WO2011024757A1 - 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法 - Google Patents

希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法 Download PDF

Info

Publication number
WO2011024757A1
WO2011024757A1 PCT/JP2010/064180 JP2010064180W WO2011024757A1 WO 2011024757 A1 WO2011024757 A1 WO 2011024757A1 JP 2010064180 W JP2010064180 W JP 2010064180W WO 2011024757 A1 WO2011024757 A1 WO 2011024757A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
particles
regenerator
earth regenerator
particle
Prior art date
Application number
PCT/JP2010/064180
Other languages
English (en)
French (fr)
Inventor
山田 勝彦
圭一 布施
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20153855.0A priority Critical patent/EP3663674B1/en
Priority to US13/391,831 priority patent/US9556374B2/en
Priority to EP17191195.1A priority patent/EP3285024B1/en
Priority to JP2011528780A priority patent/JP5656842B2/ja
Priority to EP10811807.6A priority patent/EP2472201B1/en
Priority to EP21193755.2A priority patent/EP3933299B1/en
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Publication of WO2011024757A1 publication Critical patent/WO2011024757A1/ja
Priority to US15/196,692 priority patent/US9719004B2/en
Priority to US15/369,546 priority patent/US10040982B2/en
Priority to US15/636,016 priority patent/US10024583B2/en
Priority to US16/027,928 priority patent/US10385248B2/en
Priority to US16/451,554 priority patent/US10907081B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1415Pulse-tube cycles characterised by regenerator details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles

Definitions

  • the present invention relates to a regenerator material particle, a regenerator material particle group, in particular, a rare earth regenerator material, a refrigerator using the regenerator, a measuring device, and a manufacturing method thereof.
  • cryogenic technology In superconducting technology used in magnetic levitation trains and nuclear magnetic resonance tomography diagnostic devices, cryogenic technology has been developed in a wide range of fields such as cryopumps used in ultrahigh vacuum devices such as ultra LSI pattern transfer devices, and their practical use. As we enter the age of development, the development and commercialization of smaller and higher performance refrigerators are being promoted. In particular, the importance of refrigeration / cooling technology that creates an environment near absolute zero (-273 ° C) where cryoconducts for high vacuum formation in superconducting magnets and semiconductor manufacturing equipment operate has increased, and high reliability and excellent There is a need for a refrigeration apparatus having characteristics.
  • a superconducting MRI (nuclear magnetic resonance imaging) apparatus image measuring apparatus
  • a small helium refrigerator (GM refrigerator) of the Gifford-McMahon type is used to cool the superconducting magnet. Is adopted.
  • This GM refrigerator is configured by combining a compressor that compresses He gas, an expansion unit that expands the compressed He gas, and a cold storage unit that maintains the cooling state of the He gas cooled by the expansion unit. Yes. Then, the He gas compressed by the compressor at a cycle of about 60 times per minute is expanded by the refrigerator and cooled, and the system to be cooled is cooled through the tip of the expansion portion of the refrigerator.
  • pulse tube refrigerators have also been developed.
  • the pulse tube refrigerator is a type of refrigerator that supplies high-pressure He gas to the refrigerator at a predetermined cycle. Since the pulse tube refrigerator has less vibration than the GM refrigerator, it is possible to suppress the generation of noise during measurement by an MRI apparatus or the like.
  • Refrigerator for any application is filled with a regenerator material.
  • the regenerator material for refrigerators used in the vicinity of absolute zero for example, in an extremely low temperature region of 10K or less, further 4K or less
  • the rare earth regenerator material disclosed in Japanese Patent No. 2609747 (Patent Document 1) is effective.
  • Patent Document 1 enables high-density filling of the regenerator particles by adjusting the particle size and aspect ratio of the rare earth regenerator particles.
  • Patent Document 2 discloses a two-stage pulse tube refrigerator. By using multiple stages, the cooling rate can be increased. Further, since the cooling amount can be increased, it can be used for a large apparatus. By using a multistage system, it is necessary to increase the supply amount and supply pressure of He gas.
  • the refrigeration performance of the refrigerator is determined by how much He gas can be brought into contact with the surface of the regenerator material particles.
  • Conventional cold storage material particles use round particles in order to realize high density filling, and it is difficult to perform high density filling beyond this. If the small regenerator particles are excessively filled in the gaps between the regenerator particles, the air permeability of He gas, which is a refrigerant, deteriorates. In addition, it is conceivable to perform filling while applying a strong pressure. However, if an excessively strong pressure is used for filling, the cold storage material is crushed, which causes clogging. For this reason, the cold storage material which can maintain a high-density filling and can improve a contact surface area with He gas was calculated
  • An object of the present invention is to solve the above-described problems, and to provide a rare earth regenerator material particle having a large contact surface area with a working medium gas such as He gas while maintaining high-density filling. To do.
  • Another object of the present invention is to provide a production method capable of efficiently producing rare earth regenerator particles having a large contact specific surface area.
  • the rare earth regenerator material particle group of the present invention is a rare earth regenerator particle group having an average particle size of 0.01 to 3 mm, wherein the ratio of the number of particles having a major axis ratio of 2 or less to a minor axis is 90% or more.
  • the ratio of the number of particles having recesses having a length of 1/10 to 1/2 of the circumferential length is 30% or more.
  • the depth of the said recessed part is 1/10 or less of a particle diameter.
  • the rare earth regenerator particles are preferably at least one selected from Nd, Er 3 Ni, and HoCu 2 .
  • the rare earth regenerator material particle of the present invention is a rare earth regenerator material particle having a particle size of 0.01 to 3 mm, the ratio of the major axis to the minor axis is 2 or less, and 1/10 to 1 of the circumferential length on the particle surface.
  • a recess having a length of / 2 is formed.
  • Such a rare earth regenerator particle group is suitably used for a refrigerator equipped with a regenerator container filled with the rare earth regenerator particle group.
  • the said cool storage container comprises the cool storage material filling area
  • the measuring apparatus is preferably used for a measuring apparatus equipped with a superconducting magnet equipped with such a refrigerator.
  • the measuring apparatus is at least one of MRI imaging (magnetic resonance imaging apparatus) and NMR (nuclear magnetic resonance analysis measuring apparatus).
  • the first method for producing rare earth regenerator particles according to the present invention includes a step of preparing a molten metal containing a rare earth element, and a rotational speed of the molten metal in a chamber in an argon atmosphere of 7000 to 11000 rpm. A step of supplying to the rotating disk; and a step of rapidly cooling the granular metal melt struck by the rotating disk.
  • the molten metal is preferably supplied from an injection port having a diameter of 0.05 to 2 mm.
  • the rotating disk is preferably made of ceramics. In addition, it is preferable to inject the molten metal after preheating the rotating disk to 800 ° C. or higher.
  • the second method for producing a rare earth regenerator particle group of the present invention includes a step of preparing a molten metal containing a rare earth element, and a rotation speed of the molten metal within a chamber in an argon atmosphere at a rotational speed of 7000 to 11000 rpm. A step of spraying from the nozzle, and a step of rapidly cooling the molten metal sprayed from the rotating nozzle.
  • the molten metal is preferably supplied from an injection port having a diameter of 0.05 to 2 mm. Moreover, it is preferable to inject the molten metal after preheating the rotating nozzle to 800 ° C. or higher.
  • the rare earth regenerator particle group of the present invention it is possible to provide a rare earth regenerator particle having an increased contact surface area between a working medium gas such as He gas and the regenerator particle group while maintaining high-density filling. Can do. For this reason, the characteristic of the refrigerator using the said cool storage material particle group, and also the measuring apparatus using the refrigerator can be improved.
  • the rare earth regenerator particle group of the present invention can be efficiently produced. Moreover, if the rare earth regenerator material particle of this invention is used, a rare earth regenerator particle group can be comprised efficiently.
  • FIG. 1A is a perspective view showing an example of rare earth regenerator material particles according to the present invention
  • FIG. 1B is an enlarged cross-sectional view taken along line BB in FIG. 1A.
  • It is a perspective view which shows the other Example of the rare earth cool storage material particle
  • It is a perspective sectional view showing other examples of a manufacturing method of rare earth cold storage material particles concerning the present invention.
  • the rare earth regenerator material particle group of the present invention is a rare earth regenerator particle group having an average particle size of 0.01 to 3 mm, wherein the ratio of the number of particles having a major axis ratio of 2 or less to a minor axis is 90% or more.
  • the ratio of the number of particles having recesses having a length of 1/10 to 1/2 of the circumferential length on the surface is 30% or more.
  • the rare earth regenerator material contains a rare earth element as a constituent element.
  • rare earth elements Y (yttrium), La (lanthanum), cerium (Ce), praseodymium (Pr), niobium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), Examples thereof include at least one element selected from terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), and ytterbium (Yb).
  • rare earth regenerator materials include rare earth elements alone, alloys with Cu (including intermetallic compounds), alloys with Ni (including intermetallic compounds), rare earth oxides (including rare earth composite oxides), and rare earth oxysulfides. Etc.
  • Examples of the constituent material of the rare earth regenerator particles include Nd, Er 3 Ni, ErNi, HoCu 2 , Gd 2 O 3 , Gd 2 O 2 S, and the like.
  • the rare earth regenerator particle group has an average particle size of 0.01 to 3 mm.
  • the average particle size is less than 0.01 mm, the gap between the regenerator particles becomes excessively small when the regenerator container is filled, and the air permeability of the working medium gas (He gas) is deteriorated.
  • He gas working medium gas
  • a more preferable average particle diameter of the regenerator material particle group is in the range of 0.1 to 0.5 mm. Within this range, both the air permeability and the contact surface area of the working medium are improved.
  • the average particle size of the cold storage material particle group is measured with a particle size distribution meter.
  • the particle diameter D of each regenerator particle is determined by (minor axis S + major axis L) / 2.
  • the ratio of the number of particles having a major axis L to minor axis S ratio of 2 or less is defined as 90% or more. 90% or more of the particles having an aspect ratio (L / S) of 2 or less indicates that the ratio of round particles close to a true sphere is large. If there are many round-shaped particles, the contact between the regenerator particles can be a point contact, so that the contact area between the regenerator particles and the working medium gas can be greatly increased.
  • the rare earth regenerator particles have an average particle diameter of 0.01 to 3 mm, if there are many particles having a large aspect ratio, the gaps between the regenerator particles will vary, and the air permeability of the working medium gas will be reduced. descend. Further, for example, when there are long particles having a large aspect ratio, the contact between the particles is not a point contact but a surface contact portion is increased, so that the contact surface area with the working medium gas is reduced. For this reason, the higher the proportion of particles having an aspect ratio of 2 or less, the more advantageous, preferably 95% or more, and even more preferably 100%.
  • Measurement of the ratio of the particles having an aspect ratio (major axis / minor axis) of 2 or less of the regenerator particles is obtained by taking an enlarged photograph of 200 regenerator particles and as shown in FIG.
  • the major axis L and the minor axis S of the material particles are measured, and only the number of particles having an aspect ratio (L / S) of 2 or less is counted and obtained by the following formula.
  • the rare earth regenerator particle group of the present invention has the above average particle diameter and aspect ratio, and the number of particles having a concave portion having a length of 1/10 to 1/2 of the circumferential length on the particle surface.
  • the ratio is 30% or more.
  • the circumferential length is the equator length ( ⁇ D) of the sphere having the particle diameter.
  • a groove-type recess 2 is formed over a length R in the surface portion of the rare earth regenerator material particle 1.
  • a hole-shaped recess 3 having a length R is formed on the surface of the rare earth regenerator material particle 1.
  • the shape of the concave portion may be various shapes such as a groove shape and a hole shape.
  • the length R of the recess is defined as 1/10 to 1/2 of the circumferential length ( ⁇ D) on the particle surface.
  • the length R of the concave portion is less than 1/10 of the circumferential length, the concave portion is excessively small, and there is almost no effect of increasing the surface area of the cold storage material particles.
  • the length R of the concave portion is excessive so as to exceed 1/2 of the circumferential length, the concave portion is too large and the structural strength of the cold storage material particles is reduced.
  • a more preferable range of the length R of the recess is 1/10 to 1/3 of the circumferential length.
  • a plurality of the recesses may be formed.
  • the number of the recesses per regenerator particle is two or less, preferably one.
  • the depth d of the recesses is 1/10 or less of the diameter (particle diameter D) of the regenerator material particle 1.
  • the measurement of the concave portion length R is performed by taking an enlarged photograph of each of the regenerator particles 1 and measuring the diameter D and the concave portion length R of the particles 1 appearing there.
  • the regenerator material particles are elliptical, the circumferential length ( ⁇ D) is obtained with (major axis L + minor axis S) / 2 as diameter D.
  • a method using an enlarged photograph is also effective for the depth d of the recesses 2 and 3.
  • An example of such a method is a method using an AFM microscope.
  • the present invention is characterized in that the regenerator particles 1 having such recesses 2 and 3 are contained by 30% or more of the total number.
  • the number of regenerator particles having recesses is measured by taking 200 magnified photographs and measuring the number of regenerator particles having recesses in the photograph (number of regenerator particles having recesses / 200 particles). ) ⁇ 100 (%). This operation is carried out three times by selecting different groups of 200 grains, and the average value is taken as the number ratio of the grains having recesses.
  • the number ratio of the regenerator particles having the recesses is less than 30%, the effect of expanding the contact surface area between the regenerator particles and the working medium gas is small.
  • a more preferable range of the number ratio of the regenerator particles having the predetermined recess is 50% or more and 100% or less.
  • the rare earth regenerator particle group in which the number ratio of the regenerator particles having a predetermined recess is adjusted is suitable for a refrigerator used for forming a cryogenic region of 10K or less, and further 4K or less.
  • the above refrigerator is equipped with a cold storage container for filling the cold storage material particles. And the cool storage container with which the said cool storage material particle was filled is mounted in a refrigerator. At this time, it is also possible to make a multistage refrigerator by connecting two or more cool storage containers or providing two or more cool storage material filling regions via a mesh material in the cool storage container. Since this multistage refrigerator is configured in a multistage manner, the regenerator filling region can be increased, and thus the refrigerating capacity can be significantly increased.
  • the refrigerator according to the present invention is filled with the rare earth regenerator particle group of the present invention in a regenerator in a single stage.
  • at least one regenerator material filling region (cooling stage) is filled with the rare earth regenerator particle group of the present invention.
  • the mesh material include metal mesh materials such as copper and copper alloys.
  • the refrigerating capacity of the refrigerator is determined by how efficiently the working medium gas such as He gas and the cold storage material particles are brought into contact with the working medium gas and the cold storage material particles.
  • the rare earth regenerator particle group according to the present invention maintains a round particle shape and has a concave portion on the surface thereof, so that the air resistance of working medium gas is deteriorated while maintaining high density filling of the regenerator particles.
  • the contact surface area between the working medium gas and the regenerator particles can be increased. In particular, it is effective for a type in which the working medium gas reciprocates at a high pressure in the refrigerator, such as a multistage refrigerator.
  • such a refrigerator is suitable for a refrigerator for operating a superconducting magnet.
  • Superconducting technology is used in magnetic levitation trains and nuclear magnetic resonance apparatuses.
  • the nuclear magnetic resonance apparatus is widely used such as an MRI apparatus for a human body and an NMR apparatus for a non-human body. It can also be applied to cryopumps used in semiconductor manufacturing equipment. In any case, the improvement of the refrigeration characteristics of the refrigerator leads to the improvement of the reliability and characteristics of the measuring device.
  • a method for producing the rare earth regenerator particle group of the present invention will be described.
  • a method for producing the rare earth regenerator material particle group of the present invention a method of mixing a predetermined amount of a rare earth regenerator material particle having a recess and a rare earth regenerator material particle having no recess.
  • FIG. 3 is a cross-sectional perspective view showing a configuration of a manufacturing apparatus by a rotating disk method (RDP: Rotary Disc Process) in which a molten metal is dispersed and solidified by a disk-shaped rotating body.
  • the manufacturing apparatus includes a cooling chamber 9, a disk-like rotating body 10, a ladle 11, a molten metal 12, a pouring nozzle 13, rare earth regenerator particles (group) 14, and a particle recovery container 15. It is prepared for.
  • a molten metal containing a rare earth element and other components as required is prepared in a predetermined amount.
  • the other components are Ni in the case of Er 3 Ni and Cu in the case of HoCu 2 . For this reason, the same molten metal as the constituent element of the intended rare earth regenerator material is prepared.
  • the molten metal 12 is poured into the ladle 11, and the molten metal 12 is supplied to the disk-shaped rotating body (rotating disk) 10 through the pouring nozzle 13.
  • the molten metal 12 is bounced on the disk-shaped rotating body 10 rotated at a high speed, and rapidly cooled while falling in the cooling chamber 9 to become rare earth regenerator particles 14.
  • the rare earth regenerator material particles 14 fall into the particle recovery container 15 and become a rare earth regenerator material particle group.
  • the diameter of the injection holes provided in the pouring nozzle is 0.05 to 2 mm.
  • the rotational speed of the disk-shaped rotating body 10 is preferably 7000 to 11000 rpm. The average particle diameter of the rare earth regenerator particles obtained by adjusting the rotational speed and the size of the injection hole (pour nozzle 13) is adjusted.
  • the rotational speed of the disk-shaped rotating body 10 is preferably a high-speed rotation of 7000 rpm or more. Further, if the rotational speed is excessively high, regenerator particles having an aspect ratio exceeding 2 are likely to be formed, so the upper limit of the rotational speed is preferably 11000 rpm.
  • the molten metal 12 struck by the disk-shaped rotating body 10 is rapidly cooled in an argon atmosphere. If the atmosphere is an argon atmosphere, contamination of impurity gas components (oxygen and nitrogen) can be prevented. If nitrogen is used as the inert gas, it reacts with the molten metal, so nitrogen cannot be used as the cooling chamber atmosphere. For the same reason, atmosphere is not possible.
  • the cooling rate of the dispersed molten metal 12 is preferably 10 seconds or less, more preferably 5 seconds or less from 1000 ° C. to room temperature. In addition, since the temperature of the molten metal 12 changes with materials, initial temperature may exceed 1000 degreeC.
  • the interior of the cooling chamber 9 is preferably coated with a heat resistant resin. If it is resin coating, mixing of impurity metals can be prevented when the rare earth regenerator particles come into contact.
  • the interior of the particle collection container 15 is preferably coated with a resin. By preventing the mixing of impurity gas components and impurity metal components, for example, the oxygen content can be reduced to 100 ppm or less, nitrogen to 20 ppm or less, Al to 50 pm or less, and Si to 30 ppm or less.
  • molten metal 12 is supplied from a pouring nozzle 13 having injection holes having a diameter of 0.05 to 2 mm to a rotating disk rotated at a high speed of 7000 to 11000 pm. To do. The molten granular metal struck by the rotating disk 10 is rapidly cooled. The granular metal melt bounced by the rotating disk 10 rotating at a predetermined rotation speed is vigorously bounced and rapidly cooled while being granular. At this time, the molten metal is rapidly cooled from the repelled traveling direction. Since the inside of the cooling chamber 9 is sealed with an argon atmosphere, the rare earth regenerator material particles 14 are obtained while receiving the air resistance of the argon atmosphere.
  • the formation state of the groove-shaped recess 2 can be controlled by adjusting the rotation speed of the rotating disk 10 and the diameter of the pouring nozzle 13 related to the amount of the molten metal 12 introduced.
  • the granular metal melts and cools the granular metal melts instantaneously collide with each other to form a hole-shaped recess 3 as shown in FIG.
  • the rotating disk 10 is preferably made of ceramics.
  • ceramics include alumina (Al 2 O 3 ) and boron nitride (BN).
  • BN boron nitride
  • the rotating disk 10 is preheated to a temperature of 800 ° C. or higher before supplying the molten metal 12. If the rotating disk 10 is not warmed, the molten metal 12 and the rotating disk 10 are rapidly cooled when they contact each other, and the molten metal 12 adheres to the rotating disk 10. In order to repel the molten metal 12 smoothly and uniformly, it is preferable to preheat the rotating disk 10 to a temperature of 800 ° C. or higher in advance. In addition, although the upper limit of preheating temperature is not specifically limited, 1000 degreeC is preferable. As shown in FIG. 3, the rotating disk 10 may be provided in the cooling chamber 9. Therefore, if the preheating temperature is excessively high, the inside of the cooling chamber 9 becomes high, and the rapid cooling process of the molten metal 12 becomes insufficient. There is a fear.
  • the preheating method there are a method in which a heater is provided on the rotating disk 10 and a method in which the rotating disk 10 is preheated by contacting a molten metal 12 as a raw material for rare earth regenerator particles for a certain time.
  • the rotating disk 10 is preferably made of ceramics.
  • the diameter of the rotating disk 10 is preferably in the range of 20 to 100 mm. If the diameter is less than 20 mm, the rotating disk is small. Therefore, if the positioning is not performed accurately when the molten metal 12 is supplied, the molten metal 12 may directly fall without hitting the rotating disk 10. In particular, when the collection container 15 is provided at the bottom of the cooling chamber 9, it is necessary to pay attention because the processed product becomes defective. On the other hand, when the diameter of the rotating disk 10 exceeds 100 mm, when the rotating disk 10 is preheated, the disk retains too much heat, which heats the inside of the cooling chamber 9 and may adversely affect the cooling process. is there.
  • FIG. 4 shows another example of the manufacturing method.
  • FIG. 4 is a cross-sectional perspective view showing a configuration example of an apparatus for producing a regenerator material particle group by a rotating nozzle method in which a molten metal is dispersed and solidified by a rotating nozzle having injection holes.
  • the manufacturing apparatus includes a cooling chamber 9, a ladle 11, a molten metal 12, rare earth regenerator material (group) 14, a rotating nozzle 21, and an injection hole 22.
  • the preparation of the molten metal is the same as described above.
  • a small hole (injection hole) 22 is provided on the side surface of the rotary nozzle 21, and the molten metal 12 is ejected from the injection hole 22 by rotating the rotary nozzle 21 at a high speed.
  • the molten metal 12 jumping out from the injection hole 22 is rapidly cooled while falling in the cooling chamber 9 to become rare earth regenerator particles 14.
  • the rare earth regenerator material particles 14 fall into a particle recovery container (not shown) to form a rare earth regenerator material particle group 14.
  • the diameter of the injection holes 22 provided in the rotary nozzle 21 is preferably set to 0.05 to 2 mm.
  • the rotational speed of the disk-like rotary nozzle 21 is 7000 to 11000 rpm.
  • the average particle size of the obtained rare earth regenerator material particles is controlled. If the rotational speed of the rotary nozzle 21 is excessively high, cold storage material particles having an aspect ratio exceeding 2 are likely to be formed, and therefore the upper limit is preferably 11000 rpm.
  • the molten metal metal 12 protruding from the injection hole 22 is rapidly cooled in an argon atmosphere. If it is in an argon atmosphere, mixing of impurity gas components (oxygen, nitrogen) can be prevented.
  • the cooling rate of the granular metal melt 12 is preferably 10 seconds or less, more preferably 5 seconds or less, from 1000 ° C. to room temperature. In addition, since the temperature of a molten metal changes with materials, initial temperature may exceed 1000 degreeC.
  • the interior of the cooling chamber 9 is preferably coated with a heat resistant resin. If the resin coating is used, it is possible to prevent contamination with impurity metals even when the rare earth regenerator particles come into contact. Similarly, the interior of the particle collection container is preferably coated with a resin. By preventing the mixing of impurity gas components and impurity metal components, for example, the oxygen content can be reduced to 100 ppm or less, nitrogen to 20 ppm or less, Al to 50 pm or less, and Si to 30 ppm or less.
  • a rotary nozzle quenching apparatus having a rotary nozzle 21 as shown in FIG. 4 it is preferable to preheat the rotary nozzle 21 to a temperature of 800 ° C. or higher in advance. By preheating, it is possible to prevent the molten metal 12 from being cooled more than necessary in the rotary nozzle 21.
  • the upper limit of the preheating temperature of the rotary nozzle 21 is not particularly limited, but 1000 ° C. is preferable. Since the rotary nozzle 21 may be provided in the cooling chamber 9, if the preheating temperature is excessively high, the inside of the cooling chamber 9 may become high temperature and the rapid cooling process may be insufficient.
  • the diameter of the rotary nozzle 21 is preferably in the range of 10 to 50 cm.
  • a method for producing a regenerator material particle group there are many cases where particles having concave portions and particles having no concave portions are mixed.
  • a method of sorting by rolling a predetermined inclined surface is effective. Further, when the concave portion is formed on the surface of the particle, the surface friction is slightly reduced, but the roller rolls down at a higher speed than that without the concave portion. It is also possible to sort using this drop speed difference.
  • the surface of the sintered body obtained by the sintering method was polished to obtain predetermined particles. Later, a method of forming necessary concave portions can also be adopted.
  • Example 1 (Examples 1 to 6 and Comparative Example 1)
  • the molten metal was prepared and Ho and Cu such that the ratio of HoCu 2.
  • the molten metal 12 is dropped from the pouring nozzle 13 on the ceramic rotating disk 10 and repelled, whereby the rare earth regenerator according to each of the examples and comparative examples.
  • the material particle group 14 was manufactured.
  • the rapid cooling operation was performed at a cooling rate that reached 1000 ° C. to room temperature in 5 seconds or less in an argon atmosphere.
  • the manufacturing process was carried out under the conditions shown in Table 1 for the injection nozzle shape (injection hole diameter), the rotating disk speed, and the like.
  • a cooling chamber 9 provided with a resin coating was used as the interior.
  • a comparative example 1 was prepared under the condition that the rotational speed was as low as 2000 rpm.
  • the average particle diameter of the rare earth regenerator particles produced under the conditions shown in Table 1, the ratio (number ratio) of the regenerator particles having an aspect ratio of 2 or less, and 1/10 to 1/2 of the circumferential length on the particle surface The ratio (number ratio) of particles having a concave portion of length was measured. Each parameter was measured by the method described above. The results are shown in Table 2 below.
  • the regenerator material particle group produced using the production method according to this example had a predetermined recess. Further, it was confirmed that the recess shape includes both a groove-shaped recess and a hole-shaped recess. In addition, when preheating temperature was low like Example 6, the particle
  • Examples 7 to 12 and Comparative Example 2 The molten metal was prepared Ho and Cu such that the ratio of HoCu 2.
  • the molten metal 12 is poured into the rotary nozzle 21 from the pouring nozzle under the specifications and conditions of the rotary nozzle shown in Table 3, and is placed on the side of the rotary nozzle 21.
  • the rare earth regenerator particle group according to each example and comparative example was manufactured by ejecting from a plurality of provided injection holes 22 and quenching with an atmospheric gas. The rapid cooling operation was performed at a cooling rate that reached from 1000 ° C. to room temperature in 5 seconds or less in an argon atmosphere. At this time, the injection hole shape and the rotational speed were set to the conditions shown in Table 3. Further, the interior of the cooling chamber 9 was a resin-coated one.
  • the average particle diameter of the rare earth regenerator particles produced under the conditions shown in Table 3, the ratio (number ratio) of the regenerator particles having an aspect ratio of 2 or less, and 1/10 to 1/2 of the circumferential length on the particle surface The ratio (number ratio) of particles in which concave portions having a length were formed and the ratio of the depth d of the concave portions to the particle size D were measured. Each parameter was measured by the method described above. The results are shown in Table 4.
  • the rare earth regenerator particle group according to each example was obtained having a predetermined recess. Further, it was confirmed that the recess shape includes both a groove-shaped recess and a hole-shaped recess. In addition, when preheating temperature was low like Example 12, the particle
  • the proportion of particles having recesses was reduced as compared with the rotating disk method.
  • the rotating nozzle method the molten metal is sprayed in a granular form from the injection port
  • the rotating disk method is a method of playing with a disk rotated at high speed. It is considered that the flipping operation is effective for forming the recess.
  • Example 13 to 24 and Comparative Example 3 The rare earth regenerator material particles of Examples 1 to 12 and Comparative Example 1 were closely packed in a regenerator (filling rate: about 68%) to produce a GM refrigerator.
  • the GM refrigerator 30 includes outer cylinders 32 and 33 arranged in series in a vacuum chamber 31, a first regenerator 34 disposed in the outer cylinders 32 and 33 so as to reciprocate, and A second regenerator 35, a Cu mesh material 36 filled in the first regenerator 34 as a first regenerator, and a second regenerator particle group according to the present embodiment filled in the second regenerator 35 ( 1c) and a compressor 37 for supplying He gas into the outer cylinder 32.
  • Seal rings 38 and 39 are interposed between the outer cylinders 32 and 33 and the first and second regenerators 34 and 35, respectively.
  • a first expansion chamber 40 is formed between the outer cylinder 32 and the first regenerator 34, while a second expansion chamber 41 is formed between the outer cylinder 33 and the second regenerator 35.
  • a first cooling stage 42 and a second cooling stage 43 are formed at the lower ends of the first and second expansion chambers 40 and 41, respectively.
  • a resistance thermometer 44 that measures the temperature of the second cooling stage 43 and a heater 45 that applies a thermal load to the second cooling stage 43 are provided. Attached to the second cooling stage 43.
  • a cold storage container having a diameter of 50 mm and a length of 80 mm (a stainless steel tube having a thickness of 1 mm) was used.
  • the air permeability of the working medium gas (He gas) and the refrigerating capacity were measured.
  • the results are shown in Table 5.
  • the air permeability is measured by measuring the mass flow rate of working medium gas after supplying a working medium gas with a heat capacity of 25 J / K at a mass flow rate of 3 g / sec and a gas pressure of 16 atm and operating continuously for 500 hours.
  • the value is shown as a relative value when the mass flow rate as air permeability in Example 3 (a refrigerator using the regenerator material of Comparative Example 1) is 100 (reference value). If this value is larger than 100, it is judged that the air permeability is relatively good.
  • the refrigerating capacity is filled with the Cu mesh material 36 in the first regenerator 34, while the second regenerator 35 is filled with the regenerator particle group 1c, and GM.
  • the refrigerator 30 was operated at 60 cycles per minute.
  • the He gas compressed to 20 atm by the compressor 37 is adiabatically expanded repeatedly in the first expansion chamber 40 and the second expansion chamber 41.
  • the generated cold heat is accumulated in the Cu mesh material 36 and the cold storage material 1c, respectively.
  • the refrigerating capacity in this example was defined as the heat load when the second cooling stage 43 was subjected to a heat load by the heater 45 during operation of the refrigerator and the temperature increase of the second cooling stage 43 stopped at 6K.
  • the results are shown in Table 5.
  • Example 18 and Example 24 some cracks were confirmed in the regenerator particles. For this reason, it was found that the depth of the recess is preferably 1/10 or less of the diameter.
  • Examples 25 to 27 and Comparative Example 4 a two-stage pulse tube refrigerator was manufactured using the regenerator material shown in Table 5, and the characteristics were similarly measured.
  • the operating conditions of the pulse tube refrigerator were a high pressure He gas pressure of 2.3 MPa and a low pressure He gas pressure of 0.9 MPa.
  • the dimension 50 mm in diameter x 100 mm long container (thickness stainless steel pipe
  • Example 28 to 30 The same measurement was performed with the rare earth regenerator material particles changed to Nd as Example 28, the Er 3 Ni changed into Example 29, and the ErNi changed into Example 30.
  • the same rotating disk method as in Example 1 was used as the manufacturing method. Table 7 shows the diameter of the injection hole of the pouring nozzle, the specification of the rotating disk, and the operating conditions.
  • the shape of the rare earth regenerator particle group according to each example obtained was measured in the same manner as in the above example. The results are shown in Table 8 below.
  • the rare earth regenerator particle group according to Examples 28 to 30 as shown in Table 8 above was filled in a regenerator container of a GM refrigerator similar to Example 13, and each refrigerator was assembled. Measurements of air permeability and refrigeration capacity were performed. The results are shown in Table 9 below.
  • the rare earth regenerator particle group of the present invention it is possible to provide a rare earth regenerator particle having an increased contact surface area between a working medium gas such as He gas and the regenerator particle group while maintaining high-density filling. Can do. For this reason, the characteristic of the refrigerator using the said cool storage material particle group, and also the measuring apparatus using the refrigerator can be improved.
  • the rare earth regenerator particle group of the present invention can be efficiently produced. Moreover, if the rare earth regenerator material particle of this invention is used, a rare earth regenerator particle group can be comprised efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 平均粒径0.01~3mmの希土類蓄冷材粒子群において、短径に対する長径の比が2以下の粒子の個数割合が90%以上であり、粒子表面に円周長の1/10~1/2の長さを有する凹部が形成されている粒子の個数割合が30%以上であることを特徴とする。蓄冷材粒子の表面に凹部を形成することにより、作動媒体ガスの通気性および作動媒体ガスとの接触表面積を向上させることができる。

Description

希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法
 本発明は、蓄冷材粒子、蓄冷材粒子群、特に希土類蓄冷材およびそれを用いた冷凍機、測定装置並びにその製造方法に関する。
 磁気浮上列車や核磁気共鳴による断層診断装置等で用いられる超電導技術において、超LSIパターン転写装置等の超高真空装置に用いられるクライオポンプ等の広い分野で極低温技術の発展は著しく、その実用化時代を迎えるに際し、より小型で高性能な冷凍機の開発実用化が進められている。特に超電導磁石や半導体製造装置での高真空形成用のクライオポンプなどが動作する絶対零度(-273℃)付近の環境を作り出す冷凍・冷却技術の重要性が高まっており、高い信頼性と優れた特性を持つ冷凍装置が希求されている。
 従来、医療分野で断層写真を撮影する超電導MRI(核磁気共鳴イメージング)装置(画像測定装置)においては、超電導磁石を冷却するために、例えばギフォード・マクマホン型の小型ヘリウム冷凍機(GM冷凍機)が採用されている。
 このGM冷凍機は、Heガスを圧縮するコンプレッサと、圧縮したHeガスを膨張させる膨張部と、膨張部で冷却されたHeガスの冷却状態を維持するための蓄冷部とを組み合せて構成されている。そして1分間に約60回のサイクルでコンプレッサにより圧縮されたHeガスを冷凍機で膨張させて冷却し、冷凍機の膨張部の先端部を通じて、被冷却系を冷却するものである。また、近年はパルス管冷凍機も開発されている。パルス管冷凍機は、高圧のHeガスを所定の周期で冷凍機に供給するタイプの冷凍機である。パルス管冷凍機はGM冷凍機と比べて振動が小さいことから、MRI装置などの測定時のノイズ発生を抑制できる。
 いずれの用途の冷凍機であっても蓄冷部には、蓄冷材が充填されている。絶対零度付近、例えば10K以下、さらには4K以下の極低温領域で使用される冷凍機用蓄冷材としては、特許第2609747号公報(特許文献1)に示された希土類蓄冷材が有効である。特許文献1は、希土類蓄冷材粒子の粒径やアスペクト比を調整することにより、蓄冷材粒子の高密度充填を可能としている。
 一方、冷凍機の性能を向上させるために蓄冷部を多段式にすることが検討されている。例えば、特開2001-272126号公報(特許文献2)では2段式のパルス管冷凍機が開示されている。多段とすることにより、冷却速度を速くすることができる。また、冷却量も大きくできることから、大きな装置への使用も可能となっている。多段式にすることにより、Heガスの供給量や供給圧力を大きくしなければならなくなっている。
 冷凍機の冷凍性能は蓄冷材粒子表面にHeガスをどれだけ接触させられるかで決定される。従来の蓄冷材粒子は高密度充填を実現するために丸い粒子が用いられており、これ以上の高密度充填は困難である。仮に蓄冷材粒子同士の隙間に小さな蓄冷材粒子を充填しすぎると冷媒であるHeガスの通気性が悪化する。また、強い圧力を作用させながら充填することも考えられるが、過度に強い圧力を作用させて充填すると、蓄冷材が粉砕される結果、却って目詰まりの原因となる。このため、高密度充填を維持すると共にHeガスとの接触表面積を向上させることが可能な蓄冷材が希求されていた。
特許第2609747号公報 特開2001-272126号
 本発明は、以上のような問題を解決するためのもので、高密度充填を維持した上でHeガス等の作動媒体ガスとの接触表面積を大きくした希土類蓄冷材粒子を提供することを目的とする。また、接触比表面積を大きくした希土類蓄冷材粒子を効率よく製造できる製造方法を提供することをも目的とする。
 本発明の希土類蓄冷材粒子群は、平均粒径0.01~3mmの希土類蓄冷材粒子群において、短径に対する長径の比が2以下の粒子の個数割合が90%以上であり、粒子表面に円周長の1/10~1/2の長さの凹部を有する粒子の個数割合が30%以上であることを特徴とするものである。
 また、前記凹部の深さは粒子直径の1/10以下であることが好ましい。また、希土類蓄冷材粒子が、Nd、ErNiおよびHoCuから選ばれる少なくとも1種であることが好ましい。
 また、本発明の希土類蓄冷材粒子は粒径が0.01~3mmである希土類蓄冷材粒子において、短径に対する長径の比が2以下であり、粒子表面に円周長の1/10~1/2の長さを有する凹部が形成されていることを特徴とするものである。

 このような希土類蓄冷材粒子群は、希土類蓄冷材粒子群を充填した蓄冷容器を具備した冷凍機に好適に使用される。また、上記蓄冷容器は、メッシュ材を介して2段以上の蓄冷材充填領域を具備することが好ましい。
 また、このような冷凍機を搭載した超電導磁石を具備した測定装置に好適に使用される。また、測定装置が、MRIイメージング(磁気共鳴映像装置)およびNMR(核磁気共鳴分析測定装置)の少なくとも1種であることが好ましい。
  また、本発明の第一の希土類蓄冷材粒子群の製造方法は、希土類元素を含有する金属溶湯を調製する工程と、アルゴン雰囲気中のチャンバ内で金属溶湯を、回転速度が7000~11000rpmである回転ディスクに供給する工程と、上記回転ディスクにより弾かれた粒状金属溶湯を急冷する工程と、を具備することを特徴とするものである。また、金属溶湯を、直径が0.05~2mmである噴射口から供給することが好ましい。また、前記回転ディスクはセラミックス製であることが好ましい。また、前記回転ディスクを800℃以上に予熱してから金属溶湯を噴射することが好ましい。
 また、本発明の第二の希土類蓄冷材粒子群の製造方法は、希土類元素を含有する金属溶湯を調製する工程と、アルゴン雰囲気中のチャンバ内で金属溶湯を回転速度が7000~11000rpmである回転ノズルから噴射する工程と、上記回転ノズルから噴射された粒状金属溶湯を急冷する工程と、を具備することを特徴とするものである。また、金属溶湯を、直径が0.05~2mmである噴射口から供給することが好ましい。また、前記回転ノズルを800℃以上に予熱してから金属溶湯を噴射することが好ましい。
 本発明の希土類蓄冷材粒子群によれば、高密度充填を維持した上で、Heガス等の作動媒体ガスと蓄冷材粒子群との接触表面積を増大化させた希土類蓄冷材粒子を提供することができる。このため、上記蓄冷材粒子群を使用した冷凍機、さらにはその冷凍機を使用した測定装置の特性をも向上させることができる。
 また、本発明の希土類蓄冷材粒子群の製造方法によれば、本発明の希土類蓄冷材粒子群を効率よく製造することができる。また、本発明の希土類蓄冷材粒子を用いれば、効率よく希土類蓄冷材粒子群を構成することができる。
図1Aは本発明に係る希土類蓄冷材粒子の一実施例を示す斜視図であり、図1Bは図1AにおけるB-B矢視拡大断面図である。 本発明に係る希土類蓄冷材粒子の他の実施例を示す斜視図である。 本発明に係る希土類蓄冷材粒子の製造方法の一実施例を示す斜視断面図である。 本発明に係る希土類蓄冷材粒子の製造方法の他の実施例を示す斜視断面図である。 GM冷凍機の一構成例を示す断面図である。
 本発明の希土類蓄冷材粒子群は、平均粒径が0.01~3mmである希土類蓄冷材粒子群において、短径に対する長径の比が2以下の粒子の個数割合が90%以上であり、粒子表面に円周長の1/10~1/2の長さを有する凹部が形成された粒子の個数割合が30%以上であることを特徴とするものである。
 まず、希土類蓄冷材は、希土類元素を構成元素として含むものである。希土類元素としては、Y(イットリウム)、La(ランタン)、セリウム(Ce)、プラセオジウム(Pr)、ニオブ(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)から選択された少なくとも1種または2種以上の元素が挙げられる。
 また、希土類蓄冷材は、希土類元素単体、Cuとの合金(金属間化合物含む)、Niとの合金(金属間化合物含む)、さらには希土類酸化物(希土類複合酸化物含む)、希土類酸硫化物などが挙げられる。希土類蓄冷材粒子の構成材料としては、Nd、ErNi、ErNi、HoCu、Gd、GdSなどが挙げられる。
 希土類蓄冷材粒子群は平均粒径が0.01~3mmである。平均粒径が0.01mm未満であると、蓄冷容器に充填したときに蓄冷材粒子同士の隙間が過度に小さくなり、作動媒体ガス(Heガス)の通気性が悪化する。一方、平均粒径が3mmを超えて大きくなると、蓄冷材粒子同士の隙間が過度に大きくなり作動媒体ガスとの接触表面積を十分に確保できない。蓄冷材粒子群のより好ましい平均粒径は0.1~0.5mmの範囲である。この範囲であれば、作動媒体の通気性および接触表面積が共に向上する。上記蓄冷材粒子群の平均粒径は粒度分布計で測定するものとする。各蓄冷材粒子の粒径Dは(短径S+長径L)/2で求める。
 また、本発明の蓄冷材粒子群において、短径Sに対する長径Lの比が2以下の粒子の個数割合は90%以上に規定される。アスペクト比(L/S)が2以下の粒子が90%以上とは、真球に近い丸い粒子の割合が多いことを示している。丸い形状の粒子が多ければ蓄冷材粒子同士の接触を点接触にすることができるために、蓄冷材粒子群と作動媒体ガスとの接触面積を大きく稼ぐことができる。
 なお、平均粒径が0.01~3mmである希土類蓄冷材粒子であったとしても、上記アスペクト比が大きな粒子が多いと蓄冷材粒子同士の隙間にばらつきが生じ、作動媒体ガスの通気性が低下する。また、例えばアスペクト比が大きく細長い粒子が存在すると粒子同士の接触が点接触でなく面接触の部分が増加するために、作動媒体ガスとの接触表面積が小さくなる。このため、アスペクト比が2以下である粒子の割合は高い程有利であり、好ましくは95%以上、さらには100%がより望ましい。
 蓄冷材粒子のアスペクト比(長径/短径)が2以下の粒子割合の測定は、200粒の蓄冷材粒子の拡大写真を撮影し、図1(A)に示すように、写真に写る各蓄冷材粒子の長径Lと短径Sとを測定して、アスペクト比(L/S)が2以下の粒子数のみを計数し、下記の算式により求める。
     (アスペクト比2以下の粒子個数/200個)×100(%)
 本発明の希土類蓄冷材粒子群は、上記のような平均粒径およびアスペクト比を具備するものにおいて、粒子表面に円周長の1/10~1/2の長さの凹部を有する粒子の個数割合が30%以上であることを特徴とするものである。ここで上記円周長は前記粒径を有する球体の赤道長さ(πD)とする。
 上記凹部2,3を有する蓄冷材粒子1の一例を図1および図2に示した。図1において、希土類蓄冷材粒子1の表面部には、溝型凹部2が長さRに渡って形成されている。図2において、希土類蓄冷材粒子1表面には、長さRの穴型凹部3が形成されている。なお、凹部の形状は、溝状、穴状など様々な形状でよい。なお、図2に示すような長さRの穴型凹部3を複数形成する場合は、各凹部3,3…の長さR1,R2…の合計値を「凹部の長さR」とする。
 凹部の長さRは粒子表面で円周長(πD)の1/10~1/2の長さに規定される。この凹部の長さRが円周長の1/10未満では凹部が過小であり、蓄冷材粒子の表面積拡大効果がほとんどない。
 一方、凹部の長さRが円周長の1/2を超えるように過大になると、凹部が大きすぎて蓄冷材粒子の構造強度の低下を招く。構造強度が低下すると蓄冷材粒子を蓄冷容器に充填する時や冷凍機を稼働している時の衝撃や振動で蓄冷材粒子が割れる問題が発生し易い。凹部の長さRのより好ましい範囲は円周長の1/10~1/3である。
 また、上記凹部は複数個形成しても良いが、凹部を過量に形成すると蓄冷材粒子の強度が低下するので蓄冷材粒子一粒あたり凹部の個数は2個以下、好ましくは1個である。また図1Bに示すように、凹部2が1個であったとしても凹部2の深さdが過度に深いと蓄冷材粒子1の強度低下を招く。そのため、凹部の深さdは蓄冷材粒子1の直径(粒径D)の1/10以下であることが好ましい。
 凹部長さRの測定は、個々の蓄冷材粒子1の拡大写真を撮り、そこに写る粒子1の直径D、凹部長さRを測定する。なお、蓄冷材粒子が楕円形上の場合は、(長径L+短径S)/2を直径Dとして円周長(πD)を求めるものとする。凹部2,3の深さdについても拡大写真を用いる方法が有効である。このような方法としてAFM顕微鏡を使う方法が挙げられる。
 本発明では、このような凹部2,3を具備する蓄冷材粒子1を全体個数の30%以上含有させることを特徴とするものである。凹部を具備する蓄冷材粒子の個数の測定は、200粒の拡大写真を撮影し、写真に写る凹部を具備する蓄冷材粒子の個数を測定し、(凹部を有する蓄冷材粒子の個数/200粒)×100(%)により求める。この作業を別々の200粒群を選択して3回実施し、その平均値を、凹部を有する粒子の個数割合とする。
 上記凹部を有する蓄冷材粒子の個数割合が30%未満では、蓄冷材粒子と作動媒体ガスとの接触表面積の拡大効果が小さい。上記所定の凹部を具備する蓄冷材粒子の個数割合のより好ましい範囲は50%以上100%以下である。
 以上のように所定の凹部を有する蓄冷材粒子の個数割合を調整した希土類蓄冷材粒子群は、10K以下、さらには4K以下の極低温領域を形成するために用いる冷凍機に好適である。
 上記冷凍機には、蓄冷材粒子を充填するための蓄冷容器が備わる。そして、前記蓄冷材粒子が充填された蓄冷容器が冷凍機に搭載される。このとき、蓄冷容器を2基以上接続したり、または蓄冷容器内にメッシュ材を介して蓄冷材充填領域を2段以上設けることにより、多段式冷凍機にすることも可能である。この多段式冷凍機は、多段式に構成されることにより蓄冷材充填領域を増大化させることができるため、冷凍能力を大幅に高めることができる。
 本発明に係る冷凍機は、一段式においては蓄冷容器内に本発明の希土類蓄冷材粒子群を充填するものとする。また、多段式の冷凍機においては、少なくとも1つの蓄冷材充填領域(冷却ステージ)に本発明の希土類蓄冷材粒子群を充填するものとする。多段式の場合、すべての蓄冷材充填領域に本発明の希土類蓄冷材粒子群を充填することが好ましいが、求める冷凍能力によっては、他の蓄冷材充填領域に他の蓄冷材を充填してもよい。なお、メッシュ材は銅や銅合金などの金属メッシュ材が挙げられる。
 また、冷凍機の冷凍能力は、Heガスなどの作動媒体ガスと蓄冷材粒子をいかに効率よく作動媒体ガスと蓄冷材粒子を接触させるかによって決定される。本発明に係る希土類蓄冷材粒子群は、丸い粒子形状を維持した上で、その表面に凹部を設けてあるので、蓄冷材粒子の高密度充填を維持しつつ、作動媒体ガスの通気抵抗を悪化させず、その上で作動媒体ガスと蓄冷材粒子との接触表面積を増大化させることができる。特に、多段式冷凍機のように冷凍機内を作動媒体ガスが高圧で往復するタイプに効果的である。
 また、このような冷凍機は、超電導磁石を稼働させるための冷凍機に好適である。超電導技術は、磁気浮上列車や核磁気共鳴装置などに使用されている。特に核磁気共鳴装置は、人体用のMRI装置や、非人体用のNMR装置など幅広く使われている。また、半導体製造装置に使われるクライオポンプなどにも適用できる。いずれの場合も冷凍機の冷凍特性の向上により測定装置の信頼性や特性向上につながる。
 次に、本発明の希土類蓄冷材粒子群の製造方法について説明する。まず、本発明の希土類蓄冷材粒子群の製造方法としては、凹部を有する希土類蓄冷材粒子と、凹部を有さない希土類蓄冷材粒子を所定量混合する方法が挙げられる。
 また、これ以外の方法として、効率よく本発明の希土類蓄冷材粒子群を製造する方法として次のものを示す。
 図3に製造方法の一例を示した。図3は金属溶湯を、円板状回転体によって分散し凝固させる回転円板法(RDP:Rotary Disc Process)による製造装置の構成を示す断面斜視図である。この製造装置は、冷却チャンバ9と、円板状回転体10と、とりべ11と、金属溶湯12と、注湯ノズル13と、希土類蓄冷材粒子(群)14と、粒子回収容器15とを備えて構成される。
 図3に示す回転円板法による回転ディスク式急冷装置では、まず、希土類元素と必要に応じ他の成分とを所定量で含有した金属溶湯を調製する。他の成分とはErNiの場合はNi、HoCuの場合はCuである。このため、金属溶湯は目的とする希土類蓄冷材の構成元素と同じものを調製することになる。
 金属溶湯12をとりべ11に注入し、注湯ノズル13を介して、円板状回転体(回転ディスク)10に金属溶湯12が供給される。金属溶湯12は高速回転した円板状回転体10上で弾かれ、冷却チャンバ9内を落下していく最中に急冷され希土類蓄冷材粒子14となる。希土類蓄冷材粒子14は粒子回収容器15内に落下し、希土類蓄冷材粒子群となる。
 平均粒径が0.01~3mmである蓄冷材粒子を製造するには、注湯ノズルに設けられた噴射孔の直径を0.05~2mmに設定することが好ましい。また、円板状回転体10の回転速度は7000~11000rpmが好ましい。回転速度と噴射孔(注湯ノズル13)のサイズ調整により得られる希土類蓄冷材粒子の平均粒径を調整する。
 第一、第二の製造方法を適用する場合、円板状回転体10の回転速度は7000rpm以上の高速回転であることが好ましい。また、過度に回転速度が速いとアスペクト比が2を超えた蓄冷材粒子が形成され易いので、回転速度の上限は11000rpmが好ましい。
 また、円板状回転体10で弾かれた金属溶湯12は、アルゴン雰囲気中で急冷されることが好ましい。アルゴン雰囲気であれば不純物ガス成分(酸素、窒素)の混入を防ぐことができる。不活性ガスとして窒素を用いると金属溶湯と反応してしまうので、冷却チャンバ雰囲気として窒素は使えない。同様の理由で大気も不可である。
 分散された金属溶湯12の冷却速度は、1000℃から室温まで10秒以下、さらには5秒以下であることが好ましい。なお、金属溶湯12の温度は材料によって変化するものであるため、初期温度は1000℃を超える場合もある。また、冷却チャンバ9の内装は耐熱性樹脂によるコーティングが施されていることが好ましい。樹脂コーティングであれば希土類蓄冷材粒子が接触した時に不純物金属の混入を防ぐことができる。同様に粒子回収容器15の内装も樹脂コーティングが施されていることが好ましい。不純物ガス成分や不純物金属成分の混入を防ぐことにより、例えば、酸素含有量100ppm以下、窒素が20ppm以下、Alが50pm以下、Siが30ppm以下と小さくすることができる。
 本発明の第一の希土類蓄冷材粒子群の製造方法は、7000~11000pmで高速回転した回転ディスクに対して、直径0.05~2mmの噴射孔を有する注湯ノズル13から金属溶湯12を供給する。回転ディスク10で弾かれた粒状金属溶湯は急冷される。所定の回転速度で回転する回転ディスク10で弾かれた粒状金属溶湯は、勢いよく弾かれ粒状のまま急冷されていく。このとき、粒状金属溶湯は弾かれた進行方向から急冷されて行くことになる。冷却チャンバ9内をアルゴン雰囲気で密閉していることから、アルゴン雰囲気の空気抵抗を受けながら希土類蓄冷材粒子14になる。
 ここで、粒状金属溶湯は空気抵抗を受けているため、粒子の進行方向後部はアルゴンを巻き込みながら飛散および急冷されることになり、このアルゴンの巻き込みが溝状凹部の原因となる。このため、回転ディスク10の回転速度と、金属溶湯12の投入量に関連する注湯ノズル13の直径を調製することにより溝状凹部2の形成状態を制御することができる。また、弾かれた粒状金属溶湯が飛散、冷却する時に、粒状金属溶湯同士が瞬間的にぶつかり合うことにより、図2に示すような穴状凹部3が形成される。
 また、回転ディスク10はセラミックス製であることが好ましい。セラミックスとしてはアルミナ(Al)、窒化硼素(BN)などが挙げられる。回転ディスク10が金属製である場合には、希土類蓄冷材中に金属不純物を混入する恐れがある。
 また、回転ディスク10は予め温度800℃以上に予熱してから、金属溶湯12を供給する方法が好ましい。回転ディスク10が温まっていないと、金属溶湯12と回転ディスク10が接した時に瞬間的に急冷されてしまい、回転ディスク10に金属溶湯12が付着してしまう。金属溶湯12を円滑にかつ均一に弾くためには、予め温度800℃以上に回転ディスク10を予熱しておくことが好ましい。なお、予熱温度の上限は特に限定されるものではないが、1000℃が好ましい。回転ディスク10は、図3に示すように、冷却チャンバ9内に設けられることもあるため、過度に予熱温度が高いと冷却チャンバ9内が高温となり、金属溶湯12の急冷工程が不十分となるおそれがある。
 また、上記予熱方法としては、回転ディスク10にヒータを設ける方法や、希土類蓄冷材粒子の原料となる金属溶湯12を一定時間接触させて回転ディスク10を予熱する方法などがある。予熱をする必要性からも、回転ディスク10はセラミックス製であることが好ましい。
 また、回転ディスク10の直径は20~100mmの範囲が好ましい。直径が20mm未満では回転ディスクが小さいために、金属溶湯12を供給する際の位置合わせを正確に行わないと金属溶湯12が回転ディスク10に当たらずに直接落下してしまう可能性がある。特に、冷却チャンバ9の底部に回収容器15を設けている場合は、処理製品が不良となってしまうので留意する必要がある。一方、回転ディスク10の直径が100mmを超える場合、回転ディスク10を予熱した時に、ディスクが熱を保持し過ぎることになり、冷却チャンバ9内を加熱してしまい、冷却工程に悪影響を与えるおそれがある。
 図4に製造方法の他の一例を示した。図4は金属溶湯を、噴射孔を有する回転ノズルによって分散し凝固させる回転ノズル法による蓄冷材粒子群の製造装置の構成例を示す断面斜視図である。この製造装置は、冷却チャンバ9と、とりべ11と、金属溶湯12と、希土類蓄冷材粒子(群)14と、回転ノズル21と、噴射孔22とを備えて構成される。
 金属溶湯の調製については前述と同様である。
 回転ノズル21の側面には、小さな穴(噴射孔)22が設けられており金属溶湯12が、回転ノズル21を高速回転させることにより噴射孔22から液滴状金属溶湯が飛び出してくる。噴射孔22から飛び出した金属溶湯12は冷却チャンバ9内を落下していく最中に急冷され希土類蓄冷材粒子14となる。希土類蓄冷材粒子14は図示しない粒子回収容器内に落下し、希土類蓄冷材粒子群14となる。
 平均粒径が0.01~3mmである蓄冷材粒子14を製造するためには、回転ノズル21に設けられた噴射孔22の直径は0.05~2mmに設定することが好ましい。また、円板状回転ノズル21の回転速度は7000~11000rpmである。回転速度と噴射孔22のサイズ調整により、得られる希土類蓄冷材粒子の平均粒径が制御される。回転ノズル21の回転速度が過度に速いと、アスペクト比が2を超えた蓄冷材粒子が形成され易いので、その上限は11000rpmが好ましい。
 また、噴射孔22から飛び出した粒状金属溶湯12は、アルゴン雰囲気中で急冷されることが好ましい。アルゴン雰囲気中であれば、不純物ガス成分(酸素、窒素)の混入を防ぐことができる。粒状金属溶湯12の冷却速度は、1000℃から室温まで10秒以下、さらには5秒以下であることが好ましい。なお、金属溶湯の温度は材料によって変化するため、初期温度は1000℃を超える場合もある。また、冷却チャンバ9の内装は耐熱性樹脂によるコーティングが施されていることが好ましい。樹脂コーティングであれば希土類蓄冷材粒子が接触した場合でも、不純物金属の混入を防ぐことができる。同様に粒子回収容器の内装も樹脂コーティングが施されていることが好ましい。不純物ガス成分や不純物金属成分の混入を防ぐことにより、例えば、酸素含有量が100ppm以下、窒素が20ppm以下、Alが50pm以下、Siが30ppm以下と小さくすることができる。
 図4に示すような回転ノズル21を備えた回転ノズル式急冷装置を使用する場合であっても、回転ノズル21を予め温度800℃以上に予熱しておくことが好ましい。予熱しておくことにより、金属溶湯12が回転ノズル21内で必要以上に冷却されてしまうことが防止できる。回転ノズル21の予熱温度の上限は、特に限定されるものではないが、1000℃が好ましい。回転ノズル21は冷却チャンバ9内に設けられることもあるため、過度に予熱温度が高いと冷却チャンバ9内が高温となり急冷工程が不十分となるおそれがある。
 回転ノズル方式は、回転ノズル21の側面に設けた噴射口22の数を多数設けることにより、回転ディスク方式と比較して、一度により多量の蓄冷材粒子を製造することができる。また、回転ノズル21の直径は10~50cmの範囲が好ましい。
 また、本発明に係る蓄冷材粒子群の製造方法によれば、凹部の有る粒子と無い粒子とが混在している場合が多い。この粒子群の中から凹部の有る希土類蓄冷材粒子のみを抽出するには、所定の傾斜面を転動させて選別する方法が効果的である。また粒子表面に凹部が形成されていると、若干ではあるが表面摩擦が小さくなるので、凹部の無いものと比較して早い速度で転がり落ちる。この落下速度差を利用して選別することも可能である。
 また、希土類酸化物粒子や希土類酸硫化物粒子などの急冷凝固法を適用するのが困難な場合には、焼結法により得られた焼結体の表面を研磨して所定の粒子を得た後に、必要な凹部を形成する方法も採用できる。
 [実施例]
(実施例1~6および比較例1)
 HoとCuとをHoCuの割合となるように金属溶湯を調製した。次に、図3に示す回転ディスク式急冷装置を用いて、セラミックス製回転ディスク10上に注湯ノズル13から金属溶湯12を液滴して弾くことにより、各実施例および比較例に係る希土類蓄冷材粒子群14を製造した。なお、急冷操作はアルゴン雰囲気により1000℃から室温までを5秒以下で到達する冷却速度で行った。この時、注入ノズル形状(噴射孔直径)、回転ディスク速度等を表1に示す条件で製造工程を実施した。また、内装として樹脂コーティングが施された冷却チャンバ9を使用した。
 一方、比較例1として回転速度が2000rpmと遅い条件で製造したものを用意した。
Figure JPOXMLDOC01-appb-T000001
 表1に示す条件で作製した希土類蓄冷材粒子群の平均粒子径、アスペクト比が2以下である蓄冷材粒子の割合(個数割合)、粒子表面に円周長の1/10~1/2の長さの凹部を有する粒子の割合(個数割合)を測定した。各パラメータの測定は前述の方法で実施した。その結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表1および表2に示す結果から明らかなように、本実施例に係る製造方法を用いて製造された蓄冷材粒子群は、所定の凹部を有するものが得られた。また、凹部形状は、溝状凹部および穴状凹部の両方が存在することが確認された。なお、実施例6のように予熱温度が低いと凹部の深さが大きい粒子が確認された。また、比較例1のように回転速度が遅いと、アスペクト比が2以下となる蓄冷材粒子の割合が大幅に減少した。また、比較例1では、アルゴンの巻き込みが少ないので凹部の形成も少なかった。
(実施例7~12および比較例2)
 HoとCuをHoCuの割合となるように金属溶湯を調製した。次に、図4に示す回転ノズル式急冷装置を用い、表3に示す回転ノズル仕様および条件のもとで、回転ノズル21に注湯ノズルから金属溶湯12を投入して回転ノズル21の側面に設けられた複数の噴射孔22から噴出させ、雰囲気ガスで急冷せしめることにより、各実施例及び比較例に係る希土類蓄冷材粒子群を製造した。なお、上記急冷操作はアルゴン雰囲気により1000℃から室温までを5秒以下で到達する冷却速度で実施した。このとき、噴射孔形状、回転速度は表3の条件に設定した。また、冷却チャンバ9の内装は、樹脂コーティングが施されたものを使用した。
Figure JPOXMLDOC01-appb-T000003
  表3に示す条件で作製した希土類蓄冷材粒子群の平均粒子径、アスペクト比が2以下である蓄冷材粒子の割合(個数割合)、粒子表面に円周長の1/10~1/2の長さを有する凹部が形成された粒子の割合(個数割合)および粒径Dに対する凹部の深さdの比を測定した。各パラメータの測定は前述の方法で行った。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 上記表4に示す結果から明らかなように、各実施例に係る希土類蓄冷材粒子群は、所定の凹部を有するものが得られた。また、凹部形状は、溝状凹部および穴状凹部の両方が存在することが確認された。なお、実施例12のように予熱温度が低いと、凹部の深さが大きくなった粒子が確認された。また、比較例2のように回転速度が遅いと、アスペクト比が2以下である蓄冷材粒子の割合は高いが、アルゴンの巻き込みが少ないために、凹部の形成が少なかった。
 また、回転ディスク法と比較すると、凹部を有する粒子の割合が小さくなった。これは、回転ノズル法では噴射口から金属溶湯を粒状に噴射するのに対し、回転ディスク法は高速回転したディスクで弾く方法である。弾く操作が凹部形成に効果的であると考えられる。
(実施例13~24および比較例3)
 実施例1~12および比較例1の希土類蓄冷材粒子群を蓄冷容器に最密充填(充填率約68%)し、GM冷凍機を作製した。
 ここで、試験用GM冷凍機の構造を図5に示した。GM冷凍機30は図5に示すように真空槽31内に直列に配置した外筒32、33と、この外筒32、33内にそれぞれ往復動自在に配設された第1蓄冷器34および第2蓄冷器35と、第1蓄冷器34内に第1蓄冷材として充填されたCuメッシュ材36と、第2蓄冷器35内に充填された本実施例に係る第2蓄冷材粒子群(1c)と、外筒32内にHeガスを供給する圧縮機37とから成る。
 外筒32、33と第1および第2蓄冷器34、35との間にはシールリング38、39がそれぞれ介装されている。また外筒32と第1蓄冷器34との間には第1膨脹室40が形成される一方、外筒33と第2蓄冷器35との間には第2膨脹室41が形成される。各第1および第2膨脹室40、41の下端部にそれぞれ第1冷却ステージ42および第2冷却ステージ43が形成される。
 また各実施例および比較例で調製した蓄冷材粒子群の特性を測定するために、第2冷却ステージ43の温度を測定する抵抗温度計44および第2冷却ステージ43に熱負荷を与えるヒータ45が第2冷却ステージ43に付設されている。
 蓄冷容器は直径50mm×長さ80mmのもの(肉厚1mmのステンレス管)を用いた。各冷凍機において、作動媒体ガス(Heガス)の通気性、および冷凍能力について測定した。その結果を表5に示す。なお、通気性の測定は、熱容量25J/Kの作動媒体ガスを3g/secの質量流量、16atmのガス圧力で供給して連続500時間運転した後の作動媒体ガスの質量流量を測定し、比較例3(比較例1の蓄冷材を使った冷凍機)における通気性としての質量流量を100(基準値)とした時の相対値で示した。この数値が100よりも大きいと相対的に通気性が良いと判断される。
 また、冷凍能力は蓄冷材粒子群1cの冷凍能力を測定する場合は、第1蓄冷器34にCuメッシュ材36を充填する一方、第2蓄冷器35に蓄冷材粒子群1cを充填し、GM冷凍機30を毎分60サイクルで運転した。圧縮機37によって20気圧に圧縮されたHeガスは第1膨脹室40および第2膨脹室41で繰り返して断熱膨脹する。発生した冷熱は、それぞれCuメッシュ材36および蓄冷材1cに蓄積される。
 本実施例における冷凍能力は、冷凍機運転時にヒータ45によって第2冷却ステージ43に熱負荷を作用させ、第2冷却ステージ43の温度上昇が6Kで停止した時の熱負荷で定義した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 上記表5に示す結果から明らかなように、各実施例に係る冷凍機は冷凍能力の向上が確認できた。これは凹部を設けたために希土類蓄冷材粒子とHeガスとの接触表面積が増加したためである。また、通気性に関しては実施例15および実施例21では劣ったが、これは平均粒径が比較例3より小さい希土類蓄冷材粒子群を使用したためである。
 また、500時間後の蓄冷材粒子の破損について確認したが、実施例18と実施例24以外の実施例に係るものと比較例に係るものでは破損が確認されず、蓄冷材粒子の強度は従来品と同等以上であることが確認された。
 一方、実施例18および実施例24では蓄冷材粒子に若干の割れが確認された。このため、凹部の深さは直径の1/10以下が良いことが判明した。
(実施例25~27および比較例4)
 次に表5に示す蓄冷材を使用して2段式パルス管冷凍機を製造し、同様に特性の測定を実施した。なお、パルス管冷凍機の運転条件は、高圧時のHeガス圧力を2.3MPa、低圧時のHeガス圧力を0.9MPaとした。また、蓄冷容器の寸法は、直径50mm×長さ100mmの容器(肉厚1mmのステンレス管)を使用した。
Figure JPOXMLDOC01-appb-T000006
 上記表6に示す結果から明らかなように、各実施例に係る蓄冷材を使用した冷凍機では通気性および冷却能力が共に向上した。特に、第一および第二ステージの両方に本実施例に係る希土類蓄冷材粒子群を用いた実施例25、26では、特に優れた冷凍性能が得られた。
(実施例28~30)
 希土類蓄冷材粒子を、Ndに変えたものを実施例28、ErNiに変えたものを実施例29、ErNiに変えたものを実施例30とし、同様の測定を行った。製造方法は実施例1と同様の回転ディスク法を用いた。注湯ノズルの噴射孔の直径、回転ディスクの仕様および運転条件は表7に示す通りである。
Figure JPOXMLDOC01-appb-T000007
  得られた各実施例に係る希土類蓄冷材粒子群の形状について、前記実施例と同様に測定した。その結果を下記表8に示す。
Figure JPOXMLDOC01-appb-T000008
 上記表8に示すような実施例28~30に係る希土類蓄冷材粒子群を、実施例13と同様のGM冷凍機の蓄冷容器に充填して各冷凍機を組み立てて、実施例13と同様に通気性および冷凍能力の測定を実施した。その結果を下記表9に示す。
Figure JPOXMLDOC01-appb-T000009
 上記表9に示す結果から明らかなように、各実施例に係る蓄冷材粒子群を使用した冷凍機では、いずれも通気性および冷却能力が共に向上した。これらの結果から、材料組成が変更されても、本発明は有効に機能することが判明した。
 本発明の希土類蓄冷材粒子群によれば、高密度充填を維持した上で、Heガス等の作動媒体ガスと蓄冷材粒子群との接触表面積を増大化させた希土類蓄冷材粒子を提供することができる。このため、上記蓄冷材粒子群を使用した冷凍機、さらにはその冷凍機を使用した測定装置の特性をも向上させることができる。
 また、本発明の希土類蓄冷材粒子群の製造方法によれば、本発明の希土類蓄冷材粒子群を効率よく製造することができる。また、本発明の希土類蓄冷材粒子を用いれば、効率よく希土類蓄冷材粒子群を構成することができる。
1…希土類蓄冷材粒子
2…溝状凹部
3…穴状凹部
9…冷却チャンバ
10…円板状回転体
11…とりべ
12…金属溶湯
13…注湯ノズル
14…希土類蓄冷材粒子(群)
15…粒子回収容器
30…GM冷凍機
31…真空槽31
32,33…外筒
34…第1蓄冷器
35…第2蓄冷器
36…Cuメッシュ材
1c…第2蓄冷材粒子群
37…圧縮機
38、39…シールリング
40…第1膨脹室40
41…第2膨脹室41
42…第1冷却ステージ
43…第2冷却ステージ
44…抵抗温度計
45…ヒータ

Claims (17)

  1. 平均粒径が0.01~3mmである希土類蓄冷材粒子群において、短径に対する長径の比が2以下である粒子の個数割合が90%以上であり、粒子表面に円周長の1/10~1/2の長さを有する凹部が形成されている粒子の個数割合が30%以上であることを特徴とする希土類蓄冷材粒子群。
  2. 前記凹部の深さが粒子直径の1/10以下であることを特徴とする請求項1記載の希土類蓄冷材粒子群。
  3. 前記希土類蓄冷材粒子が、Nd、ErNiおよびHoCuから選ばれる少なくとも1種であることを特徴とする請求項1または請求項2に記載の希土類蓄冷材粒子群。
  4. 請求項1ないし請求項3のいずれか1項に記載の希土類蓄冷材粒子群を充填した蓄冷容器を具備したことを特徴とする冷凍機。
  5. 前記蓄冷容器は、メッシュ材を介して2段以上の蓄冷材充填領域を具備することを特徴とする請求項4記載の冷凍機。
  6. 請求項4または請求項5に記載の冷凍機を搭載した超電導磁石を具備したことを特徴とする測定装置。
  7. 前記測定装置が、MRIおよびNMRの少なくとも1種であることを特徴とする測定装置。
  8. 希土類元素を含有する金属溶湯を調製する工程と、アルゴン雰囲気中のチャンバ内で上記金属溶湯を回転速度が7000~11000rpmである回転ディスクに供給する工程と、上記回転ディスクにより弾かれた粒状金属溶湯を急冷する工程と、を具備することを特徴とする希土類蓄冷材粒子群の製造方法。
  9. 前記金属溶湯を直径0.05~2mmの噴射口から供給することを特徴とする請求項8記載の希土類蓄冷材粒子群の製造方法。
  10. 前記回転ディスクはセラミックス製であることを特徴とする請求項8または請求項9に記載の希土類蓄冷材粒子群の製造方法。
  11. 前記回転ディスクを800℃以上に予熱してから金属溶湯を噴射することを特徴とする請求項8ないし請求項10のいずれか1項に記載の希土類蓄冷材粒子群の製造方法。
  12. 希土類元素を含有する金属溶湯を調製する工程と、アルゴン雰囲気中のチャンバ内で金属溶湯を回転速度が7000~11000rpmである回転ノズルから噴射する工程と、上記回転ノズルから噴射された粒状金属溶湯を急冷する工程と、を具備することを特徴とする希土類蓄冷材粒子群の製造方法。
  13. 前記金属溶湯を噴射する回転ノズルの噴射口の直径が0.05~2mmであることを特徴とする請求項12記載の希土類蓄冷材粒子群の製造方法。
  14. 前記回転ノズルを800℃以上に予熱してから金属溶湯を噴射することを特徴とする請求項12または請求項13に記載の希土類蓄冷材粒子群の製造方法。
  15. 粒径が0.01~3mmである希土類蓄冷材粒子において、短径に対する長径の比が2以下であり、粒子表面に円周長の1/10~1/2の長さを有する凹部が形成されていることを特徴とする希土類蓄冷材粒子。
  16. 前記凹部の深さが希土類蓄冷材粒子の直径の1/10以下であることを特徴とする請求項15記載の希土類蓄冷材粒子。
  17. 前記希土類蓄冷材粒子が、Nd、ErNiおよびHoCuから選ばれる少なくとも1種から成ることを特徴とする請求項15または請求項16に記載の希土類蓄冷材粒子。
PCT/JP2010/064180 2009-08-25 2010-08-23 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法 WO2011024757A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US13/391,831 US9556374B2 (en) 2009-08-25 2010-08-23 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
EP17191195.1A EP3285024B1 (en) 2009-08-25 2010-08-23 Refrigerator and method for manufacturing the same
JP2011528780A JP5656842B2 (ja) 2009-08-25 2010-08-23 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法
EP10811807.6A EP2472201B1 (en) 2009-08-25 2010-08-23 Rare-earth cold storage material particle, rare-earth cold storage material particles, refrigerator utilizing same, measuring device, and method for producing same
EP21193755.2A EP3933299B1 (en) 2009-08-25 2010-08-23 Cryopump using rare-earth regenerator material particles
EP20153855.0A EP3663674B1 (en) 2009-08-25 2010-08-23 Gifford macmahon type refrigerator and tow-stage pulse tube refrigerator
US15/196,692 US9719004B2 (en) 2009-08-25 2016-06-29 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US15/369,546 US10040982B2 (en) 2009-08-25 2016-12-05 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US15/636,016 US10024583B2 (en) 2009-08-25 2017-06-28 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US16/027,928 US10385248B2 (en) 2009-08-25 2018-07-05 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US16/451,554 US10907081B2 (en) 2009-08-25 2019-06-25 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-194832 2009-08-25
JP2009194832 2009-08-25

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/391,831 A-371-Of-International US9556374B2 (en) 2009-08-25 2010-08-23 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US15/196,692 Division US9719004B2 (en) 2009-08-25 2016-06-29 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same
US15/369,546 Division US10040982B2 (en) 2009-08-25 2016-12-05 Rare-earth regenerator material particles, and group of rare-earth regenerator material particles, refrigerator and measuring apparatus using the same, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2011024757A1 true WO2011024757A1 (ja) 2011-03-03

Family

ID=43627862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064180 WO2011024757A1 (ja) 2009-08-25 2010-08-23 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法

Country Status (4)

Country Link
US (6) US9556374B2 (ja)
EP (4) EP3285024B1 (ja)
JP (1) JP5656842B2 (ja)
WO (1) WO2011024757A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064923A1 (ja) * 2012-10-22 2014-05-01 株式会社 東芝 コールドヘッド、超電導磁石、検査装置、およびクライオポンプ
CN105063450A (zh) * 2015-07-24 2015-11-18 北京科技大学 高强度大比热多相磁性蓄冷材料及其制备方法
JP2020152769A (ja) * 2019-03-18 2020-09-24 株式会社東芝 蓄冷材粒子、蓄冷器、冷凍機、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、クライオポンプ、及び、磁界印加式単結晶引上げ装置
WO2024190623A1 (ja) * 2023-03-14 2024-09-19 株式会社 東芝 蓄冷材粒子用造粒粒子、蓄冷材粒子用造粒粒子群、蓄冷材粒子、蓄冷材粒子群、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、ヘリウム再凝縮装置、及び、希釈冷凍機

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024757A1 (ja) * 2009-08-25 2011-03-03 株式会社東芝 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法
EP2907861B1 (en) 2012-10-09 2019-02-27 Kabushiki Kaisha Toshiba Rare earth storage medium particles, rare earth storage medium particle group, and cold head using same, superconducting magnet, inspection device, and cryopump
BR112016004931B1 (pt) * 2013-09-05 2021-11-30 Uvån Holding Ab Granulação de material fundido
JP6286242B2 (ja) * 2014-03-18 2018-02-28 株式会社日立製作所 超電導磁石装置
US10421127B2 (en) * 2014-09-03 2019-09-24 Raytheon Company Method for forming lanthanide nanoparticles
US10155668B2 (en) * 2014-09-25 2018-12-18 Kabushiki Kaisha Toshiba Rare earth cold accumulating material particles, and refrigerator, superconducting magnet, inspection device and cryopump using same
DE102016220368A1 (de) * 2016-10-18 2018-04-19 Leybold Gmbh Beschichtetes Wärmeregenerationsmaterial zur Verwendung bei sehr niedrigen Temperaturen
US20190316814A1 (en) 2016-12-28 2019-10-17 Santoku Corporation Rare earth regenerator material, and regenerator and refrigerator each provided with same
RU2686826C1 (ru) * 2018-03-28 2019-04-30 Михаил Леонидович Галкин Магнитострикционный теплоноситель
CN109128206B (zh) * 2018-09-25 2020-11-24 中国人民解放军陆军装甲兵学院 一种逐液滴离心雾化法高效制备超细球形金属粉末的装置及方法
CN111230132B (zh) * 2020-04-26 2020-08-25 西安赛隆金属材料有限责任公司 一种金属粉体的制备方法
CN112059199A (zh) * 2020-09-15 2020-12-11 湖南天际智慧材料科技有限公司 一种旋转盘造粒结构及其造粒方法
CN113421710B (zh) * 2021-05-21 2023-09-08 郭易之 一种用稀土材料填充的超导等离子体材料棒预处理装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174486A (ja) * 1989-07-31 1991-07-29 Toshiba Corp 蓄冷材およびその製造方法
JPH05171228A (ja) * 1991-12-20 1993-07-09 Shin Etsu Chem Co Ltd 金属の球状粒子の製造方法および遠心噴霧装置
JPH07133480A (ja) * 1993-09-17 1995-05-23 Toshiba Corp 蓄冷材料およびこれを用いた冷凍機
JPH11294882A (ja) * 1998-04-08 1999-10-29 Takakuni Hashimoto 蓄冷材および蓄冷式冷凍機
JP2001272126A (ja) 2000-03-24 2001-10-05 Toshiba Corp パルス管冷凍機およびパルス管冷凍機を用いた超電導磁石装置
JP2002318021A (ja) * 2001-04-17 2002-10-31 Sumitomo Heavy Ind Ltd 蓄冷器および冷凍機
JP2003073661A (ja) * 2001-06-18 2003-03-12 Konoshima Chemical Co Ltd 希土類オキシ硫化物蓄冷材及び蓄冷器
JP2004315352A (ja) * 2003-03-28 2004-11-11 Shin Etsu Chem Co Ltd 耐熱性被覆部材
JP2006242484A (ja) * 2005-03-03 2006-09-14 Sumitomo Heavy Ind Ltd 蓄冷材、蓄冷器及び極低温蓄冷式冷凍機

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415511A (en) * 1982-12-27 1983-11-15 United Technologies Corporation Rotary atomizing process
US5593517A (en) 1993-09-17 1997-01-14 Kabushiki Kaisha Toshiba Regenerating material and refrigerator using the same
JP2795611B2 (ja) 1994-03-29 1998-09-10 健 増本 高強度アルミニウム基合金
EP1384961B1 (en) * 1994-08-23 2013-04-10 Kabushiki Kaisha Toshiba Regenerator material for extremely low temperatures and regenerator for extremely low temperatures using the same
JP3174486B2 (ja) 1995-09-08 2001-06-11 シャープ株式会社 太陽電池およびその製造方法
DE19621829A1 (de) 1996-05-31 1997-12-04 Thomson Brandt Gmbh Verfahren zur Informationsaufzeichnung auf der Steuerspur eines Speicherträgers
JPH10132404A (ja) * 1996-10-24 1998-05-22 Suzuki Shiyoukan:Kk パルス管冷凍機
JP4672160B2 (ja) 2000-03-24 2011-04-20 株式会社東芝 蓄冷器およびそれを使用した蓄冷式冷凍機
US7347053B1 (en) * 2001-01-17 2008-03-25 Sierra Lobo, Inc. Densifier for simultaneous conditioning of two cryogenic liquids
WO2002103259A1 (fr) 2001-06-18 2002-12-27 Konoshima Chemical Co., Ltd. Matiere d'entreposage au froid a base d'un oxysulfure metallique de terre rare et dispositif d'entreposage au froid
WO2003008690A1 (en) * 2001-07-18 2003-01-30 Kabushiki Kaisha Unix Metallic fiber nonwoven fabric manufacturing apparatus, its manufacturing method, and laminated aluminum material manufacturing method
TW200420431A (en) 2002-11-20 2004-10-16 Shinetsu Chemical Co Heat resistant coated member, making method, and treatment using the same
CN101821001B (zh) * 2007-08-02 2013-04-17 Sasol技术股份有限公司 烃合成催化剂的制备方法及其在烃合成方法中的用途
JP5171228B2 (ja) 2007-11-28 2013-03-27 日本電波工業株式会社 表面実装用の水晶デバイス
WO2011024757A1 (ja) * 2009-08-25 2011-03-03 株式会社東芝 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法
JP3174486U (ja) 2012-01-11 2012-03-22 五洋建設株式会社 矢板打設用可搬式導材

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03174486A (ja) * 1989-07-31 1991-07-29 Toshiba Corp 蓄冷材およびその製造方法
JP2609747B2 (ja) 1989-07-31 1997-05-14 株式会社東芝 蓄冷材およびその製造方法
JPH05171228A (ja) * 1991-12-20 1993-07-09 Shin Etsu Chem Co Ltd 金属の球状粒子の製造方法および遠心噴霧装置
JPH07133480A (ja) * 1993-09-17 1995-05-23 Toshiba Corp 蓄冷材料およびこれを用いた冷凍機
JPH11294882A (ja) * 1998-04-08 1999-10-29 Takakuni Hashimoto 蓄冷材および蓄冷式冷凍機
JP2001272126A (ja) 2000-03-24 2001-10-05 Toshiba Corp パルス管冷凍機およびパルス管冷凍機を用いた超電導磁石装置
JP2002318021A (ja) * 2001-04-17 2002-10-31 Sumitomo Heavy Ind Ltd 蓄冷器および冷凍機
JP2003073661A (ja) * 2001-06-18 2003-03-12 Konoshima Chemical Co Ltd 希土類オキシ硫化物蓄冷材及び蓄冷器
JP2004315352A (ja) * 2003-03-28 2004-11-11 Shin Etsu Chem Co Ltd 耐熱性被覆部材
JP2006242484A (ja) * 2005-03-03 2006-09-14 Sumitomo Heavy Ind Ltd 蓄冷材、蓄冷器及び極低温蓄冷式冷凍機

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128252A (ja) * 2012-10-22 2018-08-16 株式会社東芝 コールドヘッドの製造方法、超電導磁石の製造方法、検査装置の製造方法、およびクライオポンプの製造方法
CN104736945A (zh) * 2012-10-22 2015-06-24 株式会社东芝 冷头、超电导磁铁、检查装置以及低温泵
JPWO2014064923A1 (ja) * 2012-10-22 2016-09-08 株式会社東芝 コールドヘッド、超電導磁石、検査装置、およびクライオポンプ
CN106225288A (zh) * 2012-10-22 2016-12-14 株式会社东芝 冷头的制造方法
WO2014064923A1 (ja) * 2012-10-22 2014-05-01 株式会社 東芝 コールドヘッド、超電導磁石、検査装置、およびクライオポンプ
US10753652B2 (en) 2012-10-22 2020-08-25 Kabushiki Kaisha Toshiba Cold head, superconducting magnet, examination apparatus, and cryopump
US11530846B2 (en) 2012-10-22 2022-12-20 Kabushiki Kaisha Toshiba Cold head, superconducting magnet, examination apparatus, and cryopump
CN105063450A (zh) * 2015-07-24 2015-11-18 北京科技大学 高强度大比热多相磁性蓄冷材料及其制备方法
CN105063450B (zh) * 2015-07-24 2017-06-20 北京科技大学 高强度大比热多相磁性蓄冷材料及其制备方法
JP2020152769A (ja) * 2019-03-18 2020-09-24 株式会社東芝 蓄冷材粒子、蓄冷器、冷凍機、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、クライオポンプ、及び、磁界印加式単結晶引上げ装置
JP7321732B2 (ja) 2019-03-18 2023-08-07 株式会社東芝 蓄冷材粒子、蓄冷器、冷凍機、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、クライオポンプ、及び、磁界印加式単結晶引上げ装置
US11774184B2 (en) 2019-03-18 2023-10-03 Kabushiki Kaisha Toshiba Two-stage heat regenerating cryogenic refrigerator
WO2024190623A1 (ja) * 2023-03-14 2024-09-19 株式会社 東芝 蓄冷材粒子用造粒粒子、蓄冷材粒子用造粒粒子群、蓄冷材粒子、蓄冷材粒子群、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、ヘリウム再凝縮装置、及び、希釈冷凍機

Also Published As

Publication number Publication date
US20180320044A1 (en) 2018-11-08
US10040982B2 (en) 2018-08-07
EP2472201B1 (en) 2017-10-25
EP3663674A1 (en) 2020-06-10
EP2472201A1 (en) 2012-07-04
EP3285024B1 (en) 2020-08-05
US20170299231A1 (en) 2017-10-19
EP3663674B1 (en) 2021-10-06
US20190309203A1 (en) 2019-10-10
JP5656842B2 (ja) 2015-01-21
US20170082323A1 (en) 2017-03-23
EP3933299B1 (en) 2023-08-23
US20160305692A1 (en) 2016-10-20
US9556374B2 (en) 2017-01-31
US10907081B2 (en) 2021-02-02
JPWO2011024757A1 (ja) 2013-01-31
US20120157320A1 (en) 2012-06-21
EP3285024A1 (en) 2018-02-21
US10385248B2 (en) 2019-08-20
EP2472201A4 (en) 2015-10-21
US9719004B2 (en) 2017-08-01
US10024583B2 (en) 2018-07-17
EP3933299A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP5656842B2 (ja) 希土類蓄冷材粒子、希土類蓄冷材粒子群およびそれを用いた冷凍機、測定装置並びにその製造方法
JP2609747B2 (ja) 蓄冷材およびその製造方法
EP1016701B1 (en) Cold accumulating material and cold accumulation refrigerator using the same
US6467277B2 (en) Cold accumulating material, method of manufacturing the same and refrigerator using the material
JP7432769B2 (ja) 蓄冷材、蓄冷材粒子、造粒粒子、蓄冷器、冷凍機、クライオポンプ、超電導磁石、核磁気共鳴イメージング装置、核磁気共鳴装置、磁界印加式単結晶引上げ装置、及び、ヘリウム再凝縮装置
US20240287372A1 (en) Granulated particle for cold storage material particle, cold storage material particle, cold storage device, refrigerator, cryopump, superconducting magnet, nuclear magnetic resonance imaging apparatus, nuclear magnetic resonance apparatus, magnetic field application type single crystal pulling apparatus, and helium re-condensing device
JP5468380B2 (ja) 蓄冷材およびその製造方法
EP3561021A1 (en) Cooling storage material and method for producing same, cooling storage device, and refrigerating machine
CN110168043B (zh) 稀土蓄冷材料以及具有其的蓄冷器和制冷机
JP5010071B2 (ja) 蓄冷材,その製造方法およびその蓄冷材を用いた冷凍機
JP4564161B2 (ja) 冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811807

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528780

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13391831

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010811807

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010811807

Country of ref document: EP