WO2011018883A1 - ガラス基板 - Google Patents

ガラス基板 Download PDF

Info

Publication number
WO2011018883A1
WO2011018883A1 PCT/JP2010/004810 JP2010004810W WO2011018883A1 WO 2011018883 A1 WO2011018883 A1 WO 2011018883A1 JP 2010004810 W JP2010004810 W JP 2010004810W WO 2011018883 A1 WO2011018883 A1 WO 2011018883A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
glass substrate
glass
mgo
value
Prior art date
Application number
PCT/JP2010/004810
Other languages
English (en)
French (fr)
Inventor
宮部大亮
瀬戸啓充
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to US13/390,027 priority Critical patent/US9156723B2/en
Publication of WO2011018883A1 publication Critical patent/WO2011018883A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/211SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/23Mixtures
    • C03C2217/231In2O3/SnO2
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • C03C2217/241Doped oxides with halides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/24Doped oxides
    • C03C2217/244Doped oxides with Sb

Definitions

  • the present invention relates to a glass substrate suitable for use as a substrate of a solar cell, a field emission display (FED), a plasma display panel (PDP) or the like.
  • the present invention particularly relates to a glass substrate suitable for a solar cell using a compound semiconductor such as a CdTe thin film or a CIGS thin film.
  • a semiconductor such as a CdS thin film 3 or a CdTe thin film 4 is formed on a glass substrate 10 with a transparent conductive film provided with a glass substrate 1 and a transparent conductive film 2 formed thereon. A thin film is formed, and further a metal conductive film 5 and an electrode 6 are formed thereon.
  • a Mo thin film for electrodes is formed on a glass substrate, and a CIGS semiconductor and an n-type semiconductor (for example, ZnO: Al film) are formed thereon.
  • the proximity sublimation method is used to form the CdTe thin film.
  • the substrate temperature may reach around 600 ° C.
  • the CdCl 2 treatment is performed at 620 ° C. after the thin film is formed, the efficiency of the semiconductor can be increased.
  • the glass substrate experiences a high temperature of 500 to 600 ° C. in the process of forming the semiconductor thin film (p-type light absorption layer).
  • the photoelectric conversion efficiency of the thin film compound semiconductor solar cell can be improved by high-temperature treatment at 500 ° C. or higher.
  • the substrate is deformed at a temperature higher than that. For this reason, when soda lime glass is used as a substrate, the substrate temperature can be raised only to around 500 ° C. at most in the high-temperature treatment step, and there is a problem that the photoelectric conversion efficiency inherent to the semiconductor cannot be sufficiently exhibited.
  • the thermal expansion coefficient of CdTe semiconductor and Mo electrode is about 50 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient of soda lime glass is about 90 ⁇ 10 ⁇ 7 / ° C.
  • the strain point is 500 ° C. or higher
  • the thermal expansion coefficient specifically, an average heat of 50 to 350 ° C.
  • a low-cost and large-area glass substrate for a solar cell is desired which has an expansion coefficient of 75 ⁇ 10 ⁇ 7 / ° C. or less.
  • the float method is superior to other plate glass manufacturing methods in that a large area plate glass can be mass-produced at a lower cost.
  • the plate glass manufacturing apparatus by the float method is prevailing worldwide for manufacture of the plate glass for building materials. For this reason, the glass substrate which can be mass-produced with the existing float manufacturing apparatus has an advantage that the glass substrate can be easily provided to a wide area.
  • the working temperature of soda lime glass (the temperature suitable for forming, the temperature at which the viscosity is 10 4 dPa ⁇ s in the case of the float process) is about 1000 ° C.
  • the higher the glass working temperature exceeds 1000 ° C the more severe the deterioration of bricks at the entrance of the tin bath due to erosion by heat and glass. .
  • the liquidus temperature of glass needs to be lower than working temperature. Considering that the working temperature should not greatly exceed 1000 ° C., it is preferable that the liquidus temperature of the glass mass-produced by the float manufacturing apparatus is 1200 ° C. or less.
  • Patent Document 1 discloses a glass having a higher strain point than a conventional soda lime glass and a thermal expansion coefficient of about 50 ⁇ 10 ⁇ 7 / ° C.
  • this glass contains 1 to 8% by mass of B 2 O 3 , most of it volatilizes during melting, and violently erodes bricks used in the heat storage chamber of the melting kiln. For this reason, there is a problem that the melting furnace is severely deteriorated and the cost increases.
  • Patent Document 2 discloses a glass substrate having an annealing point of 550 ° C. or higher as a glass substrate for CIGS solar cells. However, since this glass substrate contains 7% or more of the total amount of alkali metal oxides, it is actually difficult to make the average thermal expansion coefficient of 50 to 350 ° C. to 75 ⁇ 10 ⁇ 7 / ° C. or less.
  • Patent Document 3 discloses a glass substrate having a strain point of 590 ° C. or higher.
  • the glass composition disclosed in Patent Document 3 requires a large amount of BaO in addition to a large amount of SrO (SrO: 5 to 12.5%, BaO: 9 to 14%; claim) Item 2). For this reason, the density of the glass substrate becomes too large (2.83 g / cm 3 or more).
  • the present invention deformation is suppressed even when heat treatment is performed at 500 ° C. or higher, the average thermal expansion coefficient at 50 to 350 ° C. is 75 ⁇ 10 ⁇ 7 / ° C. or lower, and a liquidus temperature suitable for continuous production by the float process. It aims at providing the glass substrate which has a glass composition.
  • the present invention is expressed in mass%, 58.5 to 69.5% SiO 2 , 2.5 to 9.9% Al 2 O 3 , 0 to 2.5% Li 2 O, 0% More than 6% Na 2 O, 0% to less than 6% K 2 O, more than 0% to 5.2% MgO, more than 3% to 13% CaO, 10 to 27% SrO, 0 % Of BaO, 0 to 3% of TiO 2 , 0 to 9.8% of ZrO 2 , the value of SiO 2 + Al 2 O 3 is 73% or less, and Li 2 O + Na 2 O + K 2
  • O is less than 6%
  • the value of MgO + CaO is more than 3% and not more than 16%
  • the value of SrO + BaO is 10-27%
  • the value of MgO + CaO + SrO + BaO is 21-33%
  • the molar fraction based, the value of MgO / CaO is 0.2 to 1.0, B 2 O 3 Substantially free,
  • the glass substrate the average thermal expansion coefficient in the range of 50 ⁇ 350 ° C. is 75 ⁇ 10 -7 / °C or less Propose.
  • substantially free means that the content of its component (for example, B 2 O 3 ) is less than 0.5%, preferably less than 0.1%, expressed in mass%.
  • the strain point is about 55 ° C. lower than the glass transition point. Therefore, if the glass transition point exceeds 555 ° C., the strain point exceeds 500 ° C. Therefore, if the glass substrate of this invention is used, the maximum processing temperature of a solar cell manufacturing process can be raised to 500 degreeC or more, and the photoelectric conversion efficiency of a solar cell can be improved more. In addition, since the average thermal expansion coefficient of the glass substrate of the present invention is 75 ⁇ 10 ⁇ 7 / ° C. or less, the residual stress between the substrate and the thin film can be reduced. Further, the glass substrate of the present invention is the liquid-phase temperature of 1200 ° C.
  • the glass substrate of the present invention since the glass substrate of the present invention has a low BaO content, it is easy to achieve a relatively low density.
  • FIG. 1 is a cross-sectional view for explaining the structure of a CdTe solar cell.
  • FIG. 2 is a graph showing the relationship between the SrO content and the liquidus temperature TL of the glass substrate of the present invention.
  • the reason for limiting the content of the glass composition component is as follows.
  • the% display indicating the content of the glass composition component is mass%.
  • SiO 2 is a glass network former.
  • the content of SiO 2 is 58.5 to 69.5%, preferably more than 59% and 66% or less, more preferably more than 59% and 63% or less, more preferably more than 59% and 62% or less. . If the content of SiO 2 is less than 58.5%, the strain point of the glass becomes low. If the content of SiO 2 is more than 69.5%, the thermal expansion coefficient may become too small, and it may be difficult to melt or mold the glass.
  • Al 2 O 3 increases the strain point of the glass and decreases the liquidus temperature.
  • the content of Al 2 O 3 is 2.5 to 9.9%, preferably 4.8 to 9.9%, more preferably 7 to 8%.
  • the content of Al 2 O 3 is more than 9.9%, the liquidus temperature of the glass increases, the high-temperature viscosity increases, and the meltability of the glass tends to deteriorate.
  • the content of Al 2 O 3 is less than 2.5%, the liquidus temperature rises.
  • Li 2 O is not an essential component, but improves the solubility, lowers the high temperature viscosity, and lowers the liquidus temperature.
  • the content of Li 2 O is 0 to 2.5%, preferably 0% or more and less than 1%.
  • Glass substrate of the present invention may have a composition that is substantially free of Li 2 O. When li 2 O content is more than 2.5%, the strain point is lowered, the thermal expansion coefficient becomes large.
  • Na 2 O improves the solubility, lowers the high temperature viscosity, and lowers the liquidus temperature.
  • the content of Na 2 O is 0% or more and less than 6%, preferably 0% or more and less than 5%, more preferably 3% or more and less than 5%.
  • the strain point is lowered and the thermal expansion coefficient is increased.
  • K 2 O is not an essential component, but improves the solubility, lowers the high-temperature viscosity, and lowers the liquidus temperature, but the effect of increasing the thermal expansion coefficient is greater than that of Na 2 O.
  • the content of K 2 O is 0% or more and less than 6%, preferably 0% or more and less than 2%.
  • the glass substrate of the present invention may have a composition that does not substantially contain K 2 O. When the content of K 2 O is 6% or more, the strain point is lowered and the thermal expansion coefficient is increased.
  • MgO improves solubility and increases strain point.
  • the MgO content is more than 0% and not more than 5.2%, preferably 2 to 5.2%, more preferably 2 to 4%. If the content of MgO is more than 5.2%, the liquidus temperature rises.
  • CaO like MgO, improves the solubility and increases the strain point.
  • the CaO content is more than 3% and not more than 13%, preferably 4 to 8%, more preferably 4 to 7%. If the CaO content is 3% or less, the above effect cannot be obtained sufficiently. If the content of CaO is more than 13%, the liquidus temperature rises.
  • the SrO content is 10 to 27%, preferably 13 to 27%, more preferably more than 15% and 18% or less, and further preferably 15.5 to 18%. If the SrO content is greater than 27% or less than 10%, the liquidus temperature rises. In order to reduce the density, the SrO content is preferably 17.5% or less, and more preferably 16.5% or less.
  • BaO is not an essential component, but reduces high temperature viscosity without increasing the liquidus temperature.
  • the content of BaO is 0% or more and less than 5%, preferably 0% or more and less than 3%, more preferably 0% or more and less than 2%.
  • the glass substrate of the present invention may have a composition that does not substantially contain BaO. When the content of BaO is 5% or more, the density becomes too large.
  • TiO 2 is not an essential component, but slightly decreases the devitrification temperature.
  • the content of TiO 2 is 0 to 3%, preferably 0 to 2%, more preferably 0 to 1%, and still more preferably not contained. When the content of TiO 2 is more than 3%, the absorption in the ultraviolet region of the sunlight spectrum increases.
  • ZrO 2 lowers the liquidus temperature and reduces the coefficient of thermal expansion.
  • the content of ZrO 2 is 0 to 9.8%, preferably 0.1 to 5%, more preferably 2 to 4%, and further preferably 3 to 4%. If the content of ZrO 2 is more than 9.8%, the liquidus temperature rises.
  • the value of SiO 2 + Al 2 O 3 is 73% or less, preferably 72% or less. When the value of SiO 2 + Al 2 O 3 exceeds 73%, the liquidus temperature rises.
  • the value of Li 2 O + Na 2 O + K 2 O is less than 6%, preferably less than 5%.
  • the thermal expansion coefficient increases.
  • the value of MgO + CaO is more than 3% and not more than 16%, preferably 6 to 13%, more preferably 6 to 11%. When the value of MgO + CaO exceeds 16%, the liquidus temperature rises. If the value of MgO + CaO is 3% or less, the meltability of the glass deteriorates.
  • the value of SrO + BaO is 10 to 27%, preferably 10 to 25%, more preferably 10 to 23%, still more preferably more than 15% and 18% or less. If the value of SrO + BaO exceeds 27%, the glass density becomes too high. When the value of SrO + BaO is less than 10%, the devitrification temperature becomes high.
  • the value of MgO + CaO + SrO + BaO is 21 to 33%, preferably 21 to 25%.
  • the value of MgO + CaO + SrO + BaO exceeds 33%, the density and thermal expansion coefficient of the glass increase and the liquidus temperature rises.
  • the value of MgO + CaO + SrO + BaO is less than 21%, the solubility is deteriorated and the liquidus temperature is increased.
  • the value of MgO / CaO based on the mole fraction is 0.2 or more and 1.0 or less, preferably 0.3 or more and 0.8 or less.
  • the value of MgO / CaO based on the mole fraction is more than 1.0 or less than 0.2, the liquidus temperature becomes high and molding becomes difficult.
  • the glass composition may be constituted from only ingredients enumerated above, but, Fe 2 O 3, CeO 2 , Bi 2 O 3, ZnO, SnO, Sb 2 O 3, Nb 2 O 5, La 2 At least one component selected from other inorganic oxides such as O 3 , Y 2 O 3 , As 2 O 3 and PbO, sulfur oxides such as SO 3 , chlorides, nitrides and fluorides per component
  • the upper limit may be 5%, preferably 1%, more preferably 0.1%.
  • a preferred glass composition of the present invention 4.8 to 9.9% Al 2 O 3 , 0% or more and less than 5% Na 2 O, 0% or more 2 A composition containing less than 15% K 2 O, more than 15% and not more than 18% SrO, and a value of Li 2 O + Na 2 O + K 2 O of less than 5%.
  • the glass substrate of the present invention can be produced by various methods such as a downdraw method and a fusion method. However, from the viewpoint of continuously producing a glass substrate having a large area at a low price, it can be produced using a float method. preferable.
  • the glass substrate of the present invention has a glass composition and properties suitable for production by a float process. That is, this invention provides the manufacturing method of the glass substrate which manufactures the glass substrate of this invention by melt
  • the glass substrate of this invention forms a transparent conductive film on it, and can be used as a glass substrate with a transparent conductive film.
  • a transparent conductive film an SnO 2 film doped with fluorine or antimony, an ITO film, or the like can be used.
  • the raw material of each component was prepared so that it might become the glass composition (mass%) shown in Table 1. At this time, bow glass was used as part of the Na 2 O raw material. A special grade reagent was used as a raw material for each component. The mixture obtained by blending the raw materials was put into a crucible, melted at 1550 ° C. for 4 hours, then poured out and gradually cooled to obtain a glass sample (glass substrate).
  • the liquidus temperature, average thermal expansion coefficient, glass transition point Tg, strain point, and density of each glass were obtained by the following methods.
  • the liquidus temperature was measured as follows. First, the crushed glass sample was passed through a 2830 ⁇ m sieve, and the glass particles that passed through the sieve were passed through a 1000 ⁇ m sieve. 30 g of the glass particles remaining on the sieve were weighed and spread in a platinum boat having a width of 10 mm, a length of 200 mm, and a depth of 10 mm. This was held for 2 hours in a furnace set to have a temperature gradient in the length direction of the boat. After the platinum boat was taken out of the furnace and allowed to cool naturally, the glass particles on the platinum boat were observed with a microscope at a magnification of 50 times. The maximum temperature at which crystals were generated in the glass grains was defined as the liquidus temperature.
  • the average coefficient of thermal expansion was measured as follows. First, a cylindrical glass sample having a diameter of 5 mm and a height of 18 mm was produced. This was heated from 25 ° C. to the yield point of the glass sample, and the thermal expansion coefficient was calculated by measuring the elongation of the glass sample at each temperature. An average value of thermal expansion coefficients in the range of 50 to 350 ° C. was calculated to obtain an average thermal expansion coefficient.
  • the glass transition point Tg was determined as follows. In the thermal expansion curve obtained above, the temperature at the intersection of the low-temperature side expansion curve linearly increasing from room temperature and the expansion curve from the bent portion to the yield point was defined as the glass transition point Tg.
  • the strain point was measured as follows. First, a rectangular parallelepiped glass sample having a length of 3 mm, a width of 3 mm, and a length of 50 mm was prepared. The strain point was calculated by fixing both ends of the long side of the glass sample horizontally in the furnace, applying a load to the central part of the long side, and measuring the deflection rate of the glass sample at each temperature. In Table 1, No. The strain point of the glass other than 1 was estimated as a temperature 55 ° C. lower than the glass transition point Tg obtained by the above-described method.
  • the density was measured by Archimedes method.
  • Reference numerals 1 to 14 denote glass substrates of the present invention. These glasses have an average coefficient of thermal expansion of 50 to 350 ° C. of 75 ⁇ 10 ⁇ 7 / ° C. or less (except for No. 14, 70 ⁇ 10 ⁇ 7 / ° C. or less), and a liquidus temperature of 1200 ° C. or less. (No. 1, 2, 4 to 8, 11 to 13 ° C. or lower, No. 1 or 2 to 1100 ° C. or lower), it can be seen that it is suitable for mass production using existing float manufacturing equipment. Moreover, since these glasses have a glass transition point Tg of 600 ° C. or higher, more specifically 650 ° C. or higher, the strain point surely exceeds 500 ° C.
  • the glass substrates of 1 to 5, 7 to 9, 11 to 13 have a density of less than 2.83 g / cm 3 , specifically 2.82 g / cm 3 or less (No. 1, 3 to 5, 7, 8, 11 , 12 is 2.80 g / cm 3 or less), which is convenient in handling a large area glass substrate.
  • FIG. 2 is a diagram showing the relationship between the SrO content and the liquidus temperature TL of the glass substrate produced above.
  • the content of Al 2 O 3 is 7.4 to 7.6%
  • the value of MgO / CaO based on the molar fraction is 0.25 or 0.67.
  • both of the liquids have a SrO content of around 16%.
  • the phase temperature was lowest.
  • the glass on the approximate curve 11 had a MgO / CaO value in the range of 0.3 to 0.8, and the liquidus temperature was lower than that on the approximate curve 12.
  • the glass on the approximate curve 11 had a liquidus temperature of approximately 1100 ° C. or lower when the SrO content was in the range of 14 to 18%.
  • the glass substrate of the present invention is not limited to a glass substrate for a compound semiconductor solar cell, but can be applied to a glass substrate for an amorphous solar cell, a cover glass for a crystalline silicon solar cell, and the like, for a tandem solar cell. It can also be used as a glass substrate. It can also be used as a glass substrate for displays such as a field emission display (FED) and a plasma display panel (PDP).
  • FED field emission display
  • PDP plasma display panel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 本発明のガラス基板は、質量%表示で、58.5~69.5%SiO、2.5~9.9%Al、0~2.5%LiO、0%以上6%未満NaO、0%以上6%未満KO、0%より多く5.2%以下MgO、3%より多く13%以下CaO、10~27%SrO、0%以上5%未満BaO、0~3%TiO、0~9.8%ZrOを含有し、SiO+Al73%以下、LiO+NaO+KO6%未満、3%<MgO+CaO≦16%、SrO+BaO10~27%、MgO+CaO+SrO+BaO21~33%、モル分率に基づくMgO/CaO0.2~1.0、Bを実質的に含まず、ガラス転移点>555℃、液相温度≦1200℃、平均熱膨張係数≦75×10-7/℃である。本発明により、半導体薄膜等に近い熱膨張係数と高い歪点とを有し、フロート法による連続生産に適したガラス基板を提供できる。

Description

ガラス基板
本発明は、太陽電池、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)などの基板としての使用に適したガラス基板に関する。本発明は、特に、CdTe薄膜やCIGS薄膜などの化合物半導体を用いた太陽電池に適したガラス基板に関する。
 CdTe薄膜やCIGS薄膜などの化合物半導体を用いた太陽電池は、環境にやさしいエネルギー源として需要が増しつつある。そのガラス基板には、従来フロート法で製造される安価なソーダライムガラスが使用されてきた。CdTe系太陽電池では、図1に示すように、ガラス基板1とこの上に形成された透明導電膜2とを備えた透明導電膜付きガラス基板10上にCdS薄膜3やCdTe薄膜4などの半導体薄膜が形成され、さらにその上に金属導電膜5や電極6が形成される。また、CIGS系太陽電池では、電極用のMo薄膜がガラス基板上に形成され、その上にCIGS半導体およびn型半導体(例えばZnO:Al膜)などが形成される。
 これらの薄膜化合物半導体太陽電池の製造工程では、高温での処理が必要となる。例えば、CdTe薄膜の形成には近接昇華法が用いられるが、この場合、基板温度は600℃付近に達することがある。また、薄膜の形成後にCdCl処理を620℃で行えば半導体の高効率化が可能となる。CIGS系太陽電池では、半導体薄膜(p型光吸収層)を形成する工程でガラス基板が500~600℃の高温を経験する。いずれの場合においても、500℃以上の高温処理により薄膜化合物半導体太陽電池の光電変換効率を向上させることができる。
 しかし、従来から使用されてきたソーダライムガラスの歪点は500℃付近であるため、それ以上の温度では基板が変形してしまう。このため、ソーダライムガラスを基板として用いると、高温処理工程において基板温度をせいぜい500℃付近までにしか上げることができず、半導体が本来有する光電変換効率を十分に発揮できないという問題が生じる。
 CdTe半導体およびMo電極の熱膨張係数が約50×10-7/℃であるのに対し、ソーダライムガラスの熱膨張係数は約90×10-7/℃である。500℃以上の高温で、ソーダライムガラスからなるガラス基板上に、この基板との熱膨張係数の差が大きな薄膜を形成すると、冷却後にガラスと薄膜との間に大きな残留応力が発生する。太陽電池製造プロセスでは、残留応力による不具合が発生しないように、基板の処理温度や冷却速度などの条件が選択される。このため、基板の熱膨張係数と薄膜の熱膨張係数とが近ければ、上記の残留応力を低減でき、選択可能な処理条件の幅が広がる。その結果、光電変換効率をさらに改善できる余地が生じる。
 上記のような事情から、ソーダライムガラスに比べて耐熱性に優れ(具体的には、歪点が500℃以上であり)、熱膨張係数が小さく(具体的には50~350℃の平均熱膨張係数が75×10-7/℃以下であり)、安価で大面積の太陽電池用ガラス基板が望まれている。
 なお、近年、太陽電池パネルは大面積化が進んでいるが、取り扱いの観点からは、できるだけ軽い方が良い。このため、太陽電池用ガラス基板の密度はできるだけ小さい方が望ましい。
 大面積の板ガラスを製造する方法としては、ダウンドロー法、フュージョン法、フロート法などが挙げられる。フロート法は、他の板ガラス製造方法に比べ、大面積の板ガラスをより安価に量産できる点で優れている。また、フロート法による板ガラス製造装置は、建材用板ガラスの製造のために広く世界に普及している。このため、既存のフロート製造装置で量産可能なガラス基板には、そのガラス基板を広い地域に提供しやすいという利点がある。
 ソーダライムガラスの作業温度(成形に適した温度で、フロート法の場合、粘度が10dPa・sとなる温度)は約1000℃である。建材用板ガラスの製造のために普及しているフロート製造装置では、ガラスの作業温度が1000℃を超えて高温になるほど、熱やガラスによる侵食のため、錫バスの入り口のレンガの劣化が激しくなる。また、フロート法で製造するためには、作業温度よりもガラスの液相温度が低い必要がある。作業温度が1000℃を大きく上回るべきでないことを考慮すると、フロート製造装置で量産するガラスの液相温度は1200℃以下であることが好ましい。
 特許文献1には、従来のソーダライムガラスに比べて歪点が高く、約50×10-7/℃の熱膨張係数を有するガラスが開示されている。しかし、このガラスは、Bを1~8質量%含むため、その多くが溶融時に揮発し、溶融窯の蓄熱室に使用されているレンガを激しく侵食する。このため、溶融窯の劣化が激しく、コストが上がるという問題が生じる。
 また、特許文献2には、CIGS系太陽電池用のガラス基板として、徐冷点が550℃以上のガラス基板が開示されている。しかし、このガラス基板は、アルカリ金属酸化物を合計量で7%以上含むため、現実には50~350℃の平均熱膨張係数を75×10-7/℃以下にすることが困難である。
 一方、フィールドエミッションディスプレイ(FED)やプラズマディスプレイパネル(PDP)などのガラス基板にも高い歪点が求められている。このようなフラットパネルディスプレイ用基板として、特許文献3に、歪点が590℃以上のガラス基板が開示されている。しかし、特許文献3に開示されているガラス組成では、多量のSrOを含んだ上で、さらに、多量のBaOを必要とする(SrO:5~12.5%、BaO:9~14%;請求項2)。このため、ガラス基板の密度が大きくなり過ぎる(2.83g/cm以上)。
特表2003-525830号公報 特開平11-135819号公報 特開2007-308329号公報
 本発明は、500℃以上で熱処理をしても変形が抑制され、50~350℃における平均熱膨張係数が75×10-7/℃以下であり、フロート法による連続生産に適した液相温度とガラス組成とを有するガラス基板を提供することを目的とする。
 本発明は、質量%で表示して、58.5~69.5%のSiO、2.5~9.9%のAl、0~2.5%のLiO、0%以上6%未満のNaO、0%以上6%未満のKO、0%より多く5.2%以下のMgO、3%より多く13%以下のCaO、10~27%のSrO、0%以上5%未満のBaO、0~3%のTiO、0~9.8%のZrOを含有し、SiO+Alの値が73%以下であり、LiO+NaO+KOの値が6%未満であり、MgO+CaOの値が3%より多く16%以下であり、SrO+BaOの値が10~27%であり、MgO+CaO+SrO+BaOの値が21~33%であり、モル分率に基づく、MgO/CaOの値が0.2以上1.0以下であり、Bを実質的に含まず、ガラス転移点が555℃よりも高く、液相温度が1200℃以下であり、50~350℃の範囲における平均熱膨張係数が75×10-7/℃以下であるガラス基板を提案する。本発明において、「実質的に含まない」とは、質量%で表示して、その成分(例えばB)の含有率が0.5%未満、好ましくは0.1%未満であることをいう。
 少なくとも本発明のガラス基板が有する上述のガラス組成の範囲内では、歪点はガラス転移点よりも約55℃低いため、ガラス転移点が555℃を超えれば、歪点は500℃を上回る。したがって、本発明のガラス基板を用いれば、太陽電池製造プロセスの最高処理温度を500℃以上に高めることができ、太陽電池の光電変換効率をより向上させることができる。また、本発明のガラス基板の平均熱膨張係数は75×10-7/℃以下であるため、基板と薄膜との間の残留応力を低減できる。また、本発明のガラス基板は、液相温度が1200℃以下であり、Bを実質的に含まないため、フロート法による製造において溶融窯のレンガへの負荷を軽減することができる。さらに、本発明のガラス基板は、BaOの含有率が少ないため、比較的小さい密度を実現しやすい。
図1は、CdTe系太陽電池の構造を説明するための断面図である。 図2は、本発明のガラス基板の、SrOの含有率と液相温度TLとの関係を示す図である。
 本発明においてガラスの組成成分の含有率を限定した理由は以下のとおりである。以下、特に断らない限り、ガラスの組成成分の含有率を示す%表示は質量%である。
 SiOはガラスのネットワークフォーマーである。SiOの含有率は58.5~69.5%であり、好ましくは59%より多く66%以下、より好ましくは59%より多く63%以下、さらに好ましくは59%より多く62%以下である。SiOの含有率が58.5%未満ではガラスの歪点が低くなる。SiOの含有率が69.5%より多いと、熱膨張係数が小さくなり過ぎたり、ガラスの溶融や成形が難しくなったりすることがある。
 Alは、ガラスの歪点を高め、液相温度を低下させる。Alの含有率は2.5~9.9%であり、好ましくは4.8~9.9%、より好ましくは7~8%である。Alの含有率が9.9%より多いと、ガラスの液相温度が上昇するとともに、高温粘性が高くなり、ガラスの溶融性が悪化する傾向がある。Alの含有率が2.5%より少ないと、液相温度が上昇する。
 LiOは、必須成分ではないが、溶解性を向上し、高温粘性を低下させ、液相温度を低下させる。LiOの含有率は0~2.5%であり、好ましくは0%以上1%未満である。本発明のガラス基板はLiOを実質的に含まない組成を有していてもよい。LiOの含有率が2.5%より多いと、歪点が低下し、熱膨張係数が大きくなる。
 NaOは、溶解性を向上し、高温粘性を低下させ、液相温度を低下させる。NaOの含有率は0%以上6%未満、好ましくは0%以上5%未満、さらに好ましくは3%以上5%未満である。NaOの含有率が6%以上であると、歪点が低下し、熱膨張係数が大きくなる。
 KOは、必須成分ではないが、溶解性を向上し、高温粘性を低下させ、液相温度を低下させるが、熱膨張係数を増大させる効果はNaOより大きい。KOの含有率は0%以上6%未満であり、好ましくは0%以上2%未満である。本発明のガラス基板はKOを実質的に含まない組成を有していてもよい。KOの含有率が6%以上であると、歪点が低下し、熱膨張係数が大きくなる。
 MgOは、溶解性を向上させ、歪点を高める。MgOの含有率は0%より多く5.2%以下であり、好ましくは2~5.2%、より好ましくは2~4%である。MgOの含有率が5.2%より多いと液相温度が上昇する。
 CaOは、MgOと同様に、溶解性を向上させ、歪点を高める。CaOの含有率は3%より多く13%以下であり、好ましくは4~8%、より好ましくは4~7%である。CaOの含有率が3%以下であると上記の効果を十分に得ることができない。CaOの含有率が13%より多いと液相温度が上昇する。
 SrOは、液相温度を上昇させることなく高温粘性を減少させる。SrOの含有率は10~27%であり、好ましくは13~27%、より好ましくは15%より多く18%以下、さらに好ましくは15.5~18%である。SrOの含有率が27%より多いか、または、10%よりも少ないと、液相温度が上昇する。なお、密度を小さくするためには、SrOの含有率は、17.5%以下が好ましく、16.5%以下であることがより好ましい。
 BaOは、必須成分ではないが、液相温度を上昇させることなく高温粘性を減少させる。BaOの含有率は0%以上5%未満であり、好ましくは0%以上3%未満、より好ましくは0%以上2%未満である。本発明のガラス基板は、BaOを実質的に含まない組成を有していてもよい。BaOの含有率が5%以上であると密度が大きくなり過ぎる。
 TiOは、必須成分ではないが、わずかながら失透温度を低下させる。TiOの含有率は0~3%であり、好ましくは0~2%、より好ましくは0~1%、さらに好ましくは含まないことである。TiOの含有率が3%より多いと太陽光スペクトルの紫外域での吸収が大きくなる。
 ZrOは、液相温度を低下させ、熱膨張係数を減少させる。ZrOの含有率は0~9.8%であり、好ましくは0.1~5%、より好ましくは2~4%、さらに好ましくは3~4%である。ZrOの含有率が9.8%より多いと液相温度が上昇する。
 SiO+Alの値は、73%以下であり、好ましくは72%以下である。SiO+Alの値が73%を超えると液相温度が上昇する。
 LiO+NaO+KOの値は、6%未満であり、好ましくは5%未満である。LiO+NaO+KOの値が6%以上であると熱膨張係数が大きくなる。
 MgO+CaOの値は、3%より多く16%以下であり、好ましくは6~13%、より好ましくは6~11%である。MgO+CaOの値が16%を超えると液相温度が上昇する。MgO+CaOの値が3%以下であるとガラスの溶融性が悪化する。
 SrO+BaOの値は、10~27%であり、好ましくは10~25%、より好ましくは10~23%、さらに好ましくは15%より多く18%以下である。SrO+BaOの値が27%を超えるとガラスの密度が大きくなり過ぎる。SrO+BaOの値が10%未満であると失透温度が高くなる。
 MgO+CaO+SrO+BaOの値は、21~33%であり、好ましくは21~25%である。MgO+CaO+SrO+BaOの値が33%を超えると、ガラスの密度や熱膨張係数が大きくなり、液相温度が上昇する。MgO+CaO+SrO+BaOの値が21%未満であると、溶解性が悪化し、液相温度が上昇する。
 モル分率に基づくMgO/CaOの値は、0.2以上1.0以下であり、好ましくは0.3以上0.8以下である。モル分率に基づくMgO/CaOの値が1.0を超えるか、または、0.2未満であると、液相温度が高くなり、成形が困難となる。
 また、ガラス組成は、上記に列挙した成分のみから構成されていてもよいが、Fe、CeO、Bi、ZnO、SnO、Sb、Nb、La、Y、As、PbO等のその他の無機酸化物、SOなどの硫黄酸化物、塩化物、窒化物、フッ化物から選ばれる少なくとも一種の成分を、1成分当たり5%を上限として、好ましくは1%を上限として、より好ましくは0.1%を上限として、さらに含んでいてもよい。
 本発明の好ましいガラス組成の一例としては、上記で含有率を限定した組成において、4.8~9.9%のAl、0%以上5%未満のNaO、0%以上2%未満のKO、15%より多く18%以下のSrOを含み、LiO+NaO+KOの値が5%未満である組成が挙げられる。
 本発明のガラス基板は、ダウンドロー法、フュージョン法など種々の方法で製造することができるが、安価で大面積のガラス基板を連続生産するという観点からは、フロート法を用いて製造することが好ましい。本発明のガラス基板は、フロート法による製造に適したガラス組成および特性を有する。すなわち、本発明は、その別の側面から、本発明のガラス基板を、フロート法により原料を溶融し、成形することにより製造する、ガラス基板の製造方法を提供する。
 本発明のガラス基板は、その上に透明導電膜を形成し、透明導電膜付きガラス基板として用いることができる。透明導電膜としては、フッ素やアンチモンなどをドープしたSnO膜、ITO膜などを用いることができる。
 以下、実施例および比較例により本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 表1に示したガラス組成(質量%)となるように各成分の原料を調合した。このとき、NaO原料の一部にボウ硝を用いた。なお、各成分の原料には特級試薬を用いた。原料を調合して得た混合物をるつぼに投入し、1550℃で4時間溶融した後、流し出して徐冷し、ガラス試料(ガラス基板)を得た。
Figure JPOXMLDOC01-appb-T000001
 各ガラスの液相温度、平均熱膨張係数、ガラス転移点Tg、歪点、密度は、以下に示す方法により得られた。
 液相温度は以下のように測定した。まず、ガラス試料を粉砕したものを2830μmの篩にかけ、篩を通ったガラス粒を1000μmの篩にかけた。この篩上に残ったガラス粒を30g計り取り、幅10mm、長さ200mm、深さ10mmの白金製のボート内に敷き詰めた。これを、ボートの長さ方向に温度勾配を持つように温度設定された炉内で2時間保持した。白金製ボートを炉から取り出して自然放冷させた後、白金ボート上のガラス粒を顕微鏡により50倍の倍率で観察した。ガラス粒に結晶を発生させた最高温度を液相温度とした。
 平均熱膨張係数は以下のように測定した。まず、直径5mm、高さ18mmの円柱形状のガラス試料を作製した。これを25℃からガラス試料の降伏点まで加温し、各温度におけるガラス試料の伸びを測定することにより、熱膨張係数を算出した。50~350℃の範囲の熱膨張係数の平均値を計算し、平均熱膨張係数を得た。
 ガラス転移点Tgは以下のように決定した。上記により得た熱膨張曲線において、室温より直線的に増大する低温側の膨張曲線と、屈曲部から降伏点までの膨張曲線との交点における温度を、ガラス転移点Tgとした。
 歪点は以下のように測定した。まず、縦3mm、横3mm、長さ50mmの直方体形状のガラス試料を作製した。このガラス試料の長辺側の両端を炉内に水平に固定し、長辺の中央部に荷重を加え、各温度におけるガラス試料のたわむ速度を測定することにより、歪点を算出した。なお、表1のNo.1以外のガラスの歪点は、前述の方法で求めたガラス転移点Tgより55℃低い温度として推定した。
 密度は、アルキメデス法により測定した。
 表1のNo.1~14は本発明のガラス基板である。これらのガラスは、50~350℃の平均熱膨張係数が75×10-7/℃以下であり(No.14を除けば70×10-7/℃以下)、液相温度が1200℃以下であるため(No.1,2,4~8,11~13においては1150℃以下、No.1,2においては1100℃以下)、既存のフロート製造装置による量産に適していることが分かる。また、これらのガラスは、600℃以上の、より具体的には650℃以上のガラス転移点Tgを有しているため、その歪点は、確実に500℃を上回っている。
 さらに、No.1~5,7~9,11~13のガラス基板は、密度2.83g/cm未満、具体的には2.82g/cm以下(No.1,3~5,7,8,11,12においては2.80g/cm以下)であるため、大面積のガラス基板を製造した際、その取り扱いにおいて好都合である。
 表1のNo.15~18は比較例であり、その液相温度は1200℃を超えている。
 図2は、上記で作製したガラス基板の、SrOの含有率と液相温度TLとの関係を示す図である。ただし、その組成において、Alの含有率は7.4~7.6%であり、モル分率に基づくMgO/CaOの値は0.25または0.67である。MgO/CaOの値が0.67であるガラスについての近似曲線11および、MgO/CaOの値が0.25であるガラスについての近似曲線12では、共に、SrOの含有率が16%付近において液相温度が最も低くなった。近似曲線11上のガラスは、MgO/CaOの値が0.3以上0.8以下の範囲に入り、近似曲線12上のガラスと比べて液相温度がより低くなった。近似曲線11上のガラスは、SrOの含有率が14~18%の範囲内にあるとき、液相温度がほぼ1100℃以下となった。
 本発明のガラス基板は、化合物半導体太陽電池用のガラス基板に限らず、アモルファス太陽電池用のガラス基板や、結晶シリコン太陽電池用のカバーガラスなどにも適用することができ、タンデム型太陽電池用のガラス基板としても使用可能である。また、フィールドエミッションディスプレイ(FED)やプラズマディスプレイパネル(PDP)など、ディスプレイ用のガラス基板としても使用可能である。

Claims (11)

  1.  質量%で表示して、
    58.5~69.5%のSiO
    2.5~9.9%のAl
    0~2.5%のLiO、
    0%以上6%未満のNaO、
    0%以上6%未満のKO、
    0%より多く5.2%以下のMgO、
    3%より多く13%以下のCaO、
    10~27%のSrO、
    0%以上5%未満のBaO、
    0~3%のTiO
    0~9.8%のZrOを含有し、
    SiO+Alの値が73%以下であり、
    LiO+NaO+KOの値が6%未満であり、
    MgO+CaOの値が3%より多く16%以下であり、
    SrO+BaOの値が10~27%であり、
    MgO+CaO+SrO+BaOの値が21~33%であり、
    モル分率に基づく、MgO/CaOの値が0.2以上1.0以下であり、
    を実質的に含まず、
    ガラス転移点が555℃よりも高く、
    液相温度が1200℃以下であり、
    50~350℃の範囲における平均熱膨張係数が75×10-7/℃以下であるガラス基板。
  2.  液相温度が1150℃以下である請求項1に記載のガラス基板。
  3.  SrOの含有率が13~27%である、請求項1に記載のガラス基板。
  4.  密度が2.83g/cm未満である、請求項1に記載のガラス基板。
  5.  密度が2.80g/cm以下である、請求項4に記載のガラス基板。
  6.  質量%で表示して、
    4.8~9.9%のAl
    0%以上5%未満のNaO、
    0%以上2%未満のKO、
    15%より多く18%以下のSrOを含み、
    SrO+BaOの値が15%より多く18%以下であり、
    LiO+NaO+KOの値が5%未満である、
    請求項1に記載のガラス基板。
  7.  モル分率に基づく、MgO/CaOの値が0.3以上0.8以下である請求項1に記載のガラス基板。
  8.  液相温度が1100℃以下である請求項1に記載のガラス基板。
  9.  50~350℃の範囲における平均熱膨張係数が70×10-7/℃以下である請求項1に記載のガラス基板。
  10.  請求項1に記載のガラス基板と、前記ガラス基板上に形成された透明導電膜とを備えた透明導電膜付きガラス基板。
  11. 請求項1に記載のガラス基板を、フロート法により原料を溶融し、成形することにより製造する、ガラス基板の製造方法。
PCT/JP2010/004810 2009-08-14 2010-07-29 ガラス基板 WO2011018883A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/390,027 US9156723B2 (en) 2009-08-14 2010-07-29 Glass substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-188011 2009-08-14
JP2009188011A JP5642363B2 (ja) 2009-08-14 2009-08-14 ガラス基板

Publications (1)

Publication Number Publication Date
WO2011018883A1 true WO2011018883A1 (ja) 2011-02-17

Family

ID=43586066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004810 WO2011018883A1 (ja) 2009-08-14 2010-07-29 ガラス基板

Country Status (3)

Country Link
US (1) US9156723B2 (ja)
JP (1) JP5642363B2 (ja)
WO (1) WO2011018883A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150166402A1 (en) * 2012-01-12 2015-06-18 Nippon Electric Glass Co., Ltd. Glass
US11352287B2 (en) 2012-11-28 2022-06-07 Vitro Flat Glass Llc High strain point glass

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972446B1 (fr) * 2011-03-09 2017-11-24 Saint Gobain Substrat pour cellule photovoltaique
FR2972724B1 (fr) * 2011-03-15 2016-09-16 Saint Gobain Substrat pour cellule photovoltaique
JP6410108B2 (ja) * 2011-07-19 2018-10-24 日本電気硝子株式会社 ガラス基材
JP5850392B2 (ja) * 2011-09-20 2016-02-03 日本電気硝子株式会社 ガラス板
KR20150054793A (ko) * 2012-09-10 2015-05-20 아사히 가라스 가부시키가이샤 태양전지용 유리 기판 및 그것을 사용한 태양전지
JP2014084237A (ja) * 2012-10-22 2014-05-12 Nippon Electric Glass Co Ltd 薄膜太陽電池用ガラス板
JP2014097916A (ja) * 2012-11-16 2014-05-29 Nippon Electric Glass Co Ltd 薄膜太陽電池用ガラス板及びその製造方法
JP5680809B1 (ja) * 2013-06-20 2015-03-04 日本板硝子株式会社 ガラス組成物、化学強化ガラス、及び情報記録媒体用ガラス基板
TW201544481A (zh) * 2014-05-21 2015-12-01 Asahi Glass Co Ltd 玻璃板
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
CN110590156B (zh) * 2019-09-29 2022-10-28 常熟佳合显示科技有限公司 可化学强化的超薄玻璃及其制备方法
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109037A (ja) * 1994-03-14 1996-04-30 Corning Inc アルミノケイ酸塩ガラス
JP2000143282A (ja) * 1998-09-11 2000-05-23 Nippon Sheet Glass Co Ltd ガラス組成物、それを用いた情報記録媒体用基板および情報記録媒体
JP2002193635A (ja) * 2000-12-26 2002-07-10 Nippon Electric Glass Co Ltd フラットパネルディスプレイ装置用ガラス基板
JP2004277222A (ja) * 2003-03-17 2004-10-07 Nippon Electric Glass Co Ltd フラットパネルディスプレイ装置用ガラス基板
JP2008280189A (ja) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd 太陽電池用ガラス基板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3927238A (en) * 1973-05-07 1975-12-16 Bell Telephone Labor Inc Lead-free glaze for high density alumina
US5116789A (en) * 1991-08-12 1992-05-26 Corning Incorporated Strontium aluminosilicate glasses for flat panel displays
US5489558A (en) * 1994-03-14 1996-02-06 Corning Incorporated Glasses for flat panel display
JPH11135819A (ja) 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd 化合物薄膜太陽電池
US6333286B1 (en) 1998-09-11 2001-12-25 Nippon Sheet Glass Co., Ltd. Glass composition and substrate for information recording media comprising the same
DE10005088C1 (de) 2000-02-04 2001-03-15 Schott Glas Alkalihaltiges Aluminoborosilicatglas und seine Verwendung
US6949485B2 (en) * 2000-06-01 2005-09-27 Asabi Glass Company, Limited Glass for substrate and glass substrate
JP2002053341A (ja) * 2000-08-10 2002-02-19 Nippon Electric Glass Co Ltd 無機elディスプレイガラス基板
KR20070083838A (ko) * 2004-09-29 2007-08-24 니폰 덴키 가라스 가부시키가이샤 반도체 밀봉용 유리 및 반도체 밀봉용 외투관 및 반도체전자 부품
JP4727355B2 (ja) * 2005-09-13 2011-07-20 株式会社フジクラ 成膜方法
KR101133481B1 (ko) * 2006-05-10 2012-06-05 아사히 가라스 가부시키가이샤 디스플레이 기판용 플로트 유리 및 그 제조 방법
JP5046176B2 (ja) 2006-05-18 2012-10-10 日本電気硝子株式会社 平面画像表示装置用ガラスおよびそれを用いたガラス基板並びにその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08109037A (ja) * 1994-03-14 1996-04-30 Corning Inc アルミノケイ酸塩ガラス
JP2000143282A (ja) * 1998-09-11 2000-05-23 Nippon Sheet Glass Co Ltd ガラス組成物、それを用いた情報記録媒体用基板および情報記録媒体
JP2002193635A (ja) * 2000-12-26 2002-07-10 Nippon Electric Glass Co Ltd フラットパネルディスプレイ装置用ガラス基板
JP2004277222A (ja) * 2003-03-17 2004-10-07 Nippon Electric Glass Co Ltd フラットパネルディスプレイ装置用ガラス基板
JP2008280189A (ja) * 2007-05-08 2008-11-20 Nippon Electric Glass Co Ltd 太陽電池用ガラス基板およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150166402A1 (en) * 2012-01-12 2015-06-18 Nippon Electric Glass Co., Ltd. Glass
US11352287B2 (en) 2012-11-28 2022-06-07 Vitro Flat Glass Llc High strain point glass

Also Published As

Publication number Publication date
US9156723B2 (en) 2015-10-13
JP2011037683A (ja) 2011-02-24
US20120141804A1 (en) 2012-06-07
JP5642363B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5642363B2 (ja) ガラス基板
US10196297B2 (en) Intermediate thermal expansion coefficient glass
US8431503B2 (en) Alkali-free glass and method for producing same
JP6191138B2 (ja) ガラス
US9023744B2 (en) Alkali-free glass
US8921245B2 (en) Glass substrate and method for manufacturing same
JP5915892B2 (ja) 薄膜太陽電池用ガラス板
JP2013505889A (ja) 高い耐熱性と低い作業温度を有するアルミノケイ酸塩ガラス
JP5733811B2 (ja) 太陽電池用ガラス基板の製造方法
CN107459259A (zh) 可熔合成形的无钠玻璃
KR20140053832A (ko) 유리 조성물 및 유리 조성물을 사용한 태양 전지용 유리 기판, 및 디스플레이 패널용 유리 기판
TWI543952B (zh) 薄膜太陽電池用玻璃板
WO2012090783A1 (ja) 無アルカリガラスおよび無アルカリガラスの製造方法
WO2020080163A1 (ja) 無アルカリガラス板
WO2013047246A1 (ja) CdTe太陽電池用ガラス基板およびそれを用いた太陽電池
JP6040699B2 (ja) 薄膜太陽電池用ガラス板
JP5382609B2 (ja) ガラス基板
WO2014208521A1 (ja) 無アルカリガラス
JP6044772B2 (ja) 保護膜付きガラス基材
JP2016084247A (ja) ガラス板
JP5915891B2 (ja) ガラス
JP2014084237A (ja) 薄膜太陽電池用ガラス板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10808069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13390027

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10808069

Country of ref document: EP

Kind code of ref document: A1