WO2011016491A1 - 容器の製造方法 - Google Patents

容器の製造方法 Download PDF

Info

Publication number
WO2011016491A1
WO2011016491A1 PCT/JP2010/063202 JP2010063202W WO2011016491A1 WO 2011016491 A1 WO2011016491 A1 WO 2011016491A1 JP 2010063202 W JP2010063202 W JP 2010063202W WO 2011016491 A1 WO2011016491 A1 WO 2011016491A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
container
crystallization
acid
Prior art date
Application number
PCT/JP2010/063202
Other languages
English (en)
French (fr)
Inventor
尚史 小田
大滝 良二
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CA2769212A priority Critical patent/CA2769212C/en
Priority to ES10806490.8T priority patent/ES2455245T3/es
Priority to US13/388,523 priority patent/US9044880B2/en
Priority to EP10806490.8A priority patent/EP2463078B1/en
Priority to CN201080034563.2A priority patent/CN102574322B/zh
Priority to DK10806490.8T priority patent/DK2463078T3/en
Priority to KR1020127002610A priority patent/KR101689047B1/ko
Priority to PL10806490T priority patent/PL2463078T3/pl
Priority to JP2011525915A priority patent/JP5605362B2/ja
Publication of WO2011016491A1 publication Critical patent/WO2011016491A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/786Temperature
    • B29C2049/7864Temperature of the mould
    • B29C2049/78645Temperature of the mould characterised by temperature values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0065Permeability to gases
    • B29K2995/0067Permeability to gases non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • B29K2995/0069Permeability to liquids; Adsorption non-permeable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix

Definitions

  • the present invention relates to a method for producing a container, and more particularly to a method for producing a container made of a material containing a polyamide resin composition obtained by copolymerizing metaxylylenediamine, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid.
  • Polyamide resins are widely used as materials for injection molded products such as automobiles and electric / electronic parts because of their excellent mechanical performance. It is also used as a packaging material for foods, beverages, medicines, electronic parts, etc.
  • polyamide (MX nylon) obtained from polycondensation reaction of xylylenediamine and aliphatic dicarboxylic acid, especially metaxylylenediamine And polyamide (polyamide MXD6) obtained from adipic acid exhibit low permeability to gaseous substances such as oxygen and carbon dioxide, and are therefore used as molded products such as films and bottles as gas barrier materials.
  • Increasing the thickness of the fuel barrier layer has problems such as reduced shock absorption at the time of collision, increased weight, and higher costs, making it difficult to fully meet regulations that will be tightened in the future. there were.
  • the use of ethanol as a fuel is being studied because the use of fossil fuels and the emission of carbon dioxide can be reduced by adding ethanol, etc. to gasoline, but nylon 6 and ethylene-vinyl alcohol are being studied. Copolymers and the like have poor barrier properties against alcohols. Therefore, a material having improved barrier performance of a fuel containing alcohol is desired.
  • containers used for fuels and the like are usually molded by the direct blow method, but the above-mentioned conventional fuel barrier materials have poor heat resistance, so gels are generated due to an increase in resin temperature or resin retention. It becomes easier and production conditions are limited.
  • problems in productivity and effective use of materials such as recycling of burrs generated during molding, and switching to a resin having excellent thermal stability when the apparatus is operated and stopped.
  • the direct blow method when the melt viscosity of the resin is low, drawdown occurs, and the resulting product is too thin or has problems such as uneven thickness.
  • the molding temperature is too high, the melt viscosity of the polyolefin used for the outer layer is lowered, and drawdown occurs, which is not preferable.
  • a multilayer fuel container obtained by molding a material having a polyamide resin having a fuel barrier property as an intermediate layer by the direct blow method the fuel barrier material does not enter the pinch-off part formed at the time of molding, and the fuel permeates from this pinch-off part. There is a problem that the fuel barrier property is lowered. Therefore, recently, development of a multi-layer fuel container using a polyamide resin as an inner layer and a fuel container in which a polyamide resin and a polyolefin are blended has been promoted. In these fuel containers, the fuel barrier property can be maintained high because the polyamide resin having the fuel barrier property comes into contact with the fuel.
  • Patent Document 6 describes a polyamide resin obtained by copolymerizing metaxylylenediamine, aliphatic dicarboxylic acid and naphthalenedicarboxylic acid, and describes that this polyamide resin is excellent in fuel barrier properties. Yes. Further, Patent Document 7 discloses that a polymer obtained by copolymerizing metaxylylenediamine, an aliphatic dicarboxylic acid and isophthalic acid is 0.5 to 4 at 70 to 120 ° C. in the presence of 1 to 30% by weight of water.
  • the polyamide resin described in Patent Document 6 has a high fuel barrier property, it has been found that the polyamide resin is too amorphous due to a high copolymerization ratio of naphthalenedicarboxylic acid, and ethanol resistance is not sufficient. It was. That is, it was found that the reason why the ethanol resistance of this polyamide resin does not improve is due to the low crystallinity of the polyamide resin.
  • the container is usually molded by the direct blow method. However, in the case of manufacturing the container by the direct blow method, from the viewpoint of productivity, if the resin etc. in contact with the mold is cured. Immediately open the mold and take out the container.
  • An object of the present invention is to efficiently produce a container excellent in ethanol resistance and fuel barrier properties using a polyamide resin obtained by copolymerizing metaxylylenediamine, aliphatic dicarboxylic acid and aromatic dicarboxylic acid. It is to provide a method.
  • the present invention provides the following method for producing a container.
  • (1) The molar ratio of the diamine component containing 70 mol% or more of metaxylylenediamine and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 12 carbon atoms to the aromatic dicarboxylic acid is 97: 3 to 90:10
  • a material containing a polyamide resin composition containing 100 parts by mass of a polyamide resin obtained by polycondensation of the dicarboxylic acid component and 0.01 to 2 parts by mass of a crystallization accelerator is expanded in a mold by direct blowing. And the material is held in the mold whose temperature has been adjusted to 0 to 60 ° C.
  • a manufacturing method of a container including a process.
  • the material containing the polyamide resin composition is directly blown so that the container is a multilayer container and at least one layer of the multilayer container is a layer made of the material containing the polyamide resin composition, 1) The method for producing a container according to any one of (3). (5) The method for producing a container according to (4) above, wherein at least one layer other than the layer made of the material containing the polyamide resin composition of the multilayer container is a layer made of a material containing a polyolefin resin. (6) The material comprising the polyamide resin composition is blown directly so that the layer made of the material containing the polyamide resin composition is disposed on the inner surface of the container, according to (4) or (5) above Container manufacturing method.
  • a container having excellent ethanol resistance and fuel barrier properties can be obtained by increasing the crystallinity of a polyamide resin obtained by copolymerizing metaxylylenediamine, aliphatic dicarboxylic acid and aromatic dicarboxylic acid. It can be manufactured efficiently.
  • the molar ratio of the diamine component containing 70% by mole or more of metaxylylenediamine and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 12 carbon atoms to the aromatic dicarboxylic acid is 97: 3 to 90:
  • a material including a polyamide resin composition containing 100 parts by mass of a polyamide resin obtained by polycondensation of 10 dicarboxylic acid components and 0.01 to 2 parts by mass of a crystallization accelerator is directly blown into a mold.
  • the inventors of the present invention reduced the content of aromatic dicarboxylic acid in the dicarboxylic acid and adjusted the temperature of the material containing the polyamide resin composition using the crystallization accelerator to 0 to 60 ° C. immediately after direct blowing.
  • the polyamide resin composition is held for 30% or more of the temperature drop half crystallization time at a constant temperature of 160 ° C., thereby increasing the crystallization degree of the polyamide resin and being excellent in ethanol resistance and fuel barrier properties. It has been found that the container can be produced efficiently.
  • the present invention has been completed based on such findings.
  • the polyamide resin used in the present invention has a molar ratio of a diamine component containing 70% by mole or more of metaxylylenediamine and an ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 12 carbon atoms and an aromatic dicarboxylic acid of 97. : Obtained by polycondensation with a dicarboxylic acid component of 3 to 90:10.
  • metaxylylenediamine is used as the diamine component, but other diamine components can also be used.
  • paraxylylenediamine, paraphenylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1, 4-Bis (aminomethyl) cyclohexane, tetramethylenediamine, pentamethylenediamine, octamethylenediamine, nonamethylenediamine and the like can be used.
  • the content of metaxylylenediamine in the diamine component is 70 mol% or more, preferably 75 mol% or more, more preferably 85 mol% or more, and further preferably 90 mol% or more, from the viewpoint of fuel barrier properties.
  • the upper limit is 100 mol%.
  • ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 12 carbon atoms and aromatic dicarboxylic acid which is a component for improving ethanol resistance are used as the dicarboxylic acid component.
  • the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 12 carbon atoms include succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, adipic acid, sebacic acid, undecanedioic acid, dodecanedioic acid.
  • examples thereof include aliphatic dicarboxylic acids such as adipic acid.
  • aromatic dicarboxylic acid examples include isophthalic acid, terephthalic acid, naphthalene dicarboxylic acid, biphenyl dicarboxylic acid and the like.
  • naphthalenedicarboxylic acid examples include 1,2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1, Isomers such as 7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid can be used.
  • naphthalenedicarboxylic acids may be copolymerized.
  • the aromatic dicarboxylic acid is preferably at least one selected from the group consisting of isophthalic acid, terephthalic acid and 2,6-naphthalenedicarboxylic acid.
  • polyamide-forming component other than the above when forming the polyamide resin.
  • examples of such a polyamide-forming component include lactams such as caprolactam, valerolactam, laurolactam, and undecalactam, and aminocarboxylic acids such as 11-aminoundecanoic acid and 12-aminododecanoic acid.
  • the resulting polyamide resin tends to become amorphous. It is in.
  • the polyamide resin is amorphized, the ethanol resistance deteriorates, so the polyamide resin needs to maintain a certain degree of crystallinity.
  • the content of the aromatic dicarboxylic acid is reduced, and the ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 12 carbon atoms and the aromatic dicarboxylic acid are used.
  • the molar ratio ( ⁇ , ⁇ -linear aliphatic dicarboxylic acid: aromatic dicarboxylic acid) is 97: 3 to 90:10 from the viewpoint of ethanol resistance and fuel barrier properties. If the aromatic dicarboxylic acid content is less than this molar ratio, it becomes difficult to obtain a polyamide resin having excellent fuel barrier properties. If the aromatic dicarboxylic acid content is increased from this molar ratio, the crystallinity of the polyamide resin is reduced. Becomes low and it becomes difficult to obtain a polyamide resin excellent in ethanol resistance.
  • a method for producing the polyamide resin a method of adding a phosphorus atom-containing compound and performing melt polycondensation (melt polymerization) is preferable, and the phosphorus atom-containing compound is preferably added at the stage of melt polycondensation.
  • the thermal history may increase, leading to gelation and coloring of the polyamide resin.
  • the presence of a phosphorus atom-containing compound in the system at the stage of melt polycondensation can prevent the resulting polyamide from being colored yellow, and further prevent a decrease in the amidation reaction rate. it can.
  • melt polycondensation method for example, in the presence of a phosphorus atom-containing compound, a nylon salt composed of a diamine component and a dicarboxylic acid component is heated under pressure in the presence of water, and the added water and condensed water are removed.
  • a method of polymerizing in a molten state There is also a method in which a diamine component is directly added to a molten dicarboxylic acid component and polycondensed.
  • the diamine component is continuously added to the dicarboxylic acid component, and the reaction system is heated up so that the reaction temperature does not fall below the melting point of the generated oligoamide and polyamide.
  • the phosphorus atom-containing compound added to the polycondensation system of the polyamide resin of the present invention is not particularly limited.
  • hypophosphorous acid metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite and the like promote the amidation reaction. And is also preferably used because of its excellent anti-coloring effect, and sodium hypophosphite is particularly preferred.
  • the addition amount of the phosphorus atom-containing compound added to the polycondensation system of the polyamide resin of the present invention is preferably 50 to 400 ppm by mass, more preferably 60 to 350 ppm by mass in terms of the phosphorus atom concentration in the polyamide resin. More preferably, it is 70 to 300 ppm by mass.
  • an alkali metal compound in combination with the phosphorus atom-containing compound into the polycondensation system of the polyamide resin.
  • an alkali metal compound in order to prevent coloring of the polyamide during polycondensation, it is necessary to make a sufficient amount of the phosphorus atom-containing compound present. However, in some cases, the gelation of the polyamide may be caused, so that the amidation reaction rate is adjusted.
  • the alkali metal compounds, alkali metal hydroxides and alkali metal acetates are preferred.
  • the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide.
  • Examples of the alkali metal acetate include lithium acetate, sodium acetate, potassium acetate, rubidium acetate, Although cesium acetate is mentioned, it can use without being limited to these compounds.
  • the polyamide resin obtained by the above melt polycondensation is once taken out, pelletized and then dried. Further, the polyamide resin may be solid state polymerized in order to increase the degree of polymerization.
  • a heating device used in drying or solid phase polymerization a continuous heating drying device, a rotary drum type heating device called a tumble dryer, a conical dryer, a rotary dryer or the like, and a rotary blade inside a nauta mixer are used.
  • a conical heating apparatus provided with can be used suitably, a well-known method and apparatus can be used without being limited to these.
  • a batch-type heating device that can seal the inside of the system and facilitate polycondensation in a state in which oxygen that causes coloring is removed is preferably used. .
  • the polyamide resin obtained through the above-described steps such as melt polycondensation is less colored and less gelled.
  • a polyamide resin having a b * value in a color difference test of JIS-K-7105 of preferably 3 or less, more preferably 2 or less, and even more preferably 1 or less is used from the viewpoint of coloring a molded product.
  • the b * value for example, by adding a phosphorus atom-containing compound in the polyamide resin polycondensation system in an amount of 50 to 400 ppm by mass in terms of the phosphorus atom concentration in the polyamide resin, the b * value decreases. Can be suppressed.
  • an appropriately shaped stirring blade may be used so that heat transfer to the polyamide during the melt polymerization step does not become local.
  • the polyamide resin composition used in the present invention contains the polyamide resin and a crystallization accelerator from the viewpoint of increasing the crystallinity of the polyamide resin and improving the ethanol resistance and fuel barrier properties.
  • the crystallization accelerator used in the present invention may be either an inorganic or organic crystallization accelerator. Two or more crystallization accelerators may be used in combination.
  • inorganic crystallization accelerators examples include glass fillers (glass fibers, crushed glass fibers (milled fibers), glass flakes, glass beads, etc.), calcium silicate fillers (wollastonite, etc.), mica, talc ( Powdery talc and granular talc using rosin as a binder), kaolin, potassium titanate whisker, boron nitride, layered silicate clay, nanofiller, carbon fiber and the like.
  • the maximum diameter of the inorganic crystallization accelerator is preferably 0.01 to 5 ⁇ m.
  • powdered talc with a particle size of 3.0 ⁇ m or less is preferable, powdered talc with a particle size of about 1.5 to 3.0 ⁇ m is more preferable, and powdered talc with a particle size of 2.0 ⁇ m or less is particularly preferable.
  • granular talc using rosin as a binder in this powdered talc is particularly preferable because it is well dispersed in the polyamide resin.
  • the organic crystallization accelerator is usually used for thermoplastic resins, and consists of a bimolecular film in which a nucleating agent component or the like is added in a micro-level to nano-level capsule consisting of a bimolecular film.
  • capsules There are capsules, benzylidene sorbitol-based and phosphorus-based transparent crystal nucleating agents, rosinamide-based gelling agents, and the like, and bis (benzylidene) sorbitol-based crystal nucleating agents are particularly preferable.
  • the content of the crystallization accelerator is 0.01 to 2 parts by mass with respect to 100 parts by mass of the polyamide resin.
  • a particularly preferable content is 0.1 to 1 part by mass.
  • the amount of heat C is the heat of crystal fusion, and its value is 151 J / g.
  • the amount of heat is indicated by an absolute value.
  • the polyamide resin composition used in the present invention preferably has a peak temperature (crystallization peak temperature) due to crystallization at elevated temperature in differential scanning calorimetry at 160 ° C. or less, more preferably at 140 to 160 ° C. is there. If the peak temperature due to crystallization at elevated temperature is low, the crystallinity is maintained and the crystallization speed is high, but if it is 160 ° C or less, the crystallinity that can exhibit ethanol resistance is maintained. Can do. If the crystallization speed is high, when the polyamide resin composition of the present invention is used as a molded article such as a direct blow bottle, the holding time in the mold can be shortened, so that productivity is not impaired.
  • a polyamide resin composition in which a crystallization accelerator is blended with a polyamide resin, extruded with an extruder, and the crystallization accelerator is uniformly dispersed in the polyamide resin. can be manufactured.
  • the polyamide resin composition used in the present invention is a matting agent, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, a plasticizer, a flame retardant, an antistatic agent, an anti-coloring agent, as long as the effects of the present invention are not impaired. You may contain additives, such as an antigelling agent, as needed.
  • the relative viscosity of the polyamide resin composition used in the present invention is preferably 1.5 to 4.2, more preferably 1.7 to 4.0, and still more preferably 2.0 to 3 from the viewpoint of moldability. .8.
  • polyamide resin composition used in the present invention the above-mentioned specific polyamide resin and another polyamide resin may be blended.
  • examples of such other polyamide resins include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4, 6, polyamide 6, 6, polyamide 6, 10, polyamide 6IT (polyhexamethylene isophthalamide / polyamide).
  • Hexamethylene terephthalamide copolymer polyamide 6I (polyhexamethylene isophthalamide), polyamide 6T (polyhexamethylene terephthalamide), polyamide 9T (polynonamethylene terephthalamide), polyamide MXD6 (polymetaxylylene adipamide), polyamide 1 , 3-BAC6 (poly (cyclohexane-1,3-dimethylene) adipamide), polyamide 1,4-BAC6 (poly (cyclohexane-1,4-dimethylene) adipamide), polyamide MX 10 (poly-m-xylylene sebacamide), polyamide PXD10 (polyparaxylylene sebacamide), polyamide MP6 (poly-m-xylylene adipamide / polyparaxylylene azide Pami copolymers) and the like can be exemplified. By blending these polyamides with the specific polyamide resin described above, it is possible to adjust the melt viscosity and
  • the material used for producing the container may be a mixture of a polyamide resin composition and a thermoplastic resin such as a polyolefin resin, a polystyrene resin, a polyester resin, or a polycarbonate resin.
  • the polyolefin resin is selected from linear low density polyethylene resin, low density polyethylene resin, medium density polyethylene resin, high density polyethylene resin, ultra high molecular weight high density polyethylene resin, polypropylene resin, ethylene, propylene, butene, etc. Examples thereof include resins composed of copolymers of more than one type of olefin, and mixtures thereof.
  • the polyamide resin composition and the thermoplastic resin are mixed, it is preferable to use an adhesive resin, an olefin modified with an unsaturated carboxylic acid or an anhydride thereof, and / or a styrene copolymer as a compatibilizing material. . Further, it is desirable to adjust the viscosity and the addition amount of the polyamide resin or the thermoplastic resin so as to form a dispersion state in which a continuous layer in which the content of the polyamide resin continuously changes is formed.
  • the mixing method may be a known method, a method of dry blending resin pellets and dispersing with an extruder, a method of mixing resin powder and dispersing with an extruder, and a method of dispersing with a mixer However, it is not particularly limited.
  • a single layer container made of a material containing the polyamide resin composition, and a layer made of a material containing the polyamide resin composition and a layer made of a material containing another thermoplastic resin are provided.
  • Multi-layer containers can be manufactured.
  • the thermoplastic resin used for layers other than the layer made of the material containing the polyamide resin composition is a heat such as the polyolefin resin, polystyrene resin, polyester resin, polycarbonate resin and polyamide resin exemplified above. Examples thereof include a plastic resin and other polyamide resins exemplified above.
  • thermoplastic resins an ultra-high molecular weight high-density polyethylene resin is preferably used because it is excellent in prevention of drawdown during hollow molding, impact resistance, fuel swelling resistance, and water resistance.
  • the thermoplastic resins described above may be mixed with each other or mixed with other resins such as elastomers. For example, they may be used by mixing with other additives such as carbon black and flame retardants. Is possible.
  • the method of this invention has the process of expanding the material containing the said polyamide resin composition in a metal mold
  • a cylindrical parison made of a material containing the polyamide resin composition is formed using an extruder, the parison is extruded into a tube shape, the parison is sandwiched between molds, high-pressure air, etc. It is preferable that the parison is inflated to form a container shape such as a bottle shape, a tube shape, or a tank shape.
  • a cylindrical die such as a bottle shape, a tube shape, a tank shape, etc., in which a fuel barrier layer made of a material containing the polyamide resin composition and a thermoplastic resin layer such as a polyolefin resin are laminated. It is preferable to form into the shape of a multilayer container.
  • the material when a container containing a material containing the polyamide resin composition is produced by the direct blow method, the material is placed in the mold whose temperature is adjusted to 0 to 60 ° C. immediately after the direct blow. It has the process of hold
  • the degree of crystallization of the polyamide resin can be increased in a short time, minimizing the shrinkage of the container, and the ethanol resistance and fuel barrier. It is possible to obtain a container having excellent properties.
  • the temperature in the mold is crystallinity with excellent ethanol resistance and fuel barrier properties. From the viewpoint of increasing the temperature, the temperature is adjusted to 0 to 60 ° C., preferably 10 to 50 ° C., more preferably 20 to 40 ° C.
  • the holding time in the mold is a semi-cooling at a constant temperature of 160 ° C. of the polyamide resin composition from the viewpoint of increasing the crystallinity of the material containing the polyamide resin composition to be excellent in ethanol resistance and fuel barrier properties.
  • the time is 30% or more, preferably 33% or more, more preferably 35% or more of the time.
  • the upper limit of the holding time in the mold is appropriately determined in consideration of the type of material, the thickness of the container, and the like, but considering the productivity, the polyamide resin composition is cooled at a constant temperature of 160 ° C. for semi-crystallization
  • the time is 1000% or less of the time, preferably 500% or less, and more preferably 300% or less.
  • the temperature drop half crystallization time is obtained by melting the pellet or film made of the polyamide resin composition by a depolarizing intensity method in a hot air environment of 260 ° C. for 3 minutes, and then crystallizing it in an oil bath of 160 ° C. It represents the time until crystallization progresses by half, and it can be said that the shorter the half crystallization time, the faster the material is crystallized.
  • the reason for crystallization at 160 ° C. is that the polyamide resin composition has the fastest crystallization speed and is easy to measure.
  • each layer of the container manufactured according to the present invention varies depending on the shape of the multilayer molded body.
  • the thickness of the fuel barrier layer is 0.001 to 1 mm
  • the thickness of the thermoplastic resin layer is 0.01 to It is selected from the range of 20 mm.
  • an adhesive resin layer (adhesive layer) can be provided between the layers constituting the multilayer molded body, for example, between the fuel barrier layer and the thermoplastic resin layer.
  • the adhesive resin constituting the layer is, for example, maleic acid, acrylic acid, methacrylic acid, itaconic acid, or acid anhydrides thereof when bonding a thermoplastic resin layer made of polyolefins. Modified polyethylene, polypropylene, copolymers of olefins such as ethylene, propylene, and butenes can be used.
  • thermoplastic resin layer is made of polyester or polycarbonate, an ethylene / vinyl acetate copolymer, an alkali / alkaline earth metal cross-linked ethylene-acrylic acid copolymer, and an ethylene-acrylic acid ester a copolymer thereof, but not particularly limited.
  • burrs and defective products at the time of molding can be melted again and introduced into the multilayer molded body as a recycled layer.
  • the structure of the multilayer container using the polyamide resin composition there are three types such as a high-density polyethylene resin layer / adhesive layer / the polyamide resin composition layer / adhesive layer / high-density polyethylene resin layer from the outer layer.
  • 4 layers 7 layers configuration such as high density polyethylene resin layer / recycle layer / adhesive layer / polyamide resin composition layer / adhesive layer / recycle layer / high density polyethylene resin composition layer from the outer layer side
  • Examples include, but are not limited to, a three-layer three-layer configuration in which a fuel contacts with a polyamide resin composition such as a high-density polyethylene resin composition layer / adhesive layer / the polyamide resin composition layer from the outer layer side. .
  • the polyamide resin composition layer since the polyamide resin composition is used for the inner layer, the polyamide resin composition layer does not break at the pinch-off portion, and good fuel barrier properties can be maintained.
  • the polyamide resin composition of the present invention in the polyolefin is more fuel barrier property when dispersed in layers than in islands. Is favorable and preferable.
  • the container made of the mixed resin composition may be a single layer or a multilayer. In the case of a multilayer, the layer made of the mixed resin composition may be any layer, but is most preferably used as an intermediate layer.
  • reaction molar ratio of polyamide resin is as follows. First, the polyamide resin is dissolved in a phenol / ethanol mixed solvent and a benzyl alcohol solvent, and the carboxyl terminal group concentration and amino terminal group concentration are adjusted to hydrochloric acid and water. It calculated
  • Reaction molar ratio (1-18.015 ⁇ terminal amino group concentration ⁇ 73.07 ⁇ A) / (1-18.015 x terminal carboxyl group concentration + 68.10 x A) (3)
  • A represents (terminal carboxyl group concentration-terminal amino group concentration).
  • Crystallinity and melting point of polyamide resin composition Using a differential scanning calorimeter (manufactured by Shimadzu Corporation, trade name: DSC-60), DSC measurement was performed under a nitrogen stream at a heating rate of 10 ° C./min ( Differential scanning calorimetry) is performed, and the peak temperature (crystallization peak temperature) and exothermic peak (calorie A) due to crystallization during measurement, and the peak temperature (melting point) and endothermic peak (calorie B) due to melting are as follows: The crystallinity was determined using equation (1).
  • Example 101 In a jacketed 3L reactor equipped with a stirrer, a condenser, a cooler, a dripping tank, and a nitrogen gas introduction pipe, 4.70 mol of adipic acid (AA) and high-purity isophthalic acid (PIA A. G. International) -0.30 mol (made by Chemical Co., Ltd.) was weighed and charged, sufficiently purged with nitrogen, and further melted with stirring and mixing at 160 ° C under a small amount of nitrogen stream to form a slurry. To this, 4.97 mol of metaxylylenediamine (MXDA) was added dropwise over 160 minutes with stirring. During this time, the internal temperature was continuously raised to 250 ° C.
  • MXDA metaxylylenediamine
  • polyamide obtained by dry blending 1 part by mass of powdered talc (crystallization accelerator; manufactured by Matsumura Sangyo Co., Ltd., trade name: DG-5000) with 100 parts by mass of the polyamide resin (A1) using a twin-screw extruder.
  • a film having a thickness of 100 ⁇ m was manufactured using the resin composition.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 1.
  • HDPE high-density polyethylene
  • a direct blow bottle manufacturing machine consisting of three 40mm diameter single screw extruders that can extrude up to 3 types and 5 layers of parison, a cylindrical die and a 200ml container mold.
  • Example 102 Polyamide resin composition obtained by dry blending 0.4 parts by mass of a bis (N-propylbenzylidene) sorbitol-based organic crystallization nucleating agent (product name: Millad NX8000) based on 100 parts by mass of the polyamide resin (A1)
  • a film was prepared in the same manner as in Example 101 except that was used.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 1. Further, direct blow was performed in the same manner as in Example 101 except that the polyamide resin composition was used and the holding time in the mold was changed to 25 seconds (33.3% of the temperature drop half crystallization time). Bottles were manufactured and fuel permeability was measured. The results are shown in Table 1.
  • Example 103 Example except that the amount of adipic acid (AA) charged was changed to 4.50 mol and the amount of high-purity isophthalic acid (PIA AI International Chemical Co., Ltd.) was changed to 0.50 mol.
  • a polyamide resin (A2) having a molar ratio of adipic acid to high-purity isophthalic acid of 90:10 was obtained.
  • the obtained polyamide resin (A2) was vacuum-dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured.
  • a film was produced in the same manner as in Example 101 except that the polyamide resin (A1) was changed to the polyamide resin (A2).
  • Example 101 The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 1. Furthermore, Example 101 except that the polyamide resin (A1) was changed to the polyamide resin (A2) and the holding time in the mold was changed to 8 seconds (38.1% of the temperature drop half crystallization time). A direct blow bottle was manufactured in the same manner as described above, and the fuel permeability was measured. The results are shown in Table 1.
  • Example 104 A film was produced in the same manner as in Example 102, except that the amount of the organic crystallization nucleating agent was changed to 0.1 parts by mass. The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 1. A direct blow bottle was produced in the same manner as in Example 102 except that the polyamide resin composition was used, and the fuel permeability was measured. The results are shown in Table 1.
  • Example 105 A film was produced in the same manner as in Example 102 except that the amount of the organic crystallization nucleating agent was changed to 1.8 parts by mass. The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 1. A direct blow bottle was produced in the same manner as in Example 102 except that the polyamide resin composition was used, and the fuel permeability was measured. The results are shown in Table 1.
  • Example 106 A direct blow bottle was produced in the same manner as in Example 102 except that the mold temperature was changed to 5 ° C., and the fuel permeability was measured. The results are shown in Table 1.
  • Example 107 A direct blow bottle was produced in the same manner as in Example 102 except that the mold temperature was changed to 55 ° C., and the fuel permeability was measured. The results are shown in Table 1.
  • Example 201 The molar ratio of adipic acid to high-purity terephthalic acid is 94: 6 in the same manner as in Example 101 except that high-purity isophthalic acid is changed to high-purity terephthalic acid (PTA manufactured by Mitsubishi Gas Chemical Co., Inc.).
  • a polyamide resin (B1) was obtained.
  • the obtained polyamide resin (B1) was vacuum dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured.
  • Example 101 A film was produced in the same manner as in Example 101 except that the polyamide resin (A1) was changed to the polyamide resin (B1).
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 2.
  • Example 101 except that the polyamide resin (A1) was changed to the polyamide resin (B1) and the holding time in the mold was changed to 8 seconds (32.0% of the temperature drop half crystallization time).
  • a direct blow bottle was manufactured in the same manner as described above, and the fuel permeability was measured. The results are shown in Table 2.
  • Example 202 Example 201 except that a polyamide resin composition obtained by dry blending 0.4 parts by mass of an organic crystallization nucleating agent (product name: Millad NX8000) with respect to 100 parts by mass of the polyamide resin (B1) was used. A film was prepared in the same manner. The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 2. Further, direct blow was performed in the same manner as in Example 201 except that the polyamide resin composition was used and the holding time in the mold was changed to 30 seconds (31.6% of the temperature drop half crystallization time). Bottles were manufactured and fuel permeability was measured. The results are shown in Table 2.
  • an organic crystallization nucleating agent product name: Millad NX8000
  • Example 203 The same procedure as in Example 201 except that the amount of adipic acid (AA) charged was changed to 4.50 mol and the amount of high-purity terephthalic acid (PTA manufactured by Mitsubishi Gas Chemical Co., Ltd.) was changed to 0.50 mol.
  • the obtained polyamide resin (B2) was vacuum-dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured.
  • a film was produced in the same manner as in Example 201 except that the polyamide resin (B1) was changed to the polyamide resin (B2).
  • Example 201 The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 2. Furthermore, Example 201 except that the polyamide resin (B1) was changed to the polyamide resin (B2) and the holding time in the mold was changed to 15 seconds (37.5% of the temperature drop half crystallization time). A direct blow bottle was manufactured in the same manner as described above, and the fuel permeability was measured. The results are shown in Table 2.
  • Example 301 A polyamide in which the molar ratio of adipic acid to 2,6-naphthalenedicarboxylic acid is 94: 6 except that the high-purity isophthalic acid is changed to 2,6-naphthalenedicarboxylic acid (NDCA). Resin (C1) was obtained. The obtained polyamide resin (C1) was vacuum-dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured.
  • NDCA 2,6-naphthalenedicarboxylic acid
  • a film was prepared in the same manner as in Example 101 except that the polyamide resin (A1) was changed to the polyamide resin (C1).
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 3.
  • Example 101 except that the polyamide resin (A1) was changed to the polyamide resin (C1) and the holding time in the mold was changed to 6 seconds (37.5% of the temperature drop half crystallization time).
  • a direct blow bottle was manufactured in the same manner as described above, and the fuel permeability was measured. The results are shown in Table 3.
  • Example 302 Example 301 except that a polyamide resin composition obtained by dry blending 0.4 parts by mass of an organic crystallization nucleating agent (trade name: Millad NX8000, manufactured by Milliken) with respect to 100 parts by mass of the polyamide resin (C1) was used. A film was prepared in the same manner. The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 3. Further, direct blow was performed in the same manner as in Example 301 except that the polyamide resin composition was used and the holding time in the mold was changed to 20 seconds (31.3% of the temperature drop half crystallization time). Bottles were manufactured and fuel permeability was measured. The results are shown in Table 3.
  • an organic crystallization nucleating agent trade name: Millad NX8000, manufactured by Milliken
  • Example 303 Adipic acid was obtained in the same manner as in Example 301 except that the amount of adipic acid (AA) charged was changed to 4.50 mol and the amount of 2,6-naphthalenedicarboxylic acid (NDCA) was changed to 0.50 mol. And a polyamide resin (C2) having a molar ratio of 90:10 to 2,6-naphthalenedicarboxylic acid was obtained. The obtained polyamide resin (C2) was vacuum dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured. A film was prepared in the same manner as in Example 301 except that the polyamide resin (C1) was changed to the polyamide resin (C2).
  • Example 301 and Example 301 were changed except that the polyamide resin (C1) was changed to the polyamide resin (C2) and the holding time in the mold was changed to 20 seconds (35.7% of the temperature drop half crystallization time). Similarly, a direct blow bottle was manufactured and the fuel permeability was measured. The results are shown in Table 3.
  • a polyamide resin (D1) which is polyamide MXD6 was obtained in the same manner as in Example 101 except that 4.70 mol of adipic acid (AA) and 4.67 mol of metaxylylenediamine (MXDA) were used as raw materials.
  • the obtained polyamide resin (D1) was vacuum-dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured.
  • a film having a thickness of 100 ⁇ m was prepared by using a polyamide resin (D1) (without addition of a crystallization accelerator) by a twin screw extruder.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined.
  • the results are shown in Table 4.
  • the holding time in the mold was changed to 15 seconds (41.7% of the temperature drop half crystallization time), and the polyamide resin composition was changed to polyamide resin (D1) (crystallization promotion) as a material for the fuel barrier layer.
  • D1 crystallization promotion
  • Comparative Example 102 A direct blow bottle was produced in the same manner as in Comparative Example 101 except that the holding time in the mold was changed to 6 seconds (16.7% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 4.
  • Comparative Example 103 A polyamide resin composition obtained by dry blending 1 part by mass of powdered talc (crystallization accelerator: Matsumura Sangyo Co., Ltd., trade name: DG-5000) with respect to 100 parts by mass of the polyamide resin (D1) was used. A film was prepared in the same manner as in Comparative Example 101 except for the above. The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 4.
  • Comparative Example 104 A direct blow bottle was produced in the same manner as in Comparative Example 103, except that the holding time in the mold was changed to 2 seconds (22.2% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 4.
  • Comparative Example 105 Example except that the amount of adipic acid (AA) charged was changed to 4.25 mol and that of high-purity isophthalic acid (PIA AI International Chemical Co., Ltd.) was changed to 0.75 mol.
  • a polyamide resin (A4) having a molar ratio of adipic acid to high-purity isophthalic acid of 85:15 was obtained.
  • the obtained polyamide resin (A4) was vacuum-dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured.
  • a film having a thickness of 100 ⁇ m was formed using a polyamide resin (A4) (without addition of a crystallization accelerator) by a twin-screw extruder.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 5.
  • the holding time in the mold was changed to 200 seconds (31.3% of the temperature drop half crystallization time), and the polyamide resin composition was changed to polyamide resin (A4) (crystallization promotion) as a material for the fuel barrier layer.
  • a direct blow bottle was produced in the same manner as in Example 101 except that the agent was not added), and the fuel permeability was measured. The results are shown in Table 5.
  • Comparative Example 106 A direct blow bottle was produced in the same manner as in Comparative Example 105 except that the holding time in the mold was changed to 150 seconds (23.4% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 5.
  • Comparative Example 107 A polyamide resin composition obtained by dry blending 1 part by mass of powdered talc (crystallization accelerator: Matsumura Sangyo Co., Ltd., trade name: DG-5000) with respect to 100 parts by mass of the polyamide resin (A4) was used. A film was prepared in the same manner as in Comparative Example 105 except for the above. The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 5.
  • Comparative Example 108 A direct blow bottle was produced in the same manner as in Comparative Example 107 except that the holding time in the mold was changed to 30 seconds (18.8% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 5.
  • Comparative Example 205 The same procedure as in Example 201 except that the amount of adipic acid (AA) charged was changed to 4.25 mol, and the amount of high-purity terephthalic acid (PTA manufactured by Mitsubishi Gas Chemical Co., Ltd.) was changed to 0.75 mol.
  • the obtained polyamide resin (B4) was vacuum dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured.
  • a film having a thickness of 100 ⁇ m was prepared using a polyamide resin (B4) (without addition of a crystallization accelerator) by a twin-screw extruder.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined.
  • the results are shown in Table 6.
  • the holding time in the mold was changed to 650 seconds (30.1% of the temperature drop half crystallization time), and the polyamide resin composition was changed to polyamide resin (B4) (crystallization promotion) as a material for the fuel barrier layer.
  • a direct blow bottle was produced in the same manner as in Example 201 except that the agent was not added), and the fuel permeability was measured. The results are shown in Table 6.
  • Comparative Example 206 A direct blow bottle was produced in the same manner as in Comparative Example 205 except that the holding time in the mold was changed to 300 seconds (13.9% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 6.
  • Comparative Example 207 A polyamide resin composition obtained by dry blending 1 part by mass of powdered talc (crystallization accelerator: Matsumura Sangyo Co., Ltd., trade name: DG-5000) with respect to 100 parts by mass of the polyamide resin (B4) was used. A film was prepared in the same manner as in Comparative Example 205 except for the above. The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 6.
  • Comparative Example 208 A direct blow bottle was produced in the same manner as in Comparative Example 207, except that the holding time in the mold was changed to 100 seconds (18.5% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 6.
  • Example 305 The procedure of Example 301 was repeated except that the amount of adipic acid (AA) was changed to 4.0 mol, and the amount of 2,6-naphthalenedicarboxylic acid (NDCA manufactured by Mitsubishi Gas Chemical Co., Ltd.) was changed to 1.0 mol. Similarly, a polyamide resin (C4) having a molar ratio of adipic acid to 2,6-naphthalenedicarboxylic acid of 80:20 was obtained. The obtained polyamide resin (C4) was vacuum-dried at 140 ° C. for 6 hours, and then the relative viscosity and the reaction molar ratio were measured.
  • AA adipic acid
  • NDCA 2,6-naphthalenedicarboxylic acid manufactured by Mitsubishi Gas Chemical Co., Ltd.
  • a film having a thickness of 100 ⁇ m was prepared using a polyamide resin (C4) (without addition of a crystallization accelerator) by a twin-screw extruder.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined.
  • the results are shown in Table 7.
  • the holding time in the mold was changed to 150 seconds (37.5% of the temperature drop half crystallization time), and the polyamide resin composition was changed to polyamide resin (C4) (crystallization promotion) as a material for the fuel barrier layer.
  • a direct blow bottle was produced in the same manner as in Example 301 except that the agent was not added), and the fuel permeability was measured. The results are shown in Table 7.
  • Comparative Example 306 A direct blow bottle was produced in the same manner as in Comparative Example 305, except that the holding time in the mold was changed to 100 seconds (25.0% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 7.
  • Comparative Example 307 A polyamide resin composition obtained by dry blending 1 part by mass of powdered talc (crystallization accelerator: Matsumura Sangyo Co., Ltd., trade name: DG-5000) with respect to 100 parts by mass of the polyamide resin (C4) was used. A film was prepared in the same manner as in Comparative Example 305 except that. The crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined. The results are shown in Table 7.
  • Comparative Example 308 A direct blow bottle was produced in the same manner as in Comparative Example 307 except that the holding time in the mold was changed to 20 seconds (20.0% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 7.
  • Comparative Example 109 A film having a thickness of 100 ⁇ m was prepared using a polyamide resin (A1) (without addition of a crystallization accelerator) by a twin-screw extruder.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined.
  • the results are shown in Table 8.
  • the holding time in the mold was changed to 25 seconds (32.9% of the temperature drop half crystallization time), and the polyamide resin composition was changed to polyamide resin (A1) (crystallization promotion) as a material for the fuel barrier layer.
  • a direct blow bottle was produced in the same manner as in Example 101 except that the agent was not added), and the fuel permeability was measured. The results are shown in Table 8.
  • Comparative Example 110 A direct blow bottle was produced in the same manner as in Comparative Example 109, except that the holding time in the mold was changed to 15 seconds (19.7% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 8.
  • Comparative Example 111 A direct blow bottle was produced in the same manner as in Example 101 except that the holding time in the mold was changed to 3 seconds (15.8% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 8.
  • Comparative Example 112 A direct blow bottle was produced in the same manner as in Example 102 except that the mold temperature was changed to 65 ° C., and the fuel permeability was measured. The results are shown in Table 8.
  • Comparative Example 113 A direct blow bottle was produced in the same manner as in Example 102 except that the holding time in the mold was changed to 100 seconds (133% of the temperature drop half crystallization time) and the mold temperature was changed to 65 ° C. The fuel permeability was measured. The results are shown in Table 8.
  • Comparative Example 209 A film having a thickness of 100 ⁇ m was prepared using a polyamide resin (B1) (without addition of a crystallization accelerator) by a twin-screw extruder.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined.
  • the results are shown in Table 9.
  • the holding time in the mold was changed to 30 seconds (31.3% of the temperature drop half crystallization time), and the polyamide resin composition was changed to polyamide resin (B1) (crystallization promotion) as a material for the fuel barrier layer.
  • a direct blow bottle was produced in the same manner as in Example 201 except that the agent was not added), and the fuel permeability was measured. The results are shown in Table 9.
  • Comparative Example 210 A direct blow bottle was produced in the same manner as in Comparative Example 209 except that the holding time in the mold was changed to 10 seconds (10.4% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 9.
  • Comparative Example 211 A direct blow bottle was produced in the same manner as in Example 201 except that the holding time in the mold was changed to 5 seconds (20.0% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 9.
  • Comparative Example 309 A film having a thickness of 100 ⁇ m was formed using a polyamide resin (C1) (without addition of a crystallization accelerator) by a twin-screw extruder.
  • the crystallization peak temperature, melting point, heat amount A, heat amount B, crystallinity, temperature drop half crystallization time, fuel permeability coefficient and strength retention of this film were determined.
  • the results are shown in Table 10.
  • the holding time in the mold was changed to 20 seconds (31.3% of the temperature drop half crystallization time), and the polyamide resin composition was changed to polyamide resin (C1) (crystallization promotion) as a material for the fuel barrier layer.
  • a direct blow bottle was produced in the same manner as in Example 301 except that the agent was not added), and the fuel permeability was measured. The results are shown in Table 10.
  • Comparative Example 310 A direct blow bottle was produced in the same manner as in Comparative Example 309, except that the holding time in the mold was changed to 15 seconds (23.4% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 10.
  • Comparative Example 311 A direct blow bottle was produced in the same manner as in Example 301 except that the holding time in the mold was changed to 3 seconds (18.8% of the temperature drop half crystallization time), and the fuel permeability was measured. The results are shown in Table 10.
  • a polyamide resin composition having a high crystallinity with a crystallinity of 5 to 15% was obtained, and this polyamide resin composition was used.
  • the film has a fuel permeability coefficient of 0.3 to 0.7 g ⁇ mm / (m 2 ⁇ day), a strength retention rate of 92 to 97%, and is found to have excellent ethanol resistance and fuel barrier properties. .
  • a container using this polyamide resin composition as a fuel barrier layer had an excellent fuel permeability of 1.4 to 1.8 g / (bottle ⁇ day).
  • Comparative Examples 101 to 104 a polyamide resin composition having a high crystallinity of 13 to 17% was obtained.
  • the polyamide resin composition does not contain an aromatic dicarboxylic acid.
  • the film made of the product had a fuel permeability coefficient of 0.8 to 0.9 g ⁇ mm / (m 2 ⁇ day) and a strength retention of 82 to 85%.
  • a container using this polyamide resin composition as a fuel barrier layer had a fuel permeability of 2.7 to 3.2 g / (bottom ⁇ day), which was inferior.
  • Comparative Examples 111, 211, and 311 are the same polyamide resin compositions as in Examples 101, 201, and 301, respectively, but the holding time in the mold is 30% of the temperature-lowering half crystallization time.
  • the container obtained by changing to less than the fuel permeability was inferior at 2.0 to 2.1 g / (bottle ⁇ day).
  • Comparative Examples 112 and 113 are those using the same polyamide resin composition as in Example 102, but the container obtained by changing the mold temperature to 65 ° C. has a holding time in the mold. Even if it is 30% or more of the temperature-lowering half crystallization time, the fuel permeability is inferior to 2.4 to 2.7 g / (bottle ⁇ day), the shrinkage of the container is large, and the dimensional accuracy is inferior. It was.
  • the container manufactured by the method of the present invention is excellent in ethanol resistance and fuel barrier properties, and is loaded with a fuel tube around a car engine, a fuel tank, and a small engine such as a boat, snowmobile, lawn mower, etc. It can be suitably used to a fuel tank or the like of the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Polyamides (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

 メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸と芳香族ジカルボン酸とのモル比率が97:3~90:10のジカルボン酸成分とを重縮合して得られるポリアミド樹脂100質量部と、結晶化促進剤0.01~2質量部とを含有するポリアミド樹脂組成物を含む材料をダイレクトブローにより金型内で膨らませる工程、及び当該材料を、ダイレクトブロー直後から0~60℃に温調された当該金型内で、当該ポリアミド樹脂組成物の160℃定温における降温半結晶化時間の30%以上の時間保持する工程を含む、容器の製造方法。

Description

容器の製造方法
 本発明は、容器の製造方法に関し、詳しくは、メタキシリレンジアミンと脂肪族ジカルボン酸及び芳香族ジカルボン酸とを共重合して得られるポリアミド樹脂組成物を含む材料からなる容器の製造方法に関する。
 ポリアミド樹脂は、優れた機械的性能を有することから、自動車や電気電子部品などの射出成形物用の材料として幅広く利用されている。また、食品、飲料、薬品、電子部品等の包装資材としても利用されており、なかでもキシリレンジアミンと脂肪族ジカルボン酸との重縮合反応から得られるポリアミド(MXナイロン)、特にメタキシリレンジアミンとアジピン酸から得られるポリアミド(ポリアミドMXD6)は、酸素、炭酸ガス等のガス状物質に対する低い透過性を示すことから、ガスバリア材料としてフィルム、ボトル等の成形物に利用されている。
 近年、燃料保存用容器として、軽量化、防錆処理不要化、形状の自由度向上、加工工数の削減や製造の全自動化などの面から、ダイレクトブロー成形などからなる樹脂製燃料用容器が注目され、金属製燃料用容器からの代替が進んでいる。しかし、用いられるポリオレフィン(特に、高密度ポリエチレン)は、機械的強度、成形加工性、経済性に優れるものの、燃料に対するバリア性能(以下、「燃料バリア性」ということがある。)が乏しいため、燃料透過量に対する規制に対応できなくなっている。
 そのため、容器の内面をフッ素処理する方法や、燃料バリア性のあるポリアミド樹脂やエチレン-ビニルアルコール共重合体などを燃料バリア層としてポリエチレン層の間に中間層として設けた多層容器などが提案されている(例えば、特許文献1~5参照)。これらのうち、フッ素処理は、有害ガス取り扱い上の安全性確保や、処理後の回収方法などが問題となり現在はほとんど使用されていない。多層容器の場合は、燃料バリア層を設けることにより燃料の透過量はある程度減らすことができるものの、燃料に対するバリア性は完全ではない。燃料バリア層の厚みを厚くすると、衝突時の衝撃吸収が低下したり、重量の増加やコスト高になるなどの課題があり、今後ますます強化される規制に十分に応えていくことが困難であった。
 また、ガソリンにエタノール等を添加することにより、化石燃料の使用量を減らし二酸化炭素の排出量を削減できるため、エタノールを燃料として利用する検討が進められているが、ナイロン6やエチレン-ビニルアルコール共重合体などは、アルコール類に対するバリア性が劣る。そこで、アルコールを含有する燃料のバリア性能を高めた材料が望まれている。
 ところで、燃料などの用途に用いられる容器は、通常、ダイレクトブロー法により成形されるが、上記した従来の燃料バリア材は耐熱性が劣るため、樹脂温度の上昇や樹脂の滞留によって、ゲルが生じやすくなり、生産条件が制限される。また、成形時に生じるバリのリサイクルや、装置を稼動及び停止する際に熱安定性に優れる樹脂に切り替える必要があるなど、生産性や材料の有効利用に問題を有している。特に、ダイレクトブロー法では、樹脂の溶融粘度が低いとドローダウンが生じ、得られた製品の厚みが薄すぎたり、偏肉等の不具合が生じる。また、成形温度が高すぎると外層に用いられるポリオレフィンの溶融粘度が低下し、ドローダウンが生じるため好ましくない。
 燃料バリア性のあるポリアミド樹脂を中間層として有する材料をダイレクトブロー法で成形して得られる多層の燃料容器では、成形時にできるピンチオフ部に燃料バリア材料が入らず、このピンチオフ部から燃料が透過し、燃料バリア性が低下するといった問題がある。そこで、昨今、ポリアミド樹脂を内層に用いた多層の燃料容器やポリアミド樹脂とポリオレフィンとをブレンドした燃料容器の開発も進められている。これらの燃料容器では、燃料バリア性のあるポリアミド樹脂と燃料とが接液するため、燃料バリア性を高く維持できる。
 また、特許文献6には、メタキシリレンジアミンと脂肪族ジカルボン酸及びナフタレンジカルボン酸を共重合したポリアミド樹脂が記載されており、このポリアミド樹脂は、燃料バリア性に優れている旨が記載されている。
 さらに、特許文献7には、メタキシリレンジアミンと脂肪族ジカルボン酸及びイソフタル酸を共重合した重合体を1~30重量%の水の存在下、かつ、70~120℃で0.5~4時間維持することにより結晶化し、不活性ガス雰囲気中等で(重合体の融点-50℃)~(重合体の融点-10℃)の温度で1~12時間加熱処理することにより、燃料バリア性、特にアルコールに対するバリア性に優れているポリアミド樹脂が得られる旨が記載されている。
特開平3-32815号公報 特開平5-345349号公報 特開平6-340033号公報 特開平9-29904号公報 特開2001-97053号公報 特開2005-314487号公報 特開2006-45528号公報
 しかしながら、特許文献6に記載のポリアミド樹脂は、燃料バリア性は高くなるものの、ナフタレンジカルボン酸の共重合割合が高いため、ポリアミド樹脂が非晶化しすぎてしまい、耐エタノール性が十分でないことがわかった。すなわち、このポリアミド樹脂の耐エタノール性が向上しないのは、ポリアミド樹脂の結晶化度が低いことがその原因の一つであることがわかった。
 また、上記したように、容器は、通常、ダイレクトブロー法により成形されるが、ダイレクトブロー法により容器を製造する場合、生産性の観点から、金型に接触している樹脂等が硬化すれば、すぐに金型を開いて容器を取り出している。
 そこで、メタキシリレンジアミンと脂肪族ジカルボン酸及びナフタレンジカルボン酸を共重合したポリアミド樹脂をダイレクトブロー成形装置の金型内で長時間保持することにより、ポリアミド樹脂の結晶化度を向上させることが考えられるが、結晶化度を高めるために、ダイレクトブローされたポリアミド樹脂を金型内で長時間保持したのでは、生産性が低下してしまい現実の生産に採用することができるものではなかった。
 さらに、特許文献7に記載の結晶化させたポリアミド樹脂を材料として用いても、ダイレクトブロー法により容器を製造する場合、成形可能な程度にポリアミド樹脂の粘度を下げる必要があり、ブロー成形中にポリアミド樹脂の結晶化度が低下し、得られる容器の耐エタノール性及び燃料バリア性が低下する場合がある。
 本発明の課題は、メタキシリレンジアミンと脂肪族ジカルボン酸及び芳香族ジカルボン酸とを共重合して得られるポリアミド樹脂を用いて、耐エタノール性及び燃料バリア性に優れた容器を効率よく製造する方法を提供することにある。
 本発明は、以下の容器の製造方法を提供する。
(1) メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸と芳香族ジカルボン酸とのモル比率が97:3~90:10のジカルボン酸成分とを重縮合して得られるポリアミド樹脂100質量部と、結晶化促進剤0.01~2質量部とを含有するポリアミド樹脂組成物を含む材料をダイレクトブローにより金型内で膨らませる工程、及び当該材料を、ダイレクトブロー直後から0~60℃に温調された当該金型内で、当該ポリアミド樹脂組成物の160℃定温における降温半結晶化時間の30%以上の時間保持する工程を含む、容器の製造方法。
(2) 前記芳香族ジカルボン酸が、イソフタル酸、テレフタル酸及び2,6-ナフタレンジカルボン酸からなる群から選ばれる1種以上である、上記(1)に記載の容器の製造方法。
(3) 前記ポリアミド樹脂組成物の示差走査熱量測定における昇温時の結晶化に起因するピーク温度が160℃以下である、上記(1)又は(2)に記載の容器の製造方法。
(4) 前記容器が多層容器であり、当該多層容器の少なくとも1層が前記ポリアミド樹脂組成物を含む材料からなる層となるように、当該ポリアミド樹脂組成物を含む材料をダイレクトブローする、上記(1)~(3)のいずれかに記載の容器の製造方法。
(5) 前記多層容器の前記ポリアミド樹脂組成物を含む材料からなる層以外の少なくとも1層がポリオレフィン樹脂を含む材料からなる層である、上記(4)に記載の容器の製造方法。
(6) 前記ポリアミド樹脂組成物を含む材料からなる層が、容器の内面に配されるように、当該ポリアミド樹脂組成物を含む材料をダイレクトブローする、上記(4)又は(5)に記載の容器の製造方法。
 本発明によれば、メタキシリレンジアミンと脂肪族ジカルボン酸及び芳香族ジカルボン酸とを共重合して得られるポリアミド樹脂の結晶化度を高めて、耐エタノール性及び燃料バリア性に優れた容器を効率よく製造することができる。
 本発明は、メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸と芳香族ジカルボン酸とのモル比率が97:3~90:10のジカルボン酸成分とを重縮合して得られるポリアミド樹脂100質量部と、結晶化促進剤0.01~2質量部とを含有するポリアミド樹脂組成物を含む材料をダイレクトブローにより金型内で膨らませる工程、及び当該材料を、ダイレクトブロー直後から0~60℃に温調された当該金型内で、当該ポリアミド樹脂組成物の160℃定温における降温半結晶化時間の30%以上の時間保持する工程を含む、容器の製造方法である。
 本発明者らは、ジカルボン酸中の芳香族ジカルボン酸の含有量を少なくし、結晶化促進剤を用いたポリアミド樹脂組成物を含む材料を、ダイレクトブロー直後から0~60℃に温調された金型内で、ポリアミド樹脂組成物の160℃定温における降温半結晶化時間の30%以上の時間保持することで、ポリアミド樹脂の結晶化度を高めて、耐エタノール性及び燃料バリア性に優れた容器を効率よく製造することができることを見出した。本発明は、このような知見に基づき完成するに至ったものである。
 本発明に用いられるポリアミド樹脂は、メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸と芳香族ジカルボン酸とのモル比率が97:3~90:10のジカルボン酸成分とを重縮合して得られる。
 本発明では、ジアミン成分としてメタキシリレンジアミンを用いるが、これ以外のジアミン成分を用いることもでき、例えば、パラキシリレンジアミン、パラフェニレンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、テトラメチレンジアミン、ペンタメチレンジアミン、オクタメチレンジアミン、ノナンメチレンジアミン等を用いることができる。
 ジアミン成分中のメタキシリレンジアミンの含有量は、燃料バリア性の観点から、70モル%以上であり、好ましくは75モル%以上、より好ましくは85モル%以上、さらに好ましくは90モル%以上であり、その上限は100モル%である。
 本発明では、ジカルボン酸成分として、炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸と、耐エタノール性を高めるための成分である芳香族ジカルボン酸を用いる。
 この炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸の例としては、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、セバシン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示できるが、これらの中でもアジピン酸が好ましい。
 芳香族ジカルボン酸の例としては、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸等が例示できる。ナフタレンジカルボン酸としては、例えば、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といった異性体を用いることができる。これらのナフタレンジカルボン酸は共重合してもよい。
 特に、燃料バリア性を高めるという観点からは、芳香族環をもつジアミンや芳香族環をもつジカルボン酸を多く共重合することが好ましい。
 本発明では、芳香族ジカルボン酸としては、イソフタル酸、テレフタル酸及び2,6-ナフタレンジカルボン酸からなる群から選ばれる1種以上が好ましい。
 ポリアミド樹脂の形成の際に上記以外のポリアミド形成成分を含有させることは特に限定されない。そのようなポリアミド形成成分としては、例えば、カプロラクタム、バレロラクタム、ラウロラクタム、ウンデカラクタム等のラクタムや、11-アミノウンデカン酸、12-アミノドデカン酸等のアミノカルボン酸等を例示できる。
 一般に、メタキシリレンジアミン及び炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸に、芳香族ジカルボン酸などの成分を加えて共重合させると、得られるポリアミド樹脂は非晶化する傾向にある。ポリアミド樹脂が非晶化すると、耐エタノール性が悪化するため、ポリアミド樹脂は、ある程度の結晶化度を保持する必要がある。
 本発明では、ポリアミド樹脂の結晶化度を保持する観点から、芳香族ジカルボン酸の含有量を少なくし、炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸と芳香族ジカルボン酸とのモル比率(α,ω-直鎖脂肪族ジカルボン酸:芳香族ジカルボン酸)は、耐エタノール性及び燃料バリア性の観点から97:3~90:10である。このモル比率より芳香族ジカルボン酸の含有量を少なくすると、燃料バリア性に優れたポリアミド樹脂が得られにくくなり、このモル比率より芳香族ジカルボン酸の含有量を多くすると、ポリアミド樹脂の結晶化度が低くなり、耐エタノール性に優れたポリアミド樹脂が得られにくくなる。
 ポリアミド樹脂の製造方法としては、リン原子含有化合物を添加して溶融重縮合(溶融重合)する方法が好ましく、リン原子含有化合物は溶融重縮合の段階で添加することが好ましい。例えば、容器の材料として利用可能な重合度まで重縮合を進めようとすると熱履歴が増大してポリアミド樹脂のゲル化、着色を招くおそれがある。これに対し、溶融重縮合の段階で系内にリン原子含有化合物を存在させることで、得られるポリアミドが黄色に着色することを防ぐことができ、さらにはアミド化反応速度の低下を防ぐことができる。
 溶融重縮合法としては、例えば、リン原子含有化合物の存在下、ジアミン成分とジカルボン酸成分からなるナイロン塩を水の存在下に、加圧下で昇温し、加えた水および縮合水を除きながら溶融状態で重合させる方法がある。また、ジアミン成分を溶融状態のジカルボン酸成分に直接加えて重縮合する方法もある。この場合、反応系を均一な液状態に保つために、ジアミン成分をジカルボン酸成分に連続的に加え、その間、反応温度が生成するオリゴアミドおよびポリアミドの融点よりも下回らないように反応系を昇温しつつ、重縮合を進めることが好ましい。
 本発明のポリアミド樹脂の重縮合系内に添加されるリン原子含有化合物としては、特に限定されず、例えば、ジメチルホスフィン酸、フェニルメチルホスフィン酸、次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸エチル、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム、亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等が挙げられ、これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩がアミド化反応を促進する効果が高く、かつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。
 本発明のポリアミド樹脂の重縮合系内に添加するリン原子含有化合物の添加量は、ポリアミド樹脂中のリン原子濃度換算で50~400質量ppmであることが好ましく、より好ましくは60~350質量ppmであり、さらに好ましくは70~300質量ppmである。
 また、ポリアミド樹脂の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリアミドの着色を防止するためにはリン原子含有化合物を十分な量存在させる必要があるが、場合によってはポリアミドのゲル化を招くおそれがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物を共存させることが好ましい。アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩が好ましい。アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウムが挙げられ、アルカリ金属酢酸塩としては、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウムが挙げられるが、これらの化合物に限定されることなく用いることができる。
 上記した溶融重縮合で得られたポリアミド樹脂は一旦取り出され、ペレット化された後、乾燥する。さらに、重合度を高めるためにポリアミド樹脂を固相重合してもよい。乾燥乃至固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミド樹脂の固相重合を行う場合は、上述の装置の中で、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすい回分式加熱装置が好ましく用いられる。
 上述の溶融重縮合等の工程を経て得られるポリアミド樹脂は着色が少なく、ゲルの少ないものである。本発明では、成形品の着色の観点から、JIS-K-7105の色差試験におけるb*値が好ましくは3以下、より好ましくは2以下、さらに好ましくは1以下のポリアミド樹脂が用いられる。
 b*値を3以下にするためには、例えば、ポリアミド樹脂の重縮合系内にリン原子含有化合物をポリアミド樹脂中のリン原子濃度換算で50~400質量ppm添加することで、b*値低下を抑えることが可能である。また、溶融重合工程中のポリアミドへの伝熱が局所的にならないような適切な形状の撹拌翼を用いたりすればよい。
 本発明に用いられるポリアミド樹脂組成物は、ポリアミド樹脂の結晶化度を高める観点並びに耐エタノール性及び燃料バリア性の向上の観点から、前記ポリアミド樹脂と結晶化促進剤とを含有する。
 本発明で用いられる結晶化促進剤は、無機系又は有機系の結晶化促進剤のいずれであってもよい。2種以上の結晶化促進剤を併用してもよい。
 無機系の結晶化促進剤としては、ガラス充填剤(ガラス繊維、粉砕ガラス繊維(ミルドファイバー)、ガラスフレーク、ガラスビーズ等)、ケイ酸カルシウム系充填材(ワラストナイト等)、マイカ、タルク(粉状タルクやロジンをバインダーとした顆粒状タルク等)、カオリン、チタン酸カリウムウィスカー、窒化ホウ素、層状珪酸塩等のクレイやナノフィラー、炭素繊維等がある。無機系の結晶化促進剤の最大径は0.01~5μmであることが好ましい。特に、粒子径が3.0μm以下の粉状タルクが好ましく、粒子径1.5~3.0μm程度の粉状タルクがより好ましく、粒子径が2.0μm以下の粉状タルクが特に好ましい。また、この粉状タルクにロジンをバインダーとした顆粒状のタルクは、ポリアミド樹脂中での分散状態が良好であるため、特に好ましい。
 また、有機系の結晶化促進剤としては、通常熱可塑性樹脂に用いられるものでよく、2分子膜からなるマイクロレベルからナノレベルサイズのカプセル内に核剤成分等を添加した2分子膜からなるカプセル、ベンジリデンソルビトール系やリン系の透明化結晶核剤、ロジンアミド系のゲル化剤等があり、特に、ビス(ベンジリデン)ソルビトール系結晶化核剤が好ましい。
 結晶化促進剤の含有量は、ポリアミド樹脂100質量部に対して、0.01~2質量部である。0.01質量部未満では、結晶化促進剤を含有させた効果が少なく、2質量部を超えて含有させてもポリアミド樹脂の結晶化度を高める効果が大きくならず、結晶化核剤の種類によっては、成形時の溶融粘度の低下や、成形品の透明性が悪化するので好ましくない。特に好ましい含有量は、0.1~1質量部である。
 本発明では、上記の結晶化促進剤を用いることで、示差走査熱量測定における結晶化に起因する発熱ピーク(熱量A)及び融解に起因する吸熱ピーク(熱量B)を用いて次式(1)から求められる結晶化度を5%以上に制御することができ、ポリアミド樹脂組成物は耐エタノール性及び燃料バリア性に優れる。
 結晶化度=((熱量B)-(熱量A))/熱量C×100(%) (1)
 ここで、熱量Cは結晶融解熱であり、その値は151J/gである。また、熱量は絶対値で示される。
 本発明に用いられるポリアミド樹脂組成物は、示差走査熱量測定における昇温時の結晶化に起因するピーク温度(結晶化ピーク温度)が好ましくは160℃以下であり、より好ましくは140~160℃である。昇温時の結晶化に起因するピーク温度が低ければ、結晶性を持ち合わせると共に結晶化速度が速いことを示すが、160℃以下であれば、耐エタノール性を発揮できる結晶化度を保持することができる。結晶化速度が速ければ、ダイレクトブローボトルなどの成形体として本発明のポリアミド樹脂組成物を用いた場合に、金型での保持時間を短くできるため、生産性を損なわない。
 ポリアミド樹脂に結晶化促進剤を含有させる方法は、例えば、ポリアミド樹脂に結晶化促進剤をブレンドして、押出機にて押出し、ポリアミド樹脂に結晶化促進剤が均一に分散されたポリアミド樹脂組成物(フィルム)を製造することができる。
 本発明に用いられるポリアミド樹脂組成物は、本発明の効果を損なわない範囲で艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤等の添加剤等を必要に応じて含有してもよい。
 本発明に用いられるポリアミド樹脂組成物の成形性の指標としては、ポリマーの重合度があり、ポリマーの重合度を求める手段の一つとして、相対粘度を測定する方法がある。
 本発明に用いられるポリアミド樹脂組成物の相対粘度は、成形加工性の観点から、好ましくは1.5~4.2、より好ましくは1.7~4.0、さらに好ましくは2.0~3.8である。
 なお、ここで言う相対粘度は、ポリアミド樹脂0.2gを96%硫酸100mlに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t0)の比であり、次式(2)から求められる。
  相対粘度=t/t0              (2)
 本発明に用いられるポリアミド樹脂組成物において、上述した特定のポリアミド樹脂と、他のポリアミド樹脂とをブレンドしてもよい。そのような他のポリアミド樹脂としては、ポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド12、ポリアミド4,6、ポリアミド6,6、ポリアミド6,10、ポリアミド6IT(ポリヘキサメチレンイソフタルアミド/ポリヘキサメチレンテレフタルアミドコポリマー)、ポリアミド6I(ポリヘキサメチレンイソフタルアミド)、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド9T(ポリノナメチレンテレフタルアミド)、ポリアミドMXD6(ポリメタキシリレンアジパミド)、ポリアミド1,3-BAC6(ポリ(シクロヘキサン-1,3-ジメチレン)アジパミド)、ポリアミド1,4-BAC6(ポリ(シクロヘキサン-1,4-ジメチレン)アジパミド)、ポリアミドMXD10(ポリメタキシリレンセバカミド)、ポリアミドPXD10(ポリパラキシリレンセバカミド)、ポリアミドMP6(ポリメタキシリレンアジパミド/ポリパラキシリレンアジパミドコポリマー)などを例示することができる。これらのポリアミドを、上述した特定のポリアミド樹脂とブレンドすることで、溶融粘度を調整し、ドローダウン等による偏肉などの成形不良を避けることができる。
 また、本発明において、容器を製造するために用いられる材料としては、ポリアミド樹脂組成物と、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂等の熱可塑性樹脂とを混合して用いてもよい。ポリオレフィン樹脂としては、直鎖状低密度ポリエチレン樹脂、低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超高分子量高密度ポリエチレン樹脂、ポリプロピレン樹脂、あるいはエチレン、プロピレン、ブテン等から選ばれる2種類以上のオレフィンの共重合体からなる樹脂、およびそれらの混合体が例示できる。
 また、ポリアミド樹脂組成物と熱可塑性樹脂とを混合する場合、相溶化材として接着性樹脂や不飽和カルボン酸またはその無水物で変性されたオレフィンおよび/またはスチレン系共重合体を用いることが好ましい。また、ポリアミド樹脂や熱可塑性樹脂の粘度及び添加量を調整し、ポリアミド樹脂の含有量が連続的に変化するような連続層を形成するような分散状態をとることが望ましい。混合する方法は、公知の方法であればよく、樹脂ペレット同士をドライブレンドし押出機にて分散を行う方法、樹脂粉末混合し押出機にて分散を行う方法、ミキサーを用いて分散を行う方法などが挙げられるが、特に限定するものではない。
 本発明の製造方法によれば、前記ポリアミド樹脂組成物を含む材料からなる単層の容器、並びに前記ポリアミド樹脂組成物を含む材料からなる層と他の熱可塑性樹脂を含む材料からなる層を有する多層容器を製造することができる。
 多層容器を製造する場合、前記ポリアミド樹脂組成物を含む材料からなる層以外の層に使用される熱可塑性樹脂は、上記例示したポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂およびポリアミド樹脂等の熱可塑性樹脂、並びに上記例示した他のポリアミド樹脂等が挙げられる。熱可塑性樹脂の中でも、超高分子量高密度ポリエチレン樹脂が、中空成形時のドローダウン防止、耐衝撃性、耐燃料膨潤性、耐水性に優れるため好ましく用いられる。また、上記した熱可塑性樹脂は、互いに混合したり、エラストマー等の他の樹脂と混合したりしてもよく、例えば、カーボンブラックや難燃剤等の他の添加剤と混合して使用することが可能である。
 本発明の方法は、前記ポリアミド樹脂組成物を含む材料をダイレクトブローにより金型内で膨らませる工程を有する。当該工程では、具体的には、押出機を用いて前記ポリアミド樹脂組成物を含む材料からなる円筒状パリソンを形成し、該パリソンをチューブ状に押出し、該パリソンを金型で挟み高圧の空気等をブローして該パリソンを膨らませてボトル状、チューブ状、タンク状等の容器の形状に成形することが好ましい。
 多層容器の場合は、円筒ダイを用い、前記ポリアミド樹脂組成物を含む材料からなる燃料バリア層と、ポリオレフィン樹脂等の熱可塑性樹脂層とが積層してなるボトル状、チューブ状、タンク状等の多層容器の形状に成形することが好ましい。
 また、本発明の方法は、前記ポリアミド樹脂組成物を含む材料をダイレクトブロー法により容器を製造する際、前記材料を、ダイレクトブロー直後から0~60℃に温調された前記金型内で、前記ポリアミド樹脂組成物の160℃定温における降温半結晶化時間の30%以上の時間保持する工程を有する。前記結晶化促進剤の使用に加えてこの保持工程を行うことで、ポリアミド樹脂の結晶化度を短時間で高めることができ、容器の収縮などを最小限に抑えるとともに、耐エタノール性及び燃料バリア性に優れた容器を得ることが可能となる。
 金型内の温度は、成形外観不良や成形品の収縮が少ない適切な範囲でポリアミド樹脂組成物を含む材料を効率よく冷却することに加えて、耐エタノール性及び燃料バリア性に優れる結晶化度まで高める観点から、0~60℃、好ましくは10~50℃、より好ましくは20~40℃に温調される。
 また、金型内での保持時間は、ポリアミド樹脂組成物を含む材料の耐エタノール性及び燃料バリア性に優れる結晶化度まで高める観点から、前記ポリアミド樹脂組成物の160℃定温における降温半結晶化時間の30%以上、好ましくは33%以上、より好ましくは35%以上の時間である。金型内での保持時間の上限は、材料の種類、容器の厚さなどを考慮して適宜決定されるが、生産性を考慮すると、前記ポリアミド樹脂組成物の160℃定温における降温半結晶化時間の1000%以下、好ましくは、500%以下、より好ましくは、300%以下の時間である。
 ここで、降温半結晶化時間は、脱偏光強度法によって前記ポリアミド樹脂組成物からなるペレットもしくはフィルムを260℃の熱風環境で3分間溶融した後、160℃のオイルバスにて結晶化させて、結晶化が1/2進行するまでの時間を表し、半結晶化時間が短いほどその材料は結晶化速度が速いといえる。160℃で結晶化させる理由としては、前記ポリアミド樹脂組成物の結晶化速度が最も速い温度であり、測定が簡便であるためである。
 本発明により製造される容器の各層の厚さは、多層成形体の形状により異なるが、通常、燃料バリア層の厚さは0.001~1mm、熱可塑性樹脂層の厚さは0.01~20mmの範囲から選択される。
 本発明において、多層成形体を構成する各層の間、例えば燃料バリア層と熱可塑性樹脂層との間に、接着性樹脂層(接着層)を設けることができる。該層を構成する接着性の樹脂としては、例えば、ポリオレフィン類からなる熱可塑性樹脂層を接着する場合であれば、マレイン酸、アクリル酸、メタクリル酸、イタコン酸、またはこれらの酸無水物などで変性した、ポリエチレンやポリプロピレン、あるいはエチレン、プロピレン、ブテン類のオレフィン類の共重合体等が使用可能である。また、熱可塑性樹脂層がポリエステルあるいはポリカーボネートからなるものであれば、エチレン-酢酸ビニル系共重合体、エチレン-アクリル酸系共重合体のアルカリまたはアルカリ土類金属架橋体およびエチレン-アクリル酸エステル系共重合体等が例示できるが、特に限定されるものではない。
 本発明においては、バリや成形時の不良品を再度溶融し、リサイクル層として多層成形体に導入することも可能である。この場合、強度面から燃料バリア層より外側層に配置することが好適である。
 前記ポリアミド樹脂組成物を用いた多層容器の構成の例としては、外側層から高密度ポリエチレン樹脂層/接着剤層/前記ポリアミド樹脂組成物層/接着剤層/高密度ポリエチレン樹脂層などの3種5層構成や、外層側から高密度ポリエチレン樹脂層/リサイクル層/接着剤層/前記ポリアミド樹脂組成物層/接着剤層/リサイクル層/高密度ポリエチレン樹脂組成物層といった4種7層構成や、外層側から高密度ポリエチレン樹脂組成物層/接着剤層/前記ポリアミド樹脂組成物層といったポリアミド樹脂組成物と燃料が接液する3種3層構成などが挙げられるがこれらに限定されるものではない。なお、3種3層構成では、内層に前記ポリアミド樹脂組成物を用いているため、ピンチオフ部でポリアミド樹脂組成物層が切れることがなく、良好な燃料バリア性を保持することが可能である。
 なお、前記ポリアミド樹脂組成物とポリオレフィン樹脂との混合樹脂組成物の場合、ポリオレフィン中の本発明のポリアミド樹脂組成物は、島状に分散するよりも、層状に分散している方が燃料バリア性が良好で好ましい。さらに、混合樹脂組成物からなる容器は、単層でも多層でもよく、多層の場合、この混合樹脂組成物からなる層が、どの層でも構わないが、中間層に用いる場合が最も好ましい。
 以下に実施例および比較例を示し、本発明を具体的に説明する。なお本発明における評価のための測定は以下の方法によった。
(1)ポリアミド樹脂の相対粘度
 ポリアミド樹脂0.2gを精秤し、96%硫酸100mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。そして、これらのtおよびt0から下記式(2)により相対粘度を算出した。
  相対粘度=t/t0              (2)
(2)ポリアミド樹脂の反応モル比
 ポリアミド樹脂の反応モル比は、まず、ポリアミド樹脂をフェノール/エタノール混合溶媒及び、ベンジルアルコール溶媒にそれぞれ溶解させ、カルボキシル末端基濃度とアミノ末端基濃度を塩酸及び水酸化ナトリウム水溶液の中和滴定により求めた。次に、末端アミノ基濃度及び末端カルボキシル基濃度から次式(3)より算出した。
 反応モル比=(1-18.015×末端アミノ基濃度-73.07×A)/
     (1-18.015×末端カルボキシル基濃度+68.10×A)  (3)
 ここで、Aは、(末端カルボキシル基濃度-末端アミノ基濃度)を表す。
(3)ポリアミド樹脂組成物の結晶化度及び融点
 示差走査熱量計((株)島津製作所製、商品名:DSC-60)を用い、昇温速度10℃/分で窒素気流下にDSC測定(示差走査熱量測定)を行い、測定中の結晶化に起因するピーク温度(結晶化ピーク温度)及び発熱ピーク(熱量A)と融解に起因するピーク温度(融点)及び吸熱ピーク(熱量B)から下記式(1)を用いて結晶化度を求めた。なお、結晶融解熱(熱量C)は151J/gとし、熱量A及びBは絶対値で示される。
 結晶化度=((熱量B)-(熱量A))/熱量C×100(%) (1)
(4)ポリアミド樹脂組成物の降温半結晶化時間
 半結晶化時間測定装置((株)コタキ製作所製、商品名:MK701)を用い、脱偏光強度法によって100μmのポリアミド樹脂組成物のフィルムを5枚重ねたものを260℃の熱風環境で3分間溶融した後、160℃のオイルバスにて結晶化させたときの結晶化が1/2進行するまでの時間を半結晶化時間として表した。
(5)ポリアミド樹脂組成物フィルムの燃料透過係数及び容器(ボトル)の燃料透過率
 ポリアミド樹脂に結晶化促進剤をブレンドしたポリアミド樹脂組成物を15mm径の2軸押出機に仕込み、設定温度240~260℃にて厚み100μmのフィルムを作製した。燃料透過試験用の筒状のステンレス容器に燃料(イソオクタン/トルエン/エタノール=50/50/12vol%)を10ml充填し、その上に2枚のパッキンの間に得られたフィルムを直径55mmの円形に切断したものを挟み、その上から中心部が空洞になっている蓋でしっかりと締め付けた。この燃料透過試験用の容器を逆さまにして、燃料とフィルムが接液する状態で、40℃/65%RHに調整した防爆型恒温恒湿槽に放置し、燃料充填容器の重量を適宜測定し、重量変化から、燃料透過率を算出した。500時間経時試験を実施し、累積の燃料透過率にフィルムの厚みをかけることで、燃料透過係数(g・mm/(m2・day))を求めた。
 また、同様に、製造したダイレクトブローボトルでも、燃料を100ml充填し、ポリエチレンとアルミニウムからなるフィルムで口部にアイロンでヒートシールして、500時間経時試験後の燃料透過率(g/(bottle・day))を求めた。
(6)ポリアミド樹脂組成物フィルムの強度保持率(耐エタノール性)
 幅10mm、長さ100mm、厚み100μmのポリアミド樹脂フィルムをエタノール中に23℃で一週間浸した後、蒸留水で水洗した。その後、23℃50%RHの環境下にて、1週間調湿した後、引張試験機(東洋精機(株)製 ストログラフ V1-C)にて、引張速度50mm/minにて引張試験を実施した。得られた引張破断強度とエタノールに浸漬しない場合の引張破断強度から、強度保持率(%)を算出し、これを耐エタノール性の指標とした。
実施例101
 撹拌機、分縮器、冷却器、滴下槽、および窒素ガス導入管を備えたジャケット付きの3L反応缶に、アジピン酸(AA)4.70mol及び高純度イソフタル酸(PIA エイ・ジイ・インタナショナル・ケミカル(株)製)0.30molを秤量して仕込み、十分窒素置換し、さらに少量の窒素気流下に160℃で撹拌混合しながら溶融させスラリー状とした。これに、メタキシリレンジアミン(MXDA)4.97molを撹拌下に160分を要して滴下した。この間、内温は連続的に250℃まで上昇させた。メタキシリレンジアミンの滴下とともに留出する水は、分縮器および冷却器を通して系外に除いた。メタキシリレンジアミン滴下終了後、内温を260℃まで昇温し、1時間反応を継続した。得られたポリマーは反応缶下部のノズルからストランドとして取り出し、水冷した後ペレット形状に切断し、アジピン酸と高純度イソフタル酸とのモル比が94:6となるポリアミド樹脂(A1)を得た。得られたポリアミド樹脂(A1)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、2軸押出機により、ポリアミド樹脂(A1)100質量部に対して粉状タルク(結晶化促進剤;松村産業(株)製、商品名:DG-5000)1質量部をドライブレンドしたポリアミド樹脂組成物を用いて、厚さ100μmのフィルムを製造した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表1に示す。
 さらに、最大3種5層のパリソンの押出しが可能な40mm径の単軸押出機3台と円筒ダイ及び200mlの容器金型からなるダイレクトブローボトル製造機により、外側層から高密度ポリエチレン(HDPE)(日本ポリエチレン(株)製、商品名:HB332R)からなる層、接着剤(三菱化学(株)製、商品名:モディック L502)からなる層、最内層の燃料バリア層として、ポリアミド樹脂(A1)100質量部に対して粉状タルク(結晶化促進剤;松村産業(株)製、商品名:DG-5000)1質量部をドライブレンドしたポリアミド樹脂組成物からなる層を有する3種3層のダイレクトブローボトルを製造した。得られたダイレクトブローボトルの容量は200mlであり総厚みは約1.2mmであり、燃料バリア層厚みは約0.3mmであった。このときの金型温度は30℃で、金型内での保持時間は7秒(降温半結晶化時間の36.8%)とした。得られたボトルの燃料透過率を測定した。結果を表1に示す。
実施例102
 ポリアミド樹脂(A1)100質量部に対してビス(N-プロピルベンジリデン)ソルビトール系の有機結晶化核剤(Milliken社製、商品名:Millad NX8000)0.4質量部をドライブレンドしたポリアミド樹脂組成物を用いたこと以外は、実施例101と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表1に示す。
 また、当該ポリアミド樹脂組成物を用いたこと及び金型内での保持時間を25秒(降温半結晶化時間の33.3%)に変更したこと以外は、実施例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表1に示す。
実施例103
 アジピン酸(AA)の仕込み量を4.50molに変更し、高純度イソフタル酸(PIA エイ・ジイ・インタナショナル・ケミカル(株)製)の仕込み量を0.50molに変更したこと以外は実施例101と同様にして、アジピン酸と高純度イソフタル酸とのモル比が90:10となるポリアミド樹脂(A2)を得た。得られたポリアミド樹脂(A2)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、ポリアミド樹脂(A1)をポリアミド樹脂(A2)に変更したこと以外は、実施例101と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。その結果を表1に示す。
 さらに、ポリアミド樹脂(A1)をポリアミド樹脂(A2)に変更したこと及び金型内での保持時間を8秒(降温半結晶化時間の38.1%)に変更したこと以外は、実施例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。その結果を表1に示す。
実施例104
 有機結晶化核剤の添加量を0.1質量部に変更したこと以外は、実施例102と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。その結果を表1に示す。
 また、当該ポリアミド樹脂組成物を用いたこと以外は、実施例102と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表1に示す。
実施例105
 有機結晶化核剤の添加量を1.8質量部に変更したこと以外は、実施例102と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。その結果を表1に示す。
 また、当該ポリアミド樹脂組成物を用いたこと以外は、実施例102と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表1に示す。
実施例106
 金型温度を5℃に変更したこと以外は実施例102と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表1に示す。
実施例107
 金型温度を55℃に変更したこと以外は実施例102と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表1に示す。
実施例201
 高純度イソフタル酸を高純度テレフタル酸(PTA 三菱ガス化学(株)製)に変更したこと以外は実施例101と同様にして、アジピン酸と高純度テレフタル酸とのモル比が94:6となるポリアミド樹脂(B1)を得た。得られたポリアミド樹脂(B1)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、ポリアミド樹脂(A1)をポリアミド樹脂(B1)に変更したこと以外は、実施例101と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表2に示す。
 さらに、ポリアミド樹脂(A1)をポリアミド樹脂(B1)に変更したこと及び金型内での保持時間を8秒(降温半結晶化時間の32.0%)に変更したこと以外は、実施例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表2に示す。
実施例202
 ポリアミド樹脂(B1)100質量部に対して有機結晶化核剤(Milliken社製、商品名:Millad NX8000)0.4質量部をドライブレンドしたポリアミド樹脂組成物を用いたこと以外は、実施例201と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表2に示す。
 また、当該ポリアミド樹脂組成物を用いたこと及び金型内での保持時間を30秒(降温半結晶化時間の31.6%)に変更したこと以外は、実施例201と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表2に示す。
実施例203
 アジピン酸(AA)の仕込み量を4.50molに変更し、高純度テレフタル酸(PTA 三菱ガス化学(株)製)の仕込み量を0.50molに変更したこと以外は実施例201と同様にして、アジピン酸と高純度テレフタル酸とのモル比が90:10となるポリアミド樹脂(B2)を得た。得られたポリアミド樹脂(B2)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、ポリアミド樹脂(B1)をポリアミド樹脂(B2)に変更したこと以外は、実施例201と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表2に示す。
 さらに、ポリアミド樹脂(B1)をポリアミド樹脂(B2)に変更したこと及び金型内での保持時間を15秒(降温半結晶化時間の37.5%)に変更したこと以外は、実施例201と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表2に示す。
実施例301
 高純度イソフタル酸を2,6-ナフタレンジカルボン酸(NDCA)に変更したこと以外は実施例101と同様にして、アジピン酸と2,6-ナフタレンジカルボン酸とのモル比が94:6となるポリアミド樹脂(C1)を得た。得られたポリアミド樹脂(C1)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、ポリアミド樹脂(A1)をポリアミド樹脂(C1)に変更したこと以外は、実施例101と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表3に示す。
 さらに、ポリアミド樹脂(A1)をポリアミド樹脂(C1)に変更したこと及び金型内での保持時間を6秒(降温半結晶化時間の37.5%)に変更したこと以外は、実施例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表3に示す。
実施例302
 ポリアミド樹脂(C1)100質量部に対して有機結晶化核剤(Milliken社製、商品名:Millad NX8000)0.4質量部をドライブレンドしたポリアミド樹脂組成物を用いたこと以外は、実施例301と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表3に示す。
 また、当該ポリアミド樹脂組成物を用いたこと及び金型内での保持時間を20秒(降温半結晶化時間の31.3%)に変更したこと以外は、実施例301と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。その結果を表3に示す。
実施例303
 アジピン酸(AA)の仕込み量を4.50molに変更し、2,6-ナフタレンジカルボン酸(NDCA)の仕込み量を0.50molに変更したこと以外は、実施例301と同様にして、アジピン酸と2,6-ナフタレンジカルボン酸とのモル比が90:10となるポリアミド樹脂(C2)を得た。得られたポリアミド樹脂(C2)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、ポリアミド樹脂(C1)をポリアミド樹脂(C2)に変更したこと以外は、実施例301と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表3に示す。
 さらに、ポリアミド樹脂(C1)をポリアミド樹脂(C2)に変更したこと及び金型内での保持時間を20秒(降温半結晶化時間の35.7%)に変更した以外は、実施例301と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表3に示す。
比較例101
 原料としてアジピン酸(AA)4.70mol及びメタキシリレンジアミン(MXDA)4.67molを用いたこと以外は実施例101と同様の方法でポリアミドMXD6であるポリアミド樹脂(D1)を得た。得られたポリアミド樹脂(D1)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、2軸押出機により、ポリアミド樹脂(D1)(結晶化促進剤の添加なし)を用いて、厚さ100μmのフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表4に示す。
 さらに、金型内での保持時間を15秒(降温半結晶化時間の41.7%)に変更し、燃料バリア層の材料として、前記ポリアミド樹脂組成物をポリアミド樹脂(D1)(結晶化促進剤の添加なし)に変更したこと以外は、実施例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表4に示す。
比較例102
 金型内での保持時間を6秒(降温半結晶化時間の16.7%)に変更したこと以外は比較例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表4に示す。
比較例103
 ポリアミド樹脂(D1)100質量部に対して、粉状タルク(結晶化促進剤:松村産業(株)製、商品名:DG-5000)1質量部をドライブレンドしたポリアミド樹脂組成物を用いたこと以外は、比較例101と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表4に示す。
 さらに、当該ポリアミド樹脂組成物を用いたこと及び金型内での保持時間を5秒(降温半結晶化時間の55.6%)に変更したこと以外は、比較例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表4に示す。
比較例104
 金型内での保持時間を2秒(降温半結晶化時間の22.2%)に変更したこと以外は比較例103と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表4に示す。
比較例105
 アジピン酸(AA)の仕込み量を4.25molに変更し、高純度イソフタル酸(PIA エイ・ジイ・インタナショナル・ケミカル(株)製)の仕込み量を0.75molに変更したこと以外は実施例101と同様にして、アジピン酸と高純度イソフタル酸とのモル比が85:15となるポリアミド樹脂(A4)を得た。得られたポリアミド樹脂(A4)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、2軸押出機により、ポリアミド樹脂(A4)(結晶化促進剤の添加なし)を用いて、厚さ100μmのフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表5に示す。
 さらに、金型内での保持時間を200秒(降温半結晶化時間の31.3%)に変更し、燃料バリア層の材料として、前記ポリアミド樹脂組成物をポリアミド樹脂(A4)(結晶化促進剤の添加なし)に変更したこと以外は、実施例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表5に示す。
比較例106
 金型内での保持時間を150秒(降温半結晶化時間の23.4%)に変更したこと以外は比較例105と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表5に示す。
比較例107
 ポリアミド樹脂(A4)100質量部に対して、粉状タルク(結晶化促進剤:松村産業(株)製、商品名:DG-5000)1質量部をドライブレンドしたポリアミド樹脂組成物を用いたこと以外は、比較例105と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表5に示す。
 さらに、当該ポリアミド樹脂組成物を用いたこと及び金型内での保持時間を60秒(降温半結晶化時間の37.5%)に変更したこと以外は、比較例105と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表5に示す。
比較例108
 金型内での保持時間を30秒(降温半結晶化時間の18.8%)に変更したこと以外は比較例107と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表5に示す。
比較例205
 アジピン酸(AA)の仕込み量を4.25molに変更し、高純度テレフタル酸(PTA 三菱ガス化学(株)製)の仕込み量を0.75molに変更したこと以外は実施例201と同様にして、アジピン酸と高純度テレフタル酸とのモル比が85:15となるポリアミド樹脂(B4)を得た。得られたポリアミド樹脂(B4)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、2軸押出機により、ポリアミド樹脂(B4)(結晶化促進剤の添加なし)を用いて、厚さ100μmのフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表6に示す。
 さらに、金型内での保持時間を650秒(降温半結晶化時間の30.1%)に変更し、燃料バリア層の材料として、前記ポリアミド樹脂組成物をポリアミド樹脂(B4)(結晶化促進剤の添加なし)に変更したこと以外は、実施例201と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表6に示す。
比較例206
 金型内での保持時間を300秒(降温半結晶化時間の13.9%)に変更したこと以外は比較例205と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表6に示す。
比較例207
 ポリアミド樹脂(B4)100質量部に対して、粉状タルク(結晶化促進剤:松村産業(株)製、商品名:DG-5000)1質量部をドライブレンドしたポリアミド樹脂組成物を用いたこと以外は、比較例205と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表6に示す。
 さらに、当該ポリアミド樹脂組成物を用いたこと及び金型内での保持時間を170秒(降温半結晶化時間の31.5%)に変更したこと以外は、比較例205と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表6に示す。
比較例208
 金型内での保持時間を100秒(降温半結晶化時間の18.5%)に変更したこと以外は比較例207と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表6に示す。
比較例305
 アジピン酸(AA)の仕込み量を4.0molに変更し、2,6-ナフタレンジカルボン酸(NDCA 三菱ガス化学(株)製)の仕込み量を1.0molに変更したこと以外は実施例301と同様にして、アジピン酸と2,6-ナフタレンジカルボン酸とのモル比が80:20となるポリアミド樹脂(C4)を得た。得られたポリアミド樹脂(C4)を140℃で6時間真空乾燥を行った後、相対粘度、反応モル比の測定を行った。
 また、2軸押出機により、ポリアミド樹脂(C4)(結晶化促進剤の添加なし)を用いて、厚さ100μmのフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表7に示す。
 さらに、金型内での保持時間を150秒(降温半結晶化時間の37.5%)に変更し、燃料バリア層の材料として、前記ポリアミド樹脂組成物をポリアミド樹脂(C4)(結晶化促進剤の添加なし)に変更したこと以外は、実施例301と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表7に示す。
比較例306
 金型内での保持時間を100秒(降温半結晶化時間の25.0%)に変更したこと以外は比較例305と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表7に示す。
比較例307
 ポリアミド樹脂(C4)の100質量部に対して、粉状タルク(結晶化促進剤:松村産業(株)製、商品名:DG-5000)1質量部をドライブレンドしたポリアミド樹脂組成物を用いたこと以外は、比較例305と同様にしてフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表7に示す。
 さらに、当該ポリアミド樹脂組成物を用いたこと及び金型内での保持時間を40秒(降温半結晶化時間の40.0%)に変更したこと以外は、比較例305と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表7に示す。
比較例308
 金型内での保持時間を20秒(降温半結晶化時間の20.0%)に変更したこと以外は比較例307と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表7に示す。
比較例109
 2軸押出機により、ポリアミド樹脂(A1)(結晶化促進剤の添加なし)を用いて、厚さ100μmのフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表8に示す。
 さらに、金型内での保持時間を25秒(降温半結晶化時間の32.9%)に変更し、燃料バリア層の材料として、前記ポリアミド樹脂組成物をポリアミド樹脂(A1)(結晶化促進剤の添加なし)に変更したこと以外は、実施例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表8に示す。
比較例110
 金型内での保持時間を15秒(降温半結晶化時間の19.7%)に変更したこと以外は比較例109と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表8に示す。
比較例111
 金型内での保持時間を3秒(降温半結晶化時間の15.8%)に変更したこと以外は実施例101と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表8に示す。
比較例112
 金型温度を65℃に変更したこと以外は実施例102と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表8に示す。
比較例113
 金型内での保持時間を100秒(降温半結晶化時間の133%)に変更し、金型温度を65℃に変更したこと以外は実施例102と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表8に示す。
比較例209
 2軸押出機により、ポリアミド樹脂(B1)(結晶化促進剤の添加なし)を用いて、厚さ100μmのフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表9に示す。
 さらに、金型内での保持時間を30秒(降温半結晶化時間の31.3%)に変更し、燃料バリア層の材料として、前記ポリアミド樹脂組成物をポリアミド樹脂(B1)(結晶化促進剤の添加なし)に変更したこと以外は、実施例201と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表9に示す。
比較例210
 金型内での保持時間を10秒(降温半結晶化時間の10.4%)に変更したこと以外は比較例209と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表9に示す。
比較例211
 金型内での保持時間を5秒(降温半結晶化時間の20.0%)に変更したこと以外は実施例201と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表9に示す。
比較例309
 2軸押出機により、ポリアミド樹脂(C1)(結晶化促進剤の添加なし)を用いて、厚さ100μmのフィルムを作成した。このフィルムの結晶化ピーク温度、融点、熱量A、熱量B、結晶化度、降温半結晶化時間、燃料透過係数及び強度保持率を求めた。結果を表10に示す。
 さらに、金型内での保持時間を20秒(降温半結晶化時間の31.3%)に変更し、燃料バリア層の材料として、前記ポリアミド樹脂組成物をポリアミド樹脂(C1)(結晶化促進剤の添加なし)に変更したこと以外は、実施例301と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表10に示す。
比較例310
 金型内での保持時間を15秒(降温半結晶化時間の23.4%)に変更したこと以外は比較例309と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表10に示す。
比較例311
 金型内での保持時間を3秒(降温半結晶化時間の18.8%)に変更したこと以外は実施例301と同様にしてダイレクトブローボトルを製造し、燃料透過率を測定した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 これらの結果から、実施例101~107、201~203及び301~303では、結晶化度が5~15%である高結晶化度のポリアミド樹脂組成物が得られ、このポリアミド樹脂組成物からなるフィルムは、燃料透過係数が0.3~0.7g・mm/(m2・day)、強度保持率が92~97%であり、耐エタノール性及び燃料バリア性に優れていることがわかった。また、このポリアミド樹脂組成物を燃料バリア層として用いた容器では、燃料透過率が1.4~1.8g/(bottle・day)と優れているものであった。
 これに対し、比較例101~104では、結晶化度が13~17%である高結晶化度のポリアミド樹脂組成物が得られたが、芳香族ジカルボン酸を含んでいないので、該ポリアミド樹脂組成物からなるフィルムの燃料透過係数が0.8~0.9g・mm/(m2・day)、強度保持率が82~85%と劣っていた。また、このポリアミド樹脂組成物を燃料バリア層として用いた容器では、燃料透過率が2.7~3.2g/(bottle・day)と劣っていた。
 また、比較例105~108、205~208及び305~308では、芳香族ジカルボン酸の含有量が多いので、結晶化度が0.5~3%である低結晶化度のポリアミド樹脂組成物しか得られず、該ポリアミド樹脂組成物からなるフィルムの燃料透過係数が1.1~1.2g・mm/(m2・day)、強度保持率が80~83%と劣っていた。また、このポリアミド樹脂組成物を燃料バリア層として用いた容器では、燃料透過率が3.7~4.0g/(bottle・day)と劣っていた。
 さらに、比較例109、110、209、210、309及び310では、結晶化促進剤を含有していなくても、結晶化度が5~7%の結晶化度のポリアミド樹脂組成物が得られたが、該ポリアミド樹脂組成物からなるフィルムの燃料透過係数が0.6~0.7g・mm/(m2・day)、強度保持率が88~90%と実施例101~103、201~203及び301~303よりやや劣っており、このポリアミド樹脂組成物を燃料バリア層として用いた容器では、燃料透過率が2.2~2.5g/(bottle・day)と劣っていた。
 さらにまた、比較例111、211及び311は、それぞれ実施例101、201及び301と同じポリアミド樹脂組成物を用いたものであるが、金型内での保持時間を降温半結晶化時間の30%未満に変更して得られた容器は、燃料透過率が2.0~2.1g/(bottle・day)と劣っていた。
 さらにまた、比較例112及び113は、実施例102と同じポリアミド樹脂組成物を用いたものであるが、金型温度を65℃に変更して得られた容器は、金型内での保持時間を降温半結晶化時間の30%以上であっても、燃料透過率が2.4~2.7g/(bottle・day)と劣っており、さらに容器の収縮等も大きく、寸法精度が劣っていた。
 本発明の方法によって製造された容器は、耐エタノール性及び燃料バリア性に優れており、自動車のエンジン回りの燃料チューブ、燃料タンクや、ボート、スノーモービル、芝刈機等の小型のエンジンを積んだ機械の燃料タンク等へ好適に利用することが可能である。

Claims (6)

  1.  メタキシリレンジアミンを70モル%以上含むジアミン成分と、炭素数4~12のα,ω-直鎖脂肪族ジカルボン酸と芳香族ジカルボン酸とのモル比率が97:3~90:10のジカルボン酸成分とを重縮合して得られるポリアミド樹脂100質量部と、結晶化促進剤0.01~2質量部とを含有するポリアミド樹脂組成物を含む材料をダイレクトブローにより金型内で膨らませる工程、及び当該材料を、ダイレクトブロー直後から0~60℃に温調された当該金型内で、当該ポリアミド樹脂組成物の160℃定温における降温半結晶化時間の30%以上の時間保持する工程を含む、容器の製造方法。
  2.  前記芳香族ジカルボン酸が、イソフタル酸、テレフタル酸及び2,6-ナフタレンジカルボン酸からなる群から選ばれる1種以上である、請求項1に記載の容器の製造方法。
  3.  前記ポリアミド樹脂組成物の示差走査熱量測定における昇温時の結晶化に起因するピーク温度が160℃以下である、請求項1又は2に記載の容器の製造方法。
  4.  前記容器が多層容器であり、当該多層容器の少なくとも1層が前記ポリアミド樹脂組成物を含む材料からなる層となるように、当該ポリアミド樹脂組成物を含む材料をダイレクトブローする、請求項1~3のいずれかに記載の容器の製造方法。
  5.  前記多層容器の前記ポリアミド樹脂組成物を含む材料からなる層以外の少なくとも1層がポリオレフィン樹脂を含む材料からなる層である、請求項4に記載の容器の製造方法。
  6.  前記ポリアミド樹脂組成物を含む材料からなる層が、容器の内面に配されるように、当該ポリアミド樹脂組成物を含む材料をダイレクトブローする、請求項4又は5に記載の容器の製造方法。
PCT/JP2010/063202 2009-08-04 2010-08-04 容器の製造方法 WO2011016491A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2769212A CA2769212C (en) 2009-08-04 2010-08-04 Method for producing container
ES10806490.8T ES2455245T3 (es) 2009-08-04 2010-08-04 Procedimiento para producir un contenedor
US13/388,523 US9044880B2 (en) 2009-08-04 2010-08-04 Method for producing container
EP10806490.8A EP2463078B1 (en) 2009-08-04 2010-08-04 Method for producing container
CN201080034563.2A CN102574322B (zh) 2009-08-04 2010-08-04 容器的制造方法
DK10806490.8T DK2463078T3 (en) 2009-08-04 2010-08-04 PROCEDURE FOR MANUFACTURING A CONTAINER
KR1020127002610A KR101689047B1 (ko) 2009-08-04 2010-08-04 용기의 제조 방법
PL10806490T PL2463078T3 (pl) 2009-08-04 2010-08-04 Sposób wytwarzania pojemnika
JP2011525915A JP5605362B2 (ja) 2009-08-04 2010-08-04 容器の製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009181871 2009-08-04
JP2009-181868 2009-08-04
JP2009-181871 2009-08-04
JP2009181868 2009-08-04
JP2009181869 2009-08-04
JP2009-181869 2009-08-04

Publications (1)

Publication Number Publication Date
WO2011016491A1 true WO2011016491A1 (ja) 2011-02-10

Family

ID=43544386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063202 WO2011016491A1 (ja) 2009-08-04 2010-08-04 容器の製造方法

Country Status (10)

Country Link
US (1) US9044880B2 (ja)
EP (1) EP2463078B1 (ja)
JP (1) JP5605362B2 (ja)
KR (1) KR101689047B1 (ja)
CN (1) CN102574322B (ja)
CA (1) CA2769212C (ja)
DK (1) DK2463078T3 (ja)
ES (1) ES2455245T3 (ja)
PL (1) PL2463078T3 (ja)
WO (1) WO2011016491A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004008A (ja) * 2013-06-21 2015-01-08 三菱瓦斯化学株式会社 ポリアミド樹脂の製造方法
JP2015212315A (ja) * 2014-05-01 2015-11-26 三菱瓦斯化学株式会社 ポリアミド樹脂組成物

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11284616B2 (en) 2010-05-05 2022-03-29 Hemanext Inc. Irradiation of red blood cells and anaerobic storage
US9199016B2 (en) 2009-10-12 2015-12-01 New Health Sciences, Inc. System for extended storage of red blood cells and methods of use
JP5672826B2 (ja) * 2010-08-02 2015-02-18 三菱瓦斯化学株式会社 多層容器
PT2608816T (pt) 2010-08-25 2023-10-12 Dartmouth College Método para melhorar a qualidade e a sobrevivência dos glóbulos vermelhos durante o armazenamento
ES2957338T3 (es) 2010-11-05 2024-01-17 Hemanext Inc Irradiación de glóbulos rojos y almacenamiento anaeróbico
US9067004B2 (en) 2011-03-28 2015-06-30 New Health Sciences, Inc. Method and system for removing oxygen and carbon dioxide during red cell blood processing using an inert carrier gas and manifold assembly
EP3533507B1 (en) 2011-08-10 2022-03-30 Hemanext Inc. Integrated leukocyte, oxygen and/or co2 depletion, and plasma separation filter device
US9877476B2 (en) 2013-02-28 2018-01-30 New Health Sciences, Inc. Gas depletion and gas addition devices for blood treatment
KR102192620B1 (ko) * 2013-10-31 2020-12-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 자일릴렌디아민 조성물 및 폴리아미드 수지의 제조방법
EP3064528B1 (en) * 2013-10-31 2018-06-27 Mitsubishi Gas Chemical Company, Inc. Xylylenediamine composition and method for producing polyamide resin
KR102192621B1 (ko) 2013-10-31 2020-12-17 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 자일릴렌디아민 조성물 및 폴리아미드 수지의 제조방법
KR20180012242A (ko) 2015-03-10 2018-02-05 뉴 헬스 사이언시즈 인코포레이티드 산소 감소 1회용 키트, 장치 및 이의 사용 방법
IL285359B2 (en) 2015-04-23 2024-01-01 Hemanext Inc Anaerobic blood storage containers
US11013771B2 (en) 2015-05-18 2021-05-25 Hemanext Inc. Methods for the storage of whole blood, and compositions thereof
IL282627B2 (en) 2016-05-27 2023-10-01 Hemanext Inc Anaerobic blood storage and pathogen inactivation method
EP3392033B1 (de) * 2017-04-19 2019-07-31 TI Automotive (Fuldabrück) GmbH Tank-innenrohrleitung, insbesondere in kraftstofftanks von kraftfahrzeugen
WO2021148685A1 (es) * 2020-01-20 2021-07-29 Sociedad Anónima Minera Catalano Aragonesa Envase reciclable con capacidad de sellado

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212031A (en) * 1981-06-25 1982-12-27 Asahi Chem Ind Co Ltd Production of holow molded article excellent in surface appearance
JPS5896527A (ja) * 1981-12-04 1983-06-08 Mitsui Petrochem Ind Ltd 結晶性熱可塑性樹脂の中空成形方法
JP2001088200A (ja) * 1999-09-21 2001-04-03 Idemitsu Petrochem Co Ltd 中空成形品の成形方法
WO2007086331A1 (ja) * 2006-01-24 2007-08-02 Mitsubishi Gas Chemical Company, Inc. 多層ボトルの充填方法
WO2008050793A1 (en) * 2006-10-26 2008-05-02 Mitsubishi Gas Chemical Company, Inc. Thermoplastic resin composition excellent in barrier property

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517151A (en) 1981-12-04 1985-05-14 Mitsui Petrochemical Industries, Ltd. Method for molding hollow blow-molded articles
JP2519536B2 (ja) 1989-06-30 1996-07-31 宇部興産株式会社 耐ガソリン性ブロ―中空成形容器
JPH05345349A (ja) 1992-06-16 1993-12-27 Toyobo Co Ltd 燃料タンク
AU4931593A (en) * 1992-09-22 1994-04-12 Pepsico, Inc. Blow mold annealing and heat treating articles
JP3751983B2 (ja) 1993-05-31 2006-03-08 株式会社クラレ 多層構造体
JP4208974B2 (ja) 1995-05-12 2009-01-14 株式会社クラレ 燃料容器
DE69727304T2 (de) * 1996-09-13 2004-10-21 Kureha Chemical Ind Co Ltd Gasundurchlässiger mehrschichtiger hohler behälter
JP4566357B2 (ja) 1999-07-29 2010-10-20 株式会社クラレ バリア性および耐衝撃性に優れた燃料容器
DE60106697T2 (de) * 2000-08-21 2005-03-10 Mitsubishi Gas Chemical Co., Inc. Polyamidharzzusammensetzung
JP4961645B2 (ja) * 2000-08-21 2012-06-27 三菱瓦斯化学株式会社 ポリアミド樹脂組成物
JP4961632B2 (ja) * 2001-02-01 2012-06-27 三菱瓦斯化学株式会社 ポリアミド延伸フィルム
US6825276B2 (en) * 2001-04-17 2004-11-30 Pliant Corporation Nonoriented stiff packaging film with superior tear properties
AU2003252855B2 (en) * 2002-10-22 2008-09-18 Mitsubishi Gas Chemical Company, Inc. Gas-barrier multi-layer structure
JP4328952B2 (ja) * 2002-10-22 2009-09-09 三菱瓦斯化学株式会社 ガスバリア性多層構造物
US20050129888A1 (en) * 2003-12-10 2005-06-16 Kwon Hyuk T. Process for making cosmetic containers having a transparent thermoplastic outer wall
JP2005314487A (ja) 2004-04-27 2005-11-10 Mitsubishi Gas Chem Co Inc 燃料バリア用ポリアミド樹脂及びそれからなる多層成形体
JP2006045528A (ja) * 2004-07-02 2006-02-16 Mitsubishi Gas Chem Co Inc ポリアミド樹脂及び多層成形体
US20080020218A1 (en) * 2004-08-11 2008-01-24 Mitsubishi Gas Chemical Company, Inc. Stretched Aromatic-Polyamide Film
EP2113380B1 (en) * 2008-04-24 2014-09-10 Mitsubishi Gas Chemical Company, Inc. High barrier laminated body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57212031A (en) * 1981-06-25 1982-12-27 Asahi Chem Ind Co Ltd Production of holow molded article excellent in surface appearance
JPS5896527A (ja) * 1981-12-04 1983-06-08 Mitsui Petrochem Ind Ltd 結晶性熱可塑性樹脂の中空成形方法
JP2001088200A (ja) * 1999-09-21 2001-04-03 Idemitsu Petrochem Co Ltd 中空成形品の成形方法
WO2007086331A1 (ja) * 2006-01-24 2007-08-02 Mitsubishi Gas Chemical Company, Inc. 多層ボトルの充填方法
WO2008050793A1 (en) * 2006-10-26 2008-05-02 Mitsubishi Gas Chemical Company, Inc. Thermoplastic resin composition excellent in barrier property

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2463078A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004008A (ja) * 2013-06-21 2015-01-08 三菱瓦斯化学株式会社 ポリアミド樹脂の製造方法
JP2015212315A (ja) * 2014-05-01 2015-11-26 三菱瓦斯化学株式会社 ポリアミド樹脂組成物

Also Published As

Publication number Publication date
US9044880B2 (en) 2015-06-02
EP2463078A1 (en) 2012-06-13
JPWO2011016491A1 (ja) 2013-01-10
ES2455245T3 (es) 2014-04-15
KR20120062689A (ko) 2012-06-14
PL2463078T3 (pl) 2014-06-30
US20120146266A1 (en) 2012-06-14
CA2769212C (en) 2017-03-07
CA2769212A1 (en) 2011-02-10
EP2463078A4 (en) 2013-03-20
EP2463078B1 (en) 2014-01-15
JP5605362B2 (ja) 2014-10-15
DK2463078T3 (en) 2014-03-17
KR101689047B1 (ko) 2016-12-22
CN102574322B (zh) 2014-06-25
CN102574322A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5605362B2 (ja) 容器の製造方法
JP4983135B2 (ja) バリア性に優れた熱可塑性樹脂組成物成形体
AU2004201901B2 (en) Fuel-barrier polyamide resin and multilayer shaped article
JP2011162684A (ja) 中空容器の製造方法及び中空容器
CN111094456B (zh) 树脂组合物、成型品和薄膜
JP4622297B2 (ja) 燃料バリア用ポリアミド樹脂及びそれからなる多層成形体
JP5625312B2 (ja) 多層ボトル
JP5299141B2 (ja) 透明性に優れるポリアミド樹脂組成物及び成形品
JP2007217509A (ja) バリア性に優れた熱可塑性樹脂組成物
JP2011032411A (ja) 耐エタノール性と燃料バリア性に優れるポリアミド樹脂及び容器
US20230303299A1 (en) Multi-layer container, method for producing same, and method for producing reclaimed polyester
JP4207526B2 (ja) ポリアミド樹脂組成物
JP5716265B2 (ja) ポリアミド樹脂組成物
JP2018053033A (ja) ポリアミド樹脂組成物および多層成形体
JP2018053034A (ja) ポリアミド樹脂およびガスバリア性多層成形体
CN112771117B (zh) 拉伸体、塑料瓶和容器的制造方法
JP6717007B2 (ja) アルキレングリコールアルキルエーテルを含む液体を収容する容器、アルキレングリコールアルキルエーテルを含む液体の保存方法、及びアルキレングリコールアルキルエーテル含有液体入り容器
JP2023088383A (ja) 樹脂組成物、フィルム、多層フィルム、包装材料、および、フィルムの製造方法
AU2012216788A1 (en) Polyamide resin composition
JP2005314487A (ja) 燃料バリア用ポリアミド樹脂及びそれからなる多層成形体
TW201425422A (zh) 聚乙烯系結構體
JP2004002556A (ja) ポリエステル組成物及び成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034563.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806490

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525915

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2769212

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127002610

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010806490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1039/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201000422

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13388523

Country of ref document: US