WO2011021260A1 - パイプライン型ad変換器およびその出力補正方法 - Google Patents
パイプライン型ad変換器およびその出力補正方法 Download PDFInfo
- Publication number
- WO2011021260A1 WO2011021260A1 PCT/JP2009/006024 JP2009006024W WO2011021260A1 WO 2011021260 A1 WO2011021260 A1 WO 2011021260A1 JP 2009006024 W JP2009006024 W JP 2009006024W WO 2011021260 A1 WO2011021260 A1 WO 2011021260A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- target stage
- conversion
- output
- voltage
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/10—Calibration or testing
- H03M1/1009—Calibration
- H03M1/1033—Calibration over the full range of the converter, e.g. for correcting differential non-linearity
- H03M1/1057—Calibration over the full range of the converter, e.g. for correcting differential non-linearity by trimming, i.e. by individually adjusting at least part of the quantisation value generators or stages to their nominal values
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/06—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M1/0617—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
- H03M1/0675—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
- H03M1/069—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps
- H03M1/0695—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps using less than the maximum number of output states per stage or step, e.g. 1.5 per stage or less than 1.5 bit per stage type
Definitions
- the present invention relates to a pipeline type AD converter, and more particularly to digital correction of the pipeline type AD converter output.
- AD converters that convert analog signals to digital signals are often used.
- a pipeline AD converter is configured by cascading a plurality of AD conversion stages.
- Each AD conversion stage outputs a 1-bit or several-bit digital value from the magnitude comparison result between the input voltage and one or a plurality of reference voltages, and a residual voltage obtained by subtracting a voltage corresponding to the digital value from the input voltage Is amplified and output.
- multi-bit AD conversion is realized by shifting and adding the bit positions of the digital values output from each AD conversion stage.
- two pipeline AD converters are operated in parallel to perform double sampling (for example, see Non-Patent Document 1), or an operational amplifier for residual voltage amplification is used alternately between two AD conversion stages.
- an operational amplifier for residual voltage amplification is used alternately between two AD conversion stages.
- the timing for resetting the residual charge at the input node of the operational amplifier can be secured every clock, whereas in the amplifier sharing configuration such as the above-described double sampling or the alternate use of the operational amplifier, multiple AD conversion stages are used. Since the operational amplifier is shared, such timing cannot be secured. For this reason, a memory effect error resulting from the memory effect of the shared operational amplifier occurs. In particular, when the gain of the shared operational amplifier is small, the influence of the memory effect becomes large.
- the two operational amplifiers are shared by the two AD conversion stages, and the residual charge at the input node of the two operational amplifiers is canceled in the analog domain by switching the inverting input and non-inverting input of one operational amplifier every clock. (For example, refer to Patent Document 4).
- an analog value 0 is input to each AD conversion stage as the median value of the analog input range, and an error from the median value is used as an offset correction value.
- the input of the analog value 0 is a step additionally required for offset error correction. For this reason, in the conventional offset error correction, a circuit configuration for generating the analog value 0 is required, and the correction time is increased by adding a new step.
- the memory effect error cannot be corrected by simply applying the conventional digital domain correction.
- What can be corrected by the conventional digital domain correction is an AD conversion error due to insufficient gain of the operational amplifier, manufacturing variation of the capacitive element, and variation of the reference voltage, that is, static AD conversion error independent of data.
- a memory effect error that is, an AD conversion error depending on data
- an object of the present invention is to correct an AD conversion error in the digital domain for both types of pipelined AD converters of a single sampling configuration and an amplifier share configuration.
- the present invention has taken the following measures. That is, as a pipeline type AD converter, a digital value is output in a redundant binary representation according to the magnitude relationship between the input voltage and the two high and low reference voltages, and a voltage corresponding to the digital output from the input voltage.
- a high-level reference voltage is input to the target stage.
- the digital output of the target stage is set to 0 in the state where the AD conversion error EA after the next stage of the target stage when the digital output of the target stage is set to 0 and +1, and the lower reference voltage is input to the target stage.
- the AD conversion error EB after the next stage of the target stage when it is set to ⁇ 1 and when it is set to ⁇ 1 are respectively calculated, and the digital output of the target stage is A digital correction circuit for adding-(EA + EB) / 2 for 1;-(EA-EB) / 2 for 0; + (EA + EB) / 2 for +1; It shall be provided.
- the non-linear error and offset error of the AD conversion stage can be corrected in the digital domain.
- a digital value is output in a redundant binary representation according to the magnitude relationship between the input voltage and the two high and low reference voltages, and a voltage corresponding to the digital output from the input voltage.
- a common operational amplifier is alternately arranged between a plurality of cascaded AD conversion stages that output a voltage that has been subtracted and doubled, and any one of the plurality of AD conversion stages.
- the digital output of the target stage is changed from +1 to 0 with the subsequent AD conversion error EA and a high reference voltage being input to the target stage.
- AD conversion error EA ′ after the next stage of the target stage when the time is changed from 0 to +1 is calculated, and (EA ⁇ EA ′) / (EA + EA ′) is output one clock before the next stage of the target stage. ) Is subtracted as a correction value for the target stage.
- the memory effect error of the AD conversion stage in the pipeline type AD converter with the amplifier share configuration can be corrected in the digital domain.
- the digital correction circuit sets the digital output of the target stage to 0 in a state where a low-level reference voltage is input to the target stage, and sets to ⁇ 1 when two clocks or more have elapsed.
- the nonlinear error and offset error of the AD conversion stage in the pipeline type AD converter with the amplifier share configuration can be corrected in the digital domain.
- the nonlinear error and the offset error can be corrected in the digital domain for both types of pipelined AD converters of the single sampling configuration and the amplifier share configuration. Furthermore, the memory effect error can be corrected in the digital domain for a pipelined AD converter with an amplifier share configuration. Thereby, a highly accurate pipelined AD converter can be realized using a small area or low power analog circuit.
- FIG. 1 is a configuration diagram of a pipelined AD converter according to the first embodiment.
- FIG. 2 is a graph showing the analog input / output characteristics of the AD conversion stage.
- FIG. 3 is a graph showing AD conversion characteristics before and after linearity correction of the AD conversion stage.
- FIG. 4 is a graph showing the AD conversion characteristics of the AD conversion stage when an error occurs in the reference voltage.
- FIG. 5 is a configuration diagram of a part of a pipelined AD converter that employs an amplifier share configuration according to the second embodiment.
- FIG. 6 is a graph showing a change pattern of the output voltage of the AD conversion stage according to the amplifier share configuration.
- FIG. 7 is a graph showing a change pattern of the output voltage of the AD conversion stage according to the amplifier share configuration.
- FIG. 8 is a graph showing a change pattern of the output voltage of the AD conversion stage according to the amplifier share configuration.
- FIG. 1 shows the configuration of a pipelined AD converter according to the first embodiment.
- the pipeline type AD converter according to this embodiment includes a plurality of cascade-connected AD conversion stages 10 and 20 and a digital correction circuit 30. Note that the AD conversion stage 10 may be referred to by adding a subscript to the reference in order to specify an individual one.
- the AD conversion stage 10 is a 1.5-bit redundant AD converter.
- the analog input range of the AD conversion stage 10 is from ⁇ Vref to + Vref.
- the comparators 11 and 12 compare the stage input voltages with + Vref / 4 and ⁇ Vref / 4, respectively.
- the encoder 13 changes a 2-bit value (eg, “00”) representing ⁇ 1 from ⁇ Vref / 4 to + Vref if the stage input voltage is smaller than ⁇ Vref / 4. If it is within the range up to / 4, a 2-bit value (for example, “01”) representing 0 is output, and if it is greater than + Vref / 4, a 2-bit value (for example, “10”) representing +1 is output.
- the DA converter 14 outputs a voltage corresponding to the input digital value. Specifically, the DA converter 14 receives -Vref when a 2-bit value representing -1 is inputted, 0 when a 2-bit value representing 0 is inputted, and a 2-bit value representing +1. + Vref is output respectively.
- the switch circuit 15 inputs one of the output signal of the encoder 13 and the DAC control signal from the digital correction circuit 30 to the DA converter 14.
- the switch circuit 16 outputs any one of the stage input voltage, + Vref / 4, and ⁇ Vref / 4.
- the difference circuit 17 generates a difference voltage between the output voltage of the switch circuit 16 and the output voltage of the DA converter 14.
- the amplifier circuit 18 amplifies the differential voltage twice. That is, the AD conversion stage 10 digitally outputs a value expressed in redundant binary according to the magnitude relationship between the stage input voltage and the two higher and lower reference voltages, and the voltage corresponding to the digital output from the stage input voltage. Is subtracted and the voltage doubled is output.
- the AD conversion stage 20 connected to the subsequent stage of the AD conversion stage 10 includes one or a plurality of AD conversion stages connected in cascade.
- the AD conversion stage constituting the AD conversion stage 20 may have the same configuration as the AD conversion stage 10 or another configuration.
- the digital correction circuit 30 calculates the correction value for correcting the analog input / output characteristic error of the AD conversion stage 10 by appropriately controlling the switch circuits 15 and 16 in the AD conversion stage 10. Then, the digital correction circuit 30 receives the digital outputs of the AD conversion stages 10 and 20, adds these bit positions while shifting, and further adds or subtracts the correction value to obtain the AD conversion value of the pipeline type AD converter. Generate.
- FIG. 2 shows analog input / output characteristics of the AD conversion stage 10.
- the horizontal axis represents the stage input voltage Vin
- the vertical axis represents the stage output voltage Vout.
- a transfer function when each element constituting the AD conversion stage 10 is in an ideal state is represented by the following expression 1, and has an analog input / output characteristic indicated by a broken line in FIG.
- the analog input / output characteristics of the AD conversion stage 10 are as shown by the solid line in FIG. 2 due to the error of each element. For this reason, an error occurs in the analog input / output characteristics of the AD conversion stage 10, and the error appears as an AD conversion error of the pipeline AD converter. That is, the input / output characteristics of the pipeline AD converter are nonlinear.
- a correction value for correcting the analog input / output characteristic error of the AD conversion stage 10 is obtained.
- the correction value can be calculated by acquiring digital values at points A1, A2, B1, and B2 in FIG.
- the digital correction circuit 30 selects the DAC control signal output from the digital correction circuit 30 for the switch circuit 15 in the AD conversion stage 10 (hereinafter referred to as the target stage) to be corrected.
- the target stage To control the switch circuit 16 to select + Vref / 4.
- the A1 point digital value DA1 is obtained from the AD conversion value after the next stage when the DAC control signal representing 0 is input, and the AD conversion after the next stage when the DAC control signal representing +1 is input.
- a digital value DA2 of A2 points is obtained from the value. Further, the digital correction circuit 30 controls the switch circuit 15 in the target stage to select the DAC control signal output from the digital correction circuit 30 and selects ⁇ Vref / 4 for the switch circuit 16. To control. In this state, the digital value DB1 at the point B1 is obtained from the AD conversion value after the next stage when the DAC control signal representing ⁇ 1 is input, and the AD after the next stage when the DAC control signal representing 0 is input. A digital value DB2 of point B2 is obtained from the converted value.
- the correction value when the digital output of the target stage is ⁇ 1 is ⁇ (EA + EB) / 2, and the correction value when 0 is ⁇ (EA ⁇ EB) / 2.
- the correction value when +1 is + (EA + EB) / 2.
- the digital correction circuit 30 stores either Dc ( ⁇ 1) or Dc (+1) for each AD conversion stage 10. Just keep it.
- the digital correction circuit 30 may store the AD conversion errors EA and EB, and calculate the correction value of Expression 3 whenever necessary.
- the correction value for the target stage is calculated based on the AD conversion error in the subsequent stage, it is necessary to calculate the correction value for the AD conversion stage 10 in order from the subsequent stage to the previous stage. In other words, must have correct at least analog output characteristic error of the AD conversion stage 10 2 when calculating the correction value of the AD conversion stage 10 1, when calculating the correction value of the AD conversion stage 10 2 It is necessary to correct the analog input / output characteristic error of the AD conversion stage 20 in advance. However, if the error on the LSB side can be ignored in the AD conversion value of the pipeline type AD converter, the error correction of the subsequent AD conversion stage (for example, the AD conversion stage 20) may be omitted.
- the correction value is applied with the AD conversion stage 10 in the normal operation mode.
- the digital correction circuit 30 controls the switch circuit 15 in the AD conversion stage 10 to select the output of the encoder 13 and controls the switch circuit 16 to select the stage input voltage.
- the AD conversion stage 10 is set to the normal operation mode.
- the AD conversion value Q (Vin) after correction with respect to the input voltage Vin of the pipeline type AD converter according to the present embodiment is expressed by the following equation 4.
- D 1 (0) and D 2 (0) are AD conversion ideal values when the digital outputs of the AD conversion stages 10 1 and 10 2 are 0, respectively, and D 1 and D 2 are AD conversion stages 10 1 , respectively.
- 10 2 , D 1 c (D 1 ) and D 2 c (D 2) are correction values of AD conversion stages 10 1 and 10 2 (see Equation 3), respectively, and D 3 is AD conversion of AD conversion stage 20 Value.
- D m (0) 2 nm
- D 2 (0) 2 n-2 It becomes.
- FIG. 3 shows the AD conversion characteristics before and after the linearity correction of the AD conversion stage 10.
- the horizontal axis represents the stage input voltage Vin
- the vertical axis represents the AD conversion value Q (Vin).
- Vin ⁇ Vref / 4
- the offset error as seen from the conversion characteristics at ⁇ Vref / 4 ⁇ Vin ⁇ + Vref / 4.
- the nonlinear error and the offset error of the AD conversion stage 10 are corrected at a time by applying the correction value of Expression 3.
- FIG. 4 shows the AD conversion characteristics of the AD conversion stage 10 when an error occurs in the reference voltage.
- the horizontal axis represents the stage input voltage Vin
- the vertical axis represents the AD conversion value Q (Vin).
- the analog input range is narrowed because the median value of the input voltage of the AD conversion stage is corrected to the absolute analog value 0.
- the pipeline type AD converter since the correction is performed so that the median value of the analog input range of the AD conversion stage 10 matches the median value of the digital output range, a wide analog input range is ensured. be able to.
- the AD conversion error of the pipeline AD converter caused by the error of the component of the AD conversion stage and the error of the reference voltage can be corrected in the digital domain.
- an additional circuit configuration and steps for inputting the analog value 0 are unnecessary, and a wide analog input range can be secured even if an error occurs in the reference voltage.
- connection stages of the AD conversion stage 10 is not limited to two. Further, by connecting many AD conversion stages 10 in cascade, the AD conversion bit width of the pipeline type AD converter can be increased.
- FIG. 5 shows a partial configuration of a pipelined AD converter that employs an amplifier share configuration according to the second embodiment.
- the AD conversion stage 100 has substantially the same configuration as the AD conversion stage 10 of FIG. A portion including the operational amplifier 191, the capacitive elements 192 and 193, and the switch circuits 194 to 197 corresponds to the difference circuit 17 and the amplifier circuit 18 in the AD conversion stage 10 of FIG. Other components are the same as those of the AD conversion stage 10 in FIG.
- the pipeline type AD converter according to the present embodiment includes a subsequent AD conversion stage, a digital correction circuit, and the like that are cascade-connected to the AD conversion stage 100, although not shown.
- the AD conversion stage 100 is controlled by two clock signals ⁇ 1 and ⁇ 2 that are mutually exclusive. For example, the charge in the AD conversion stage 100 2, when ⁇ 1 phase clock signal ⁇ 1 is activated, closing the switch circuits 194 and 195, when the switch circuits 196 and 197 are opened, the capacitor 192 and 193 in the stage input voltage (Hereinafter referred to as sampling operation). On the other hand, when the clock signal ⁇ 2 is active in the ⁇ 2 phase, the switch circuits 194 and 195 are opened and the switch circuits 196 and 197 are closed, so that the output voltage of the DA converter 14 is subtracted from the sampled stage input voltage. The differential voltage is amplified by a factor of 2 and output (hereinafter referred to as an operation operation).
- AD conversion stage 100 1 operates in the opposite phase to the AD conversion stage 100 2. That is, the AD conversion stage 100 1 when AD conversion stages 100 2 is the sampling operation by the arithmetic operation, the AD conversion stage 100 1 is sampling operation when the AD conversion stages 100 2 is an arithmetic operation To do.
- AD conversion stage 100 operational amplifier 191 may be only operates during computation operation, it can be used by connecting alternately to each phase to share the operational amplifier 191 in the AD conversion stage 100 1 and 100 2. By sharing the operational amplifier 191, AD conversion stage 100 1 and 100 2 are substantially cascaded.
- FIG. 5 does not show a switch circuit for switching the connection of the operational amplifier 191.
- the residual charge of the parasitic capacitance 199 can be reset during the sampling operation, so that no memory effect error occurs.
- the pipeline type AD converter having the amplifier share configuration as in the present embodiment since the other AD conversion stage 100 performs the arithmetic operation during the sampling operation of one AD conversion stage 100, the residual charge of the parasitic capacitance 199 is retained. Is difficult to reset. For this reason, a memory effect error occurs in which the residual charge of the parasitic capacitance 199 is added to the calculation operation of the next phase. Therefore, in the pipeline type AD converter according to the present embodiment, the memory effect error is corrected in the digital domain as follows.
- the transfer function of the AD conversion stage 100 is expressed by the following equation 5.
- A is the gain of the operational amplifier 191
- Cs and Cf are the capacitances of the capacitive elements 192 and 193
- Cp is the capacitance of the parasitic capacitance 199
- Voutx is the Vout value one phase before, that is, one clock before. .
- a correction value for correcting the analog input / output characteristic error of the AD conversion stage 100 is obtained.
- the correction value can be calculated by acquiring the digital values at points A1 and A2 in FIG.
- the digital correction circuit (not shown) controls the switch circuit 15 in the target stage to select the DAC control signal output from the digital correction circuit, and selects + Vref / 4 for the switch circuit 16. Control to do.
- the digital values DA1 and DA2 at the points A1 and A2 are obtained from the AD conversion values after the next stage when the DAC control signals representing 0 and +1 are input to the DA converter 14 respectively.
- ⁇ is also expressed as a digital value. This makes it possible to correct memory effect errors in the digital domain.
- the value represented by the DAC control signal may be switched every two clocks.
- the output voltage of the AD conversion stage 100 changes in the pattern shown in FIG. Therefore, by switching the value represented by the DAC control signal, the digital value DA1 or DA2 is obtained at the first clock, and the digital value DA1 'or DA2' is obtained at the second clock.
- the memory effect correction coefficient ⁇ may be calculated from the points B1 and B2 in FIG. Although proof is omitted, as a result, ⁇ becomes the same value as obtained from the points A1 and A2.
- Equation 3 the correction value of Equation 3 is corrected as shown in Equation 10 below.
- Equation 11 The right side of Equation 11 is obtained from the conversion result of the subsequent AD conversion stage except ⁇ . Therefore, highly accurate AD conversion characteristics can be realized by performing correction based on Expression 11. Since ⁇ is approximately 1, no correction is required. If it is corrected, it is better to perform full range correction in the digital domain.
- the correction value is applied with the AD conversion stage 100 in the normal operation mode.
- the AD conversion value Q (Vin) after correction with respect to the input voltage Vin of the pipeline type AD converter according to the present embodiment is expressed by the following expression 12.
- D 1 (0) and D 2 (0) are AD conversion ideal values when the digital outputs of the AD conversion stages 100 1 and 100 2 are 0, and D 1 and D 2 are AD conversion stages 100 1 , respectively.
- D 1 c (D1) and D 2 c (D2) are the correction values of AD conversion stages 100 1 and 100 2 (see Equation 10), respectively, and ⁇ 1 and ⁇ 2 are respectively.
- the memory effect correction coefficients of the AD conversion stages 100 1 and 100 2 , D 1 x and D 2 x are AD conversion values one clock before the AD conversion stages 100 1 and 100 2 , respectively, and D 3 is the AD conversion of the subsequent stage This is the AD conversion value of the stage.
- the memory effect error in the pipeline type AD converter having the amplifier share configuration can be corrected in the digital domain. Furthermore, non-linear errors and offset errors can be corrected at once.
- the memory effect correction coefficient ⁇ is calculated by the above method, and the memory effect error, nonlinear error, and offset error are calculated. Corrections can be made in the digital domain.
- the pipeline type AD converter according to the present invention is useful for a video signal processing apparatus, a radio apparatus, and the like because it can perform high precision AD conversion while using a small area or low power analog circuit.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Analogue/Digital Conversion (AREA)
Abstract
Description
図1は、第1の実施形態に係るパイプライン型AD変換器の構成を示す。本実施形態に係るパイプライン型AD変換器は、縦続接続された複数のAD変換ステージ10および20と、デジタル補正回路30とから構成される。なお、AD変換ステージ10については個別のものを特定するために符号に添字を付けて参照することがある。
図2は、AD変換ステージ10のアナログ入出力特性を示す。横軸はステージ入力電圧Vin、縦軸はステージ出力電圧Voutを表す。AD変換ステージ10を構成する各要素が理想状態であるときの伝達関数は次式1で表され、図2中の破線で示したアナログ入出力特性となる。
補正値の適用はAD変換ステージ10を通常動作モードにして行う。具体的には、デジタル補正回路30は、AD変換ステージ10におけるスイッチ回路15に対してエンコーダ13の出力を選択するように制御するとともにスイッチ回路16に対してステージ入力電圧を選択するように制御して、AD変換ステージ10を通常動作モードにする。補正値を適用すると、本実施形態に係るパイプライン型AD変換器の入力電圧Vinに対する補正後のAD変換値Q(Vin)は次式4で表される。ただし、D1(0)およびD2(0)は、それぞれ、AD変換ステージ101および102のデジタル出力が0のときのAD変換理想値、D1およびD2は、それぞれ、AD変換ステージ101および102のデジタル出力、D1c(D1)およびD2c(D2)は、それぞれ、AD変換ステージ101および102の補正値(式3参照)、D3はAD変換ステージ20のAD変換値である。
Dm(0)=2n-m
で与えられる。これに従うと、D1(0)およびD2(0)は、
D1(0)=2n-1
D2(0)=2n-2
となる。
図5は、第2の実施形態に係るアンプシェア構成を採用したパイプライン型AD変換器の一部分の構成を示す。AD変換ステージ100は、図1のAD変換ステージ10とほぼ同様の構成となっている。オペアンプ191、容量素子192および193、およびスイッチ回路194~197からなる部分が図1のAD変換ステージ10における差分回路17および増幅回路18に相当する。その他の構成要素については図1のAD変換ステージ10と同じである。なお、本実施形態に係るパイプライン型AD変換器は、図示していないが、AD変換ステージ100に縦続接続された後段のAD変換ステージやデジタル補正回路などを備えている。
AD変換ステージ100の伝達関数は次式5で表される。ただし、Aはオペアンプ191のゲイン、CsおよびCfはそれぞれ容量素子192および193の静電容量、Cpは寄生容量199の静電容量、Voutxは1フェーズ前、すなわち、1クロック前のVout値である。
式5をVinについて解くと次式11が得られる。
102 AD変換ステージ
1001 AD変換ステージ
1002 AD変換ステージ
30 デジタル補正回路
Claims (8)
- 入力電圧と高位および低位の二つの参照電圧との大小関係に応じて冗長2進表現された値をデジタル出力するとともに前記入力電圧から前記デジタル出力に対応した電圧を減算して2倍にした電圧を出力する複数の縦続接続されたAD変換ステージと、
前記複数のAD変換ステージのいずれか一つであって他のAD変換ステージとの間で共通のオペアンプを交互に使用する対象ステージについて、前記対象ステージに前記高位の参照電圧を入力した状態で前記対象ステージのデジタル出力を0にして2クロック以上経過したときと+1にして2クロック以上経過したときとの前記対象ステージの次段以降のAD変換誤差EA、および前記対象ステージに前記高位の参照電圧を入力した状態で前記対象ステージのデジタル出力を+1から0にしたときと0から+1にしたときとの前記対象ステージの次段以降のAD変換誤差EA’をそれぞれ算出し、前記対象ステージの次段以降の1クロック前の出力に(EA-EA’)/(EA+EA’)を乗じた値を、前記対象ステージの補正値として減算するデジタル補正回路とを備えている
ことを特徴とするパイプライン型AD変換器。 - 請求項1のパイプライン型AD変換器において、
前記デジタル補正回路は、前記対象ステージに前記低位の参照電圧を入力した状態で前記対象ステージのデジタル出力を0にして2クロック以上経過したときと-1にして2クロック以上経過したときとの前記対象ステージの次段以降のAD変換誤差EBを算出し、γ=(EA-EA’)/(EA+EA’)として、前記対象ステージのデジタル出力が-1のときには-(EA+EB)(1-γ)/2を、0のときには-(EA-EB)(1-γ)/2を、+1のときには+(EA+EB)(1-γ)/2を、それぞれ、前記対象ステージの補正値として加算する
ことを特徴とするパイプライン型AD変換器。 - 請求項1のパイプライン型AD変換器において、
前記デジタル補正回路は、前記対象ステージのデジタル出力を1クロックごとに切り替えて前記AD変換誤差EA’を算出する
ことを特徴とするパイプライン型AD変換器。 - 入力電圧と高位および低位の二つの参照電圧との大小関係に応じて冗長2進表現された値をデジタル出力するとともに前記入力電圧から前記デジタル出力に対応した電圧を減算して2倍にした電圧を出力する複数の縦続接続されたAD変換ステージと、
前記複数のAD変換ステージのいずれか一つである対象ステージについて、前記対象ステージに前記高位の参照電圧を入力した状態で前記対象ステージのデジタル出力を0にしたときと+1にしたときとの前記対象ステージの次段以降のAD変換誤差EA、および前記対象ステージに前記低位の参照電圧を入力した状態で前記対象ステージのデジタル出力を0にしたときと-1にしたときとの前記対象ステージの次段以降のAD変換誤差EBをそれぞれ算出し、前記対象ステージのデジタル出力が-1のときには-(EA+EB)/2を、0のときには-(EA-EB)/2を、+1のときには+(EA+EB)/2を、それぞれ、前記対象ステージの補正値として加算するデジタル補正回路とを備えている
ことを特徴とするパイプライン型AD変換器。 - 入力電圧と高位および低位の二つの参照電圧との大小関係に応じて冗長2進表現された値をデジタル出力するとともに前記入力電圧から前記デジタル出力に対応した電圧を減算して2倍にした電圧を出力する複数のAD変換ステージが縦続接続されてなるパイプライン型AD変換器の出力補正方法であって、
前記複数のAD変換ステージのうち他のAD変換ステージとの間で共通のオペアンプを交互に使用するいずれか一つである対象ステージについて、前記対象ステージに前記高位の参照電圧を入力した状態で前記対象ステージのデジタル出力を0にして2クロック以上経過したときと+1にして2クロック以上経過したときとの前記対象ステージの次段以降のAD変換誤差EAを算出するステップと、
前記対象ステージに前記高位の参照電圧を入力した状態で前記対象ステージのデジタル出力を+1から0にしたときと0から+1にしたときとの前記対象ステージの次段以降のAD変換誤差EA’を算出するステップと、
前記対象ステージの次段以降の1クロック前の出力に(EA-EA’)/(EA+EA’)を乗じた値を、前記対象ステージの補正値として減算するステップとを備えている
ことを特徴とするパイプライン型AD変換器の出力補正方法。 - 請求項5のパイプライン型AD変換器の出力補正方法において、
前記対象ステージに前記低位の参照電圧を入力した状態で前記対象ステージのデジタル出力を0にして2クロック以上経過したときと-1にして2クロック以上経過したときとの前記対象ステージの次段以降のAD変換誤差EBを算出するステップと、
γ=(EA-EA’)/(EA+EA’)として、前記対象ステージのデジタル出力が-1のときには-(EA+EB)(1-γ)/2を、0のときには-(EA-EB)(1-γ)/2を、+1のときには+(EA+EB)(1-γ)/2を、それぞれ、前記対象ステージの補正値として加算するステップとを備えている
ことを特徴とするパイプライン型AD変換器の出力補正方法。 - 請求項5のパイプライン型AD変換器の出力補正方法において、
前記AD変換誤差EA’を算出するステップでは、前記対象ステージのデジタル出力を1クロックごとに切り替えて前記AD変換誤差EA’を算出する
ことを特徴とするパイプライン型AD変換器の出力補正方法。 - 入力電圧と高位および低位の二つの参照電圧との大小関係に応じて冗長2進表現された値をデジタル出力するとともに前記入力電圧から前記デジタル出力に対応した電圧を減算して2倍にした電圧を出力する複数のAD変換ステージが縦続接続されてなるパイプライン型AD変換器の出力補正方法であって、
前記複数のAD変換ステージのいずれか一つである対象ステージについて、前記対象ステージに前記高位の参照電圧を入力した状態で前記対象ステージのデジタル出力を0にしたときと+1にしたときとの前記対象ステージの次段以降のAD変換誤差EAを算出するステップと、
前記対象ステージに前記低位の参照電圧を入力した状態で前記対象ステージのデジタル出力を0にしたときと-1にしたときとの前記対象ステージの次段以降のAD変換誤差EBを算出するステップと、
前記対象ステージのデジタル出力が-1のときには-(EA+EB)/2を、0のときには-(EA-EB)/2を、+1のときには+(EA+EB)/2を、それぞれ、前記対象ステージの補正値として加算するステップとを備えている
ことを特徴とするパイプライン型AD変換器の出力補正方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011527497A JPWO2011021260A1 (ja) | 2009-08-18 | 2009-11-11 | パイプライン型ad変換器およびその出力補正方法 |
CN2009801609669A CN102474264A (zh) | 2009-08-18 | 2009-11-11 | 流水线型ad变换器及其输出校正方法 |
US13/351,933 US20120112939A1 (en) | 2009-08-18 | 2012-01-17 | Pipeline ad converter and method of correcting output from the converter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-189366 | 2009-08-18 | ||
JP2009189366 | 2009-08-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/351,933 Continuation US20120112939A1 (en) | 2009-08-18 | 2012-01-17 | Pipeline ad converter and method of correcting output from the converter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011021260A1 true WO2011021260A1 (ja) | 2011-02-24 |
Family
ID=43606726
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/006024 WO2011021260A1 (ja) | 2009-08-18 | 2009-11-11 | パイプライン型ad変換器およびその出力補正方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120112939A1 (ja) |
JP (1) | JPWO2011021260A1 (ja) |
CN (1) | CN102474264A (ja) |
WO (1) | WO2011021260A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013021599A (ja) * | 2011-07-13 | 2013-01-31 | Renesas Electronics Corp | データ処理システム |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5554644B2 (ja) * | 2010-06-29 | 2014-07-23 | パナソニック株式会社 | 固体撮像装置 |
CN104467840B (zh) * | 2013-09-17 | 2017-09-29 | 上海信朴臻微电子有限公司 | 用于校正模数转换器中级间放大器非线性的系统及方法 |
US9136856B1 (en) * | 2014-02-26 | 2015-09-15 | Texas Instruments Incorporated | Background DAC calibration for pipeline ADC |
CN110336561B (zh) * | 2019-07-05 | 2021-02-05 | 中国电子科技集团公司第二十四研究所 | 一种流水线型模数转换器及其输出校正方法 |
US10972113B1 (en) * | 2019-12-31 | 2021-04-06 | Semiconductor Components Industries, Llc | Systems with ADC circuitry and associated methods |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005318582A (ja) * | 2004-04-30 | 2005-11-10 | Realtek Semiconductor Corp | パイプラインadc較正方法およびその装置 |
JP2006109403A (ja) * | 2004-09-07 | 2006-04-20 | Sharp Corp | デジタル補正アナログ/デジタル変換器 |
JP2008118473A (ja) * | 2006-11-06 | 2008-05-22 | Sharp Corp | デジタル回路、並びにそれを備えたアナログ/デジタル変換回路 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100500440B1 (ko) * | 2002-10-15 | 2005-07-12 | 삼성전자주식회사 | 파이프라인 구조를 갖는 다단 a/d 컨버터 및 그것을설계하기 위한 코딩 방법 |
US7148833B1 (en) * | 2005-08-26 | 2006-12-12 | Micron Technology, Inc. | Sharing operational amplifier between two stages of pipelined ADC and/or two channels of signal processing circuitry |
CN101499801B (zh) * | 2008-01-31 | 2011-09-14 | 凯迈(洛阳)测控有限公司 | 一种a/d转换电路及其转换方法 |
-
2009
- 2009-11-11 JP JP2011527497A patent/JPWO2011021260A1/ja not_active Withdrawn
- 2009-11-11 WO PCT/JP2009/006024 patent/WO2011021260A1/ja active Application Filing
- 2009-11-11 CN CN2009801609669A patent/CN102474264A/zh active Pending
-
2012
- 2012-01-17 US US13/351,933 patent/US20120112939A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005318582A (ja) * | 2004-04-30 | 2005-11-10 | Realtek Semiconductor Corp | パイプラインadc較正方法およびその装置 |
JP2006109403A (ja) * | 2004-09-07 | 2006-04-20 | Sharp Corp | デジタル補正アナログ/デジタル変換器 |
JP2008118473A (ja) * | 2006-11-06 | 2008-05-22 | Sharp Corp | デジタル回路、並びにそれを備えたアナログ/デジタル変換回路 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013021599A (ja) * | 2011-07-13 | 2013-01-31 | Renesas Electronics Corp | データ処理システム |
Also Published As
Publication number | Publication date |
---|---|
US20120112939A1 (en) | 2012-05-10 |
CN102474264A (zh) | 2012-05-23 |
JPWO2011021260A1 (ja) | 2013-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112019217B (zh) | 流水线型逐次逼近模数转换器及转换方法 | |
US7911370B2 (en) | Pipeline analog-to-digital converter with programmable gain function | |
US7224306B2 (en) | Analog-to-digital converter in which settling time of amplifier circuit is reduced | |
WO2011021260A1 (ja) | パイプライン型ad変換器およびその出力補正方法 | |
JP2009239703A (ja) | パイプライン型a/d変換器 | |
WO2006041085A1 (ja) | サンプルホールド回路およびそれを用いたパイプラインad変換器 | |
JPH11274927A (ja) | パイプライン接続a/d変換器のためのデジタル自己較正方式 | |
JPH06120827A (ja) | A/d変換器 | |
JP5811153B2 (ja) | A/d変換装置 | |
JPH08321777A (ja) | パイプライン型a/dコンバータ | |
KR101644999B1 (ko) | 시간 영역 다단 인터폴레이션 기법을 이용한 저전력 아날로그 디지털 변환기 | |
JP2011228778A (ja) | A/d変換器および信号処理回路 | |
WO2011104761A1 (ja) | パイプライン型a/dコンバータおよびa/d変換方法 | |
JP2003158434A (ja) | 擬似差動増幅回路及び擬似差動増幅回路を使用したa/d変換器 | |
KR100294787B1 (ko) | 개방루프차동증폭기를갖는서브레인지아날로그/디지털컨버터 | |
Lee et al. | Interstage gain proration technique for digital-domain multi-step ADC calibration | |
EP1398880A2 (en) | Analog-digital conversion circuit | |
JP5094916B2 (ja) | パイプライン・ad変換回路 | |
JP4483473B2 (ja) | パイプライン型アナログ/ディジタル変換器 | |
JP4961159B2 (ja) | 増幅回路及びその応用回路 | |
Larsson et al. | A background calibration scheme for pipelined ADCs including non-linear operational amplifier gain and reference error correction | |
JP5565903B2 (ja) | スイッチドキャパシタ利得段 | |
JP2008182333A (ja) | 自己補正型アナログデジタル変換器 | |
JP4121969B2 (ja) | アナログデジタル変換器 | |
JP3851305B2 (ja) | アナログ−デジタル変換回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980160966.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09848460 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011527497 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09848460 Country of ref document: EP Kind code of ref document: A1 |