WO2011016301A1 - ビブリオ属細菌を用いたl-リジンの製造法 - Google Patents
ビブリオ属細菌を用いたl-リジンの製造法 Download PDFInfo
- Publication number
- WO2011016301A1 WO2011016301A1 PCT/JP2010/060972 JP2010060972W WO2011016301A1 WO 2011016301 A1 WO2011016301 A1 WO 2011016301A1 JP 2010060972 W JP2010060972 W JP 2010060972W WO 2011016301 A1 WO2011016301 A1 WO 2011016301A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lysine
- vibrio
- gene
- medium
- seq
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P13/00—Preparation of nitrogen-containing organic compounds
- C12P13/04—Alpha- or beta- amino acids
- C12P13/08—Lysine; Diaminopimelic acid; Threonine; Valine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01055—Lactaldehyde reductase (NADPH) (1.1.1.55)
Definitions
- the present invention relates to a method for producing L-lysine using Vibrio bacteria.
- L-Lysine is an industrially useful L-amino acid as an additive for animal feed, a component of health food, or an amino acid infusion.
- L-lysine is a fermentation method using coryneform bacteria belonging to the genus Brevibacterium, Corynebacterium, etc., bacteria belonging to the genera Bacillus, Escherichia, Streptomyces, Methylobacillus, etc., or filamentous fungi belonging to Penicillium, etc. It is produced by.
- Non-patent Document 1 a method for producing L-lysine, which reduces the degradation of L-lysine accumulated in the medium.
- a method for reducing the ability of microorganisms to degrade L-lysine, in particular, the cadA gene or the ldcC gene in microorganisms belonging to the genus Escherichia Methods for reducing the expression level and enzyme activity have been known (Non-patent Document 1, Patent Document 4).
- Vibrio bacteria Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vuinificus were known to have cadA homologous genes (Non-patent Documents 2 to 4). However, it is not known whether the disruption of the cadA homolog gene causes weakening or loss of L-lysine degradation ability in these Vibrio bacteria. In addition, in Vibrio bacteria, the existence of an L-lysine degradation pathway other than the L-lysine degradation pathway involving the cadA homolog gene product is not known.
- An object of the present invention is to provide a method for efficiently producing L-lysine using bacteria belonging to the genus Vibrio.
- bacteria belonging to the genus Vibrio the present inventors have found a phenomenon that L-lysine accumulated in the medium decreases with the progress of culture, and one of the problems is to reduce this decrease in L-lysine. .
- the present inventors have identified a gene encoding a factor involved in L-lysine degradation in Vibrio bacteria.
- the inventors have found that by destroying the gene, degradation of accumulated L-lysine can be suppressed and L-lysine can be produced efficiently, and the present invention has been completed.
- the present invention is as follows. (1) L-lysine obtained by culturing a Vibrio bacterium having L-lysine producing ability in a medium, causing L-lysine to be produced and accumulated in the medium or inside the cell, and collecting L-lysine from the medium or cell
- the Vibrio bacterium is modified so that the activity of the protein encoded by the fucO gene is reduced.
- the method wherein the activity of the protein is reduced by introducing a mutation into the coding region of the fucO gene and / or the expression control region of the gene.
- A DNA comprising the base sequence of SEQ ID NO: 1
- B a protein that hybridizes under stringent conditions with the nucleotide sequence of SEQ ID NO: 1 or a probe that can be prepared from the nucleotide sequence, and that improves L-lysine-producing ability when activity in bacteria is reduced DNA encoding
- the bacterium has enhanced activity of one or more enzymes selected from the group consisting of dihydrodipicolinate synthase, aspartokinase, dihydrodipicolinate reductase, and diaminopimelate dehydrogenase, Method.
- the medium is a medium containing glycerol as a carbon source.
- the figure which shows suppression of L-lysine degradation by fucO gene deletion (a) Time-dependent change of OD660 of the culture solution diluted 51 times. (b) Change with time in glucose concentration in the medium. (c) Time course of L-lysine concentration in the medium. The average and standard deviation of 3 samples are shown. The figure which shows L-lysine production from glucose using V. natriegens 28-15 ⁇ fucO / pCABD2. (a) OD660 of culture solution diluted 51 times. (b) Glucose concentration in the medium, (c) L-lysine concentration in the medium. (d) Yield of L-lysine sugar consumed for 40 hours after the start of culture.
- 0% NaCl to 8% NaCl indicate the average value and standard deviation when 0 to 8% (w / v) Na NaCl is added to the MS medium and cultured.
- the figure which shows L-lysine production from glycerol using V. natriegens 28-15 ⁇ fucO / pCABD2.
- 0% NaCl, 2% NaCl, and 4% NaCl are the mean and standard deviation when cultivated by adding 0 to 4% (w / v) NaCl to MS medium using glycerol as a carbon source.
- the bacterium of the present invention is a Vibrio bacterium that has L-lysine production ability and has been modified so that the activity of the protein encoded by the fucO gene is reduced.
- the ability to produce L-lysine is the ability to produce L-lysine in the medium or in the cells and accumulate it to the extent that it can be recovered in the medium or from the cells when the bacterium of the present invention is cultured in the medium.
- the bacterium of the present invention is a Vibrio bacterium that can produce L-lysine by fermentation using sugar or the like as a carbon source (also called direct fermentation).
- L-lysine includes free L-lysine and / or a salt thereof, such as sulfate, hydrochloride, carbonate and the like.
- Vibrio bacteria having L-lysine production ability may be inherently L-lysine production ability. However, Vibrio bacteria as described below can be mutated using recombinant DNA technology. It may be modified so that it has an ability to produce L-lysine.
- the Vibrio bacterium of the present invention may have the ability to produce other amino acids such as L-threonine and L-glutamic acid in addition to the ability to produce L-lysine.
- Vibrio is a gram-negative facultative anaerobe belonging to the Vibrionanceae family of ⁇ -propiobacteria. It is a bacterium found in freshwater and seawater that moves with a single flagella. Vibrio bacteria used in the present invention are preferably non-pathogenic, and Vibrio bacteria whose pathogenicity is not known are biosafety level 1 (Biosafety in Microbiological and Biomedical Laboratories (BMBL) published by the Office of Health and Safety (OHS)). ) 4th Edition) and the following Vibrio bacteria can be used.
- biosafety level 1 Biosafety in Microbiological and Biomedical Laboratories (BMBL) published by the Office of Health and Safety (OHS)
- Vibrio spp. Some of which are classified as Vibrio spp. (Thompson, F. L. et al. (2004) Microbiol. Mol. Biol. Rev. , 23, 403-431 and Macian, M. C. et al. (2000) Syst. Appl. Microbiol., 23, 373-375.). Therefore, such bacteria can also be used as Vibrio bacteria in the present invention.
- Vibrio natriegens is preferably used.
- Vibrio natriegens is a marine facultative anaerobic bacterium belonging to the Vibrionanceae family of ⁇ -propiobacteria and was isolated as a uronic acid oxidizing bacterium in 1958 (Payne, W. J. (1958) J. Bacteriology, 76, 301).
- ATCC is classified as BiosafetyBiolevel 1 and DSMZ (the German National Resource for Biological Material) is also classified as Risk Group 1 (German classification), and pathogenicity is not known.
- Vibrio natrigens As Vibrio natrigens, Vibrio natrigens ATCC14048 (NBRC15636 strain) can be used.
- the above-mentioned bacteria belonging to the genus Vibrio for example, they can be purchased from the American Type Culture Collection (address P.O. Box 1549, Manassas, VA 20108, United States of America). That is, a registration number corresponding to each strain is given, and it is possible to receive a sale using this registration number (see http://www.atcc.org/). The registration number corresponding to each strain is described in the catalog of American Type Culture Collection.
- Vibrio Natligence ATCC14048 strain is the number of NBRC15636 in the Biological Genetic Resource Department (NITE NBRC) (National Institute of Technology and Evaluation) (National Institute of Technology and Evaluation, 2-5-8, Kazusa-Kamazu, Kisarazu City, Chiba Prefecture 292-0818). It can be obtained from the same organization.
- Vibrio bacteria are microorganisms that have been conventionally used for L-amino acid production (for example, Escherichia coli and so on) under high osmotic pressure conditions in which substances in the latter half of amino acid fermentation are highly accumulated or under high osmotic pressure conditions where the sugar concentration is high.
- the bacterium can be preferably grown.
- the high osmotic pressure is preferably, for example, a condition of 925 mOsm or more, preferably 1100 mOsm or more, more preferably 1500 mOsm or more.
- the upper limit of the high osmotic pressure condition is not particularly limited as long as amino acid fermentation is possible, but is, for example, 2000 mOsm.
- the expression “can be suitably grown under high osmotic pressure” means, for example, that the growth rate is maximum at 1100 mOsm in which the growth rate of an E. coli wild strain, for example, MG1655 strain (ATCC 47076) is reduced to 50% or less of the maximum. It means that it is kept higher than 50% of the hour, and preferably the growth rate is reduced only to about 90% of the maximum.
- the enhancement of the activity of the L-lysine biosynthetic enzyme can be performed by increasing the copy number of a gene encoding the enzyme or by modifying an expression regulatory sequence such as a promoter.
- imparting properties such as auxotrophy, L-amino acid analog resistance, and metabolic control mutation may be combined with enhancing the activity of lysine biosynthetic enzymes.
- a method for imparting L-lysine producing ability will be exemplified.
- L-lysine producing bacteria include L-homoserine, or mutant strains that require L-threonine and L-methionine (Japanese Patent Publication Nos. 48-28078 and 56-6499), mutants that require inositol or acetic acid.
- Mutation treatment methods for obtaining mutants from Vibrio spp. include UV irradiation, mutations commonly used for mutation treatment such as N-methyl-N'-nitro-N-nitrosoguanidine (NTG) or nitrous acid. The method of processing with an agent is mentioned. Vibrio bacteria having L-amino acid-producing ability can also be obtained by selecting natural mutants of Vibrio bacteria.
- An L-amino acid analog resistant mutant can be obtained by, for example, inoculating a mutated Vibrio bacterium into an agar medium containing various concentrations of the L-amino acid analog and selecting a strain that forms a colony. it can.
- the auxotrophic mutant strain forms a Vibrio bacterium colony on an agar medium containing a target nutrient substance (for example, L-amino acid) and replicates it on the agar medium containing no nutrient substance. It can be obtained by selecting a strain that cannot grow on an agar medium containing no substance.
- a target nutrient substance for example, L-amino acid
- Vibrio natrigens 28-15 strain (FERM BP-10946) can be mentioned (WO2008 / 093829). This strain was named AJ110593, and was established on October 24, 2006 by the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1st, 1st East, 1-chome, Tsukuba City, Ibaraki Prefecture, 305-8566). Deposited as deposit number FERM P-21066, then transferred to international deposit and assigned deposit number of FERM BP-10946.
- the ability to produce L-lysine can be imparted, for example, by enhancing dihydrodipicolinate synthase activity and / or aspartokinase activity.
- a gene fragment encoding dihydrodipicolinate synthase and / or a gene fragment encoding aspartokinase is used in Vibrio bacteria.
- a recombinant DNA may be prepared by ligating with a functioning vector, preferably a multicopy type vector, and this may be introduced into a host of Vibrio bacteria and transformed.
- dihydrodipicolinate synthase may be abbreviated as DDPS, aspartokinase as AK, and aspartokinase III as AKIII.
- any microorganism that can express DDPS activity and AK activity among microorganisms belonging to the genus Vibrio can be used as a microorganism that provides a gene encoding DDPS and a gene encoding AK.
- the microorganism may be either a wild strain or a mutant derived therefrom.
- E. coli (Escherichia coli) K-12 strain, Vibrio natrigens ATCC14048 (NBRC15636) strain and the like can be mentioned.
- a gene encoding DDPS derived from bacteria belonging to the genus Escherichia (dapA, Richaud, F. et al. J.
- Vibrio spp. Genes can be obtained by using the following GenBank database. Vibrio cholerae O1 biovar eltor str.N16961 chromosome I, complete sequence; AE003852 Vibrio cholerae O1 biovar eltor str.N16961 chromosome II, complete sequence; AE003853 Vibrio parahaemolyticus RIMD 2210633 chromosome I, complete sequence; BA000031 Vibrio parahaemolyticus RIMD 2210633 chromosome II, complete sequence; BA000032 Vibrio fischeri ES114 chromosome I, complete sequence; CP000020 Vibrio fischeri ES114 chromosome II, complete sequence; CP000021 Vibrio vulnificus CMCP6 chromosome I, complete sequence; AE016795 Vibrio vulnificus CMCP6 chromosome II, complete sequence; AE016796 Vibrio vulnificus YJ0
- DDPS and AK used in the present invention are preferably those that are not subject to feedback inhibition by L-lysine.
- Wild-type DDPS derived from Vibrio spp. Is known to be subject to feedback inhibition by L-lysine
- wild-type AKIII derived from Vibrio spp. Is known to be suppressed and feedback inhibited by L-lysine. Therefore, it is preferable that dapA and lysC introduced into Vibrio bacteria encode DDPS and AKIII having a mutation that cancels feedback inhibition by L-lysine, respectively.
- DDPS and AK do not necessarily need to be mutated.
- DDPS derived from Corynebacterium is originally known not to be feedback-inhibited by L-lysine.
- homologs may exist for genes encoding aspartokinase, and the gene source is not limited as long as it has aspartokinase activity.
- the AK gene of Vibrio natrigens includes an AKO gene, a thrA gene, a metL gene, a lysC gene, and a putative-AK gene.
- SEQ ID NO: 11 shows the base sequence of the region containing Vibrio natrigens AKO gene.
- SEQ ID NO: 11 shows the base sequence of the region containing Vibrio natrigens AKO gene.
- GTGs of base numbers 526 to 528, GTGs of base numbers 544 to 546 or GTGs of base numbers 568 to 570 are start codons, and TGA of base numbers 1711-1713 is a stop codon.
- the nucleotide sequence of nucleotide numbers 526-1710 of SEQ ID NO: 11 (the encoded amino acid sequence is amino acid numbers 1-395 of SEQ ID NO: 12), the nucleotide sequence of nucleotide numbers 544-1710 (coded amino acid sequence) Can be used as the AKO gene.
- the DNA having the nucleotide sequence of nucleotide numbers 568-1710 (the encoded amino acid sequence is amino acid numbers 15-395 of SEQ ID NO: 12) can be used as the AKO gene
- SEQ ID NO: 13 shows the nucleotide sequence of the region containing the thrA gene of Vibrio natrigens. In SEQ ID NO: 13, it is presumed that ATG at base numbers 486-488, GTG at base numbers 591-593 or GTG at base numbers 633-635 is the start codon, and TAA at base numbers 2943-2945 is the stop codon.
- nucleotide sequence of nucleotide numbers 486-2942 of SEQ ID NO: 13 (the encoded amino acid sequence is amino acid numbers 1-819 of SEQ ID NO: 14)
- nucleotide sequence of nucleotide numbers 591-2942 (encoded amino acid sequence) Is the amino acid number 35-819 of SEQ ID NO: 14, or a DNA having the base sequence of base numbers 633-2942 (the encoded amino acid sequence is amino acid numbers 50-819 of SEQ ID NO: 14)
- the thrA gene the nucleotide sequence of nucleotide numbers 486-2942 of SEQ ID NO: 13
- the nucleotide sequence of nucleotide numbers 591-2942 (encoded amino acid sequence) Is the amino acid number 35-819 of SEQ ID NO: 14, or a DNA having the base sequence of base numbers 633-2942 (the encoded amino acid sequence is amino acid numbers 50-819 of SEQ ID NO: 14)
- SEQ ID NO: 15 shows the base sequence of the region containing the Vibrio natrigens metL gene.
- ATG at base numbers 376-378, GTG at base numbers 487-489 or GTG at base numbers 490-492 is the start codon
- TAA at base numbers 2782-2784 is the stop codon.
- the nucleotide sequence of nucleotide numbers 376-2781 of SEQ ID NO: 15 (the encoded amino acid sequence is amino acid numbers 1-802 of SEQ ID NO: 16), the nucleotide sequence of nucleotide numbers 487-2781 (coded amino acid sequence) Can be used as the metL gene.
- the DNA having the nucleotide sequence of nucleotide numbers 490-2781 (the encoded amino acid sequence is amino acid numbers 39-802 of SEQ ID NO: 16) can be used as the metL gene.
- SEQ ID NO: 17 shows the nucleotide sequence of the region containing the lysC gene of Vibrio natrigens.
- GTG at base numbers 1060-1062 or ATG at base numbers 1117-1119 is the start codon
- TAA at base numbers 2410-2412 is the stop codon.
- the base sequence of nucleotide numbers 1060-2409 of SEQ ID NO: 17 (the encoded amino acid sequence is amino acid numbers 1-450 of SEQ ID NO: 18) or the nucleotide number of 1117-2409 (the encoded amino acid sequence is the sequence) as an open reading frame DNA having amino acid numbers 20-450 of number 18 can be used as the lysC gene.
- SEQ ID NO: 19 shows the nucleotide sequence of the region containing the putative-AK gene of Vibrio natrigens.
- the ATG of base numbers 344-346, the ATG of base numbers 380-382 or the ATG of base numbers 470-472 is the start codon, and the TAA of base numbers 1766-1768 is the stop codon.
- the base sequence of nucleotide number 344-1765 of SEQ ID NO: 19 (the encoded amino acid sequence is amino acid number 1-474 of SEQ ID NO: 20), the base sequence of base number 380-1765 (encoded amino acid sequence) Can be used as the putative-AK gene.
- the DNA having the nucleotide sequence of nucleotide numbers 470-1765 (the encoded amino acid sequence is amino acid numbers 43-474 of SEQ ID NO: 20) can be used.
- the AKO gene, thrA gene, metL gene, lysC gene, and putative-AK gene described above hybridize with a probe that can be prepared from a complementary strand or the same base sequence under stringent conditions, and aspartokinase activity It may be a DNA encoding a protein having
- stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed. Although it is difficult to clearly quantify this condition, for example, highly homologous DNAs, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and still more preferably 97%. As described above, it is particularly preferable that DNAs having a homology of 99% or more hybridize with each other and DNAs with lower homology do not hybridize with each other, or the condition of washing at 60 ° C. under normal Southern hybridization.
- ⁇ SSC 0.1% SDS, preferably 0.1 ⁇ SSC, 0.1% SDS, more preferably 68 ° C., 0.1 ⁇ SSC, once at a salt concentration and temperature corresponding to 0.1% SDS, more preferably 2 to 3
- the conditions for washing twice are mentioned.
- the length of the probe is appropriately selected depending on the hybridization conditions, but is usually 100 bp to 1 Kbp.
- “homology” may refer to “identity”.
- the aspartokinase activity can be measured by the method described in Miyajima, Retal; The Journal of Biochemistry (1968), 63 (2), 139-148.
- the AKO gene, thrA gene, metL gene, lysC gene, and putative-AK gene are not limited to wild-type genes. As long as they have aspartokinase activity, they are encoded in the open reading frame of each gene.
- a variant or artificial variant that encodes a conservative variant having an amino acid sequence that includes substitution, deletion, insertion or addition of one or several amino acids at one or more positions It may be.
- one or several differs depending on the position and type of the amino acid residue in the three-dimensional structure of the protein, but specifically 1 to 20, preferably 1 to 10, more preferably 1 to Mean 5.
- the substitution, deletion, insertion, or addition of one or several amino acids is a conservative mutation that maintains the above function.
- a conservative mutation is a polar amino acid between Phe, Trp, and Tyr when the substitution site is an aromatic amino acid, and between Leu, Ile, and Val when the substitution site is a hydrophobic amino acid.
- the AKO gene, thrA gene, metL gene, lysC gene, and putative-AK gene are 80% or more, preferably 90% or more, based on the entire amino acid sequence encoded by the open reading frame of each gene.
- a sequence encoding a protein having a homology of preferably 95% or more, more preferably 97% or more, particularly preferably 99% or more, and having aspartokinase activity can also be used.
- the algorithm BLAST Proc. Natl. Acad. Sci. USA, 90, 1993 5873 (1993)
- FASTA Methodhods Enzymol., 183, 63 (1990)
- Altschul are used. Can be determined. Based on this algorithm BLAST, programs called BLASTN and BLASTX have been developed (see http://www.ncbi.nlm.nih.gov).
- the plasmid used for gene cloning may be any plasmid that can be replicated in microorganisms such as Escherichia bacteria, and specific examples include pBR322, pTWV228, pMW119, and pUC19.
- any vector that functions in Vibrio bacteria can be used as long as it is a plasmid that can autonomously replicate in Vibrio bacteria.
- Any vector plasmid that has ori derived from pUC, pACYC184, or IncQ can be used as the vector plasmid.
- a marker gene used for selection a Tn903-derived kanamycin resistance gene, a Tn9-derived chloramphenicol resistance gene, a streptomycin resistance gene, a tetracycline resistance gene, or the like can be used.
- the vector is cleaved with a restriction enzyme that matches the ends of the DNA fragment containing dapA and lysC. Ligation is usually performed using a ligase such as T4 DNA ligase. dapA and lysC may be mounted on separate vectors or on the same vector.
- DNA encoding a mutant dihydrodipicolinate synthase that is not subject to feedback inhibition by L-lysine examples include DNA encoding a protein having a sequence in which the histidine residue at position 118 is substituted with a tyrosine residue.
- the threonine residue at position 352 is replaced with an isoleucine residue
- the glycine residue at position 323 is replaced with an asparagine residue
- 318 Examples include DNA encoding AKIII having a sequence in which the methionine at the position is replaced with isoleucine (see US Pat. Nos. 5,610,010 and 6,040,160 for these variants). Mutant DNA can be obtained by site-specific mutagenesis such as PCR.
- plasmids RSFD80, pCAB1, and pCABD2 are known as plasmids containing mutant dapA encoding mutant mutant dihydrodipicolinate synthase and mutant lysC encoding mutant aspartokinase (USA) Patent No. 6040160).
- Escherichia coli strain JM109 transformed with RSFD80 US Pat. No.
- any method can be used as long as sufficient transformation efficiency can be obtained.
- electroporation Canadian Journal of Microbiology, 43. 197 (1997)).
- the enhancement of DDPS activity and / or AK activity can also be achieved by allowing multiple copies of dapA and / or lysC on the chromosomal DNA of Vibrio bacteria.
- Introducing dapA and / or lysC in multiple copies onto the chromosomal DNA of Vibrio bacteria can be carried out by homologous recombination using a sequence present in multiple copies on the chromosomal DNA as a target.
- a sequence present in multiple copies on chromosomal DNA repetitive DNA, inverted repeats present at the end of a transposable element, and the like can be used.
- dapA and / or lysC can be mounted on a transposon and transferred to introduce multiple copies onto chromosomal DNA.
- DDPS activity and / or AK activity is amplified.
- Amplification of DDPS activity and / or AK activity can be achieved by replacing expression control sequences such as dapA and / or lysC promoters with strong ones in addition to the gene amplification described above (JP-A-1-215280). No. publication). For example, lac promoter, trp promoter, trc promoter, tac promoter, lambda phage PR promoter, PL promoter, or hybrid promoters thereof are known as strong promoters. By replacing these promoters, DDPS activity and / or AK activity is amplified by enhancing the expression of dapA and / or lysC. Substitution of expression regulatory sequences may be combined with increasing the copy number of dapA and / or lysC (Science.
- DNA cleavage, ligation, and other methods such as chromosomal DNA preparation, PCR, plasmid DNA preparation, transformation, setting of oligonucleotides used as primers, etc. adopt ordinary methods well known to those skilled in the art. can do. These methods are described in Sambrook, J., Fritsch, E. F., and Maniatis, T., "Molecular Cloning A Laboratory Manual", Second Edition ", Cold Spring Harbor Laboratory Press, (1989).
- DDPS activity and / or AK activity the activity of other enzymes involved in L-lysine biosynthesis may be enhanced.
- enzymes include dihydrodipicolinate reductase (dapB), diaminopimelate decarboxylase (lysA), diaminopimelate dehydrogenase (ddh) (above, WO 96/40934 pamphlet), phosphoenolpyruvate carboxylase (ppc ) (Japanese Patent Laid-Open No. 60-87788), Aspartate aminotransferase (aspC) (Japanese Patent Publication No.
- Diaminopimelate epimerase (dapF) (Japanese Patent Laid-Open No. 2003-135066), Aspartate semialdehyde dehydration Examples thereof include enzymes of the diaminopimelate pathway such as elementary enzyme (asd) (WO 00/61723 pamphlet), and enzymes of the aminoadipate pathway such as homoaconite hydratase (Japanese Patent Laid-Open No. 2000-157276).
- the parentheses after the enzyme name are gene names (the same applies to the following description).
- PCABD2 is derived from Escherichia coli having a mutant dapA gene encoding DDPS derived from Escherichia coli having a mutation in which feedback inhibition by L-lysine is released, and from Escherichia coli having a mutation in which feedback inhibition by L-lysine is released. It contains a mutant lysC gene encoding AKIII, a dapB gene encoding dihydrodipicolinate reductase derived from Escherichia coli, and a ddh gene encoding diaminopimelate dehydrogenase derived from Brevibacterium lactofermentum. WO95 / 16042, WO01 / 53459 pamphlet).
- the Vibrio bacterium of the present invention may be a bacterium whose L-lysine producing ability is enhanced by enhancing L-lysine excretion activity.
- L-lysine excretion activity can be increased by increasing the expression level of the ybjE gene or increasing the expression level of the lysE gene (Japanese Patent Laid-Open No. 2005-237379, WO 97/23697 pamphlet).
- the bacterium of the present invention further functions negatively in the activity of an enzyme that catalyzes a reaction that branches from the biosynthetic pathway of L-lysine to produce a compound other than L-lysine, and in the synthesis or accumulation of L-lysine acid.
- the enzyme activity may be reduced or deficient.
- examples of such enzymes include homoserine dehydrogenase, malic enzyme, and the like, and strains in which the activity of the enzyme is reduced or deleted are disclosed in International Publication Nos. WO95 / 23864, WO96 / 17930, and WO2005. Can be constructed with reference to the / 010175 pamphlet.
- a mutation that reduces or eliminates the activity of the enzyme in the cell is applied to the gene of the enzyme on the genome by a usual mutation treatment method or gene recombination technique. What is necessary is just to introduce.
- Such mutations can be introduced, for example, by deleting a gene encoding an enzyme on the genome by genetic recombination or by modifying an expression regulatory sequence such as a promoter or Shine-Dalgarno (SD) sequence. Achieved.
- a partial gene of the target gene is modified to produce a mutant gene that does not produce a normally functioning enzyme, transformed into a bacterium belonging to the genus Vibrio with the DNA containing the gene, and the mutant gene and genome
- the target gene on the genome can be replaced with a mutant.
- the gene replacement using such homologous recombination is a method called “Red-driven integration” (Datsenko, K. A, and Wanner, B. L. Proc. Natl. Acad. Sci. U S A.
- the method for reducing the enzyme activity described above can be applied to the following FucO protein activity reduction.
- the bacterium of the present invention is a protein belonging to the genus Vibrio having the ability to produce L-lysine as described above (hereinafter referred to as “FucO”). It is obtained by modifying the activity so that the activity is reduced.
- the bacterium of the present invention only needs to be modified so that the activity of the protein encoded by the fucO gene is reduced as compared to the wild strain or the unmodified strain. -It is more desirable that lysine accumulation ability is improved.
- the fucO gene is a homologue of the E.coli fucO gene and can be obtained from a bacterium belonging to the genus Vibrio, and includes, for example, a gene having the base sequence of SEQ ID NO: 1.
- the base sequence of SEQ ID NO: 1 is the base sequence of the fucO gene of V. natiregens 28-15 strain.
- SEQ ID NO: 2 shows the amino acid sequence encoded by the same gene.
- the fucO gene of the present invention is a gene having homology with the E.coli fucO gene.
- the fucO gene of E. coli MG1655 strain is registered in GenBank as a gene encoding L-1,2-propanediol oxidoreductase (GenBank NC_000913.2, complementary strand of nucleotide numbers 2929887..2931038).
- the fucO gene of the present invention includes the Vibrio parahaemolyticus eutG gene or a gene homologous thereto.
- the eutG gene is registered in GenBank as iron-containing alcohol dehydrogenase (NC_004603.1, nucleotide number 1301840..1303159).
- the amino acid homology between the E. coli fucO gene product and the E. coli eutG gene product is 77.3% (using Genetix ver.9.0.3 manufactured by Genetics Co., Ltd.).
- the homologue of the Vibrio genus fucO gene is, for example, a gene having the base sequence of SEQ ID NO: 1, the fucO gene of E.coli, or a gene highly homologous to the eutG gene described in BLAST (http: //blast.genome. It can be obtained by searching with jp /).
- the homology is not particularly limited as long as L-lysine accumulation is improved by reducing the activity of the gene expression product.
- the homology is 80% or more, preferably 90% or more, more preferably, relative to the entire amino acid sequence. It is 95% or more, more preferably 97% or more, and particularly preferably 99% or more.
- Examples of the protein encoded by the fucO gene include those having the amino acid sequence of SEQ ID NO: 2, but may be conservative variants as long as the function of the protein is not changed.
- the fucO gene may be DNA that hybridizes under stringent conditions with a base sequence consisting of SEQ ID NO: 1 or a probe that can be prepared from the base sequence as long as it encodes a FucO protein. “Stringent conditions” are the same as described above.
- the activity of the protein encoded by the fucO gene has decreased means that a mutation is introduced into the coding region of the fucO gene by a drug or genetic engineering, and the function of the FucO protein encoded by the gene is weakened or lost, In addition, by introducing a mutation into the expression control region or the like of the fucO gene, the expression or translation of the fucO gene is reduced, thereby reducing the amount of FucO protein. Moreover, the activity of the FucO protein can be reduced by so-called gene disruption, that is, by deleting all or part of the fucO gene on the chromosome. The decrease in activity includes complete disappearance of activity.
- the method for reducing the enzyme activity described for imparting L-lysine producing ability can be used.
- Method for producing L-lysine comprises culturing the bacterium of the present invention in a medium, and producing and accumulating L-lysine in the medium or in the microbial cells. It is a method to collect.
- a medium conventionally used in the fermentation production of L-amino acids using microorganisms can be used. That is, a normal medium containing a carbon source, a nitrogen source, inorganic ions, and other organic components as required can be used.
- a carbon source saccharides such as glucose, sucrose, lactose, galactose, fructose and starch hydrolysate, alcohols such as glycerol and sorbitol, organic acids such as fumaric acid, citric acid and succinic acid are used. be able to.
- glycerol is preferably used as a carbon source.
- glycerol is preferably used as a carbon source.
- Glycerol may be used at any concentration suitable for producing L-lysine. When used as a single carbon source in the medium, it is preferably about 0.1 w / v% to 50 w / v%, more preferably about 0.5 w / v% to 40 w / v%, particularly preferably 1 w / v% to About 30 w / v% is contained in the medium.
- Glycerol can also be used in combination with other carbon sources such as glucose, fructose, sucrose, molasses, starch hydrolysates.
- glycerol and the other carbon source can be mixed in any ratio, but the ratio of glycerol in the carbon source is 10% by weight or more, more preferably 50% by weight or more, more preferably 70% by weight. % Or more is desirable.
- Preferred as other carbon sources are glucose, fructose, sucrose, lactose, galactose, molasses, sugars such as sugar hydrolyzate obtained by hydrolysis of starch hydrolyzate or biomass, alcohols such as ethanol, fumaric acid, Organic acids such as citric acid and succinic acid. Among these, glucose is preferable.
- the preferred initial concentration of glycerol at the start of the culture is as described above, but glycerol may be added depending on the consumption of glycerol during the culture.
- the glycerol used may be pure glycerol or crude glycerol.
- Crude glycerol refers to glycerol containing impurities produced industrially. Crude glycerol is produced industrially by contacting and hydrolyzing fats and oils with water under high temperature and high pressure, or by an esterification reaction for biodiesel fuel production.
- Biodiesel fuel is fatty acid methyl ester that is produced by transesterification from oil and methanol, and crude glycerol is produced as a by-product of this reaction (Fukuda, H., Kondo, A., and Noda, H 2001, J. Biosci. Bioeng. 92, 405-416).
- an alkali catalyst method is often used for transesterification, and an acid is added during neutralization, so that crude glycerol having a purity of about 70 to 95% by weight containing water and impurities is produced.
- Crude glycerol produced in biodiesel fuel production contains, in addition to water, residual methanol and alkali salts such as NaOH as a catalyst and salts of acids such as K 2 SO 4 used for neutralization as impurities. .
- alkali salts such as NaOH as a catalyst and salts of acids such as K 2 SO 4 used for neutralization as impurities.
- salts and methanol reach several percent.
- ions derived from alkali or acid used for neutralization thereof such as sodium, potassium, chloride ion and sulfate ion are 2 to 7%, preferably 3 to 6% based on the weight of crude glycerol. More preferably, the content is 4 to 5.8%.
- Methanol may not be contained as an impurity, but it is preferably contained in 0.01% or less.
- crude glycerol may contain trace amounts of metals, organic acids, phosphorus, fatty acids and the like.
- the organic acid included include formic acid and acetic acid.
- the organic acid may not be included as an impurity, but preferably 0.01% or less.
- the trace metal contained in the crude glycerol is preferably a trace metal necessary for the growth of microorganisms, and examples thereof include magnesium, iron, calcium, manganese, copper, and zinc.
- Magnesium, iron, and calcium are preferably contained in a total amount of 0.00001 to 0.1%, preferably 0.0005 to 0.1%, more preferably 0.004 to 0.05%, and still more preferably 0.007 to 0.01%, based on the weight of the crude glycerol.
- Manganese, copper, and zinc are preferably contained in a total amount of 0.000005 to 0.01%, more preferably 0.000007 to 0.005%, and still more preferably 0.00001 to 0.001%.
- the purity of glycerol in the crude glycerol may be 10% or more, preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more. As long as the content of impurities satisfies the above range, the purity of glycerol may be 90% or more.
- the crude glycerol may be added to the medium so that the concentration of glycerol is the above concentration depending on the purity of glycerol. Further, both glycerol and crude glycerol may be added to the medium.
- inorganic ammonium salts such as ammonium sulfate, ammonium chloride, and ammonium phosphate
- organic nitrogen such as soybean hydrolysate, ammonia gas, aqueous ammonia, and the like
- organic trace nutrient source it is desirable to contain an appropriate amount of required substances such as vitamin B 1 and L-homoserine or yeast extract.
- potassium phosphate, magnesium sulfate, iron ions, manganese ions and the like are added as necessary.
- the medium used in the present invention may be a natural medium or a synthetic medium as long as it contains a carbon source, a nitrogen source, inorganic ions, and other organic trace components as required.
- Cultivation is preferably carried out for 1 to 7 days under aerobic conditions, the culture temperature is preferably 24 ° C. to 37 ° C., and the pH during the culture is preferably 5 to 9.
- an inorganic or organic acidic or alkaline substance, ammonia gas or the like can be used for pH adjustment.
- the pH during the cultivation is controlled to 6.5 to 9.0, and the pH of the medium at the end of the cultivation is controlled to 7.2 to 9.0.
- the basic amino acid may be recovered by a method (JP 2002-65287 A, US 2002-0025564A EP 1813677A).
- the pH of the medium during the culture is 6.5 to 9.0, preferably 6.5 to 9.0.
- the pH of the medium at the end of the culture is controlled to be 7.2 to 9.0, and further the pressure in the fermenter during the fermentation is controlled to be positive, or carbon dioxide or It is known to supply a mixed gas containing carbon dioxide gas to a culture medium (Japanese Patent Laid-Open No. 2002-65287, US Patent Application Publication No. 20020025564, EP1813677A).
- the recovery of L-lysine from the fermentation broth is usually performed by the ion exchange resin method (Nagai, H. et al., Separation Science and Technology, (39 (16), 3691-3710), precipitation method, membrane separation method (Japanese Patent Laid-Open No. 9-9 No. 164323, JP-A-9-173792), crystallization methods (WO2008 / 078448, WO2008 / 078646), and other known methods can be combined.
- the microbial cells are crushed by ultrasonic waves and the microbial cells are removed by centrifugation, and the L-lysine is obtained from the supernatant obtained by ion exchange resin method or the like. Can be recovered.
- the L-lysine recovered may contain bacterial cells, medium components, water, and bacterial metabolic byproducts in addition to L-lysine.
- the purity of the collected L-lysine is 50% or more, preferably 85% or more, and particularly preferably 95% or more (JP1214636B, USP4315,431,933, 4,956,471, 7774,777,051, 4946654, 5,840,358, 6,238,714, US2005 / 0025878)).
- L-lysine precipitates in the medium it can be recovered by centrifugation or filtration. Further, L-lysine precipitated in the medium may be isolated together after crystallization of L-lysine dissolved in the medium.
- Example 1 Construction of V. natriegens with disrupted fucO gene The fucO gene on the chromosome of the lysine-producing bacterium V. natriegens 28-15 was disrupted.
- PCR is performed using the pDNR-Dual Doner vector (Clontech, USA) having the sacB gene of Bacillus subtilis as a template DNA, and the synthetic DNAs having the sequences of SEQ ID NO: 3 and SEQ ID NO: 4 as primers, and the sacB gene is amplified.
- the sacB gene encodes levanshuclease and is a gene used to efficiently select a strain from which the vector portion has been dropped from the chromosome (Schafer, A. et al. Gene 145 (1994) 69-73). That is, when levan sucrose is expressed, levan produced by assimilating sucrose works lethally and cannot grow. Therefore, if a strain having a vector carrying the levan sucrose enzyme remaining on the chromosome cannot be grown on a sucrose-containing plate, only the strain from which the vector has been dropped can be selected on the sucrose-containing plate.
- pUT399 is a plasmid having an R6K origin of replication, a plasmid containing a mob region necessary for conjugation transfer, and a plasmid that cannot be replicated by a strain not having a pir gene (US Pat. No. 7090998).
- PCR was performed using the chromosomal DNA of V.
- telomere sequence was amplified.
- PCR was performed again using the obtained mixture of the two types of PCR products as template DNA and using synthetic DNAs having the sequences of SEQ ID NO: 5 and SEQ ID NO: 7 as primers.
- the obtained PCR product and pUT_sacB were both digested with restriction enzymes SalI and SphI and ligated to obtain a vector pUT_sacB_fucOFR.
- pUT_sacB_fucOFR is a plasmid for disrupting the fucO gene lacking a part of the coding region of fucO. Then, pUT_sacB_fucOFR was introduced into E. coli S17-1 ( ⁇ pir +, available from Biomedal: R. Simon., Et al., Bio / Technology 1; 784-791 (1983)), and S17-1 / pUT_sacB_fucOFR Obtained.
- S17-1 / pUT_sacB_fucOFR is added to LB medium (10 g / L Bacto-tryptone, 5 g / L Bacto-yeast extract, 5 g / L NaCl, and 40 mg / L chloramphenicol, pH 7.0). Planted in 1.5 ml and cultured at 37 ° C for 18 hours. The obtained culture broth was collected by centrifugation (5000 rpm, 5 minutes) and suspended in 50 ⁇ l of fresh LB medium.
- the bacterial solution contains LB-NaCl agar medium (10 g / L Bacto-tryptone, 5 g / L Bacto-yeast extract, 30 g / L NaCl, 0.4 g / L MgSO 4 and 20 g / L agar, pH 7.0). ) It was rolled up in a circular shape with a diameter of 2 cm and left at room temperature for 30 minutes to dry. At the same time, V. natriegens 28-15 is added to LB-NaCl medium (containing 10 g / L Bacto-tryptone, 5 g / L Bacto-yeast extract, 30 g / L NaCl, and 0.4 g / L MgSO 4 , pH 7.0).
- TCBS agar medium (5 g / L yeast extract, 10 g / L peptone, 17 g / L white sugar, 10 g / L thio) Sodium sulfate (pentahydrate), 10 g / L sodium citrate (dihydrate), 3 g / L sodium cholate, 1 g / L ferric citrate, 10 g / L sodium chloride, 5 g / L Beef liver juice, 0.04 g / L bromothymol blue, 0.05 g / L thymol blue, 15 g / L agar and 10 mg / L ⁇ ⁇ chloramphenicol.
- the fucO gene on the chromosome was destroyed along with the loss of pUT_sacB_fucOFR inserted on the chromosome. 28-15 (V. natriegens 28-15 ⁇ fucO) was obtained. Confirmation of the fucO gene disruption was performed by PCR using chromosomal DNA extracted from the obtained strain by a conventional method as template DNA and SEQ ID NO: 9 and SEQ ID NO: 10 as primers.
- Example 2 The L-lysine degradation activity of V. natriegens 28-15 ⁇ fucO was examined.
- PCABD2 US Pat. No. 6,040,160
- Electroporation was performed using Gene pluser Xcell (BioRad, USA) under pulse conditions of 9 kV / cm, 25 ⁇ F, 200 ⁇ .
- V. natriegens 28-15 ⁇ fucO / pCABD2 and V. natriegens 28-15 / pCABD2 were cultured in LB-NaCl agar medium (containing 500 mg / L streptomycin) at 37 ° C for 10 hours.
- the obtained microbial cells were scraped, planted in 20 ml of MS medium (containing 500 mg / L streptomycin) in a Sakaguchi flask (capacity 500 ml) so that OD660 was 0.1, and cultured at 37 ° C with shaking. Incubation was performed in three flasks each.
- OD660 was measured using a spectrophotometer DU-800 (Beckman Coulter, USA) after diluting the culture solution 51-fold with 2% (w / v) NaCl aqueous solution.
- Biotech Analyzer AS-300 was used for measurement of glucose concentration and L-lysine concentration in the culture solution.
- the fucO gene may be involved in L-lysine degradation in V. natriegens. Therefore, the L-lysine degradation pathway of V. natriegens may be different from the pathway where cadaverine is produced from L-lysine.
- V. natriegens 28-15 ⁇ fucO / pCABD2 was cultured on LB-NaCl agar medium (containing 500 mg / L streptomycin) at 37 ° C. for 8 hours.
- the obtained bacterial cells are scraped and placed in a Sakaguchi flask (capacity 500 ml) in MS medium (containing 500 mg / L streptomycin. 0 to 8% (w / v) NaCl).
- the seedlings were planted and cultured at 37 ° C with shaking.
- OD660 was measured using a spectrophotometer DU-800 (Beckman coulter, USA) after diluting the culture solution 51 times with 2% (w / v) NaCl aqueous solution.
- Biotech Analyzer AS-300 was used for measurement of glucose concentration and L-lysine concentration in the culture solution.
- V. natriegens 28-15 ⁇ fucO / pCABD2 was cultured at 37 ° C. for 8 hours in LB-NaCl agar medium (containing 500 mg / L streptomycin). The obtained bacterial cells are scraped off and planted in 20 ml of MS medium (containing 500 mg / L streptomycin. 2% (w / v) or 4% (w / v) NaCl) so that OD660 is 0.1. And cultured at 37 ° C. with shaking.
- glycerol As the carbon source, glycerol (Japan) was used. Three flasks of each were cultured. Then, 1 ml was sampled over time, and OD660 and glycerol concentration and L-lysine concentration in the medium were measured. OD660 was measured using a spectrophotometer DU-800 (Beckman coulter, USA) after diluting the culture solution 51 times with 2% (w / v) NaCl aqueous solution. Biosensor BF-5 (Oji Scientific Instruments, Japan) was used for the concentration of glycerol in the culture solution. Biotech Analyzer AS-300 (Sakura Seiki Co., Ltd., Japan) was used for the measurement of L-lysine concentration.
- Example 5 The fucO gene was obtained in the same manner as in Example 1 except that V. natriegens 28-15 strain was used instead of V. natriegens wild strain ATCC14048 (NBRC15636, AJ13670). VLD01, a destroyed strain, was obtained.
- Example 6 Using V. natriegens 28-15 ⁇ fucO / pCABD2, VLD01 / pCABD2, and V. natriegens ATCC14048 / pCABD2, L-lysine production was performed in MS4Y medium, which is MS medium with glycerol as a carbon source and Yeast Extract added excessively. went. First, each strain was cultured on LB-NaCl agar medium (containing 500 mg / L streptomycin) at 37 ° C. for 8 hours. The obtained cells were scraped, planted in 20 ml of MS4Y medium so that OD660 was 0.1, and cultured at 37 ° C. with shaking.
- glycerol As the carbon source, glycerol (Japan) was used. Two flask cultures were performed for each strain. Then, 0.5 ml was sampled over time, and OD660 and glycerol concentration and L-lysine concentration in the medium were measured. OD660 was measured using a spectrophotometer DU-800 (Beckman coulter, USA) after diluting the culture solution 50 times with 1 N HCl aqueous solution. Biosensor BF-5 (Oji Scientific Instruments, Japan) was used for measuring the glycerol concentration in the culture solution. Biotech Analyzer AS-300 (Sakura Seiki Co., Ltd., Japan) was used for the measurement of L-lysine concentration.
- V. natriegens 28-15 ⁇ fucO / pCABD2 accumulated 61 mM L-lysine (Fig. 4). At that time, the yield of glycerol L-lysine consumed was 28% by weight (w / w). In addition, accumulation of 45 mM L-lysine was also observed in VLD01 / pCABD2, and the yield of glycerol L-lysine consumed was 21% (w / w). In V. ⁇ ⁇ natriegens ATCC14048 / pCABD2, little accumulation of L-lysine was observed.
- SEQ ID NO: 1 Base sequence of V. natriegens fucO gene
- SEQ ID NO: 2 Amino acid sequence encoded by V. natriegens fucO gene
- SEQ ID NO: 3 Base sequence of PCR primer for amplifying sacB gene
- SEQ ID NO: 4 sacB PCR primer base sequence for amplifying gene
- SEQ ID NO: 5 PCR primer base sequence for amplifying 0.8 kbp before and after fucO gene
- SEQ ID NO: 6 PCR primer base for amplifying 0.8 kbp before and after fucO gene
- SEQ ID NO: 7 nucleotide sequence of PCR primer for amplifying 0.8 kbp before and after fucO gene
- SEQ ID NO: 8 nucleotide sequence of PCR primer for amplifying 0.8 kbp before and after fucO gene
- SEQ ID NO: 9 of fucO gene on chromosome PCR primer base sequence for confirming the destruction
- SEQ ID NO: 12 amino acid sequence encoded by the AKO gene of V. natriegens
- SEQ ID NO: 13 nucleotide sequence of the thrA gene of V. natriegens
- SEQ ID NO: 14 amino acid sequence encoded by the thrA gene of V. natriegens
- SEQ ID NO: 15 nucleotide sequence of the metL gene of V. natriegens
- SEQ ID NO: 16 amino acid sequence encoded by the metL gene of V. natriegens
- SEQ ID NO: 17 nucleotide sequence of the lysC gene of V. natriegens
- SEQ ID NO: 18 of V.
- natriegens amino acid sequence encoded by the lysC gene SEQ ID NO: 19: nucleotide sequence of the putative-AK gene of V. natriegens
- SEQ ID NO: 20 amino acid sequence encoded by the putative-AK gene of V. natriegens
- L-lysine can be efficiently produced using Vibrio bacteria.
- Vibrio bacteria lacking the fucO gene degradation of L-lysine accumulated with time is suppressed, and L-lysine can be accumulated very efficiently.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
(1)L-リジン生産能を有するビブリオ属細菌を培地で培養し、L-リジンを該培地中又は菌体内に生成蓄積させ、該培地又は菌体よりL-リジンを採取する、L-リジンの製造法において、前記ビブリオ属細菌は、fucO遺伝子がコードするタンパク質の活性が低下するように改変されたことを特徴とする方法。
(2)fucO遺伝子のコード領域及び/又は同遺伝子の発現制御領域に変異が導入されたことにより、前記タンパク質の活性が低下した、前記方法。
(3)前記細菌は染色体上のfucO遺伝子が破壊されたことを特徴とする、前記方法。
(4)前記タンパク質が、下記(A)または(B)に記載のタンパク質である前記方法。
(A)配列番号2に示すアミノ酸配列を有するタンパク質。
(B)配列番号2に示すアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ、細菌内の活性を低下させたときにL-リジン生産能が向上するタンパク質。
(5)前記fucO遺伝子が、下記(a)または(b)に記載のDNAである前記方法。
(a)配列番号1の塩基配列を含むDNA、
(b)配列番号1の塩基配列または同塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、かつ、細菌内の活性を低下させたときにL-リジン生産能が向上するタンパク質をコードするDNA。
(6)前記細菌は、ジヒドロジピコリン酸合成酵素、アスパルトキナーゼ、ジヒドロジピコリン酸レダクターゼ、及びジアミノピメリン酸デヒドロゲナーゼからなる群より選択される1種または2種以上の酵素の活性が増強されている、前記方法。
(7)前記ビブリオ属細菌が、ビブリオ・ナトリージェンスである、前記方法。
(8)前記培地が、グリセロールを炭素源として含む培地である、前記方法。
(9)L-リジン生産能を有し、かつ、fucO遺伝子がコードするタンパク質の活性が低下するように改変されたビブリオ属細菌。
(10)前記ビブリオ属細菌がビブリオ・ナトリージェンスである、前記細菌。
本発明の細菌は、L-リジン生産能を有し、かつ、fucO遺伝子がコードするタンパク質の活性が低下するように改変されたビブリオ属細菌である。
ここで、L-リジン生産能とは、本発明の細菌を培地中で培養したときに、培地中または菌体内にL-リジンを生成し、培地中または菌体から回収できる程度に蓄積する能力をいう。すなわち、本発明の細菌は、糖等を炭素源とする発酵(直接発酵とも呼ばれる)によりL-リジンを生産することができるビブリオ属細菌である。具体的には、例えば、fucO遺伝子がコードするタンパク質の活性が低下するように改変されたビブリオ属細菌を好適な条件で培養したときに、1.5倍以上、好ましくは2倍以上、より好ましくは3倍以上のL-リジンを培地に蓄積すれば、同細菌はL-リジン生産能を有する。
尚、「L-リジン」には、フリー体のL-リジン及び/またはその塩、例えば硫酸塩、塩酸塩、炭酸塩等が含まれる。
ビブリオ属細菌は、γ-プロピオバクテリアのVibrionanceae科に属するグラム陰性の通性嫌気性菌で、極在性の鞭毛1本を持って運動し、淡水や海水に見られる細菌である。本発明で用いるビブリオ属細菌は、非病原性のものが望ましく、病原性が知られていないビブリオ細菌は、Biosafety level 1(Office of Health and Safety (OHS) 発行のBiosafety in Microbiological and Biomedical Laboratories (BMBL) 4th Edition)に挙げられており、以下のようなビブリオ属細菌が利用できる。
Vibrio adaptatus ATCC19263
Vibrio aerogenes ATCC700797
Vibrio aestuarianus ATCC35048
Vibrio alginolyticus ATCC14582
Vibrio algosus ATCC14390
Vibrio anguillarum ATCC43305
Vibrio calviensis ATCC BAA-606
Vibrio campbellii ATCC25920
Vibrio carchariae ATCC35084
Vibrio coralliilyticus ATCC BAA-450
Vibrio costicola ATCC43147
Vibrio cyclitrophicus ATCC700982
Vibrio cyclosites ATCC14635
Vibrio diazotrophicus ATCC33466
Vibrio fischeri ATCC25918
Vibrio gazogenes ATCC29988
Vibrio halioticoli ATCC700680
Vibrio harveyi ATCC14126
Vibrio hispanica ATCC51589
Vibrio ichthyoenteri ATCC700023
Vibrio iliopiscarius ATCC51760
Vibrio lentus ATCC BAA-539
Vibrio liquefaciens ATCC17058
Vibrio logei ATCC15382
Vibrio marinagilis ATCC14398
Vibrio marinofulvus ATCC14395
Vibrio marinovulgaris ATCC14394
Vibrio mediterranei ATCC43341
Vibrio metschnikovii ATCC7708
Vibrio mytili ATCC51288
Vibrio natriegens ATCC14048
Vibrio navarrensis ATCC51183
Vibrio nereis ATCC25917
Vibrio nigripulchritudo ATCC27043
Vibrio ordalii ATCC33509
Vibrio orientalis ATCC33933
Vibrio pectenicida ATCC700783
Vibrio pelagius ATCC33504
Vibrio penaeicida ATCC51841
Vibrio ponticus ATCC14391
Vibrio proteolyticus ATCC53559
Vibrio psychroerythrus ATCC27364
Vibrio salmonicida ATCC43839
Vibrio shiloii ATCC BAA-91
Vibrio splendidus ATCC33125
Vibrio tyrosinaticus ATCC19378
Vibrio viscosus ATCC BAA-105
Vibrio wodanis ATCC BAA-104
Beneckea pelagia ATCC25916
Listonella anguillarum ATCC19264
L-リジン生産能を有するビブリオ属細菌は、上記のようなビブリオ属細菌の野生株にL-リジン生産能を付与することにより取得され得る。L-リジン生産能を付与するためには、従来のコリネ型細菌、エシェリヒア属細菌等の育種に使用されてきた、栄養要求性変異株、L-リジン等のL-アミノ酸アナログ耐性、または代謝制御変異株、L-リジン生合成系酵素の活性が増強された組み換え株等の創製法を利用して育種することができる(アミノ酸発酵(株)学会出版センター)。L-リジン生合成系酵素の活性増強は、該酵素をコードする遺伝子のコピー数の増加やプロモーターなどの発現調節配列の改変によって行うことができる。L-リジン生産菌の育種において、付与される栄養要求性、L-アミノ酸アナログ耐性、代謝制御変異等の性質の付与と、リジン生合成系酵素の活性の増強が組み合わされてもよい。以下、L-リジン生産能を付与するための方法を例示する。
ビブリオ属細菌のジヒドロジピコリン酸合成酵素活性及び/又はアスパルトキナーゼ活性を増強するには、ジヒドロジピコリン酸合成酵素をコードする遺伝子断片及び/又はアスパルトキナーゼをコードする遺伝子断片を、ビブリオ属細菌で機能するベクター、好ましくはマルチコピー型ベクターと連結して組み換えDNAを作製し、これをビブリオ属細菌の宿主に導入して形質転換すればよい。形質転換株の細胞内のジヒドロジピコリン酸合成酵素をコードする遺伝子及び/又はアスパルトキナーゼをコードする遺伝子のコピー数が上昇する結果、これらの酵素の活性が増強される。以下、ジヒドロジピコリン酸合成酵素をDDPS、アスパルトキナーゼをAK、アスパルトキナーゼIIIをAKIIIと略すことがある。
Vibrio cholerae O1 biovar eltor str. N16961 chromosome I, complete sequence; AE003852
Vibrio cholerae O1 biovar eltor str. N16961 chromosome II, complete sequence; AE003853
Vibrio parahaemolyticus RIMD 2210633 chromosome I, complete sequence; BA000031
Vibrio parahaemolyticus RIMD 2210633 chromosome II, complete sequence; BA000032
Vibrio fischeri ES114 chromosome I, complete sequence; CP000020
Vibrio fischeri ES114 chromosome II, complete sequence; CP000021
Vibrio vulnificus CMCP6 chromosome I, complete sequence; AE016795
Vibrio vulnificus CMCP6 chromosome II, complete sequence; AE016796
Vibrio vulnificus YJ016 chromosome I, complete sequence; BA000037
Vibrio vulnificus YJ016 chromosome II, complete sequence; BA000038
尚、本発明においては、DDPS及びAKは必ずしも変異型である必要はない。例えば、コリネバクテリウム属細菌由来のDDPSはもともとL-リジンによるフィードバック阻害を受けないことが知られている。
例えば、ビブリオ・ナトリージェンスのAK遺伝子としては、AKO遺伝子、thrA遺伝子、metL遺伝子、lysC遺伝子、およびputative-AK遺伝子が挙げられる。
尚、本明細書において、「相同性」(homology)」は、「同一性」(identity)を指すことがある。
本発明の細菌は、上述したようなL-リジンの生産能を有するビブリオ属に属する細菌を、fucO遺伝子がコードするタンパク質(以下、「FucO」と記載することがある。)の活性が低下するように改変されることによって得られる。L-本発明のビブリオ属細菌の育種において、L-リジンの生産能の付与とFucOタンパク質の活性が低下するような改変は、どちらを先に行ってもよい。本発明の細菌は、野生株または非改変株と比べてfucO遺伝子がコードするタンパク質の活性が低下するように改変されているものであればよいが、さらに野生株又は非改変株に比べてL-リジンの蓄積能が向上していることがより望ましい。
E. coliのfucO遺伝子産物とE. coliのeutG遺伝子産物のアミノ酸での相同性は77.3%である(株式会社ゼネティックス製Genetix ver.9.0.3を使用)。
また、fucO遺伝子は、FucOタンパク質をコードする限り、配列番号1からなる塩基配列または同塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズするDNAであってもよい。「ストリンジェントな条件」は、前記と同様である。
本発明の方法は、本発明の細菌を培地で培養して、L-リジンを該培地中または菌体内に生成蓄積させ、該培地または菌体よりL-リジンを回収する方法である。
使用するグリセロールは、純粋なグリセロールであってもよいが、粗グリセロールであってもよい。粗グリセロールとは、工業的に生産される不純物を含むグリセロールをいう。粗グリセロールは、油脂を高温、高圧下で水と接触させ加水分解することによって、あるいは、バイオディーゼル燃料生産のためのエステル化反応によって、工業的に生産される。バイオディーゼル燃料とは、油脂とメタノールからエステル交換反応により生成する脂肪酸メチルエステルのことであり、この反応の副生物として粗グリセロールが生成する(Fukuda, H., Kondo, A., and Noda, H. 2001, J. Biosci. Bioeng. 92, 405-416を参照のこと)。バイオディーゼル燃料生産プロセスでは、エステル交換にはアルカリ触媒法が用いられることが多く、中和時に酸を加えるため、水と不純物を含んだ純度70~95重量%程度の粗グリセロールが生成する。バイオディーゼル燃料生産において産生される粗グリセロールは、水に加えて、残存メタノールや触媒であるNaOH等のアルカリとその中和に用いられるK2SO4等の酸との塩を不純物として含んでいる。メーカーや製法により差はあるが、このような塩類やメタノールは数パーセントに達する。ここでナトリウム、カリウム、塩化物イオン、硫酸イオン等の、アルカリやその中和に用いられた酸に由来するイオン類は、粗グリセロールの重量に対し、2~7%、好ましくは3~6%、さらに好ましくは4~5.8%含まれていることが好ましい。メタノールは、不純物として含まれていなくてもよいが、望ましくは0.01%以下含まれていることが好ましい。
粗グリセロールを用いる場合は、グリセロールの純度に応じて、グリセロールの量として上記濃度となるように粗グリセロールを培地に添加すればよい。また、グリセロール及び粗グリセロールの両方を培地に添加してもよい。
塩基性アミノ酸を生産する能力を有する微生物を培地中で好気培養するに際して、炭酸イオンもしくは重炭酸イオン又はこれらの両方を、塩基性アミノ酸の主なカウンタイオンとして利用することができる。塩基性アミノ酸のカウンタイオンとして必要な量の重炭酸イオン及び/又は炭酸イオンを培地中に存在させる方法としては、培養中の培地のpHが6.5~9.0、好ましくは6.5~8.0、培養終了時の培地のpHが7.2~9.0となるように制御し、さらに、発酵中の発酵槽内圧力が正となるように制御するか、又は、炭酸ガスもしくは炭酸ガスを含む混合ガスを培地に供給することが知られている(特開2002-65287、米国特許出願公開第20020025564号、EP1813677A)。
〔実施例1〕fucO遺伝子が破壊されたV. natriegensの構築
リジン生産菌V. natriegens 28-15の染色体上にあるfucO遺伝子を破壊した。
V. natriegens 28-15ΔfucOのL-リジン分解活性を調べた。
エレクトロポレーションによりV. natriegens 28-15ΔfucO、及びV. natriegens 28-15へpCABD2(米国特許第6040160号明細書)を導入した。エレクトロポレーションは、Gene pluser Xcell(BioRad社、USA)を用い、9 kV/cm、25μF、200Ωのパルス条件で行った。
(最終濃度)
グルコース 40 g/L(別殺菌)
MgSO4・7H2O 1 g/L(別殺菌)
(NH4)2SO4 16 g/L
KH2PO4 1 g/L
Yeast Extract 2 g/L
FeSO4 0.01 g/L
MnSO4 0.01 g/L
CaCO3 30 g/L(別殺菌)
NaCl 15g/L
続いて、V. natriegens 28-15ΔfucO/pCABD2を用いて、高塩濃度下で、グルコースを炭素源としたL-リジン生産を行った。V. natriegens 28-15ΔfucO/pCABD2をLB-NaCl寒天培地(500 mg/L ストレプトマイシンを含む)で37℃、8時間培養した。得られた菌体をかき取り、坂口フラスコ(容量500 ml)に入れたMS培地(500 mg/L ストレプトマイシンを含む。0~8 %(w/v) NaClを含む)20 ml にOD660が0.1となるように植え、37℃で振とう培養した。各々3本ずつフラスコ培養を行った。そして、経時的に1 mlずつサンプリングを行い、OD660と培地中のグルコース濃度及びL-リジン濃度を測定した。OD660は、培養液を2 %(w/v) NaCl水溶液で51倍に希釈し、分光光度計DU-800(Beckman coulter社、USA)を用いて測定された。また、培養液中のグルコース濃度とL-リジン濃度の測定にはバイオテックアナライザーAS-300(サクラ精機株式会社、日本)を用いた。
その結果、6 %(w/v) NaClを含む培養条件では最大27 mM L-リジンの蓄積が観察され、そのときの対消費糖L-リジン収率は12 %(w/w)であった(図2)。
続いて、V. natriegens 28-15ΔfucO/pCABD2を用いてグリセロールを炭素源としたL-リジン生産を行った。具体的には、V. natriegens 28-15ΔfucO/pCABD2をLB-NaCl寒天培地(500 mg/L ストレプトマイシンを含む)で37℃、8時間培養した。得られた菌体をかき取り、MS培地(500 mg/L ストレプトマイシンを含む。2 %(w/v)又は4 %(w/v) NaClを含む)20 ml にOD660が0.1となるように植え、37℃で振とう培養した。炭素源のグリセロールは純正化学社製(日本)を用いた。各々3本ずつフラスコ培養を行った。そして、経時的に1 mlずつサンプリングを行い、OD660と培地中のグリセロール濃度及びL-リジン濃度を測定した。OD660は、培養液を2 %(w/v) NaCl水溶液で51倍に希釈し、分光光度計DU-800(Beckman coulter社、USA)を用いて測定された。また、培養液中のグリセロール濃度はバイオセンサーBF-5(王子測定機器株式会社、日本)を用いた。L-リジン濃度の測定にはバイオテックアナライザーAS-300(サクラ精機株式会社、日本)を用いた。
その結果、4 %(w/v) NaClが添加された培養条件で、最大30 mM のL-リジンの蓄積が観察され、対消費グリセロールL-リジン収率は15 %(w/w)であった(図3)。
V. natriegens 28-15株に代えてV. natriegens野生株ATCC14048株(NBRC15636、AJ13670)を用いた以外は、実施例1でV. natriegens 28-15ΔfucOを得たのと同様にして、fucO遺伝子が破壊された株であるVLD01を得た。
V. natriegens 28-15ΔfucO/pCABD2、VLD01/pCABD2、及びV. natriegens ATCC14048/pCABD2を用いて、グリセロールを炭素源として、Yeast Extract が過剰に添加されたMS培地であるMS4Y培地でL-リジン生産を行った。はじめに各株をそれぞれLB-NaCl寒天培地(500 mg/L ストレプトマイシンを含む)で37℃、8時間培養した。得られた菌体をかき取り、MS4Y培地20 ml にOD660が0.1となるように植え、37℃で振とう培養した。炭素源のグリセロールは純正化学社製(日本)を用いた。各々の菌株について2本ずつフラスコ培養を行った。そして、経時的に0.5 mlずつサンプリングを行い、OD660と培地中のグリセロール濃度及びL-リジン濃度を測定した。OD660は、培養液を1 N HCl水溶液で50倍に希釈し、分光光度計DU-800(Beckman coulter社、USA)を用いて測定された。また、培養液中のグリセロール濃度の測定にはバイオセンサーBF-5(王子測定機器株式会社、日本)を用いた。L-リジン濃度の測定にはバイオテックアナライザーAS-300(サクラ精機株式会社、日本)を用いた。
(最終濃度)
グリセロール 40 g/L(別殺菌)
MgSO4・7H2O 1 g/L(別殺菌)
(NH4)2SO4 24 g/L
KH2PO4 1 g/L
Yeast Extract 8 g/L
FeSO4 0.01 g/L
MnSO4 0.01 g/L
CaCO3 30 g/L(別殺菌)
NaCl 20 g/L(別殺菌)
配列番号1:V. natriegensのfucO遺伝子の塩基配列
配列番号2:V. natriegensのfucO遺伝子によってコードされるアミノ酸配列
配列番号3:sacB遺伝子を増幅するためのPCRプライマーの塩基配列
配列番号4:sacB遺伝子を増幅するためのPCRプライマーの塩基配列
配列番号5:fucO遺伝子の前後0.8kbpを増幅するためのPCRプライマーの塩基配列
配列番号6:fucO遺伝子の前後0.8kbpを増幅するためのPCRプライマーの塩基配列
配列番号7:fucO遺伝子の前後0.8kbpを増幅するためのPCRプライマーの塩基配列
配列番号8:fucO遺伝子の前後0.8kbpを増幅するためのPCRプライマーの塩基配列
配列番号9:染色体上fucO遺伝子の破壊を確認するためのPCRプライマーの塩基配列
配列番号10:染色体上fucO遺伝子の破壊を確認するためのPCRプライマーの塩基配列
配列番号11:V. natriegensのAKO遺伝子の塩基配列
配列番号12:V. natriegensのAKO遺伝子によってコードされるアミノ酸配列
配列番号13:V. natriegensのthrA遺伝子の塩基配列
配列番号14:V. natriegensのthrA遺伝子によってコードされるアミノ酸配列
配列番号15:V. natriegensのmetL遺伝子の塩基配列
配列番号16:V. natriegensのmetL遺伝子によってコードされるアミノ酸配列
配列番号17:V. natriegensのlysC遺伝子の塩基配列
配列番号18:V. natriegensのlysC遺伝子によってコードされるアミノ酸配列
配列番号19:V. natriegensのputative-AK遺伝子の塩基配列
配列番号20:V. natriegensのputative-AK遺伝子によってコードされるアミノ酸配列
特に、fucO遺伝子を欠損したビブリオ属細菌では、時間と共に蓄積したL-リジンの分解が抑制され、L-リジンを非常に効率よく蓄積させることができる。
Claims (10)
- L-リジン生産能を有するビブリオ属細菌を培地で培養し、L-リジンを該培地中又は菌体内に生成蓄積させ、該培地又は菌体よりL-リジンを採取する、L-リジンの製造法において、前記ビブリオ属細菌は、fucO遺伝子がコードするタンパク質の活性が低下するように改変されたことを特徴とする方法。
- fucO遺伝子のコード領域及び/又は同遺伝子の発現制御領域に変異が導入されたことにより、前記タンパク質の活性が低下した、請求項1に記載の方法。
- 前記細菌は染色体上のfucO遺伝子が破壊されたことを特徴とする、請求項1又は2に記載の方法。
- 前記タンパク質が、下記(A)または(B)に記載のタンパク質である請求項1~3のいずれか一項に記載の方法。
(A)配列番号2に示すアミノ酸配列を有するタンパク質。
(B)配列番号2に示すアミノ酸配列において、1若しくは数個のアミノ酸の置換、欠失、挿入、または付加を含むアミノ酸配列を有し、かつ、細菌内の活性を低下させたときにL-リジン生産能が向上するタンパク質。 - 前記fucO遺伝子が、下記(a)または(b)に記載のDNAである請求項1~4のいずれか一項に記載の方法。
(a)配列番号1の塩基配列を含むDNA、
(b)配列番号1の塩基配列または同塩基配列から調製され得るプローブとストリンジェントな条件下でハイブリダイズし、かつ、細菌内の活性を低下させたときにL-リジン生産能が向上するタンパク質をコードするDNA。 - 前記細菌は、ジヒドロジピコリン酸合成酵素、アスパルトキナーゼ、ジヒドロジピコリン酸レダクターゼ、及びジアミノピメリン酸デヒドロゲナーゼからなる群より選択される1種または2種以上の酵素の活性が増強されている、請求項1~5のいずれか一項に記載の方法。
- 前記ビブリオ属細菌が、ビブリオ・ナトリージェンスである、請求項1~6のいずれか一項に記載の方法。
- 前記培地が、グリセロールを炭素源として含む培地である、請求項1~7のいずれか一項に記載の方法。
- L-リジン生産能を有し、かつ、fucO遺伝子がコードするタンパク質の活性が低下するように改変されたビブリオ属細菌。
- 前記ビブリオ属細菌がビブリオ・ナトリージェンスである、請求項9に記載の細菌。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080034564.7A CN102471791B (zh) | 2009-08-03 | 2010-06-28 | 使用弧菌属细菌产生l-赖氨酸的方法 |
EP10806301.7A EP2463377B1 (en) | 2009-08-03 | 2010-06-28 | A method for producing L-lysine using a Vibrio bacterium |
BRBR112012002441-8A BR112012002441A2 (pt) | 2009-08-03 | 2010-06-28 | Método para produzir l-lisina,e,bactéria do gênero vibrio. |
US13/364,637 US20120156736A1 (en) | 2009-08-03 | 2012-02-02 | Method for producing l-lysine using a vibrio bacterium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-180819 | 2009-08-03 | ||
JP2009180819A JP2012196144A (ja) | 2009-08-03 | 2009-08-03 | ビブリオ属細菌を用いたl−リジンの製造法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/364,637 Continuation US20120156736A1 (en) | 2009-08-03 | 2012-02-02 | Method for producing l-lysine using a vibrio bacterium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011016301A1 true WO2011016301A1 (ja) | 2011-02-10 |
Family
ID=43544202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060972 WO2011016301A1 (ja) | 2009-08-03 | 2010-06-28 | ビブリオ属細菌を用いたl-リジンの製造法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120156736A1 (ja) |
EP (1) | EP2463377B1 (ja) |
JP (1) | JP2012196144A (ja) |
CN (1) | CN102471791B (ja) |
BR (1) | BR112012002441A2 (ja) |
WO (1) | WO2011016301A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10377997B1 (en) * | 2015-12-01 | 2019-08-13 | Synthetic Genomics, Inc. | Genetically engineered Vibrio sp. and uses thereof |
JP2021166470A (ja) * | 2018-05-25 | 2021-10-21 | Spiber株式会社 | ビブリオ属細菌の培地 |
GB201810016D0 (en) | 2018-06-19 | 2018-08-01 | Univ I Tromsoe Norges | Microbial hosts for protein production |
CN115960801B (zh) * | 2022-09-28 | 2024-07-09 | 浙江大学杭州国际科创中心 | 一种高产l-苏氨酸的基因工程菌及其应用 |
Citations (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828078B1 (ja) | 1969-03-20 | 1973-08-29 | ||
JPS559784A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS568692A (en) | 1979-07-03 | 1981-01-29 | Kyowa Hakko Kogyo Co Ltd | Preparation of l-lysine by fermentation |
JPS566499B1 (ja) | 1970-04-14 | 1981-02-12 | ||
JPS6087788A (ja) | 1983-08-29 | 1985-05-17 | Ajinomoto Co Inc | 発酵法によるl―アミノ酸の製造法 |
US4777051A (en) | 1986-06-20 | 1988-10-11 | Ajinomoto Co., Inc. | Process for the production of a composition for animal feed |
JPH01215280A (ja) | 1988-02-23 | 1989-08-29 | Showa Denko Kk | 微生物の改良 |
JPH01214636A (ja) | 1988-02-23 | 1989-08-29 | Toto Ltd | 和風便器の施工方法 |
JPH02109985A (ja) | 1988-02-22 | 1990-04-23 | Eurolysine | 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌 |
US4946654A (en) | 1984-04-07 | 1990-08-07 | Bayer Aktiengesellschaft | Process for preparing granulates |
US4956471A (en) | 1986-04-28 | 1990-09-11 | Ajinomoto Company, Inc. | Process for isolating and purifying amino acids |
JPH057491A (ja) | 1990-10-15 | 1993-01-19 | Ajinomoto Co Inc | 温度感受性プラスミド |
JPH06102028A (ja) | 1992-09-22 | 1994-04-12 | Nikon Corp | 光学式非接触距離測定機及び測定方法 |
WO1995016042A1 (fr) | 1993-12-08 | 1995-06-15 | Ajinomoto Co., Inc. | Procede de production de l-lysine par fermentation |
US5431933A (en) | 1991-09-17 | 1995-07-11 | Degussa Aktiengesellschaft | Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use |
WO1995023864A1 (fr) | 1994-03-04 | 1995-09-08 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
WO1996017930A1 (fr) | 1994-12-09 | 1996-06-13 | Ajinomoto Co., Inc. | Nouveau gene de decarboxylase de lysine et procede de production de lysine l |
WO1996040934A1 (fr) | 1995-06-07 | 1996-12-19 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
JPH09164323A (ja) | 1995-10-13 | 1997-06-24 | Ajinomoto Co Inc | 発酵液の膜除菌方法 |
WO1997023697A1 (de) | 1995-12-23 | 1997-07-03 | Krups Kompaktlogistik Gmbh | Automatisches parkhaus |
JPH09173792A (ja) | 1995-10-23 | 1997-07-08 | Ajinomoto Co Inc | 発酵液の処理方法 |
US5661012A (en) | 1992-11-10 | 1997-08-26 | Ajinomoto Co., Inc. | Method for the production of L-threonine by fermentation, using mutated DNA encoding aspartokinase III |
WO1998004715A1 (en) | 1996-07-30 | 1998-02-05 | Archer-Daniels-Midland Company | Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production |
WO1998017806A1 (en) | 1996-10-18 | 1998-04-30 | Targeted Genetics Corporation | Mini-e1a genes and gene products |
EP0857784A2 (en) | 1996-12-05 | 1998-08-12 | Ajinomoto Co., Inc. | Method for producing L-lysine |
US5830690A (en) | 1995-12-29 | 1998-11-03 | Council Of Scientific & Indus. Res. & Dept. Of Biotech. | Process for producing polypeptides |
US5840358A (en) | 1996-05-31 | 1998-11-24 | Degussa Aktiengesellschaft | Process for the preparation of an animal feed supplement based on fermentation broth |
US5861273A (en) | 1993-12-21 | 1999-01-19 | Celtrix Phamraceuticals, Inc. | Chromosomal expression of heterologous genes in bacterial cells |
JP2000157276A (ja) | 1998-11-24 | 2000-06-13 | Ajinomoto Co Inc | サーマス属細菌のl−リジン生合成系遺伝子 |
WO2000053726A1 (fr) | 1999-03-09 | 2000-09-14 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
WO2000061723A1 (fr) | 1999-04-09 | 2000-10-19 | Ajinomoto Co., Inc. | Bacteries produisant du l-amino acide et procede de production de l-amino acide |
US6238714B1 (en) | 1999-05-05 | 2001-05-29 | Degussa-Huls Ag | Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof |
WO2001053459A1 (fr) | 2000-01-21 | 2001-07-26 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
US6303383B1 (en) | 1999-03-16 | 2001-10-16 | Ajinomoto Co., Inc. | Temperature sensitive plasmid for coryneform bacteria |
US20020025564A1 (en) | 2000-08-24 | 2002-02-28 | Ajinomoto Co., Inc. | Method for producing basic amino acid |
WO2003010175A2 (en) | 2001-07-24 | 2003-02-06 | Merck & Co., Inc. | Radiolabeled neuropeptide y y5 receptor antagonists |
JP2003135066A (ja) | 1999-03-19 | 2003-05-13 | Ajinomoto Co Inc | L−リジンの製造法 |
US20050025878A1 (en) | 2003-07-11 | 2005-02-03 | Degussa Ag | Process for the granulation of an animal feedstuff additive |
WO2005010175A1 (en) | 2003-07-29 | 2005-02-03 | Ajinomoto Co., Inc. | Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity |
JP2005237379A (ja) | 2004-01-30 | 2005-09-08 | Ajinomoto Co Inc | L−アミノ酸生産菌及びl−アミノ酸の製造法 |
US7090998B2 (en) | 2002-07-12 | 2006-08-15 | Ajinomoto Co., Inc. | Method for producing target substance by fermentation |
EP1813677A1 (en) | 2004-10-07 | 2007-08-01 | Ajinomoto Co., Inc. | Process for producing basic substance |
WO2008078448A1 (ja) | 2006-12-25 | 2008-07-03 | Ajinomoto Co., Inc. | 塩基性アミノ酸塩酸塩結晶の取得方法 |
WO2008078646A1 (ja) | 2006-12-22 | 2008-07-03 | Ajinomoto Co., Inc. | アミノ酸又は核酸の結晶の分離方法 |
WO2008093829A1 (ja) * | 2007-02-01 | 2008-08-07 | Ajinomoto Co., Inc. | L-アミノ酸の製造法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002101027A1 (fr) * | 2001-05-29 | 2002-12-19 | Kyowa Hakko Kogyo Co., Ltd. | Microorganismes utilises dans l'industrie |
-
2009
- 2009-08-03 JP JP2009180819A patent/JP2012196144A/ja active Pending
-
2010
- 2010-06-28 CN CN201080034564.7A patent/CN102471791B/zh not_active Expired - Fee Related
- 2010-06-28 EP EP10806301.7A patent/EP2463377B1/en not_active Not-in-force
- 2010-06-28 WO PCT/JP2010/060972 patent/WO2011016301A1/ja active Application Filing
- 2010-06-28 BR BRBR112012002441-8A patent/BR112012002441A2/pt not_active IP Right Cessation
-
2012
- 2012-02-02 US US13/364,637 patent/US20120156736A1/en not_active Abandoned
Patent Citations (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828078B1 (ja) | 1969-03-20 | 1973-08-29 | ||
JPS566499B1 (ja) | 1970-04-14 | 1981-02-12 | ||
JPS559784A (en) | 1978-07-10 | 1980-01-23 | Ajinomoto Co Inc | Preparation of l-lysine |
JPS568692A (en) | 1979-07-03 | 1981-01-29 | Kyowa Hakko Kogyo Co Ltd | Preparation of l-lysine by fermentation |
JPS6087788A (ja) | 1983-08-29 | 1985-05-17 | Ajinomoto Co Inc | 発酵法によるl―アミノ酸の製造法 |
US4946654A (en) | 1984-04-07 | 1990-08-07 | Bayer Aktiengesellschaft | Process for preparing granulates |
US4956471A (en) | 1986-04-28 | 1990-09-11 | Ajinomoto Company, Inc. | Process for isolating and purifying amino acids |
US4777051A (en) | 1986-06-20 | 1988-10-11 | Ajinomoto Co., Inc. | Process for the production of a composition for animal feed |
JPH02109985A (ja) | 1988-02-22 | 1990-04-23 | Eurolysine | 細菌染色体上ヘの目的遺伝子の組み込み方法及び該方法によって得られた細菌 |
JPH01215280A (ja) | 1988-02-23 | 1989-08-29 | Showa Denko Kk | 微生物の改良 |
JPH01214636A (ja) | 1988-02-23 | 1989-08-29 | Toto Ltd | 和風便器の施工方法 |
JPH057491A (ja) | 1990-10-15 | 1993-01-19 | Ajinomoto Co Inc | 温度感受性プラスミド |
US5431933A (en) | 1991-09-17 | 1995-07-11 | Degussa Aktiengesellschaft | Animal feed supplement based on a fermentation broth amino acid, a process for its production and its use |
JPH06102028A (ja) | 1992-09-22 | 1994-04-12 | Nikon Corp | 光学式非接触距離測定機及び測定方法 |
US5661012A (en) | 1992-11-10 | 1997-08-26 | Ajinomoto Co., Inc. | Method for the production of L-threonine by fermentation, using mutated DNA encoding aspartokinase III |
US6040160A (en) | 1993-12-08 | 2000-03-21 | Ajinomoto Co., Inc. | Method of producing L-lysine by fermentation |
WO1995016042A1 (fr) | 1993-12-08 | 1995-06-15 | Ajinomoto Co., Inc. | Procede de production de l-lysine par fermentation |
JPH11192088A (ja) | 1993-12-08 | 1999-07-21 | Ajinomoto Co Inc | 発酵法によるl−リジンの製造法 |
US5861273A (en) | 1993-12-21 | 1999-01-19 | Celtrix Phamraceuticals, Inc. | Chromosomal expression of heterologous genes in bacterial cells |
WO1995023864A1 (fr) | 1994-03-04 | 1995-09-08 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
WO1996017930A1 (fr) | 1994-12-09 | 1996-06-13 | Ajinomoto Co., Inc. | Nouveau gene de decarboxylase de lysine et procede de production de lysine l |
WO1996040934A1 (fr) | 1995-06-07 | 1996-12-19 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
JPH09164323A (ja) | 1995-10-13 | 1997-06-24 | Ajinomoto Co Inc | 発酵液の膜除菌方法 |
JPH09173792A (ja) | 1995-10-23 | 1997-07-08 | Ajinomoto Co Inc | 発酵液の処理方法 |
WO1997023697A1 (de) | 1995-12-23 | 1997-07-03 | Krups Kompaktlogistik Gmbh | Automatisches parkhaus |
US5830690A (en) | 1995-12-29 | 1998-11-03 | Council Of Scientific & Indus. Res. & Dept. Of Biotech. | Process for producing polypeptides |
US5840358A (en) | 1996-05-31 | 1998-11-24 | Degussa Aktiengesellschaft | Process for the preparation of an animal feed supplement based on fermentation broth |
WO1998004715A1 (en) | 1996-07-30 | 1998-02-05 | Archer-Daniels-Midland Company | Novel strains of escherichia coli, methods of preparing the same and use thereof in fermentation processes for l-threonine production |
WO1998017806A1 (en) | 1996-10-18 | 1998-04-30 | Targeted Genetics Corporation | Mini-e1a genes and gene products |
EP0857784A2 (en) | 1996-12-05 | 1998-08-12 | Ajinomoto Co., Inc. | Method for producing L-lysine |
JP2000157276A (ja) | 1998-11-24 | 2000-06-13 | Ajinomoto Co Inc | サーマス属細菌のl−リジン生合成系遺伝子 |
WO2000053726A1 (fr) | 1999-03-09 | 2000-09-14 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
US6303383B1 (en) | 1999-03-16 | 2001-10-16 | Ajinomoto Co., Inc. | Temperature sensitive plasmid for coryneform bacteria |
JP2003135066A (ja) | 1999-03-19 | 2003-05-13 | Ajinomoto Co Inc | L−リジンの製造法 |
WO2000061723A1 (fr) | 1999-04-09 | 2000-10-19 | Ajinomoto Co., Inc. | Bacteries produisant du l-amino acide et procede de production de l-amino acide |
US6238714B1 (en) | 1999-05-05 | 2001-05-29 | Degussa-Huls Ag | Feedstuff additive which contains D-pantothenic acid and/or its salts and a process for the preparation thereof |
WO2001053459A1 (fr) | 2000-01-21 | 2001-07-26 | Ajinomoto Co., Inc. | Procede de production de l-lysine |
US20020025564A1 (en) | 2000-08-24 | 2002-02-28 | Ajinomoto Co., Inc. | Method for producing basic amino acid |
JP2002065287A (ja) | 2000-08-24 | 2002-03-05 | Ajinomoto Co Inc | 塩基性アミノ酸の製造方法 |
WO2003010175A2 (en) | 2001-07-24 | 2003-02-06 | Merck & Co., Inc. | Radiolabeled neuropeptide y y5 receptor antagonists |
US7090998B2 (en) | 2002-07-12 | 2006-08-15 | Ajinomoto Co., Inc. | Method for producing target substance by fermentation |
US20050025878A1 (en) | 2003-07-11 | 2005-02-03 | Degussa Ag | Process for the granulation of an animal feedstuff additive |
WO2005010175A1 (en) | 2003-07-29 | 2005-02-03 | Ajinomoto Co., Inc. | Method for producing l-lysine or l-threonine using escherichia bacteria having attnuated malic enzyme activity |
JP2005237379A (ja) | 2004-01-30 | 2005-09-08 | Ajinomoto Co Inc | L−アミノ酸生産菌及びl−アミノ酸の製造法 |
EP1813677A1 (en) | 2004-10-07 | 2007-08-01 | Ajinomoto Co., Inc. | Process for producing basic substance |
WO2008078646A1 (ja) | 2006-12-22 | 2008-07-03 | Ajinomoto Co., Inc. | アミノ酸又は核酸の結晶の分離方法 |
WO2008078448A1 (ja) | 2006-12-25 | 2008-07-03 | Ajinomoto Co., Inc. | 塩基性アミノ酸塩酸塩結晶の取得方法 |
WO2008093829A1 (ja) * | 2007-02-01 | 2008-08-07 | Ajinomoto Co., Inc. | L-アミノ酸の製造法 |
Non-Patent Citations (29)
Title |
---|
CANADIAN JOURNAL OF MICROBIOLOGY, vol. 43, 1997, pages 197 |
CASSAN, M.; PARSOT, C.; COHEN, G.N.; PATTE, J.C., J. BIOL. CHEM., vol. 261, 1986, pages 1052 |
CHO, E.H.; GUMPORT, R.I.; GARDNER, J.F., J. BACTERIOL., vol. 184, 2002, pages 5200 - 5203 |
D.S. MERRELL; A. CAMILLI, MOL. MICROBIOL., vol. 34, 1999, pages 836 - 849 |
DAPA, RICHAUD, F. ET AL., J. BACTERIOL., 1986, pages 297 |
DATABASE DATABASE DDBJ/EMBL/GENBAN [online] 1 May 2009 (2009-05-01), MAKINO, K. ET AL.: "Definition: alcohol dehydrogenase [Vibrio parahaemolyticus RIMD 2210633]", XP008150212, Database accession no. NP_800076 * |
DATSENKO, K.A; WANNER, B.L.: "Red-driven integration", PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 6640 - 6645 |
FUKUDA, H.; KONDO, A.; NODA, H., J. BIOSCI. BIOENG., vol. 92, 2001, pages 405 - 416 |
J. BIOL. CHEM., vol. 266, 1991, pages 20833 - 20839 |
J.E. RHEE ET AL., FEMS MICROBIOL. LETT., vol. 208, 2002, pages 245 - 251 |
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 272, 1997, pages 8611 - 8617 |
LU, Z. ET AL.: "Evolution of an Escherichia coli protein with increased resistance to oxidative stress.", J BIOL CHEM., vol. 273, 1998, pages 8308 - 8316, XP003016930 * |
MACIAN M.C. ET AL., SYST. APPL. MICROBIOL., vol. 23, 2000, pages 373 - 375 |
METHODS ENZYMOL., vol. 183, 1990, pages 63 |
MIYAJIMA, R. ET AL., THE JOURNAL OF BIOCHEMISTRY, vol. 63, no. 2, 1968, pages 139 - 148 |
NAGAI, H. ET AL., SEPARATION SCIENCE AND TECHNOLOGY, vol. 39, no. 16, pages 3691 - 3710 |
NUCLEIC ACIDS RES., vol. 21, no. 7, 11 April 1993 (1993-04-11), pages 1507 - 16 |
PAYNE, W.J., J. BACTERIOLOGY, vol. 76, 1958, pages 301 |
PROC. NATL. ACAD. SCI. USA, vol. 0, no. 1, 8 January 1983 (1983-01-08), pages 21 - 5 |
PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 |
PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 5511 - 5515 |
R. SIMON. ET AL., BIO/TECHNOLOGY, vol. 1, 1983, pages 784 - 791 |
S. MENG; G.N. BENNETT, J. BACTERIOL., vol. 174, 1992, pages 2659 - 2669 |
SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T.: "Molecular Cloning A Laboratory Manual, Second Edition"", 1989, COLD SPRING HARBOR LABORATORY PRESS |
SCHAFER, A. ET AL., GENE, vol. 145, 1994, pages 69 - 73 |
SCIENCE, vol. 277, no. 5331, 5 September 1997 (1997-09-05), pages 1453 - 74 |
See also references of EP2463377A4 * |
THOMPSON F.L. ET AL., MICROBIOL. MOL. BIOL. REV., vol. 23, 2004, pages 403 - 431 |
Y. TANAKA ET AL., J. APPL. MICROBIOL., vol. 104, 2007, pages 1283 - 1293 |
Also Published As
Publication number | Publication date |
---|---|
US20120156736A1 (en) | 2012-06-21 |
EP2463377B1 (en) | 2014-05-14 |
CN102471791A (zh) | 2012-05-23 |
EP2463377A1 (en) | 2012-06-13 |
EP2463377A4 (en) | 2013-01-23 |
CN102471791B (zh) | 2015-08-05 |
BR112012002441A2 (pt) | 2015-09-01 |
JP2012196144A (ja) | 2012-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3692538B2 (ja) | 新規リジンデカルボキシラーゼ遺伝子及びl−リジンの製造法 | |
RU2351653C2 (ru) | Бактерия, продуцирующая l-аминокислоту, и способ получения l-аминокислоты | |
KR101493585B1 (ko) | 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법 | |
US10961554B2 (en) | Promoter and a method for producing L-amino acid using the same | |
EP2128263B1 (en) | Method for production of l-amino acid | |
MXPA06003377A (es) | Metodo para producir l-aminoacido mediante fermentacion. | |
JP2004261150A (ja) | 目的物質の製造法 | |
KR101825777B1 (ko) | O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법 | |
EP2471942B1 (en) | Process for production of l-amino acid | |
TW201623617A (zh) | 具有腐胺生產力之微生物及使用其產生腐胺之方法 | |
US20160304917A1 (en) | Modified Microorganism for Improved Production of Alanine | |
TWI785327B (zh) | 製造l-胺基酸的微生物及使用該微生物製造l-胺基酸的方法 | |
JP2004254544A (ja) | 新規リジンデカルボキシラーゼ遺伝子及びl−リジンの製造法 | |
US8017363B2 (en) | Method for production of L-lysine using methanol-utilizing bacterium | |
WO2011016301A1 (ja) | ビブリオ属細菌を用いたl-リジンの製造法 | |
KR101493586B1 (ko) | 퓨트레신 생산능이 향상된 재조합 미생물 및 이를 이용하여 퓨트레신을 생산하는 방법 | |
WO2007114465A1 (ja) | メタノール資化性細菌を用いたカルボン酸の製造法 | |
KR101851452B1 (ko) | O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법 | |
CN110234767B (zh) | 生产l-精氨酸的棒状杆菌属的微生物和使用其生产l-精氨酸的方法 | |
JP2007513601A (ja) | エシェリヒア属に属するl−スレオニン生産菌及びl−スレオニンの製造法 | |
WO1997048790A1 (fr) | Procede de production de substance-cible par fermentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080034564.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10806301 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010806301 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012002441 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012002441 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120202 |