WO2011022876A1 - 发光元件、其制造方法及其发光方法 - Google Patents

发光元件、其制造方法及其发光方法 Download PDF

Info

Publication number
WO2011022876A1
WO2011022876A1 PCT/CN2009/073515 CN2009073515W WO2011022876A1 WO 2011022876 A1 WO2011022876 A1 WO 2011022876A1 CN 2009073515 W CN2009073515 W CN 2009073515W WO 2011022876 A1 WO2011022876 A1 WO 2011022876A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
substrate
luminescent
emitting
metal layer
Prior art date
Application number
PCT/CN2009/073515
Other languages
English (en)
French (fr)
Inventor
周明杰
马文波
刘玉刚
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to US13/392,384 priority Critical patent/US9101035B2/en
Priority to EP09848608.7A priority patent/EP2473010B1/en
Priority to PCT/CN2009/073515 priority patent/WO2011022876A1/zh
Priority to JP2012525835A priority patent/JP5612688B2/ja
Priority to CN200980161087.8A priority patent/CN102577611B/zh
Publication of WO2011022876A1 publication Critical patent/WO2011022876A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/20Luminescent screens characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/24Supports for luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/18Luminescent screens
    • H01J2329/20Luminescent screens characterised by the luminescent material

Definitions

  • the present invention relates to the field of luminescent materials, and in particular to a luminescent element having a luminescent material of a glass substrate, a method of manufacturing the same, and a method of illuminating the same.
  • field emission devices generally use luminescent glass as an illuminant, which has broad application prospects in the field of illumination and display, and has attracted widespread attention from research institutions at home and abroad.
  • the field emission device works as follows: In a vacuum environment, the anode is opposite to the field emission cathode array (Field emissive
  • the field emission device has a wide operating temperature range (-40°C ⁇ 80°C), short response time ( ⁇ lms), simple structure, power saving, and meets environmental protection requirements.
  • materials such as phosphors, luminescent glasses, and luminescent films can be used as luminescent materials in field emission devices, but they all have the fundamental problem of low luminous efficiency, which greatly limits the application of field emission devices, especially in illumination. Application of the field.
  • the present invention provides a light-emitting element having high light-emitting uniformity, high luminous efficiency, good stability, and simple structure, and a light-emitting element manufacturing method with simple preparation process and low cost.
  • the present invention also provides a light-emitting element light-emitting method which is simple in operation, convenient and reliable, and greatly enhances luminous efficiency of a light-emitting material.
  • a light-emitting element comprising a light-emitting substrate, wherein a surface of the light-emitting substrate is provided with a metal layer, the metal layer has a metal microstructure, and the light-emitting substrate comprises a light-emitting material having a chemical composition of ⁇ 2 3 3 : Eu material.
  • a method of manufacturing a light-emitting element comprising the steps of:
  • the luminescent substrate comprising a luminescent material having a chemical composition of ⁇ 0 3: Eu;
  • the luminescent substrate and the metal layer are annealed under vacuum to form the metal layer into a metal microstructure, and after cooling, the light-emitting element is formed.
  • a method of emitting a light-emitting element comprising the steps of:
  • the cathode ray is emitted from the metal layer, and a surface plasmon is formed between the metal layer and the luminescent glass under the excitation of the cathode ray to illuminate the luminescent glass.
  • a metal layer having a microstructure is formed on the light-emitting substrate, and the metal layer can form a surface plasma at the interface between the cathode and the light-emitting substrate, and the surface plasma is passed through the surface.
  • the bulk effect greatly enhances the internal quantum efficiency of the luminescent substrate, that is, the spontaneous emission of the luminescent glass is enhanced, thereby greatly enhancing the luminescent efficiency of the luminescent substrate, thereby solving the problem of low luminous efficiency of the luminescent material.
  • the light-emitting element includes a light-emitting substrate and a metal layer, the double-layer structure is simple, and has a uniform interface between the light-emitting substrate and the metal layer, thereby exhibiting high light-emitting uniformity and stability.
  • the light-emitting method of the light-emitting element it is only necessary to emit a cathode ray to the metal layer, and a surface plasma is formed between the metal layer and the luminescent glass, that is, the luminous efficiency of the luminescent glass can be greatly enhanced, and the illuminating reliability is improved.
  • FIG. 2 is a flow chart of a method for preparing a light-emitting element according to an embodiment of the present invention
  • FIG. 3 is a flow chart showing a method of emitting light of a light-emitting element according to an embodiment of the present invention
  • Example 4 is a luminescence spectrum of a light-emitting element of Example 1 in comparison with a luminescent glass without a metal layer, and the cathode ray emission spectroscopy test conditions are as follows: The acceleration voltage of the electron beam excitation is 5 kV.
  • a light-emitting element 10 which comprises a light-emitting substrate 13 and a metal layer 14 provided on the surface of the light-emitting substrate 13.
  • the metal layer 14 has a metal microstructure which is also referred to as a micro/nano structure. Further, the metal microstructure is aperiodic, i.e., composed of randomly arranged metal crystals.
  • the luminescent substrate 13 may be a luminescent glass having a Y 2 0 3: Eu luminescent material, and the composition and composition of the glass are 20Na 2 O-20BaO. - 30B 2 O 3 -30SiO 2 , glass crucible with low melting point glass powder, not limited to the glass material described here.
  • the mass percentage of the Y 2 0 3 : Eu luminescent material in the luminescent matrix is 5% to 35%.
  • the light-emitting substrate 13 comprises a transparent or translucent substrate and a light-emitting film having a chemical composition of Y 2 O 3 : Eu formed on the substrate, and the metal layer 14 is formed on the light-emitting film surface.
  • the metal layer 14 may be a metal which is chemically stable, such as a metal which is not easily oxidatively corroded, or a commonly used metal, preferably gold, silver, aluminum, copper, titanium, iron, nickel, cobalt. And at least one metal selected from the group consisting of chromium, platinum, palladium, magnesium, and zinc, more preferably formed of at least one metal selected from the group consisting of gold, silver, and aluminum.
  • the metal species in the metal layer 14 may be their single metal or composite metal.
  • the composite metal may be an alloy of two or more of the above metals.
  • the metal layer 14 may be a silver-aluminum alloy layer or a gold-aluminum alloy layer, wherein the weight fraction of silver or gold is preferably 70% or more.
  • the thickness of the metal layer 14 is preferably from 0.5 nm to 200 nm, more preferably from 1 nm to 100 nm.
  • the above-described light-emitting element 10 is used as a light-emitting element, and can be widely applied to a high-luminance and high-speed operation light-emitting device, such as a field emission display, a field emission light source, or a large advertisement display card.
  • a high-luminance and high-speed operation light-emitting device such as a field emission display, a field emission light source, or a large advertisement display card.
  • Field emission For example, the anode is applied with a forward voltage to form an accelerating electric field with respect to the field emission cathode array, and electrons emitted from the cathode, that is, a cathode ray 16 is emitted to the metal layer 14, and a surface is formed between the metal layer 14 having the microstructure and the luminescent substrate 13.
  • the plasma greatly improves the internal quantum efficiency of the luminescent substrate 13, that is, the spontaneous emission of the luminescent glass is enhanced, thereby greatly enhancing the luminescent efficiency of the luminescent substrate, thereby solving the problem of low luminous efficiency of the luminescent material.
  • a metal layer is formed on the surface of the light-emitting substrate 13, a uniform interface is formed between the entire metal layer and the light-emitting substrate 13, and the uniformity of light emission can be improved.
  • step S01 corresponding to the two structures of the light-emitting substrate 13 described above: the first one is a luminescent glass having a Y 2 0 3 : Eu luminescent material, and the second is a Y 2 0 3 : Eu luminescence A film is formed on the substrate.
  • the preparation method of the first illuminating substrate 13 comprises the following steps: mixing the Y 2 O 3 : Eu luminescent material with the glass frit, then melting at a temperature of 1000-1300 ° C, and cooling to room temperature to obtain a miscellaneous Y 2 0 3 : Eu
  • a luminescent glass of a luminescent material wherein the glass powder composition and component parts by mole are 20Na 2 O-20BaO-30B 2 O 3 -30SiO 2 .
  • the Y 2 0 3 : Eu luminescent material is also a powder, which is mixed with the glass powder according to a mass ratio of 1:19 ⁇ 7:13, and the Y 2 0 3 : Eu luminescent material accounts for the mass percentage of the mixture after mixing. It is 5 to 35, and then melted at a temperature of 1000 to 1300 ° C, poured on a steel plate and cooled to room temperature to obtain a desired substrate 13 .
  • the temperature is preferably 1200 °C.
  • the second light-emitting substrate 13 is prepared by the following steps: A translucent or transparent substrate is used as a substrate, and a Y 2 O 3 : Eu light-emitting film is deposited on the substrate.
  • the Y 2 0 3: Eu luminescent film is deposited on the substrate by magnetron sputtering, electron beam evaporation, chemical vapor deposition, molecular beam epitaxy, pulsed laser deposition or spray thermal decomposition.
  • the metal layer 14 formed here may be formed by depositing a metal source having good chemical stability, such as a metal which is not easily oxidized and corroded, or a commonly used metal. It is selected from at least one of gold, silver, aluminum, copper, titanium, iron, nickel, cobalt, chromium, platinum, palladium, magnesium, and zinc, and more preferably at least one metal selected from the group consisting of gold, silver, and aluminum.
  • the metal layer 14 is formed on the surface of the light-emitting substrate 13 by physical or chemical vapor deposition, for example, but not limited to, on the surface of the light-emitting substrate 13 by sputtering or evaporation.
  • the thickness of the metal layer 14 is preferably from 0.5 nm to 200 nm, more preferably from 1 nm to 100 nm.
  • Step S03 is as follows: After the metal layer 14 is formed on the surface of the light-emitting substrate 13, vacuum annealing is performed at 50 ° C to 650 ° C, and the annealing time is 5 minutes to 5 hours, and then naturally cooled to room temperature. Among them, the annealing temperature is preferably from 100 ° C to 500 ° C, and the annealing time is preferably from 15 minutes to 3 hours.
  • FIGS. 1 and 3 a flow chart of a method for emitting a light-emitting element according to an embodiment of the present invention will be described.
  • the method of emitting light includes the following steps:
  • S12 The cathode layer 16 is emitted to the metal layer 14. Under the excitation of the cathode ray 16, a surface plasmon is formed between the metal layer 14 and the luminescent substrate 13, so that the luminescent substrate 13 emits light.
  • step S1 2 may be implemented by using a field emission display or an illumination source.
  • the anode applies a forward voltage to the field emission cathode array to form an acceleration electric field, and the cathode emits a cathode ray 16 under the excitation of the cathode ray 16.
  • the electron beam first penetrates the metal layer 14 to excite the luminescent substrate 13 to emit light.
  • a surface plasmon effect is generated at the interface between the metal layer 14 and the luminescent substrate 13, and the internal quantum efficiency of the luminescent substrate 13 is greatly improved by this effect.
  • the improvement that is, the spontaneous emission enhancement of the luminescent material, further greatly enhances the luminous efficiency of the luminescent material.
  • the light-emitting substrate 13 has two structures.
  • the electron beam penetrates the metal layer 14 to excite Y 2 0 3 : Eu light which is cumbersome in the light-emitting glass, and the surface plasmon is The surface of the luminescent glass of the cryptic Y 2 0 3 : Eu is formed between the metal layer 14 and promotes the luminescence of Y 2 0 3 : Eu.
  • the electron beam penetrates the metal layer 14 to directly excite the Y 2 O 3 : Eu luminescent film, and a surface plasmon is formed between the Y 2 0 3: ⁇ u luminescent film and the metal layer 14 to promote Y 2 0 3 : Eu shines.
  • Plasmon is a wave propagating along the interface between metal and medium, whose amplitude decays exponentially with distance from the interface.
  • surface plasmon Surface plasmon Polaritons, SPPs
  • the nature, dispersion relationship, excitation mode, coupling effect, etc. will all undergo major changes.
  • the electromagnetic field induced by SPPs not only limits the propagation of light waves in sub-wavelength structures, but also generates and manipulates electromagnetic radiation from the optical frequency to the microwave band to achieve active control of light propagation. Therefore, the present embodiment utilizes the excitation performance of the SPPs to increase the optical density of the luminescent substrate and enhance its spontaneous emission rate.
  • the coupling effect of the surface plasmon can be utilized to generate a coupling resonance when the luminescent substrate emits a pupil. The effect is to greatly improve the internal quantum efficiency of the light-emitting substrate and improve the luminous efficiency of the light-emitting substrate.
  • a luminescent glass of luminescent material Then, a metal silver layer with a thickness of 2 nm is deposited on the surface of the luminescent glass by a magnetron sputtering device, and then placed in a vacuum environment with a vacuum of less than lxlO-3Pa, and the semi-small crucible is annealed at a temperature of 300 ° C, and then cooled.
  • the light-emitting element of this example was obtained up to room temperature.
  • the curve 11 in the figure is an illuminating spectrum of the illuminating glass without the metal silver layer;
  • the curve 12 is the luminescence spectrum of the illuminating element with the metal structure prepared in the present embodiment, as can be seen from the figure, due to the metal layer and the illuminating A surface plasmon effect is generated between the glass, and the illuminating integrated intensity of the luminescent glass to which the metal structure is added from 350 nm to 700 nm of the present embodiment is an unexposed layer ⁇ illuminating glass illuminating integrated intensity with respect to the undoped lanthanum luminescent glass. 1.3 times, the luminescence performance is improved.
  • Y 2 0 3 Eu phosphor powder and glass powder (composition and composition mole fraction is 20Na 2 O-20BaO-30B 2 O 3 -30SiO 2 ) was mixed and melted at a mass ratio of 1:19 to obtain a luminescent glass having a luminescent material of Y 2 0 3 : Eu.
  • a metal gold layer having a thickness of 0.5 nm is deposited on the surface of the luminescent glass by using a magnetron sputtering device, and then placed in a vacuum environment with a degree of vacuum of less than lxlO-3Pa, and annealed at a temperature of 200 ° C for 1 hour, and then The film was cooled to room temperature to obtain a light-emitting element of this example.
  • Y 2 0 3 Eu phosphor powder and glass powder (composition and composition mole fraction is 20Na 2 O-20BaO-30B 2 O 3
  • a metal aluminum layer having a thickness of 200 nm is deposited on the surface of the luminescent glass by a magnetron sputtering apparatus, and then placed in a vacuum environment having a degree of vacuum of less than lxlO- 3 Pa, and annealed at a temperature of 500 ° C for 5 hours, and then The film was cooled to room temperature to obtain a light-emitting element of this example.
  • a double-polished sapphire substrate having a size of lxlcm2 was selected, and a Y 2 0 3 : Eu luminescent film was prepared on the substrate by magnetron sputtering, and a thickness of 100 nm was deposited on the surface of the luminescent film by an electron beam evaporation apparatus.
  • the metal magnesium layer was then placed in a vacuum atmosphere having a degree of vacuum of less than 1 x 10 -3 Pa, annealed at a temperature of 650 ° C for 5 minutes, and then cooled to room temperature to obtain a light-emitting element of this example.
  • a double-polished magnesium oxide substrate having a size of lxlcm2 was selected, and a Y 2 0 3 : Eu luminescent film was prepared on the substrate by molecular beam epitaxy, and a thickness of 1 nm was deposited on the surface of the luminescent film by an electron beam evaporation apparatus.
  • the metal palladium layer was then placed in a vacuum atmosphere having a degree of vacuum of less than 1 x 10 -3 Pa, and annealed at a temperature of 100 ° C for 3 hours, and then cooled to room temperature to obtain a light-emitting element of this example.
  • a double-polished magnesium oxide substrate having a size of lxlcm2 was selected, and a Y 2 O 3 : Eu luminescent film was prepared on the substrate by a spray pyrolysis method, and a thickness of 5 nm was deposited on the surface of the luminescent film by an electron beam evaporation apparatus.
  • the metal platinum layer was then placed in a vacuum atmosphere having a degree of vacuum of less than 1 x 10 -3 Pa, annealed at a temperature of 450 ° C for 15 minutes, and then cooled to room temperature to obtain a light-emitting element of this example.
  • a quartz substrate of double-sided polishing size of lxlcm2 was selected, and ⁇ 2 0 3 was obtained on the substrate by magnetron sputtering :
  • Eu luminescent film using a electron beam evaporation device to deposit a metal iron layer having a thickness of 20 nm on the surface of the luminescent film Then, it was placed in a vacuum atmosphere having a degree of vacuum of less than lxlO-3Pa, annealed at a temperature of 50 ° C for 5 hours, and then cooled to room temperature to obtain a light-emitting element of this example.
  • a quartz substrate of double-sided polishing size of lxlcm2 was selected, and ⁇ 2 0 3 was obtained on the substrate by magnetron sputtering :
  • Eu luminescent film a metal titanium layer with a thickness of 10 nm is deposited on the surface of the luminescent film by an electron beam evaporation device, and then placed in a vacuum environment with a vacuum of less than lxlO- 3 Pa, and annealed at a temperature of 150 ° C for 2 hours. Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • a quartz substrate of double-sided polishing size of lxlcm2 was selected, and ⁇ 2 0 3 was obtained on the substrate by magnetron sputtering :
  • Eu luminescent film using a electron beam evaporation device to deposit a metal copper layer having a thickness of 50 nm on the surface of the luminescent film, and then placing it in a vacuum environment with a vacuum of less than lxlO-3Pa, and annealing at a temperature of 200 ° C for 2.5 hours. Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • Eu luminescent film a metal nickel layer with a thickness of 40 nm is deposited on the surface of the luminescent film by an electron beam evaporation device, and then placed in a vacuum environment with a vacuum of less than lxlO- 3 Pa, and annealed at a temperature of 80 ° C for 4 hours. Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • Example 13 [69] Selecting a double-polished quartz substrate of size lxlcm2, a Y 2 0 3 : Eu luminescent film was prepared on the substrate by magnetron sputtering, and a thickness of 180 nm was deposited on the surface of the luminescent film by an electron beam evaporation apparatus. The metallic cobalt layer was then placed in a vacuum atmosphere having a degree of vacuum of less than 1 x 10 -3 Pa, and annealed at a temperature of 400 ° C for 1 hour, and then cooled to room temperature to obtain a light-emitting element of this example.
  • Y 2 0 3 Eu phosphor powder and glass powder (composition and composition mole fraction is 20Na 2 O-20BaO-30B 2 O 3
  • Y 2 0 3 Eu phosphor powder and glass powder (composition and component molar fraction of 20Na 2 O-20BaO-30B 2 O 3 -30SiO 2 ) are mixed and melted in a mass ratio of 3:7. It is a luminescent glass with a Y 2 0 3 : Eu luminescent material. Then, a metal silver-aluminum layer having a thickness of 15 nm is deposited on the surface of the luminescent glass by a magnetron sputtering apparatus. In the silver-aluminum layer, the parts by weight of silver and aluminum are about 90% and 10%, respectively, and then placed in a vacuum degree. In a vacuum atmosphere of less than lxlO-3Pa, the film was annealed at a temperature of 200 ° C for 1 hour, and then cooled to room temperature to obtain a light-emitting element of this example.
  • a double-polished quartz substrate of size lxlcm2 was selected, and a Y 2 0 3 : Eu luminescent film was prepared on the substrate by magnetron sputtering, and a thickness of lOnm was deposited on the surface of the luminescent film by an electron beam evaporation apparatus.
  • Metallic silver-aluminum layer, in the silver-aluminum layer, the weight fraction of silver and aluminum is about 80% and 20%, respectively, and then placed in a vacuum of less than lxlO-3Pa, and annealed at a temperature of 150 ° C After 2 hours of treatment, it was cooled to room temperature to obtain a light-emitting element of this example.
  • a double-polished magnesium oxide substrate having a size of lxlcm2 was selected, and a Y 2 0 3 : Eu luminescent film was prepared on the substrate by a magnetron sputtering method, and a thickness of lOnm was deposited on the surface of the luminescent film by an electron beam evaporation apparatus.
  • a light-emitting substrate 13 is provided with a metal layer 14 having a microstructure which can form a surface at the interface between the cathode ray and the light-emitting substrate 13.
  • the plasma by the surface plasmon effect, greatly increases the internal quantum efficiency of the luminescent substrate 13, thereby enhancing the spontaneous emission of the luminescent material, thereby greatly enhancing the luminescent efficiency of the luminescent material, thereby solving the problem of low luminous efficiency of the luminescent material.
  • the light-emitting element 10 includes the light-emitting substrate 13 and the metal layer 14, the two-layer structure is simple, and has a uniform interface between the light-emitting substrate 13 and the metal layer 14, thereby exhibiting high light-emitting uniformity and stability.
  • the light-emitting method of the light-emitting element it is only necessary to emit a cathode ray to the metal layer 14, and a surface plasmon is formed between the metal layer 14 and the light-emitting substrate 13, that is, the light-emitting efficiency of the light-emitting substrate 13 can be greatly enhanced, and the light-emitting reliability can be improved.
  • a metal layer 14 needs to be formed on the light-emitting substrate 13, and then an annealing process is performed to obtain the desired light-emitting element 10.
  • the preparation method is simple and low. Cost, with broad production and application prospects, especially for high-brightness and high-speed operation of light-emitting devices, such as field emission displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Description

说明书 发光元件、 其制造方法及其发光方法 技术领域
[1] 本发明属于发光材料技术领域, 具体涉及一种具有玻璃基材的发光材料的发光 元件、 其制造方法及其发光方法。
背景技术
[2] 传统的作为发光基体的材料包括荧光粉、 纳米晶体及玻璃等, 相对于晶体和荧 光粉而言, 玻璃具有透明、 坚硬及良好化学稳定性和优良的光学性质; 而且玻 璃更容易被加工成各种形状大小的产品, 如各种形状或尺寸的显示器件或照明 光源。
[3] 例如, 在真空微电子学领域中, 场发射器件通常利用发光玻璃作为发光体, 其 在照明及显示领域显示出了广阔的应用前景, 引起国内外研究机构的广泛关注 。 场发射器件工作原理是: 在真空环境下, 阳极相对场发射阴极阵列 (Field emissive
arrays , FEAs) 施加正向电压形成加速电场, 阴极发射的电子加速轰向阳极板上 的发光材料而发光。 场发射器件的工作温度范围宽 (-40°C~80°C) 、 响应吋间 短 (<lms) 、 结构简单、 省电, 符合绿色环保要求。 另外, 荧光粉体、 发光玻 璃、 发光薄膜等材料都可以在场发射器件中作为发光材料使用, 但它们都存在 发光效率低这一本质问题, 极大限制了场发射器件的应用, 特别是在照明领域 的应用。
对发明的公开
技术问题
[4] 有鉴于此, 本发明提供一种具有发光均匀性高、 发光效率高、 稳定性好、 结构 简单的发光元件, 以及一种制备工艺简单、 成本低的发光元件制造方法。
[5] 本发明还提供一种操作简便、 方便可靠、 大大增强发光材料发光效率的发光元 件发光方法。
技术解决方案 [6] 一种发光元件, 其包括发光基体, 所述发光基体的表面设有一金属层, 所述金 属层具有金属显微结构, 所述发光基体包含化学成分为¥203 : Eu的发光材料。
[7] 一种发光元件制造方法, 其包括如下步骤:
[8] 制备发光基体, 所述发光基体包含化学成分为^03: Eu的发光材料;
[9] 在所述发光基体的表面形成一金属层; 及
[10] 将所述发光基体及金属层在真空下进行退火处理, 使所述金属层形成金属显微 结构, 冷却后形成所述的发光元件。
[11] 以及, 一种发光元件的发光方法, 其包括如下步骤:
[12] 按照上述发光元件制造方法获得发光元件; 及
[13] 对金属层发射阴极射线, 在阴极射线激发下金属层与发光玻璃之间形成表面等 离子体, 使发光玻璃发光。
有益效果
[14] 在上述发光元件中, 通过釆用在发光基体上设置一层具有显微结构的金属层, 该金属层能在阴极射线下与发光基体之间的界面形成表面等离子体, 通过表面 等离子体效应, 使发光基体的内量子效率大大提高, 即发光玻璃的自发辐射增 强, 进而大大增强了发光基体的发光效率, 从而解决发光材料发光效率低这一 问题。 因而, 在发光元件的发光方法中, 只需对金属层发射阴极射线, 金属层 与发光基体之间形成表面等离子体, 以增强发光基体发光效率, 提高其发光可 靠性。 由于发光元件包括发光基体和金属层, 这种双层结构简单, 同吋, 在发 光基体和金属层间有均匀界面, 从而表现出很高的发光均匀性和稳定性。
在发光元件的发光方法中, 只需对金属层发射阴极射线, 金属层与发光玻璃之 间形成表面等离子体, 即能大大增强发光玻璃的发光效率, 提高其发光可靠性
[15] 上述的发光元件制备方法中, 只需要在发光玻璃上形成一层金属层, 然后经过 退火处理, 即可获得所述发光元件, 该制备方法工艺简单、 降低成本, 具有广 阔的生产应用前景。
附图说明
[16] 下面将结合附图及实施例对本发明作进一步说明, 附图中: [17] 图 1是本发明实施例的发光元件结构示意图;
[18] 图 2是本发明实施例的发光元件制备方法流程图;
[19] 图 3是本发明实施例的发光元件的发光方法流程图;
[20] 图 4是实施例 1的发光元件与未加金属层的发光玻璃对比的发光光谱图, 阴极射 线发光光谱测试条件为: 电子束激发的加速电压为 5KV。
本发明的实施方式
[21] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用限定本发明。
[22] 请参阅图 1, 示出本发明实施例的发光元件 10, 其包括发光基体 13以及设于发 光基体 13表面的金属层 14。 金属层 14具有金属显微结构, 该金属显微结构有吋 也称为微纳结构。 进一步, 该金属显微结构是非周期性的, 即由无规则排列的 金属晶体构成。
[23] 在本发明的一个实施例中, 该发光基体 13可以是惨杂有 Y203: Eu发光材料的发 光玻璃, 所述玻璃的组成及组份摩尔份数为 20Na2O-20BaO- 30B2O3-30SiO2 , 玻璃釆用低熔点的玻璃粉, 并不限于此处描述的玻璃材质。 其中, Y203 : Eu 发光材料在发光基体中所占的质量百分比为 5%~35%。
[24] 在本发明的另一个实施例中, 该发光基体 13包括透明或半透明基片和形成于基 片上的化学成分为 Y203: Eu的发光薄膜, 金属层 14形成于发光薄膜表面。
[25] 其中, 金属层 14可以是由化学稳定性良好的金属, 例如不易氧化腐蚀的金属, 另外也可以是常用的金属, 优选为金、 银、 铝、 铜、 钛、 铁、 镍、 钴、 铬、 铂 、 钯、 镁、 锌中的至少一种金属形成的, 更优选为由金、 银、 铝中的至少一种 金属形成的。 金属层 14中的金属物种可以是它们的单金属或者复合金属。 复合 金属可以是上述金属两种或两种以上的合金, 例如, 金属层 14可以是银铝合金 层或金铝合金层, 其中银或金的重量分数优选为 70%以上。 金属层 14的厚度优选 为 0.5纳米〜 200纳米, 更优选为 1纳米〜 100纳米。
[26] 上述发光元件 10作为发光元件, 可广泛应用于超高亮度和高速运作的发光器件 上, 例如场发射显示器、 场发射光源或大型广告显示牌等产品中。 以场发射显 示器为例, 阳极相对场发射阴极阵列施加正向电压形成加速电场, 阴极发射的 电子, 即对金属层 14发射阴极射线 16, 具有显微结构的金属层 14与发光基体 13 之间形成表面等离子体, 通过表面等离子体效应, 使发光基体 13的内量子效率 大大提高, 即发光玻璃的自发辐射增强, 进而大大增强了发光基体的发光效率 , 从而解决发光材料发光效率低这一问题。 另外, 由于是发光基体 13表面形成 一层金属层, 整个金属层与发光基体 13之间形成均匀界面, 可以提高发光的均 匀性。
[27] 请参阅图 1和 2, 说明本发明实施例的发光元件制造方法的流程, 该制造方法包 括如下步骤:
[28] S01 : 制备发光基体 13, 发光基体 13包含化学成分为¥203 : Eu的发光材料; [29] S02: 在发光基体 13的表面形成一金属层 14; 及
[30] S03: 将发光基体 13及金属层 14在真空下进行退火处理, 使金属层 14形成金属 显微结构, 冷却后形成所述的发光元件 10。
[31] 在步骤 S01中, 对应上面描述的发光基体 13的两种结构: 第一种为惨杂有 Y203 : Eu发光材料的发光玻璃, 第二种为 Y203: Eu发光薄膜形成于基片上。 第一种 发光基体 13的制备方法包括如下步骤: 将 Y203: Eu发光材料与玻璃粉混合, 然 后在 1000-1300°C温度下熔融, 冷却至室温, 得到惨杂有 Y203 : Eu
发光材料的发光玻璃, 其中, 玻璃粉组成及组份摩尔份数为 20Na2O-20BaO- 30B2 O3-30SiO2。 其中, Y203: Eu发光材料也为粉状物, 其与玻璃粉按照质量比例为 1 : 19〜7: 13进行混合, 混合后 Y203: Eu发光材料占混合物的质量百分比例为 5 ~35 , 然后在 1000-1300°C温度下熔融, 倒在钢板上冷却至室温, 得到所需的 基体 13。 温度优选为 1200°C。
[32] 第二种发光基体 13的制备方法包括如下步骤: 选用半透明或透明基片为衬底, 在衬底上沉积 Y203 : Eu发光薄膜。 其中 Y203: Eu发光薄膜釆用磁控溅射、 电子 束蒸发、 化学汽相沉积、 分子束外延、 脉冲激光沉积或喷雾热分解等方法在衬 底沉积形成。
[33] 与前面描述的结构相类似, 此处形成金属层 14可以是釆用化学稳定性良好的金 属材质源沉积形成, 例如不易氧化腐蚀的金属, 另外也可以是常用的金属, 优 选为金、 银、 铝、 铜、 钛、 铁、 镍、 钴、 铬、 铂、 钯、 镁、 锌中的至少一种金 属, 更优选为由金、 银、 铝中的至少一种金属。 在步骤 S02中, 该金属层 14是通 过将上述至少一种金属通过物理或化学气相沉积法形成于发光基体 13表面, 例 如但不限于用溅射或蒸镀方法形成于发光基体 13的表面。 金属层 14的厚度优选 为 0.5纳米〜 200纳米, 更优选为 1纳米〜 100纳米。
[34] 步骤 S03具体如下: 在发光基体 13表面形成金属层 14后, 在 50°C~650°C下进行 真空退火处理, 退火吋间为 5分钟〜 5小吋, 然后自然冷却至室温。 其中, 退火 温度优选为 100°C~500°C, 退火吋间优选为 15分钟〜 3小吋。
[35] 请参阅图 1和 3, 说明本发明实施例的发光元件发光方法的流程, 该发光方法包 括如下步骤:
[36] S11 : 按照前述发光元件制造方法获得发光元件 10;
[37] S12: 对金属层 14发射阴极射线 16, 在阴极射线 16的激发下, 金属层 14与发光 基体 13之间形成表面等离子体, 使发光基体 13发光。
[38] 发光元件 10具有前面描述各种结构及组份等特征。 在实际应用中, 实现步骤 S1 2可以釆用场发射显示器或照明光源, 在真空环境下, 阳极相对场发射阴极阵列 施加正向电压形成加速电场, 阴极发射阴极射线 16, 在阴极射线 16的激发下, 电子束首先穿透金属层 14进而激发发光基体 13发光, 在这个过程中, 金属层 14 与发光基体 13的界面上产生了表面等离子体效应, 通过该效应使发光基体 13的 内量子效率大大提高, 即发光材料的自发辐射增强, 进而大大增强了发光材料 的发光效率。
[39] 如上所述, 发光基体 13具有两种结构, 在第一种结构中, 电子束穿透金属层 14 进而激发惨杂在发光玻璃中的 Y203: Eu发光, 表面等离子体在有惨杂 Y203: Eu 的发光玻璃表面与金属层 14之间形成, 促进 Y203: Eu的发光。 在第二种结构中 , 电子束穿透金属层 14, 直接激发 Y203 : Eu发光薄膜, 表面等离子体在 Y203: Ε u发光薄膜与金属层 14之间形成, 促进 Y203 : Eu发光。
表面等离子体 (Surface
Plasmon, SP) 是一种沿金属和介质界面传播的波, 其振幅随离开界面的距离而 指数衰减。 当改变金属表面结构吋, 表面等离子体激元 (Surface plasmon polaritons, SPPs)
的性质、 色散关系、 激发模式、 耦合效应等都将产生重大的变化。 SPPs引发的 电磁场, 不仅仅能够限制光波在亚波长尺寸结构中传播, 而且能够产生和操控 从光频到微波波段的电磁辐射, 实现对光传播的主动操控。 因此, 本实施例利 用该 SPPs的激发性能, 增大发光基体的光学态密度和增强其自发辐射速率; 而 且, 可利用表面等离子体的耦合效应, 当发光基体发出光吋, 能与其发生耦合 共振效应, 从而大大提高发光基体的内量子效率, 提高发光基体的发光效率。
[41] 以下通过多个实施例来举例说明发光元件的不同组成及其制备方法, 以及其性 能等方面。 在以下各个实施例中, Y203 : Eu发光材料可釆用市售商品, 直接加 以利用。
[42] 实施例 1
[43] 将 Y203: Eu荧光粉与玻璃粉 (组成及组份摩尔份数为 20Na2O-20BaO-30B2O3 -30SiO2) 按照质量比例 1 : 4进行混合、 熔融, 制得惨杂有 Y203 : Eu
发光材料的发光玻璃。 然后利用磁控溅射设备在发光玻璃表面沉积厚度为 2nm的 金属银层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 300°C的温度退 火处理半小吋, 然后冷却至室温, 即得到本实施例的发光元件。
[44] 对上述制备的发光元件进行光谱测试, 用电子枪产生的阴极射线轰击该发光元 件, 电子束首先穿透金属层进而激发惨杂有 Y203: Eu的发光玻璃发光, 产生如 图 4所示的发光光谱, 图中光谱显示发光材料能够激发发出红光。 图中曲线 11为 未加金属银层吋发光玻璃的发光光谱图; 曲线 12为本实施例制备的附加了金属 结构的发光元件的发光光谱图, 从图中可以看到, 由于金属层与发光玻璃之间 产生了表面等离子体效应, 相对于未加金属层吋发光玻璃, 本实施例的附加了 金属结构的发光玻璃从 350nm到 700nm的发光积分强度是未加金属层吋发光玻璃 发光积分强度的 1.3倍, 使发光性能得到提高。
[45] 以下各个实施例的发光光谱图都与实施例 1相类似, 各发光元件也具有类似的 发光强度效果, 在下面不再赞述。
[46] 实施例 2
[47] 将 Y203: Eu荧光粉与玻璃粉 (组成及组份摩尔份数为 20Na2O-20BaO- 30B2O3 -30SiO2) 按照质量比例 1 : 19进行混合、 熔融, 制得惨杂有 Y203 : Eu发光材料的 发光玻璃。 然后利用磁控溅射设备在发光玻璃表面沉积厚度为 0.5nm的金属金层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 200°C的温度退火处理 1小 吋, 然后冷却至室温, 得到本实施例的发光元件。
[48] 实施例 3
[49] 将 Y203: Eu荧光粉与玻璃粉 (组成及组份摩尔份数为 20Na2O-20BaO- 30B2O3
-30SiO2) 按照质量比例 7: 13进行混合、 熔融, 制得惨杂有 Y203 : Eu发光材料的 发光玻璃。 然后利用磁控溅射设备在发光玻璃表面沉积厚度为 200nm的金属铝层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 500°C的温度退火处理 5小 吋, 然后冷却至室温, 得到本实施例的发光元件。
[50] 实施例 4
[51] 选择大小为 lxlcm2双面抛光的蓝宝石衬底, 用磁控溅射方法在衬底上制得 Y203 : Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 lOOnm的金属镁 层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 650°C的温度退火处理 5 分钟, 然后冷却至室温, 得到本实施例的发光元件。
[52] 实施例 5
[53] 选择大小为 lxlcm2双面抛光的氧化镁衬底, 用分子束外延方法在衬底上制得 Y2 03: Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 lnm的金属钯 层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 100°C的温度退火处理 3 小吋, 然后冷却至室温, 得到本实施例的发光元件。
[54] 实施例 6
[55] 选择大小为 lxlcm2双面抛光的氧化镁衬底, 用喷雾热分解方法在衬底上制得 Y2 03: Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 5nm的金属铂 层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 450°C的温度退火处理 1 5分钟, 然后冷却至室温, 得到本实施例的发光元件。
[56] 实施例 7
[57] 选择大小为 lxlcm2双面抛光的石英衬底, 用磁控溅射方法在衬底上制得¥203 :
Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 20nm的金属铁层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 50°C的温度退火处理 5小 吋, 然后冷却至室温, 得到本实施例的发光元件。
[58] 实施例 8
[59] 选择大小为 lxlcm2双面抛光的石英衬底, 用磁控溅射方法在衬底上制得¥203 :
Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 10nm的金属钛层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 150°C的温度退火处理 2小 吋, 然后冷却至室温, 得到本实施例的发光元件。
[60] 实施例 9
[61] 选择大小为 lxlcm2双面抛光的石英衬底, 用磁控溅射方法在衬底上制得¥203 :
Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 50nm的金属铜层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 200°C的温度退火处理 2.5 小吋, 然后冷却至室温, 得到本实施例的发光元件。
[62] 实施例 10
[63] 选择大小为 lxlcm2双面抛光的石英衬底, 用磁控溅射方法在衬底上制得 Y203: Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 150nm的金属锌层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 350°C的温度退火处理 0.5 小吋, 然后冷却至室温, 得到本实施例的发光元件。
[64] 实施例 11
[65] 选择大小为 lxlcm2双面抛光的石英衬底, 用磁控溅射方法在衬底上制得 Y203: Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 120nm的金属铬层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 250°C的温度退火处理 2小 吋, 然后冷却至室温, 得到本实施例的发光元件。
[66] 实施例 12
[67] 选择大小为 lxlcm2双面抛光的石英衬底, 用磁控溅射方法在衬底上制得¥203 :
Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 40nm的金属镍层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 80°C的温度退火处理 4小 吋, 然后冷却至室温, 得到本实施例的发光元件。
[68] 实施例 13 [69] 选择大小为 lxlcm2双面抛光的石英衬底, 用磁控溅射方法在衬底上制得 Y203: Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 180nm的金属钴层 , 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 400°C的温度退火处理 1小 吋, 然后冷却至室温, 得到本实施例的发光元件。
[70] 实施例 14
[71] 将 Y203: Eu荧光粉与玻璃粉 (组成及组份摩尔份数为 20Na2O-20BaO- 30B2O3
-30SiO2) 按照质量比例 3: 17进行混合、 熔融, 制得惨杂有 Y203 : Eu发光材料的 发光玻璃。 然后利用磁控溅射设备在发光玻璃表面沉积厚度为 0.5nm的金属金铝 层, 在金铝层中, 金和铝的质量分数分别约为 80%和 20% , 然后将其置于真空度 小于 lxlO-3Pa的真空环境下, 以 200°C的温度退火处理 1小吋, 然后冷却至室温, 得到本实施例的发光元件。
[72] 实施例 15
[73] 将 Y203: Eu荧光粉与玻璃粉 (组成及组份摩尔份数为 20Na2O-20BaO- 30B2O3 -30SiO2) 按照质量比例 3: 7进行混合、 熔融, 制得惨杂有 Y203 : Eu发光材料的 发光玻璃。 然后利用磁控溅射设备在发光玻璃表面沉积厚度为 15nm的金属银铝 层, 在银铝层中, 银和铝的重量份数分别约为 90%和 10% , 然后将其置于真空度 小于 lxlO-3Pa的真空环境下, 以 200°C的温度退火处理 1小吋, 然后冷却至室温, 得到本实施例的发光元件。
[74] 实施例 16
[75] 选择大小为 lxlcm2双面抛光的石英衬底, 用磁控溅射方法在衬底上制得 Y203: Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 lOnm的金属银铝 层, 在银铝层中, 银和铝的重量份数分别约为 80%和 20% , 然后将其置于真空度 小于 lxlO-3Pa的真空环境下, 以 150°C的温度退火处理 2小吋, 然后冷却至室温, 得到本实施例的发光元件。
[76] 实施例 17
[77] 选择大小为 lxlcm2双面抛光的氧化镁衬底, 用磁控溅射方法在衬底上制得 Y203 : Eu发光薄膜, 利用电子束蒸发设备在发光薄膜表面沉积厚度为 lOnm的金属金 铝层, 在金铝层中, 金和铝的重量份数分别为 90%和 10% , 然后将其置于真空度 小于 lxlO-3Pa的真空环境下, 以 150°C的温度退火处理 2小吋, 然后冷却至室温, 得到本实施例的发光元件。
[78] 在以上描述的各实施例中, 釆用在发光基体 13上设置一层具有显微结构的金属 层 14, 该金属层 14能在阴极射线下与发光基体 13之间的界面形成表面等离子体 , 通过表面等离子体效应, 使发光基体 13的内量子效率大大提高, 使得发光材 料的自发辐射增强, 进而大大增强了发光材料的发光效率, 从而解决发光材料 发光效率低这一问题。 在发光元件的发光方法中, 只需对金属层 14发射阴极射 线, 金属层 14与发光基体 13之间形成表面等离子体, 以增强发光基体 13的发光 效率, 提高其发光可靠性。 由于发光元件 10包括发光基体 13和金属层 14, 这种 双层结构简单, 同吋, 在发光基体 13和金属层 14间有均匀界面, 从而表现出很 高的发光均匀性和稳定性。 在发光元件的发光方法中, 只需对金属层 14发射阴 极射线, 金属层 14与发光基体 13之间形成表面等离子体, 即能大大增强发光基 体 13的发光效率, 提高其发光可靠性。
[79] 在本发明实施例的发光元件制备方法中, 只需要在发光基体 13上形成一层金属 层 14, 然后经过退火处理, 即可获得所需发光元件 10, 该制备方法工艺简单、 降低成本, 具有广阔的生产应用前景, 尤其可用在超高亮度和高速运作的发光 器件上, 如场发射显示器。
[80] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[1] 一种发光元件, 其包括发光基体, 其特征在于, 所述发光基体的表面设有 一金属层, 所述金属层具有金属显微结构, 所述发
光基体包含化学成分为¥203 : Eu的发光材料。
[2] 如权利要求 1所述的发光元件, 其特征在于, 所述发光基体为惨杂有¥203 :
Eu发光材料的发光玻璃, 所述玻璃的组成及组份摩尔份数为 20Na2O-20BaO - 30B2O3-30SiO2°
[3] 如权利要求 2所述的发光元件, 其特征在于, 所述 Y203 : Eu发光材料在发 光基体中所占的质量百分比为 5%~35%。
[4] 如权利要求 1所述的发光元件, 其特征在于, 所述发光基体包括透明或半透 明基片和形成于所述基片上的化学成分为 Y203
: Eu的发光薄膜, 所述金属层形成于所述发光薄膜表面。
[5] 如权利要求 1所述的发光元件, 其特征在于, 所述金属层的金属为金、 银、 铝、 铜、 钛、 铁、 镍、 钴、 铬、 铂、 钯、 镁、 锌中的至少一种。
[6] 如权利要求 1所述的发光元件, 其特征在于, 所述金属层的厚度为 0.5纳米 至 200纳米。
[7] 一种发光元件制造方法, 其包括如下步骤:
制备发光基体, 所述发光基体包含化学成分为 Y203: Eu的发光材料; 在所述发光基体的表面形成一金属层; 及
将所述发光基体及金属层在真空下进行退火处理, 使所述金属层形成金属 显微结构, 冷却后形成所述的发光元件。
[8] 如权利要求 7所述的发光元件制造方法, 其特征在于, 所述发光基体的制备 步骤如下: 将 Y203: Eu发光材料与玻璃粉混合, 然后在 1000-1300°C温度下 熔融, 冷却至室温, 得到惨杂有 Y203 : Eu发光材料的发光玻璃, 其中, 玻 璃粉组成及组份摩尔份数为 20Na2O-20BaO- 30B2O3-30SiO2
[9] 如权利要求 7所述的发光元件制造方法, 其特征在于, 所述发光基体的制备 步骤如下: 选用半透明或透明基片为衬底, 在衬底上形成 Y203 : Eu发光薄 膜。 一种发光元件的发光方法, 其包括如下步骤:
按照权利要求 7-9任一项所述的发光元件制造方法获得发光元件; 及 对金属层发射阴极射线, 在阴极射线激发下金属层与发光基体之间形成表 面等离子体, 使发光基体发光。
PCT/CN2009/073515 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法 WO2011022876A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/392,384 US9101035B2 (en) 2009-08-26 2009-08-26 Luminescent element, its preparation method thereof and luminescene method
EP09848608.7A EP2473010B1 (en) 2009-08-26 2009-08-26 Light emitting element, manufacturing method and light emitting method thereof
PCT/CN2009/073515 WO2011022876A1 (zh) 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法
JP2012525835A JP5612688B2 (ja) 2009-08-26 2009-08-26 発光素子、その製造方法および発光方法
CN200980161087.8A CN102577611B (zh) 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/073515 WO2011022876A1 (zh) 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法

Publications (1)

Publication Number Publication Date
WO2011022876A1 true WO2011022876A1 (zh) 2011-03-03

Family

ID=43627142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073515 WO2011022876A1 (zh) 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法

Country Status (5)

Country Link
US (1) US9101035B2 (zh)
EP (1) EP2473010B1 (zh)
JP (1) JP5612688B2 (zh)
CN (1) CN102577611B (zh)
WO (1) WO2011022876A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5350546B2 (ja) 2009-08-26 2013-11-27 海洋王照明科技股▲ふん▼有限公司 発光素子、その製造方法およびそれを用いる発光方法
WO2011022878A1 (zh) 2009-08-26 2011-03-03 海洋王照明科技股份有限公司 发光元件、其制造方法及其发光方法
EP2472563B1 (en) 2009-08-26 2017-07-12 Ocean's King Lighting Science & Technology Co., Ltd. Luminescent element, producing method thereof and luminescence method using the same
WO2011022881A1 (zh) 2009-08-26 2011-03-03 海洋王照明科技股份有限公司 含氮化物发光元件、其制造方法及其发光方法
WO2014110752A1 (zh) * 2013-01-17 2014-07-24 中国科学院微电子研究所 基于置换反应-热氧化方法制备复合半导体敏感膜的方法
FR3027250B1 (fr) * 2014-10-17 2019-05-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de collage direct via des couches metalliques peu rugueuses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122671A (en) * 1989-08-28 1992-06-16 Lockheed Missiles & Space Company, Inc. Terbium activated silicate luminescent glasses for use in converting x-ray radiation into visible radiation
JP2000290646A (ja) * 1999-04-05 2000-10-17 Mitsubishi Materials Corp 蛍光体
CN1769231A (zh) * 2004-09-29 2006-05-10 肖特股份公司 玻璃或玻璃陶瓷

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7707008A (nl) 1977-06-24 1978-12-28 Philips Nv Luminescentiescherm.
EP0062993A1 (en) 1981-04-09 1982-10-20 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Cathode ray tube phosphor layers
JPH0747732B2 (ja) * 1987-12-05 1995-05-24 日亜化学工業株式会社 低速電子線励起螢光体
JPH0218841A (ja) 1988-07-06 1990-01-23 Mitsubishi Electric Corp 陰極線管
JPH0589800A (ja) 1991-09-27 1993-04-09 Mitsubishi Electric Corp 緑色発光投写形陰極線管
US5851317A (en) 1993-09-27 1998-12-22 Iowa State University Research Foundation, Inc. Composite material reinforced with atomized quasicrystalline particles and method of making same
KR100192001B1 (ko) * 1995-02-06 1999-06-15 서상기 전극재료와 전극재료 및 저항용접용 전극의 제조방법
US5788881A (en) 1995-10-25 1998-08-04 Micron Technology, Inc. Visible light-emitting phosphor composition having an enhanced luminescent efficiency over a broad range of voltages
JP3974211B2 (ja) * 1996-12-12 2007-09-12 株式会社住田光学ガラス 可視蛍光を呈する酸化物蛍光ガラス
JP4421001B2 (ja) 1998-04-01 2010-02-24 株式会社住田光学ガラス 長残光および輝尽発光を呈する酸化物ガラス
JPH11339683A (ja) * 1998-05-29 1999-12-10 Matsushita Electron Corp 陰極線管およびその製造方法
JP2000159543A (ja) 1998-09-22 2000-06-13 Ohara Inc 蓄光性蛍光ガラスおよびガラスセラミックス
JP2000109823A (ja) 1998-10-02 2000-04-18 Hitachi Ltd 蛍光膜およびそれを用いた画像表示装置
KR100342044B1 (ko) 1999-04-14 2002-06-27 김순택 녹색발광 형광체 조성물 및 이를 이용하여 제조된 음극선관
US6465946B1 (en) 1999-04-14 2002-10-15 Samsung Sdi Co., Ltd. Green-emitting phosphor composition and cathode ray tube manufactured using the same
US6531074B2 (en) 2000-01-14 2003-03-11 Osram Sylvania Inc. Luminescent nanophase binder systems for UV and VUV applications
US7229675B1 (en) * 2000-02-17 2007-06-12 Anatoly Nikolaevich Paderov Protective coating method for pieces made of heat resistant alloys
JP2002141000A (ja) 2000-10-31 2002-05-17 Toshiba Corp メタルバック付き蛍光体層とその形成方法および画像表示装置
JP2002171018A (ja) * 2000-12-01 2002-06-14 New Industry Research Organization 発光素子及びその製造法
KR100786854B1 (ko) * 2001-02-06 2007-12-20 삼성에스디아이 주식회사 디스플레용 필터막, 그 제조방법 및 이를 포함하는 표시장치
JP2002289927A (ja) 2001-03-27 2002-10-04 Ngk Insulators Ltd 発光素子
ITTO20020033A1 (it) 2002-01-11 2003-07-11 Fiat Ricerche Dispositivo elettro-luminescente.
JP3978102B2 (ja) 2002-08-29 2007-09-19 岡谷電機産業株式会社 発光ダイオード
JP2004265740A (ja) 2003-02-28 2004-09-24 Tdk Corp El機能膜及びel素子
JP2005011701A (ja) 2003-06-19 2005-01-13 Toshiba Corp 画像表示装置
JP4979187B2 (ja) 2003-07-24 2012-07-18 東洋アルミニウム株式会社 窒化アルミニウム系蛍光体及びその製造方法
JP4449389B2 (ja) 2003-09-26 2010-04-14 パナソニック株式会社 プラズマディスプレイ装置用蛍光体の製造方法
US7492458B2 (en) 2004-01-05 2009-02-17 American Environmental Systems, Inc. Plasmon-enhanced display technologies
CN1304527C (zh) 2004-11-05 2007-03-14 天津理工大学 一种发光薄膜及其制备方法与用途
JP2006164854A (ja) * 2004-12-09 2006-06-22 Toshiba Corp 蛍光面及び画像表示装置
JP2006236810A (ja) * 2005-02-25 2006-09-07 Ngk Insulators Ltd 発光装置
US7410825B2 (en) 2005-09-15 2008-08-12 Eastman Kodak Company Metal and electronically conductive polymer transfer
JP2007103052A (ja) 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JP2007112950A (ja) * 2005-10-24 2007-05-10 Canon Inc 蛍光体材料及びこれを用いた発光部材、画像表示装置
JP2007153626A (ja) 2005-11-30 2007-06-21 Central Glass Co Ltd 蛍光ガラス
CN100433235C (zh) 2005-12-20 2008-11-12 陕西科技大学 一种分立式结构的场致发射显示器件
JP4347343B2 (ja) 2006-05-09 2009-10-21 富士重工業株式会社 発光装置
JP2008010405A (ja) 2006-06-02 2008-01-17 Hitachi Displays Ltd 画像表示装置及びその製造方法
JP2008021868A (ja) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd 蛍光体複合部材
CN100594255C (zh) 2006-11-30 2010-03-17 武汉大学 一种用于制备稀土掺杂氮化镓发光薄膜的方法和装置
EP2123735A4 (en) 2007-03-09 2010-07-28 Toshiba Kk SURFACE TREATMENT PROCESS FOR PHOSPHORES AND METHOD FOR PRODUCING A FLAT DISPLAY
JP5046206B2 (ja) * 2007-08-02 2012-10-10 スタンレー電気株式会社 発光素子
JP2009046668A (ja) * 2007-08-21 2009-03-05 Samsung Sdi Co Ltd 白色蛍光体、これを用いる発光装置、及び表示装置
CN101442089B (zh) 2007-11-21 2010-06-02 中国科学院半导体研究所 一种增强氧化锌薄膜蓝光发射的方法
KR100932978B1 (ko) * 2007-11-28 2009-12-21 삼성에스디아이 주식회사 백색 형광체, 이를 이용하는 발광 장치, 및 이 발광 장치를백 라이트 유닛으로 사용하는 액정 표시 장치
JP5350546B2 (ja) 2009-08-26 2013-11-27 海洋王照明科技股▲ふん▼有限公司 発光素子、その製造方法およびそれを用いる発光方法
WO2011022881A1 (zh) 2009-08-26 2011-03-03 海洋王照明科技股份有限公司 含氮化物发光元件、其制造方法及其发光方法
WO2011022878A1 (zh) 2009-08-26 2011-03-03 海洋王照明科技股份有限公司 发光元件、其制造方法及其发光方法
EP2472563B1 (en) 2009-08-26 2017-07-12 Ocean's King Lighting Science & Technology Co., Ltd. Luminescent element, producing method thereof and luminescence method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122671A (en) * 1989-08-28 1992-06-16 Lockheed Missiles & Space Company, Inc. Terbium activated silicate luminescent glasses for use in converting x-ray radiation into visible radiation
JP2000290646A (ja) * 1999-04-05 2000-10-17 Mitsubishi Materials Corp 蛍光体
CN1769231A (zh) * 2004-09-29 2006-05-10 肖特股份公司 玻璃或玻璃陶瓷

Also Published As

Publication number Publication date
JP5612688B2 (ja) 2014-10-22
US9101035B2 (en) 2015-08-04
EP2473010A4 (en) 2013-06-19
US20120146499A1 (en) 2012-06-14
CN102577611B (zh) 2014-04-02
CN102577611A (zh) 2012-07-11
JP2013502374A (ja) 2013-01-24
EP2473010A1 (en) 2012-07-04
EP2473010B1 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5555322B2 (ja) 発光素子、その製造方法および発光方法
WO2011022878A1 (zh) 发光元件、其制造方法及其发光方法
JP5435517B2 (ja) 電界放出発光材料の発光効率を高める方法、発光ガラス素子およびその調製方法
WO2011022876A1 (zh) 发光元件、其制造方法及其发光方法
WO2011022881A1 (zh) 含氮化物发光元件、其制造方法及其发光方法
WO2011022880A1 (zh) 发光元件、其制造方法及其发光方法
WO2011022877A1 (zh) 发光元件、其制造方法及其发光方法
WO2011022875A1 (zh) 发光元件、其制造方法及其发光方法
WO2012083519A1 (zh) 一种发光元器件及其制备方法
WO2012083520A1 (zh) 一种发光元器件及其制备方法
CN102136405A (zh) 发光元件、其制造方法及其发光方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161087.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848608

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012525835

Country of ref document: JP

Ref document number: 13392384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009848608

Country of ref document: EP