- Patent Document 5 Non-patent document 4, Patent document 5).
- transduced the trityl group with respect to the carbazole skeleton has been reported, in this case, sufficient performance may not be obtained (Patent Document 6).
- An object of the present invention is to provide an organic electroluminescent device which exhibits high efficiency even after aging in a high temperature and high humidity environment and has a small decrease in light emission luminance at the initial stage of driving.
- an organic electroluminescence device that exhibits high efficiency even after a lapse of time in a high temperature and high humidity environment by wet film formation, and can provide an organic electroluminescence device having a small decrease in light emission luminance in the initial stage of driving. It is providing the composition for organic electroluminescent elements.
- a method for producing a compound which can provide an organic electroluminescence device capable of providing a high efficiency even after aging in a high temperature and high humidity environment and having a small decrease in light emission luminance at the initial stage of driving, and its It is to provide a production intermediate.
- the present inventor has conducted intensive research and found that organic compounds that give very high efficiency even after aging in a high temperature and high humidity environment by using a carbazole compound having a specific substituent.
- the device can be realized.
- the present inventors have found that the carbazole compound of the present invention is suitable for a wet film-forming process, and by using a composition for an organic electroluminescent device containing the carbazole compound, under a high temperature and high humidity environment. It has been found that it is possible to provide an organic electroluminescent device exhibiting high efficiency even after the elapse of time.
- an organic device that gives a very high efficiency even after aging in a high temperature and high humidity environment, especially an organic device that has a small decrease in light emission luminance in the initial stage of driving, is manufactured through wet film formation.
- the knowledge that it can be realized was obtained, and further studies were made based on this knowledge, and the present invention was completed.
- a composition used for an organic electroluminescent device having a pair of electrodes and at least one organic layer including a light emitting layer between the electrodes on a substrate comprising a compound represented by the following general formula (1)
- Ar 1 represents an aryl group or a heteroaryl group.
- R 1 to R 8 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 8 is substituted as described below.
- R 9 , R 10 , and R 11 each independently represents an alkyl group, an aryl group, or a heteroaryl group, and at least one of R 9 , R 10 , and R 11 is alkyl. And R 9 , R 10 , and R 11 do not all represent the same substituent at the same time (the wavy line represents the bonding position).
- R 3 is the substituent (2).
- the compound represented by the general formula (1) is a compound represented by the following general formula (3).
- Ar 2 represents an aryl group or a heteroaryl group.
- R 16 to R 23 each independently represents a hydrogen atom or a substituent, and at least one of R 16 to R 23 represents the above-mentioned substituent.
- Ar 2 represents phenylene or biphenylene, [3]. [5] [3] or [4], wherein n is 2 in the general formula (3).
- An organic electroluminescent element having a pair of electrodes and at least one organic layer including a light emitting layer between the electrodes on a substrate, wherein any one of the organic layers is described in [1] to [5]
- An organic electroluminescent device comprising a compound represented by any one of the general formulas (1) to (3).
- the light emitting layer includes a compound represented by any one of the general formulas (1) to (3) described in [1] to [5] and a phosphorescent material.
- Organic electroluminescent element [8] [7] The organic electroluminescent element as described in [7], wherein the phosphorescent material is an Ir complex or a Pt complex.
- Any one of the organic layers is formed using the composition according to any one of [1] to [5], and the organic electric field according to any one of [6] to [8] Light emitting element.
- Any one of the organic layers is formed by wet film formation using the composition according to any one of [1] to [5]. Any one of [6] to [9] The organic electroluminescent element as described.
- [11] [10] The organic electroluminescence device as set forth in [10], wherein the wet film formation is selected from a coating method, an inkjet method, and a spray coating method.
- the manufacturing method characterized by manufacturing the compound represented by following General formula (3) using the compound represented by following General formula (4).
- Ar 2 represents an aryl group or a heteroaryl group.
- R 16 to R 23 each independently represents a hydrogen atom or a substituent, and at least one of R 16 to R 23 represents the above-mentioned substituent.
- R 1 to R 8 represent a hydrogen atom or a substituent, but at least one of R 1 to R 8 represents the substituent (2). Note that R 3 and R 6 When both represent the substituent (2), R 3 and R 6 represent different substituents.
- composition and a compound that can provide an organic electroluminescence device that exhibits high efficiency even after aging in a high-temperature and high-humidity environment and that has a small decrease in light emission luminance at the initial stage of driving.
- a production method and a production intermediate thereof can be provided.
- the organic electroluminescent element using them can be provided.
- composition for organic electroluminescence device is a composition used for an organic electroluminescent element having a pair of electrodes and at least one organic layer between the electrodes on a substrate, and the following general formula (1 The compound represented by this is contained.
- the compound represented by the general formula (1) has a high amorphous property and can form a film with few defects in a short time due to the structural feature that the carbazole group has a specific substituent. As described above, the high efficiency is exhibited even after the elapse of time in a high-temperature and high-humidity environment, and the effect of reducing the decrease in light emission luminance particularly in the initial stage of driving is achieved. (Compound represented by the general formula (1))
- Ar 1 represents an aryl group or a heteroaryl group.
- R 1 to R 8 each independently represents a hydrogen atom or a substituent, and at least one of R 1 to R 8 is substituted as described below.
- R 9 , R 10 , and R 11 each independently represents an alkyl group, an aryl group, or a heteroaryl group, and at least one of R 9 , R 10 , and R 11 is an alkyl group. And R 9 , R 10 and R 11 do not all represent the same substituent at the same time (the wavy line represents the bonding position).
- the hydrogen atom may be a deuterium atom.
- Examples of the substituent represented by R 1 to R 8 include the following substituent group V.
- ⁇ Substituent group V> An unsubstituted alkyl group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms (for example, methyl group, ethyl group, n-propyl group, n-butyl group, t-butyl group) Pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group), substituted alkyl group having 1 to 30 carbon atoms, preferably 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms ⁇ for example, triphenyl A methyl group, a trifluoromethyl group, a benzyl group, a carboxyethyl group, an ethoxycarbonylmethyl group, an acetylaminomethyl group, and here,
- the unsaturated hydrocarbon group (for example, vinyl group, ethynyl group 1-cyclohexenyl group, benzylidine group, benzylidene group) is also included in the substituted alkyl group.
- a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms for example, a phenyl group, a naphthyl group, a p-carboxyphenyl group, p -Nitrophenyl group, 3,5-dichlorophenyl group, p-cyanophenyl group, m-fluorophenyl group, p-tolyl group, 4-propylcyclohexyl-4'-biphenyl, 4-butylcyclohexyl-4'-biphenyl, 4 -Pentylcyclohexyl-4′-biphenyl, 4-propylphen
- Substituted heteroaryl groups eg N-carbazoyl, 3-carbazoyl, 2-pyridyl, 5-methyl-3-pyridyl
- 2-thienyl group 2-furyl group, morpholino group, tetrahydrofurfuryl group, pyridimidyl group
- halogen atom for example, chlorine, bromine, iodine, fluorine
- cyano group for example, chlorine, bromine, iodine, fluorine
- cyano group carboxyl group; phosphate group; sulfo group
- An acylamino group having 2 to 8 carbon atoms (for example, an acetylamino group); a sulfone group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, and more preferably 1 to 8 carbon atoms.
- a sulfonyl group for example, methanesulfonyl group, ethanesulfonyl group, benzenesulfonyl group; a sulfinyl group having 1 to 20, preferably 1 to 10, and more preferably 1 to 8 carbon atoms (for example, methanesulfinyl group, ethanesulfinyl group) Group, benzenesulfinyl group); a sulfonylamino group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms (for example, methanesulfonylamino group, ethanesulfonylamino group, benzenesulfonylamino group) ;
- Ureido groups for example, ureido groups, N, N-dimethylureido groups
- An aryloxycarbonyl group having 6 to 12 carbon atoms, more preferably 6 to 10 carbon atoms (for example, a phenoxycarbonyl group) is preferable.
- These substituent groups V can have a structure in which a benzene ring or a naphthalene ring is condensed. Furthermore, any substituent selected from the substituent group V may be further substituted on these substituents.
- R 1 to R 8 are preferably a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, an alkoxy group, an aryloxy group, or a fluorine atom. Particularly preferred are a hydrogen atom, an alkyl group, an aryl group, and a carbazolyl group. The substituent may be substituted with deuterium.
- Ar 1 represents an aryl group or a heteroaryl group.
- the aryl group represented by Ar 1 is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms (for example, a phenyl group, a biphenyl group, a naphthyl group, p-carboxyphenyl group, p-nitrophenyl group, 3,5-dichlorophenyl group, p-cyanophenyl group, m-fluorophenyl group, p-tolyl group, 4-propylcyclohexyl-4'-biphenyl, 4-butylcyclohexyl -4'-biphenyl, 4-pentylcyclohexyl-4'-biphenyl, 4-propylphenyl-2-ethynyl-4'-biphenyl, a phenyl group substituted with
- the heteroaryl group represented by Ar 1 is a substituted or unsubstituted heteroaryl group having 1 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 4 to 6 carbon atoms (for example, an N-carbazoyl group, 3- Carbazoyl group, 2-pyridyl group, 5-methyl-3-pyridyl group, 2-thienyl group, 2-furyl group, morpholino group, tetrahydrofurfuryl group, pyridimidyl group).
- Ar 1 is preferably an aryl group, a phenyl group or a biphenyl group, and may further have a substituent. Examples of the further substituent include the above-mentioned substituent group V, preferably an alkyl group, an aryl group, and a heteroaryl group, and particularly preferably a carbazolyl group.
- alkyl group represented by R 9 , R 10 , and R 11 examples include those described in Substituent Group V, preferably a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and a t-butyl group.
- Examples of the aryl group represented by R 9 , R 10 , and R 11 include those described in Substituent Group V above, and are preferably a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 2-methylphenyl group, 3 -Methylphenyl group and 2-methoxyphenyl group, more preferably a phenyl group.
- heteroaryl group represented by R 9 , R 10 , and R 11 examples include those described in Substituent Group V above, preferably a 2-pyridyl group, a 3-pyridyl group, a 2-thienyl group, and a 2-quinolyl group.
- 2-furyl group more preferably 2-pyridyl group.
- R 9 , R 10 and R 11 may further have a substituent.
- substituents in this case include the above-mentioned substituent group V, preferably alkyl, aryl, alkoxy, aryloxy, and halogen atoms, and more preferably alkoxy and halogen atoms.
- At least one of R 9 , R 10 and R 11 is an alkyl group, and R 9 , R 10 and R 11 do not all represent the same substituent at the same time. Examples of the combination of R 9 , R 10 and R 11 include the following.
- R 11 aryl group
- R 11 heteroaryl group
- R 9 alkyl group
- R 9 alkyl group
- R 9 and R 10 are methyl groups, and R 11 is ethyl.
- R 3 is preferably the substituent (2).
- the compound represented by the general formula (1) is preferably a compound represented by the following general formula (3).
- General formula (3) is preferably a compound represented by the following general formula (3).
- Ar 2 represents an aryl group or a heteroaryl group.
- R 16 to R 23 each independently represents a hydrogen atom or a substituent, and at least one of R 16 to R 23 is substituted as described below.
- R 9 , R 10 , and R 11 each independently represents an alkyl group, an aryl group, or a heteroaryl group, and at least one of R 9 , R 10 , and R 11 is an alkyl group. And R 9 , R 10 and R 11 do not all represent the same substituent at the same time (the wavy line represents the bonding position).
- Ar 2 represents an aryl group or a heteroaryl group.
- the aryl group represented by Ar 2 is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, preferably 6 to 20 carbon atoms, more preferably 6 to 15 carbon atoms (for example, a phenyl group, a biphenyl group, a naphthyl group, p-carboxyphenyl group, p-nitrophenyl group, 3,5-dichlorophenyl group, p-cyanophenyl group, m-fluorophenyl group, p-tolyl group, 4-propylcyclohexyl-4'-biphenyl, 4-butylcyclohexyl -4′-biphenyl, 4-pentylcyclohexyl-4′-biphenyl, 4-propylphenyl-2-ethynyl-4′-biphenyl).
- the heteroaryl group represented by Ar 2 is a substituted or unsubstituted heteroaryl group having 1 to 20 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 4 to 6 carbon atoms (for example, an N-carbazoyl group, 3- Carbazoyl group, 2-pyridyl group, 5-methyl-3-pyridyl group, 2-thienyl group, 2-furyl group, morpholino group, tetrahydrofurfuryl group, pyridimidyl group).
- Ar 2 is preferably an aryl group, a phenyl group or a biphenyl group, and may further have a substituent.
- substituents include the above-mentioned substituent group V, preferably an alkyl group, an aryl group, and a heteroaryl group, and particularly preferably a carbazolyl group.
- R 16 to R 23 represent a hydrogen atom or a substituent, and at least one of R 16 to R 23 represents the following substituent (2). In addition, when R 16 and R 23 both represent the substituent (2), R 16 and R 23 represent different substituents. Examples of the substituent include the substituent group V.
- the T 1 level (energy level in the lowest triplet excited state) of the compound represented by the general formula (1) is 45 Kcal / mol or more (188.3 KJ / mol or more) and 85 Kcal / mol or less (355. 6 KJ / mol or less), preferably 55 Kcal / mol or more (251.0 KJ / mol or more), 85 Kcal / mol or less (355.6 KJ / mol or less), more preferably 60 Kcal / mol or more (272.0 KJ / mol or more), 85 Kcal / mol or less (355.6 KJ / mol or less) is more preferable.
- the T 1 level can be obtained from the wavelength of the short wavelength end of the spectrum by measuring the phosphorescence spectrum of the compound in the film state.
- the glass transition temperature (Tg) of the compound represented by the general formula (1) is preferably 80 ° C. or higher and 400 ° C. or lower, more preferably 100 ° C. or higher and 400 ° C. or lower, and 120 ° C. or higher and 400 ° C. or lower. More preferably it is.
- the compound represented by the general formula (1) can be synthesized by combining various known synthesis methods. For example, the method described in Chemical Review, Vol. 46, pp. 359 to 380, 1947 can be used.
- the composition of the present invention includes a host compound, a light emitting material, a polymer, and a compound having a function of improving device performance (for example, an antioxidant, a water supplement, oxygen Supplemental agents, etc.), coating solvents, surfactants, and the like.
- the content of the compound represented by the general formula (1) is preferably 0.1 to 99% by mass, more preferably 1 to 95% by mass with respect to the total mass of the composition. It is more preferable to include 95% by mass.
- this invention relates also to the manufacturing method of the compound represented by General formula (3).
- the production method of the present invention will be described.
- the manufacturing method of this invention is a manufacturing method characterized by manufacturing the compound represented by General formula (3) using the compound represented by following General formula (4). By using this method, it is possible to obtain a compound having high purity and high device performance.
- Ar 2 represents an aryl group or a heteroaryl group.
- R 16 to R 23 each independently represents a hydrogen atom or a substituent, and at least one of R 16 to R 23 is substituted as described below. represents a group (2). in the case where R 18 and R 21 together represent a substituent (2), .n R 3 and R 6 represent different substituents is an integer of 2 or more.
- R 9 , R 10 , and R 11 each independently represents an alkyl group, an aryl group, or a heteroaryl group, and at least one of R 9 , R 10 , and R 11 is an alkyl group. And R 9 , R 10 and R 11 do not all represent the same substituent at the same time (the wavy line represents the bonding position).
- R 1 to R 8 represent a hydrogen atom or a substituent, but at least one of R 1 to R 8 represents the substituent (2). Note that R 3 and R 6 When both represent the substituent (2), R 3 and R 6 represent different substituents.
- Examples of the method for producing the compound represented by the general formula (3) using the general formula (4) include a method utilizing a coupling reaction, and among them, the compound represented by the general formula (4) and It is preferable to synthesize by a method in which a halogen compound is linked by a coupling reaction.
- Preferable ranges and specific examples of the compound represented by the general formula (3) and the compound represented by the general formula (4) are the same as those described above.
- the compound represented by the general formula (4) can be obtained in high yield.
- a method using a transition metal catalyst in particular, a copper, nickel, palladium catalyst is preferable. Specific methods are described in, for example, Mauger, C. et al. C.
- the method for producing the compound represented by the general formula (3) using the general formula (4) is preferably performed in the presence of a solvent.
- a solvent ether type, amide type, halogenated hydrocarbon, aromatic hydrocarbon and ester type are appropriately used.
- the catalyst include palladium, copper, nickel and the like, and palladium and copper are preferable.
- the reaction temperature is preferably in the range of 50 ° C to 300 ° C, more preferably in the range of 60 ° C to 200 ° C.
- the reaction time is preferably in the range of 10 minutes to 10 days, more preferably in the range of 1 hour to 24 hours.
- the present invention also relates to the following carbazole compounds.
- the carbazole compound of the present invention is a novel compound, and can provide an organic electroluminescence device that exhibits high efficiency even after aging in a high temperature and high humidity environment and has a small decrease in light emission luminance at the initial stage of driving. It is useful as an intermediate for the production of compounds.
- the organic electroluminescent element of the present invention is an organic electroluminescent element having a pair of electrodes and at least one organic layer including a luminescent layer between the electrodes on a substrate, wherein any one of the organic layers is A compound represented by any one of the general formulas (1) to (3) is included.
- the compound represented by the general formula (1) may be contained in any layer of the organic layer.
- the compound represented by the general formula (1) is contained in the light emitting layer, it is preferably contained in an amount of 1 to 99% by mass, more preferably 5 to 95% by mass based on the total mass of the light emitting layer. More preferably, it is contained at 95% by mass.
- the compound represented by the general formula (1) is further contained in a layer other than the light emitting layer, it is preferably contained in an amount of 50 to 100% by mass, more preferably 60 to 100% by mass.
- the organic electroluminescence device of the present invention usually emits light when a DC voltage (which may include an AC component) or a DC current of about 2 to 40 volts is applied between the transparent electrode and the back electrode.
- a DC voltage which may include an AC component
- a DC current of about 2 to 40 volts is applied between the transparent electrode and the back electrode.
- US Pat. Nos. 5,828,429, 6,022,308, and Japanese Patent No. 2,784,615 can be used.
- each layer which comprises the light emitting laminated body used by this invention is explained in full detail, this invention is
- the substrate used in the present invention is preferably made of a material that does not allow moisture to permeate or a material that has a very low moisture permeability.
- the material preferably does not scatter or attenuate light emitted from the organic compound layer.
- the substrate may be formed of a single material or two or more materials.
- the material for the substrate may be appropriately selected according to the transparent electrode material.
- the transparent electrode is indium tin oxide (ITO)
- ITO indium tin oxide
- the shape, structure, size, etc. of the substrate can be appropriately selected according to the use and purpose of the light emitting element.
- the shape is generally plate-like.
- the structure may be a single layer structure or a laminated structure.
- the substrate may be colorless and transparent or colored and transparent, but is preferably colorless and transparent in that it does not scatter or attenuate light emitted from the light emitting layer.
- a moisture permeation preventive layer may be provided on the surface of the substrate on the electrode side, the surface opposite to the electrode, or both.
- a material constituting the moisture permeation preventing layer it is preferable to use an inorganic material such as silicon nitride or silicon oxide.
- the moisture permeation preventing layer can be formed by a high frequency sputtering method or the like. Moreover, you may provide a hard-coat layer and an undercoat layer in a base material as needed.
- the transparent electrode functions as an anode for supplying holes to the organic compound layer, but it can also function as a cathode.
- the back electrode functions as an anode.
- a transparent electrode is used as an anode.
- the shape, structure, size and the like of the transparent electrode are not particularly limited, and can be appropriately selected according to the use and purpose of the light emitting element.
- a material for forming the transparent electrode a metal, an alloy, a metal oxide, an electrically conductive compound, a mixture thereof, or the like can be used, and a material having a work function of 4 eV or more is preferably used.
- Specific examples include tin oxide doped with antimony (ATO), tin oxide doped with fluorine (FTO), semiconductive metal oxides (tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), zinc oxide).
- the transparent electrode may be formed on the substrate by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method. it can.
- the formation method may be appropriately selected in consideration of suitability with the transparent electrode material. For example, when ITO is used as the material of the transparent electrode, a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like may be used. Further, when an organic conductive material is used as the material for the transparent electrode, a wet film forming method may be used.
- the patterning of the transparent electrode can be performed by chemical etching using photolithography, physical etching using a laser, or the like. Alternatively, patterning may be performed by vacuum deposition using a mask, sputtering, a lift-off method, a printing method, or the like.
- the formation position of the transparent electrode may be appropriately selected according to the use and purpose of the light-emitting element, but is preferably formed on the substrate. At this time, the transparent electrode may be formed on the entire surface of the substrate or only on a part thereof.
- the thickness of the transparent electrode may be appropriately selected according to the material, but is usually 10 nm to 50 ⁇ m, preferably 50 nm to 20 ⁇ m.
- the resistance value of the transparent electrode is preferably 10 3 ⁇ / ⁇ or less, and more preferably 10 2 ⁇ / ⁇ or less.
- the transparent electrode may be colorless and transparent or colored and transparent.
- the transmittance is preferably 60% or more, and more preferably 70% or more. The transmittance can be measured according to a known method using a spectrophotometer.
- electrodes described in detail in “New development of transparent conductive film” can also be applied to the present invention.
- ITO or IZO as the transparent electrode material and to form a film at a low temperature of 150 ° C. or lower.
- the back electrode has a function as a cathode for injecting electrons into the organic compound layer, but can also function as an anode.
- the transparent electrode functions as a cathode.
- the back electrode is a cathode.
- the shape, structure, size and the like of the back electrode are not particularly limited, and can be appropriately selected according to the use and purpose of the light emitting element.
- a material for forming the back electrode a metal, an alloy, a metal oxide, an electrically conductive compound, a mixture thereof, or the like can be used, and a material having a work function of 4.5 eV or less is preferably used.
- Specific examples include alkali metals (Li, Na, K, Cs, etc.), alkaline earth metals (Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium alloys, lithium-aluminum alloys, magnesium-silver. Examples include alloys, indium, rare earth metals (ytterbium, etc.).
- alkali metals and alkaline earth metals are preferable from the viewpoint of electron injecting property
- materials mainly composed of aluminum are preferable from the viewpoint of storage stability.
- the material mainly composed of aluminum refers to aluminum alone, an alloy or a mixture of aluminum and 0.01 to 10% by mass of an alkali metal or alkaline earth metal (lithium-aluminum alloy, magnesium-aluminum alloy, etc.).
- materials for the back electrode those described in detail in JP-A-2-15595, JP-A-5-121172 and the like can be used.
- the back electrode can be formed by a wet method such as a printing method or a coating method, a physical method such as a vacuum deposition method, a sputtering method or an ion plating method, or a chemical method such as CVD or plasma CVD method.
- the formation method may be appropriately selected in consideration of suitability with the back electrode material. For example, when two or more metals are used as the back electrode material, the materials can be formed by sputtering simultaneously or sequentially.
- the back electrode can be patterned by chemical etching using photolithography, physical etching using a laser, or the like. Alternatively, patterning may be performed by vacuum deposition using a mask, sputtering, a lift-off method, a printing method, or the like.
- the formation position of the back electrode may be appropriately selected according to the use and purpose of the light emitting element, but is preferably formed on the organic compound layer. At this time, the back electrode may be formed on the entire surface of the organic compound layer or only on a part thereof. Further, a dielectric layer made of an alkali metal or alkaline earth metal fluoride or the like may be provided between the back electrode and the organic compound layer with a thickness of 0.1 to 5 nm. The dielectric layer can be formed by a vacuum deposition method, a sputtering method, an ion plating method, or the like.
- the thickness of the back electrode may be appropriately selected depending on the material, but is usually 10 nm to 5 ⁇ m, preferably 50 nm to 1 ⁇ m.
- the back electrode may be transparent or opaque.
- the transparent back electrode may be formed by thinly forming the above-described material layer to a thickness of 1 to 10 nm and further laminating a transparent conductive material such as ITO or IZO.
- the light emitting layer contains a fluorescent compound (fluorescent material) or a phosphorescent compound (phosphorescent material).
- a phosphorescent compound is preferred.
- the phosphorescent compound is not particularly limited as long as it is a compound that can emit light from triplet excitons.
- an orthometalated complex or a porphyrin complex is preferably used, and an orthometalated complex is more preferably used.
- a porphyrin platinum complex is preferred.
- the phosphorescent material is preferably an Ir or Pt complex.
- the phosphorescent compounds may be used alone or in combination of two or more.
- Orthometalated complexes are described by Akio Yamamoto, “Organic Metal Chemistry Fundamentals and Applications,” pages 150 and 232, Hankabo (1982), H.C. Yersin's “Photochemistry and Photophysics of Coordination Compounds”, pages 71 to 77 and pages 135 to 146, Springer-Verlag (1987), etc.
- the ligand forming the orthometalated complex is not particularly limited, but a 2-phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2- (2-thienyl) pyridine derivative, a 2- (1-naphthyl) pyridine derivative or A 2-phenylquinoline derivative is preferred. These derivatives may have a substituent.
- any transition metal can be used.
- rhodium, platinum, gold, iridium, ruthenium, palladium and the like can be preferably used. Of these, iridium is particularly preferred.
- An organic compound layer containing such an orthometalated complex is excellent in light emission luminance and light emission efficiency. Specific examples of ortho-metalated complexes are also described in paragraphs 0152 to 0180 of Japanese Patent Application No. 2000-254171.
- the orthometalated complex used in the present invention is Inorg. Chem. , 30, 1685, 1991, Inorg. Chem. 27, 3464, 1988, Inorg. Chem. 33, 545, 1994, Inorg. Chim. Acta, 181, 245, 1991; Organomet. Chem. , 335, 293, 1987; Am. Chem. Soc. , 107, 1431, 1985 and the like.
- the content of the luminescent compound in the luminescent layer is not particularly limited, but is, for example, 0.1 to 70% by mass, and preferably 1 to 20% by mass. If the content of the phosphorescent compound is less than 0.1% by mass or exceeds 70% by mass, the effect may not be sufficiently exhibited.
- the external quantum efficiency of the light emitting device of the present invention is preferably 5% or more, more preferably 10% or more, and further preferably 13% or more.
- the value of the external quantum efficiency is the maximum value of the external quantum efficiency when the device is driven at 20 ° C., or around 100 to 300 cd / m 2 (preferably 200 to 300 cd / m 2 ) when the device is driven at 20 ° C.
- the value of external quantum efficiency at can be used.
- the internal quantum efficiency of the light emitting device of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 70% or more.
- the glass transition point of the host material, electron transport layer, and hole transport material contained in the light emitting layer of the present invention is preferably 90 ° C. or higher and 400 ° C. or lower, more preferably 100 ° C. or higher and 380 ° C. or lower,
- the temperature is more preferably 120 ° C. or higher and 370 ° C. or lower, and particularly preferably 140 ° C. or higher and 360 ° C. or lower.
- the light emitting layer may contain a host compound, a hole transport material, an electron transport material, an electrically inactive polymer binder, or the like, if necessary.
- the host compound is preferably a compound represented by the general formula (1) of the present invention, but may further contain another host compound.
- host materials include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl.
- Anthracene derivative fluorenone derivative, hydrazone derivative, stilbene derivative, silazane derivative, aromatic tertiary amine compound, styrylamine compound, aromatic dimethylidene compound, porphyrin compound, anthraquinodimethane derivative, anthrone derivative, diphenylquinone derivative, thiopyran Dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, naphthaleneperylene, etc.
- Cyclic tetracarboxylic anhydride phthalocyanine derivatives, metal complexes of 8-quinolinol derivatives, metal phthalocyanines, metal complexes with benzoxazole, benzothiazole, etc. as ligands, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline Examples thereof include conductive polymers such as polymers, thiophene oligomers, and polythiophenes, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, and polyfluorene derivatives.
- a host compound may be used individually by 1 type, or may use 2 or more types together.
- the method for forming the organic layer of the light-emitting element containing the compound of the present invention is not particularly limited, but various coating methods (sprays) can be used as resistance heating vapor deposition, electron beam, sputtering, molecular lamination, and wet film formation.
- Coating method dip coating method, impregnation method, roll coating method, gravure coating method, reverse coating method, roll brush method, air knife coating method, curtain coating method, spin coating method, flow coating method, bar coating method, micro gravure coating Method, air doctor coating, blade coating method, squeeze coating method, transfer roll coating method, kiss coating method, cast coating method, extrusion coating method, wire bar coating method, screen coating method, etc.), inkjet method, printing method, transfer method , Spray coating, etc.
- wet casting method in terms of production, it is preferred resistance heating evaporation, the wet casting method, a coating method, spray coating, ink jet method is preferable.
- the wet film-forming method the organic compound layer can be easily increased in area, and a light-emitting element having high luminance and excellent light emission efficiency can be obtained efficiently at low cost, which is preferable.
- the wet film forming method can be appropriately selected depending on the material of the organic compound layer.
- the film may be dried after film formation. Drying is performed by selecting conditions such as temperature and pressure so that the wet film-forming layer is not damaged.
- the coating solution used in the wet film-forming method usually comprises a material for the organic compound layer and a solvent for dissolving or dispersing it.
- a solvent is not specifically limited, What is necessary is just to select according to the material used for an organic compound layer.
- Specific examples of the solvent include halogen solvents (chloroform, carbon tetrachloride, dichloromethane, 1,2-dichloroethane, chlorobenzene, etc.), ketone solvents (acetone, methyl ethyl ketone, diethyl ketone, n-propyl methyl ketone, cyclohexanone, isophorone, Menton, etc.), aromatic solvents (benzene, toluene, xylene, decalin, naphthalene, biphenyl, alkyl-substituted biphenyl, etc.), ester solvents (ethyl acetate, n-propyl acetate, n-but
- the solid content with respect to the solvent in the coating solution is not particularly limited, and the viscosity of the coating solution can be arbitrarily selected according to the film forming method.
- the reaction solvent to be used is not particularly limited. Preferable examples of these solvents include water, alcohols, aromatic hydrocarbons, ethers, ketones and esters.
- alcohols examples include monohydric alcohols and dihydric alcohols.
- monohydric alcohols are preferably saturated aliphatic alcohols having 1 to 8 carbon atoms.
- Specific examples of these alcohols include methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol.
- examples thereof include monobutyl ether and ethylene glycol monoethyl ether acetate.
- aromatic hydrocarbons include benzene, toluene, xylene and the like.
- ethers include tetrahydrofuran and dioxane.
- ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone,
- esters such as diisobutyl ketone include ethyl acetate, propyl acetate, butyl acetate, and propylene carbonate.
- Preferred organic solvents have a boiling point of 100 ° C. or higher, more preferably a boiling point of 120 ° C. or higher. A boiling point within this range is preferable for forming a uniform film.
- two or more organic solvents may be mixed and used. When two or more kinds are mixed, the light-emitting material and host material contained in the light-emitting layer are dissolved as the first solvent, and contain at least one kind selected from solvents having a boiling point of 200 ° C. or higher.
- the boiling point of the first solvent is 200 It is preferably from ⁇ 300 ° C., more preferably from 200 to 250 ° C.
- the improvement of the smoothness of a light emitting layer coating film and the adhesiveness with an adjacent layer can be improved, and the luminous efficiency of an organic EL element and element durability can be improved.
- the first solvent include amide solvents, aprotic polar solvents excluding amide solvents, and high-boiling hydrophobic solvents.
- amide solvents include N-methyl-2-pyrrolidone (boiling point 202 ° C.), 2-pyrrolidone (boiling point 245 ° C.), 1-acetyl-2-pyrrolidone (boiling point 231 ° C.), N-ethyl-2-pyrrolidone (boiling point).
- aprotic polar solvents excluding amides examples include propylene carbonate (boiling point 243 ° C), ⁇ -butyrolactone (boiling point 204 ° C), ⁇ -valerolactone (boiling point 207 ° C), ⁇ -acetyl- ⁇ -butyrolactone (boiling point 235 ° C). Etc.) or their derivatives.
- high-boiling hydrophobic solvent examples include cyclohexylbenzene (boiling point 240 ° C.), 1,2,3,4-tetramethylbenzene (boiling point 203 ° C.), 3-methylbiphenyl (boiling point 272 ° C.), 4-methylbiphenyl (boiling point 262). ° C.), 1-methylnaphthalene (boiling point 244.8 ° C.), and derivatives thereof. From the viewpoint of the solubility of the light emitting material, an amide solvent is preferable.
- N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and 1,3-dimethyl-2-imidazolidinone are preferable.
- N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone Is more preferable.
- the first solvent may further be a mixture of two or more.
- the second solvent is preferably at least one selected from solvents having an azeotropic temperature with water of 99 ° C. or lower.
- the azeotropic temperature with water is preferably 98 to 50 ° C, more preferably 80 to 50 ° C.
- the second solvent is ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-n-butoxyethanol, propylene glycol monomethyl ether acetate, methyl ethyl ketone, hexane, toluene, cumene, ethyl acetate, butyl acetate , Isobutyl acetate, propyl acetate, isopropyl acetate and the like. Two or more kinds of the second solvent may be further mixed.
- the first solvent and the second solvent it is preferable to use a solvent selected from an amide solvent as the first solvent and a solvent selected from an alcohol solvent as the second solvent.
- a solvent selected from N-methyl-2-pyrrolidone and 1,3-dimethyl-2-imidazolidinone as the first solvent, and 2-n-butoxyethanol, propylene glycol monomethyl ether as the second solvent It is more preferable to use a solvent selected from acetate.
- the amount of the first solvent and the second solvent used is preferably 50:50 to 95: 5, more preferably 60:40 to 90:10 in terms of mass ratio. Within this range, the solubility of the luminescent material and the host material can be maintained, and an organic film in which the luminescent material is uniformly dispersed in the host material of the present invention can be formed without precipitation and phase separation. Because.
- the coating solution further contains a polyhydric alcohol as a third solvent.
- the third solvent include polyhydric alcohols such as glycerin, ethylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol, and a mixture of two or more of these may be used.
- the polyhydric alcohol is preferably at least one selected from ethylene glycol, diethylene glycol, and glycerin, more preferably ethylene glycol or diethylene glycol.
- the amount of the third solvent added is preferably 2 to 20% by mass, more preferably 5 to 10% by mass, based on the total amount of the coating solution.
- the first solvent, the second solvent, and the third solvent are preferably purified. Specifically, (1) column purification treatment of silica gel, alumina, cationic ion exchange resin, anionic ion exchange resin, etc., (2) anhydrous sodium sulfate, anhydrous calcium sulfate, magnesium sulfate, strontium sulfate, barium sulfate, oxidation Dehydration treatment of barium, calcium oxide, magnesium oxide, molecular sieve, zeolite, etc. (3) Distillation treatment, (4) Bubbling treatment with inert gas (nitrogen, argon), etc. (4) Impurities caused by filtration, centrifugal sedimentation, etc. Any method such as a removal process can be used. More preferred is a purification method by column purification treatment and dehydration treatment.
- the viscosity of the coating solution for organic EL elements of the present invention is preferably 1 mPa ⁇ s to 50 mPa ⁇ s, more preferably 2 mPa ⁇ s to 10 mPa ⁇ s.
- the coating liquid for organic EL elements of the present invention has a surface tension of 20 mN / m to 70 mN / m, preferably 25 mN / m to 40 mN / m. By setting the surface tension within this range, it is possible to form a smooth coating film free from repelling or unevenness.
- the coating liquid for organic EL elements of the present invention satisfies the numerical range for at least one of the above-described viscosity and surface tension, but satisfies the conditions for the characteristics of any combination of two or more. Furthermore, it may satisfy all the characteristics. Thereby, it can be set as the composition suitable for application
- the hole transport material is not particularly limited as long as it has any of the function of injecting holes from the anode, the function of transporting holes, and the function of blocking electrons injected from the cathode. It may be a molecular material or a polymer material. Specific examples include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styrylanthracene derivatives.
- Fluorenone derivatives hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, polysilane compounds, poly (N-vinylcarbazole) derivatives, aniline copolymers, Conductive polymer such as thiophene oligomer, polythiophene, polythiophene derivative, polyphenylene derivative, polyphenylene vinylene derivative, polyfluor Ren derivatives and the like. These may be used alone or in combination of two or more.
- the electron transport material is not particularly limited as long as it has any of the function of injecting electrons from the cathode, the function of transporting electrons, and the function of blocking holes injected from the anode.
- a triazole derivative Oxazole derivatives, oxadiazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyrandioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, naphthaleneperylene, etc.
- Ring tetracarboxylic anhydride phthalocyanine derivatives, metal complexes of 8-quinolinol derivatives, metal complexes with metallophthalocyanines, benzoxazole, benzothiazole, etc., aniline copolymers, thiophene oligomers, polythiophenes Conductive polymer, polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives and the like can be used.
- the light-emitting layer containing the polymer binder can be easily applied and formed in a large area by a wet film forming method.
- the thickness of the light emitting layer is preferably 10 to 200 nm, more preferably 20 to 80 nm. When the thickness exceeds 200 nm, the driving voltage may increase. When the thickness is less than 10 nm, the light emitting element may be short-circuited.
- Electron transport layer The light emitting device of the present invention may have an electron transport layer made of the above-described electron transport material, if necessary.
- the electron transport layer may contain the polymer binder described above.
- the thickness of the electron transport layer is preferably 10 to 200 nm, and more preferably 20 to 80 nm. When the thickness exceeds 200 nm, the driving voltage may increase. When the thickness is less than 10 nm, the light emitting element may be short-circuited.
- the light emitting element of this invention may have a hole transport layer which consists of a hole transport material mentioned above as needed.
- the hole transport layer may contain the polymer binder described above.
- the thickness of the hole transport layer is preferably 10 to 200 nm, more preferably 20 to 80 nm. When the thickness exceeds 200 nm, the driving voltage may increase. When the thickness is less than 10 nm, the light emitting element may be short-circuited.
- the light emitting device of the present invention has a protective layer described in JP-A-7-85974, 7-192866, 8-22891, 10-275682, 10-106746, etc. It may be.
- the protective layer is formed on the uppermost surface of the light emitting element.
- the top surface refers to the outer surface of the back electrode when the base material, the transparent electrode, the organic compound layer, and the back electrode are laminated in this order, and the base material, the back electrode, the organic compound layer, and the transparent electrode in this order. When laminating, it refers to the outer surface of the transparent electrode.
- the shape, size, thickness and the like of the protective layer are not particularly limited.
- the material for forming the protective layer is not particularly limited as long as it has a function of suppressing intrusion or permeation of a light-emitting element such as moisture or oxygen into the element. Silicon, germanium oxide, germanium dioxide or the like can be used.
- the method for forming the protective layer is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular sensing epitaxy, cluster ion beam, ion plating, plasma polymerization, plasma CVD, laser CVD Thermal CVD method, coating method, etc. can be applied.
- the light-emitting element is preferably provided with a sealing layer for preventing moisture and oxygen from entering.
- a material for forming the sealing layer a copolymer of tetrafluoroethylene and at least one comonomer, a fluorinated copolymer having a cyclic structure in the copolymer main chain, polyethylene, polypropylene, polymethyl methacrylate, polyimide, Polyurea, polytetrafluoroethylene, polychlorotrifluoroethylene, polydichlorodifluoroethylene, chlorotrifluoroethylene or a copolymer of dichlorodifluoroethylene and another comonomer, a water-absorbing substance having a water absorption of 1% or more, a water absorption of 0.
- metal In, Sn, Pb, Au, Cu, Ag, Al, Tl, Ni, etc.
- metal oxide MgO, SiO, SiO 2 , Al 2 O 3 , GeO, NiO, CaO, BaO, Fe 2 O 3 , Y 2 O 3, TiO 2 , etc.
- metal fluorides M F 2, LiF, AlF 3, CaF 2 , etc.
- liquid fluorinated carbon perfluoroalkane, perfluoro amines, perfluoroether, etc.
- the liquid fluorinated carbon as dispersed adsorbent moisture or oxygen, etc. Can be used.
- Example 1 Green vapor deposition type OLED element
- the cleaned ITO substrate was put into a vapor deposition apparatus, and ⁇ -NPD was deposited to 100 nm.
- Ir (ppy) 3 and compound no. 35 was deposited at a ratio of 5:95 (mass ratio) by 50 nm, and Balq was deposited thereon by 6 nm, and Alq was deposited thereon by 20 nm.
- magnesium and silver were co-evaporated at a ratio of 10: 1 (molar ratio) to 100 nm to produce an EL device.
- the produced laminate was sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by Nagase Ciba Co., Ltd.) in a glove box substituted with argon gas.
- an ultraviolet curable adhesive XNR5516HV, manufactured by Nagase Ciba Co., Ltd.
- a source measure unit 2400 type manufactured by Toyo Technica was used to emit light by applying a DC constant voltage to the EL element, light emission having a maximum emission wavelength in the vicinity of 520 nm was obtained.
- (Performance evaluation) (1) Damp heat aging durability The element was allowed to stand for 1 week in an environment of 95% humidity and 80 ° C. The efficiency after being allowed to stand was evaluated. The results are shown in Table 1. The evaluation criteria are as follows.
- ⁇ Less than 5% of decrease in efficiency compared to external quantum efficiency before wet heat aging ⁇ : Within 5% to less than 10% of decrease in efficiency compared to external quantum efficiency before wet heat ⁇ : Wet heat aging Compared to the previous external quantum efficiency, the range of decrease in efficiency is within 10% to less than 20% ⁇ : The decrease in efficiency is 20% or more compared to the external quantum efficiency before wet heat aging
- ⁇ Less than 1% reduction in emission brightness compared to the emission brightness at the start of driving ⁇ : Within the range of 1% to less than 2% reduction in emission brightness compared to the emission brightness at the start of driving ⁇ : Start of driving Within the range of 2% to less than 5% reduction in emission luminance compared to the emission luminance at the time ⁇ : The reduction in emission luminance is 5% or more compared to the emission luminance at the start of driving
- Example 1 In preparing the light emitting device of Example 1, the compound No. 1 of the present invention was used. A light emitting device was produced in the same manner as in Example 1 except that the following comparative compound 1 was used instead of 35.
- Example 2 (Blue evaporation type OLED element) A light emitting device was produced in the same manner as in Example 1 except that in the production of the light emitting device of Example 1, Firpic was used instead of Ir (ppy) 3 . When the device was made to emit light in the same manner as in Example 1, light emission having a maximum emission wavelength near 485 nm was obtained. Evaluation similar to Example 1 was performed. The results are shown in Table 2.
- Comparative Example 2 In preparing the light emitting device of Example 2, the compound No. 1 of the present invention was used. A light emitting device was produced in the same manner as in Example 1 except that Comparative Compound 1 was used instead of 35.
- Example 3 Coating solution adjustment
- a transparent support substrate was obtained by depositing ITO to a thickness of 150 nm on a 25 mm ⁇ 25 mm ⁇ 0.7 mm glass substrate. This transparent support substrate was etched and washed.
- a hole injection layer PEDOT-PSS solution (polyethylenedioxythiophene-polystyrene sulfonic acid dope) / manufactured by Bayer) was spin-coated on the ITO glass substrate, and then dried in vacuo at 150 ° C. for 1 hour. An injection layer was formed (film thickness of about 40 nm).
- the coating liquid A was spin-coated on this in a glove box (dew point -68 degrees, oxygen concentration 10 ppm) to form a light emitting layer (film thickness of about 40 nm). Subsequently, Balq was vapor-deposited to a film thickness of 40 nm by a vacuum vapor deposition method to form an electron injection layer. And 1 nm of lithium fluoride was vapor-deposited on this, and also metal aluminum was vapor-deposited 70 nm, and it was set as the cathode.
- the produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by CHIBA NAGASE Co., Ltd.). Evaluation similar to Example 1 was performed. The results are shown in Table 3.
- Example 3 In the production of the light emitting device of Example 3, the compound No. 1 of the present invention was used. A light emitting device was produced in the same manner as in Example 3 except that Comparative Compound 1 was used instead of 35. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 3.
- Example 4 Adjustment of coating solution B) 0.23% by mass of iridium complex (Ir (ppy) 3 ), 1.77% by mass of host compound No. 35, solvent (mass of N-methyl-2-pyrrolidone, 2-n-butoxyethanol, and ethylene glycol) A solvent mixed at a ratio of 55/35/10) was mixed in an amount of 98% by mass to obtain a coating liquid for organic electroluminescent elements (coating liquid B).
- a transparent support substrate was obtained by depositing ITO to a thickness of 150 nm on a 25 mm ⁇ 25 mm ⁇ 0.7 mm glass substrate. This transparent support substrate was etched and washed. A hole injection layer (PEDOT-PSS solution (polyethylenedioxythiophene-polystyrene sulfonic acid dope) / manufactured by Bayer) was spin-coated on this ITO glass substrate, and then dried in vacuo at 100 ° C. for 1 hour. An injection layer was formed (film thickness of about 40 nm).
- PEDOT-PSS solution polyethylenedioxythiophene-polystyrene sulfonic acid dope
- the coating solution B was spin-coated on this in a glove box (dew point -68 degrees, oxygen concentration 10 ppm) to form a light emitting layer (film thickness of about 40 nm). Subsequently, Balq was vapor-deposited to a film thickness of 40 nm by a vacuum vapor deposition method to form an electron injection layer. And 1 nm of lithium fluoride was vapor-deposited on this, and also metal aluminum was vapor-deposited 70 nm, and it was set as the cathode.
- the produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by CHIBA NAGASE Co., Ltd.).
- Example 4 In preparing the light-emitting device of Example 4, the compound No. 1 of the present invention was used. A light emitting device was produced in the same manner as in Example 4 except that Comparative Compound 1 was used instead of 35. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 4.
- Example 5 (Adjustment of coating liquid C) Iridium complex (Ir (ppy) 3 ) 0.23% by mass, host compound no. 1. Mix 1.77% by mass and 98% by mass of a solvent (a solvent obtained by mixing N-methyl-2-pyrrolidone, 2-n-butoxyethanol, and ethylene glycol at a mass ratio of 55/35/10). A coating solution for electroluminescent element (coating solution C) was obtained.
- a solvent a solvent obtained by mixing N-methyl-2-pyrrolidone, 2-n-butoxyethanol, and ethylene glycol at a mass ratio of 55/35/10.
- a transparent support substrate was obtained by depositing ITO to a thickness of 150 nm on a 25 mm ⁇ 25 mm ⁇ 0.7 mm glass substrate. This transparent support substrate was etched and washed. A hole injection layer (PEDOT-PSS solution (polyethylenedioxythiophene-polystyrene sulfonic acid dope) / manufactured by Bayer) was spin-coated on this ITO glass substrate, and then dried in vacuo at 100 ° C. for 1 hour. An injection layer was formed (film thickness of about 40 nm).
- PEDOT-PSS solution polyethylenedioxythiophene-polystyrene sulfonic acid dope
- the coating liquid C was spin-coated on this in a glove box (dew point -68 degrees, oxygen concentration 10 ppm) to form a light emitting layer (film thickness of about 40 nm). Subsequently, Balq was vapor-deposited to a film thickness of 40 nm by a vacuum vapor deposition method to form an electron injection layer. And 1 nm of lithium fluoride was vapor-deposited on this, and also metal aluminum was vapor-deposited 70 nm, and it was set as the cathode.
- the produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by CHIBA NAGASE Co., Ltd.). Evaluation was performed in the same manner as in Example 1. The obtained results are shown in Table 5.
- Example 5 In preparing the light-emitting device of Example 5, the compound No. 1 of the present invention was used. A light emitting device was produced in the same manner as in Example 5 except that the following comparative compounds 2 to 4 were used instead of 1. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 5.
- Example 6 (Adjustment of coating solution D) Iridium complex (Ir (ppy) 3 ) 0.23% by mass, host compound no. 18 1.77% by mass and 98% by mass of a solvent (a solvent obtained by mixing N-methyl-2-pyrrolidone, 2-n-butoxyethanol, and ethylene glycol at a mass ratio of 55/35/10) A coating solution for electroluminescent element (coating solution D) was obtained.
- a solvent a solvent obtained by mixing N-methyl-2-pyrrolidone, 2-n-butoxyethanol, and ethylene glycol at a mass ratio of 55/35/10
- a transparent support substrate was obtained by depositing ITO to a thickness of 150 nm on a 25 mm ⁇ 25 mm ⁇ 0.7 mm glass substrate. This transparent support substrate was etched and washed. A hole injection layer (PEDOT-PSS solution (polyethylenedioxythiophene-polystyrene sulfonic acid dope) / manufactured by Bayer) was spin-coated on this ITO glass substrate, and then dried in vacuo at 100 ° C. for 1 hour. An injection layer was formed (film thickness of about 40 nm).
- PEDOT-PSS solution polyethylenedioxythiophene-polystyrene sulfonic acid dope
- the coating solution D was spin-coated on this in a glove box (dew point -68 degrees, oxygen concentration 10 ppm) to form a light emitting layer (film thickness of about 40 nm). Subsequently, Balq was vapor-deposited to a film thickness of 40 nm by a vacuum vapor deposition method to form an electron injection layer. And 1 nm of lithium fluoride was vapor-deposited on this, and also metal aluminum was vapor-deposited 70 nm, and it was set as the cathode.
- the produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by CHIBA NAGASE Co., Ltd.). Evaluation was performed in the same manner as in Example 1. The results obtained are shown in Table 6.
- Example 6 In preparing the light-emitting device of Example 6, the compound No. 1 of the present invention was used. A light emitting device was produced in the same manner as in Example 6 except that the following comparative compound 5 was used instead of 18. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 6.
- Example 7 (Adjustment of coating liquid E) Iridium complex (Ir (ppy) 3 ) 0.23% by mass, host compound no. 52 1.77% by mass and 98% by mass of a solvent (a solvent obtained by mixing N-methyl-2-pyrrolidone, 2-n-butoxyethanol, and ethylene glycol at a mass ratio of 55/35/10) An electroluminescent element coating liquid (coating liquid E) was obtained.
- a solvent a solvent obtained by mixing N-methyl-2-pyrrolidone, 2-n-butoxyethanol, and ethylene glycol at a mass ratio of 55/35/10
- a transparent support substrate was obtained by depositing ITO to a thickness of 150 nm on a 25 mm ⁇ 25 mm ⁇ 0.7 mm glass substrate. This transparent support substrate was etched and washed. A hole injection layer (PEDOT-PSS solution (polyethylenedioxythiophene-polystyrene sulfonic acid dope) / manufactured by Bayer) was spin-coated on this ITO glass substrate, and then dried in vacuo at 100 ° C. for 1 hour. An injection layer was formed (film thickness of about 40 nm).
- PEDOT-PSS solution polyethylenedioxythiophene-polystyrene sulfonic acid dope
- the coating liquid E was spin-coated on this in a glove box (dew point -68 degrees, oxygen concentration 10 ppm) to form a light emitting layer (film thickness of about 40 nm). Subsequently, Balq was vapor-deposited to a film thickness of 40 nm by a vacuum vapor deposition method to form an electron injection layer. And 1 nm of lithium fluoride was vapor-deposited on this, and also metal aluminum was vapor-deposited 70 nm, and it was set as the cathode.
- the produced laminate was put in a glove box substituted with argon gas, and sealed with a stainless steel sealing can and an ultraviolet curable adhesive (XNR5516HV, manufactured by CHIBA NAGASE Co., Ltd.). Evaluation was performed in the same manner as in Example 1. The results obtained are shown in Table 7.
- Example 7 In preparing the light emitting device of Example 7, the compound No. 1 of the present invention was used. A light emitting device was produced in the same manner as in Example 7 except that the following comparative compound 6 was used instead of 52. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 7.
- the organic electroluminescent device using the compound of the present invention has high durability such that durability with wet heat aging and luminance change in the initial stage of driving are small.
- composition and a compound that can provide an organic electroluminescence device that exhibits high efficiency even after aging in a high-temperature and high-humidity environment and that has a small decrease in light emission luminance at the initial stage of driving.
- a production method and a production intermediate thereof can be provided.
- the organic electroluminescent element using them can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electroluminescent Light Sources (AREA)
- Indole Compounds (AREA)
Abstract
高温、高湿の環境下での経時後においても高い効率を示し、かつ、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供する。特に、湿式製膜により、高温、高湿の環境下での経時後においても高い効率を示し、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供することが可能な、優れた有機電界発光素子用組成物を提供する。 基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子に用いる組成物であって、下記一般式(1)で表される化合物を含有することを特徴とする組成物。(一般式(1)中、Ar1はアリール基又はヘテロアリール基を表す。R1~R8はそれぞれ独立に水素原子又は置換基を表し、R1~R8の少なくとも1つ以上はt-ブチル基等の特定構造の置換基(2)を表す。なお、R3とR6が共に置換基(2)を表す場合、R3とR6は異なる置換基を表す。)
Description
本発明は、特定の構造を有するカルバゾール化合物を含有する有機電界発光素子に関し、特に、該材料を湿式製膜で形成した有機電界発光素子に属する。
有機材料を利用したデバイスとして、有機電界発光素子(以下、OLEDともいう)の研究が活発に行われている。特に、有機電界発光素子は、固体発光型の大面積フルカラー表示素子や安価な大面積な面光源としての照明用途としての発展が期待されている。一般に、有機電界発光素子は発光層を含む有機化合物層及び該有機化合物層を挟んだ一対の対向電極から構成される。このような有機電界発光素子に電圧を印加すると、有機化合物層に陰極から電子が注入され陽極から正孔が注入される。この電子と正孔が発光層において再結合し、エネルギー準位が伝導帯から価電子帯に戻る際にエネルギーを光として放出することにより発光が得られる。
このような有機材料を用いたデバイスにおいては、従来から真空蒸着プロセスで形成されている。真空蒸着プロセスは、大面積デバイスを作成することが難しい、材料利用効率が低い、製造プロセスに多大なエネルギーを使用するという課題が指摘されている。一方、湿式製膜プロセスは、大面積デバイスの作成が容易である、材料利用効率が高い、常圧で作成できるため製造プロセスにあまり多くのエネルギーを使用しないという特徴を有している。そのため、湿式製膜プロセスを利用した有機デバイスの作成について、従来から多くの検討がなされているが、真空蒸着と比較して効率及び安定性の高い有機デバイスが得られない等の問題があった。特に、有機電界発光素子に関しては、高分子系材料と低分子系材料を用いた2種類の方式が提案されている。高分子系材料は湿式製膜プロセスで良好な膜を形成しやすいが、一方で、不純物の影響を受けやすい。低分子系材料は高い純度を得ることが容易であり高い性能を示すものがあるが、一般的に湿式製膜プロセスにおいて良好な膜を形成することは困難である。これまでにも、低分子系材料を用いた湿式製膜プロセスによる有機デバイスの作成について報告がなされているが、充分な性能が得られない場合があった(特許文献1~3、非特許文献1~3)。
カルバゾール化合物は、有機電界発光素子として比較的高い性能を与える骨格として広く知られており、これまでも、湿式製膜プロセスへの適用例が報告されているが、充分な性能が得られない場合があった(特許文献4)。特に、カルバゾール骨格に対して、溶解度を向上させることを目的として、特定の置換基を3位と6位に導入された化合物が報告されているが、充分な性能が得られない場合があった(非特許文献4、特許文献5)。また、カルバゾール骨格に対して、トリチル基を導入した化合物が報告されているが、この場合にも充分な性能が得られない場合があった(特許文献6)。
カルバゾール化合物は、有機電界発光素子として比較的高い性能を与える骨格として広く知られており、これまでも、湿式製膜プロセスへの適用例が報告されているが、充分な性能が得られない場合があった(特許文献4)。特に、カルバゾール骨格に対して、溶解度を向上させることを目的として、特定の置換基を3位と6位に導入された化合物が報告されているが、充分な性能が得られない場合があった(非特許文献4、特許文献5)。また、カルバゾール骨格に対して、トリチル基を導入した化合物が報告されているが、この場合にも充分な性能が得られない場合があった(特許文献6)。
Organic Electronics, 第10巻,第189頁,2009年
Organic Electronics, 第10巻,第581頁,2009年
Journal of Material Chemistry,第18巻,第1799頁,2008年
Macromolecules, 第33巻,第801頁,2000年
本発明の目的は、高温、高湿の環境下での経時後においても高い効率を示し、かつ、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供する。特に、湿式製膜により、高温、高湿の環境下での経時後においても高い効率を示し、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供することが可能な、優れた有機電界発光素子用組成物を提供することである。
また、高温、高湿の環境下での経時後においても高い効率を示し、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供することが可能な、化合物の製造方法及び、その製造中間体を提供することである。
また、高温、高湿の環境下での経時後においても高い効率を示し、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供することが可能な、化合物の製造方法及び、その製造中間体を提供することである。
上記状況を鑑み、本発明者は、鋭意研究を行なったところ、特定の置換基を有するカルバゾール化合物を用いることで、高温、高湿の環境下での経時後においても非常に高い効率を与える有機デバイスを実現可能である。本発明者らは更に、本発明のカルバゾール化合物は湿式製膜プロセスに好適であることを見いだし、該カルバゾール化合物を含む有機電界発光素子用組成物を用いることで、高温、高湿の環境下での経時後においても高い効率を示す有機電界発光素子を提供することが可能であることを見いだした。更に、湿式製膜塗布を経て製造することにより、高温、高湿の環境下での経時後においても非常に高い効率を与える有機デバイス、特に駆動時の初期における発光輝度の低下が小さな有機デバイスを実現できるという知見を得、この知見に基づいて更に検討して本発明を完成するに至った。
前記課題を解決するための手段は以下の通りである。
〔1〕
基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子に用いる組成物であって、下記一般式(1)で表される化合物を含有することを特徴とする組成物。
一般式(1)
(一般式(1)中、Ar1はアリール基又はヘテロアリール基を表す。R1~R8はそれぞれ独立に水素原子又は置換基を表し、R1~R8の少なくとも1つ以上は下記置換基(2)を表す。なお、R3とR6が共に置換基(2)を表す場合、R3とR6は異なる置換基を表す。)
置換基(2)
(一般式(2)中、R9、R10、及びR11はそれぞれ独立にアルキル基、アリール基、又はヘテロアリール基を表し、R9、R10、及びR11のうち少なくとも1つはアルキル基であり、かつ、R9、R10、及びR11は同時に全て同じ置換基を表すことはない。波線は結合位置を表す。)
〔2〕
前記一般式(1)中、R3が、前記置換基(2)であることを特徴とする〔1〕に記載の組成物。
〔3〕
前記一般式(1)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする〔1〕又は〔2〕に記載の組成物。
(一般式(3)中、Ar2はアリール基又はヘテロアリール基を表す。R16~R23はそれぞれ独立に水素原子又は置換基を表し、R16~R23の少なくとも1つ以上は上記置換基(2)を表す。なお、R18とR21が共に置換基(2)を表す場合、R18とR21は異なる置換基を表す。nは2以上の整数を表す。)
〔4〕
前記一般式(3)中、Ar2がフェニレン、又はビフェニレンを表すことを特徴とする〔3〕に記載の組成物。
〔5〕
前記一般式(3)中、nが2であることを特徴とする〔3〕又は〔4〕に記載の組成物。
〔6〕
基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のいずれかが〔1〕~〔5〕に記載の一般式(1)~(3)のいずれかで表される化合物を含むことを特徴とする有機電界発光素子。
〔7〕
前記発光層が〔1〕~〔5〕に記載の一般式(1)~(3)のいずれか1項で表される化合物と燐光発光材料とを含むことを特徴とする〔6〕に記載の有機電界発光素子。
〔8〕
前記燐光発光材料がIr錯体又はPt錯体であることを特徴とする〔7〕に記載の有機電界発光素子。
〔9〕
前記有機層のいずれかが〔1〕~〔5〕のいずれかに記載の組成物を用いて形成されたことを特徴とする〔6〕~〔8〕のいずれか1項に記載の有機電界発光素子。
〔10〕
前記有機層のいずれかが〔1〕~〔5〕のいずれかに記載の組成物を用いて湿式製膜により形成されたことを特徴とする〔6〕~〔9〕のいずれか1項に記載の有機電界発光素子。
〔11〕
前記湿式製膜が、コーティング法、インクジェット法、スプレー塗布法から選択されることを特徴とする〔10〕に記載の有機電界発光素子。
〔12〕
下記一般式(3)で表される化合物を、下記一般式(4)で表される化合物を用いて製造することを特徴とする製造方法。
(一般式(3)中、Ar2はアリール基又はヘテロアリール基を表す。R16~R23はそれぞれ独立に水素原子又は置換基を表し、R16~R23の少なくとも1つ以上は上記置換基(2)を表す。なお、R18とR21が共に置換基(2)を表す場合、R18とR21は異なる置換基を表す。nは2以上の整数を表す。)
(一般式(4)中、R1~R8は水素原子又は置換基を表すが、R1~R8の少なくとも1つ以上は上記置換基(2)を表す。なお、R3とR6が共に置換基(2)を表す場合、R3とR6は異なる置換基を表す。)
〔13〕
下記の構造式で表されるカルバゾール化合物。
〔1〕
基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子に用いる組成物であって、下記一般式(1)で表される化合物を含有することを特徴とする組成物。
一般式(1)
(一般式(1)中、Ar1はアリール基又はヘテロアリール基を表す。R1~R8はそれぞれ独立に水素原子又は置換基を表し、R1~R8の少なくとも1つ以上は下記置換基(2)を表す。なお、R3とR6が共に置換基(2)を表す場合、R3とR6は異なる置換基を表す。)
置換基(2)
(一般式(2)中、R9、R10、及びR11はそれぞれ独立にアルキル基、アリール基、又はヘテロアリール基を表し、R9、R10、及びR11のうち少なくとも1つはアルキル基であり、かつ、R9、R10、及びR11は同時に全て同じ置換基を表すことはない。波線は結合位置を表す。)
〔2〕
前記一般式(1)中、R3が、前記置換基(2)であることを特徴とする〔1〕に記載の組成物。
〔3〕
前記一般式(1)で表される化合物が、下記一般式(3)で表される化合物であることを特徴とする〔1〕又は〔2〕に記載の組成物。
(一般式(3)中、Ar2はアリール基又はヘテロアリール基を表す。R16~R23はそれぞれ独立に水素原子又は置換基を表し、R16~R23の少なくとも1つ以上は上記置換基(2)を表す。なお、R18とR21が共に置換基(2)を表す場合、R18とR21は異なる置換基を表す。nは2以上の整数を表す。)
〔4〕
前記一般式(3)中、Ar2がフェニレン、又はビフェニレンを表すことを特徴とする〔3〕に記載の組成物。
〔5〕
前記一般式(3)中、nが2であることを特徴とする〔3〕又は〔4〕に記載の組成物。
〔6〕
基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のいずれかが〔1〕~〔5〕に記載の一般式(1)~(3)のいずれかで表される化合物を含むことを特徴とする有機電界発光素子。
〔7〕
前記発光層が〔1〕~〔5〕に記載の一般式(1)~(3)のいずれか1項で表される化合物と燐光発光材料とを含むことを特徴とする〔6〕に記載の有機電界発光素子。
〔8〕
前記燐光発光材料がIr錯体又はPt錯体であることを特徴とする〔7〕に記載の有機電界発光素子。
〔9〕
前記有機層のいずれかが〔1〕~〔5〕のいずれかに記載の組成物を用いて形成されたことを特徴とする〔6〕~〔8〕のいずれか1項に記載の有機電界発光素子。
〔10〕
前記有機層のいずれかが〔1〕~〔5〕のいずれかに記載の組成物を用いて湿式製膜により形成されたことを特徴とする〔6〕~〔9〕のいずれか1項に記載の有機電界発光素子。
〔11〕
前記湿式製膜が、コーティング法、インクジェット法、スプレー塗布法から選択されることを特徴とする〔10〕に記載の有機電界発光素子。
〔12〕
下記一般式(3)で表される化合物を、下記一般式(4)で表される化合物を用いて製造することを特徴とする製造方法。
(一般式(3)中、Ar2はアリール基又はヘテロアリール基を表す。R16~R23はそれぞれ独立に水素原子又は置換基を表し、R16~R23の少なくとも1つ以上は上記置換基(2)を表す。なお、R18とR21が共に置換基(2)を表す場合、R18とR21は異なる置換基を表す。nは2以上の整数を表す。)
(一般式(4)中、R1~R8は水素原子又は置換基を表すが、R1~R8の少なくとも1つ以上は上記置換基(2)を表す。なお、R3とR6が共に置換基(2)を表す場合、R3とR6は異なる置換基を表す。)
〔13〕
下記の構造式で表されるカルバゾール化合物。
本発明によれば、高温、高湿の環境下での経時後においても高い効率を示し、かつ、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供し得る組成物、化合物の製造方法及びその製造中間体が提供できる。また、それらを用いた有機電界発光素子を提供できる。
以下、本発明について詳細に説明する。なお、本明細書において「~」はその前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
〔有機電界発光素子用組成物〕
本発明の有機電界発光素子用組成物は、基板上に、一対の電極と、該電極間に少なくとも1層の有機層を有する有機電界発光素子に用いる組成物であって、下記一般式(1)で表される化合物を含有する。
一般式(1)で表される化合物は、カルバゾール基に特定の置換基を有するという構造的特徴により、アモルファス性が高く、欠陥の少ない膜を短時間に形成することが可能となり、高い素子性能として、高温、高湿の環境下での経時後においても高い効率を示し、かつ、特に駆動時の初期における発光輝度の低下が小さくなるという効果を奏する。
(一般式(1)で表される化合物)
本発明の有機電界発光素子用組成物は、基板上に、一対の電極と、該電極間に少なくとも1層の有機層を有する有機電界発光素子に用いる組成物であって、下記一般式(1)で表される化合物を含有する。
一般式(1)で表される化合物は、カルバゾール基に特定の置換基を有するという構造的特徴により、アモルファス性が高く、欠陥の少ない膜を短時間に形成することが可能となり、高い素子性能として、高温、高湿の環境下での経時後においても高い効率を示し、かつ、特に駆動時の初期における発光輝度の低下が小さくなるという効果を奏する。
(一般式(1)で表される化合物)
(一般式(1)中、Ar1はアリール基又はヘテロアリール基を表す。R1~R8はそれぞれ独立に水素原子又は置換基を表し、R1~R8の少なくとも1つ以上は下記置換基(2)を表す。なお、R3とR6が共に置換基(2)を表す場合、R3とR6は異なる置換基を表す。)
置換基(2)
置換基(2)
(一般式(2)中、R9、R10、R11はそれぞれ独立にアルキル基、アリール基、又はヘテロアリール基を表し、R9、R10、R11のうち少なくとも1つはアルキル基であり、かつ、R9、R10、R11は同時に全て同じ置換基を表すことはない。波線は結合位置を表す。)
水素原子としては、重水素原子であってもよい。
R1~R8が表す置換基としては、下記の置換基群Vが挙げられる。
<置換基群V>
炭素数1~18、好ましくは炭素数1~10、更に好ましくは炭素数1~5の無置換のアルキル基(例えばメチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基)、炭素数1~30、好ましくは炭素数1~20、更に好ましくは炭素数1~10の置換アルキル基{例えばトリフェニルメチル基、トリフルオロメチル基、ベンジル基、カルボキシエチル基、エトキシカルボニルメチル基、アセチルアミノメチル基、またここでは炭素数2~18、好ましくは炭素数3~10、更に好ましくは炭素数3~5の不飽和炭化水素基(例えばビニル基、エチニル基1-シクロヘキセニル基、ベンジリジン基、ベンジリデン基)も置換アルキル基に含まれることにする};炭素数6~30、好ましくは炭素数6~20、更に好ましくは炭素数6~15の置換若しくは無置換のアリール基(例えばフェニル基、ナフチル基、p-カルボキシフェニル基、p-ニトロフェニル基、3,5-ジクロロフェニル基、p-シアノフェニル基、m-フルオロフェニル基、p-トリル基、4-プロピルシクロヘキシル-4’-ビフェニル、4-ブチルシクロヘキシル-4’-ビフェニル、4-ペンチルシクロヘキシル-4’-ビフェニル、4-プロピルフェニル-2-エチニル-4’-ビフェニル);炭素数1~20、好ましくは炭素数2~10、更に好ましくは炭素数4~6の置換若しくは無置換のヘテロアリール基(例えばN-カルバゾイル基、3-カルバゾイル基、2-ピリジル基、5-メチル-3-ピリジル基、2-チエニル基、2-フリル基、モルホリノ基、テトラヒドロフルフリル基、ピリジミジル基);ハロゲン原子(例えば塩素、臭素、沃素、フッ素);シアノ基;カルボキシル基;リン酸基;スルホ基;ヒドロキシ基;炭素数1~10、好ましくは炭素数2~8、更に好ましくは炭素数2~5のカルバモイル基(例えばメチルカルバモイル基、エチルカルバモイル基、モルホリノカルバモイル基);炭素数0~10、好ましくは炭素数2~8、更に好ましくは炭素数2~5のスルファモイル基(例えばメチルスルファモイル基、エチルスルファモイル基、ピペリジノスルファモイル基);ニトロ基;炭素数1~20、好ましくは炭素数1~10、更に好ましくは炭素数1~8のアルコキシ基(例えばメトキシ基、エトキシ基、2-メトキシエトキシ基、2-フェニルエトキシ基);炭素数6~20、好ましくは炭素数6~12、更に好ましくは炭素数6~10のアリールオキシ基(例えばフェノキシ基、p-メチルフェノキシ基、p-クロロフェノキシ基、ナフトキシ基);炭素数1~20、好ましくは炭素数2~12、更に好ましくは炭素数2~8のアシル基(例えばアセチル基、ベンゾイル基、トリクロロアセチル基);炭素数1~20、好ましくは炭素数2~12、更に好ましくは炭素数2~8のアシルオキシ基(例えばアセチルオキシ基、ベンゾイルオキシ基);炭素数1~20、好ましくは炭素数2~12、更に好ましくは炭素数2~8のアシルアミノ基(例えばアセチルアミノ基);炭素数1~20、好ましくは炭素数1~10、更に好ましくは炭素数1~8のスルホニル基(例えばメタンスルホニル基、エタンスルホニル基、ベンゼンスルホニル基);炭素数1~20、好ましくは炭素数1~10、更に好ましくは炭素数1~8のスルフィニル基(例えばメタンスルフィニル基、エタンスルフィニル基、ベンゼンスルフィニル基);炭素数1~20、好ましくは炭素数1~10、更に好ましくは炭素数1~8のスルホニルアミノ基(例えばメタンスルホニルアミノ基、エタンスルホニルアミノ基、ベンゼンスルホニルアミノ基);
<置換基群V>
炭素数1~18、好ましくは炭素数1~10、更に好ましくは炭素数1~5の無置換のアルキル基(例えばメチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基)、炭素数1~30、好ましくは炭素数1~20、更に好ましくは炭素数1~10の置換アルキル基{例えばトリフェニルメチル基、トリフルオロメチル基、ベンジル基、カルボキシエチル基、エトキシカルボニルメチル基、アセチルアミノメチル基、またここでは炭素数2~18、好ましくは炭素数3~10、更に好ましくは炭素数3~5の不飽和炭化水素基(例えばビニル基、エチニル基1-シクロヘキセニル基、ベンジリジン基、ベンジリデン基)も置換アルキル基に含まれることにする};炭素数6~30、好ましくは炭素数6~20、更に好ましくは炭素数6~15の置換若しくは無置換のアリール基(例えばフェニル基、ナフチル基、p-カルボキシフェニル基、p-ニトロフェニル基、3,5-ジクロロフェニル基、p-シアノフェニル基、m-フルオロフェニル基、p-トリル基、4-プロピルシクロヘキシル-4’-ビフェニル、4-ブチルシクロヘキシル-4’-ビフェニル、4-ペンチルシクロヘキシル-4’-ビフェニル、4-プロピルフェニル-2-エチニル-4’-ビフェニル);炭素数1~20、好ましくは炭素数2~10、更に好ましくは炭素数4~6の置換若しくは無置換のヘテロアリール基(例えばN-カルバゾイル基、3-カルバゾイル基、2-ピリジル基、5-メチル-3-ピリジル基、2-チエニル基、2-フリル基、モルホリノ基、テトラヒドロフルフリル基、ピリジミジル基);ハロゲン原子(例えば塩素、臭素、沃素、フッ素);シアノ基;カルボキシル基;リン酸基;スルホ基;ヒドロキシ基;炭素数1~10、好ましくは炭素数2~8、更に好ましくは炭素数2~5のカルバモイル基(例えばメチルカルバモイル基、エチルカルバモイル基、モルホリノカルバモイル基);炭素数0~10、好ましくは炭素数2~8、更に好ましくは炭素数2~5のスルファモイル基(例えばメチルスルファモイル基、エチルスルファモイル基、ピペリジノスルファモイル基);ニトロ基;炭素数1~20、好ましくは炭素数1~10、更に好ましくは炭素数1~8のアルコキシ基(例えばメトキシ基、エトキシ基、2-メトキシエトキシ基、2-フェニルエトキシ基);炭素数6~20、好ましくは炭素数6~12、更に好ましくは炭素数6~10のアリールオキシ基(例えばフェノキシ基、p-メチルフェノキシ基、p-クロロフェノキシ基、ナフトキシ基);炭素数1~20、好ましくは炭素数2~12、更に好ましくは炭素数2~8のアシル基(例えばアセチル基、ベンゾイル基、トリクロロアセチル基);炭素数1~20、好ましくは炭素数2~12、更に好ましくは炭素数2~8のアシルオキシ基(例えばアセチルオキシ基、ベンゾイルオキシ基);炭素数1~20、好ましくは炭素数2~12、更に好ましくは炭素数2~8のアシルアミノ基(例えばアセチルアミノ基);炭素数1~20、好ましくは炭素数1~10、更に好ましくは炭素数1~8のスルホニル基(例えばメタンスルホニル基、エタンスルホニル基、ベンゼンスルホニル基);炭素数1~20、好ましくは炭素数1~10、更に好ましくは炭素数1~8のスルフィニル基(例えばメタンスルフィニル基、エタンスルフィニル基、ベンゼンスルフィニル基);炭素数1~20、好ましくは炭素数1~10、更に好ましくは炭素数1~8のスルホニルアミノ基(例えばメタンスルホニルアミノ基、エタンスルホニルアミノ基、ベンゼンスルホニルアミノ基);
炭素数0~20、好ましくは炭素数0~12、更に好ましくは炭素数0~8の置換若しくは無置換のアミノ基(例えば、無置換のアミノ基、メチルアミノ基、ジメチルアミノ基、ベンジルアミノ基、アニリノ基、ジフェニルアミノ基);炭素数0~15、好ましくは炭素数3~10、更に好ましくは炭素数3~6のアンモニウム基(例えばトリメチルアンモニウム基、トリエチルアンモニウム基);炭素数0~15、好ましくは炭素数1~10、更に好ましくは炭素数1~6のヒドラジノ基(例えばトリメチルヒドラジノ基);炭素数1~15、好ましくは炭素数1~10、更に好ましくは炭素数1~6のウレイド基(例えばウレイド基、N,N-ジメチルウレイド基);炭素数1~15、好ましくは炭素数1~10、更に好ましくは炭素数1~6のイミド基(例えばスクシンイミド基);炭素数1~20、好ましくは炭素数1~12、更に好ましくは炭素数1~8のアルキルチオ基(例えばメチルチオ基、エチルチオ基、プロピルチオ基);炭素数6~80、好ましくは炭素数6~40、更に好ましくは炭素数6~30のアリールチオ基(例えばフェニルチオ基、p-メチルフェニルチオ基、p-クロロフェニルチオ基、2-ピリジルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、4-プロピルシクロヘキシル-4’-ビフェニルチオ基、4-ブチルシクロヘキシル-4’-ビフェニルチオ基、4-ペンチルシクロヘキシル-4’-ビフェニルチオ基、4-プロピルフェニル-2-エチニル-4’-ビフェニルチオ基);炭素数1~80、好ましくは炭素数1~40、更に好ましくは炭素数1~30のヘテロアリールチオ基(例えば2-ピリジルチオ基、3-ピリジルチオ基、4-ピリジルチオ基、2-キノリルチオ基、2-フリルチオ基、2-ピロリルチオ基);
炭素数2~20、好ましくは炭素数2~12、更に好ましくは炭素数2~8のアルコキシカルボニル基(例えばメトキシカルボニル基、エトキシカルボニル基、2-ベンジルオキシカルボニル基);炭素数6~20、好ましくは炭素数6~12、更に好ましくは炭素数6~10のアリーロキシカルボニル基(例えばフェノキシカルボニル基);が挙げられる。これら置換基群Vはベンゼン環やナフタレン環が縮合した構造もとることができる。更に、これらの置換基上に更に置換基群Vから選ばれるいずれかの置換基が置換していてもよい。
R1~R8として好ましくは、水素原子、アルキル基、アリール基、ヘテロアリール基、アルコキシ基、アリールオキシ基、フッ素原子である。特に好ましくは、水素原子、アルキル基、アリール基、カルバゾリル基である。置換基は重水素置換されていてもよい。
Ar1はアリール基又はヘテロアリール基を表す。
Ar1が表すアリール基としては、炭素数6~30、好ましくは炭素数6~20、更に好ましくは炭素数6~15の置換若しくは無置換のアリール基(例えばフェニル基、ビフェニル基、ナフチル基、p-カルボキシフェニル基、p-ニトロフェニル基、3,5-ジクロロフェニル基、p-シアノフェニル基、m-フルオロフェニル基、p-トリル基、4-プロピルシクロヘキシル-4’-ビフェニル、4-ブチルシクロヘキシル-4’-ビフェニル、4-ペンチルシクロヘキシル-4’-ビフェニル、4-プロピルフェニル-2-エチニル-4’-ビフェニル、カルバゾリル基で置換されたフェニル基、カルバゾリル基で置換されたビフェニル基)であり、好ましくは、フェニル基、ビフェニル基であり、特に好ましくは、カルバゾリル基で置換されたフェニル基、カルバゾリル基で置換されたビフェニル基である。
Ar1が表すアリール基としては、炭素数6~30、好ましくは炭素数6~20、更に好ましくは炭素数6~15の置換若しくは無置換のアリール基(例えばフェニル基、ビフェニル基、ナフチル基、p-カルボキシフェニル基、p-ニトロフェニル基、3,5-ジクロロフェニル基、p-シアノフェニル基、m-フルオロフェニル基、p-トリル基、4-プロピルシクロヘキシル-4’-ビフェニル、4-ブチルシクロヘキシル-4’-ビフェニル、4-ペンチルシクロヘキシル-4’-ビフェニル、4-プロピルフェニル-2-エチニル-4’-ビフェニル、カルバゾリル基で置換されたフェニル基、カルバゾリル基で置換されたビフェニル基)であり、好ましくは、フェニル基、ビフェニル基であり、特に好ましくは、カルバゾリル基で置換されたフェニル基、カルバゾリル基で置換されたビフェニル基である。
Ar1が表すヘテロアリール基としては、炭素数1~20、好ましくは炭素数2~10、更に好ましくは炭素数4~6の置換若しくは無置換のヘテロアリール基(例えばN-カルバゾイル基、3-カルバゾイル基、2-ピリジル基、5-メチル-3-ピリジル基、2-チエニル基、2-フリル基、モルホリノ基、テトラヒドロフルフリル基、ピリジミジル基)である。
Ar1として好ましくは、アリール基であり、フェニル基、ビフェニル基であり、更に置換基を有していてもよい。
更なる置換基としては、上記置換基群Vが挙げられるが、好ましくは、アルキル基、アリール基、ヘテロアリール基であり、特にカルバゾリル基が好ましい。
Ar1として好ましくは、アリール基であり、フェニル基、ビフェニル基であり、更に置換基を有していてもよい。
更なる置換基としては、上記置換基群Vが挙げられるが、好ましくは、アルキル基、アリール基、ヘテロアリール基であり、特にカルバゾリル基が好ましい。
一般式(2)中、波線は結合位置を表す。
R9、R10、R11が表すアルキル基としては、上記置換基群Vに記載のものが挙げられ、好ましくはメチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基であり、より好ましくはメチル基、エチル基、プロピル基である。
R9、R10、R11が表すアリール基としては、上記置換基群Vに記載のものが挙げられ、好ましくはフェニル基、1-ナフチル基、2-ナフチル基、2-メチルフェニル基、3-メチルフェニル基、2-メトキシフェニル基であり、より好ましくはフェニル基である。
R9、R10、R11が表すヘテロアリール基としては、上記置換基群Vに記載のものが挙げられ、好ましくは2-ピリジル基、3-ピリジル基、2-チエニル基、2-キノリル基、2-フリル基であり、より好ましくは、2-ピリジル基である。
R9、R10、R11は更に置換基を有していてもよい。この場合の置換基としては、上記置換基群Vが挙げられ、好ましくは、アルキル、アリール、アルコキシ、アリールオキシ、ハロゲン原子であり、より好ましくはアルコキシ、ハロゲン原子である。
R9、R10、R11のうち少なくとも1つはアルキル基であり、かつ、R9、R10、R11は同時に全て同じ置換基を表すことはない。
R9、R10、R11の組み合わせとしては、以下のものが挙げられる。
R9=R10=R11=アルキル基
R9=R10=アルキル基、R11=アリール基
R9=R10=アルキル基、R11=ヘテロアリール基
R9=アルキル基、R10=R11=アリール基
R9=アルキル基、R10=R11=ヘテロアリール基
R9、R10、R11のうち少なくとも1つはアルキル基であり、かつ、R9、R10、R11は同時に全て同じ置換基を表すことはない。
R9、R10、R11の組み合わせとしては、以下のものが挙げられる。
R9=R10=R11=アルキル基
R9=R10=アルキル基、R11=アリール基
R9=R10=アルキル基、R11=ヘテロアリール基
R9=アルキル基、R10=R11=アリール基
R9=アルキル基、R10=R11=ヘテロアリール基
上記の中でも、R9、R10がメチル基であり、R11がエチルであることがより好ましい。
前記一般式(1)中、R3が、前記置換基(2)であることが好ましい。
前記一般式(1)で表される化合物が、下記一般式(3)で表される化合物であることが好ましい。
一般式(3)
一般式(3)
(一般式(3)中、Ar2はアリール基又はヘテロアリール基を表す。R16~R23はそれぞれ独立に水素原子又は置換基を表し、R16~R23の少なくとも1つ以上は下記置換基(2)を表す。なお、R18とR21が共に置換基(2)を表す場合、R18とR21は異なる置換基を表す。nは2以上の整数を表す。)
置換基(2)
置換基(2)
(一般式(2)中、R9、R10、R11はそれぞれ独立にアルキル基、アリール基、又はヘテロアリール基を表し、R9、R10、R11のうち少なくとも1つはアルキル基であり、かつ、R9、R10、R11は同時に全て同じ置換基を表すことはない。波線は結合位置を表す。)
Ar2はアリール基又はヘテロアリール基を表す。
Ar2が表すアリール基としては、炭素数6~30、好ましくは炭素数6~20、更に好ましくは炭素数6~15の置換若しくは無置換のアリール基(例えばフェニル基、ビフェニル基、ナフチル基、p-カルボキシフェニル基、p-ニトロフェニル基、3,5-ジクロロフェニル基、p-シアノフェニル基、m-フルオロフェニル基、p-トリル基、4-プロピルシクロヘキシル-4’-ビフェニル、4-ブチルシクロヘキシル-4’-ビフェニル、4-ペンチルシクロヘキシル-4’-ビフェニル、4-プロピルフェニル-2-エチニル-4’-ビフェニル)である。
Ar2が表すアリール基としては、炭素数6~30、好ましくは炭素数6~20、更に好ましくは炭素数6~15の置換若しくは無置換のアリール基(例えばフェニル基、ビフェニル基、ナフチル基、p-カルボキシフェニル基、p-ニトロフェニル基、3,5-ジクロロフェニル基、p-シアノフェニル基、m-フルオロフェニル基、p-トリル基、4-プロピルシクロヘキシル-4’-ビフェニル、4-ブチルシクロヘキシル-4’-ビフェニル、4-ペンチルシクロヘキシル-4’-ビフェニル、4-プロピルフェニル-2-エチニル-4’-ビフェニル)である。
Ar2が表すヘテロアリール基としては、炭素数1~20、好ましくは炭素数2~10、更に好ましくは炭素数4~6の置換若しくは無置換のヘテロアリール基(例えばN-カルバゾイル基、3-カルバゾイル基、2-ピリジル基、5-メチル-3-ピリジル基、2-チエニル基、2-フリル基、モルホリノ基、テトラヒドロフルフリル基、ピリジミジル基)である。
Ar2として好ましくは、アリール基であり、フェニル基、ビフェニル基であり、更に置換基を有していてもよい。
更なる置換基としては、上記置換基群Vが挙げられるが、好ましくは、アルキル基、アリール基、ヘテロアリール基であり、特にカルバゾリル基が好ましい。
更なる置換基としては、上記置換基群Vが挙げられるが、好ましくは、アルキル基、アリール基、ヘテロアリール基であり、特にカルバゾリル基が好ましい。
R16~R23は水素原子又は置換基を表し、R16~R23の少なくとも1つ以上は下記置換基(2)を表す。なお、R16とR23が共に置換基(2)を表す場合、R16とR23は異なる置換基を表す。置換基としては上記置換基群Vが挙げられる。
nは2以上の整数であるが、好ましくは、n=2、3、4であり、特に好ましくはn=2である。
一般式(1)で表される化合物の膜状態でのT1レベル(最低三重項励起状態のエネルギーレベル)は、45Kcal/mol以上(188.3KJ/mol以上)、85Kcal/mol以下(355.6KJ/mol以下)が好ましく、55Kcal/mol以上(251.0KJ/mol以上)、85Kcal/mol以下(355.6KJ/mol以下)がより好ましく、60Kcal/mol以上(272.0KJ/mol以上)、85Kcal/mol以下(355.6KJ/mol以下)が更に好ましい。
T1レベルは、化合物の膜状態での燐光スペクトルを測定し、スペクトルの短波端の波長から求めることができる。
一般式(1)で表される化合物のガラス転移温度(Tg)は80℃以上400℃以下であることが好ましく、100℃以上400℃以下であることがより好ましく、120℃以上400℃以下であることが更に好ましい。
以下に、本発明に使用可能な一般式(1)で表される化合物の具体例を示すが、本発明は以下の具体例によってなんら限定されるものではない。
一般式(1)で表される化合物は、種々の公知の合成法を組み合わせて合成することが可能である。例えば、Chemical Review,第46巻,第359~380頁,1947年に記載の方法を用いることができる。
本発明の組成物には、一般式(1)で表される化合物以外に、ホスト化合物、発光材料、ポリマー、素子性能を向上させる機能を有する化合物(例えば、酸化防止剤、水分補足剤、酸素補足剤など)、塗布溶剤、界面活性剤などを含有させることができる。
一般式(1)で表される化合物の含有量は、組成物の全質量に対して0.1~99質量%含ませることが好ましく、1~95質量%含ませることがより好ましく、5~95質量%含ませることがより好ましい。
一般式(1)で表される化合物の含有量は、組成物の全質量に対して0.1~99質量%含ませることが好ましく、1~95質量%含ませることがより好ましく、5~95質量%含ませることがより好ましい。
また、本発明は一般式(3)で表される化合物の製造方法にも関する。
以下、本発明の製造方法について説明する。
以下、本発明の製造方法について説明する。
〔一般式(3)で表される化合物の製造方法〕
本発明の製造方法は一般式(3)で表される化合物を、下記一般式(4)で表される化合物を用いて製造することを特徴とする製造方法である。
この方法を用いることにより、純度が高く素子性能の高い化合物を得ることが可能となる。
本発明の製造方法は一般式(3)で表される化合物を、下記一般式(4)で表される化合物を用いて製造することを特徴とする製造方法である。
この方法を用いることにより、純度が高く素子性能の高い化合物を得ることが可能となる。
(一般式(3)中、Ar2はアリール基又はヘテロアリール基を表す。R16~R23はそれぞれ独立に水素原子又は置換基を表し、R16~R23の少なくとも1つ以上は下記置換基(2)を表す。なお、R18とR21が共に置換基(2)を表す場合、R3とR6は異なる置換基を表す。nは2以上の整数を表す。)
置換基(2)
置換基(2)
(一般式(2)中、R9、R10、R11はそれぞれ独立にアルキル基、アリール基、又はヘテロアリール基を表し、R9、R10、R11のうち少なくとも1つはアルキル基であり、かつ、R9、R10、R11は同時に全て同じ置換基を表すことはない。波線は結合位置を表す。)
(一般式(4)中、R1~R8は水素原子又は置換基を表すが、R1~R8の少なくとも1つ以上は上記置換基(2)を表す。なお、R3とR6が共に置換基(2)を表す場合、R3とR6は異なる置換基を表す。)
一般式(3)で表される化合物を、一般式(4)を用いて製造する方法は、カップリング反応を利用する方法が挙げられ、なかでも、一般式(4)で表される化合物とハロゲン化合物とをカップリング反応により連結させる方法で合成することが好ましい。
一般式(3)で表される化合物及び一般式(4)で表される化合物の好ましい範囲及び具体例は前記と同様のものを挙げることができる。
本発明の方法によれば、一般式(4)で表される化合物を高収率で得ることができる。
カップリング反応としては、遷移金属触媒、特に、銅、ニッケル、パラジウム触媒を用いる方法が好ましく、具体的な方法は、たとえば、Mauger,C.C.Mignani,G.A.著AldrichimicaActa第39巻、17頁、2006年、Schlummer,B.、Scholz,U.著Advanced.Synthetic.Catalyst.第346巻、第1599頁、2004年、Anderson,K.W.著.Angew.Chem.Int.Ed.第45巻、第6523頁、2006年、Altman,R.A.、Buchwald,S.L.著Organic Letters第8巻,第2779頁、2006年、Kiyomori,A.著Tetrahedron Letters第40巻,第2657頁、1999年、Shafir,A.、Buchwald,S.L.著Journal of the American Chemical Society第128巻,第8742頁,2006年に記載の方法が挙げられる。
一般式(3)で表される化合物及び一般式(4)で表される化合物の好ましい範囲及び具体例は前記と同様のものを挙げることができる。
本発明の方法によれば、一般式(4)で表される化合物を高収率で得ることができる。
カップリング反応としては、遷移金属触媒、特に、銅、ニッケル、パラジウム触媒を用いる方法が好ましく、具体的な方法は、たとえば、Mauger,C.C.Mignani,G.A.著AldrichimicaActa第39巻、17頁、2006年、Schlummer,B.、Scholz,U.著Advanced.Synthetic.Catalyst.第346巻、第1599頁、2004年、Anderson,K.W.著.Angew.Chem.Int.Ed.第45巻、第6523頁、2006年、Altman,R.A.、Buchwald,S.L.著Organic Letters第8巻,第2779頁、2006年、Kiyomori,A.著Tetrahedron Letters第40巻,第2657頁、1999年、Shafir,A.、Buchwald,S.L.著Journal of the American Chemical Society第128巻,第8742頁,2006年に記載の方法が挙げられる。
一般式(3)で表される化合物を、一般式(4)を用いて製造する方法は溶媒の存在下で行うことが好ましい。溶媒としては、エーテル系、アミド系、ハロゲン化炭化水素、芳香族系炭化水素、エステル系が適宜用いられる。触媒としては、パラジウム、銅、ニッケルなどが挙げられるが、好ましくは、パラジウム、銅である。反応温度は、50℃~300℃の範囲が好ましく、より好ましくは、60℃~200℃の範囲である。反応時間は10分間~10日間の範囲が好ましく、より好ましくは1時間~24時間の範囲である。
〔カルバゾール化合物〕
本発明は下記カルバゾール化合物にも関する。本発明のカルバゾール化合物は新規化合物であり、高温、高湿の環境下での経時後においても高い効率を示し、かつ、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供し得る化合物の製造中間体として有用である。
本発明は下記カルバゾール化合物にも関する。本発明のカルバゾール化合物は新規化合物であり、高温、高湿の環境下での経時後においても高い効率を示し、かつ、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供し得る化合物の製造中間体として有用である。
〔有機電界発光素子〕
本発明の有機電界発光素子は、基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のいずれかが前記一般式(1)~(3)のいずれかで表される化合物を含む。
本発明において、一般式(1)で表される化合物は、有機層のいずれの層に含有されてもよい。一般式(1)で表される化合物の導入層としては、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのが好ましく、正孔輸送層、電子輸送層又は発光層に含まれていることが好ましく、発光層に含まれていることがより好ましい。
一般式(1)で表される化合物は発光層に含有させる場合、発光層の全質量に対して1~99質量%含ませることが好ましく、5~95質量%含ませることがより好ましく、10~95質量%含ませることがより好ましい。一般式(1)で表される化合物を発光層以外の層に更に含有させる場合は、50~100質量%含まれることが好ましく、60~100質量%含まれることがより好ましい。
本発明の有機電界発光素子は通常、その透明電極と背面電極との間に2~40ボルト程度の直流電圧(交流成分を含んでもよい)又は直流電流を印加すると発光する。また、本発明の発光素子を駆動する際には、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号、米国特許5828429号、同6023308号、日本特許第2784615号等に記載の駆動方法を利用することができる。以下、本発明で用いる発光積層体をなす各層について詳述するが、本発明はそれらにより限定されない。
本発明の有機電界発光素子は、基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のいずれかが前記一般式(1)~(3)のいずれかで表される化合物を含む。
本発明において、一般式(1)で表される化合物は、有機層のいずれの層に含有されてもよい。一般式(1)で表される化合物の導入層としては、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、励起子ブロック層、電荷ブロック層のいずれか、若しくは複数に含有されるのが好ましく、正孔輸送層、電子輸送層又は発光層に含まれていることが好ましく、発光層に含まれていることがより好ましい。
一般式(1)で表される化合物は発光層に含有させる場合、発光層の全質量に対して1~99質量%含ませることが好ましく、5~95質量%含ませることがより好ましく、10~95質量%含ませることがより好ましい。一般式(1)で表される化合物を発光層以外の層に更に含有させる場合は、50~100質量%含まれることが好ましく、60~100質量%含まれることがより好ましい。
本発明の有機電界発光素子は通常、その透明電極と背面電極との間に2~40ボルト程度の直流電圧(交流成分を含んでもよい)又は直流電流を印加すると発光する。また、本発明の発光素子を駆動する際には、特開平2-148687号、同6-301355号、同5-29080号、同7-134558号、同8-234685号、同8-241047号、米国特許5828429号、同6023308号、日本特許第2784615号等に記載の駆動方法を利用することができる。以下、本発明で用いる発光積層体をなす各層について詳述するが、本発明はそれらにより限定されない。
(A)基材
本発明で使用する基材は、水分を透過させない材料又は水分透過率が極めて低い材料からなるのが好ましい。該材料は、好ましくは有機化合物層から発せられる光を散乱又は減衰させない。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルやポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料等が挙げられる。中でも、耐熱性、寸法安定性、耐溶剤性、電気絶縁性及び加工性に優れ、かつ低通気性及び低吸湿性である有機材料が特に好ましく使用できる。基材は単一材料で形成しても、2種以上の材料で形成してもよい。基材の材料は透明電極材料に応じて適宜選択してよく、例えば透明電極が酸化インジウムスズ(ITO)である場合には、ITOとの格子定数の差が小さい材料を用いるのが好ましい。
本発明で使用する基材は、水分を透過させない材料又は水分透過率が極めて低い材料からなるのが好ましい。該材料は、好ましくは有機化合物層から発せられる光を散乱又は減衰させない。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルやポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、アリルジグリコールカーボネート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の有機材料等が挙げられる。中でも、耐熱性、寸法安定性、耐溶剤性、電気絶縁性及び加工性に優れ、かつ低通気性及び低吸湿性である有機材料が特に好ましく使用できる。基材は単一材料で形成しても、2種以上の材料で形成してもよい。基材の材料は透明電極材料に応じて適宜選択してよく、例えば透明電極が酸化インジウムスズ(ITO)である場合には、ITOとの格子定数の差が小さい材料を用いるのが好ましい。
基材の形状、構造、大きさ等は発光素子の用途及び目的に応じて適宜選択することができる。形状は板状とするのが一般的である。構造は単層構造であっても積層構造であってもよい。基材は無色透明であっても有色透明であってもよいが、発光層から発せられる光を散乱又は減衰させることがない点で無色透明であるのが好ましい。
基材の電極側の面、電極と反対側の面又はその両方に透湿防止層(ガスバリア層)を設けてもよい。透湿防止層を構成する材料としては窒化ケイ素、酸化ケイ素等の無機物を用いるのが好ましい。透湿防止層は高周波スパッタリング法等により成膜できる。また、基材には必要に応じてハードコート層やアンダーコート層を設けてもよい。
(B)透明電極
通常、透明電極は有機化合物層に正孔を供給する陽極としての機能を有するが、陰極として機能させることもでき、この場合背面電極を陽極として機能させる。以下、透明電極を陽極とする場合について説明する。
通常、透明電極は有機化合物層に正孔を供給する陽極としての機能を有するが、陰極として機能させることもでき、この場合背面電極を陽極として機能させる。以下、透明電極を陽極とする場合について説明する。
透明電極の形状、構造、大きさ等は特に制限されず、発光素子の用途及び目的に応じて適宜選択することができる。透明電極を形成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等を用いることができ、好ましくは仕事関数が4eV以上の材料を用いる。具体例としては、アンチモンをドープした酸化スズ(ATO)、フッ素をドープした酸化スズ(FTO)、半導性金属酸化物(酸化スズ、酸化亜鉛、酸化インジウム、酸化インジウムスズ(ITO)、酸化亜鉛インジウム(IZO)等)、金属(金、銀、クロム、ニッケル等)、これら金属と導電性金属酸化物との混合物又は積層物、無機導電性物質(ヨウ化銅、硫化銅等)、有機導電性材料(ポリアニリン、ポリチオフェン、ポリピロール等)及びこれとITOとの積層物等が挙げられる。
透明電極は印刷法、コーティング法等の湿式方法、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方法、CVD、プラズマCVD法等の化学的方法等によって基材上に形成することができる。形成方法は透明電極材料との適性を考慮して適宜選択すればよい。例えば、透明電極の材料としてITOを用いる場合には、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等を用いればよい。また透明電極の材料として有機導電性材料を用いる場合には、湿式製膜法を用いてよい。
透明電極のパターニングはフォトリソグラフィー等による化学的エッチング、レーザー等を用いた物理的エッチング等により行うことができる。また、マスクを用いた真空蒸着やスパッタリング、リフトオフ法、印刷法等によりパターニングしてもよい。
透明電極の形成位置は発光素子の用途及び目的に応じて適宜選択してよいが、基材上に形成するのが好ましい。このとき透明電極は基材の表面全体に形成しても一部のみに形成してもよい。
透明電極の厚みはその材料に応じて適宜選択すればよいが、通常10nm~50μmであり、好ましくは50nm~20μmである。透明電極の抵抗値は103Ω/□以下とするのが好ましく、102Ω/□以下とするのがより好ましい。透明電極は無色透明であっても有色透明であってもよい。透明電極側から発光を取り出すためには、その透過率は60%以上とするのが好ましく、70%以上とするのがより好ましい。透過率は分光光度計を用いた公知の方法に従って測定することができる。
また、「透明導電膜の新展開」(沢田豊監修、シーエムシー刊、1999年)等に詳細に記載されている電極も本発明に適用できる。特に耐熱性の低いプラスチック基材を用いる場合は、透明電極材料としてITO又はIZOを使用し、150℃以下の低温で製膜するのが好ましい。
(C)背面電極
通常、背面電極は有機化合物層に電子を注入する陰極としての機能を有するが、陽極として機能させることもでき、この場合上記透明電極を陰極として機能させる。以下、背面電極を陰極とする場合について説明する。
通常、背面電極は有機化合物層に電子を注入する陰極としての機能を有するが、陽極として機能させることもでき、この場合上記透明電極を陰極として機能させる。以下、背面電極を陰極とする場合について説明する。
背面電極の形状、構造、大きさ等は特に制限されず、発光素子の用途及び目的に応じて適宜選択することができる。背面電極を形成する材料としては、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物等を用いることができ、好ましくは仕事関数が4.5eV以下の材料を用いる。具体例としては、アルカリ金属(Li、Na、K、Cs等)、アルカリ土類金属(Mg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム-カリウム合金、リチウム-アルミニウム合金、マグネシウム-銀合金、インジウム、希土類金属(イッテルビウム等)等が挙げられる。これらは単独で使用してもよいが、安定性と電子注入性とを両立させるためには2種以上を併用するのが好ましい。これら材料の中で、電子注入性の観点からはアルカリ金属及びアルカリ土類金属が好ましく、保存安定性の観点からはアルミニウムを主体とする材料が好ましい。ここでアルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01~10質量%のアルカリ金属又はアルカリ土類金属との合金又は混合物(リチウム-アルミニウム合金、マグネシウム-アルミニウム合金等)を指す。背面電極の材料としては、特開平2-15595号、特開平5-121172号等に詳述されているものも使用できる。
背面電極は印刷法、コーティング法等の湿式方法、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方法、CVD、プラズマCVD法等の化学的方法等によって形成することができる。形成方法は背面電極材料との適性を考慮して適宜選択すればよい。例えば、背面電極の材料として2種以上の金属等を用いる場合には、その材料を同時又は順次にスパッタして形成できる。
背面電極のパターニングはフォトリソグラフィー等による化学的エッチング、レーザー等を用いた物理的エッチング等により行うことができる。また、マスクを用いた真空蒸着やスパッタリング、リフトオフ法、印刷法等によりパターニングしてもよい。
背面電極の形成位置は発光素子の用途及び目的に応じて適宜選択してよいが、有機化合物層上に形成するのが好ましい。このとき背面電極は有機化合物層の表面全体に形成しても一部のみに形成してもよい。また、背面電極と有機化合物層との間にアルカリ金属又はアルカリ土類金属のフッ化物等からなる誘電体層を0.1~5nmの厚みで設置してもよい。誘電体層は真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
背面電極の厚みはその材料に応じて適宜選択すればよいが、通常10nm~5μmであり、好ましくは50nm~1μmである。背面電極は透明であっても不透明であってもよい。透明背面電極は、上述した材料の層を1~10nmの厚みに薄く製膜し、更にITOやIZO等の透明導電性材料を積層して形成してよい。
(D)発光層
本発明の発光素子において、発光層は蛍光発光性化合物(蛍光発光材料)若しくは燐光発光性化合物(燐光発光材料)を含有する。好ましくは燐光発光性化合物である。燐光発光性化合物は、三重項励起子から発光することができる化合物であれば特に限定されることはない。燐光発光性化合物としては、オルトメタル化錯体又はポルフィリン錯体を用いるのが好ましく、オルトメタル化錯体を用いるのがより好ましい。ポルフィリン錯体の中ではポルフィリン白金錯体が好ましい。本発明においては、燐光発光材料がIr又はPt錯体であることが好ましい。燐光発光性化合物は単独で使用しても2種以上を併用してもよい。
本発明の発光素子において、発光層は蛍光発光性化合物(蛍光発光材料)若しくは燐光発光性化合物(燐光発光材料)を含有する。好ましくは燐光発光性化合物である。燐光発光性化合物は、三重項励起子から発光することができる化合物であれば特に限定されることはない。燐光発光性化合物としては、オルトメタル化錯体又はポルフィリン錯体を用いるのが好ましく、オルトメタル化錯体を用いるのがより好ましい。ポルフィリン錯体の中ではポルフィリン白金錯体が好ましい。本発明においては、燐光発光材料がIr又はPt錯体であることが好ましい。燐光発光性化合物は単独で使用しても2種以上を併用してもよい。
オルトメタル化錯体とは、山本明夫著「有機金属化学 基礎と応用」,150頁及び232頁,裳華房社(1982年)、H.Yersin著「Photochemistry and Photophysics of Coordination Compounds」,71~77頁及び135~146頁,Springer-Verlag社(1987年)等に記載されている化合物群の総称である。オルトメタル化錯体を形成する配位子は特に限定されないが、2-フェニルピリジン誘導体、7,8-ベンゾキノリン誘導体、2-(2-チエニル)ピリジン誘導体、2-(1-ナフチル)ピリジン誘導体又は2-フェニルキノリン誘導体であるのが好ましい。これら誘導体は置換基を有してもよい。
また、これらのオルトメタル化錯体形成に必須の配位子以外に他の配位子を有していてもよい。オルトメタル化錯体を形成する中心金属としては、遷移金属であればいずれも使用可能であり、本発明ではロジウム、白金、金、イリジウム、ルテニウム、パラジウム等を好ましく用いることができる。中でもイリジウムが特に好ましい。このようなオルトメタル化錯体を含む有機化合物層は、発光輝度及び発光効率に優れている。オルトメタル化錯体については、特願2000-254171号の段落番号0152~0180にもその具体例が記載されている。
また、これらのオルトメタル化錯体形成に必須の配位子以外に他の配位子を有していてもよい。オルトメタル化錯体を形成する中心金属としては、遷移金属であればいずれも使用可能であり、本発明ではロジウム、白金、金、イリジウム、ルテニウム、パラジウム等を好ましく用いることができる。中でもイリジウムが特に好ましい。このようなオルトメタル化錯体を含む有機化合物層は、発光輝度及び発光効率に優れている。オルトメタル化錯体については、特願2000-254171号の段落番号0152~0180にもその具体例が記載されている。
本発明で用いるオルトメタル化錯体は、Inorg.Chem.,30,1685, 1991、Inorg.Chem.,27,3464,1988、Inorg.Chem.,33,545,1994、Inorg.Chim.Acta,181,245,1991、J.Organomet.Chem.,335,293,1987、J.Am.Chem.Soc.,107,1431,1985等に記載の公知の手法で合成することができる。
発光層中の発光性化合物の含有量は特に制限されないが、例えば0.1~70質量%であり、1~20質量%であるのが好ましい。燐光発光性化合物の含有量が0.1質量%未満であるか、又は70質量%を超えると、その効果が十分に発揮されない場合がある。
本発明の発光素子の外部量子効率としては、5%以上が好ましく、10%以上がより好ましく、13%以上が更に好ましい。外部量子効率の数値は20℃で素子を駆動したときの外部量子効率の最大値、若しくは、20℃で素子を駆動した時の100~300cd/m2付近(好ましくは200~300cd/m2)での外部量子効率の値を用いることができる。
本発明の発光素子の内部量子効率としては、30%以上が好ましく、50%以上が更に好ましく、70%以上が更に好ましい。素子の内部量子効率は 内部量子効率=外部量子効率/光取り出し効率 で算出される。通常の有機EL素子では光取り出し効率は約20%であるが、基板の形状、電極の形状、有機層の膜厚、無機層の膜厚、有機層の屈折率、無機層の屈折率等を工夫することにより、光取り出し効率を20%以上にすることが可能で有る。
本発明の発光層に含まれるホスト材料、電子輸送層、及び、ホール輸送材料のガラス転移点は90℃以上400℃以下であることが好ましく、100℃以上380℃以下であることがより好ましく、120℃以上370℃以下であることが更に好ましく、140℃以上360℃以下であることが特に好ましい。
本発明において、発光層は必要に応じてホスト化合物、正孔輸送材料、電子輸送材料、電気的に不活性なポリマーバインダー等を含有してもよい。
ホスト化合物としては、本発明の一般式(1)で表される化合物であることが好ましいが、更に、別のホスト化合物を含んでいてもよい。そのようなホスト材料としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリデン化合物、ポルフィリン化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体、メタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾール等を配位子とする金属錯体、ポリシラン化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等が挙げられる。ホスト化合物は1種単独で使用しても2種以上を併用してもよい。
本発明の化合物を含有する発光素子の有機層の形成方法は、特に限定されるものではないが、抵抗加熱蒸着、電子ビーム、スパッタリング、分子積層法、湿式製膜方法として、各種コート法(スプレーコート法、ディップコート法、含浸法、ロールコート法、グラビアコート法、リバースコート法、ロールブラッシュ法、エアーナイフコート法、カーテンコート法、スピンコート法、フローコート法、バーコート法、マイクログラビアコート法、エアードクターコート、ブレードコート法、スクイズコート法、トランスファーロールコート法、キスコート法、キャストコート法、エクストルージョンコート法、ワイヤーバーコート法、スクリーンコート法等)、インクジェット法、印刷法、転写法、スプレー塗布法などの方法が用いられ、特性面、製造面で湿式製膜方法、抵抗加熱蒸着が好ましく、湿式製膜方法としては、コーティング法、スプレー塗布、インクジェット法が好ましい。
湿式製膜方法を用いると有機化合物層を容易に大面積化することができ、高輝度で発光効率に優れた発光素子が低コストで効率よく得られ、好ましい。湿式製膜方法は有機化合物層の材料に応じて適宜選択できる。湿式製膜方法により製膜した場合は製膜した後に乾燥してよい。乾燥は湿式製膜層が損傷しないように温度、圧力等の条件を選択して行う。
湿式製膜方法を用いると有機化合物層を容易に大面積化することができ、高輝度で発光効率に優れた発光素子が低コストで効率よく得られ、好ましい。湿式製膜方法は有機化合物層の材料に応じて適宜選択できる。湿式製膜方法により製膜した場合は製膜した後に乾燥してよい。乾燥は湿式製膜層が損傷しないように温度、圧力等の条件を選択して行う。
上記湿式製膜方法で用いる塗布液は通常、有機化合物層の材料と、それを溶解又は分散するための溶剤からなる。溶剤は特に限定されず、有機化合物層に用いる材料に応じて選択すればよい。溶剤の具体例としては、ハロゲン系溶剤(クロロホルム、四塩化炭素、ジクロロメタン、1,2-ジクロロエタン、クロロベンゼン等)、ケトン系溶剤(アセトン、メチルエチルケトン、ジエチルケトン、n-プロピルメチルケトン、シクロヘキサノン、イソホロン、メントン等)、芳香族系溶剤(ベンゼン、トルエン、キシレン、デカリン、ナフタレン、ビフェニル、アルキル置換ビフェニル等)、エステル系溶剤(酢酸エチル、酢酸 n-プロピル、酢酸 n-ブチル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン、炭酸ジエチル等)、エーテル系溶剤(テトラヒドロフラン、ジオキサン等)、アミド系溶剤(ジメチルホルムアミド、ジメチルアセトアミド等)、ジメチルスルホキシド、水等が挙げられる。なお、塗布液中の溶剤に対する固形分量は特に制限はなく、塗布液の粘度も製膜方法に応じて任意に選択することができる。
使用する反応溶媒については、特に限定されない。これらの溶媒の好ましい例には、水、アルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類が含まれる。
使用する反応溶媒については、特に限定されない。これらの溶媒の好ましい例には、水、アルコール類、芳香族炭化水素類、エーテル類、ケトン類、エステル類が含まれる。
アルコール類としては、例えば1価アルコール又は2価アルコールを挙げることができ、このうち1価アルコールとしては炭素数1~8の飽和脂肪族アルコールが好ましい。これらのアルコール類の具体例としては、メタノール、エタノール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、sec -ブチルアルコール、tert-ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、エチレングリコールモノブチルエーテル、酢酸エチレングリコールモノエチルエーテルなどを挙げることができる。
また、芳香族炭化水素類の具体例としては、ベンゼン、トルエン、キシレンなどを、エーテル類の具体例としては、テトラヒドロフラン、ジオキサンなど、ケトン類の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンなどを、エステル類の具体例としては、酢酸エチル、酢酸プロピル、酢酸ブチル、炭酸プロピレンなどを挙げることができる。
好ましい有機溶媒は、沸点が100℃以上のものであり、より好ましくは沸点が120℃以上である。沸点がこの範囲にあると、均一な膜を形成するのに好ましい。
更に、有機溶剤は2種以上混合して用いても良い。2種以上混合する場合、第一の溶媒として発光層に含まれる発光材料及びホスト材料を溶解し、沸点が200℃以上の溶媒から選ばれる少なくとも一種を含有し、第一の溶媒の沸点は200~300℃であることが好ましく、200~250℃であることがより好ましい。
これにより、発光層塗布膜の平滑性の向上と、隣接層との密着性の向上し、有機EL素子の発光効率、及び素子耐久性の向上が可能になる。
第一の溶媒としては、例えばアミド系溶媒、アミド系を除く非プロトン性極性溶媒、高沸点疎水性溶媒が挙げられる。
アミド系溶媒としては、N-メチル-2-ピロリドン(沸点202℃)、2-ピロリドン(沸点245℃)、1-アセチル-2-ピロリドン(沸点231℃)、N-エチル-2-ピロリドン(沸点218℃)、1,3-ジメチル-2-イミダゾリジノン(沸点220℃)、ホルムアミド(沸点210.5℃)、N,N-ジブチルホルムアミド(沸点243℃)、m-キシリレンジアミン(沸点245℃)など、若しくはこれらの誘導体を挙げることができる。
アミド系を除く非プロトン性極性溶媒としては、炭酸プロピレン(沸点243℃)、γ―ブチロラクトン(沸点204℃)、γ―バレロラクトン(沸点207℃)、α-アセチル-γ-ブチロラクトン(沸点235℃)など、もしくこれらの誘導体を挙げることができる。
高沸点疎水性溶媒としては、シクロヘキシルベンゼン(沸点240℃)、1,2,3,4-テトラメチルベンゼン(沸点203℃)、3-メチルビフェニル(沸点272℃)、4-メチルビフェニル(沸点262℃)、1-メチルナフタレン(沸点244.8℃)など、若しくはこれらの誘導体を挙げることができる。
発光材料の溶解性の観点から、アミド系溶媒が好ましく。中でもN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンが好ましく、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンがより好ましい。
第一の溶媒は、更に2種以上混合したものであってもよい。
更に、有機溶剤は2種以上混合して用いても良い。2種以上混合する場合、第一の溶媒として発光層に含まれる発光材料及びホスト材料を溶解し、沸点が200℃以上の溶媒から選ばれる少なくとも一種を含有し、第一の溶媒の沸点は200~300℃であることが好ましく、200~250℃であることがより好ましい。
これにより、発光層塗布膜の平滑性の向上と、隣接層との密着性の向上し、有機EL素子の発光効率、及び素子耐久性の向上が可能になる。
第一の溶媒としては、例えばアミド系溶媒、アミド系を除く非プロトン性極性溶媒、高沸点疎水性溶媒が挙げられる。
アミド系溶媒としては、N-メチル-2-ピロリドン(沸点202℃)、2-ピロリドン(沸点245℃)、1-アセチル-2-ピロリドン(沸点231℃)、N-エチル-2-ピロリドン(沸点218℃)、1,3-ジメチル-2-イミダゾリジノン(沸点220℃)、ホルムアミド(沸点210.5℃)、N,N-ジブチルホルムアミド(沸点243℃)、m-キシリレンジアミン(沸点245℃)など、若しくはこれらの誘導体を挙げることができる。
アミド系を除く非プロトン性極性溶媒としては、炭酸プロピレン(沸点243℃)、γ―ブチロラクトン(沸点204℃)、γ―バレロラクトン(沸点207℃)、α-アセチル-γ-ブチロラクトン(沸点235℃)など、もしくこれらの誘導体を挙げることができる。
高沸点疎水性溶媒としては、シクロヘキシルベンゼン(沸点240℃)、1,2,3,4-テトラメチルベンゼン(沸点203℃)、3-メチルビフェニル(沸点272℃)、4-メチルビフェニル(沸点262℃)、1-メチルナフタレン(沸点244.8℃)など、若しくはこれらの誘導体を挙げることができる。
発光材料の溶解性の観点から、アミド系溶媒が好ましく。中でもN-メチル-2-ピロリドン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンが好ましく、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンがより好ましい。
第一の溶媒は、更に2種以上混合したものであってもよい。
第二の溶媒としては、水との共沸温度が99℃以下の溶媒から選ばれる少なくとも一種のものが好ましい。この場合、水との共沸温度は98~50℃であることが好ましく、80~50℃であることが好ましい。
これにより、製膜した有機層中の水分を除去でき、有機電界発光素子の長寿命化を可能にすることができる。
第二の溶媒としてはエタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-n-ブトキシエタノール、プロピレングリコールモノメチルエーテルアセテート、メチルエチルケトン、ヘキサン、トルエン、クメン、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、酢酸イソプロピルなどを挙げることができる。
第二の溶媒は、更に2種以上混合したものであってもよい。
これにより、製膜した有機層中の水分を除去でき、有機電界発光素子の長寿命化を可能にすることができる。
第二の溶媒としてはエタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-n-ブトキシエタノール、プロピレングリコールモノメチルエーテルアセテート、メチルエチルケトン、ヘキサン、トルエン、クメン、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸プロピル、酢酸イソプロピルなどを挙げることができる。
第二の溶媒は、更に2種以上混合したものであってもよい。
第一の溶媒と第二の溶媒の好ましい組み合わせとしては、第一の溶媒としてアミド系溶媒から選択される溶媒と、第二の溶媒として、アルコール系溶媒から選択される溶媒とを用いることが好ましい。また、第一の溶媒としてN-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノンから選択される溶媒と、第二の溶媒として、2-n-ブトキシエタノール、プロピレングリコールモノメチルエーテルアセテートから選択される溶媒とを用いることがより好ましい。
第一の溶媒と第二の溶媒の使用量は、質量比で50:50~95:5が好ましく、60:40~90:10がより好ましい。この範囲であれば、発光材料、ホスト材料の溶解性を維持することができ、析出、相分離することなく、本発明のホスト材料中に発光材料が均一に分散された有機膜を製膜できるためである。
更に、塗布液中には、更に第三の溶媒として多価アルコールを含有することが好ましい。これにより、塗布液中の溶存酸素濃度を低減することができる。かかる第三の溶媒としては、例えばグリセリン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等の多価アルコールが挙げられ、これらを2種以上混合したものであってもよい。多価アルコールがエチレングリコール、ジエチレングリコール、グリセリンより選択される少なくとも一つであることが好ましく、より好ましくはエチレングリコール、又はジエチレングリコールである。 第三の溶媒の添加量としては、塗布液全体量に対し2~20質量%が好ましく、5~10質量%がより好ましい。
なお、第一の溶媒、第二の溶媒、及び第三の溶媒は、精製処理したものが好ましい。具体的には、(1)シリカゲル、アルミナ、カチオン性イオン交換樹脂、アニオン性イオン交換樹脂等のカラム精製処理、(2)無水硫酸ナトリウム、無水硫酸カルシウム、硫酸マグネシウム、硫酸ストロンチウム、硫酸バリウム、酸化バリウム、酸化カルシウム、酸化マグネシウム、モレキュラーシーブス、ゼオライト等の脱水処理、(3)蒸留処理、(4)不活性ガス(窒素、アルゴン)等によるバブリング処理、(4)濾過、遠心沈降等による不純物の除去処理等、任意の方法を用いることができる。より好ましくは、カラム精製処理と脱水処理による精製方法である。
なお、第一の溶媒、第二の溶媒、及び第三の溶媒は、精製処理したものが好ましい。具体的には、(1)シリカゲル、アルミナ、カチオン性イオン交換樹脂、アニオン性イオン交換樹脂等のカラム精製処理、(2)無水硫酸ナトリウム、無水硫酸カルシウム、硫酸マグネシウム、硫酸ストロンチウム、硫酸バリウム、酸化バリウム、酸化カルシウム、酸化マグネシウム、モレキュラーシーブス、ゼオライト等の脱水処理、(3)蒸留処理、(4)不活性ガス(窒素、アルゴン)等によるバブリング処理、(4)濾過、遠心沈降等による不純物の除去処理等、任意の方法を用いることができる。より好ましくは、カラム精製処理と脱水処理による精製方法である。
本発明の有機EL素子用塗布液の粘度は、1mPa・s~50mPa・sであることが好ましく、2mPa・s~10mPa・sであることがより好ましい。
また、本発明の有機EL素子用塗布液は、表面張力が20mN/m~70mN/mであって、25mN/m~40mN/mが好ましい。この範囲の表面張力にすることにより、はじきやムラがない平滑な塗布膜を形成することができる。
また、本発明の有機EL素子用塗布液は、上述した粘度及び表面張力の少なくとも1つについて、前記数値範囲を満足することが好ましいが、2以上の任意の組合せの特性について条件を満足するもの、更にはすべての特性について満足するものであってもよい。これによって、塗布に適した組成物とすることができる。
正孔輸送材料は陽極から正孔を注入する機能、正孔を輸送する機能、及び陰極から注入された電子を障壁する機能のいずれかを有しているものであれば特に限定されず、低分子材料であっても高分子材料であってもよい。その具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリデン化合物、ポルフィリン化合物、ポリシラン化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等が挙げられる。これらは単独で使用しても2種以上を混合して使用してもよい。
電子輸送材料は陰極から電子を注入する機能、電子を輸送する機能、及び陽極から注入された正孔を障壁する機能のいずれかを有しているものであれば特に限定されず、例えばトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体、メタロフタロシアニン、ベンゾオキサゾールやベンゾチアゾール等を配位子とする金属錯体、アニリン共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等が使用可能である。
ポリマーバインダーとしては、ポリ塩化ビニル、ポリカーボネート、ポリスチレン、ポリメチルメタクリレート、ポリブチルメタクリレート、ポリエステル、ポリスルホン、ポリフェニレンオキシド、ポリブタジエン、炭化水素樹脂、ケトン樹脂、フェノキシ樹脂、ポリアミド、エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレタン、メラミン樹脂、不飽和ポリエステル、アルキド樹脂、エポキシ樹脂、シリコン樹脂、ポリビニルブチラール、ポリビニルアセタール等が使用可能である。ポリマーバインダーを含有する発光層は、湿式製膜法によって、容易にかつ大面積に塗布形成することができる。
発光層の厚みは10~200nmとするのが好ましく、20~80nmとするのがより好ましい。厚みが200nmを超えると駆動電圧が上昇する場合があり、10nm未満であると発光素子が短絡する場合がある。
(E)電子輸送層
本発明の発光素子は、必要に応じて上述した電子輸送材料からなる電子輸送層を有してよい。電子輸送層は上述のポリマーバインダーを含有してもよい。電子輸送層の厚みは10~200nmとするのが好ましく、20~80nmとするのがより好ましい。厚みが200nmを越えると駆動電圧が上昇する場合があり、10nm未満であると発光素子が短絡する場合がある。
本発明の発光素子は、必要に応じて上述した電子輸送材料からなる電子輸送層を有してよい。電子輸送層は上述のポリマーバインダーを含有してもよい。電子輸送層の厚みは10~200nmとするのが好ましく、20~80nmとするのがより好ましい。厚みが200nmを越えると駆動電圧が上昇する場合があり、10nm未満であると発光素子が短絡する場合がある。
(F)正孔輸送層
本発明の発光素子は、必要に応じて上述した正孔輸送材料からなる正孔輸送層を有してよい。正孔輸送層は上述のポリマーバインダーを含有してもよい。正孔輸送層の厚みは10~200nmとするのが好ましく、20~80nmとするのがより好ましい。厚みが200nmを越えると駆動電圧が上昇する場合があり、10nm未満であると発光素子が短絡する場合がある。
本発明の発光素子は、必要に応じて上述した正孔輸送材料からなる正孔輸送層を有してよい。正孔輸送層は上述のポリマーバインダーを含有してもよい。正孔輸送層の厚みは10~200nmとするのが好ましく、20~80nmとするのがより好ましい。厚みが200nmを越えると駆動電圧が上昇する場合があり、10nm未満であると発光素子が短絡する場合がある。
(G)その他
本発明の発光素子は、特開平7-85974号、同7-192866号、同8-22891号、同10-275682号、同10-106746号等に記載の保護層を有していてもよい。保護層は発光素子の最上面に形成する。ここで最上面とは、基材、透明電極、有機化合物層及び背面電極をこの順に積層する場合には背面電極の外側表面を指し、基材、背面電極、有機化合物層及び透明電極をこの順に積層する場合には透明電極の外側表面を指す。保護層の形状、大きさ、厚み等は特に限定されない。保護層をなす材料は、水分や酸素等の発光素子を劣化させ得るものが素子内に侵入又は透過するのを抑制する機能を有しているものであれば特に限定されず、酸化ケイ素、二酸化ケイ素、酸化ゲルマニウム、二酸化ゲルマニウム等が使用できる。
本発明の発光素子は、特開平7-85974号、同7-192866号、同8-22891号、同10-275682号、同10-106746号等に記載の保護層を有していてもよい。保護層は発光素子の最上面に形成する。ここで最上面とは、基材、透明電極、有機化合物層及び背面電極をこの順に積層する場合には背面電極の外側表面を指し、基材、背面電極、有機化合物層及び透明電極をこの順に積層する場合には透明電極の外側表面を指す。保護層の形状、大きさ、厚み等は特に限定されない。保護層をなす材料は、水分や酸素等の発光素子を劣化させ得るものが素子内に侵入又は透過するのを抑制する機能を有しているものであれば特に限定されず、酸化ケイ素、二酸化ケイ素、酸化ゲルマニウム、二酸化ゲルマニウム等が使用できる。
保護層の形成方法は特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子センエピタキシ法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等が適用できる。
また、発光素子には水分や酸素の侵入を防止するための封止層を設けるのが好ましい。
封止層を形成する材料としては、テトラフルオロエチレンと少なくとも1種のコモノマーとの共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリユリア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレン又はジクロロジフルオロエチレンと他のコモノマーとの共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質、金属(In、Sn、Pb、Au、Cu、Ag、Al、Tl、Ni等)、金属酸化物(MgO、SiO、SiO2、Al2O3、GeO、NiO、CaO、BaO、Fe2O3、Y2O3、TiO2等)、金属フッ化物(MgF2、LiF、AlF3、CaF2等)、液状フッ素化炭素(パーフルオロアルカン、パーフルオロアミン、パーフルオロエーテル等)、該液状フッ素化炭素に水分や酸素の吸着剤を分散させたもの等が使用可能である。
封止層を形成する材料としては、テトラフルオロエチレンと少なくとも1種のコモノマーとの共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリユリア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレン又はジクロロジフルオロエチレンと他のコモノマーとの共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質、金属(In、Sn、Pb、Au、Cu、Ag、Al、Tl、Ni等)、金属酸化物(MgO、SiO、SiO2、Al2O3、GeO、NiO、CaO、BaO、Fe2O3、Y2O3、TiO2等)、金属フッ化物(MgF2、LiF、AlF3、CaF2等)、液状フッ素化炭素(パーフルオロアルカン、パーフルオロアミン、パーフルオロエーテル等)、該液状フッ素化炭素に水分や酸素の吸着剤を分散させたもの等が使用可能である。
以下に実施例を挙げて本発明を更に具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、操作等は本発明の主旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の具体例に制限されるものではない。
〔合成例1〕(3-t-アミルカルバゾールの合成)
4-t-アミルシクロヘキサノン 20g(0.12mol)(東京化成品)とフェニルヒドラジン 12.85g(0.12mol)(東京化成品)のエタノール溶液に、濃塩酸(0.2mol相当)を滴下して、加熱還流を6時間させた後、冷却後、析出した固体をロ別した。得られた粗結晶をシリカゲルカラム(溶離液、ヘキサン/酢酸エチル)により精製して、化合物M-1 18.5g(収率65%)を白色固体として得た。
1H NMR(CDCl3):δ7.6(s,1H)、7.45(d,1H,J=10Hz)、7.26(d,1H,J=10Hz)、7.1-7.0(m,2H)、2.8-2.7(m,3H)、2.4(t,1H,J=15Hz)、2.05(d,1H,J=15Hz)、1.7-1.55(m,1H)、1.51.3(m,3H)、0.95(s,6H)、0.85(t,3H,J=10Hz)
1H NMR(CDCl3):δ7.6(s,1H)、7.45(d,1H,J=10Hz)、7.26(d,1H,J=10Hz)、7.1-7.0(m,2H)、2.8-2.7(m,3H)、2.4(t,1H,J=15Hz)、2.05(d,1H,J=15Hz)、1.7-1.55(m,1H)、1.51.3(m,3H)、0.95(s,6H)、0.85(t,3H,J=10Hz)
化合物M-1 5.0g(21mmol)をキシレン中に溶解させて、パラジウム/カーボン触媒(東京化成品)を0.1g添加した後、窒素雰囲気下、加熱還流を80時間行った。冷却後、触媒をロ別し、ロ液を減圧下留去し、得られた残渣をシリカゲルカラム(溶離液、ヘキサン/酢酸エチル)により精製し、3-t-アミルカルバゾール(Cz-1)を白色固体として4.0g(収率82%)得た。
1H NMR(CDCl3):δ8.05(d,1H,J=10Hz)、8.0(s,1H)、7.95(s,1H)、7.5-7.4(m,4H)、7.2-7.15(m,1H)、1.75(q,2H,J=10Hz)、1.4(s,6H,J=15Hz)、0.7(t,3H,J=10Hz)
1H NMR(CDCl3):δ8.05(d,1H,J=10Hz)、8.0(s,1H)、7.95(s,1H)、7.5-7.4(m,4H)、7.2-7.15(m,1H)、1.75(q,2H,J=10Hz)、1.4(s,6H,J=15Hz)、0.7(t,3H,J=10Hz)
〔合成例2〕(本発明の化合物No.35の合成)
Cz-1 2.0g(8.4mmol)、4,4’-ジブロモベンゼン1.1g(3.4mmol)、酢酸パラジウム61mg、炭酸ルビジウム3.1gをキシレンに添加した後、P-(t-Bu)3 218mgを添加し、窒素雰囲気下、加熱還流を4時間行った。反応液を冷却後、1規定塩酸を加え、酢酸エチルエステルで有機物を抽出後、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。得られた残渣をシリカゲルカラム(溶離液、ヘキサン/酢酸エチル)により精製し、目的化合物(No.35)を白色固体として1.7g(収率81%)得た。
1H NMR(CDCl3):δ8.18(d,2H,J=10Hz)、8.10(s,2H)、7.92(d,4H,J=12Hz)、7.70(d,4H,J=12Hz)、7.5-7.3(m,8H)、7.3(t,2H,J=10Hz)、1.8(q,4H,J=12Hz)、1.42(s,6H)、0.74(t,3H,J=12Hz)
1H NMR(CDCl3):δ8.18(d,2H,J=10Hz)、8.10(s,2H)、7.92(d,4H,J=12Hz)、7.70(d,4H,J=12Hz)、7.5-7.3(m,8H)、7.3(t,2H,J=10Hz)、1.8(q,4H,J=12Hz)、1.42(s,6H)、0.74(t,3H,J=12Hz)
〔実施例1〕
(緑色蒸着型OLED素子)
洗浄したITO基板を蒸着装置に入れ、α―NPDを100nm蒸着した。
この上に、Ir(ppy)3と本発明の化合物No.35を5:95の比率(質量比)で50nm蒸着し、この上に、Balqを6nm蒸着し、この上に、Alqを20nm蒸着した。この上に、マグネシウムと銀を10:1の比率(モル比)で100nm共蒸着し、EL素子を作製した。作製した積層体を、アルゴンガスで置換したグロ-ブボックス内で、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。
東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加して発光させると、520nm付近に極大発光波長を有する発光が得られた。
(性能評価)
(1)湿熱経時耐久性
上記素子を、湿度95%、温度80℃の環境下にて1週間放置させた。放置させた後の効率を評価した。結果を表1に示す。
評価基準は以下の通りである。
(緑色蒸着型OLED素子)
洗浄したITO基板を蒸着装置に入れ、α―NPDを100nm蒸着した。
この上に、Ir(ppy)3と本発明の化合物No.35を5:95の比率(質量比)で50nm蒸着し、この上に、Balqを6nm蒸着し、この上に、Alqを20nm蒸着した。この上に、マグネシウムと銀を10:1の比率(モル比)で100nm共蒸着し、EL素子を作製した。作製した積層体を、アルゴンガスで置換したグロ-ブボックス内で、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。
東陽テクニカ製ソースメジャーユニット2400型を用いて、直流定電圧をEL素子に印加して発光させると、520nm付近に極大発光波長を有する発光が得られた。
(性能評価)
(1)湿熱経時耐久性
上記素子を、湿度95%、温度80℃の環境下にて1週間放置させた。放置させた後の効率を評価した。結果を表1に示す。
評価基準は以下の通りである。
◎:湿熱経時前の外部量子効率に比べ、効率の低下幅が5%未満
○:湿熱経時前の外部量子効率に比べ、効率の低下幅が5%~10%未満の範囲内
△:湿熱経時前の外部量子効率に比べ、効率の低下幅が10%~20%未満の範囲内
×:湿熱経時前の外部量子効率に比べ、効率の低下幅が20%以上
○:湿熱経時前の外部量子効率に比べ、効率の低下幅が5%~10%未満の範囲内
△:湿熱経時前の外部量子効率に比べ、効率の低下幅が10%~20%未満の範囲内
×:湿熱経時前の外部量子効率に比べ、効率の低下幅が20%以上
(2)駆動時初期における発光輝度変化
駆動電流密度2.5mA/cm2にて駆動させた発光輝度を測定し、駆動開始時点における発光輝度に対する、1時間駆動させた後の発光輝度の低下の割合を求めた。測定は、有機EL素子の正面における分光放射輝度を分光放射輝度計(コニカミノルタ(株)製CS-1000)を用いて測定した。結果を表1に示す。評価基準は以下の通りである。
駆動電流密度2.5mA/cm2にて駆動させた発光輝度を測定し、駆動開始時点における発光輝度に対する、1時間駆動させた後の発光輝度の低下の割合を求めた。測定は、有機EL素子の正面における分光放射輝度を分光放射輝度計(コニカミノルタ(株)製CS-1000)を用いて測定した。結果を表1に示す。評価基準は以下の通りである。
◎:駆動開始時の発光輝度に比べ、発光輝度の低下幅が1%未満
○:駆動開始時の発光輝度に比べ、発光輝度の低下幅が1%~2%未満の範囲内
△:駆動開始時の発光輝度に比べ、発光輝度の低下幅が2%~5%未満の範囲内
×:駆動開始時の発光輝度に比べ、発光輝度の低下幅が5%以上
○:駆動開始時の発光輝度に比べ、発光輝度の低下幅が1%~2%未満の範囲内
△:駆動開始時の発光輝度に比べ、発光輝度の低下幅が2%~5%未満の範囲内
×:駆動開始時の発光輝度に比べ、発光輝度の低下幅が5%以上
〔比較例1〕
実施例1の発光素子の作成において、本発明の化合物No.35の代わりに下記の比較化合物1を用いた以外は、実施例1と同様にして発光素子を作成した。
実施例1の発光素子の作成において、本発明の化合物No.35の代わりに下記の比較化合物1を用いた以外は、実施例1と同様にして発光素子を作成した。
実施例1と同様の評価を行った。結果を表1に示す。
〔実施例2〕
(青色蒸着型OLED素子)
実施例1の発光素子の作製において、Ir(ppy)3の代わりにFirpicを用いた以外は、実施例1と同様にして発光素子を作成した。実施例1と同様の手法で素子を発光させると、485nm付近に極大発光波長を有する発光が得られた。
実施例1と同様の評価を行った。結果を表2に示す。
(青色蒸着型OLED素子)
実施例1の発光素子の作製において、Ir(ppy)3の代わりにFirpicを用いた以外は、実施例1と同様にして発光素子を作成した。実施例1と同様の手法で素子を発光させると、485nm付近に極大発光波長を有する発光が得られた。
実施例1と同様の評価を行った。結果を表2に示す。
〔比較例2〕
実施例2の発光素子の作成において、本発明の化合物No.35の代わりに比較化合物1を用いた以外は、実施例1と同様にして発光素子を作成した。
実施例2の発光素子の作成において、本発明の化合物No.35の代わりに比較化合物1を用いた以外は、実施例1と同様にして発光素子を作成した。
実施例1と同様の評価を行った。その結果を表2に示す。
〔実施例3〕
(塗布液の調整)
イリジウム錯体(Ir(ppy)3)0.15質量%、下表に示したホスト化合物No.35 1.85質量%、メチルエチルケトン98質量%を混合し、有機電界発光素子用塗布液(塗布液A)を得た。
(塗布液の調整)
イリジウム錯体(Ir(ppy)3)0.15質量%、下表に示したホスト化合物No.35 1.85質量%、メチルエチルケトン98質量%を混合し、有機電界発光素子用塗布液(塗布液A)を得た。
(有機EL素子の作製)
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、150℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Aをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。実施例1と同様の評価を行った。結果を表3に示す。
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、150℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Aをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。実施例1と同様の評価を行った。結果を表3に示す。
〔比較例3〕
実施例3の発光素子の作成において、本発明の化合物No.35の代わりに比較化合物1を用いた以外は、実施例3と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表3に示す。
実施例3の発光素子の作成において、本発明の化合物No.35の代わりに比較化合物1を用いた以外は、実施例3と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表3に示す。
〔実施例4〕
(塗布液Bの調整)
イリジウム錯体(Ir(ppy)3)0.23質量%、ホスト化合物No.35 1.77質量%、溶媒(N-メチル-2-ピロリドンと、2-n―ブトキシエタノールと、エチレングリコールとを質量比率55/35/10で混合した溶媒)98質量%を混合し、有機電界発光素子用塗布液(塗布液B)を得た。
(塗布液Bの調整)
イリジウム錯体(Ir(ppy)3)0.23質量%、ホスト化合物No.35 1.77質量%、溶媒(N-メチル-2-ピロリドンと、2-n―ブトキシエタノールと、エチレングリコールとを質量比率55/35/10で混合した溶媒)98質量%を混合し、有機電界発光素子用塗布液(塗布液B)を得た。
(有機EL素子の作製)
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、100℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Bをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。
そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、100℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Bをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。
そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。
(性能評価)
実施例1と同様に評価を行った。
実施例1と同様に評価を行った。
(評価結果)
得られた結果を表4に示した。
得られた結果を表4に示した。
〔比較例4〕
実施例4の発光素子の作成において、本発明の化合物No.35の代わりに比較化合物1を用いた以外は、実施例4と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表4に示す。
実施例4の発光素子の作成において、本発明の化合物No.35の代わりに比較化合物1を用いた以外は、実施例4と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表4に示す。
〔実施例5〕
(塗布液Cの調整)
イリジウム錯体(Ir(ppy)3)0.23質量%、ホスト化合物No.1 1.77質量%、溶媒(N-メチル-2-ピロリドンと、2-n―ブトキシエタノールと、エチレングリコールとを質量比率55/35/10で混合した溶媒)98質量%を混合し、有機電界発光素子用塗布液(塗布液C)を得た。
(塗布液Cの調整)
イリジウム錯体(Ir(ppy)3)0.23質量%、ホスト化合物No.1 1.77質量%、溶媒(N-メチル-2-ピロリドンと、2-n―ブトキシエタノールと、エチレングリコールとを質量比率55/35/10で混合した溶媒)98質量%を混合し、有機電界発光素子用塗布液(塗布液C)を得た。
(有機EL素子の作製)
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、100℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Cをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。
そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。実施例1と同様に評価を行った。得られた結果を表5に示した。
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、100℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Cをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。
そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。実施例1と同様に評価を行った。得られた結果を表5に示した。
〔比較例5〕
実施例5の発光素子の作成において、本発明の化合物No.1の代わりに下記の比較化合物2~4を用いた以外は、実施例5と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表5に示す。
実施例5の発光素子の作成において、本発明の化合物No.1の代わりに下記の比較化合物2~4を用いた以外は、実施例5と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表5に示す。
〔実施例6〕
(塗布液Dの調整)
イリジウム錯体(Ir(ppy)3)0.23質量%、ホスト化合物No.18 1.77質量%、溶媒(N-メチル-2-ピロリドンと、2-n―ブトキシエタノールと、エチレングリコールとを質量比率55/35/10で混合した溶媒)98質量%を混合し、有機電界発光素子用塗布液(塗布液D)を得た。
(塗布液Dの調整)
イリジウム錯体(Ir(ppy)3)0.23質量%、ホスト化合物No.18 1.77質量%、溶媒(N-メチル-2-ピロリドンと、2-n―ブトキシエタノールと、エチレングリコールとを質量比率55/35/10で混合した溶媒)98質量%を混合し、有機電界発光素子用塗布液(塗布液D)を得た。
(有機EL素子の作製)
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、100℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Dをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。
そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。実施例1と同様に評価を行った。得られた結果を表6に示した。
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、100℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Dをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。
そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。実施例1と同様に評価を行った。得られた結果を表6に示した。
〔比較例6〕
実施例6の発光素子の作成において、本発明の化合物No.18の代わりに下記の比較化合物5を用いた以外は、実施例6と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表6に示す。
実施例6の発光素子の作成において、本発明の化合物No.18の代わりに下記の比較化合物5を用いた以外は、実施例6と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表6に示す。
〔実施例7〕
(塗布液Eの調整)
イリジウム錯体(Ir(ppy)3)0.23質量%、ホスト化合物No.52 1.77質量%、溶媒(N-メチル-2-ピロリドンと、2-n―ブトキシエタノールと、エチレングリコールとを質量比率55/35/10で混合した溶媒)98質量%を混合し、有機電界発光素子用塗布液(塗布液E)を得た。
(塗布液Eの調整)
イリジウム錯体(Ir(ppy)3)0.23質量%、ホスト化合物No.52 1.77質量%、溶媒(N-メチル-2-ピロリドンと、2-n―ブトキシエタノールと、エチレングリコールとを質量比率55/35/10で混合した溶媒)98質量%を混合し、有機電界発光素子用塗布液(塗布液E)を得た。
(有機EL素子の作製)
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、100℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Eをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。実施例1と同様に評価を行った。得られた結果を表7に示した。
25mm×25mm×0.7mmのガラス基板上にITOを150nmの厚さで蒸着し製膜したものを透明支持基板とした。この透明支持基板をエッチング、洗浄した。
このITOガラス基板上に、正孔注入層(PEDOT-PSS溶液(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸ドープ体)/バイエル社製)をスピンコートした後、100℃で1時間真空乾燥し、正孔注入層とした(膜厚約40nm)。
この上に塗布液Eをグローブボックス(露点‐68度、酸素濃度10ppm)内でスピンコートし、発光層とした(膜厚約40nm)。
次いで、その上に、真空蒸着法にてBalqを膜厚40nmに蒸着し電子注入層とした。そして、この上にフッ化リチウムを1nm蒸着し、更に金属アルミニウムを70nm蒸着し、陰極とした。
作製した積層体を、アルゴンガスで置換したグロ-ブボックス内に入れ、ステンレス製の封止缶及び紫外線硬化型の接着剤(XNR5516HV、長瀬チバ(株)製)を用いて封止した。実施例1と同様に評価を行った。得られた結果を表7に示した。
〔比較例7〕
実施例7の発光素子の作成において、本発明の化合物No.52の代わりに下記の比較化合物6を用いた以外は、実施例7と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表7に示す。
実施例7の発光素子の作成において、本発明の化合物No.52の代わりに下記の比較化合物6を用いた以外は、実施例7と同様にして発光素子を作成した。実施例1と同様に評価した。結果を表7に示す。
評価の結果、本発明の化合物を用いた有機電界発光素子は、湿熱経時における耐久性及び駆動時初期における輝度変化が小さいという高い耐久性を有することがわかった。
本発明によれば、高温、高湿の環境下での経時後においても高い効率を示し、かつ、駆動時の初期における発光輝度の低下が小さな有機電界発光素子を提供し得る組成物、化合物の製造方法及びその製造中間体が提供できる。また、それらを用いた有機電界発光素子を提供できる。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
本出願は、2009年8月31日出願の日本特許出願(特願2009-201151)に基づくものであり、その内容はここに参照として取り込まれる。
本出願は、2009年8月31日出願の日本特許出願(特願2009-201151)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (13)
- 基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子に用いる組成物であって、下記一般式(1)で表される化合物を含有することを特徴とする組成物。
一般式(1)
置換基(2)
- 前記一般式(1)中、R3が、前記置換基(2)であることを特徴とする請求項1に記載の組成物。
- 前記一般式(3)中、Ar2がフェニレン、又はビフェニレンを表すことを特徴とする請求項3に記載の組成物。
- 前記一般式(3)中、nが2であることを特徴とする請求項3又は4に記載の組成物。
- 基板上に、一対の電極と、該電極間に発光層を含む少なくとも1層の有機層を有する有機電界発光素子であって、前記有機層のいずれかが請求項1~5に記載の一般式(1)~(3)のいずれかで表される化合物を含むことを特徴とする有機電界発光素子。
- 前記発光層が請求項1~5に記載の一般式(1)~(3)のいずれかで表される化合物と燐光発光材料とを含むことを特徴とする請求項6に記載の有機電界発光素子。
- 前記燐光発光材料がIr又はPt錯体であることを特徴とする請求項7に記載の有機電界発光素子。
- 前記有機層のいずれかが請求項1~5のいずれかに記載の組成物を用いて形成されたことを特徴とする請求項6~8のいずれか一項に記載の有機電界発光素子。
- 前記有機層のいずれかが請求項1~5のいずれかに記載の組成物を用いて湿式製膜により形成されたことを特徴とする請求項6~9のいずれか一項に記載の有機電界発光素子。
- 前記湿式製膜が、コーティング法、インクジェット法、スプレー塗布法から選択されることを特徴とする請求項10に記載の有機電界発光素子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-201151 | 2009-08-31 | ||
JP2009201151A JP5619395B2 (ja) | 2009-08-31 | 2009-08-31 | 有機電界発光素子及びカルバゾール化合物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011024926A1 true WO2011024926A1 (ja) | 2011-03-03 |
Family
ID=43628025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/064535 WO2011024926A1 (ja) | 2009-08-31 | 2010-08-26 | 有機電界発光素子及びカルバゾール化合物 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5619395B2 (ja) |
TW (1) | TW201120006A (ja) |
WO (1) | WO2011024926A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5506475B2 (ja) | 2010-03-15 | 2014-05-28 | ユー・ディー・シー アイルランド リミテッド | 有機電界発光素子の製造方法 |
KR101910112B1 (ko) | 2015-05-06 | 2018-10-19 | 삼성에스디아이 주식회사 | 유기광전자소자용 도펀트, 유기광전자소자 및 표시장치 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000286056A (ja) * | 1999-03-30 | 2000-10-13 | Fuji Photo Film Co Ltd | エレクトロルミネッセンス素子材料およびエレクトロルミネッセンス素子 |
JP2003335753A (ja) * | 2002-05-15 | 2003-11-28 | Fuji Photo Film Co Ltd | ヘテロ環化合物及びそれを用いた発光素子 |
JP2004311411A (ja) * | 2003-03-26 | 2004-11-04 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置および表示装置 |
JP2004311410A (ja) * | 2003-03-26 | 2004-11-04 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置および表示装置 |
JP2007504272A (ja) * | 2003-05-16 | 2007-03-01 | イシス イノベイション リミテッド | 有機燐光材料および有機オプトエレクトロニクス素子 |
JP2008001621A (ja) * | 2006-06-21 | 2008-01-10 | Mitsubishi Chemicals Corp | トリチル化合物、トリチル化合物の製造方法、電荷輸送材料、発光材料及び有機電界発光素子 |
US20100171418A1 (en) * | 2009-01-06 | 2010-07-08 | Fujifilm Corporation | Organic electroluminescent device |
JP4500364B1 (ja) * | 2009-08-31 | 2010-07-14 | 富士フイルム株式会社 | 有機電界発光素子 |
-
2009
- 2009-08-31 JP JP2009201151A patent/JP5619395B2/ja active Active
-
2010
- 2010-08-26 WO PCT/JP2010/064535 patent/WO2011024926A1/ja active Application Filing
- 2010-08-31 TW TW99129258A patent/TW201120006A/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000286056A (ja) * | 1999-03-30 | 2000-10-13 | Fuji Photo Film Co Ltd | エレクトロルミネッセンス素子材料およびエレクトロルミネッセンス素子 |
JP2003335753A (ja) * | 2002-05-15 | 2003-11-28 | Fuji Photo Film Co Ltd | ヘテロ環化合物及びそれを用いた発光素子 |
JP2004311411A (ja) * | 2003-03-26 | 2004-11-04 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置および表示装置 |
JP2004311410A (ja) * | 2003-03-26 | 2004-11-04 | Konica Minolta Holdings Inc | 有機エレクトロルミネッセンス素子、照明装置および表示装置 |
JP2007504272A (ja) * | 2003-05-16 | 2007-03-01 | イシス イノベイション リミテッド | 有機燐光材料および有機オプトエレクトロニクス素子 |
JP2008001621A (ja) * | 2006-06-21 | 2008-01-10 | Mitsubishi Chemicals Corp | トリチル化合物、トリチル化合物の製造方法、電荷輸送材料、発光材料及び有機電界発光素子 |
US20100171418A1 (en) * | 2009-01-06 | 2010-07-08 | Fujifilm Corporation | Organic electroluminescent device |
JP4500364B1 (ja) * | 2009-08-31 | 2010-07-14 | 富士フイルム株式会社 | 有機電界発光素子 |
Non-Patent Citations (2)
Title |
---|
BUU-HOI, N. P.: "The effect of benzocarbazoles and benzacridines on the paralyzing action of zoxazolamine; structure/activity relations", BIOCHEMICAL PHARMACOLOGY, vol. 17, no. 7, 1968, pages 1227 - 1236 * |
ZHU, Z.: "Synthesis and Characterization of 9-Phenylcarbazole Monodendrons: An Exploration of Peripheral Groups To Facilitate Purification", MACROMOLECULES, vol. 33, no. 3, 2000, pages 801 - 807 * |
Also Published As
Publication number | Publication date |
---|---|
JP2011051918A (ja) | 2011-03-17 |
JP5619395B2 (ja) | 2014-11-05 |
TW201120006A (en) | 2011-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI429650B (zh) | Organic electroluminescent elements | |
JP4077796B2 (ja) | ビフェニル誘導体及びこれを採用した有機電界発光素子 | |
EP2447335B1 (en) | Compound for organic photoelectric device, organic light emitting diode including the same, and display including the organic light emitting diode | |
WO2010113761A1 (ja) | 有機電界発光素子 | |
JP2002305084A (ja) | 新規インドール誘導体およびそれを利用した発光素子 | |
JP4786917B2 (ja) | 有機金属錯体、発光性固体、有機el素子及び有機elディスプレイ | |
JP2006203172A (ja) | 有機電界発光素子 | |
JP4628435B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP2001192651A (ja) | 芳香族縮環化合物、発光素子材料およびそれを使用した発光素子 | |
EP1919928A1 (en) | Platinum complex compound and organic electroluminescent device | |
JP2002170684A (ja) | 発光素子及びイリジウム錯体 | |
JP2002338579A (ja) | ヘテロ環化合物及びそれを用いた発光素子 | |
JP2007019462A (ja) | 有機電界発光素子 | |
JP2006151866A (ja) | フェナントロリン化合物及び発光素子 | |
JP2004131463A (ja) | 有機金属錯体、発光色素、有機電界発光素子材料および有機電界発光素子 | |
JP5783749B2 (ja) | エキシマー特性を有する1,8−アリール置換ナフタレン誘導体及びこれを用いた有機el素子 | |
JP2003252888A (ja) | 有機イリジウム錯体およびこれを用いた有機電界発光素子 | |
JP2001055447A (ja) | アリールシラン化合物、発光素子材料およびそれを使用した発光素子 | |
JP4651048B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5476034B2 (ja) | 新規なトリアリールアミン化合物、それよりなるホール輸送材料およびそれを用いた有機エレクトロルミネッセンス素子 | |
WO2010110279A1 (ja) | 無機材料、デバイス及び有機電界発光素子 | |
JP4922696B2 (ja) | テトラベンズアントラセン誘導体及びこれを用いた有機電界発光素子 | |
JP5619395B2 (ja) | 有機電界発光素子及びカルバゾール化合物 | |
JP2004131464A (ja) | 有機金属錯体、発光色素、有機電界発光素子材料、および有機電界発光素子 | |
JP2005222794A (ja) | 有機電界発光素子および有機電界発光素子材料の調製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10811975 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10811975 Country of ref document: EP Kind code of ref document: A1 |