WO2011016529A1 - 組成物およびその製造方法 - Google Patents

組成物およびその製造方法 Download PDF

Info

Publication number
WO2011016529A1
WO2011016529A1 PCT/JP2010/063316 JP2010063316W WO2011016529A1 WO 2011016529 A1 WO2011016529 A1 WO 2011016529A1 JP 2010063316 W JP2010063316 W JP 2010063316W WO 2011016529 A1 WO2011016529 A1 WO 2011016529A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
drug
composition according
composition
particle diameter
Prior art date
Application number
PCT/JP2010/063316
Other languages
English (en)
French (fr)
Inventor
秀泰 辻
康広 辻
岡 徹
茂 杉
真澄 鳥居
悠 宮尾
喜光 中山
智之 鳥居
正仁 森
Original Assignee
株式会社協和機設
サンスター技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社協和機設, サンスター技研株式会社 filed Critical 株式会社協和機設
Priority to JP2011525937A priority Critical patent/JPWO2011016529A1/ja
Priority to AU2010279931A priority patent/AU2010279931B2/en
Priority to CN201080035024.0A priority patent/CN102470335B/zh
Priority to CA2767993A priority patent/CA2767993C/en
Priority to SG2012003224A priority patent/SG177681A1/en
Priority to EP10806528.5A priority patent/EP2463022B1/en
Publication of WO2011016529A1 publication Critical patent/WO2011016529A1/ja
Priority to US13/361,150 priority patent/US20120128749A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • A23L2/54Mixing with gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics

Definitions

  • the present invention relates to a composition containing a large amount of ultrafine bubbles and a drug, a dispersion in which a hydrophobic drug is dispersed in water without using a surfactant, a production method thereof, and a cleaning agent having a specific composition
  • the present invention relates to a composition and a cleaning method using the cleaning composition.
  • nanobubbles In recent years, an apparatus for generating ultrafine bubbles called nanobubbles has been developed. However, its use is limited to the use of water containing nanobubbles for cleaning and wastewater treatment, and no research has been conducted on systems containing drugs.
  • JP 2008-238165 is known as a method of using a bubble having a relatively large diameter and a chemical substance instead of nanobubbles.
  • the invention described in this patent application relates to a dispersion method for stably maintaining a dispersion liquid in which a substance is dispersed in a liquid, wherein the dispersion liquid contains bubbles.
  • this method improves the stability of the dispersion obtained by making bubbles present when producing the dispersion, and does not mean that bubbles are present in the obtained dispersion.
  • the preferred diameter of the bubbles used in the invention described in the patent is 30 to 1000 microns, and the bubbles of 1000 microns (1 mm) cannot exist stably in the dispersion for a long time.
  • the particle size of the bubbles is very different from the ultrafine bubbles used in the present invention, and the effect is that 10% or more of the oil dispersed in 48 hours is separated as shown in the examples. And it was never satisfactory.
  • the present inventor has found that a composition containing a novel nano-domain ultrafine bubble and a drug exhibits the effect of the drug better, and when the drug is dispersed, the composition can be stably dispersed without using a surfactant. It was found that the body could be obtained, and the present invention was completed.
  • the present invention relates to a composition comprising a novel nano-domain ultrafine bubble and a drug, and a novel nano-domain ultrafine bubble and a dispersion comprising a hydrophobic drug dispersed as particles. Furthermore, the present invention relates to a cleaning composition having a specific composition and a cleaning method using the cleaning composition. The present invention also provides methods for producing the above compositions and dispersions.
  • the present invention provides a composition comprising ultrafine bubbles having a mode particle diameter of 500 nm or less, a drug, and water.
  • the drug is a water-soluble drug and is dissolved in water.
  • the drug is a hydrophobic drug and is dispersed in water. That is, the hydrophobic drug is dispersed as dispersoid particles in water as a dispersion medium.
  • the mode particle diameter of the dispersed drug particles is preferably in the range of 0.05 ⁇ m to 15 ⁇ m.
  • the average particle size of the drug particles is also preferably in the range of 0.05 ⁇ m to 15 ⁇ m.
  • fine drug particles having a mode particle diameter and / or an average particle diameter of 0.05 ⁇ m to 3 ⁇ m can be formed.
  • the hydrophobic drug refers to a drug that is hardly soluble in water and oil-soluble.
  • the ultrafine bubbles have a mode particle diameter of 500 nm or less, preferably a mode particle diameter of 300 nm or less, most preferably a mode particle diameter of 150 nm or less, and 1 million or more, preferably 3 million or more per ml. More preferably, there are 4 million or more, most preferably 5 million or more.
  • the surface of ultrafine bubbles contained in the composition or dispersion is charged, and the absolute value of the zeta potential is 5 mV or more.
  • the drug is a transpiration substance.
  • the transpirable substance is at least one selected from the group consisting of insecticides, fungicides, repellents, allergen deactivators, deodorants, fungicides, fragrances, essential oils and perfumes. It is a substance.
  • the composition or dispersion of the present invention can be in the form of gel as well as liquid.
  • agar, carrageenan, gelatin, water-absorbing resin, aqueous polymer and the like can be used.
  • carrageenan is added to distilled water, heated to prepare a carrageenan solution, and mixed well with a composition containing fine bubbles, a drug and water. This can be cooled to room temperature to form a gel dispersion.
  • it can also be set as mist using a spraying apparatus.
  • the present invention further uses alkaline electrolyzed water as water, uses one or more compounds selected from terpenes as a drug, and is selected from the group consisting of air, oxygen, hydrogen and nitrogen in ultrafine bubbles.
  • a cleaning composition containing at least one gas, and a cleaning method using the cleaning composition and applying ultrasonic waves are provided.
  • the present invention further includes the generation of ultrafine bubbles having a mode particle diameter of 500 nm or less in an aqueous solution of a water-soluble drug by an ultrafine bubble generator, and the ultrafine bubbles having a mode particle diameter of 500 nm or less. And a water-soluble drug, and water, wherein the water-soluble drug is dissolved in water.
  • the present invention further includes generating ultrafine bubbles having a mode particle diameter of 500 nm or less in a mixture of a dispersoid and a liquid dispersion medium by an ultrafine bubble generator, wherein the mode particle diameter is 500 nm or less.
  • a method for producing a composition comprising ultrafine bubbles, a hydrophobic drug, and water, wherein the hydrophobic drug is dispersed in water.
  • the present invention has a mode particle diameter of 500 nm or less, including adding a hydrophobic agent after generating ultrafine bubbles having a mode particle diameter of 500 nm or less in water by an ultrafine bubble generator.
  • a method for producing a composition comprising ultrafine bubbles, a hydrophobic drug, and water, wherein the hydrophobic drug is dispersed in water.
  • the effect of the drug is better expressed.
  • the drug when the drug is transpirationable, its transpiration performance is improved and the concentration of the drug in the composition can be lowered.
  • the drug is a fungicide or the like, the permeability of the drug is improved and a greater effect can be obtained.
  • a transpiration method a method of evaporating by heating, a method of evaporating chemicals by wind power, a method of evaporating by an ultrasonic oscillator, etc. have been used.
  • the production cost of the transpiration device is increased and the operation cost is also generated.
  • the present invention is advantageous in that it is safe and low in the manufacturing cost of the apparatus, does not require an operating cost, and can be safely applied to a wide variety of substances.
  • the hydrophobic drug when the hydrophobic drug is dispersed in water, an effect of providing a long-term stable dispersion without using a surfactant can be obtained. Since the surfactant is not used, the cost can be reduced and the waste liquid treatment due to the surfactant is not necessary. In particular, when reducing the particle size in order to improve the dispersion stability of the dispersion, it was necessary to use a large amount of surfactant, whereas in the present invention, it is not necessary to use a surfactant. It is possible to solve the problem of further reduction in cost and reduction in the effective amount of the substance that is actually dispersed due to an increase in the amount of surfactant used.
  • production at the time of generating the ultrafine bubble used in this invention and the change of the particle distribution of the bubble until after three months are shown.
  • Measurement device: Multisizer 3 The measurement result of the particle size of the ultrafine bubble used in this invention is shown.
  • Measurement device: Nano particle size analysis system Nanosite series The measurement result of the particle size of the ultrafine bubble used in this invention is shown.
  • Measurement device: Nano particle size analysis system Nanosite series The measurement result of the zeta potential of the ultrafine bubbles used in the present invention is shown.
  • FIG. (Measurement device: ELSZ-1 manufactured by Otsuka Electronics Co., Ltd.) It is a figure which shows the particle size distribution immediately after preparation of the dispersion obtained in Example 2.
  • FIG. (Measuring device: Particle size distribution measuring device LS 13 320) It is a figure which shows the particle size distribution after storing the dispersion obtained in Example 2 at room temperature for 3 months.
  • Measurement device: Particle size distribution measuring device LS 13 320 It is a figure which shows the particle size distribution after preserve
  • FIG. (Measuring device: Particle size distribution measuring device LS 13 320) It is a figure which shows the particle size distribution immediately after preparation of the dispersion obtained in Example 3.
  • FIG. (Measuring device: Particle size distribution measuring device LS 13 320) It is a figure which shows the particle size distribution after preserve
  • (Measuring device: Particle size distribution measuring device LS 13 320) It is a figure which shows the particle size distribution after preserve
  • the present invention provides a composition comprising ultrafine bubbles having a mode particle diameter of 500 nm or less, a drug, and water.
  • the particle size of the ultrafine bubbles used in the present invention is so small that it cannot be accurately measured with a normal particle size distribution analyzer. Therefore, in this specification, numerical values measured by the nanoparticle analysis system Nanosite Series (manufactured by NanoSight) are used. Nanoparticle analysis system Nanosite Series (manufactured by NanoSight) measures the speed of Brownian motion of nanoparticles and calculates the particle diameter from that speed. The mode particle size can be confirmed from the particle size distribution of the existing particles.
  • the inside of the ultrafine bubbles is generally air, but may be other gases such as oxygen, hydrogen, nitrogen, carbon dioxide and ozone.
  • the drug can be any compound that acts effectively for the desired purpose.
  • various water-soluble natural products lower alcohols, glycols, esters, acids, bases, salts, water-soluble polymers, water-soluble proteins such as water-soluble proteins, and plant-derived oils, Hydrophobic substances such as animal-derived oils, fats and oils, hydrocarbons, waxes, esters, fatty acids, higher alcohols, water-insoluble polymers, oil-soluble pigments, and oil-soluble proteins
  • various pharmaceuticals, cosmetics, insecticides, fungicides, agricultural chemicals, fertilizers, vitamins, paints, adhesives, infiltrants, and the like are exemplified, but the invention is not limited thereto.
  • Water can be distilled water, ultra-pure, high-purity, pure water, tap water, ion-exchanged water, filtered water, electrolytic water, natural water, and the like. If there is no problem in performance, a small amount of a water miscible solvent such as alcohol may be included as a cosolvent.
  • a water miscible solvent such as alcohol
  • the drug is dissolved in water.
  • water-soluble drug any water-soluble drug can be used, preferred water-soluble drugs used in this embodiment include, for example, fungicides, fragrances, allergen deactivators, deodorants, bactericides, repellents, etc. Can be given.
  • water-soluble drugs examples include sodium hypochlorite, chlorlime lime mercurochrome, alcohols (ethanol, isopropanol, etc.), hydrogen peroxide, reverse soap (benzalkonium chloride, cetylpyridinium chloride, etc.), surfactants Phenols (such as cresol soap solution), catechol, 4-methylcatechol, 5-methylcatechol, resorcinol, 2-methylresorcinol, 5-methylresorcinol, diphenols such as hydroquinone, 4,4′-biphenyldiol and Polyhydroxyamine compounds such as 3,4'-diphenyldiol, dopa, dopamine, caffeic acid, paracoumarin acid, tyrosine, ethanolamine, triethanolamine, tris (hydroxymethyl) aminomethane, or polyphenol Flavones (apigenin, luteolin, tangerine, diosmine, flavoxate), isoflavones (cumesterol, daidzein, d
  • the drug is dispersed in water.
  • the drug forms a discontinuous phase as a dispersoid and water forms a continuous phase as a dispersion medium.
  • Preferable hydrophobic drugs used in this embodiment include insecticides, bactericides, repellents, allergen deactivators, deodorants, fungicides, fragrances, essential oils, and fragrances.
  • hydrophobic drugs examples include pyrethroid agents (pyretrin, permethrin, etofenprox, etc.), organic phosphorus agents (parathion, dichlorvos, marathon, fenitrothion, etc.), carbamate agents (carbaryl, propoxer, fenocarb, etc.), chloronicotinyl agents (Imidocloprid, acetamiprid, dinotefuran, etc.), iodine agent (iodo tincture, povidone iodine), triclosan, isopropylmethylphenol, acrinol, diethylamide di-N-propylisocincomeronate, 2,3,4,5-bis ( ⁇ 2-butylene) ) Tetrahydrofurfural, dinormalpropyl isocincomeronate, N-octyl-bicycloheptene dicarboximide, ⁇ -naphthol and cycloheximide,
  • the mode particle diameter of the drug particles is in the range of 0.05 ⁇ m to 15 ⁇ m, more preferably in the range of 0.05 ⁇ m to 6 ⁇ m.
  • ultrafine drug particles in the range of 0.05 ⁇ m to 3 ⁇ m can be formed.
  • the average particle diameter of the drug particles can also preferably be in the range of 0.05 ⁇ m to 15 ⁇ m, more preferably in the range of 0.05 ⁇ m to 6 ⁇ m.
  • ultrafine drug particles having an average particle diameter ranging from 0.05 ⁇ m to 3 ⁇ m can be formed.
  • the particle size distribution of the dispersed drug particles referred to in the present invention is measured by a particle size distribution measuring device LS 13-320 (manufactured by Beckman Coulter).
  • the mode diameter is a maximum value of volume% or number% with respect to the particle diameter, and is also called a mode diameter.
  • the average diameter is a number average diameter or a volume average diameter.
  • the particle size distribution shown by the below-mentioned Example is the particle size distribution of the chemical
  • ultrafine bubbles per ml there are 1 million or more ultrafine bubbles per ml, preferably 3 million or more, more preferably 4 million or more, and most preferably 5 million or more per ml.
  • the number of ultrafine bubbles mentioned in the present specification is also measured by a nanoparticle analysis system Nanosite Series (manufactured by NanoSight).
  • alkaline electrolyzed water is used as water, and a terpene compound, preferably at least one compound selected from terpene hydrocarbons and terpene alcohols, is used as a drug.
  • a cleaning composition comprising at least one gas selected from the group consisting of hydrogen, oxygen and nitrogen, and a cleaning method using the cleaning composition and applying ultrasonic waves.
  • alkaline electrolyzed water suitably used in the present invention, those having a pH of 10 or more, preferably 10 to 13, can be used. Examples of such alkaline electrolyzed water include those having a pH of 11.7 sold by Felicity Co., Ltd. under the product name “strong alkaline water”.
  • terpene hydrocarbons preferably used in the present invention include pinene, menten, cymene, ferrandrene, menthane, and limonene.
  • terpene alcohol preferably used in the present invention include citronellol, pinocampheol, geraniol, fentil alcohol, nerol and borneol. The above examples are non-limiting examples and are not limited to these compounds.
  • terpene hydrocarbon is preferably used, and limonene is most preferably used. Within the ultrafine bubbles, air, oxygen, hydrogen and nitrogen gases can be present alone or in a mixed gas.
  • bubbles containing hydrogen and bubbles containing nitrogen may be mixed, or bubbles containing a mixed gas of hydrogen and nitrogen may exist.
  • the most preferable effect is obtained when hydrogen is used as the gas.
  • the mixing ratio of the gas can be appropriately determined experimentally from the viewpoint of safety and cost as well as the cleaning effect.
  • the cleaning composition of the present invention is suitably used for removing metal stains and rust, and stains adhering to various substrates such as plastics and fabrics. Further, cleaning is preferably performed while generating ultrasonic waves in the cleaning agent.
  • a known apparatus can be used for ultrasonic generation, and the frequency and intensity can be easily determined to be appropriate values experimentally. In order to “generate ultrasonic waves in the cleaning agent”, it is generally sufficient to put the cleaning agent in a bath equipped with an ultrasonic generator. However, ultrasonic waves are applied to the cleaning agent and / or the object to be cleaned. Any method can be used as long as it can be irradiated.
  • the excellent effect in the present invention can be obtained by the following mechanism. That is, when the drug is water-soluble, the movement of the drug molecule is activated by the movement of the ultrafine bubbles, and the action effect is increased. It is thought to show an effect.
  • the drug when the drug is hydrophobic and dispersed in water, it is considered that ultrafine bubbles gather on the surface of the drug dispersed particles, and the dispersed particles are stabilized by the surface-active effect caused by the zeta potential of the bubble surface. ing. Therefore, it is important that the number of ultrafine bubbles is kept within a preferable range.
  • the zeta potential on the surface of the ultrafine bubbles contained in the composition or the dispersion is also important for achieving the effects of the present invention.
  • the surface of the ultrafine bubbles used in the present invention is charged, and the absolute value of the zeta potential thereof is 5 mV or more, preferably 7 mV or more. Further, since the absolute value of the zeta potential is proportional to the viscosity of the solution / the dielectric constant of the solution, it is considered that the dispersion stability increases as the ultrafine bubbles, the drug and the water are treated under low temperature conditions.
  • Ultrafine bubbles having a mode particle diameter of 500 nm or less used in the present invention can be obtained by any known means, for example, a static mixer type, a venturi type, a cavitation type, a vapor agglomeration type, an ultrasonic type, a swirling type, It can be generated by a pressure melting method or a fine pore method.
  • a preferred method for generating bubbles is a gas-liquid mixed shearing method.
  • An apparatus useful for generating ultrafine bubbles by the gas-liquid mixed shearing method is, for example, an apparatus disclosed in Japanese Patent No. 4118939.
  • this device most of the gas-liquid mixed fluid introduced into the fluid swirl chamber is temporarily directed in the direction opposite to the direction in which the discharge port is located, unlike the conventional device described above. Proceed as a swirl flow. Then, the swirl flow is reversed by the first end wall member and proceeds from the first end wall member toward the second end wall member. At this time, the swirl rotation radius is changed to the first end wall member. Since the flow velocity is smaller than when traveling, the flow velocity becomes high. Therefore, the shearing force to the gas contained in the liquid is increased, and the miniaturization is promoted.
  • the composition of the present invention in which the drug is dissolved in water is produced by treating the drug aqueous solution with an ultrafine bubble generator and generating ultrafine bubbles in the aqueous solution. can do.
  • compositions of the invention that are dispersed in water can be prepared.
  • the composition of the present invention in which the hydrophobic drug is dispersed in water can be produced by treating the water with an ultrafine bubble generator to generate ultrafine bubbles in water and then adding the hydrophobic drug. it can.
  • a hydrophobic drug that is solid at room temperature by being heated and melted or dissolved in a solvent.
  • Example 1 Ultrafine bubbles were generated using 18.2 M ⁇ / cm of pure water by “BAVITAS” manufactured by Kyowa Kikai Co., Ltd., which is an ultrafine bubble generator using a gas-liquid mixed shear method.
  • the change in particle size distribution at the time of generation and bubble particle distribution up to 3 months later is shown in FIG.
  • the particle size distribution was measured with Multisizer 3 (manufactured by Beckman Coulter). It is shown that no change in the number is observed in the portion having a particle diameter of 1 ⁇ m or less.
  • the particle size of the ultrafine bubbles generated at the same time was measured using a nanoparticle analysis system Nanosite Series (manufactured by NanoSight). The measurement results are shown in FIGS.
  • FIG. 2 shows the measurement results after 24 hours from the generation of ultrafine bubbles
  • FIG. 3 shows the measurement results after 48 hours. It was confirmed that the mode particle diameter of the bubbles was 500 nm or less, about 4 to 8 million bubbles in 1 ml, and the generated ultrafine bubbles were stably present in water for a long time. .
  • the zeta potential of the generated bubbles was measured with a zeta potential measurement system ELSZ-1 manufactured by Otsuka Electronics Co., Ltd. The results are shown in FIG. This measurement indicated that the zeta potential was maintained over a long period of time and that bubbles were present stably.
  • Example 2-5 A mixture having the composition shown in Table 1 below was processed under the same conditions as in Example 1 by “BAVITAS” manufactured by Kyowa Kikai Co., Ltd. However, distilled water was used instead of pure water. The results are shown in Table 1.
  • Example 2-4 it was shown that the hydrophobic drug was stably dispersed. Those stored at room temperature (RT) and those stored at 40 ° C. maintain a good emulsified state.
  • FIG. 5-13 shows the particle size distribution measured immediately after preparation of the dispersion obtained in Example 2-4 and after storage at room temperature and 40 ° C. using a particle size distribution analyzer LS 13 320 (manufactured by Beckman Coulter). The results are shown. Taking the horizontal axis as the particle diameter, volume% (upper figure) and number% (lower figure) with respect to each particle diameter were measured. In addition, the average diameter, median diameter, and mode diameter in FIG. 5-13 are values calculated from volume%.
  • Example 5 70 nm bubbles were formed under the same experimental conditions. From this, it is considered that bubbles of about 70 nm were similarly generated in Example 2-4. Further, as shown in Comparative Example 1, the material dispersed by the homomixer was immediately separated.
  • Example 6-8 As a sample for Examples 6-8, the components in parts by weight shown in Table 2 below were sequentially blended, and the treatment was performed under the same conditions as in Example 1 using “BAVITAS” manufactured by Kyowa Kikai Co., Ltd. . However, distilled water was used instead of pure water. In Comparative Examples 2 and 3, the same transpiration component as in Examples 6 and 7 was emulsified using a surfactant. In Comparative Example 4, the same drug as in Example 8 was dissolved with a homomixer.
  • the odor concentration was obtained by converting the value obtained by the equation 1) by the following equation.
  • Y 10 X ( 2)
  • X threshold value of the entire panel
  • Y odor concentration
  • Table 3 ⁇ indicates that the answer is correct and ⁇ indicates that the answer is incorrect. Since the threshold value is about 10 times higher than that of Comparative Example 2, it can be seen that the transpiration efficiency of the fragrance is improved.
  • Example 7 Antifungal performance evaluation Test method: Performed according to “JIS Z 2911 Mold resistance test method 8. Test of paint”. However, two types of test bacteria were Penicillium funiculosum and Alternaria Alternata. The results are shown in Table 4.
  • Example 8 Deodorant performance evaluation Test method Install a filter paper containing a malodorous component (cigarette odor) in a sealed container and volatilize the malodorous substance sufficiently.
  • the test solution was quantitatively sprayed with a trigger spray into the container, and the strength of the malodorous component one minute later was subjected to sensory evaluation with four panels. The evaluation was performed in order of 1, 2, and 3 in ascending order of malodor intensity.
  • Example 8 the malodor intensity is reduced in Example 8 as compared with Comparative Example 4.
  • Example 9 The mixture having the composition shown in Table 6 below was treated under the same conditions as in Example 1 by “BAVITAS” manufactured by Kyowa Kikai Co., Ltd.
  • Example 10 as ion-exchanged water, ion-exchanged water containing ultrafine bubbles treated by “BAVITAS” was used, and l-menthol was dispersed in the ion-exchanged water containing such ultrafine bubbles with a homomixer. .
  • Comparative Examples 5 and 6 mere ion-exchanged water containing no ultrafine bubbles was used, and l-menthol was dispersed and emulsified with a homomixer. The results are shown in Table 6.
  • Example 9 a better emulsified state is maintained as compared with Comparative Example 5 treated with a homomixer. It was also shown that good dispersibility can be obtained even in Example 10 in which ion-exchanged water was previously treated with “BAVITAS” manufactured by Kyowa Kikai Co., Ltd. and l-menthol was added thereto.
  • Antifungal performance evaluation Test method: A spore suspension was prepared and applied to a plate medium containing potato dextrose agar medium. Further, a filter paper (2.5 cm ⁇ 2.5 cm) impregnated with the sample shown in Table 6 (sample that was uniformly dispersed immediately after preparation) was pasted on the center of the petri dish of the above plate culture medium, and 23 ° C., 100% RH. For 5 days. The test bacterium was Cladosporium cladosporioides, and the spores were adjusted to about 1 ⁇ 10 2 cells / ml. The growth state of the mold after culturing was visually observed and evaluated based on the evaluation criteria for the antifungal performance evaluation of Example 7. The results are shown in Table 8.
  • Example 11 A cleaning test was performed using cleaning water having the composition shown in Table 9.
  • the ultrasonic waves were applied for 3 hours to visually evaluate the contaminated state of the artificially contaminated cloth before and after washing.
  • the ultrasonic waves were generated by an ultrasonic generator of product number USD-4R manufactured by ASONE Co., Ltd., and the frequency was 28 kHz.
  • limonene was used, and as the gas, a mixed gas mixed at a ratio of nitrogen 24 to hydrogen 1 was used. The results are shown in Table 10.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Plant Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Nutrition Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Communicable Diseases (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Oncology (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Detergent Compositions (AREA)
  • Colloid Chemistry (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Medicinal Preparation (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Catching Or Destruction (AREA)

Abstract

【課題】水溶性薬剤を含む溶液において薬剤の効果をよりよく発現させる組成物を提供すること。また界面活性剤を使用することなく疎水性薬剤を安定に分散させた分散体を提供すること。 【解決手段】最頻粒子径が500nm以下である超微細気泡と薬剤、および水を含む組成物。超微細気泡発生装置を利用する、最頻粒子径が500nm以下である超微細気泡と薬剤、および水を含む組成物の製造方法。

Description

組成物およびその製造方法
 本発明は、多量の超微細気泡および薬剤を含む組成物、界面活性剤を使用せずに疎水性薬剤を水中に分散させた分散体、およびそれらの製造方法、並びに特定の組成を有する洗浄剤組成物および該洗浄剤組成物を使用する洗浄方法に関する。
 近年、いわゆるナノバブルと呼ばれる超微細気泡を発生させる装置が開発されている。しかしその利用はナノバブルを含む水を洗浄や排水処理などに使用するものに限られており、薬剤を含む系に関する研究は行われていなかった。
 ナノバブルではなく、比較的径の大きなバブルと化学物質を組み合わせて使用する方法としては、特開2008-238165号が知られている。この特許出願に記載された発明は、物質が液体中に分散した分散液を安定に保つ分散方法において、該分散液中に気泡を含有することを特徴とする分散方法に関する。しかし、この方法は分散物を製造する際に気泡を存在させることにより得られる分散液の安定性が改良されるというものであり、得られた分散物中に気泡が存在するというものではない。このことは、前記特許記載の発明においては使用される気泡の好ましい径は30から1000ミクロンとされており、1000ミクロン(1mm)の気泡が分散液内に長時間安定して存在し得ないことから明らかであろう。またその気泡の粒径は本発明で使用される超微細気泡とは大きく異なっており、その効果は、実施例に示されるように48時間で分散された油の10%以上が分離してしまうというものであり、決して満足のゆくものではなかった。
特開2008-238165号
 本発明者は、新規なナノ領域の超微細気泡と薬剤とを含む組成物が薬剤の効果をよりよく発現させ、また薬剤を分散させた場合には界面活性剤を使用することなく安定な分散体を得ることができることを見いだし、本発明を完成させた。
 本発明は、新規なナノ領域の超微細気泡と薬剤とを含む組成物、および新規なナノ領域の超微細気泡と、粒子として分散された疎水性薬剤を含む分散体に関する。さらに本発明は特定の組成を有する洗浄剤組成物および該洗浄剤組成物を使用する洗浄方法に関する。また本発明は上記の組成物および分散体の製造方法も提供する。
 本発明は、最頻粒子径が500nm以下である超微細気泡と薬剤、および水を含む組成物を提供する。
 本発明の第一の態様において、前記薬剤は水溶性薬剤であり水中に溶解している。
 また、本発明の第二の態様においては、前記薬剤は疎水性薬剤であり水の中に分散している。すなわち前記疎水性薬剤は分散質粒子として、分散媒である水の中に分散している。
 本発明の第二の態様において、好ましくは前記の分散された薬剤粒子の最頻粒子径は0.05μmから15μmの範囲である。この薬剤粒子の平均粒子径も好ましくは0.05μmから15μmの範囲であることができる。また分散される疎水性薬剤の種類によっては、最頻粒子径および/または粒子平均径が0.05μmから3μmの範囲のような微細薬剤粒子を形成することができる。なお、本明細書において疎水性薬剤とは水に難溶であり、油溶性である薬剤をいう。
 前記超微細気泡は、最頻粒子径が500nm以下、好ましくは最頻粒子径が300nm以下、最も好ましくは最頻粒子径が150nm以下であり、1ml当たり100万個以上、好ましくは300万個以上、さらに好ましくは400万個以上、最も好ましくは500万個以上存在する。
 本発明の一態様において、組成物または分散体に含まれる超微細気泡表面が帯電し、そのゼータ電位の絶対値は5mV以上である。
 好ましい態様において前記薬剤は蒸散性物質である。さらに好ましい態様において、前記蒸散性物質は、殺虫剤、殺菌剤、忌避剤、アレルゲン不活性化剤、消臭剤、防カビ剤、芳香剤、精油および香料から成る群から選択される少なくとも1種の物質である。
 本発明の組成物または分散体は、液状の他、ジェル状であることもできる。分散体をジェル状にする場合、寒天、カラギーナン、ゼラチン、吸水性樹脂、水性高分子等を利用することができる。例えば、カラギーナンを蒸留水に加え、加温してカラギーナン溶液を調整し、微細気泡、薬剤および水を含む組成物とよく攪拌混合する。これを室温まで冷却し、ジェル状分散体とすることができる。また噴霧装置を使用してミストとすることもできる。
 本発明はさらに、水としてアルカリ電解水を使用し、薬剤としてテルペン類から選択される1つ以上の化合物を使用し、超微細気泡内に、空気、酸素、水素および窒素からなる群から選択される少なくとも1つの気体を含む洗浄剤組成物、並びにこの洗浄剤組成物を使用して、超音波を適用する、洗浄方法を提供する。
 本発明はさらに、超微細気泡発生装置により、水溶性薬剤の水溶液中に最頻粒子径が500nm以下である超微細気泡を発生させることを含む、最頻粒子径が500nm以下である超微細気泡と水溶性薬剤、および水を含む組成物であって、該水溶性薬剤が水中に溶解している組成物の製造方法を提供する。
 本発明はさらに、超微細気泡発生装置により、分散質と液体分散媒の混合物中に最頻粒子径が500nm以下である超微細気泡を発生させることを含む、最頻粒子径が500nm以下である超微細気泡と疎水性薬剤、および水を含む組成物であって、該疎水性薬剤が水中に分散している組成物の製造方法を提供する。
 また本発明は、超微細気泡発生装置により、水中に最頻粒子径が500nm以下である超微細気泡を発生させた後、疎水性薬剤を加えることを含む、最頻粒子径が500nm以下である超微細気泡と疎水性薬剤、および水を含む組成物であって、該疎水性薬剤が水中に分散している組成物の製造方法を提供する。
 本発明の組成物では、超微細気泡が共存するために、薬剤の効果がよりよく発現される。たとえば薬剤が蒸散性である場合にはその蒸散性能が向上され、組成物中の薬剤濃度を低くすることができる。また薬剤が防かび剤などの場合には、薬剤の浸透性が向上し、より大きな効果が得られる。また従来は蒸散方法として加熱蒸散させる方法、風力により薬剤を揮散させる方法、超音波発振機により蒸散させる方法などが用いられていたが、加熱する場合には熱分解しやすい物質が使用できないという欠点があり、またそれぞれ加熱装置、ファン、または超音波発振機を使用するため、いずれの場合にも蒸散装置の製造コストが増大し、運転コストも発生していた。これに対して本発明は安全かつ装置の製造コストが低く、運転コストの必要が無く、安全に広汎な物質に対して適用できるという効果を奏する。
 本発明において疎水性薬剤を水中に分散する場合には、界面活性剤を使用することなく、長期間安定な分散体を提供できるという効果が得られる。界面活性剤を使用しないので、コストが低減でき、また、界面活性剤に起因する廃液処理の必要もなくなった。特に分散体の分散安定性を向上させるために粒子径を小さくする場合には多量の界面活性剤を使用する必要があったのに対し、本発明では界面活性剤を使用する必要がないので、さらなるコストの低減と、界面活性剤の使用量の増大に起因する、実際に分散される物質の有効量の低下という問題点を解決することができる。
本発明において使用される超微細気泡を発生させた際の生成時の粒度分布と3ヶ月後までの気泡の粒子分布の変化を示す。(測定装置:Multisizer 3) 本発明において使用される超微細気泡の粒径の測定結果を示す。(測定装置:ナノ粒度解析システム ナノサイトシリーズ) 本発明において使用される超微細気泡の粒径の測定結果を示す。(測定装置:ナノ粒度解析システム ナノサイトシリーズ) 本発明において使用される超微細気泡のゼータ電位の測定結果を示す。(測定装置:大塚電子(株)製ELSZ-1) 実施例2で得られた分散体の、作成直後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320) 実施例2で得られた分散体を室温で3ヶ月保存した後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320) 実施例2で得られた分散体を40℃で3ヶ月保存した後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320) 実施例3で得られた分散体の、作成直後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320) 実施例3で得られた分散体を室温で2ヶ月保存した後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320) 実施例3で得られた分散体を40℃で2ヶ月保存した後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320) 実施例4で得られた分散体の、作成直後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320) 実施例4で得られた分散体を室温で2ヶ月保存した後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320) 実施例4で得られた分散体を40℃で2ヶ月保存した後の粒径分布を示す図である。(測定装置:粒度分布測定装置 LS 13 320)
 本発明は、最頻粒子径が500nm以下である超微細気泡と薬剤、および水を含む組成物を提供する。
 本発明で使用される超微細気泡の粒径は非常に小さいために通常の粒度分布測定装置では正確に測定することができない。そのため本明細書中では、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した数値を利用している。ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)は、ナノ粒子のブラウン運動の速度を計測し、その速度から粒子径を算出する。最頻粒子径は、存在する粒子の粒子径分布から確認できる。超微細気泡内は一般的には空気であるが、酸素、水素、窒素、炭酸ガスおよびオゾンなどの他の気体であることもできる。
 薬剤は、所望の目的のために有効に作用する任意の化合物であることができる。薬剤としては化学構造面からは、各種の水溶性の天然物、低級アルコール、グリコール、エステル、酸、塩基、塩、および水溶性高分子、水溶性蛋白質などの水溶性物質、並びに植物由来油、動物由来油、油脂類、炭化水素、ロウ類、エステル類、脂肪酸類、高級アルコール類、非水溶性高分子類、油溶性色素類、および油溶性蛋白質などの疎水性物質があげられるが、これらに限定されるものではない。また機能面からは、各種医薬品、化粧品、殺虫剤、殺菌剤、農薬、肥料、ビタミン類、塗料、接着剤、浸潤剤などがあげられるが、これらに限定されるものではない。
 水は、蒸留水、超純粋、高純粋、純水、水道水、イオン交換水、濾過水、電解水、および天然水などが使用できる。また性能的に問題がなければ、少量のアルコールなどの水混和性溶剤を共溶剤として含むこともできる。
 本発明の第一の態様においては、前記薬剤は水中に溶解している。任意の水溶性の薬剤を使用することができるが、この態様で使用される好ましい水溶性薬剤としては、たとえば防かび剤、香料、アレルゲン不活性化剤、消臭剤、殺菌剤、忌避剤などがあげられる。水溶性薬剤の例としては、次亜塩素酸ナトリウム、クロル石灰 マーキュロクロム液、アルコール類(エタノール、イソプロパノールなど)、過酸化水素、逆性石鹸(塩化ベンザルコニウム、塩化セチルピリジニウムなど)、界面活性剤、フェノール類(クレゾール石鹸液など)、カテコール、4-メチルカテコール、5-メチルカテコール、レソルシノール、2-メチルレソルシノール、5-メチルレソルシノール、ハイドロキノンといったジフェノール類、4,4'-ビフェニルジオールおよび3,4'-ジフェニルジオール、ドーパ、ドーパミン、カフェイン酸、パラクマリン酸、チロシン、エタノールアミン、トリエタノールアミン、トリス(ヒドロキシメチル)アミノメタン等のポリヒドロキシアミン化合物、あるいはポリフェノール類としてフラボン類(アピゲニン、ルテオリン、タンゲリチン、ジオスミン、フラボキサート)、イソフラボン類(クメステロール、ダイゼイン、ダイジン、ゲニステイン)、フラバノール類(ケンフェロール、ミリセチン、クエルセチン)、フラバノン(エリオジクチオール、ヘスペレチン、ホモエリオジクチオール、ナリンゲニン)、フラバン-3-オール類(カテキン、エピカテキン、エピガロカテキン)、アントシアニジン類(シアニジンなど、また、デルフィニジン、マルビジン、ペラルゴニジン、ペオニジン)、フェノール酸、クロロゲン酸、エラグ酸、リグナンクルクミン、ハイドロキノン誘導体、コウジ酸、L-アスコルビン酸およびその誘導体、トラネキサム酸およびその誘導体、グリチルリチン酸塩、レゾルシン、サリチル酸、グルコン酸クロルヘキシジン、ビタミンB6およびその誘導体、ニコチン酸およびその誘導体、パントテニールエチルエーテル、トリプシン、ヒアルロニダーゼ、チオタウリン、グルタチオン、ピペリン、果汁、ブドウ糖、さらに水溶性植物抽出物としてローズマリーエキス、レモンエキス、レイシエキス、ツルレイシエキス、グルコサミン、スターフルーツエキス、ゲットウエキス、イチョウエキス、トレハロース、柿エキス、ラベンダーエキス、ヨモギエキス、モモ葉エキス、セージエキス、マツエキス、ヘチマエキス、ニンジンエキス、トウキエキス、トマトエキス、トウガラシエキス、アロエエキス、海藻エキス、セージエキス、チョウジエキス、トウモロコシエキス、タイムエキス、ユーカリエキス、イトスギエキス、キダチハッカエキス、クローブエキス、ミントエキス、コショウエキス、茶エキス、イザヨイバラエキス、サトウキビ抽出液などが挙げられ、これらのいくつかを併せて使用することもできる。なお上記の例示は非制限的な例示であり、これらの化合物に限定されるものではない。
 本発明の第二の態様においては、前記薬剤は水中に分散している。
 この態様においては、薬剤は分散質として不連続相を形成し、水は分散媒として連続相を形成する。この態様で使用される好ましい疎水性薬剤としては、たとえば殺虫剤、殺菌剤、忌避剤、アレルゲン不活性化剤、消臭剤、防カビ剤、芳香剤、精油および香料などがあげられる。疎水性薬剤の例としては、ピレスロイド剤(ピレトリン、ペルメトリン、エトフェンプロックス等) 、有機リン剤(パラチオン、ジクロルボス、マラソン、フェニトロチオン等)、カーバメイト剤(カルバリル、プロポクサー、フェノブカーブ等)、クロロニコチニル剤(イミドクロプリド、アセタミプリド、ジノテフラン等)、ヨウ素剤(ヨードチンキ、ポビドンヨード)、トリクロサン、イソプロピルメチルフェノール、アクリノール、ジエチルアミド・ジ-N-プロピルイソシンコメロネート、2・3・4・5-ビス(Δ2-ブチレン)テトラヒドロフルフラール、イソシンコメロン酸ジノルマルプロピル、N-オクチル-ビシクロヘプテン・ジカルボキシイミド、β-ナフトールやシクロヘキシミド、アセチル-iso-オイゲノール、アネトール、iso-アミルアセテート、アリルアミルグリコレート、アリルヘプタノエイト、アルデヒドC-14ピーチ、アルデヒドC-16ストロベリー、エストラゴール、オイゲノール、l-カルボン、カンファー、カンフェン、iso-シクロシトラール、1,8-シネオオール、シトラール、シトロネラール、ジメトール、ジメチルベンジルカルビニルアセテート、α-ダマスコン、β-ダマスコン、δ-ダマスコン、ダマセノン、ターピネオール、ターピニルアセテート、ターピノレン、ターピネン-4-オール、チモール、o-t-ブチルシクロヘキシルアセテート、cis-3-ヘキセニルアセテート、フルテート、ポワレネート、ポレナールII、iso-ボロニルアセテート、p-メチルアセトフェノン、メチル-iso-オイゲノール、メチルヨノン-γ、l-メントール、メントン、iso-メントン、メチルサリシレート、メンタニルアセテート、ラクトンC-10ガンマ、リナリルアセテート、アルデヒドC11、アルデヒドC12ローリック、アルデヒドC12MNA、アンプロキサン、アミルシンナミックアルデヒド、サリチル酸アミル、ベンズアルデヒド、酢酸ベンジル、サリチル酸ベンジル、セドロール、シンナミックアルコール、クマリン、シクロペンタデカノリド、γ-デカラクトン、エチルバニリン、オイゲノール、ヘキシルシンナミックアルデヒド、インドール、α-ヨノン、イソオイゲノール、リリアール、リナロール、酢酸リナリル、リラール、マルトール、アンスラニル酸メチル、メチルヨノン、γ-メチルヨノン、ムスクケトン、ムスクキシロール、フェニルアセトアルデヒド、酢酸フェニル、イオウ、フェニルエチルアルコール、フェニルプロピルアルコール、α-ピネン、α-テルピネオール、トナリド、バニリン、ベルトフィックスクール、およびローズマリーオイル、レモングラスオイル、ハッカオイル、スペアミントオイル、セージオイル、ジンジャーオイル、アニスオイル、アルモアーゼオイル、エストラゴンオイル、カルダモンオイル、カンファーオイル、キャラウェイオイル、キャロットシードオイル、クローブオイル、コリアンダーオイル、シトロネラオイル、スペアミントオイル、セージクラリーオイル、タイムオイル、パインオイル、バジルオイル、フェンネルオイル、ベイオイル、ペパーミントオイル、ラバンジンオイル、マージョラムオイル、ラベンダーオイル、ローレルリーフオイル、ユーカリプタスオイル、ニームオイルなどの精油類、茶エキス、イザヨイバラエキス、サトウキビエキス、レモンエキス、レイシエキス、ツルレイシエキス、グルコサミン、スターフルーツエキス、ゲットウエキス、イチョウエキス、果汁、トレハロース、柿エキス、ラベンダーエキス、ヨモギエキス、モモ葉エキス、セージエキス、マツエキス、ヘチマエキス、ニンジンエキス、トウキエキス、トマトエキス、トウガラシエキス、アロエエキス、海藻エキス、セージエキス、チョウジエキス、トウモロコシエキス、タイムエキス、ユーカリエキス、イトスギエキス、キダチハッカエキス、クローブエキス、ミントエキス、コショウエキスなどの油溶性植物抽出物、並びにテルペン類、たとえばピネン、メンテン、サイメン、フェランドレン、メンタン、およびリモネンなどのテルペン炭化水素、およびシトロネロール、ピノカンフェオール、ゲラニオール、フェンチルアルコール、ネロール、リナロール、およびボルネオールなどのテルペンアルコールが挙げられ、これらのいくつかを併せて使用することもできる。なお上記の例示は非制限的な例示であり、これらの化合物に限定されるものではない。
 疎水性薬剤が水中に分散される場合、薬剤粒子の最頻粒子径は0.05μmから15μmの範囲であり、より好ましくは0.05μmから6μmの範囲である。また分散される薬剤の種類によっては、0.05μmから3μmの範囲のような超微細薬剤粒子を形成することができる。この薬剤粒子の平均粒子径も好ましくは0.05μmから15μmの範囲であることができ、より好ましくは0.05μmから6μmの範囲であることができる。また分散される疎水性薬剤の種類によっては、粒子平均径が0.05μmから3μmの範囲のような超微細薬剤粒子を形成することができる。
 本発明において言及される、分散された薬剤粒子の粒度分布は、粒度分布測定装置 LS 13 320 (ベックマン・コールター社製)により測定したものである。最頻径は粒子径に対する体積%もしくは個数%の極大値であり、モード径とも呼ばれ、また平均径は、個数平均径もしくは体積平均径である。なお、後述の実施例で示される粒度分布は表面を超微細気泡に覆われた薬剤粒子および超微細気泡の粒度分布であると考えられている。
 本発明においては、超微細気泡が1ml当たり100万個以上、好ましくは300万個以上、さらに好ましくは400万個以上、最も好ましくは500万個以上存在する。本明細書中で言及される超微細気泡の数も、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定されたものである。
 本発明の一態様において、水としてアルカリ電解水を使用し、薬剤としてテルペン類化合物、好ましくはテルペン炭化水素およびテルペンアルコールから選択される少なくとも1つの化合物を使用し、超微細気泡内に、空気、水素、酸素および窒素からなる群から選択される少なくとも1つの気体を含む洗浄剤組成物、並びにこの洗浄剤組成物を使用して、超音波を適用する、洗浄方法を提供する。
 本発明で好適に使用されるアルカリ電解水としてはpHが10以上、好ましくは10から13のものが使用できる。このようなアルカリ電解水としては、たとえば株式会社フェリシティから、「強アルカリ水」の品名で販売される、pHが11.7のものがあげられる。
 本発明において好適に使用されるテルペン炭化水素の例としてはピネン、メンテン、サイメン、フェランドレン、メンタン、およびリモネンがあげられる。また本発明において好適に使用されるテルペンアルコールの例としては、シトロネロール、ピノカンフェオール、ゲラニオール、フェンチルアルコール、ネロールおよびボルネオールが挙げられる。上記の例示は非制限的な例示であり、これらの化合物に限定されるものではない。なお、好ましくはテルペン炭化水素が使用され、最も好ましくはリモネンが使用される。
 超微細気泡内には、空気、酸素、水素および窒素の気体がそれぞれの気泡内で単独で存在することもできるし、また混合気体として存在することもできる。すなわち、たとえば水素と窒素が使用される場合には、水素を含む気泡と窒素を含む気泡が混在してもよいし、水素と窒素の混合気体を含む気泡が存在してもよい。気体として水素を使用した場合に最も好ましい効果が得られる。気体の混合割合は、洗浄効果とともに、安全性およびコストの観点から、適宜実験的に決定することができる。
 本発明の洗浄組成物は、金属の汚れおよび錆、並びにプラスチックおよび布帛などの各種の基体に付着した汚れを落とすために好適に使用される。また好適には洗浄剤中で超音波を発生させつつ洗浄が行われる。超音波発生のためには公知の装置を使用することができ、その周波数および強度は実験的に適当な値を容易に決定することができる。なお、「洗浄剤中で超音波を発生」するためには、一般には超音波発生器を備えた浴中に洗浄剤を投入すればよいが、洗浄剤および/または洗浄対象物に超音波が照射されることができれば、任意の方法が使用できる。
 理論により拘束されるものではないが、本発明における優れた効果は以下のような機構により得られると考えられている。すなわち、薬剤が水溶性である場合には超微細気泡の動きにより薬剤分子の運動が活発化されてその作用効果が増大し、また超微細気泡の存在により水溶液の浸透力が増大して優れた効果を示すと考えられる。また薬剤が疎水性で水中に分散される場合には、薬剤の分散粒子の表面に超微細気泡が集まり、気泡表面のゼータ電位に起因する界面活性効果により分散粒子が安定化するものと考えられている。したがって、超微細気泡の数は好ましい範囲内に保たれることが重要である。
 上記の観点から、組成物または分散体に含まれる超微細気泡表面のゼータ電位も本発明の効果を奏するために重要であると考えられる。本発明で使用される超微細気泡表面は帯電し、そのゼータ電位の絶対値は5mV以上、好ましくは7mV以上である。また、ゼータ電位の絶対値は、溶液の粘性率/溶液の誘電率に比例するため、低温条件下で超微細気泡、薬剤および水を処理するほど分散安定性は高くなると考えられる。
 本発明で利用される最頻粒子径が500nm以下である超微細気泡は、任意の公知の手段、たとえばスタティックミキサー式、ベンチュリ式、キャビテーション式、蒸気凝集式、超音波方式、旋回流方式、加圧溶解方式、微細孔方式で発生させることができる。好ましい気泡の発生方法は気液混合せん断方式である。
 気液混合せん断方式による超微細気泡の発生に有用な装置としては、たとえば特許第4118939号に開示されている装置があげられる。この装置においては、流体旋回室内に導入された気液混合流体の多くは、前述の従来装置におけるように単純に吐出口に向うのとは異なり、一旦、吐出口のある方向とは反対方向に旋回流として進む。そして、その旋回流は、第1端壁部材によって反転させられ該第1端壁部材から第2端壁部材に向けて進むことになるが、このときの旋回回転半径は第1端壁部材に向かうときに比べて小さくなるので、その流速は高速となり、従って、該液体内に含まれる気体への剪断力が大きくなり、その微細化が促進される。
 薬剤が水溶性である場合には、薬剤の水溶液を超微細気泡発生装置により処理し、水溶液中に超微細気泡を発生させることにより、薬剤が水中に溶解している本発明の組成物を製造することができる。
 薬剤が疎水性である場合には、疎水性薬剤と水との混合物を超微細気泡発生装置により処理し、疎水性薬剤の水中分散体中に超微細気泡を発生させることにより、疎水性薬剤が水中に分散している本発明の組成物を製造することができる。また水を超微細気泡発生装置により処理して水中に超微細気泡を発生させた後、疎水性薬剤を加えることにより疎水性薬剤が水中に分散している本発明の組成物を製造することができる。なお、常温で固体の疎水性薬剤を加温溶融あるいは溶剤に溶かして使用することも可能である。
 なお、本発明においては界面活性剤を使用する必要はないが、使用条件などに応じて適宜添加することまでも排除するものではないことは当業者にとって理解されるものであろう。
 本明細書における本発明の説明および実施例の記述は本発明の様々な例示的な実施態様の詳細な説明のためにのみあり、当業者は本発明の範囲から逸脱することなく、本明細書に開示された実施態様に様々な改良および変更を行うことができる。したがって、本明細書の記載は本発明の範囲を何ら制限するものではなく、本発明の範囲は特許請求の範囲の記載によってのみ決定される。
実施例1
 気液混合せん断方式による超微細気泡発生装置である株式会社協和機設製の「BAVITAS」により、18.2MΩ/cmの純水を使用して超微細気泡を発生させた。生成時の粒度分布と3ヶ月後までの気泡の粒子分布の変化を図1に示す。粒度分布の測定はMultisizer 3(ベックマン・コールター社製)にて行った。粒径1μm以下の部分では個数変化が見られないことが示されている。
 同時に生成した超微細気泡の粒径をナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した。測定結果を図2および3に示す。図の横軸はnm単位での粒子径を、縦軸は1ml当たりの粒子数(10個/ml)を示す。図2は超微細気泡生成後24時間後、図3は48時間後での測定結果である。気泡の最頻粒子径が500nm以下であり、1ml中に約400万から800万個の気泡を有すること、および発生された超微細気泡が安定して水中に長期間存在することが確認された。
 また発生した気泡のゼータ電位を大塚電子(株)製ゼータ電位測定システムELSZ-1で測定した。結果を図4に示す。長時間にわたりゼータ電位が保持され、気泡が安定して存在することがこの測定によって示された。
実施例2-5
 株式会社協和機設製の「BAVITAS」により、以下の表1に示された組成を有する混合物を、実施例1における条件と同じ条件で処理した。但し、水は純水ではなく蒸留水を用いた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例2-4では、疎水性の薬剤が安定的に分散されることが示された。室温(RT)で保存したものも、40℃で保存したものも良好な乳化状態を保持している。
 図5-13に、実施例2-4で得られた分散体の作製直後、室温および40℃で保存した後の粒径分布を粒度分布測定装置LS 13 320 (ベックマン・コールター社製)により測定した結果を示す。横軸を粒子径とし、それぞれの粒子径に対する体積%(上図)と個数%(下図)を測定した。なお、図5-13の平均径、中位径、最頻径は体積%より算出した値であり、実施例3の作製後室温で2ヶ月保存した時のデータについては体積(%)のみが測定された。若干の粒径の増大はあるものの、いずれの実施例においても良好な安定性を有することが示されている。
 なお、実施例5に示されるとおり、同一の実験条件において70nmの気泡が形成されている。このことから、実施例2-4においても同様に70nm程度の気泡が生成されたものと考えられる。
 また比較例1に示されるように、ホモミキサーで分散されたものはすぐに分離してしまった。
実施例6-8
 実施例6-8のためのサンプルとして、下記表2に示す重量部数の成分を順次配合して、株式会社協和機設製の「BAVITAS」により、実施例1と同様の条件で処理を行なった。但し、水は純水ではなく蒸留水を用いた。
 比較例2および3では界面活性剤を用いて実施例6および7と同じ蒸散成分を乳化させた。また比較例4では実施例8と同じ薬剤をホモミキサーで溶解した。
Figure JPOXMLDOC01-appb-T000002
実施例6
 マスキング性能評価:
 試験方法: 三点比較式臭袋法に準じ、試験液を蒸留水で段階的に希釈し、8名のパネルによる官能評価を行ない、両分散液の閾値(人間の嗅覚が感知できる最小限度の濃度)を求めた。
 閾値の求め方:
 各パネルの閾値を常用対数として求める。
   Xa=(log a1+log a2) /2  ‥‥‥1)
 式中、Xa:パネルAの閾値
    a1:パネルAの解答が正解である最大の希釈倍率
    a2:パネルAの解答が不正解である希釈倍率
各パネルの閾値の最大と最小の値を除き、その他の値を平均したものを閾値とした。
 臭気濃度は、1)式で求めた値を以下の式により変換し、求めた。
 Y=10           ‥‥‥‥2)
    式中、X:パネル全体の閾値、Y:臭気濃度
 結果を表3に示す。○は、解答が正解であること、×は解答が不正解であることを示す。比較例2と比べ、閾値が10倍程度高いことから、香料の蒸散効率が向上していることがわかる。
Figure JPOXMLDOC01-appb-T000003
実施例7
 防カビ性能評価:
 試験方法: 「JIS Z 2911かび抵抗性試験方法 8.塗料の試験」に準じて行なった。但し、試験菌は、Penicillium funiculosum, Alternaria Alternataの2種とした。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 評価基準:
 0:菌糸が確認されない
 1:部分的(面積2/3未満)に菌糸の育成が確認される、胞子は出していない
 2:部分的(面積2/3未満)に菌糸の育成が確認され、胞子が確認される
 3:一面(面積2/3以上)に菌糸が確認される
 4:一面(面積2/3以上)に胞子が確認される。
 比較例3と比べ、実施例7ではカビの育成抑制に優れた性能を示した。
 実施例8
 消臭性能評価
  試験方法: 密閉容器に、悪臭成分(タバコ臭)を含有したろ紙を設置し、悪臭物質を充分に揮発させる。容器内に、試験液をトリガースプレーにて定量噴霧し、1分後の悪臭成分の強度を、4名のパネルにより官能評価を実施した。評価は、悪臭強度の低い順に、1、2、3と順位をつけて行なった。
Figure JPOXMLDOC01-appb-T000005
 比較例4に比べ実施例8では悪臭強度が低減していることがわかる。
 
 実施例9および10
 株式会社協和機設製の「BAVITAS」により、以下の表6に示された組成を有する混合物を、実施例1における条件と同じ条件で処理を行なった。実施例10においては、イオン交換水として、「BAVITAS」により処理された超微細気泡を含むイオン交換水を用い、かかる超微細気泡を含むイオン交換水中に、l-メントールをホモミキサーで分散させた。比較例5および6においては、超微細気泡を含まない単なるイオン交換水を使用し、l-メントールをホモミキサーで分散乳化させた。
結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例9ではホモミキサーで処理した比較例5に比べ、良好な乳化状態を維持している。またイオン交換水を予め株式会社協和機設製の「BAVITAS」により処理し、これにl-メントールを加えた実施例10でも良好な分散性が得られることが示された。
 実施例9および10、並びに比較例5で得られた組成物について、マスキング性能が評価された。
 試験方法: 三点比較式臭袋法に準じ、表6に示した試料(作成直後の均一分散した試料)を用いて蒸留水で段階的に希釈し、4名のパネルによる官能評価を行ない、試料の閾値を求めた。閾値の求め方は実施例6と同じである。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表中、○は、解答が正解であること、×は解答が不正解であることを示す。比較例5と比べ、実施例9および10では閾値が高いことから、l-メントールの蒸散効率が向上していることが示された。
 防カビ性能評価:
 試験方法:胞子懸濁液を調整し、ポテトデキストロース寒天培地含有平板培地に塗布した。さらに、上記平板培地のシャーレの蓋の中央に表6に示した試料(作成直後の均一分散した試料)を含浸させた濾紙(2.5cm×2.5cm)を貼り、23℃、100%RHで5日間培養した。試験菌は、Cladosporium cladosporioidesを用いて、胞子を約1×10個/mlに調整した。
 培養後のカビの生育状況を目視にて観察し、実施例7の防カビ性能評価 評価基準に基づいて評価した。結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 実施例9および10の組成物は、比較例5および6の組成物と比べて、カビの生育を抑制することが示された。
実施例11
 表9に示す組成の洗浄水を使用して洗浄試験を行った。洗浄水中に市販の人工汚染布を浸漬させた状態で、3時間超音波をかけ、洗浄前後の人工汚染布の汚染状態を目視で評価した。
 超音波はアズワン株式会社製の品番USD-4Rの超音波発生器により発生され、その周波数は28kHzであった。アルカリ電解水としては、株式会社フェリシティ製、品名「強アルカリ水」、pH=11.7が使用された。テルペン類としてはリモネンが使用され、気体としては水素1に対して窒素24の比率で混合した混合気体が使用された。
 結果を表10に示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表中、二重丸は非常に良好、丸は良好、×は不良をそれぞれ示す。
 実験の結果から、アルカリ電解水中にナノバブルとテルペン類の薬剤を存在させると、大きな洗浄効果が得られることが示された。
 またテルペン類の薬剤が存在していても、蒸留水を使用した場合や、ナノバブルが存在しない場合には結果は不良であり、三つの要件が満たされた場合にのみ良好な洗浄性が得られることが示された。

Claims (17)

  1.  最頻粒子径が500nm以下である超微細気泡と薬剤、および水を含む組成物。
  2.  前記薬剤が水中に溶解している、請求項1記載の組成物。
  3.  前記薬剤が水中に分散している、請求項1記載の組成物。
  4.  前記の薬剤粒子の最頻粒子径が0.05から15μmの範囲である、請求項3記載の組成物。
  5.  前記の薬剤粒子の平均粒子径が0.05から15μmの範囲である、請求項3記載の組成物。
  6.  前記超微細気泡が1ml当たり100万個以上存在する、請求項1から5のいずれか1項記載の組成物。
  7.  組成物または分散体に含まれる超微細気泡表面が帯電し、そのゼータ電位の絶対値が5mV以上である、請求項1から6のいずれか1項記載の組成物。
  8.  前記薬剤が蒸散性物質である、請求項1から7のいずれか1項記載の組成物。
  9.  前記蒸散性物質が、殺虫剤、殺菌剤、忌避剤、アレルゲン不活性化剤、消臭剤、防カビ剤、芳香剤、精油および香料から成る群から選択される少なくとも1種の物質である、請求項8記載の組成物。
  10.  ジェル状である、請求項1から9のいずれか1項記載の組成物。
  11.  超微細気泡内に、酸素、水素、窒素、炭酸ガスおよびオゾンから成る群から選択される気体を含む、請求項1から10のいずれか1項記載の組成物。
  12.  最頻粒子径が500nm以下である超微細気泡、テルペン類から選択される1つ以上の化合物、およびアルカリ電解水を含む組成物であって、該超微細気泡内に、空気、水素、酸素および窒素からなる群から選択される少なくとも1つの気体を含む、洗浄剤組成物。
  13.  請求項12記載の組成物中に被洗浄物を保持し、該組成物中で超音波が発生される、洗浄方法。
  14.  超微細気泡発生装置により、薬剤の水溶液中に最頻粒子径が500nm以下である超微細気泡を発生させることを含む、請求項2記載の組成物を製造するための方法。
  15.  超微細気泡発生装置により、薬剤と水との混合物中に最頻粒子径が500nm以下である超微細気泡を発生させることを含む、請求項3記載の組成物を製造するための方法。
  16.  超微細気泡発生装置により、水中に最頻粒子径が500nm以下である超微細気泡を発生させた後、疎水性薬剤を加えることを含む、請求項3記載の組成物を製造するための方法。
  17.  超微細気泡発生装置が気液混合せん断装置である、請求項14から16のいずれか1項記載の方法。
     
PCT/JP2010/063316 2009-08-06 2010-08-05 組成物およびその製造方法 WO2011016529A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011525937A JPWO2011016529A1 (ja) 2009-08-06 2010-08-05 組成物およびその製造方法
AU2010279931A AU2010279931B2 (en) 2009-08-06 2010-08-05 Composition and process for production thereof
CN201080035024.0A CN102470335B (zh) 2009-08-06 2010-08-05 组合物及其制备方法
CA2767993A CA2767993C (en) 2009-08-06 2010-08-05 Composition and process for production thereof
SG2012003224A SG177681A1 (en) 2009-08-06 2010-08-05 Composition and process for production thereof
EP10806528.5A EP2463022B1 (en) 2009-08-06 2010-08-05 Composition and process for production thereof
US13/361,150 US20120128749A1 (en) 2009-08-06 2012-01-30 Composition and process for production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009183755 2009-08-06
JP2009-183755 2009-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/361,150 Continuation US20120128749A1 (en) 2009-08-06 2012-01-30 Composition and process for production thereof

Publications (1)

Publication Number Publication Date
WO2011016529A1 true WO2011016529A1 (ja) 2011-02-10

Family

ID=43544424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063316 WO2011016529A1 (ja) 2009-08-06 2010-08-05 組成物およびその製造方法

Country Status (10)

Country Link
US (1) US20120128749A1 (ja)
EP (1) EP2463022B1 (ja)
JP (2) JPWO2011016529A1 (ja)
CN (1) CN102470335B (ja)
AU (1) AU2010279931B2 (ja)
CA (1) CA2767993C (ja)
MY (1) MY177649A (ja)
SG (2) SG177681A1 (ja)
TW (1) TWI551343B (ja)
WO (1) WO2011016529A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010758A (ja) * 2011-06-02 2013-01-17 Project Japan:Kk 浸透性に優れた殺菌剤、及び殺菌方法
JP2013154342A (ja) * 2012-01-05 2013-08-15 Idec Corp 香り付与液生成装置、香り付与液生成方法、香り付与液、アルコール飲料および物質付与液生成装置
WO2013129245A1 (ja) * 2012-02-29 2013-09-06 サンスター技研株式会社 殺菌剤組成物
JP2013248564A (ja) * 2012-05-31 2013-12-12 Daihatsu Motor Co Ltd 脱脂システム
WO2015182647A1 (ja) * 2014-05-28 2015-12-03 武田薬品工業株式会社 抗菌水
JP2016053004A (ja) * 2014-09-03 2016-04-14 サンスター株式会社 希釈農薬の調整方法及び希釈農薬
JP2016133594A (ja) * 2015-01-19 2016-07-25 株式会社メニコン コンタクトレンズ用保存液、コンタクトレンズの保存方法及びコンタクトレンズの製造方法
JP6133527B1 (ja) * 2017-02-01 2017-05-24 有限会社 セイケン九州 消臭方法
JP2019214012A (ja) * 2018-06-12 2019-12-19 株式会社Okutec 流体混合装置およびエマルジョンの調製方法
WO2021085633A1 (ja) * 2019-11-01 2021-05-06 株式会社 資生堂 ウルトラファインバブルの使用方法
JP2022103130A (ja) * 2020-12-25 2022-07-07 三粧化研株式会社 ナノバブル含有化粧料組成物

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620015B (zh) * 2011-05-26 2016-10-12 嘉士伯酿酒有限公司 饮料、含有饮料的饮料容器、生产饮料的方法和饮料生产设备
SG11201400909WA (en) * 2011-10-28 2014-09-26 Sunstar Engineering Inc Composition and method for producing same
JP2014171463A (ja) * 2013-03-12 2014-09-22 Idec Corp 植物処理方法
GB2514202A (en) 2013-05-16 2014-11-19 Nano Tech Inc Ltd Micro-nanobubble generation systems
CN106794490B (zh) * 2014-09-05 2020-09-11 坦南特公司 用于供应具有纳米气泡的处理液体的系统和方法
JP6392907B2 (ja) 2016-04-14 2018-09-19 株式会社新菱 ガス含有基材およびその製造方法
WO2018067938A1 (en) * 2016-10-06 2018-04-12 The Trustees Of Columbia University In The City Of New York Cell-seeded porous lung hydrogel sealant
US20190335795A1 (en) * 2017-01-12 2019-11-07 Shinryo Corporation Method for producing hydrogen gas-containing material and device for producing hydrogen gas-containing material
JP7227694B2 (ja) * 2017-12-08 2023-02-22 大平 猛 正に帯電したナノバブル分散液
EP3537203B1 (en) 2018-03-09 2020-12-23 IMEC vzw An apparatus for displaying a three-dimensional image
US20190328660A1 (en) * 2018-04-26 2019-10-31 Zvi Yaniv Nanobubbles in an absorbent material
KR20210136177A (ko) * 2018-05-30 2021-11-16 가부시키가이샤 아쿠아솔루션 흰가루병의 방제 방법
JPWO2019230786A1 (ja) * 2018-05-30 2021-08-19 株式会社アクアソリューション 生姜の栽培方法
WO2019230764A1 (ja) * 2018-05-30 2019-12-05 株式会社アクアソリューション 果実の防カビ方法、及び果実の防カビ用組成物
JP2020175377A (ja) * 2019-04-18 2020-10-29 株式会社テックコーポレーション ねじきりの洗浄方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241243A (ja) * 2005-03-01 2006-09-14 Denso Corp 内燃機関用燃料改質装置
WO2007004274A1 (ja) * 2005-07-01 2007-01-11 Toei Buhin Co., Ltd. 清掃対象物の清掃方法
JP2007161977A (ja) * 2005-12-16 2007-06-28 Chemicoat & Co Ltd 洗浄剤組成物
WO2008072371A1 (ja) * 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University 組織の殺菌又は消毒用製剤
JP2008279424A (ja) * 2007-05-14 2008-11-20 Joho Kagaku Kenkyusho:Kk 粘性溶液の水素コロイド及び水素ラジカルコロイドとその生産方法並びに生産システム
JP2008296095A (ja) * 2007-05-29 2008-12-11 Sharp Corp 有用物質含有ナノバブル発生方法、および有用物質含有ナノバブル発生装置
JP2009136852A (ja) * 2007-12-11 2009-06-25 Kao Corp 食品又は飲料の製造装置の脱臭洗浄方法
JP2010189318A (ja) * 2009-02-18 2010-09-02 Yukio Hasegawa 血流改善剤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833970A (en) * 1977-01-24 1998-11-10 Cox; James P. Deodorant material and deodorizing method
EG18543A (en) * 1986-02-20 1993-07-30 Albright & Wilson Protected enzyme systems
US5445813A (en) * 1992-11-02 1995-08-29 Bracco International B.V. Stable microbubble suspensions as enhancement agents for ultrasound echography
TW250558B (en) * 1993-10-20 1995-07-01 Yamaha Corp Sheet music recognition device
US6653378B2 (en) * 2000-12-18 2003-11-25 Dow Corning Corporation Silicone elastomer compositions
JP2004121962A (ja) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology ナノバブルの利用方法及び装置
US10117812B2 (en) * 2002-10-25 2018-11-06 Foamix Pharmaceuticals Ltd. Foamable composition combining a polar solvent and a hydrophobic carrier
JP4144669B2 (ja) * 2004-03-05 2008-09-03 独立行政法人産業技術総合研究所 ナノバブルの製造方法
JP4080440B2 (ja) * 2004-03-05 2008-04-23 独立行政法人産業技術総合研究所 酸素ナノバブル水およびその製造方法
US8697120B2 (en) * 2006-05-01 2014-04-15 Johns Hopkins University Method and use of nano-scale devices for reduction of tissue injury in ischemic and reperfusion injury
US8147876B2 (en) * 2007-02-27 2012-04-03 National University Corporation Tokyo Medical And Dental University Medical agent for preventing or treating diseases resulting from one of inflammation and remodeling, and method for preventing or treating the diseases
JP5821839B2 (ja) * 2010-03-08 2015-11-24 株式会社Ligaric 超微細気泡を用いた抽出方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241243A (ja) * 2005-03-01 2006-09-14 Denso Corp 内燃機関用燃料改質装置
WO2007004274A1 (ja) * 2005-07-01 2007-01-11 Toei Buhin Co., Ltd. 清掃対象物の清掃方法
JP2007161977A (ja) * 2005-12-16 2007-06-28 Chemicoat & Co Ltd 洗浄剤組成物
WO2008072371A1 (ja) * 2006-12-12 2008-06-19 National University Corporation Tokyo Medical And Dental University 組織の殺菌又は消毒用製剤
JP2008279424A (ja) * 2007-05-14 2008-11-20 Joho Kagaku Kenkyusho:Kk 粘性溶液の水素コロイド及び水素ラジカルコロイドとその生産方法並びに生産システム
JP2008296095A (ja) * 2007-05-29 2008-12-11 Sharp Corp 有用物質含有ナノバブル発生方法、および有用物質含有ナノバブル発生装置
JP2009136852A (ja) * 2007-12-11 2009-06-25 Kao Corp 食品又は飲料の製造装置の脱臭洗浄方法
JP2010189318A (ja) * 2009-02-18 2010-09-02 Yukio Hasegawa 血流改善剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2463022A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010758A (ja) * 2011-06-02 2013-01-17 Project Japan:Kk 浸透性に優れた殺菌剤、及び殺菌方法
JP2013154342A (ja) * 2012-01-05 2013-08-15 Idec Corp 香り付与液生成装置、香り付与液生成方法、香り付与液、アルコール飲料および物質付与液生成装置
US9220799B2 (en) 2012-02-29 2015-12-29 Sunstar Engineering Inc. Bactericidal agent composition
WO2013129245A1 (ja) * 2012-02-29 2013-09-06 サンスター技研株式会社 殺菌剤組成物
JP2013180956A (ja) * 2012-02-29 2013-09-12 Sunstar Engineering Inc 殺菌剤組成物
CN104135856A (zh) * 2012-02-29 2014-11-05 新时代技研株式会社 杀菌剂组合物
EP2820951A4 (en) * 2012-02-29 2015-11-11 Sunstar Engineering Inc BACTERICIDE COMPOSITION
TWI578909B (zh) * 2012-02-29 2017-04-21 Sunstar Engineering Inc Fungicide composition
JP2013248564A (ja) * 2012-05-31 2013-12-12 Daihatsu Motor Co Ltd 脱脂システム
WO2015182647A1 (ja) * 2014-05-28 2015-12-03 武田薬品工業株式会社 抗菌水
US10556256B2 (en) 2014-05-28 2020-02-11 Takeda Pharmaceutical Company Limited Antibacterial water
JP2016053004A (ja) * 2014-09-03 2016-04-14 サンスター株式会社 希釈農薬の調整方法及び希釈農薬
JP2016133594A (ja) * 2015-01-19 2016-07-25 株式会社メニコン コンタクトレンズ用保存液、コンタクトレンズの保存方法及びコンタクトレンズの製造方法
JP6133527B1 (ja) * 2017-02-01 2017-05-24 有限会社 セイケン九州 消臭方法
JP2018123088A (ja) * 2017-02-01 2018-08-09 有限会社 セイケン九州 消臭方法
JP2019214012A (ja) * 2018-06-12 2019-12-19 株式会社Okutec 流体混合装置およびエマルジョンの調製方法
WO2021085633A1 (ja) * 2019-11-01 2021-05-06 株式会社 資生堂 ウルトラファインバブルの使用方法
JP2022103130A (ja) * 2020-12-25 2022-07-07 三粧化研株式会社 ナノバブル含有化粧料組成物

Also Published As

Publication number Publication date
SG10201403566SA (en) 2014-10-30
JPWO2011016529A1 (ja) 2013-01-17
EP2463022A4 (en) 2014-09-03
EP2463022A1 (en) 2012-06-13
EP2463022B1 (en) 2018-04-04
AU2010279931B2 (en) 2016-07-21
JP2016013547A (ja) 2016-01-28
US20120128749A1 (en) 2012-05-24
JP6088590B2 (ja) 2017-03-01
TW201119733A (en) 2011-06-16
CN102470335A (zh) 2012-05-23
CN102470335B (zh) 2015-01-28
TWI551343B (zh) 2016-10-01
CA2767993A1 (en) 2011-02-10
SG177681A1 (en) 2012-02-28
AU2010279931A1 (en) 2012-02-16
CA2767993C (en) 2018-06-26
MY177649A (en) 2020-09-23

Similar Documents

Publication Publication Date Title
JP6088590B2 (ja) 組成物およびその製造方法
TWI578909B (zh) Fungicide composition
AU2011225328B2 (en) Extraction method using microbubbles and extracting liquid
KR101872775B1 (ko) 친환경 살균 및 탈취제의 조성물
AU2015370052B2 (en) Nano particulate delivery system
AU667930B2 (en) Nonaqueous cold sterilant
JP5876246B2 (ja) 活性成分を空気中に送達するための組成物およびその利用
TW201005079A (en) Compositions containing a solvated active agent suitable for dispensing as a compressed gas aerosol
JP2010083806A (ja) 蓄圧式スプレー容器に収容された除菌用製品
CN111318152A (zh) 植物提取液除臭剂
CN103977443A (zh) 一种用于空气消毒和驱蚊的艾叶提取物空气清新剂
WO2016087630A1 (en) Biocidal composition with dual inmediate and remnant activity
CN115568478A (zh) 包含丁香花油的水基产品及其灭螨应用
AU2017232393A1 (en) Concentrate comprising a MEL, an alkylpolyglucoside and monopropylene glycol
JP2020521632A (ja) 水性マイクロエマルション
JPH0810314A (ja) 消臭用組成物
KR20060123443A (ko) 정유 유화물의 제법
JP3683012B2 (ja) エアゾール組成物及びその製造方法、並びにそれを用いたエアゾール製品
JPH0977605A (ja) 薬剤分散液及びその製造方法
JP2003164515A (ja) マイナスイオン発生消臭剤
JP7404609B2 (ja) 消毒剤の噴霧方法、噴霧消毒用薬剤及び噴霧装置
JP2008154805A (ja) 芳香性組成物
RU2157181C1 (ru) Средство против вшей
CN108902197A (zh) 一种含蜗牛粘液复方杀菌消毒剂的制备方法
SK50692009A3 (sk) Mikrocídny prípravok a spôsob jeho výroby

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035024.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806528

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2767993

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010279931

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010806528

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011525937

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010279931

Country of ref document: AU

Date of ref document: 20100805

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2002/CHENP/2012

Country of ref document: IN