WO2011022877A1 - 发光元件、其制造方法及其发光方法 - Google Patents

发光元件、其制造方法及其发光方法 Download PDF

Info

Publication number
WO2011022877A1
WO2011022877A1 PCT/CN2009/073516 CN2009073516W WO2011022877A1 WO 2011022877 A1 WO2011022877 A1 WO 2011022877A1 CN 2009073516 W CN2009073516 W CN 2009073516W WO 2011022877 A1 WO2011022877 A1 WO 2011022877A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
glass
emitting
emitting element
metal layer
Prior art date
Application number
PCT/CN2009/073516
Other languages
English (en)
French (fr)
Inventor
周明杰
马文波
刘玉刚
李清涛
唐晶
罗茜
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to US13/392,495 priority Critical patent/US9000667B2/en
Priority to CN200980159813.2A priority patent/CN102395538B/zh
Priority to PCT/CN2009/073516 priority patent/WO2011022877A1/zh
Priority to EP09848609.5A priority patent/EP2489644B1/en
Priority to JP2012525836A priority patent/JP5599885B2/ja
Publication of WO2011022877A1 publication Critical patent/WO2011022877A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/12Compositions for glass with special properties for luminescent glass; for fluorescent glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/778Borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/20Luminescent screens characterised by the luminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/28Luminescent screens with protective, conductive or reflective layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/02Details, e.g. electrode, gas filling, shape of vessel
    • H01J63/04Vessels provided with luminescent coatings; Selection of materials for the coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J63/00Cathode-ray or electron-stream lamps
    • H01J63/06Lamps with luminescent screen excited by the ray or stream
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/252Al
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/255Au
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/261Iron-group metals, i.e. Fe, Co or Ni
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/268Other specific metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/27Mixtures of metals, alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/18Luminescent screens
    • H01J2329/28Luminescent screens with protective, conductive or reflective layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to the field of luminescent materials, and in particular to a luminescent element having a luminescent material of a glass substrate, a method of manufacturing the same, and a method of illuminating the same.
  • field emission devices generally use luminescent glass as an illuminant, which has broad application prospects in the field of illumination and display, and has attracted widespread attention from research institutions at home and abroad.
  • the field emission device works as follows: In a vacuum environment, the anode is opposite to the field emission cathode array (Field emissive
  • the field emission device has a wide operating temperature range (-40°C ⁇ 80°C), short response time ( ⁇ lms), simple structure, power saving, and meets environmental protection requirements.
  • materials such as phosphors, luminescent glasses, and luminescent films can be used as luminescent materials in field emission devices, but they all have the fundamental problem of low luminous efficiency, which greatly limits the application of field emission devices, especially in illumination. Application of the field.
  • the present invention provides a light-emitting element having high light-emitting uniformity, high luminous efficiency, good stability, and simple structure, and a light-emitting element manufacturing method with simple preparation process and low cost.
  • the present invention also provides a light-emitting element light-emitting method which is simple in operation, convenient and reliable, and greatly enhances luminous efficiency of a light-emitting material.
  • a light-emitting element comprising a light-emitting glass, the surface of the light-emitting glass being provided with a metal layer having a metal microstructure, the chemical composition of the light-emitting glass being bY 2 (VcAl 2 0 3 « d B 2 0 3 -yTb 2 0 3 , wherein the molar fraction of each component is: b is 7-15, c is 20-40, d is 40-60, and y is 0.1-3.
  • a method of manufacturing a light-emitting element comprising the steps of:
  • the chemical composition of the luminescent glass is bY 2 0 3 «cAl 2 0 3 «d B 2 0 3 *yTb 2 0 3
  • the luminescent glass and the metal layer are annealed under vacuum to form the metal layer into a metal microstructure, and after cooling, the light-emitting element is formed.
  • a method of emitting a light-emitting element comprising the steps of:
  • the cathode ray is emitted from the metal layer, and a surface plasmon is formed between the metal layer and the luminescent glass under the excitation of the cathode ray to illuminate the luminescent glass.
  • the metal layer can form a surface plasmon at the interface between the cathode ray and the luminescent glass, and pass the surface plasmon.
  • the effect is to greatly improve the internal quantum efficiency of the luminescent glass, that is, the spontaneous emission of the luminescent glass is enhanced, thereby greatly enhancing the luminous efficiency of the luminescent glass, thereby solving the problem of low luminous efficiency of the luminescent material.
  • the light-emitting method of the light-emitting element it is only necessary to emit a cathode ray to the metal layer, and a surface plasma is formed between the metal layer and the luminescent glass to enhance the luminous efficiency of the luminescent glass and improve the illuminance reliability.
  • the light-emitting element includes a light-emitting glass and a metal layer, the double-layer structure is simple, and at the same time, there is a uniform interface between the light-emitting glass and the metal layer, thereby exhibiting high light-emitting uniformity and stability.
  • the light-emitting method of the light-emitting element it is only necessary to emit a cathode ray to the metal layer, and a surface plasma is formed between the metal layer and the luminescent glass, that is, the luminous efficiency of the luminescent glass can be greatly enhanced, and the illuminating reliability can be improved.
  • FIG. 1 is a schematic structural view of a light-emitting element according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for preparing a light-emitting element according to an embodiment of the present invention
  • FIG. 3 is a flow chart showing a method of emitting light of a light-emitting element according to an embodiment of the present invention
  • Example 4 is a luminescence spectrum of a light-emitting element of Example 1 in comparison with a luminescent glass without a metal layer, and the cathode ray emission spectroscopy test conditions are as follows: The acceleration voltage of the electron beam excitation is 5 kV.
  • a light-emitting element 10 which comprises a light-emitting glass 13 and a metal layer 14 provided on the surface of the light-emitting glass 13.
  • the metal layer 14 has a metal microstructure which is sometimes referred to as a micro/nano structure. Further, the metal microstructure is aperiodic, i.e., composed of randomly arranged metal crystals.
  • the luminescent glass 13 is a rare earth doped borate glass having a chemical composition of bY 2 0 3 *cAl 2 0 3 *d B 2 0 3
  • the borate glass further has an alkali metal oxide or other rare earth element, and the corresponding chemical composition of the luminescent glass may be aM 2 ObY 2 0 3 *cAl 2 0 3 *d B 2 0 3 »eSi0 2 »xCe0 2 »y Tb 2 0 3
  • the molar fraction of each component is: a is 0 ⁇ 20, b is 7 ⁇ 15, c is 20 ⁇ 40, d is 40 ⁇ 60, e is 0 ⁇ 15, X is 0 ⁇ 1.5, y is 0.1 ⁇ 3 , M is an alkali metal element.
  • the alkali metal is preferably at least one of K, Na, and Li.
  • the metal layer 14 may be a metal that is chemically stable, such as a metal that is not susceptible to oxidative corrosion, or a commonly used metal, preferably gold, silver, aluminum, copper, titanium, iron, nickel, cobalt. And at least one metal selected from the group consisting of chromium, platinum, palladium, magnesium, and zinc, more preferably formed of at least one metal selected from the group consisting of gold, silver, and aluminum.
  • the metal species in the metal layer 14 may be their single metal or composite metal.
  • the composite metal may be an alloy of two or more of the above metals.
  • the metal layer 14 may be a silver aluminum alloy layer or a gold aluminum alloy layer, wherein the weight fraction of silver or gold is preferably 70% or more.
  • the thickness of the metal layer 14 is preferably from 0.5 nm to 200 nm, more preferably from 1 nm to 100 nm.
  • the above-described light-emitting element 10 can be widely used as a light-emitting element in a high-luminance and high-speed operation light-emitting device, such as a field emission display, a field emission light source, or a large advertisement display card.
  • the anode applies a forward voltage to the field emission cathode array to form an accelerating electric field, and the electrons emitted from the cathode, that is, the cathode layer 16 emitted to the metal layer 14, between the metal layer 14 having the microstructure and the luminescent glass 13
  • the surface plasmon is formed, and the internal quantum efficiency of the luminescent glass 13 is greatly improved by the surface plasmon effect, that is, the spontaneous emission of the luminescent glass is enhanced, thereby greatly enhancing the luminous efficiency of the luminescent glass, thereby solving the problem that the luminescent material has low luminous efficiency.
  • a metal layer is formed on the surface of the light-emitting glass 13, a uniform interface is formed between the entire metal layer and the light-emitting glass 13, and the uniformity of light emission can be improved.
  • step S01 the illuminating glass 13 is prepared as follows: The metal oxide of each component is weighed according to the molar fraction of the chemical composition of the borate glass, and melted at a temperature of 1,580 to 1,750 ° C. After cooling to room temperature, it is placed in a reducing atmosphere and annealed at a temperature of 600 ° C to 900 ° C for 1 to 20 hours to obtain a luminescent glass.
  • the chemical composition is aNa 2 ObY 2 0 3 *cAl 2 0 3 *d B 2 0 3 *eSi0 2 *xCe0 2 *y Tb 2 0 3
  • the specific preparation steps are as follows: Analyze the pure alkali metal sodium salt, Si0 2 , A1 2 0 3 and 99.99 % ⁇ 2 0 3 , Ce0 2 , Tb 4 0 7 as the main raw materials, according to the luminescent glass aNa 2 ObY 2 0 3 *cAl 2 0 3 «d B 2 0 3 •eSi0 2 .xCe ⁇ 2 .y Tb 2 0 3
  • the proportion of the mole fraction between the components is weighed, and the corresponding raw materials are weighed and melted at 1580 to 1750 ° C for 1 to 5 hours, cooled to room temperature, and placed in a reducing atmosphere at 600 ° C.
  • the metal layer 14 formed here may be formed by depositing a metal source having good chemical stability, such as a metal which is not easily oxidatively corroded, or may be a commonly used metal, preferably gold. At least one of silver, aluminum, copper, titanium, iron, nickel, cobalt, complex, platinum, palladium, magnesium, and zinc is more preferably at least one metal selected from the group consisting of gold, rhodium, and aluminum.
  • the metal layer 14 is formed on the surface of the luminescent glass 13 by physical or chemical vapor deposition, for example, but not limited to, on the surface of the luminescent glass 13 by sputtering or evaporation.
  • the thickness of the metal layer 14 is preferably from 0.5 nm to 200 nm, more preferably from 1 nm to 100 nm.
  • Step S03 is as follows: After the metal layer 14 is formed on the surface of the luminescent glass 13, vacuum annealing is performed at 50 ° C to 650 ° C for an annealing time of 5 minutes to 5 hours, and then naturally cooled to room temperature.
  • the annealing temperature is preferably from 100 ° C to 500 ° C, and the annealing time is preferably from 15 minutes to 3 hours.
  • the method for emitting light includes the following steps:
  • S12 The cathode layer 16 is emitted to the metal layer 14. Under the excitation of the cathode ray 16, a surface plasmon is formed between the metal layer 14 and the luminescent glass 13, so that the luminescent glass 13 emits light.
  • the light-emitting element 10 has the features described above in terms of various structures and components.
  • the implementation step S1 2 may employ a field emission display or an illumination source.
  • the anode applies a forward voltage to the field emission cathode array to form an acceleration electric field, and the cathode emits a cathode ray 16 under the excitation of the cathode ray 16.
  • the electron beam first penetrates the metal layer 14 to excite the luminescent glass 13 to emit light.
  • a surface plasmon effect is generated at the interface between the metal layer 14 and the luminescent glass 13, and the internal quantum efficiency of the luminescent glass 13 is greatly improved by this effect.
  • the improvement that is, the spontaneous emission enhancement of the luminescent material, further greatly enhances the luminous efficiency of the luminescent material.
  • Plasmon, SP is a wave propagating along the interface between metal and medium, whose amplitude decays exponentially with distance from the interface.
  • SPPs Surface plasmon polaritons
  • the nature, dispersion relationship, excitation mode, coupling effect, etc. will all undergo major changes.
  • the electromagnetic field induced by SPPs not only limits the propagation of light waves in sub-wavelength structures, but also generates and manipulates them.
  • the electromagnetic radiation from the optical frequency to the microwave band realizes active control of light propagation. Therefore, the present embodiment utilizes the excitation performance of the SPPs to increase the optical density of the luminescent glass and enhance its spontaneous emission rate.
  • the coupling effect of the surface plasmon can be utilized, and when the luminescent glass emits a pupil, it can be coupled with resonance. The effect is to greatly improve the internal quantum efficiency of the luminescent glass and improve the luminous efficiency of the luminescent glass.
  • Light-emitting glass a metal silver layer having a thickness of 2 nm is deposited on the surface thereof by a magnetron sputtering apparatus, and then placed in a vacuum environment having a degree of vacuum of less than lxlO_3 Pa, and annealed at a temperature of 300 ° C for half a small crucible, and then cooled to At room temperature, the light-emitting element of this example was obtained.
  • the cathode light beam generated by the electron gun bombards the light-emitting element prepared in the embodiment, and the electron beam first penetrates the metal layer to excite the light-emitting glass to emit light, thereby generating an emission spectrum as shown in FIG. 4, wherein the spectrum shows that the light-emitting glass is Green luminescent material.
  • the curve 11 in the figure is an illuminating spectrum of the luminescent glass without the metal silver layer;
  • the curve 12 is the luminescence spectrum of the luminescent glass with the metal structure prepared in the present embodiment, as can be seen from the figure, due to the metal layer and the luminescence A surface plasmon effect is generated between the glass, and the illuminating integrated intensity of the luminescent glass to which the metal structure is attached from 300 nm to 700 nm of the present embodiment is an unexposed layer ⁇ illuminating glass illuminating integrated intensity with respect to the undoped lanthanum luminescent glass. 4.7 times, the luminescence performance is greatly improved.
  • Luminescent glass by magnetron sputtering apparatus at the light emitting surface of the glass layer is deposited to a thickness of 0.5nm metallic gold and then placed under a vacuum of less than lxlO_ 3 Pa vacuum environment at a temperature of the annealing process to 200 ° C for 1 hour inch Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • Example 3 Luminescent glass by magnetron sputtering apparatus at the light emitting surface of the glass layer is deposited to a thickness of 0.5nm metallic gold and then placed under a vacuum of less than lxlO_ 3 Pa vacuum environment at a temperature of the annealing process to 200 ° C for 1 hour inch Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • Luminescent glass by magnetron sputtering apparatus at the light emitting surface of the glass deposited metal aluminum layer having a thickness of 200nm, and then placed under a vacuum of less than lxlO_ 3 Pa vacuum environment to an annealing temperature of 500 ° C for 5 inch small, Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • a metal magnesium layer having a thickness of 100 nm is deposited on the surface thereof by an electron beam evaporation device, and then placed in a vacuum atmosphere having a degree of vacuum of less than lxlO-3Pa, annealed at a temperature of 650 ° C for 5 minutes, and then cooled.
  • the light-emitting element of this example was obtained up to room temperature.
  • Light-emitting glass a metal palladium layer having a thickness of 1 nm is deposited on the surface thereof by an electron beam evaporation apparatus, and then placed in a vacuum environment having a degree of vacuum of less than lxlO-3Pa, annealed at a temperature of 100 ° C for 3 hours, and then cooled.
  • the light-emitting element of this example was obtained up to room temperature.
  • a metal platinum layer having a thickness of 5 nm is deposited on the surface thereof by an electron beam evaporation apparatus, and then placed in a vacuum atmosphere having a degree of vacuum of less than lxlO-3Pa, annealed at a temperature of 450 ° C for 15 minutes, and then cooled to The light-emitting element of this example was obtained at room temperature.
  • Light-emitting glass using a electron beam evaporation device to deposit a metal iron layer having a thickness of 20 nm on the surface thereof, and then The film was annealed at a temperature of 50 ° C for 5 hours in a vacuum atmosphere having a degree of vacuum of less than 1 x 10 3 Pa, and then cooled to room temperature to obtain a light-emitting element of this example.
  • a metal titanium layer having a thickness of lOnm is deposited on the surface of the light-emitting glass by an electron beam evaporation device, and then placed in a vacuum environment having a degree of vacuum of less than lxlO- 3 Pa, and annealed at a temperature of 150 ° C for 2 hours. Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • a metal copper layer having a thickness of 50 nm is deposited on the surface of the light-emitting glass by an electron beam evaporation device, and then placed under a vacuum of less than lxlO-3Pa, and annealed at a temperature of 200 ° C for 2.5 hours, and then The film was cooled to room temperature to obtain a light-emitting element of this example.
  • Light-emitting glass a metal zinc layer having a thickness of 150 nm is deposited on the surface thereof by an electron beam evaporation apparatus, and then placed in a vacuum atmosphere having a degree of vacuum of less than lxlO_3 Pa, annealed at a temperature of 350 ° C for 0.5 hours, and then cooled to room temperature.
  • the light-emitting element of this embodiment was obtained.
  • a metal chromium layer having a thickness of 120 nm is deposited on the surface of the light-emitting glass by an electron beam evaporation device, and then placed in a vacuum environment having a degree of vacuum of less than lxlO- 3 Pa, and annealed at a temperature of 250 ° C for 2 hours. Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • Light-emitting glass a metal nickel layer having a thickness of 40 nm is deposited on the surface of the light-emitting glass by an electron beam evaporation device, and then placed in a vacuum environment with a degree of vacuum of less than lxlO-3Pa, and annealed at a temperature of 80 ° C for 4 hours, and then The film was cooled to room temperature to obtain a light-emitting element of this example.
  • a metal cobalt layer having a thickness of 180 nm is deposited on the surface of the light-emitting glass by an electron beam evaporation device, and then placed in a vacuum environment having a degree of vacuum of less than lxlO- 3 Pa, and annealed at a temperature of 400 ° C for 1 hour. Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • Light-emitting glass using a electron beam evaporation device to deposit a metal gold-aluminum layer having a thickness of 0.5 nm on the surface of the light-emitting glass.
  • the mass fractions of gold and aluminum are about 80% and 20%, respectively, and then placed in a vacuum.
  • the light-emitting element of this example was obtained by annealing at a temperature of 200 ° C for 1 hour under a vacuum of less than 1 x 10 -3 Pa and then cooling to room temperature.
  • a metal silver-aluminum layer having a thickness of 15 nm is deposited on the surface of the light-emitting glass by a magnetron sputtering apparatus.
  • the weight fraction of silver and aluminum is about 90% and 10%, respectively, and then placed.
  • a vacuum atmosphere having a degree of vacuum of less than 1 x 10 3 Pa the film was annealed at a temperature of 200 ° C for 1 hour, and then cooled to room temperature to obtain a light-emitting element of this example.
  • Light-emitting glass using a electron beam evaporation device to deposit a metal silver-aluminum layer having a thickness of lOnm on the surface of the light-emitting glass
  • the parts by weight of bismuth and aluminum are about 80% and 20%, respectively, and then placed in a vacuum environment with a vacuum of less than lxlO-3Pa, and annealed at a temperature of 150 ° C for 2 hours. Then, it was cooled to room temperature to obtain a light-emitting element of this example.
  • a metal gold-aluminum layer having a thickness of 12 nm is deposited on the surface of the light-emitting glass by a magnetron sputtering apparatus.
  • gold and aluminum are respectively 90% by weight and 10% by weight, and then placed in a vacuum.
  • the light-emitting element of this example was obtained by annealing at a temperature of 120 ° C for 2 hours under a vacuum of less than l x 10 - 3 Pa and then cooling to room temperature.
  • a layer of microstructured metal layer 14 is disposed on the luminescent glass 13, and the metal layer 14 is capable of forming a surface plasma at the interface between the cathode ray and the luminescent glass 13.
  • the internal quantum efficiency of the luminescent glass 13 is greatly improved, so that the spontaneous emission of the luminescent material is enhanced, thereby greatly enhancing the luminous efficiency of the luminescent material, thereby solving the problem that the luminous efficiency of the luminescent material is low.
  • the light-emitting method of the light-emitting element it is only necessary to emit a cathode line to the metal layer 14, and a surface plasma is formed between the metal layer 14 and the light-emitting glass 13, to enhance the light-emitting efficiency of the light-emitting glass 13, and to improve the light-emitting reliability. Since the light-emitting element 10 includes the light-emitting glass 13 and the metal layer 14, this double-layer structure is simple, and has a uniform interface between the light-emitting glass 13 and the metal layer 14, thereby exhibiting high light-emitting uniformity and stability.
  • the light-emitting method of the light-emitting element it is only necessary to emit a cathode ray to the metal layer 14, and a surface plasmon is formed between the metal layer 14 and the luminescent glass 13, that is, the light-emitting efficiency of the light-emitting glass 13 can be greatly enhanced, and the light-emitting reliability can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)
  • Luminescent Compositions (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)

Description

说明书 发光元件、 其制造方法及其发光方法 技术领域
[1] 本发明属于发光材料技术领域, 具体涉及一种具有玻璃基材的发光材料的发光 元件、 其制造方法及其发光方法。
背景技术
[2] 传统的作为发光基体的材料包括荧光粉、 纳米晶体及玻璃等, 相对于晶体和荧 光粉而言, 玻璃具有透明、 坚硬及良好化学稳定性和优良的光学性质; 而且玻 璃更容易被加工成各种形状大小的产品, 如各种形状或尺寸的显示器件或照明 光源。
[3] 例如, 在真空微电子学领域中, 场发射器件通常利用发光玻璃作为发光体, 其 在照明及显示领域显示出了广阔的应用前景, 引起国内外研究机构的广泛关注 。 场发射器件工作原理是: 在真空环境下, 阳极相对场发射阴极阵列 (Field emissive
arrays, FEAs) 施加正向电压形成加速电场, 阴极发射的电子加速轰向阳极板上 的发光材料而发光。 场发射器件的工作温度范围宽 (-40°C~80°C) 、 响应吋间 短 (<lms) 、 结构简单、 省电, 符合绿色环保要求。 另外, 荧光粉体、 发光玻 璃、 发光薄膜等材料都可以在场发射器件中作为发光材料使用, 但它们都存在 发光效率低这一本质问题, 极大限制了场发射器件的应用, 特别是在照明领域 的应用。
对发明的公幵
技术问题
[4] 有鉴于此, 本发明提供一种具有发光均匀性高、 发光效率高、 稳定性好、 结构 简单的发光元件, 以及一种制备工艺简单、 成本低的发光元件制造方法。
[5] 本发明还提供一种操作简便、 方便可靠、 大大增强发光材料发光效率的发光元 件发光方法。
技术解决方案 [6] 一种发光元件, 其包括发光玻璃, 所述发光玻璃的表面设有一金属层, 所述金 属层具有金属显微结构, 所述发光玻璃的化学成分为 bY2(VcAl203«d B203-yTb203 , 其中各成分的摩尔份数分别为: b为 7~15, c为 20~40, d为 40~60, y为 0.1~3。
[7] 一种发光元件制造方法, 其包括如下步骤:
[8] 制备发光玻璃, 所述发光玻璃的化学成分为 bY203«cAl203«d B203*yTb203
, 其中各成分的摩尔份数分别为: b为 7~15, c为 20~40, d为 40~60, y为 0.1~3;
[9] 在所述发光玻璃的表面形成一金属层; 及
[10] 将所述发光玻璃及金属层在真空下进行退火处理, 使所述金属层形成金属显微 结构, 冷却后形成所述的发光元件。
[11] 以及, 一种发光元件的发光方法, 其包括如下步骤:
[12] 按照上述发光元件制造方法获得发光元件; 及
[13] 对金属层发射阴极射线, 在阴极射线激发下金属层与发光玻璃之间形成表面等 离子体, 使发光玻璃发光。
有益效果
[14] 在上述发光元件中, 通过采用在发光玻璃上设置一层具有显微结构的金属层, 该金属层能在阴极射线下与发光玻璃之间的界面形成表面等离子体, 通过表面 等离子体效应, 使发光玻璃的内量子效率大大提高, 即发光玻璃的自发辐射增 强, 进而大大增强了发光玻璃的发光效率, 从而解决发光材料发光效率低这一 问题。 因而, 在发光元件的发光方法中, 只需对金属层发射阴极射线, 金属层 与发光玻璃之间形成表面等离子体, 以增强发光玻璃发光效率, 提高其发光可 靠性。 由于发光元件包括发光玻璃和金属层, 这种双层结构简单, 同时, 在发 光玻璃和金属层间有均匀界面, 从而表现出很高的发光均匀性和稳定性。 在发 光元件的发光方法中, 只需对金属层发射阴极射线, 金属层与发光玻璃之间形 成表面等离子体, 即能大大增强发光玻璃的发光效率, 提髙其发光可靠性。
[15] 上述的发光元件制备方法中, 只需要在发光玻璃上形成一层金属层, 然后经过 退火处理, 即可获得所述发光元件, 该制备方法工艺简单、 降低成本, 具有广 阔的生产应用前景。
附图说明 [16] 下面将结合附图及实施例对本发明作进一步说明, 附图中:
[17] 图 1是本发明实施例的发光元件结构示意图;
[18] 图 2是本发明实施例的发光元件制备方法流程图;
[19] 图 3是本发明实施例的发光元件的发光方法流程图;
[20] 图 4是实施例 1的发光元件与未加金属层的发光玻璃对比的发光光谱图, 阴极射 线发光光谱测试条件为: 电子束激发的加速电压为 5KV。
本发明的实施方式
[21] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用限定本发明。
[22] 请参阅图 1 , 示出本发明实施例的发光元件 10, 其包括发光玻璃 13以及设于发 光玻璃 13表面的金属层 14。 金属层 14具有金属显微结构, 该金属显微结构有时 也称为微纳结构。 进一步, 该金属显微结构是非周期性的, 即由无规则排列的 金属晶体构成。
[23] 该发光玻璃 13是稀土掺杂的硼酸盐玻璃, 其化学成分为 bY203*cAl203*d B203
•yTb203, 其中各成分的摩尔份数分别为: b为 7~15 , c为 20~40, d为 40~60, y为 0 .1~3。 优选地, 该硼酸盐玻璃还具有碱金属氧化物或其他稀土元素, 此时发光玻 璃对应化学成分可以为 aM2ObY203*cAl203*d B203»eSi02»xCe02»y Tb203
, 其中各成分的摩尔份数分别为: a为 0~20, b为 7~15 , c为 20~40, d为 40~60, e 为 0~15 , X为 0~1.5 , y为 0.1~3 , M为碱金属元素。 碱金属优选为 K、 Na、 Li中的 至少一种。
[24] 其中, 金属层 14可以是由化学稳定性良好的金属, 例如不易氧化腐蚀的金属, 另外也可以是常用的金属, 优选为金、 银、 铝、 铜、 钛、 铁、 镍、 钴、 铬、 铂 、 钯、 镁、 锌中的至少一种金属形成的, 更优选为由金、 银、 铝中的至少一种 金属形成的。 金属层 14中的金属物种可以是它们的单金属或者复合金属。 复合 金属可以是上述金属两种或两种以上的合金, 例如, 金属层 14可以是银铝合金 层或金铝合金层, 其中银或金的重量分数优选为 70%以上。 金属层 14的厚度优选 为 0.5纳米 ~200纳米, 更优选为 1纳米 ~ 100纳米。 [25] 上述发光元件 10作为发光元件, 可广泛应用于超高亮度和高速运作的发光器件 上, 例如场发射显示器、 场发射光源或大型广告显示牌等产品中。 以场发射显 示器为例, 阳极相对场发射阴极阵列施加正向电压形成加速电场, 阴极发射的 电子, 即对金属层 14发射阴极射线 16, 具有显微结构的金属层 14与发光玻璃 13 之间形成表面等离子体, 通过表面等离子体效应, 使发光玻璃 13的内量子效率 大大提高, 即发光玻璃的自发辐射增强, 进而大大增强了发光玻璃的发光效率 , 从而解决发光材料发光效率低这一问题。 另外, 由于是在发光玻璃 13表面形 成一层金属层, 整个金属层与发光玻璃 13之间形成均匀界面, 可以提高发光的 均匀性。
[26] 请参阅图 1和 2, 说明本发明实施例的发光元件制造方法的流程, 该制造方法包 括如下步骤:
[27] S01 : 制备发光玻璃 13, 发光玻璃为稀土掺杂的硼酸盐玻璃, 所述硼酸盐玻璃 的化学成分为 bY203*cAl203*d B203«yTb203
, 其中各成分的摩尔份数分别为: b为 7~15, c为 20~40, d为 40~60, y为 0.1~3; [28] S02: 在发光玻璃 13的表面形成一金属层 14; 及
[29] S03: 将发光玻璃 13及金属层 14在真空下进行退火处理, 使金属层 14形成金属 显微结构, 冷却后形成所述的发光元件 10。
[30] 在步骤 S01中, 发光玻璃 13制备步骤如下: 按照所述硼酸盐玻璃的化学成分中 的摩尔份数来称取各成分的金属氧化物, 在 1580〜1750°C温度下熔融, 冷却至 室温, 再置于还原气氛中, 在 600°C~900°C温度下退火 1~20小吋, 制得发光玻璃 。 以化学成分为 aNa2ObY203*cAl203*d B203*eSi02*xCe02*y Tb203
的玻璃为例, 具体制备步骤如下: 以分析纯的碱金属钠盐、 Si02、 A1203和 99.99 %的丫203、 Ce02、 Tb407为主要原料, 按照发光玻璃 aNa2ObY203*cAl203«d B203 •eSi02.xCe〇2.y Tb203
的各成分之间的摩尔份数比例, 来称取相应的原料, 在 1580〜1750°C下熔融 1~5 小时, 冷却至室温, 再置于还原气氛中, 600°C
~900°C退火 1~20小吋, 制得发光玻璃。 另外, 还可将制得的玻璃进一步切割、 抛光加工成一定的尺寸, 以符合应用需求。 [31] 与前面描述的结构相类似, 此处形成金属层 14可以是釆用化学稳定性良好的金 属材质源沉积形成, 例如不易氧化腐蚀的金属, 另外也可以是常用的金属, 优 选为金、 银、 铝、 铜、 钛、 铁、 镍、 钴、 絡、 铂、 钯、 镁、 锌中的至少一种金 属, 更优选为由金、 锒、 铝中的至少一种金属。 在步骤 S02中, 该金属层 14是通 过将上述至少一种金属通过物理或化学气相沉积法形成于发光玻璃 13表面, 例 如但不限于用溅射或蒸镀方法形成于发光玻璃 13的表面。 金属层 14的厚度优选 为 0.5纳米 ~200纳米, 更优选为 1纳米 ~ 100纳米。
[32] 步骤 S03具体如下: 在发光玻璃 13表面形成金属层 14后, 在 50°C~650°C下进行 真空退火处理, 退火时间为 5分钟〜 5小时, 然后自然冷却至室温。 其中, 退火 温度优选为 100°C~500°C, 退火吋间优选为 15分钟〜 3小时。
[33] 请参阅图 1和 3 , 说明本发明实施例的发光元件发光方法的流程, 该发光方法包 括如下步骤:
[34] S11 : 按照前述发光元件制造方法获得发光元件 10;
[35] S12: 对金属层 14发射阴极射线 16, 在阴极射线 16的激发下, 金属层 14与发光 玻璃 13之间形成表面等离子体, 使发光玻璃 13发光。
[36] 发光元件 10具有前面描述各种结构及组份等特征。 在实际应用中, 实现步骤 S1 2可以采用场发射显示器或照明光源, 在真空环境下, 阳极相对场发射阴极阵列 施加正向电压形成加速电场, 阴极发射阴极射线 16, 在阴极射线 16的激发下, 电子束首先穿透金属层 14进而激发发光玻璃 13发光, 在这个过程中, 金属层 14 与发光玻璃 13的界面上产生了表面等离子体效应, 通过该效应使发光玻璃 13的 内量子效率大大提高, 即发光材料的自发辐射增强, 进而大大增强了发光材料 的发光效率。
[37] 表面等离子体 (Surface
Plasmon, SP) 是一种沿金属和介质界面传播的波, 其振幅随离开界面的距离而 指数衰减。 当改变金属表面结构吋, 表面等离子体激元 (Surface plasmon polaritons, SPPs)
的性质、 色散关系、 激发模式、 耦合效应等都将产生重大的变化。 SPPs引发的 电磁场, 不仅仅能够限制光波在亚波长尺寸结构中传播, 而且能够产生和操控 从光频到微波波段的电磁辐射, 实现对光传播的主动操控。 因此, 本实施例利 用该 SPPs的激发性能, 增大发光玻璃的光学态密度和增强其自发辐射速率; 而 且, 可利用表面等离子体的耦合效应, 当发光玻璃发出光吋, 能与其发生耦合 共振效应, 从而大大提高发光玻璃的内量子效率, 提高发光玻璃的发光效率。
[38] 以下通过多个实施例来举例说明发光元件的不同组成及其制备方法, 以及其性 能等方面。
[39] 实施例 1
[40] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 15Na20-7.75Y203- 26.25A1 2O3-50B2O3-0.5CeO 2-lTb203
发光玻璃, 利用磁控溅射设备在其表面沉积厚度为 2nm的金属银层, 然后将其置 于真空度小于 lxlO_3Pa的真空环境下, 以 300°C的温度退火处理半小吋, 然后冷 却至室温, 即得到本实施例的发光元件。
[41] 用电子枪产生的阴极射线轰击本实施例的所制备的发光元件, 电子束首先穿透 金属层进而激发发光玻璃发光, 产生如图 4所示的发光光谱, 图中光谱显示发光 玻璃为绿色发光材料。 图中曲线 11为未加金属银层吋发光玻璃的发光光谱图; 曲线 12为本实施例制备的附加了金属结构的发光玻璃的发光光谱图, 从图中可 以看到, 由于金属层与发光玻璃之间产生了表面等离子体效应, 相对于未加金 属层吋发光玻璃, 本实施例的附加了金属结构的发光玻璃从 300nm到 700nm的发 光积分强度是未加金属层吋发光玻璃发光积分强度的 4.7倍, 使发光性能得到极 大提高。
[42] 以下各个实施例的发光光谱图都与实施例 1相类似, 各发光元件也具有类似的 发光强度效果, 在下面不再赘述。
[43] 实施例 2
[44] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 12Y203-37A1203 - 50B2O3 - 0.5CeO2- lTb20 3
发光玻璃, 利用磁控溅射设备在发光玻璃表面沉积厚度为 0.5nm的金属金层, 然 后将其置于真空度小于 lxlO_3Pa的真空环境下, 以 200°C的温度退火处理 1小吋, 然后冷却至室温, 得到本实施例的发光元件。 [45] 实施例 3
[46] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 10Υ2Ο3-37Α12Ο3 - 40B2O3 -10SiO2-0.5CeO2- 3Tb203
发光玻璃, 利用磁控濺射设备在发光玻璃表面沉积厚度为 200nm的金属铝层, 然 后将其置于真空度小于 lxlO_3Pa的真空环境下, 以 500°C的温度退火处理 5小吋, 然后冷却至室温, 得到本实施例的发光元件。
[47] 实施例 4
[48] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 15Na20-7Y203-26.25 A1203 -49.5 B203-1.5 Ce02-lTb203
发光玻璃, 利用电子束蒸发设备在其表面沉积厚度为 lOOnm的金属镁层层, 然后 将其置于真空度小于 lxlO-3Pa的真空环境下, 以 650°C的温度退火处理 5分钟, 然 后冷却至室温, 得到本实施例的发光元件。
[49] 实施例 5
[50] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 20Na2O-8Y2O3 - 24A1203 -46.5B203-1.5CeO 2- 1.2Tb203
发光玻璃, 利用电子束蒸发设备在其表面沉积厚度为 lnm的金属钯层, 然后将其 置于真空度小于 lxlO-3Pa的真空环境下, 以 100°C的温度退火处理 3小吋, 然后冷 却至室温, 得到本实施例的发光元件。
[51] 实施例 6
[52] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 10.5Na2O-7.5Y2O3 - 20Α12Ο 3-60B2O3-0.8CeO 2-1.5Tb203
发光玻璃, 利用电子束蒸发设备在其表面沉积厚度为 5nm的金属铂层, 然后将其 置于真空度小于 lxlO-3Pa的真空环境下, 以 450°C的温度退火处理 15分钟, 然后 冷却至室温, 得到本实施例的发光元件。
[53] 实施例 7
[54] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 4.5Na2O-10Y2O3 - 40Α12Ο3 -45B2O3-0.3CeO 2- 0.5Tb2O3
发光玻璃, 利用电子束蒸发设备在其表面沉积厚度为 20nm的金属铁层, 然后将 其置于真空度小于 lxlO_3Pa的真空环境下, 以 50°C的温度退火处理 5小时, 然后 冷却至室温, 得到本实施例的发光元件。
[55] 实施例 8
[56] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 11Y203-33A1203 - 55B203 -0.3CeO2-0.8Tb2O 3
发光玻璃, 利用电子束蒸发设备在发光玻璃表面沉积厚度为 lOnm的金属钛层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 150°C的温度退火处理 2小吋 , 然后冷却至室温, 得到本实施例的发光元件。
[57] 实施例 9
[58] 择大小为 lxlcm2、 表面抛光的上述制备方法制得的 12Y203-36A1203 - 52B203 -0.1CeO2-0.1Tb2O 3
发光玻璃, 利用电子束蒸发设备在发光玻璃表面沉积厚度为 50nm的金属铜层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 200°C的温度退火处理 2.5小 吋, 然后冷却至室温, 得到本实施例的发光元件。
[59] 实施例 10
[60] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 15Na20-9Y203-26.5 A1203 -50 B2O3-0.3 CeO2-0.7Tb2O3
发光玻璃, 利用电子束蒸发设备在其表面沉积厚度为 150nm的金属锌层, 然后将 其置于真空度小于 lxlO_3Pa的真空环境下, 以 350°C的温度退火处理 0.5小吋, 然 后冷却至室温, 得到本实施例的发光元件。
[61] 实施例 11
[62] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 10Υ2Ο3-37Α12Ο3 - 50B2O3 -0.5CeO2-3Tb2O 3
发光玻璃, 利用电子束蒸发设备在发光玻璃表面沉积厚度为 120nm的金属铬层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 250°C的温度退火处理 2小吋 , 然后冷却至室温, 得到本实施例的发光元件。
[63] 实施例 12
[64] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 10Na2O-7Y2O3- 25A1203 -42B203-15SiO 2-0.3 CeO2-0.5Tb2O3
发光玻璃, 利用电子束蒸发设备在发光玻璃表面沉积厚度为 40nm的金属镍层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 80°C的温度退火处理 4小吋 , 然后冷却至室温, 得到本实施例的发光元件。
[65] 实施例 13
[66] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 15Na20-8Y203 - 24A1203 -46B203-6SiO 2 -0.5Tb2O3
发光玻璃, 利用电子束蒸发设备在发光玻璃表面沉积厚度为 180nm的金属钴层, 然后将其置于真空度小于 lxlO-3Pa的真空环境下, 以 400°C的温度退火处理 1小吋 , 然后冷却至室温, 得到本实施例的发光元件。
[67] 实施例 14
[68] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 5Κ2Ο-9Υ2Ο3-30Α12Ο 3 - 48B203-5Si02 -2.0Tb2O3
发光玻璃, 利用电子束蒸发设备在发光玻璃表面沉积厚度为 0.5nm的金属金铝层 , 在金铝层中, 金和铝的质量分数分别约为 80%和 20% , 然后将其置于真空度小 于 lxlO-3Pa的真空环境下, 以 200°C的温度退火处理 1小吋, 然后冷却至室温, 得 到本实施例的发光元件。
[69] 实施例 15
[70] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 8Li20-13Y203 - 28A1203 -45B203-8Si0 2 -1.8Tb203
发光玻璃, 利用磁控溅射设备在发光玻璃表面沉积厚度为 15nm的金属银铝层, 在银铝层中, 银和铝的重量份数分别约为 90%和 10% , 然后将其置于真空度小于 lxlO_3Pa的真空环境下, 以 200°C的温度退火处理 1小吋, 然后冷却至室温, 得到 本实施例的发光元件。
[71] 实施例 16
[72] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 6K20-15Y203 - 22Α1203 -42B203-12SiO 2 -2.2Tb203
发光玻璃, 利用电子束蒸发设备在发光玻璃表面沉积厚度为 lOnm的金属银铝层 , 在银铝层中, 锒和铝的重量份数分别约为 80%和 20% , 然后将其置于真空度小 于 lxlO-3Pa的真空环境下, 以 150°C的温度退火处理 2小吋, 然后冷却至室温, 得 到本实施例的发光元件。
[73] 实施例 17
[74] 选择大小为 lxlcm2、 表面抛光的上述制备方法制得的 12Li20-14Y203 - 28A1203 -44B2O3-lSiO 2 -0.2Tb2O3
发光玻璃, 利用磁控溅射设备在发光玻璃表面沉积厚度为 12nm的金属金铝层, 在金铝层中, 金和铝的重量份数分别为 90%和 10% , 然后将其置于真空度小于 lx 10-3Pa的真空环境下, 以 120°C的温度退火处理 2小吋, 然后冷却至室温, 得到本 实施例的发光元件。
[75] 在以上描述的各实施例中, 采用在发光玻璃 13上设置一层具有显微结构的金属 层 14, 该金属层 14能在阴极射线下与发光玻璃 13之间的界面形成表面等离子体 , 通过表面等离子体效应, 使发光玻璃 13的内量子效率大大提高, 使得发光材 料的自发辐射增强, 进而大大增强了发光材料的发光效率, 从而解决发光材料 发光效率低这一问题。 在发光元件的发光方法中, 只需对金属层 14发射阴极射 线, 金属层 14与发光玻璃 13之间形成表面等离子体, 以增强发光玻璃 13的发光 效率, 提高其发光可靠性。 由于发光元件 10包括发光玻璃 13和金属层 14, 这种 双层结构简单, 同吋, 在发光玻璃 13和金属层 14间有均匀界面, 从而表现出很 高的发光均匀性和稳定性。 在发光元件的发光方法中, 只需对金属层 14发射阴 极射线, 金属层 14与发光玻璃 13之间形成表面等离子体, 即能大大增强发光玻 璃 13的发光效率, 提高其发光可靠性。
[76] 在本发明实施例的发光元件制备方法中, 只需要在发光玻璃 13上形成一层金属 层 14, 然后经过退火处理, 即可获得所需发光元件 10, 该制备方法工艺简单、 降低成本, 具有广阔的生产应用前景, 尤其可用在超高亮度和高速运作的发光 器件上, 如场发射显示器。
[77] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
[1] 一种发光元件, 其包括发光玻璃, 其特征在于, 所述发光玻璃的表面设有 一金属层, 所述金属层具有金属显微结构, 所述发光玻璃的化学成分为 bY2 03»cAl203*d B203»yTb203
, 其中各成分的摩尔份数分别为: b为 7~15 , c为 20~40, d为 40~60, y为 0.1 ~3。
[2] 如权利要求 1所述的发光元件, 其特征在于, 所述发光玻璃的化学成分为 a
M2ObY203*cAl203*d B203*eSi02*xCe02.y Tb203
, 其中各成分的摩尔份数分别为: a为 0~20, b为 7~15 , c为 20~40, d为 40~6 0, e为 0 15 , X为 0~1.5 , y为 0.1~3 , M为碱金属元素。
[3] 如权利要求 1所述的发光元件, 其特征在于, 所述金属层的金属为金、 银、 铝、 铜、 钛、 铁、 镍、 钴、 铬、 铂、 钯、 镁、 锌中的至少一种。
[4] 如权利要求 1所述的发光元件, 其特征在于, 所述金属层的显微结构为非周 期性的显微结构。
[5] 如权利要求 1所述的发光元件, 其特征在于, 所述金属层的厚度为 0.5纳米 至 200纳米。
[6] 一种发光元件制造方法, 其包括如下步骤:
制备发光玻璃, 所述发光玻璃的化学成分为 bY2CVcAl203*d B203-yTb203 , 其中各成分的摩尔份数分别为: b为 7~15 , c为 20~40, d为 40~60, y为 0.1 ~3;
在所述发光玻璃的表面形成一金属层; 及
将所述发光玻璃及金属层在真空下进行退火处理, 使所述金属层形成金属 显微结构, 冷却后形成所述的发光元件。
[7] 如权利要求 6所述的发光元件制造方法, 其特征在于, 所述发光玻璃的化学 成分为 aM2ObY203*cAl203'd B203*eSi02*xCe02*y Tb203
, 其中各成分的摩尔份数分别为: a为 0~20, b为 7~15 , c为 20~40, d为 40~6
0, e为 0~15 , X为 0 1.5 , y为 0.1~3 , M为碱金属元素。
[8] 如权利要求 6所述的发光元件制造方法, 其特征在于, 所述发光玻璃的制备 步骤如下: 按照所述发光玻璃的化学成分中的摩尔份数来称取各成分的金 属氧化物, 在 1580〜1750°C温度下熔融, 冷却至室温, 再置于还原气氛中 , 在 600°C ~900°C温度下退火 1~20小吋, 制得所述发光玻璃。
[9] 如权利要求 6所述的发光元件制造方法, 其特征在于, 所述退火处理是在 50
°C~650°C下进行 , 退火时间为 5分钟〜 5小时。
[10] 一种发光元件的发光方法, 其包括如下步骤:
按照权利要求 6-9任一项所述的发光元件制造方法获得发光元件; 及 对金属层发射阴极射线, 在阴极射线激发下金属层与发光玻璃之间形成表 面等离子体, 使发光玻璃发光。
PCT/CN2009/073516 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法 WO2011022877A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/392,495 US9000667B2 (en) 2009-08-26 2009-08-26 Luminescent element, preparation method thereof and luminescence method
CN200980159813.2A CN102395538B (zh) 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法
PCT/CN2009/073516 WO2011022877A1 (zh) 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法
EP09848609.5A EP2489644B1 (en) 2009-08-26 2009-08-26 Luminescent element, producing method thereof and luminescence method using the same
JP2012525836A JP5599885B2 (ja) 2009-08-26 2009-08-26 発光素子、それらの製造方法および発光方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/073516 WO2011022877A1 (zh) 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法

Publications (1)

Publication Number Publication Date
WO2011022877A1 true WO2011022877A1 (zh) 2011-03-03

Family

ID=43627143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073516 WO2011022877A1 (zh) 2009-08-26 2009-08-26 发光元件、其制造方法及其发光方法

Country Status (5)

Country Link
US (1) US9000667B2 (zh)
EP (1) EP2489644B1 (zh)
JP (1) JP5599885B2 (zh)
CN (1) CN102395538B (zh)
WO (1) WO2011022877A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472563B1 (en) * 2009-08-26 2017-07-12 Ocean's King Lighting Science & Technology Co., Ltd. Luminescent element, producing method thereof and luminescence method using the same
CN104986956B (zh) * 2015-06-24 2018-04-24 昆明理工大学 一种稀土离子单掺白色上转换发光的氧化物玻璃及其制备方法
WO2019074939A1 (en) * 2017-10-09 2019-04-18 Rutgers, The State University Of New Jersey CRUSH-RESISTANT GREEN AND VITROCERAMIC GLASSES RICH IN AI2O3
CN109942193B (zh) * 2018-12-29 2022-04-01 温州大学 一种CsPb1-xTixI3红光微晶玻璃及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265983A1 (en) * 1986-10-08 1988-05-04 Koninklijke Philips Electronics N.V. Luminescent quartz glass, method of preparing such a glass and luminescent screen provided with such a glass
EP0266812A1 (en) * 1986-10-08 1988-05-11 Koninklijke Philips Electronics N.V. Luminescent alumino-silicate and/or alumino-borate glass comprising lanthanum and/or gadolinium and luminescent screen provided with such a glass
CN1805105A (zh) * 2005-12-20 2006-07-19 陕西科技大学 一种分立式结构的场致发射显示器件
CN101314519A (zh) * 2008-07-04 2008-12-03 华东理工大学 一种白光led用稀土掺杂发光玻璃及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5727048B2 (zh) * 1973-01-29 1982-06-08
JPS5648448B2 (zh) * 1973-09-12 1981-11-16
SE418961C (sv) * 1979-05-09 1987-03-23 Partek Ab Fiberglassammansettning
GB2115403B (en) * 1982-02-20 1985-11-27 Zeiss Stiftung Optical and opthalmic glass
FR2550187B1 (fr) * 1983-08-02 1986-06-06 Corning Glass Works Verres de faible densite et de haut indice de refraction pour applications ophtalmiques et optiques
JPS6310039A (ja) 1986-06-30 1988-01-16 Lion Corp 歯科鋳造用埋没材
JPH0747732B2 (ja) 1987-12-05 1995-05-24 日亜化学工業株式会社 低速電子線励起螢光体
US5077240A (en) * 1990-01-11 1991-12-31 Schott Glass Technologies, Inc. Strengthenable, high neodymium-containing glasses
JPH0589800A (ja) * 1991-09-27 1993-04-09 Mitsubishi Electric Corp 緑色発光投写形陰極線管
US5405811A (en) * 1994-02-28 1995-04-11 Corning Incorporated Ultraviolet absorbing, fixed tint green sunglass
FR2728557A1 (fr) * 1994-12-27 1996-06-28 Corning France Nouveaux verres et lentilles ophtalmiques
US5843855A (en) 1997-01-15 1998-12-01 General Electric Company Glass
DE19747354C1 (de) * 1997-10-27 1998-12-24 Schott Glas Erdalkalialuminoborosilicatglas für Lampenkolben und dessen Verwendung
JP4421001B2 (ja) * 1998-04-01 2010-02-24 株式会社住田光学ガラス 長残光および輝尽発光を呈する酸化物ガラス
KR100786854B1 (ko) * 2001-02-06 2007-12-20 삼성에스디아이 주식회사 디스플레용 필터막, 그 제조방법 및 이를 포함하는 표시장치
GB0217900D0 (en) * 2002-08-02 2002-09-11 Qinetiq Ltd Optoelectronic devices
JP2004250251A (ja) * 2003-02-18 2004-09-09 Sumitomo Electric Ind Ltd 蛍光性ガラス、光増幅用導波路および光増幅モジュール
US20040178734A1 (en) * 2003-03-13 2004-09-16 Yoshihisa Nagasaki Fluorescent device, fluorescent lamp and glass composite
DE102004033653B4 (de) 2004-07-12 2013-09-19 Schott Ag Verwendung eines Glases für EEFL Fluoreszenzlampen
CN1294233C (zh) 2005-02-21 2007-01-10 东南大学 一种硅酸盐绿色荧光粉的制备方法
JP2007063065A (ja) * 2005-08-31 2007-03-15 Ohara Inc ガラス
JP2007161944A (ja) * 2005-12-16 2007-06-28 Nippon Electric Glass Co Ltd 蛍光体
CN101016457B (zh) 2007-02-05 2012-10-31 罗维鸿 用于等离子辐射屏幕的绿光荧光粉及其制作方法
JP5149601B2 (ja) * 2007-11-27 2013-02-20 パナソニック株式会社 発光装置
JP5435517B2 (ja) 2009-06-23 2014-03-05 ▲海▼洋王照明科技股▲ふん▼有限公司 電界放出発光材料の発光効率を高める方法、発光ガラス素子およびその調製方法
US20120126172A1 (en) 2009-07-23 2012-05-24 Ocean's Kinge Lighting Science & Technology Co., L Luminescent borate glass and preparation method therof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0265983A1 (en) * 1986-10-08 1988-05-04 Koninklijke Philips Electronics N.V. Luminescent quartz glass, method of preparing such a glass and luminescent screen provided with such a glass
EP0266812A1 (en) * 1986-10-08 1988-05-11 Koninklijke Philips Electronics N.V. Luminescent alumino-silicate and/or alumino-borate glass comprising lanthanum and/or gadolinium and luminescent screen provided with such a glass
CN1805105A (zh) * 2005-12-20 2006-07-19 陕西科技大学 一种分立式结构的场致发射显示器件
CN101314519A (zh) * 2008-07-04 2008-12-03 华东理工大学 一种白光led用稀土掺杂发光玻璃及其制备方法

Also Published As

Publication number Publication date
CN102395538B (zh) 2013-08-21
EP2489644B1 (en) 2018-12-19
US20120153822A1 (en) 2012-06-21
CN102395538A (zh) 2012-03-28
EP2489644A1 (en) 2012-08-22
EP2489644A4 (en) 2014-02-26
JP2013502375A (ja) 2013-01-24
US9000667B2 (en) 2015-04-07
JP5599885B2 (ja) 2014-10-01

Similar Documents

Publication Publication Date Title
EP2472563B1 (en) Luminescent element, producing method thereof and luminescence method using the same
JP5435517B2 (ja) 電界放出発光材料の発光効率を高める方法、発光ガラス素子およびその調製方法
WO2011022878A1 (zh) 发光元件、其制造方法及其发光方法
WO2011022881A1 (zh) 含氮化物发光元件、其制造方法及其发光方法
US8217369B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
US8216671B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
WO2011022876A1 (zh) 发光元件、其制造方法及其发光方法
WO2011022880A1 (zh) 发光元件、其制造方法及其发光方法
WO2011022877A1 (zh) 发光元件、其制造方法及其发光方法
US8217370B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
WO2011022875A1 (zh) 发光元件、其制造方法及其发光方法
US8115181B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
US8415017B2 (en) Luminescent glass element, producing method thereof and luminescing method thereof
WO2012083519A1 (zh) 一种发光元器件及其制备方法
WO2012083520A1 (zh) 一种发光元器件及其制备方法
US20120001093A1 (en) Luminescent glass element, producing method thereof and luminescing method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159813.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848609

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13392495

Country of ref document: US

Ref document number: 2012525836

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009848609

Country of ref document: EP