WO2014110752A1 - 基于置换反应-热氧化方法制备复合半导体敏感膜的方法 - Google Patents

基于置换反应-热氧化方法制备复合半导体敏感膜的方法 Download PDF

Info

Publication number
WO2014110752A1
WO2014110752A1 PCT/CN2013/070590 CN2013070590W WO2014110752A1 WO 2014110752 A1 WO2014110752 A1 WO 2014110752A1 CN 2013070590 W CN2013070590 W CN 2013070590W WO 2014110752 A1 WO2014110752 A1 WO 2014110752A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive film
thermal oxidation
nanoparticles
displacement reaction
preparing
Prior art date
Application number
PCT/CN2013/070590
Other languages
English (en)
French (fr)
Inventor
李冬梅
陈鑫
梁圣法
詹爽
张培文
谢常青
刘明
Original Assignee
中国科学院微电子研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院微电子研究所 filed Critical 中国科学院微电子研究所
Priority to PCT/CN2013/070590 priority Critical patent/WO2014110752A1/zh
Publication of WO2014110752A1 publication Critical patent/WO2014110752A1/zh
Priority to US14/801,547 priority patent/US20150325437A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C12/00Solid state diffusion of at least one non-metal element other than silicon and at least one metal element or silicon into metallic material surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/38Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions
    • H01L21/388Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes

Definitions

  • the present invention relates to the field of composite semiconductor sensitive film preparation technology, and more particularly to a method for preparing a composite semiconductor sensitive film based on a displacement reaction-thermal oxidation method, which is applicable for preparation.
  • the sensor and the catalyzed CuO-doped ZnO sensitive film are particularly preferred.
  • Sensors for detecting CO and 3 ⁇ 4 include electrochemical sensors, infrared sensors, catalytic combustion gas sensors, and semiconductor gas sensors.
  • electrochemical sensors have the disadvantage of being easily poisoned; infrared sensors are costly and difficult to carry; catalytic combustion gas sensors
  • the selectivity of the semiconductor gas sensor is caused by the adsorption and reaction of the semiconductor sensitive film and the gas to cause a change in its electrical characteristics, and the function of identifying and detecting the concentration thereof is realized by detecting the change thereof, and the types of the semiconductor sensitive film are various, and The selectivity and sensitivity can be improved by doping or the like, and thus the semiconductor gas sensor has a good prospect in detecting gas.
  • the semiconductor gas sensor utilizes the principle that the sensitive film reacts with the reactant to detect the sensitive object, the selection and preparation of the sensitive film have a decisive influence on the performance of the semiconductor gas sensor, and are the core technology of the semiconductor gas sensor.
  • ZnO is a relatively mature semiconductor sensitive material. It has good performance in detecting CO, H 2 and other gases. Sensitive membranes composed of ZnO have been extensively studied. The reasonably doped ZnO sensitive film will greatly improve the sensitivity and stability of the semiconductor gas sensor for detecting gases such as CO and H 2 . However, most of the gas sensors using doped ZnO sensitive films are transferred to the sensor substrate by solution reaction, and the adhesion of the film is poor, sometimes it is necessary to The organic adhesive is mixed before it can be transferred to the sensor substrate. However, ZnO doped by other means such as magnetron sputtering is difficult to control the distribution and morphology of the doped particles, and has its limitations, and the particle size of the doping substance is difficult to control. Therefore, the search for a new film-forming method with good adhesion and controllable doping of ZnO sensitive film has a positive effect on the research and industrial production of semiconductor gas sensors.
  • the present invention provides a method for preparing a composite semiconductor sensitive film based on a displacement reaction-thermal oxidation method, the method comprising: growing a layer of Zn on a high temperature resistant substrate; dipping the substrate grown with Zn into Cu In the soluble salt ion solution, the Cu ions in the solution are displaced to precipitate Cu nanoparticles on the Zn surface; and the Zn on the surface of which the Cu nanoparticles are attached is thermally oxidized, and the Cu nanoparticles are oxidized to CuO nanoparticles to obtain the doping.
  • ZnO gas sensitive film of hetero-CuO nanoparticles is dipping the substrate grown with Zn into Cu In the soluble salt ion solution, the Cu ions in the solution are displaced to precipitate Cu nanoparticles on the Zn surface; and the Zn on the surface of which the Cu nanoparticles are attached is thermally oxidized, and the Cu nanoparticles are oxidized to CuO nanoparticles to obtain the doping.
  • a layer of Zn is grown on the high temperature resistant substrate by electron beam evaporation or magnetron sputtering.
  • the high temperature resistant substrate is silicon, quartz, alumina or ceramic.
  • the Zn has a thickness of between 10 nm and 5000 nm.
  • the substrate in which Zn is grown is immersed in a solution of a soluble salt ion solution of Cu, and the soluble salt ion solution of Cu is Cu(N0 3 ) 2 , CuCl 2 , CuS0 4 , Cu(N0 3 ). 2 or Cu(CH 3 COO) 2 .
  • Molar concentration of the soluble salts of Cu ions in the solution is 10-5
  • the immersion time is 30 seconds to 5 hours.
  • the thermal oxidation treatment process is: the temperature of the oxidation furnace is 400 ° C - 950 ° C, and the time is 3 hours - 12 hour.
  • the preparation of the composite semiconductor based on the displacement reaction-thermal oxidation method provided by the invention is sensitive
  • the film method first deposits a layer of Zn on the high temperature resistant substrate, and then directly immerses the substrate on which Zn is deposited into the salt ion solution of Cu, and the Cu atom is directly reduced on the Zn by the displacement reaction.
  • Cu nanoparticles are precipitated on the surface of Zn, and then thermally oxidized to form a CuO-doped ZnO sensitive film.
  • the replacement process can be carried out at room temperature or in a water bath, which is easy to control, and has a low reaction temperature and low energy consumption.
  • the present invention directly prepares a CuO-doped ZnO sensitive film directly on a substrate, and does not require dry centrifugal centrifugation as in the method of preparing a nanomaterial by a sol gel and a hydrothermal reaction and other solution reactions, and does not require a system.
  • Good nanomaterials are transferred to the substrate.
  • the reaction conditions are easy to control, and are suitable for mass production. The efficiency is higher than that of the general solution for preparing nanomaterials, and expensive equipment is not needed.
  • the adhesion of ZnO sensitive membrane is good, the controllable doping property is good, and it has good Application prospects.
  • FIG. 1 is a flow chart showing a method for preparing a composite semiconductor sensitive film based on a displacement reaction-thermal oxidation method in accordance with an embodiment of the present invention.
  • 2-1 to 2-3 are process flow diagrams for preparing a composite semiconductor sensitive film based on a displacement reaction-thermal oxidation method in accordance with an embodiment of the present invention.
  • the displacement reaction is a reaction in which a simple substance and a compound react to form another elemental substance and a compound.
  • the metal Zn having strong metal activity can displace Cu having poor metal mobility, thereby attaching Cu nanoparticles to the surface of Zn, and then thermally oxidizing to obtain a CuO-doped ZnO sensitive film.
  • the present invention provides a displacement-based thermal oxidation method
  • a method for preparing a composite semiconductor sensitive film is to first deposit a layer of Mn on a high temperature resistant substrate, and then directly immerse the substrate on which Zn is deposited in a salt ion solution of Cu, and the Cu atom can be directly on the Zn by a displacement reaction. It is reduced to precipitate Cu nanoparticles on the surface of Zn, and then thermally oxidized to form a CuO-doped ZnO sensitive film.
  • FIG. 1 shows a flow chart of a method for preparing a composite semiconductor sensitive film based on a displacement reaction-thermal oxidation method according to an embodiment of the present invention, the method comprising:
  • Step 10 growing a layer of Zn on the high temperature resistant substrate
  • a layer of Zn is grown on the high temperature resistant substrate by electron beam evaporation or magnetron sputtering.
  • the high temperature resistant substrate may be silicon, quartz, alumina, ceramic, etc., and the thickness of Zn is 10 nm. Between 5000 nm, preferably the thickness of Zn may be 10 nm, 80 nm, 800 nm, 2500 ⁇ , 3500 ⁇ or 5000 ⁇ .
  • Step 20 immersing a substrate on which Zn is grown in a soluble salt ion solution of Cu, and Cu ions in the solution are displaced to precipitate Cu nanoparticles on the surface of Zn;
  • the soluble salt ion solution of Cu is Cu(N0 3 ) 2 , CuCl 2 , CuS0 4 , Cu(N0 3 ) 2 or Cu(C 3 ⁇ 4COO) 2 , etc., and the temperature thereof is 0° C.-100° C.
  • the molar concentration is ⁇ -' ⁇ - ⁇
  • the immersion time is 30 seconds to 5 hours. Since the reduction of Zn is stronger than that of Cu, the Cu ions in the solution are displaced to precipitate Cu nanoparticles on the surface of Zn, Cu nano.
  • the size of the particles can be controlled by controlling the concentration, temperature and immersion time of the solution.
  • the higher the concentration of the solution the more and the larger the Cu nanoparticles precipitated on the Zn surface;
  • the higher the temperature the smaller the Cu nanoparticles precipitated on the Zn surface;
  • the higher the solution concentration the more Cu nanoparticles are precipitated on the Zn surface; preferably, for a substrate having Zn having a thickness of 80 nm is grown on the surface.
  • the temperature of the soluble salt ion solution of Cu is 0 ° C, the molar concentration is 10 - 5 M, and the immersion time is 5 hours;
  • the solubility of Cu The temperature of the salt ion solution is 100 ° C, the molar concentration is ⁇ ⁇ , and the immersion time is 30 seconds.
  • the temperature of the soluble salt ion solution of Cu is 40 ° C, and the molar concentration is 10 - 4 M, immersion time was 4 hours; in Example d of the present invention, the soluble salt ion solution of Cu had a temperature of 60 ° C, a molar concentration of 10 - 2 M, and an immersion time of 2 hours.
  • Step 30 thermal oxidation treatment of Zn on which Cu nanoparticles are attached, and oxidation of Cu nanoparticles into CuO nanoparticles, thereby obtaining a ZnO gas sensitive film doped with CuO nanoparticles;
  • the specific process of the thermal oxidation treatment is: the temperature of the oxidation furnace is generally 400 ° C - 950 ° C, and the time is 3 hours - 12 hours; preferably, in the embodiment a of the present invention, the oxidation furnace The temperature is 400 ° C and the time is 12 hours; in the embodiment b of the present invention, the temperature of the oxidation furnace is 950 ° C for 3 hours; in the embodiment c of the present invention, the temperature of the oxidation furnace is 700 °C, time is 5 hours; In the embodiment d of the present invention, the temperature of the oxidation furnace was 550 ° C and the time was 6 hours.
  • FIGS. 2-1 to 2-3 illustrate a composite semiconductor based on a displacement reaction-thermal oxidation method according to an embodiment of the present invention. Process flow chart for sensitive membranes.
  • Figure 2-1 is a schematic diagram of the growth of a layer of Zn by electron beam evaporation on a SiO 2 substrate; the growth process specifically includes: a temperature of 300 ° C, a vacuum of 1 X 10 - 6 torr, and an evaporation rate of 0.1 nm / s
  • the thickness of Zn is 80 nm.
  • Figure 2-2 shows that the substrate grown with Zn is immersed in a solution of Cu(N0 3 ) 2 , CuCl 2 , CuS0 4 or Cu(C3 ⁇ 4COO) 2 at a concentration of 0-100 ° C for 30 seconds to 5 hours.
  • a schematic diagram of the precipitation of Cu nanoparticles on the surface of Zn preferably, the Zn having a thickness of 80 nm is taken out in a solution of Cu(N0 3 ;) 2 having a molar concentration of 10 - 3 M at 90 ° C for 5 minutes, after Nanoparticles of Cu precipitate on the surface of Zn.
  • Figure 2-3 is a schematic diagram of a ZnO sensitive film obtained by thermal oxidation treatment to obtain doped CuO nanoparticles, wherein the oxidation temperature is 400-950 ° C, the oxidation time is 3-12 hours, preferably the temperature is 550 ° C, and the oxidation time is 6 hours.
  • the invention utilizes the principle of displacement reaction to grow Cu nanoparticles on the surface of Zn, and then obtains CuO-doped ZnO sensitive film by thermal oxidation, which can be applied to sensors and catalysis.
  • the sensitive film preparation process is to first grow a layer of Zn by electron beam evaporation or magnetron sputtering, and then immerse Zn into a certain concentration of Cu (N0 3 ) 2 or other Cu soluble salt ion solution for a certain time, due to Zn Metal is more active than Cu.
  • Cu can be precipitated on the surface of Zn by the reduction of Zn.
  • the size of the particles can be controlled by the concentration of the solution.
  • the ZnO sensitive film doped with CuO nanoparticles can be obtained by controlling the degree, temperature and immersion time, and then thermally oxidizing.
  • the sensitive film after doping has great sensitivity and stability to gases such as CO and H 2 . Great improvement.
  • the preparation method of the invention has the advantages of good film forming quality, simple preparation process, low cost and easy control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种基于置换反应-热氧化方法制备复合半导体敏感膜的方法,该方法包括:在耐高温衬底上生长一层Zn(10);将生长有Zn的衬底浸入Cu的可溶性盐离子溶液中,溶液中的Cu离子被置换出来进而在Zn表面析出Cu纳米颗粒(20);对表面附着有Cu纳米颗粒的Zn进行热氧化处理,将Cu纳米颗粒氧化为CuO纳米颗粒,得到掺杂CuO纳米颗粒的ZnO气体敏感膜(30)。该制备方法具有成膜质量好,制备过程简单,成本低,易于控制等优点。

Description

基于置换反应-热氧化方法制备复合半导体敏感膜的方法 技术领域 本发明属于复合半导体敏感膜制备技术领域, 特别是一种基于置换 反应-热氧化方法制备复合半导体敏感膜的方法, 以制备可应用于传感 器及催化的掺杂 CuO的 ZnO敏感膜。
背景技术 由于 CO的高毒性以及 H2的危险性, 因此对于它们在环境监测、工 业生产、医疗护理等中的监测和检测非常重要。检测 CO和 ¾的传感器 有电化学传感器、 红外传感器、 催化燃烧式气体传感器和半导体气体传 感器等,其中,电化学传感器有着易于中毒的缺点;红外传感器成本高, 而且不易携带; 催化燃烧式气体传感器则选择性比较差; 半导体气体传 感器是通过半导体敏感膜与气体的吸附和反应从而引起其电学特性的 变化, 通过检测其变化来实现识别和检测其浓度的功能, 半导体敏感膜 的种类多样, 而且可以通过掺杂等手段提高其选择性和灵敏度, 因此半 导体气体传感器在检测气体方面有着较好的前景。
由于半导体气体传感器是利用敏感膜与反应物发生反应而达到检 测敏感物的原理, 因此敏感膜的选择和制备对半导体气体传感器性能有 着决定性的影响, 是半导体气体传感器的核心技术。
ZnO是一种比较成熟的半导体敏感材料, 其在检测 CO、 H2等气体 有着良好的性能, ZnO构成的敏感膜已经被广泛的研究。 而合理掺杂的 ZnO敏感膜会使半导体气体传感器对检测 CO和 H2等气体的灵敏性和稳 定性有很大提高。但是, 目前应用掺杂的 ZnO敏感膜的气体传感器, 大 部分都是通过溶液反应后将掺杂后的 ZnO复合物转移到传感器基底上, 其膜的粘附性较差, 有时候还需要与有机粘附剂混合后才能转移到传感 器基底上。而应用磁控溅射等其他手段掺杂的 ZnO难以控制掺杂颗粒的 分布和形态, 都有着其局限性, 而且其掺杂物质的颗粒大小不易控制。 因此寻找一种粘附性好、可控掺杂的 ZnO敏感膜的新型成膜方式对 于半导体气体传感器领域的研究和工业生产都有积极的作用。
发明内容
(一) 要解决的技术问题
有鉴于此, 本发明的主要目的是提供一种基于置换反应-热氧化方 法制备复合半导体敏感膜的方法, 以制备出掺杂 CuO纳米颗粒的 ZnO 敏感膜。
(二) 技术方案
为达到上述目的, 本发明提供一种基于置换反应-热氧化方法制备 复合半导体敏感膜的方法, 该方法包括: 在耐高温衬底上生长一层 Zn; 将生长有 Zn的衬底浸入 Cu的可溶性盐离子溶液中, 溶液中的 Cu离子 被置换出来进而在 Zn表面析出 Cu纳米颗粒; 以及对表面附着有 Cu纳 米颗粒的 Zn进行热氧化处理, 将 Cu纳米颗粒氧化为 CuO纳米颗粒, 得到掺杂 CuO纳米颗粒的 ZnO气体敏感膜。
上述方案中, 所述在耐高温衬底上生长一层 Zn的歩骤中, 是采用 电子束蒸发或磁控溅射的方法在耐高温衬底上生长一层 Zn。
上述方案中, 所述耐高温衬底是硅、 石英、 氧化铝或陶瓷。 所述 Zn 的厚度在 10nm至 5000 nm之间。
上述方案中,所述将生长有 Zn的衬底浸入 Cu的可溶性盐离子溶液 的歩骤中, Cu的可溶性盐离子溶液为 Cu(N03)2、 CuCl2、 CuS04、 Cu(N03)2 或 Cu(CH3COO)2。 Cu的可溶性盐离子溶液的摩尔浓度为 10—5
Figure imgf000004_0001
浸入时间为 30秒至 5小时。
上述方案中,所述对表面附着有 Cu纳米颗粒的 Zn进行热氧化处理 的歩骤中, 热氧化处理的工艺为: 氧化炉的温度为 400°C-950°C, 时间 为 3小时 -12小时。
(三) 有益效果
本发明提供的这种基于置换反应 -热氧化方法制备复合半导体敏感 膜的方法, 先在耐高温衬底上淀积一层 Zn, 然后直接将淀积有 Zn的衬 底浸入 Cu的盐离子溶液中,通过置换反应可以使 Cu原子在 Zn上面直 接被还原出来进而在 Zn表面析出 Cu纳米颗粒,再经过热氧化而形成掺 杂 CuO的 ZnO敏感膜。 置换过程可以在常温下进行, 也可以在水浴里 进行, 易于控制, 而且反应温度低, 耗能少。 同时本发明是直接在衬底 上制备原位掺杂 CuO的 ZnO敏感膜, 不需要像溶胶凝胶和水热反应及 其他溶液反应制备纳米材料的方法那样需要干燥离心, 而且也不需要将 制好的纳米材料转移到衬底上。 而且反应条件易于控制, 同时适合批量 生产, 效率高于一般制备纳米材料的溶液反应, 也不需要用到昂贵的设 备, ZnO敏感膜的粘附性好, 可控掺杂性好, 具有很好的应用前景。
附图说明 为了更进一歩说明本发明的内容, 以下结合附图及实施例子, 对本 发明做详细描述, 其中:
图 1 是依照本发明实施例的基于置换反应-热氧化方法制备复合半 导体敏感膜的方法流程图。
图 2-1至图 2-3是依照本发明实施例的基于置换反应-热氧化方法制 备复合半导体敏感膜的工艺流程图。
具体实施方式 为使本发明的目的、 技术方案和优点更加清楚明白, 以下结合具体 实施例, 并参照附图, 对本发明进一歩详细说明。
首先, 介绍置换反应-热氧化方法的原理。置换反应是一种单质和化 合物反应生成另一种单质和化合物的反应。 本发明中, 金属活动性强的 金属 Zn可以置换出金属活动性差的 Cu,从而在 Zn表面附着 Cu纳米颗 粒, 再经过热氧化就可以得到掺杂 CuO的 ZnO敏感膜。
基于上述实现原理, 本发明提供的这种基于置换反应 -热氧化方法 制备复合半导体敏感膜的方法,先在耐高温衬底上淀积一层 Ζη,然后直 接将淀积有 Zn的衬底浸入 Cu的盐离子溶液中,通过置换反应可以使 Cu 原子在 Zn上面直接被还原出来进而在 Zn表面析出 Cu纳米颗粒, 再经 过热氧化而形成掺杂 CuO的 ZnO敏感膜。
图 1 示出了依照本发明实施例的基于置换反应 -热氧化方法制备复 合半导体敏感膜的方法流程图, 该方法包括:
歩骤 10: 在耐高温衬底上生长一层 Zn;
在本歩骤中, 在耐高温衬底上生长一层 Zn采用电子束蒸发或磁控 溅射的方法, 耐高温衬底可以是硅、 石英、 氧化铝、 陶瓷等, Zn的厚度 在 10nm至 5000 nm之间,优选地 Zn的厚度可以是 10nm、 80nm、 800nm、 2500匪、 3500匪或 5000 匪。
歩骤 20: 将生长有 Zn的衬底浸入 Cu的可溶性盐离子溶液中, 溶 液中的 Cu离子被置换出来进而在 Zn表面析出 Cu纳米颗粒;
在本歩骤中, Cu的可溶性盐离子溶液为 Cu(N03)2、 CuCl2、 CuS04、 Cu(N03)2或 Cu(C¾COO)2等, 其温度为 0°C-100°C, 摩尔浓度为 ΙΟ-'Μ-ΙΟ^Μ, 浸入时间为 30秒至 5小时, 由于 Zn的还原性强于 Cu, 溶液中的 Cu离子被置换出来进而在 Zn表面析出 Cu纳米颗粒, Cu纳米 颗粒的大小可以通过控制溶液的浓度、 温度和浸入时间来控制, 例如在 一定温度和浸入时间下, 溶液浓度越高, Zn表面的析出的 Cu纳米颗粒 一般就越多和越大; 在一定浓度和浸入时间下, 温度越高, Zn表面析出 的 Cu纳米颗粒一般就越小; 在一定得温度和浸入时间下, 溶液浓度越 高, Zn表面析出的 Cu纳米颗粒就越多; 优选地, 对于表面生长有厚度 为 80nm的 Zn的衬底, 在本发明的实施例 a中, Cu的可溶性盐离子溶 液的温度为 0°C, 摩尔浓度为 10— 5M, 浸入时间为 5小时; 在本发明的实 施例 b中, Cu的可溶性盐离子溶液的温度为 100°C,摩尔浓度为 ΙΟ^Μ, 浸入时间为 30秒; 在本发明的实施例 c中, Cu的可溶性盐离子溶液的 温度为 40°C, 摩尔浓度为 10—4M, 浸入时间为 4小时; 在本发明的实施 例 d中, Cu的可溶性盐离子溶液的温度为 60°C, 摩尔浓度为 10— 2M, 浸 入时间为 2小时。 歩骤 30: 对表面附着有 Cu纳米颗粒的 Zn进行热氧化处理, 将 Cu 纳米颗粒氧化为 CuO纳米颗粒, 就得到掺杂 CuO纳米颗粒的 ZnO气体 敏感膜;
在本歩骤中, 热氧化处理的具体工艺为: 氧化炉的温度一般为 400°C-950°C,时间为 3小时 -12小时;优选地,在本发明的实施例 a中, 氧化炉的温度为 400°C, 时间为 12小时; 在本发明的实施例 b中, 氧化 炉的温度为 950°C, 时间为 3小时; 在本发明的实施例 c中, 氧化炉的 温度为 700°C, 时间为 5小时; 在本发明的实施例 d中, 氧化炉的温度 为 550°C, 时间为 6小时。
基于图 1所示的依照本发明实施例的制备复合半导体敏感膜的方法 流程图, 图 2-1至图 2-3示出了依照本发明实施例的基于置换反应 -热氧 化方法制备复合半导体敏感膜的工艺流程图。
图 2-1是在 Si02衬底上采用电子束蒸发方式生长一层 Zn后的示意 图; 生长工艺具体包括: 温度为 300°C, 真空度为 1X10— 6 torr, 蒸发速率 为 0.1 nm/s; Zn的厚度为 80 nm。
图 2-2 是将生长有 Zn 的衬底浸入 0-100°C的浓度 ΚΤ θ^Μ 的 Cu(N03)2、 CuCl2、 CuS04或 Cu(C¾COO)2溶液中 30秒至 5小时, 在 Zn表面上析出 Cu的纳米颗粒的示意图;优选地是将厚度为 80nm的 Zn 在 90°C的摩尔浓度为 10—3M的 Cu(N03;)2溶液中 5分钟后取出, 在 Zn表 面上析出 Cu的纳米颗粒。
图 2-3是热氧化处理得到掺杂 CuO纳米颗粒的 ZnO敏感膜示意图, 其中氧化温度为 400-950°C, 氧化时间为 3-12小时, 优选地是采用温度 550°C, 氧化时间为 6小时。
本发明利用置换反应的原理在 Zn表面生长 Cu的纳米颗粒,然后通 过热氧化的方法获得掺杂 CuO的 ZnO敏感膜, 可应用于传感器及催化 等领域。 该敏感膜制备过程是先采用电子束蒸发或者磁控溅射生长一层 Zn, 然后再将 Zn浸入一定浓度的 Cu (N03) 2或其他 Cu的可溶性盐离 子溶液中一定时间, 由于 Zn的金属活泼性强于 Cu, 通过 Zn的还原作 用就可以在 Zn表面析出 Cu的颗粒,颗粒的大小可以通过控制溶液的浓 度、 温度和浸入时间来控制, 然后再热氧化处理, 就可以得到掺杂 CuO 纳米颗粒的 ZnO敏感膜, 掺杂后的敏感膜对 CO和 H2等气体的敏感度 和稳定性都有很大的改善。 本发明的制备方法具有成膜质量好, 制备过 程简单, 成本低, 易于控制等优点。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进 行了进一歩详细说明, 所应理解的是, 以上所述仅为本发明的具体实施 例而已, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种基于置换反应-热氧化方法制备复合半导体敏感膜的方法, 其特征在于, 该方法包括:
在耐高温衬底上生长一层 Zn;
将生长有 Zn的衬底浸入 Cu的可溶性盐离子溶液中, 溶液中的 Cu 离子被置换出来进而在 Zn表面析出 Cu纳米颗粒; 以及
对表面附着有 Cu纳米颗粒的 Zn进行热氧化处理, 将 Cu纳米颗粒 氧化为 CuO纳米颗粒, 得到掺杂 CuO纳米颗粒的 ZnO气体敏感膜。
2、 根据权利要求 1所述的基于置换反应 -热氧化方法制备复合半导 体敏感膜的方法, 其特征在于, 所述在耐高温衬底上生长一层 Zn的歩 骤中,是采用电子束蒸发或磁控溅射的方法在耐高温衬底上生长一层 Zn。
3、 根据权利要求 1或 2所述的基于置换反应-热氧化方法制备复合 半导体敏感膜的方法, 其特征在于, 所述耐高温衬底是硅、 石英、 氧化 铝或陶瓷。
4、 根据权利要求 1或 2所述的基于置换反应-热氧化方法制备复合 半导体敏感膜的方法, 其特征在于, 所述 Zn的厚度在 lOnm至 5000 nm 之间。
5、 根据权利要求 1所述的基于置换反应 -热氧化方法制备复合半导 体敏感膜的方法, 其特征在于, 所述将生长有 Zn的衬底浸入 Cu的可溶 性盐离子溶液的歩骤中, Cu 的可溶性盐离子溶液为 Cu N03;)2、 CuCl2、 CuS04、 Cu(N03)2或 Cu(C¾COO)2
6、 根据权利要求 1所述的基于置换反应 -热氧化方法制备复合半导 体敏感膜的方法, 其特征在于, 所述将生长有 Zn的衬底浸入 Cu的可溶 性盐离子溶液的歩骤中, Cu 的可溶性盐离子溶液的摩尔浓度为 10_5 M-10 M。
7、 根据权利要求 1所述的基于置换反应 -热氧化方法制备复合半导 体敏感膜的方法, 其特征在于, 所述将生长有 Zn的衬底浸入 Cu的可溶 性盐离子溶液的歩骤中, 浸入时间为 30秒至 5小时。
8、 根据权利要求 1所述的基于置换反应 -热氧化方法制备复合半导 体敏感膜的方法, 其特征在于, 所述对表面附着有 Cu纳米颗粒的 Zn进 行热氧化处理的歩骤中, 热氧化处理的工艺为: 氧化炉的温度为 400°C-950°C, 时间为 3小时 -12小时。
PCT/CN2013/070590 2013-01-17 2013-01-17 基于置换反应-热氧化方法制备复合半导体敏感膜的方法 WO2014110752A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2013/070590 WO2014110752A1 (zh) 2013-01-17 2013-01-17 基于置换反应-热氧化方法制备复合半导体敏感膜的方法
US14/801,547 US20150325437A1 (en) 2013-01-17 2015-07-16 Method for manufacturing compound semiconductor sensitive film based on displacement reaction-thermal oxidation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/070590 WO2014110752A1 (zh) 2013-01-17 2013-01-17 基于置换反应-热氧化方法制备复合半导体敏感膜的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/801,547 Continuation US20150325437A1 (en) 2013-01-17 2015-07-16 Method for manufacturing compound semiconductor sensitive film based on displacement reaction-thermal oxidation method

Publications (1)

Publication Number Publication Date
WO2014110752A1 true WO2014110752A1 (zh) 2014-07-24

Family

ID=51208940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070590 WO2014110752A1 (zh) 2013-01-17 2013-01-17 基于置换反应-热氧化方法制备复合半导体敏感膜的方法

Country Status (2)

Country Link
US (1) US20150325437A1 (zh)
WO (1) WO2014110752A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235903A (zh) * 2020-09-09 2022-03-25 中国科学院苏州纳米技术与纳米仿生研究所 一种气体传感器及其制作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622194B (zh) * 2022-03-15 2023-06-16 东莞振顺五金制品有限公司 一种锌合金环保着色液及其着色工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304700A (zh) * 2011-09-23 2012-01-04 中国科学院微电子研究所 一种掺氮氧化锌薄膜的制备方法
CN102676975A (zh) * 2011-12-22 2012-09-19 河南科技大学 一种纳米氧化锌薄膜及氧化锌/氧化铜半导体材料的制备方法
CN103074627A (zh) * 2013-01-17 2013-05-01 中国科学院微电子研究所 基于置换反应-热氧化方法制备复合半导体敏感膜的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5612688B2 (ja) * 2009-08-26 2014-10-22 海洋王照明科技股▲ふん▼有限公司 発光素子、その製造方法および発光方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102304700A (zh) * 2011-09-23 2012-01-04 中国科学院微电子研究所 一种掺氮氧化锌薄膜的制备方法
CN102676975A (zh) * 2011-12-22 2012-09-19 河南科技大学 一种纳米氧化锌薄膜及氧化锌/氧化铜半导体材料的制备方法
CN103074627A (zh) * 2013-01-17 2013-05-01 中国科学院微电子研究所 基于置换反应-热氧化方法制备复合半导体敏感膜的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235903A (zh) * 2020-09-09 2022-03-25 中国科学院苏州纳米技术与纳米仿生研究所 一种气体传感器及其制作方法

Also Published As

Publication number Publication date
US20150325437A1 (en) 2015-11-12

Similar Documents

Publication Publication Date Title
Van Hieu Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures
Tharsika et al. Highly sensitive and selective ethanol sensor based on ZnO nanorod on SnO2 thin film fabricated by spray pyrolysis
Choi et al. Synthesis and gas sensing performance of ZnO–SnO2 nanofiber–nanowire stem-branch heterostructure
Choi et al. Bimetallic Pd/Pt nanoparticle-functionalized SnO2 nanowires for fast response and recovery to NO2
Zeng et al. Hydrothermal synthesis of hierarchical flower-like SnO2 nanostructures with enhanced ethanol gas sensing properties
CN105021655B (zh) ZnO纳米墙/RGO异质结气敏传感器及其制备方法
Rama et al. Synthesis and humidity sensing investigations of nanostructured ZnSnO 3
WO2015030528A1 (ko) 가스센서 및 그 제조방법
Lamba et al. Sb2O3–ZnO nanospindles: A potential material for photocatalytic and sensing applications
Hossein-Babaei et al. Growth of ZnO nanorods on the surface and edges of a multilayer graphene sheet
Mani et al. Selective recognition of hydrogen sulfide using template and catalyst free grown ZnO nanorods
CN110589875B (zh) 基于单层有序氧化锡纳米碗支化氧化锌纳米线结构的气敏纳米材料、制备工艺及其应用
Rahman et al. Fabrication of phenyl-hydrazine chemical sensor based on Al-doped ZnO nanoparticles
Wei et al. Hydrothermal synthesis porous silicon/tungsten oxide nanorods composites and their gas-sensing properties to NO2 at room temperature
JP2015212213A (ja) グラフェンシートとの一体化ZnOナノロッド、およびグラフェンシート上へのZnOナノロッドの製造方法
Elhag et al. Habit-modifying additives and their morphological consequences on photoluminescence and glucose sensing properties of ZnO nanostructures, grown via aqueous chemical synthesis
Zhao et al. Interfacial self-assembly of monolayer Mg-doped NiO honeycomb structured thin film with enhanced performance for gas sensing
Hsueh et al. A flexible ZnO nanowire-based humidity sensor
Cho et al. NO2 gas sensing properties of amorphous InGaZnO4 submicron-tubes prepared by polymeric fiber templating route
Su et al. A substrate-independent fabrication of hollow sphere arrays via template-assisted hydrothermal approach and their application in gas sensing
CN102442787B (zh) 一种纳米气敏薄膜及其制备方法
WO2014110752A1 (zh) 基于置换反应-热氧化方法制备复合半导体敏感膜的方法
Hu et al. Fabrication of Zn (OH) 2/ZnO Nanosheet‐ZnO Nanoarray Hybrid Structured Films by a Dissolution–Recrystallization Route
KR20120010388A (ko) 표면에 나노 세공을 갖는 산화아연 나노로드의 제조방법 및 이에 의하여 제조된 표면에 나노 세공을 갖는 산화아연 나노로드
KR20200066461A (ko) 광활성 가스센서 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872137

Country of ref document: EP

Kind code of ref document: A1