WO2011007714A1 - フッ化ビニリデン系樹脂多孔膜、その製造方法およびろ過水の製造方法 - Google Patents

フッ化ビニリデン系樹脂多孔膜、その製造方法およびろ過水の製造方法 Download PDF

Info

Publication number
WO2011007714A1
WO2011007714A1 PCT/JP2010/061630 JP2010061630W WO2011007714A1 WO 2011007714 A1 WO2011007714 A1 WO 2011007714A1 JP 2010061630 W JP2010061630 W JP 2010061630W WO 2011007714 A1 WO2011007714 A1 WO 2011007714A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
fluoride resin
porous membrane
plasticizer
membrane
Prior art date
Application number
PCT/JP2010/061630
Other languages
English (en)
French (fr)
Inventor
靖浩 多田
健夫 高橋
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to US13/382,199 priority Critical patent/US9096957B2/en
Priority to CN201080031727.6A priority patent/CN102470328B/zh
Priority to JP2011522789A priority patent/JP5576866B2/ja
Priority to KR1020127001008A priority patent/KR101362553B1/ko
Publication of WO2011007714A1 publication Critical patent/WO2011007714A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/48Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of halogenated hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention is suitable as a porous membrane for separation, and in particular, (filtration) a porous membrane made of a vinylidene fluoride resin excellent in contamination resistance and regenerative performance in addition to water treatment performance, a method for producing the same, and filtered water using the same It relates to a manufacturing method.
  • Patent Documents 1 and 2 disclose non-solvent-induced phase separation in which a vinylidene fluoride resin solution is brought into contact with a liquid (generally a vinylidene fluoride resin nonsolvent) that solidifies the vinylidene fluoride resin solution.
  • a method for producing a porous membrane by the method is disclosed.
  • it is easy to form a film on the film surface due to slow diffusion of non-solvent in the film (mass transfer), and the surface of the water to be treated has a high resin concentration (that is, low porosity). ) give a porous membrane.
  • Patent Document 3 discloses that a relatively large amount of an organic liquid which is incompatible with vinylidene fluoride resins such as dioctyl phthalate and dibutyl phthalate is dispersed in vinylidene fluoride resin together with silica powder in the organic resin after molding. Disclosed is a method of forming a porous membrane by extracting and removing liquid and silica powder.
  • the present inventors also melt-extruded a vinylidene fluoride resin having a specific molecular weight characteristic into a hollow fiber shape together with a plasticizer and a good solvent of the vinylidene fluoride resin, and then perform extraction removal and stretching of the plasticizer.
  • a plasticizer and a good solvent of the vinylidene fluoride resin
  • Patent Documents 7 to 10 and others there is a strong demand for further improvement with respect to the overall performance including the filtration performance and mechanical performance required when the porous membrane is used as a filter permeation membrane.
  • MF microfiltration
  • the average pore size is 0.25 ⁇ m or less, and there is little contamination (clogging) with organic substances during continuous filtration operation of turbid water, and a high water permeability is maintained. It is desirable.
  • the porous membrane disclosed in the following Patent Document 6 has an excessive average pore diameter
  • the hollow fiber porous membrane disclosed in the following Patent Document 8 has a problem in maintaining the amount of water permeation in the continuous filtration operation of muddy water. Remain.
  • JP-A 63-296940 JP 2005-220202 A Japanese Patent Laid-Open No. 3-215535 JP 7-173323 A WO01 / 28667A WO02 / 070115A WO2005 / 099879A WO2007 / 010932A WO2008 / 117740A Specification of PCT / JP2009 / 071450
  • the present invention has a surface pore size, liquid permeability (water permeability) and mechanical strength suitable for separation applications, particularly (filter) water treatment, and has a good fluid permeability maintenance performance even during continuous separation treatment.
  • An object of the present invention is to provide a vinylidene fluoride resin porous membrane.
  • a further object of the present invention is to prevent contamination even during continuous filtration of turbid water, maintain a good water permeability and, if necessary, easily reduce the filtrate pressure increased by continuous filtration by chemical treatment.
  • An object of the present invention is to provide a vinylidene fluoride resin porous membrane having excellent reproducibility.
  • a further object of the present invention is to provide an efficient method for producing the above-mentioned vinylidene fluoride resin porous membrane and a method for producing filtered water using the same.
  • the present invention is intended to achieve the above-mentioned object mainly by controlling the physical fine structure in the vicinity of the surface of the porous film to be treated.
  • the present inventors achieved this object through analysis using a focused ion beam / scanning electron microscope (hereinafter referred to as “FIB-SEM”).
  • FIB-SEM focused ion beam / scanning electron microscope
  • the fact that the liquid treatment performance of the porous membrane is influenced by the microstructure of the surface to be treated can be easily inferred.
  • the conventional SEM method conventionally used for such structural analysis is unsatisfactory for the above-mentioned purpose.
  • the first reason is that the observation object in the normal SEM method is a sample cross section exposed by cutting with a microtome, but the cross-section is damaged by rubbing with the microtome, and the fine structure is lost.
  • FIB-SEM method is similar to the normal SEM method in that a sample cross section (about 10 ⁇ 10 ⁇ m) exposed by microtome cutting or mechanical polishing is irradiated with a focused ion beam (FIB) such as Ga (gallium). Since the SEM observation is performed on the sample surface after the thickness of about 20 nm of the cross-sectional surface layer disturbed by the microtome or the like is removed, the cross-sectional observation of the original structure of the sample is possible.
  • FIB focused ion beam
  • the update of the sample cross-section by FIB irradiation can be repeatedly performed approximately 20 nm at almost the same location, so that a three-dimensional analysis of the vicinity of the surface layer of the vinylidene fluoride resin porous membrane is possible by stacking plane images at the same location. Become.
  • the vinylidene fluoride resin porous membrane of the present invention has a surface pore size P1 of 0.30 ⁇ m or less that has already been confirmed by normal SEM observation.
  • the vinylidene fluoride resin porous membrane of the present invention has an average diameter of network resin fibers of 100 nm or less and pores in a portion having a thickness of 10 ⁇ m continuous from one surface measured by a focused ion beam / scanning electron microscope.
  • the rate A1 is 60% or more
  • the one-surface-side surface pore diameter P1 is 0.3 ⁇ m or less.
  • the part having a thickness of 10 ⁇ m continuous from one surface having the above-described fine structure may be referred to as “one surface (treated water) side surface layer” or simply “surface layer”.
  • the vinylidene fluoride resin porous membrane of the present invention has the surface layer having the above-mentioned fine structure, in addition to the fine particle blocking performance understood by a small surface pore diameter, contamination during liquid treatment (especially filtered water) operation. It has been confirmed that (clogging) prevention and regeneration performance when necessary are extremely excellent.
  • the mechanism that the present inventors presume to explain this point is described below.
  • the MBR method membrane separation activated sludge method in which the porous membrane of the present invention, which is an MF (microfiltration) membrane, exhibits particularly excellent suitability. ) As an example.
  • the main membrane dirt components in the MBR method are (a) a suspended matter having a particle size of several ⁇ m to several hundreds of ⁇ m, and (b) a particle size distribution having a peak at 0.2 ⁇ m to 0.5 ⁇ m as an example. And (c) several mg / L to several tens mg / L of dissolved organic components contained in the water to be treated. (I) Suspended particles are pressed against the membrane surface during filtration, and this pressing force increases as the water flux to be treated passing through the membrane surface increases, and the porosity in the vicinity of the surface layer of the porous membrane of the present invention is high.
  • A1 acts in the direction of reducing the water flux to be treated passing through the membrane surface, and hence the pressing force of the suspended particles on the membrane surface.
  • the pressing force of the suspended solid particles on the membrane surface is small, the suspended solid particles and the membrane flow together with the upward flow. It is understood that the possibility of being removed from the surface is great.
  • the surface pore size of the membrane is larger than that of the colloidal particles, the colloidal particles fit completely into the pores or bridge inside the membrane, resulting in clogging of the membrane, resulting in a significant increase in filtration resistance.
  • the porous membrane of the present invention having a surface pore diameter of 0.3 ⁇ m or less is less likely to cause clogging due to such colloidal particles.
  • the above-mentioned (a) suspended particles and (b) colloidal particles may be deposited on the film surface to form a compacted cake layer, but the porous film of the present invention is unlikely to form such a cake layer. Has been confirmed (see Examples below).
  • (C) The dissolved organic component in the water to be treated is adsorbed over the entire surface of the membrane including the inside of the pores over time, gradually reducing the pores, and increasing the filtrate pressure.
  • CIP Clean In Place, in-device cleaning or chemical injection backwashing, in which a chemical solution is injected from the filtered water side for several minutes to several tens of minutes. It is possible to efficiently remove dissolved components adsorbed by the method, and in particular, it has been confirmed that the CIP treatment proceeds very smoothly in the porous membrane of the present invention with little cake layer formation (described later). See Examples).
  • the method for producing filtrate of the present invention applies the porous membrane of the present invention to the MBR method and / or the CIP method, and more specifically uses the vinylidene fluoride resin porous membrane of the present invention.
  • the water to be treated is filtered, filtration and aeration of the surface of the porous membrane to be treated are performed simultaneously or alternately, and if necessary, the filtered water side of the vinylidene fluoride resin porous membrane
  • the method further includes the step of injecting a chemical solution from the step of cleaning the film.
  • a plasticizer that forms a melt-kneaded composition before cooling by melt-kneading with the vinylidene fluoride-based resin. More specifically, it is compatible with the vinylidene fluoride resin under heating (melt kneading composition formation temperature) and is almost equivalent to the crystallization temperature Tc (° C.) of the vinylidene fluoride resin alone in the melt kneading composition.
  • a relatively large amount of a polyester plasticizer that gives a crystallization temperature Tc ′ (° C.) of the resin is melt-kneaded with a high molecular weight vinylidene fluoride resin, and the formed film is cooled and solidified from one side, and then plasticized. It has been found that it is preferable to form an asymmetric reticulated resin porous membrane by extracting the agent. From this viewpoint, a small amount of a plasticizer that lowers the Tc of the vinylidene fluoride resin as in Patent Document 4 is added; a spherulite is formed using a plasticizer that decreases the Tc of the vinylidene fluoride resin as in Patent Document 5.
  • a composition obtained by adding 50 to 80% by weight of a plasticizer and melt-kneading is melt-extruded into a film shape, and preferentially cooled and solidified from one side with a liquid inert to vinylidene fluoride resin.
  • the plasticizer has compatibility with the vinylidene fluoride resin at the formation temperature of the melt-kneaded composition
  • the vinylidene fluoride resin Is a polyester plasticizer that gives a crystallization temperature substantially equal to the crystallization temperature of the vinylidene fluoride resin alone to the kneaded product
  • a porous membrane after extraction of the plasticizer is at least 5 ⁇ m from the outer surface, and the membrane thickness It is characterized in that it comprises the step of stretching in a state of selectively moistened to 1/2 or less of the depth.
  • the method for producing a vinylidene fluoride resin porous membrane of the present invention described above is a heat-induced phase separation method using a difference between a high crystallization temperature and a cooling temperature of a melt-kneaded product of a vinylidene fluoride resin and a polyester plasticizer. It is a manufacturing method of the vinylidene fluoride resin porous membrane by this.
  • a vinylidene fluoride resin solution as disclosed in Patent Document 1 or 2 is brought into contact with a coagulating liquid (generally a non-solvent of vinylidene fluoride resin) to be solidified.
  • a coagulating liquid generally a non-solvent of vinylidene fluoride resin
  • FIG. 2 is a FIB-SEM binarized image showing a cross-sectional structure of the hollow fiber porous membrane obtained in Example 1.
  • FIG. 2 is a FIB-SEM binarized image showing a cross-sectional structure of the hollow fiber porous membrane obtained in Comparative Example 1.
  • FIG. 7 is a FIB-SEM binarized image showing a cross-sectional structure of a hollow fiber porous membrane used in Comparative Example 2.
  • the porous membrane of the present invention can be formed on either a flat membrane or a hollow fiber membrane, but is preferably formed as a hollow fiber membrane that can easily increase the membrane area per liquid treatment (filtration) device.
  • the vinylidene fluoride resin as the main film raw material is a homopolymer of vinylidene fluoride, that is, polyvinylidene fluoride, a copolymer with other monomers copolymerizable with vinylidene fluoride, or a mixture thereof. And those having a weight average molecular weight of 300,000 or more, particularly 500,000 to 800,000 are preferably used.
  • the monomer copolymerizable with vinylidene fluoride one or more of ethylene tetrafluoride, hexafluoropropylene, ethylene trifluoride, ethylene trifluoride chloride, vinyl fluoride and the like can be used.
  • the vinylidene fluoride resin preferably contains 70 mol% or more of vinylidene fluoride as a structural unit. Among them, it is preferable to use a homopolymer composed of 100 mol% of vinylidene fluoride because of its high crystallization temperature Tc and high mechanical strength.
  • the relatively high molecular weight vinylidene fluoride resin as described above can be obtained by emulsion polymerization or suspension polymerization, particularly preferably suspension polymerization.
  • the vinylidene fluoride resin has a considerably large molecular weight of 300,000 or more, preferably 500,000 or more as described above.
  • the resin has a melting point Tm2 (° C.) and is crystallized by DSC measurement. It is preferable that the difference Tm2 ⁇ Tc from the temperature Tc (° C.) has good crystal characteristics represented by 32 ° C. or less, more preferably 30 ° C. or less, and still more preferably 28 ° C. or less.
  • the original melting point Tm2 (° C.) of the resin is distinguished from the melting point Tm1 (° C.) measured by subjecting the obtained sample resin or the resin forming the porous film to the temperature rising process by DSC as it is. It is. That is, generally-available vinylidene fluoride resins exhibit a melting point Tm1 (° C.) different from the original melting point Tm2 (° C.) due to the heat and mechanical history received during the manufacturing process or thermoforming process.
  • the original melting point Tm2 (° C.) of the resin is found again in the DSC temperature raising process after the obtained sample resin is once subjected to a predetermined heating and cooling cycle to remove heat and mechanical history. It is defined as the melting point (endothermic peak temperature accompanying crystal melting), and the details of the measurement method will be described prior to the description of Examples described later.
  • the above-mentioned vinylidene fluoride resin satisfying the condition of Tm2-Tc ⁇ 32 ° C. is preferably selected from the above-mentioned vinylidene fluoride resin species as a raw material, and has a weight average molecular weight of 200,000 to 670,000, Preferably 300,000-650,000, more preferably 400,000-600,000 medium high molecular weight vinylidene fluoride resin for matrix (PVDF-I) 25-98 wt%, preferably 50-95 wt%, more preferably Fluoride for crystal property modification having an ultra-high molecular weight of 60 to 90% by weight and having a weight average molecular weight of 1.8 times or more, preferably 2 times or more, and 1.2 million or less of a medium high molecular weight vinylidene fluoride resin.
  • PVDF-I matrix
  • Fluoride for crystal property modification having an ultra-high molecular weight of 60 to 90% by weight and having a weight average molecular weight of 1.8 times or more
  • the vinylidene resin (PVDF-II) is provided as a mixture of 2 to 75% by weight, preferably 5 to 50% by weight, and more preferably 10 to 40% by weight.
  • the medium high molecular weight component keeps the molecular weight level of the entire vinylidene fluoride resin high, and gives a hollow fiber porous membrane excellent in strength and water permeability. In other words, it acts as a matrix resin component.
  • the ultra high molecular weight component is combined with the above medium high molecular weight component to crystallize the kneaded product with the crystallization temperature Tc of the raw material resin (generally about 140 ° C. for vinylidene fluoride homopolymer) and the plasticizer described later.
  • the viscosity of the melt-extruded composition is increased and reinforced to enable stable extrusion in the form of hollow fibers.
  • Tc preferential cooling from the outer surface of the hollow fiber membrane formed by melt extrusion promotes the reduction of the membrane surface pore diameter, and the cooling from the inside of the membrane to the inner surface is slower than the membrane surface. It becomes possible to accelerate the solidification of the vinylidene fluoride resin and to suppress the growth of spherulites.
  • Tc is preferably 143 ° C. or higher, more preferably 145 ° C. or higher.
  • the Tc of the vinylidene fluoride resin used does not substantially change during the production process of the hollow fiber membrane. Therefore, the obtained hollow fiber porous membrane can be measured as a sample by the DSC method described later.
  • the Mw of the ultra high molecular weight vinylidene fluoride resin (PVDF-II) is less than 1.8 times the Mw of the medium high molecular weight resin (PVDF-I), it is difficult to sufficiently suppress the formation of spherulites. If it exceeds 10,000, it is difficult to uniformly disperse in the matrix resin.
  • any of the above-mentioned medium and ultra high molecular weight vinylidene fluoride resins can be obtained by emulsion polymerization or suspension polymerization, particularly preferably suspension polymerization.
  • the amount of the ultra high molecular weight vinylidene fluoride resin is less than 2% by weight, the effect of suppressing spherulite and the effect of thickening and reinforcing the melt-extruded composition are not sufficient, while if it exceeds 75% by weight, the vinylidene fluoride is added. There is a tendency that the phase separation structure of the base resin and the plasticizer becomes excessively fine, and the water permeability of the resulting porous membrane decreases, and further, stable film formation becomes difficult due to the occurrence of melt fracture during processing. .
  • a plasticizer is added to the above-mentioned vinylidene fluoride resin to form a raw material composition for film formation.
  • the hollow fiber porous membrane of the present invention is mainly formed from the above-mentioned vinylidene fluoride resin, but in addition to the above-mentioned vinylidene fluoride resin, at least the plasticizer is used as a pore-forming agent for the production. It is preferable.
  • the plasticizer is compatible with the vinylidene fluoride resin at the melt kneading temperature. However, the crystallization temperature Tc (° C.) of the vinylidene fluoride resin alone is added to the melt kneaded product with the vinylidene fluoride resin.
  • a crystallizing temperature Tc ′ (° C.) that is substantially the same as (ie, within ⁇ 5 ° C., preferably within ⁇ 4 ° C., more preferably within ⁇ 2 ° C.).
  • a plasticizer those selected from polyester-based plasticizers composed of dibasic acid and glycol are generally used. Particularly, the number average molecular weight (saponification value and hydroxyl value measured in accordance with JIS K0070) is used. (Based on calculation) is preferably 1200 or more, more preferably 1500 or more, and still more preferably 1700 or more. As the molecular weight of the polyester plasticizer increases, the compatibility with the vinylidene fluoride resin tends to increase.
  • the plasticizer can be extracted and removed in the extraction step described later. Since it may take time, a plasticizer having a number average molecular weight exceeding 10,000 is not preferable.
  • a viscosity measured at a temperature of 25 ° C. in accordance with JIS K7117-2 (cone-flat plate viscometer used) is often used, and 1000 mPa ⁇ s. Above, what is 1000 Pa.s or less is preferable.
  • the dibasic acid component constituting the polyester plasticizer is preferably an aliphatic dibasic acid having 4 to 12 carbon atoms.
  • Examples of such an aliphatic dibasic acid component include succinic acid, maleic acid, fumaric acid, glutamic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid.
  • succinic acid maleic acid, fumaric acid, glutamic acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid.
  • aliphatic dibasic acids having 6 to 10 carbon atoms are preferable in terms of obtaining a polyester plasticizer having good compatibility with vinylidene fluoride resins, and adipic acid is particularly preferable from the viewpoint of industrial availability. .
  • These aliphatic dibasic acids may be used alone or in combination of two or more.
  • the glycol component constituting the polyester plasticizer is preferably a glycol having 2 to 18 carbon atoms, such as ethylene glycol, 1,2-propylene glycol, 1,2-butanediol, 1,3-butanediol, 4-butanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, 2,2-diethyl-1,3-propanediol, 2,2,4 -Trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 1,9-nonanediol, 1,10-decanediol, 2-butyl-2-ethyl-1,5-propanediol, Aliphatic dihydric alcohols such as 1,12-octadecanediol and polyalkylene glycols such as di
  • a monohydric alcohol or a monovalent carboxylic acid is used to seal the molecular chain terminal of the polyester plasticizer.
  • monohydric alcohols include butyl alcohol, hexyl alcohol, isohexyl alcohol, heptyl alcohol, octyl alcohol, isooctyl alcohol, 2-ethylhexyl alcohol, nonyl alcohol, isononyl alcohol, 2-methyloctyl alcohol, decyl alcohol, isodecyl.
  • Examples thereof include monohydric alcohols having 2 to 22 carbon atoms such as alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol, hexadecyl alcohol, and octadecyl alcohol.
  • monohydric alcohols having 2 to 22 carbon atoms such as alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol, hexadecyl alcohol, and octadecyl alcohol.
  • isononyl alcohol is particularly preferable from the viewpoint of the compatibility with the vinylidene fluoride resin and the balance of the Tc ′ suppression tendency.
  • monohydric alcohols may be used alone or in combination of two or more.
  • monovalent carboxylic acid include aliphatic monovalent carboxylic acids having 6 to 22 carbon atoms derived from animal and vegetable oils and fats, or acetic acid, butyric acid, isobutyric acid, heptanoic acid, isooctanoic acid, and 2-ethyl.
  • Synthetic monovalent carboxylic acids having 2 to 18 carbon atoms such as xanthic acid, nonanoic acid and isostearic acid, as well as benzoic acid, toluic acid, dimethyl aromatic monocarboxylic acid, ethyl aromatic monocarboxylic acid, cumic acid, tetramethyl aromatic mono Aromatic carboxylic acids such as carboxylic acid, naphthoic acid, biphenyl carboxylic acid, and furoic acid can be used, and these may be used alone or in combination of two or more.
  • compatibility inhibitors include dibasic acids such as aromatic dibasic acids such as phthalic acid and trimellitic acid, or aliphatic dibasic acids such as adipic acid, and monohydric alcohols having 2 to 22 carbon atoms.
  • a monomeric plasticizer that is incompatible with the vinylidene fluoride resin is preferably used.
  • a monomeric ester plasticizer comprising an aliphatic dibasic acid having 6 to 10 carbon atoms, particularly adipic acid, and a monohydric alcohol having 2 to 22 carbon atoms, particularly a monohydric alcohol having 6 to 18 carbon atoms.
  • a monomeric ester plasticizer comprising an aliphatic dibasic acid having 6 to 10 carbon atoms, particularly adipic acid, and a monohydric alcohol having 2 to 22 carbon atoms, particularly a monohydric alcohol having 6 to 18 carbon atoms.
  • the polyester plasticizer at least one of the dibasic acid constituting the polyester plasticizer, and the monohydric alcohol having a carbon chain portion in common with the glycol and the end-capped monohydric alcohol
  • Monomeric ester plasticizers composed of a dibasic acid and a monohydric alcohol are preferred.
  • diisononyl adipate DINA
  • Such a monomeric ester plasticizer should determine the addition amount according to the Tc ′ lowering power of the polyester plasticizer to be used, and does not impair the compatibility with the vinylidene fluoride resin. If possible, it is preferable to obtain the addition amount experimentally so that the reduction force can be suppressed as much as possible.
  • the Tc ′ lowering power of the polyester plasticizer is the chemical structure of the constituent components such as the dibasic acid component, glycol component and monohydric alcohol component constituting the polyester plasticizer, and the number average molecular weight (degree of polymerization) and molecular weight. This is because the influence of distribution and the like is complicated, and it is impossible to predict in general.
  • the total amount of the monomeric ester plasticizer and the polyester plasticizer is As a standard, it is preferable to use a mixture of 2 to 30% by weight, more preferably 5 to 25% by weight, and most preferably 8 to 20% by weight.
  • the monomeric ester plasticizer is based on the total amount of the polyester plasticizer, Preferably 5 to 50% by weight, more preferably 10 to 45% by weight, and most preferably 15 to 40% by weight are used in combination.
  • the conversion temperature Tc ′ can be preferably 140 ° C. or higher, more preferably 143 ° C. or higher, and most preferably 145 ° C. or higher. In general, it is difficult to realize Tc ′ exceeding 170 ° C.
  • a solvent or a monomeric ester plasticizer that is compatible with the vinylidene chloride resin can be added.
  • An example of such a solvent is propylene carbonate, and an example of a monomeric ester plasticizer is dialkylene glycol dibenzoate composed of glycol and benzoic acid.
  • the amount used is the total amount with the plasticizer. It is preferable to keep it at 10% by weight or less, particularly 5% by weight or less.
  • a polyester plasticizer (or a mixture of a polyester plasticizer and a compatibility inhibitor) is melted and kneaded with a vinylidene fluoride resin in an extruder so that the polyester plasticizer is clear (that is, visible to the naked eye). It is necessary to have compatibility with the vinylidene fluoride resin to such an extent that a molten mixture is obtained which does not leave a dispersion that gives a turbidity of However, the formation of the melt-kneaded product in the extruder includes factors other than the properties derived from the raw materials, such as mechanical conditions, and in the sense of eliminating these factors, the compatibility determination method described later in the present invention. To determine compatibility.
  • the raw material composition for forming the porous film comprises a plasticizer (a compatibility inhibitor (monomeric) in addition to a polyester plasticizer) with respect to 20 to 50% by weight, preferably 25 to 40% by weight of a vinylidene fluoride resin.
  • a plasticizer a compatibility inhibitor (monomeric) in addition to a polyester plasticizer
  • it is preferably contained in an amount of 50 to 80% by weight, preferably 60 to 85% by weight.
  • a water-insoluble solvent or the like added as necessary is used in a form in which a part of the plasticizer is replaced in consideration of the melt viscosity and the like of the raw material composition under melt kneading.
  • the amount of the plasticizer is too small, it is difficult to obtain an increase in the porosity of the target surface layer of the present invention, and if it is too large, the melt viscosity is excessively lowered, and in the case of a hollow fiber, it tends to be crushed. Moreover, there exists a possibility that the mechanical strength of the porous film obtained may fall.
  • a biaxial kneading extruder is used, and the vinylidene fluoride resin (preferably comprising a mixture of a main resin and a crystal characteristic modifying resin) is
  • the plasticizer and the like are supplied from the upstream side of the extruder, supplied downstream, and made into a homogeneous mixture before being discharged through the extruder.
  • This twin-screw extruder can be controlled independently by dividing it into a plurality of blocks along its longitudinal axis direction, and appropriate temperature adjustment is made according to the contents of the passing material at each site.
  • the die or nozzle temperature Td is preferably higher than the crystallization temperature Tc ′ of the composition by 30 ° C.
  • the melt-extruded hollow fiber membrane is then inert to vinylidene fluoride resin at -40 to 90 ° C., preferably 0 to 90 ° C., more preferably 5 to 60 ° C. (ie, non-solvent and non-reactive). It is introduced into a cooling bath made of a liquid (preferably water) and cooled preferentially from its outer surface to form a solidified film. At that time, in forming the hollow fiber membrane, a hollow fiber membrane having an enlarged diameter is obtained by cooling while injecting an inert gas such as air or nitrogen into the hollow portion. This is advantageous for obtaining a hollow fiber porous membrane having a small decrease in the amount of water per area (WO 2005 / 03700A).
  • cooling from one side by a chill roll is also used in addition to a cooling bath shower. If the cooling medium temperature is less than ⁇ 40 ° C., the solidified film becomes brittle, making it difficult to take it out. If the temperature is less than 0 ° C., condensation or frost tends to occur due to moisture in the atmosphere. There is a difficult point. On the other hand, when the temperature exceeds 90 ° C., it becomes difficult to form a porous film having a small pore size distribution with a small pore size on the surface of the water to be treated, which is the object of the present invention.
  • the difference Tc′ ⁇ Tq between the crystallization temperature Tc ′ of the kneaded product of the vinylidene fluoride resin and the plasticizer and the temperature Tq of the cooling inert liquid is preferably 60 ° C. or higher, more preferably 75 ° C. or higher, most preferably Preferably it is 90 degreeC or more.
  • this temperature difference in order for this temperature difference to exceed 150 ° C., it is generally necessary to set the cooling liquid temperature to less than 0 ° C., which makes it difficult to use an aqueous medium as a preferable cooling liquid.
  • the elapsed time from the melt extrusion until entering the cooling bath Is generally in the range of 0.3 to 10.0 seconds, particularly 0.5 to 5.0 seconds.
  • the cooled and solidified film-like material is then introduced into an extraction liquid bath and subjected to extraction and removal of a plasticizer and the like.
  • the extraction liquid is not particularly limited as long as it does not dissolve the polyvinylidene fluoride resin and can dissolve the plasticizer and the like.
  • polar solvents having a boiling point of about 30 to 100 ° C. such as methanol and isopropyl alcohol for alcohols and dichloromethane and 1,1,1-trichloroethane for chlorinated hydrocarbons are suitable.
  • the extracted film-like material is then subjected to stretching to increase the porosity and pore diameter and improve the strength.
  • stretching it is possible to selectively wet from the outer surface of the membrane after extraction (porous membrane) to a certain depth and stretch in this state (hereinafter referred to as “partial wet stretching”). It is preferable for obtaining a high surface layer porosity A1. More specifically, prior to stretching, 5 ⁇ m or more from the outer surface of the porous membrane, preferably 7 ⁇ m or more, more preferably 10 ⁇ m or more, and 1 ⁇ 2 or less, preferably 1 / or less, more preferably 1 / 1 / of the film thickness.
  • a depth of 4 or less is selectively wetted. If the depth to be wet is less than 5 ⁇ m, the increase in the surface layer porosity A1 is not sufficient, and if it exceeds 1/2, when the dry heat is relaxed after stretching, the drying of the wetting liquid becomes uneven and the heat treatment or relaxation Processing may be uneven.
  • a solvent for wetting vinylidene fluoride resin such as methanol or ethanol or its aqueous solution
  • a wettability improving liquid having a surface tension of 25 to 45 mN / m (including the case of immersion). If the surface tension is less than 25 mN / m, it may be difficult to selectively apply the wettability improving liquid to the outer surface because the penetration rate into the PVDF porous membrane is too fast.
  • a surfactant solution obtained by adding a surfactant to water that is, an aqueous solution or an aqueous homogeneous dispersion of a surfactant
  • the type of the surfactant is not particularly limited.
  • a carboxylate type such as an aliphatic monocarboxylate, a sulfonate type such as an alkylbenzene sulfonate, a sulfate ester type such as an alkyl sulfate, Phosphate ester type such as alkyl phosphate salt; amine salt type such as alkylamine salt for cationic surfactant, quaternary ammonium salt type such as alkyltrimethylammonium salt; glycerin fatty acid for nonionic surfactant Ester type such as ester, ether type such as polyoxyethylene alkylphenyl ether, ester ether type such as polyethylene glycol fatty acid ester; for amphoteric surfactant, carboxybetaine type such as N, N-dimethyl-N-alkylaminoacetic acid betaine 2-alkyl-1-hydroxyl Le - such as glycine type and the like, such as carboxymethyl imidazo
  • the surfactant preferably has an HLB (hydrophilic / lipophilic balance) of 8 or more. When the HLB is less than 8, the surfactant is not finely dispersed in water, and as a result, uniform wettability improvement becomes difficult.
  • Particularly preferably used surfactants include nonionic surfactants having an HLB of 8 to 20, and further 10 to 18, or ionic (anionic, cationic and amphoteric) surfactants. A surfactant is preferred.
  • the wettability improving liquid to the outer surface of the porous membrane by batch or continuous immersion of the porous membrane.
  • This dipping process is a double-sided coating process for flat membranes and a single-sided coating process for hollow fiber membranes.
  • the flat membrane batch dipping treatment is carried out by dipping the hollow fiber membranes bundled by bobbin winding or casserole winding by dipping the layers cut into appropriate sizes.
  • the continuous treatment is performed by continuously immersing a long porous membrane in the treatment liquid.
  • a surfactant having a relatively high HLB within the above range more specifically 8-20, more preferably 10-18, may be used to form relatively small emulsion particles. preferable.
  • the penetration speed can be lowered moderately by increasing the wettability improving liquid to a high viscosity, or penetrating with a low viscosity. It is possible to increase the speed.
  • the permeation rate can be moderately slowed by lowering the wettability improving liquid or the permeation at a high temperature. It is possible to increase the speed.
  • the viscosity and temperature of the wettability improving liquid act in opposite directions, and can be complementarily controlled for adjusting the penetration rate of the wettability improving liquid.
  • the stretching of the hollow fiber membrane is generally preferably performed as uniaxial stretching in the longitudinal direction of the hollow fiber membrane by a pair of rollers having different peripheral speeds. This is because, in order to harmonize the porosity and the strength and elongation of the vinylidene fluoride resin hollow fiber porous membrane of the present invention, the stretched fibril (fiber) portion and the unstretched node (node) portion are arranged along the stretching direction. This is because it has been found that a microstructure that appears alternately is preferable.
  • the draw ratio is about 1.1 to 4.0 times, particularly about 1.2 to 3.0 times, and most preferably about 1.4 to 2.5 times. When the draw ratio is excessive, the tendency of the hollow fiber membrane to break becomes large.
  • the stretching temperature is preferably 25 to 90 ° C, particularly 45 to 80 ° C. If the stretching temperature is too low, the stretching becomes non-uniform and the hollow fiber membrane is easily broken. On the other hand, if the stretching temperature is too high, it is difficult to increase the porosity even if the stretching ratio is increased. In the case of a flat membrane, sequential or simultaneous biaxial stretching is also possible.
  • the crystallinity is increased by heat treatment in advance at a temperature in the range of 80 to 160 ° C., preferably 100 to 140 ° C. for 1 second to 18000 seconds, preferably 3 seconds to 3600 seconds. It is also preferable.
  • the hollow fiber porous membrane of vinylidene fluoride resin obtained as described above is subjected to at least one stage, more preferably at least two stages of relaxation or constant length heat treatment in a non-wetting atmosphere (or medium).
  • the non-wetting atmosphere is a non-wetting liquid having a surface tension (JIS K6768) larger than the wetting tension of vinylidene fluoride resin near room temperature, typically water or air. Gas is used.
  • the relaxation treatment of the uniaxially stretched porous membrane such as the hollow fiber is carried out by first performing the above-described non-wetting, preferably heated atmosphere, disposed between the upstream roller and the downstream roller, where the peripheral speed gradually decreases. It is obtained by passing the obtained stretched porous membrane.
  • the relaxation rate determined by (1 ⁇ (downstream roller peripheral speed / upstream roller peripheral speed)) ⁇ 100 (%) is preferably in the range of 0% (constant length heat treatment) to 50%, particularly 1 to 20 % Relaxation heat treatment is preferable.
  • a relaxation rate exceeding 20% depends on the stretching ratio in the previous step, but is not preferable because it is difficult to achieve or even if realized, the effect of improving the water permeability is saturated or decreases.
  • the first-stage constant length or relaxation heat treatment temperature is preferably 0 to 100 ° C., particularly 50 to 100 ° C.
  • the treatment time may be short or long as long as the desired heat setting effect and relaxation rate are obtained. Generally, it is about 5 seconds to 1 minute, but it is not necessary to be within this range.
  • the post-stage constant length or relaxation heat treatment temperature is preferably 80 to 170 ° C., more preferably 120 to 160 ° C., so that a relaxation rate of 1 to 20% can be obtained.
  • the effect of the relaxation treatment described above is a remarkable effect that the substantial membrane fractionation performance is maintained in a sharp state and the water permeability of the obtained porous membrane is increased. Moreover, performing the above-mentioned one-stage and two-stage treatment under a constant length is a heat setting operation after stretching.
  • the vinylidene fluoride resin porous membrane of the present invention obtained through the above-described series of steps is (a) focused ion beam scanning for a portion (surface layer) having a thickness of 10 ⁇ m continuous from one surface (surface to be treated). Measured by a scanning electron microscope (FIB-SEM) (a1) The average diameter of the reticulated resin fibers is 100 nm or less, (a2) the porosity A1 is 60% or more, and (b) the surface pore diameter P1 The main feature is a surface layer structure of 0.3 ⁇ m or less.
  • the porosity A1 is preferably 65% or more, more preferably 70% or more, and the upper limit is restricted by the structural strength of the surface layer, and it is difficult to exceed 85%.
  • the one-surface-side surface pore diameter P1 is usually an average diameter by surface observation by SEM, preferably 0.20 ⁇ m or less, more preferably 0.15 ⁇ m or less, and although there is no particular lower limit, it is generally less than 0.01 ⁇ m. It is difficult to do.
  • FIB-SEM method The FIB used to measure (a1) the average diameter (nm) of the network-like resin fiber and (a2) the porosity A1 (%), which are the characteristics of the vinylidene fluoride resin porous membrane of the present invention described above. -An outline of the SEM method is given below.
  • the hollow fiber porous membrane was dyed with ruthenium oxide, it was embedded with an epoxy resin, and a cross-sectional sample in which an annular cross section perpendicular to the longitudinal direction of the hollow fiber membrane was exposed by mechanical polishing was produced.
  • This cross-sectional sample was set in a focused ion beam-scanning electron microscope (dual beam FIB / SEM combined device, “Nova200 NanoLab” manufactured by FEI), and 10 ⁇ m square from the outer surface of the hollow fiber porous membrane to a depth of 10 ⁇ m.
  • the region was irradiated with a Ga (gallium) ion beam and scraped off to a thickness of 20 nanometers to form a smooth observation surface, followed by non-deposition observation at an acceleration voltage of 3 keV and an observation magnification of 10,000, and an SEM photograph was taken.
  • this observation surface is again irradiated with a Ga (gallium) ion beam and scraped off to a thickness of 20 nanometers to prepare a new observation surface (10 ⁇ m square), followed by non-deposition observation at an acceleration voltage of 3 keV and an observation magnification of 10,000 times. , Took a photo. This operation was repeated 100 times, and 100 SEM photographs were taken from the first observation surface to a thickness (depth) of 2 ⁇ m every 20 nanometers.
  • Number of hole branch points (pieces): Find the center line of holes from a three-dimensional observation image, branch points, that is, points where three or more are in contact, or points where the diameter of the holes is different, and end points, ie, those that are in contact with others The sum of the number of adjacent branch points and branch points, the number of adjacent branch points and end points, and the number of adjacent end points and end points was determined as the number of branch points.
  • FIGS. 1-10 Examples of binarized images of SEM photographs of observation surfaces obtained by digging down to a depth of 1 ⁇ m from the start of observation are shown in FIGS.
  • the hole branch point function per unit volume is as small as 25 (pieces / ⁇ m 3 ) or less. This indicates that there are few branches and independent vacancies in the existing pores, and the permeability of the water to be treated is good.
  • the ratio A1 / A2 between the porosity A1 (%) of the surface layer and the porosity A2 (%) of the entire porous membrane is 0.90 or more.
  • the upper limit is not particularly limited, but is generally 1.1 or less.
  • the total layer porosity A2 (%) is preferably 70 to 85%, more preferably 75 to 82%.
  • the average pore diameter Pm is generally 0.25 ⁇ m or less, preferably 0.20 to 0.01 ⁇ m, more preferably 0.15 to 0.05 ⁇ m, and the maximum pore diameter Pmax is generally 0.70 to 0.03 ⁇ m, preferably 0 .40 to 0.06 ⁇ m; Properties with a tensile breaking strength of 7 MPa or more and a tensile breaking elongation of 30% or more, preferably 60% or more are obtained.
  • the thickness is usually in the range of about 50 to 800 ⁇ m, preferably 50 to 600 ⁇ m, particularly preferably 150 to 500 ⁇ m.
  • the outer diameter of the hollow fiber is about 0.3 to 3 mm, particularly about 1 to 3 mm.
  • the pure water permeation amount at a test length of 200 mm, a water temperature of 25 ° C., and a differential pressure of 100 kPa is 5 m / day or more, preferably 10 m / day or more, more preferably 15 m / day or more, and most preferably 20 m / day or more.
  • the present invention when filtering the treated water using the vinylidene fluoride resin porous membrane obtained as described above, filtration and aeration of the surface of the porous membrane to be treated side by side or alternately The manufacturing method of the filtered water to perform is also included.
  • the filtration of turbid water by the porous membrane of the present invention is considered to be surface filtration because the surface pore size P1 of the porous membrane to be treated is sufficiently smaller than the particle size of the suspended matter. Therefore, even if the amount of filtered water per unit membrane area (filtration flux) is increased, the local flux generated in the pores of the surface layer is ( It is believed to be low and uniform (compared to a film with a small A1). This reduces the pressing force of the suspended solid particles on the membrane surface, but further aeration of the surface of the water to be treated increases the fluidity of the suspended particles on the membrane surface, thereby increasing the suspension of the membrane surface.
  • the increase in turbidity concentration is suppressed, the increase in filtration pressure over time is suppressed, and stable filtration can be continued over a long period of time.
  • the filtration using the porous membrane of the present invention is preferably performed using, for example, a membrane module incorporating the porous membrane.
  • membrane modules suitable for aeration of the surface of the porous membrane to be treated include those disclosed in WO2007 / 080910A1 or WO2007 / 040035A1.
  • the timing of aeration when the membrane module is immersed in a tank open to the atmosphere and filtered, it is preferable to perform aeration simultaneously with the filtration. It is also preferable to intermittently stop only filtration while performing aeration continuously. In this case, the filtration is performed continuously for 3 minutes to 30 minutes, preferably 5 minutes to 15 minutes, and then the filtration is stopped for 30 seconds to 5 minutes, preferably 1 minute to 2 minutes. It is preferable to periodically repeat filtration and filtration pause with such time distribution.
  • the method in which aeration acts on the membrane surface during filtration in this way is the case where the concentration of suspended solid particles is high as in the MBR method, and the MLSS (active sludge suspended solids amount) is about 3000 to 20000 mg / L. Is preferred.
  • the amount of aeration is 5 to 200 m 3 / h, preferably 10 to 100 m 3 / h, more preferably 20 to 70 m 3 / h per 1 m 2 of the bottom area of the membrane module. If it is less than 5 m 3 / h, the suppression of the filtration pressure increase is not sufficient, and if it exceeds 200 m 3 / h, the effect of suppressing the increase in the filtration differential pressure is saturated.
  • the amount of aeration is 20 to 400 m 3 / h, preferably 50 to 300 m 3 / h per 1 m 2 of the bottom area of the membrane module. If it is less than 20 m 3 / h, the suppression of the filtration pressure increase is not sufficient, and if it exceeds 400 m 3 / h, the effect of suppressing the increase in the filtration differential pressure is saturated.
  • the present invention also includes a step of filtering treated water using the vinylidene fluoride resin porous membrane obtained as described above to obtain filtered water, and a chemical solution from the filtered water side of the vinylidene fluoride resin porous membrane. And a method for producing filtered water, comprising the step of washing the membrane by injecting water.
  • the chemical solution is injected from the filtered water side surface, and in the case of a hollow fiber membrane, the reverse pressure injection from the hollow portion is performed with the membrane attached to the filtration device (CIP; CleanCIn Place). Law).
  • the chemical solution is preferably injected while the membrane is immersed in the water to be treated in the apparatus and by performing aeration simultaneously or alternately with filtration, so that CIP can be performed efficiently.
  • the injection of the chemical solution in the CIP method is mainly intended to remove dirt adhered to the inside of the film including the surface layer of the film, and the film cleaning effect is comprehensively combined with the removal of the film surface by aeration. This is because the operation period can be improved and the operation period can be maintained for a long time.
  • an aqueous solution of an oxidizing agent such as sodium hypochlorite and hydrogen peroxide, an acid such as hydrochloric acid and citric acid, and an alkali such as sodium hydroxide is preferably used.
  • the concentration of the chemical solution is 0.02 to 1% by weight as an effective chlorine concentration in the case of sodium hypochlorite, 1 to 5% by weight in the case of citric acid, and 0.5 to 2% in the case of sodium hydroxide. % Is preferred.
  • Membrane cleaning by injection of a chemical solution is preferably performed when the filtration pressure rises to 60 kPa or more in immersion filtration and 150 kPa or more in pressure filtration, specifically, once every 2 weeks to 6 months. Is performed about once every 1 to 3 months.
  • the chemical injection is carried out preventively before the filtration differential pressure rises significantly. Specifically, it is performed once a day to once a month, preferably once every 3 days to 2 weeks.
  • the injection flux of the chemical solution may be about the same as the filtration flux or several times, and specifically about 0.3 to 10 m / day based on the surface area of the water to be treated. Since the CIP method removes the dirt of the film by chemical decomposition or dissolution action by the chemical solution, it is sufficient that the chemical solution efficiently contacts the membrane. For this reason, it is preferable to inject at a low flux as much as possible after the chemical solution comes into contact with the membrane, specifically, injection at 0.1 to 2 m / day, or the injection is stopped when the chemical solution comes into contact with the membrane. A method of holding for a certain time is also preferable.
  • the contact time between the membrane and the chemical solution is 2 to 240 minutes, preferably 3 to 100 minutes, more preferably 5 to 30 minutes as a total of the injection time and the holding time per chemical solution injection.
  • Crystal melting point Tm1, Tm2 and crystallization temperature Tc, Tc ′ Using a differential scanning calorimeter “DSC7” manufactured by PerkinElmer Co., Ltd., 10 mg of sample resin was set in a measurement cell, and the temperature was increased from 30 ° C. to 250 ° C. at a rate of 10 ° C./min in a nitrogen gas atmosphere. The temperature was then maintained at 250 ° C. for 1 minute, and then the temperature was decreased from 250 ° C. to 30 ° C. at a rate of 10 ° C./min to obtain a DSC curve.
  • DSC7 differential scanning calorimeter
  • the endothermic peak speed in the temperature rising process was the melting point Tm1 (° C.), and the exothermic peak temperature in the temperature lowering process was the crystallization temperature Tc (° C.).
  • the temperature was raised again from 30 ° C. to 250 ° C. at a rate of 10 ° C./min, and the DSC curve was measured.
  • the endothermic peak temperature in this reheated DSC curve was the original resin melting point Tm2 (° C.) that defines the crystal characteristics of the vinylidene fluoride resin of the present invention.
  • the crystallization temperature Tc ′ (° C.) of the mixture of vinylidene fluoride resin as a film raw material and a plasticizer is the first intermediate molded body that is melt-kneaded by an extruder and then extruded from a nozzle and cooled and solidified.
  • the exothermic peak temperature detected in the temperature lowering process is obtained by obtaining a DSC curve through the same heating and cooling cycle as described above using 10 mg of the sample.
  • compatibility of each of the compatibility inhibitors comprising a polyester plasticizer and a monomeric ester plasticizer, or a mixture thereof (hereinafter simply referred to as “plasticizer” in this section) with respect to vinylidene fluoride resin is as follows. Determined by the method: A slurry-like mixture is obtained by mixing 23.73 g of vinylidene fluoride resin and 46.27 g of a plasticizer at room temperature. Next, the barrel of “Lab Plast Mill” (mixer type: “R-60”) manufactured by Toyo Seiki Co., Ltd. is 10 ° C. higher than the melting point of the vinylidene fluoride resin (for example, about 17 to 37 ° C. higher).
  • the temperature is adjusted, and the slurry mixture is charged and preheated for 3 minutes, and then melt-kneaded at a mixer rotation speed of 50 rpm.
  • the plasticizer is based on vinylidene fluoride resin. Determined to be compatible.
  • the viscosity of the melt-kneaded material is high, it may appear cloudy due to entrapment of bubbles, and in that case, it is determined by deaeration appropriately by a method such as hot pressing. Once it has cooled and solidified, it is heated again to be in a molten state, and then it is determined whether or not it is clarified.
  • the average pore diameter P1 of the surface to be treated (outer surface in hollow fiber) and the average pore diameter P2 in the filtrate side surface (inner surface in hollow fiber) were determined by SEM. Measured (SEM average pore diameter).
  • SEM average pore diameter the measurement method will be described by taking a hollow fiber porous membrane sample as an example. SEM photography is performed on the outer surface and inner surface of the hollow fiber membrane sample at an observation magnification of 15,000 times, respectively. Next, for each SEM photograph, the hole diameter is measured for everything that can be recognized as a hole.
  • the arithmetic average of the measured pore diameters is obtained and set as the outer surface average pore diameter P1 and the inner surface average pore diameter P2.
  • the photograph image may be divided into four equal parts, and the above-mentioned hole diameter measurement may be performed for one area (1 ⁇ 4 screen). .
  • the number of measurement holes is approximately 200 to 300.
  • Sample length L 200 mm of sample hollow fiber porous membrane was immersed in ethanol for 15 minutes, then immersed in pure water for 15 minutes, wetted, and then measured at a water temperature of 25 ° C. and a differential pressure of 100 kPa per day.
  • CIP recovery time MRR method-CIP processing
  • the immersion type minimodule formed from the hollow fiber porous membrane sample was subjected to continuous filtration of activated sludge water at a filtration flux of 1.7 m / day, followed by chemical injection backwash (CIP )
  • CIP recovery time The time required for the treatment to recover the differential pressure inside and outside the hollow fiber porous membrane to the value immediately after the start of filtration (initial value) is defined as the CIP recovery time.
  • the mini module is formed by vertically fixing three hollow fiber porous membrane samples between the upper header and the lower header so that the effective filtration length per one becomes 500 mm.
  • the upper header is an upper insertion port to be fixed with the upper end of the hollow fiber membrane being opened on the lower side, an internal space (flow path) for filtrate water communicating with the upper insertion port, and suction on the upper side. It has a filtrate outlet for discharging filtrate to the pump.
  • the lower header has a lower insertion port for fixing the hollow fiber membrane on its upper side with its lower end closed, and an aeration nozzle that does not communicate with the lower insertion port (diameter 1 mm ⁇ 10) And an internal space (supply path) for supplying air to the aeration nozzle and an air supply port for supplying air from the air pump to the internal space.
  • the upper and lower ends of the three hollow fiber membrane samples are each inserted and fixed to the upper insertion port by epoxy resin so as to be liquid-tightly connected to the upper header, and the lower header is inserted so as to be closed with the lower header. It is inserted into the mouth and fixed.
  • This modularized hollow fiber membrane sample was dipped in ethanol for 15 minutes and then wetted by replacement with pure water. Then, the bottom area was approximately 30 cm 2 and the height of the water surface was approximately 600 mm. Soak the hollow fiber vertically.
  • MLSS floating substance concentration
  • DOC total organic concentration after filtration through a 1 ⁇ m glass filter
  • 7 to 9 mg / L of activated sludge water is supplied at a rate of 0.2 L / min by a pump, and the overflow is circulated to the raw water tank. Further, air is supplied from the lower header at a rate of 5 L / min, and is constantly bubbled into the activated sludge water in the test water tank.
  • a chemical container filled with sodium hypochlorite aqueous solution (effective chlorine concentration 3000 ppm) is attached and operated by switching the direction of the suction pump in the reverse direction and from the filtered water outlet of the upper header.
  • sodium hypochlorite aqueous solution effective chlorine concentration 3000 ppm
  • the inside of the hollow fiber porous membrane was injected from the inside to the outside with a constant filtered water amount of 1.7 m / day, and the pressure difference between the inside and outside of the hollow fiber porous membrane (back washing) Record the change over time in the differential pressure. The time t until the backwash differential pressure gradually decreases and reaches the equilibrium value as the membrane cleaning progresses is measured.
  • a water receiving container is attached in place of the chemical liquid container, and the suction pump is returned to its original direction to operate, and the constant filtration flux of 1.7 m / day is again applied from the outside to the inside of the hollow fiber porous membrane.
  • filtration differential pressure the change with time in the differential pressure inside the hollow fiber membrane (filtration differential pressure) is measured.
  • the suction is resumed and the average differential pressure value for the first 5 minutes is recorded as the post-recovery differential pressure TMP3.
  • adipic acid-based polyester plasticizer polymers of adipic acid and 1,2-butanediol whose ends are sealed with isononyl alcohol; “D623N” manufactured by J. Plus, number average molecular weight of about 1800, JIS K71117-2 (cone-plate-type rotational viscometer) measured viscosity at 25 ° C. of 3000 mPa ⁇ s) and monomeric ester plasticizer diisononyl adipate (“DINA” manufactured by Jay Plus Co., Ltd.) The mixture was stirred and mixed at room temperature at a rate of 88% by weight / 12% by weight to obtain a plasticizer mixture (mixture B).
  • the mixture A is supplied from the powder supply unit, and the barrel temperature is 220 ° C.
  • the mixture was fed and kneaded at a barrel temperature of 220 ° C., and the mixture was extruded into a hollow fiber shape from a nozzle (190 ° C.) having a circular slit having an outer diameter of 6 mm and an inner diameter of 4 mm. At this time, the inner diameter was adjusted by injecting air into the hollow portion of the hollow fiber from the vent provided in the center of the nozzle.
  • the extruded mixture is kept in a molten state, is maintained at a temperature of 50 ° C., and has a water surface at a position 280 mm away from the nozzle (that is, an air gap of 280 mm). (Retention time in cooling bath: about 6 seconds) After taking up at a take-up speed of 5.0 m / min, this was wound around a bobbin to obtain a first intermediate molded body.
  • the plasticizer was extracted by immersing this first intermediate molded body in dichloromethane at room temperature for 30 minutes. At this time, the extraction was performed while rotating the bobbin so that the dichloromethane was evenly distributed over the yarn. Next, the operation of replacing the dichloromethane with a new one and extracting again under the same conditions was repeated, and extraction was performed four times in total.
  • the second intermediate formed body is pulled out while rotating the bobbin, the first roll speed is set to 20.0 m / min, and the second roll is passed through the 60 ° C. water bath.
  • the film was stretched 1.75 times in the longitudinal direction by setting the speed to 35.0 m / min.
  • it was passed through a hot water bath controlled at a temperature of 90 ° C., and further passed through a dry heat bath controlled at a space temperature of 80 ° C. for heat treatment. This was wound up to obtain a polyvinylidene fluoride hollow fiber porous membrane (third molded body) of the present invention.
  • the time required to stretch all the second intermediate molded body wound around the bobbin was about 200 minutes.
  • PN150 number average molecular weight of about 1000, viscosity 500 mPa ⁇ s) and N-methylpyrrolidone (NMP)
  • NMP N-methylpyrrolidone
  • the mixture was stirred and mixed at room temperature at a ratio of 17.5% by weight to use a plasticizer / solvent mixture B; the mixture A and the mixture B were mixed at a ratio of 38.4% by weight / 61.6% by weight.
  • Supplyed water cooling bath temperature set to 40 ° C .; stretch ratio set to 1.85 times; as heat treatment after stretching, 8% in 90 ° C. water bath Relaxation, and then it was 3% relaxation treatment in a 140 ° C. in air; give the polyvinylidene fluoride porous membrane except in the same manner as in Example 1.
  • the outline of the production conditions of the above Examples and Comparative Examples and the physical properties of the obtained polyvinylidene fluoride hollow fiber porous membrane are shown together in Table 1 below.
  • the hollow fiber porous membrane of Comparative Example 2 has a composite structure in which a vinylidene fluoride resin coating layer is formed on the outside with a polyester multifilament monowoven braid as a core layer, as shown in the example of Patent Document 2. Therefore, the total layer porosity A2 indicates a measured value for only the outer layer.
  • FIGS. 3 to 5 binarization of the 10 ⁇ m ⁇ 10 ⁇ m visual field in the middle part (observation surface obtained by updating the surface to a depth of 1 ⁇ m for a 2 ⁇ m thick sample) when FIB-SEM measurement was performed on the hollow fiber porous membrane of each example
  • the obtained SEM images (10,000 times) are shown in FIGS. 3 to 5, in each of the drawings, the left side is the outer surface side, the white part indicates the resin fiber (phase), and the black part indicates the pore (phase).
  • FIG. 4 Comparative Example 1
  • FIG. 5 Comparative Example 2
  • the hollow fiber porous membrane of each example it is as follows when the result of having performed the filtration and CIP recovery process by MBR method is supplemented.
  • Example 1 When the outer surface of the membrane was observed with SEM (5000 times) after filtration for 24 hours by MBR method, pores were confirmed on the entire surface, and no cake was observed.
  • a porous membrane, a method for producing the same, and a method for producing filtered water using the MBR method and / or the CIP method using the same are provided.
  • the vinylidene fluoride resin porous membrane of the present invention is suitable for (filtered) water treatment as described above, but the porosity of the dense layer that contributes particularly to separation characteristics or selective permeation characteristics has been improved.
  • the porous membrane of the present invention is not limited to (filtered) water treatment, but can be used for concentration of bacteria, proteins, etc., recovery of chemically aggregated particles of heavy metals, separation membrane for oil-water separation and gas-liquid separation Also, it can be suitably used as a battery diaphragm such as a lithium ion secondary battery and a solid electrolyte support.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)

Abstract

 集束イオンビーム・走査型電子顕微鏡により測定される一表面から連続する厚さ10μmの部分における網目状樹脂繊維の平均径が100nm以下且つ空孔率A1が60%以上であり、該一表面側表面孔径P1が0.3μm以下であることを特徴とする、フッ化ビニリデン系樹脂多孔膜。この多孔膜は、ろ水処理に適した小なる表面孔径に加えて、極めて細い網目状樹脂繊維からなり、極めて高い空孔率を有する被処理水側表面層を有することにより、微粒子透過阻止特性に優れる一方で耐汚染性ならびに再生性が極めて良好となる。また、この多孔膜を、大なる分子量のフッ化ビニリデン系樹脂に対して、相溶性を有し、フッ化ビニリデン系樹脂との混練物にフッ化ビニリデン系樹脂単独の結晶化温度とほぼ等しい結晶化温度を与えるポリエステル系可塑剤を比較的大量に加えて得られた溶融押出膜を、片側から優先的に冷却し、固化後、可塑剤を抽出し、表面を部分湿潤化して延伸する方法により製造する。

Description

フッ化ビニリデン系樹脂多孔膜、その製造方法およびろ過水の製造方法
 本発明は、分離用多孔膜として適し、特に(ろ)水処理性能に加えて耐汚染性および再生性に優れたフッ化ビニリデン系樹脂製の多孔膜、その製造方法およびこれを用いるろ過水の製造方法に関する。
 フッ化ビニリデン系樹脂は、耐候性、耐薬品性、耐熱性に優れることから分離用多孔膜への応用が検討されている。特に、(ろ)水処理用途、なかでも上水製造または下水処理用途に向けられたフッ化ビニリデン系樹脂多孔膜に関して、その製造方法も含めて、数多くの提案がなされている(例えば特許文献1~6)。
 例えば特許文献1および2は、フッ化ビニリデン系樹脂溶液を凝固させるような液体(一般にフッ化ビニリデン系樹脂の非溶媒)に、フッ化ビニリデン系樹脂溶液を接触させて凝固させる非溶媒誘起相分離法による多孔膜の製造方法を開示する。しかしながら、この方法によると、非溶媒の膜内拡散(物質移動)が遅いことに起因して膜表面に皮膜を形成し易く、被処理水側表面は樹脂濃度が高い(すなわち空孔率が低い)多孔膜を与える。他方、特許文献3は比較的大量のフタル酸ジオクチル、フタル酸ジブチル等のフッ化ビニリデン系樹脂とは非相溶性の有機液体をシリカ粉末とともにフッ化ビニリデン系樹脂中に分散させ、成形後にこれら有機液体およびシリカ粉末を抽出除去することにより多孔膜を形成する方法を開示する。
 また、本発明者等も、特定の分子量特性を有するフッ化ビニリデン系樹脂を、該フッ化ビニリデン系樹脂の可塑剤および良溶媒とともに中空糸状に溶融押出しし、その後可塑剤の抽出除去および延伸を行うことにより多孔化する方法が適度の寸法と分布の微細孔を有し且つ機械的強度の優れたフッ化ビニリデン系樹脂多孔膜の形成に有効であることを見出して、一連の提案を行っている(特許文献7~10他)。しかしながら、多孔膜を濾(ろ)過膜とし使用する場合に必要なろ過性能および機械的性能等を含む総合性能に関して、一層の改善の要求は強い。例えば、近年盛んになっている河川水等の除濁による飲料水あるいは工業用水の製造あるいは下水の除濁浄化処理等の目的のために用いられるMF(精密ろ過)膜としては、代表的な有害微生物としてのクリプトスポリジウムや大腸菌等の確実な除去のために、平均孔径が0.25μm以下であり、且つ濁水の継続的ろ過運転に際して有機物による汚染(目詰り)が少なく、高い透水量を維持することが望まれる。この観点で下記特許文献6に開示される多孔膜は平均孔径が過大であり、また下記特許文献8に開示される中空糸多孔膜は、濁水の継続的ろ過運転における透水量の維持に問題が残る。
 このようなろ水運転中の目詰まりによるろ水圧の増大は、疎水性フッ化ビニリデン系樹脂多孔膜を用いて被処理水中の微分散粒子除去を行う上で不可避の問題と考えられていた。もちろん、フッ化ビニリデン系樹脂自体の親水化あるいは形成されるフッ化ビニリデン系樹脂多孔膜の部分的親水化により、目詰りによるろ水圧の増大を軽減する試みもなされているが、多くはその効果の持続性不足あるいは、膜強度のあるいは耐薬品性低下等の問題に直面して、本質的な問題の解決には至ってなかった。
特開昭63-296940号公報 特開2005-220202号公報 特開平3-215535号公報 特開平7-173323号公報 WO01/28667A WO02/070115A WO2005/099879A WO2007/010832A WO2008/117740A PCT/JP2009/071450の明細書
 本発明は、分離用途、特に(ろ)水処理に適した表面孔径、透液量(透水量)および機械的強度を有するとともに、継続的分離処理に際しても良好な透液量維持性能を示すフッ化ビニリデン系樹脂多孔膜を提供することを目的とする。
 本発明の更なる目的は、濁水の継続的ろ過に際しても汚染し難く、良好な透水量を維持するとともに、必要な場合、継続的ろ過により増大したろ水圧を化学的処理により容易に低減可能な再生性の優れたフッ化ビニリデン系樹脂多孔膜を提供することにある。
 本発明の更なる目的は、上記フッ化ビニリデン系樹脂多孔膜の効率的な製造方法、ならびにこれを用いるろ過水の製造方法を提供することにある。
 本発明は、上述の目的を、主として多孔膜の被処理液側表面近傍の物理的微細構造の制御により達成せんとするものである。本発明者らは、集束イオンビーム・走査型電子顕微鏡(以下、通称である「FIB-SEM」と称する)による解析を通じて、この目的を達成した。多孔膜の液処理性能が被処理液側表面の微細構造に影響されることは、それ自体は容易に類推可能であろう。しかしながら、このような構造解析に従来から用いられている通常のSEM法は、上述の目的には不満足なものであった。その第一の理由は、通常のSEM法における観察対象はミクロトームによる切削により露出した試料断面であるが、その断面はミクロトームとの摺擦により微細組識が損なわれており、多孔膜本来の組織とは既に異なっている。また通常のSEM法においては、本来、試料の1断面あるいは異なる個所の複数断面の平面的観察に止まり、立体的な解析は不可能であった。これに対し、FIB-SEM法は、通常SEM法と同様にミクロトーム切削あるいは機械研磨により露出した試料断面(約10×10μm)に、例えばGa(ガリウム)等の集束イオンビーム(FIB)の照射によりミクロトーム等により乱された断面表層の約20nm厚さを除去した後の試料面についてSEM観察を行うため、ほぼ試料本来の組織の断面観察が可能である。そして、FIB照射による試料断面の更新は、ほぼ同一個所について約20nmずつ繰り返し行うことが可能なため、同一個所の平面画像の積み重ねによりフッ化ビニリデン系樹脂多孔膜表層近傍の立体的解析が可能になる。このようなFIB-SEMによる解析の結果、本発明のフッ化ビニリデン系樹脂多孔膜は、既に通常SEM観察により確認されていた0.30μm以下という小なる表面孔径P1に加えて、表層近傍において、60%以上と高い空孔率A1を有し、またこのような一見相反する小なる表面孔径P1と高い空孔率A1を両立させるために、表層近傍において平均径が100nm以下と極めて細い網目状樹脂繊維により構成されていることが見出された。すなわち、本発明のフッ化ビニリデン系樹脂多孔膜は、集束イオンビーム・走査型電子顕微鏡により測定される一表面から連続する厚さ10μmの部分における網目状樹脂繊維の平均径が100nm以下且つ空孔率A1が60%以上であり、該一表面側表面孔径P1が0.3μm以下であることを特徴とするものである。以下、上記した微細構造を有する一表面から連続する厚さ10μmの部分を、「一表面(被処理水)側表面層」または単に「表面層」と称することがある。
 本発明のフッ化ビニリデン系樹脂多孔膜は、上記微細構造の表面層を有することにより、小なる表面孔径で理解される微小粒子阻止性能に加えて、液処理(特にろ水)運転中の汚染(目詰り)防止ならびに必要な場合の再生性能が極めて優れていることが確認されている。この点を説明するものとして本発明者らが現在推定しているメカニズムを、以下、MF(精密ろ過)膜である本発明の多孔膜が特に優れた適性を示すMBR法(膜分離活性汚泥法)を例にとって説明する。
 MBR法における主な膜汚れ成分には、(イ)粒子径が数μm~数百μmの懸濁質、(ロ)一例としてではあるが0.2μm~0.5μmにピークを持つ粒子径分布を有するより小さなコロイド粒子、(ハ)被処理水に含まれる数mg/L~数十mg/Lの溶解有機成分、がある。(イ)懸濁質粒子はろ過に際して、膜表面に押し付けられ、この押し付け力は、膜面を通過する被処理水流束が大なる程大きく、本発明の多孔膜の表層近傍における高い空孔率A1は、この膜面を通す被処理水流束の低減、従って膜面への懸濁質粒子の押し付け力を低減する方向に作用する。特にMBR法による曝気により透過流束とは直交する膜表面に沿った上昇流が形成されると、膜面への懸濁質粒子の押し付け力が小さければ、懸濁質粒子は上昇流とともに膜面から除去される可能性が大であると解される。(ロ)膜の表面孔径がコロイド粒子よりも大なる場合は、コロイド粒子が孔にすっぽり嵌ったり、あるいは膜内部にブリッジすることにより膜の目詰まりを生じ、著しいろ過抵抗の上昇を起すが、表面孔径が0.3μm以下である本発明の多孔膜は、少なくとも顕著にこのようなコロイド粒子による目詰まりを起すことが少ない。上記(イ)懸濁質粒子および(ロ)コロイド粒子は、膜表面に堆積して圧密化したケーキ層を作るおそれがあるが、本発明の多孔膜はこのようなケーキ層形成が起り難いことが確認されている(後記実施例参照)。(ハ)被処理水中の溶解有機成分は、経時的に細孔内を含む膜の全面に吸着して徐々に孔の細化を生じ、ろ水圧の上昇を招く。このろ水圧の上昇を物理的に防止することは困難であるが、薬液をろ過水側から逆に数分間~数十分間注入するCIP(Clean In Place、装置内清浄化あるいは薬品注入逆洗)法により吸着した溶解成分を効率的に除去することが、可能であり、特に、ケーキ層形成の少ない本発明の多孔膜は、CIP処理が極めて円滑に進行することが確認されている(後記実施例参照)。
 従って、本発明のろ過水の製造方法は、上記本発明の多孔膜をMBR法または/およびCIP法に適用するものであり、より詳しくは、上記本発明のフッ化ビニリデン系樹脂多孔膜を用いて被処理水をろ過するに際し、ろ過と多孔膜の被処理水側表面の曝気とを同時にまたは交互に行う方法であり、また必要に応じて、前記フッ化ビニリデン系樹脂多孔膜のろ過水側から薬液を注入して膜を洗浄する工程を含むことを特徴とするものである。
 また、上記フッ化ビニリデン系樹脂多孔膜の構造的特徴を実現するためには、フッ化ビニリデン系樹脂との溶融混練により、冷却前溶融混練組成物を形成する可塑剤の選択が極めて重要であり、より具体的には加熱下(溶融混練組成物形成温度)においてフッ化ビニリデン系樹脂と相溶性を有するとともに溶融混練組成物にフッ化ビニリデン系樹脂単独の結晶化温度Tc(℃)とほぼ同等の結晶化温度Tc′(℃)を与えるポリエステル系可塑剤を比較的大量に用い、高分子量のフッ化ビニリデン系樹脂と溶融混練して、形成した膜状物を片側面から冷却固化後、可塑剤を抽出することにより、非対称の網目状傾斜構造樹脂多孔膜を形成することが好ましいことが見出された。この観点で特許文献4のようにフッ化ビニリデン系樹脂のTcを低下させる可塑剤を少量添加すること;特許文献5のようにフッ化ビニリデン系樹脂のTcを低下させる可塑剤を用いて球晶構造を残す多孔膜を形成すること、はいずれも好ましくない。また膜原料樹脂と可塑剤との均一混合を促進させるために特許文献7~10等で用いられていたフッ化ビニリデン系樹脂の良溶媒で且つ冷却液と相溶性を有するものの大量使用は、溶融混練組成物の結晶化温度の低下を招くとともに、表面孔径の制御を困難にするので好ましくない。本発明のフッ化ビニリデン系樹脂多孔膜の製造方法は、このような知見に基づくものであり、より詳しくは、重量平均分子量が30万以上のフッ化ビニリデン系樹脂20~50重量%に対して可塑剤50~80重量%を添加し溶融混練して得られた組成物を膜状に溶融押出し、フッ化ビニリデン系樹脂に対して不活性な液体にて片側面から優先的に冷却して固化成膜した後、可塑剤を抽出して網目状多孔膜を回収する方法において、前記可塑剤が溶融混練組成物の形成温度においてフッ化ビニリデン系樹脂と相溶性を有し、フッ化ビニリデン系樹脂との混練物にフッ化ビニリデン系樹脂単独の結晶化温度とほぼ等しい結晶化温度を与えるポリエステル系可塑剤であり、更に可塑剤の抽出後の多孔膜を、その外表面から5μm以上,且つ膜厚さの1/2以下の深さまで選択的に湿潤させた状態で延伸する工程を含むことを特徴とするものである。上述した本発明のフッ化ビニリデン系樹脂多孔膜の製造方法は、フッ化ビニリデン系樹脂とポリエステル系可塑剤との溶融混練物の高い結晶化温度と冷却温度の差を利用した熱誘起相分離法によるフッ化ビニリデン系樹脂多孔膜の製造方法である。これに対して、(i)前記特許文献1あるいは2に開示されるようなフッ化ビニリデン系樹脂溶液を凝固作用のある液体(一般にフッ化ビニリデン系樹脂の非溶媒)に接触させて凝固させるような非溶媒誘起相分離法による成膜法には、非溶媒の膜内拡散(物質移動)が遅いことに起因して膜表面に皮膜を形成しやすく、表面層は樹脂濃度が高く(すなわち空孔率が低く)なり、網目状樹脂繊維経も大きくなってしまう(後記比較例2)。また(ii)前記特許文献3に開示されるような分散シリカ粉末の抽出除去法によっても、膜表面近傍までシリカ粉末を均一に分散させることに技術的困難性があり、本発明の特徴とする小さな一表面(被処理水)側表面孔径と高い空孔率および小なる樹脂繊維経を有する表面層を含むフッ化ビニリデン系樹脂多孔膜は得られない。
実施例および比較例で得られた中空糸多孔膜の透水量を評価するために用いた装置の概略説明図。 実施例および比較例で得られた中空糸多孔膜のMBR法(およびCIP法)により評価するために用いた装置の概略説明図。 実施例1で得られた中空糸多孔膜の断面構造を示すFIB-SEM二値化画像。 比較例1で得られた中空糸多孔膜の断面構造を示すFIB-SEM二値化画像。 比較例2で用いた中空糸多孔膜の断面構造を示すFIB-SEM二値化画像。
 本発明の多孔膜は、平膜および中空糸膜のいずれにも形成可能であるが、液処理(ろ過)装置当りの膜面積を大きくすることが容易な中空糸膜として形成することが好ましい。
 以下、このような主として中空糸形態を有するフッ化ビニリデン系樹脂多孔膜を、その好ましい製造方法である本発明の製造方法に従って順次説明する。
 (フッ化ビニリデン系樹脂)
 本発明において、主たる膜原料であるフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体、すなわちポリフッ化ビニリデン、フッ化ビニリデンと共重合可能な他のモノマーとの共重合体あるいはこれらの混合物で重量平均分子量が30万以上、特に50万~80万のものが好ましく用いられる。フッ化ビニリデンと共重合可能なモノマーとしては、四フッ化エチレン、六フッ化プロピレン、三フッ化エチレン、三フッ化塩化エチレン、フッ化ビニル等の一種又は二種以上を用いることができる。フッ化ビニリデン系樹脂は、構成単位としてフッ化ビニリデンを70モル%以上含有することが好ましい。なかでも結晶化温度Tcと機械的強度の高さからフッ化ビニリデン100モル%からなる単独重合体を用いることが好ましい。
 上記したような比較的高分子量のフッ化ビニリデン系樹脂は、好ましくは乳化重合あるいは懸濁重合、特に好ましくは懸濁重合により得ることができる。
 フッ化ビニリデン系樹脂は、上記したように重量平均分子量が30万以上、好ましくは50万以上、とかなり大きな分子量を有することに加えて、DSC測定による樹脂本来の融点Tm2(℃)と結晶化温度Tc(℃)との差Tm2-Tcが32℃以下、より好ましくは30℃以下、更に好ましくは28℃以下で代表される良好な結晶特性を有することが好ましい。
 ここで樹脂本来の融点Tm2(℃)は、入手された試料樹脂あるいは多孔膜を形成する樹脂を、そのままDSCによる昇温過程に付すことにより測定される融点Tm1(℃)とは区別されるものである。すなわち、一般に入手されたフッ化ビニリデン系樹脂は、その製造過程あるいは加熱成形過程等において受けた熱および機械的履歴により、樹脂本来の融点Tm2(℃)とは異なる融点Tm1(℃)を示すものであり、樹脂本来の融点Tm2(℃)は、入手された試料樹脂を、一旦、所定の昇降温サイクルに付して、熱および機械的履歴を除いた後に、再度DSC昇温過程で見出される融点(結晶融解に伴なう吸熱のピーク温度)として規定されるものであり、その測定法の詳細は後述実施例の記載に先立って記載する。
 上記したTm2-Tc≦32℃の条件を満たすフッ化ビニリデン系樹脂は、好適には、原料として、いずれも上述したフッ化ビニリデン系樹脂種から選ばれる、重量平均分子量が20万~67万、好ましくは30万~65万、さらに好ましくは、40万~60万の中高分子量のマトリクス用フッ化ビニリデン系樹脂(PVDF-I)25~98重量%、好ましくは50~95重量%、さらに好ましくは60~90重量%と、重量平均分子量が中高分子量フッ化ビニリデン系樹脂の1.8倍以上、好ましくは2倍以上であり、且つ120万以下である超高分子量の結晶特性改質用フッ化ビニリデン系樹脂(PVDF-II)2~75重量%、好ましくは5~50重量%、さらに好ましくは10~40重量%、との混合物として与えられる。このうち、中高分子量成分は、全体フッ化ビニリデン系樹脂の分子量レベルを高く保ち、強度および透水性の優れた中空糸多孔膜を与える。いわばマトリクス樹脂成分として作用するものである。他方、超高分子量成分は、上記中高分子量成分と組み合わされて、原料樹脂の結晶化温度Tc(一般にフッ化ビニリデン単独重合体については約140℃)ならびに後述する可塑剤との混練物の結晶化温度Tc’を上昇させ、且つ高可塑剤含量であるにも拘らず、溶融押出し組成物の粘度を上昇させて補強することにより、中空糸形状での安定押出しを可能にする。Tcを上昇させることにより、溶融押出により形成された中空糸膜の外側面からの優先的冷却に際して、膜表面孔径の小径化を促進し膜表面に比べて冷却の遅い膜内部から内側面にかけてのフッ化ビニリデン系樹脂の固化を早めることが可能になり、球晶の成長を抑制することができる。Tcは、好ましくは143℃以上、更に好ましくは145℃以上である。使用するフッ化ビニリデン系樹脂のTcは、一般に中空糸膜の製造過程においては実質的に変化しない。したがって、得られた中空糸多孔膜を試料として後述するDSC法により測定することができる。
 超高分子量フッ化ビニリデン系樹脂(PVDF-II)のMwが中高分子量樹脂(PVDF-I)のMwの1.8倍未満であると球晶の形成を十分には抑制し難く、一方、120万を超えるとマトリックス樹脂中に均一に分散させることが困難である。
 上記したような中高分子量ならびに超高分子量のフッ化ビニリデン系樹脂は、いずれも、好ましくは乳化重合あるいは懸濁重合、特に好ましくは懸濁重合により得ることができる。
 また、超高分子量フッ化ビニリデン系樹脂の添加量が2重量%未満では球晶抑制効果および溶融押出し組成物の増粘補強効果が十分でなく、一方、75重量%を超えると、フッ化ビニリデン系樹脂と可塑剤の相分離構造が過度に微細化して、得られる多孔膜の透水量が低下したり、更に加工時のメルトフラクチャー発生などにより安定した膜形成が困難になる、という傾向がある。
 本発明の製造法においては、上記のフッ化ビニリデン系樹脂に、可塑剤を加えて膜形成用の原料組成物を形成する。
 (可塑剤)
 本発明の中空糸多孔膜は、主として上記したフッ化ビニリデン系樹脂により形成されるが、その製造のためには上述したフッ化ビニリデン系樹脂に加えて、少なくともその可塑剤を孔形成剤として用いることが好ましい。本発明において可塑剤としては、溶融混練温度において、フッ化ビニリデン系樹脂と相溶性を有するが、フッ化ビニリデン系樹脂との溶融混練物に、フッ化ビニリデン系樹脂単独の結晶化温度Tc(℃)とほぼ同じ(すなわち±5℃以内、好ましくは±4℃以内、更に好ましくは±2℃以内の)結晶化温度Tc′(℃)を与えるものが用いられる。このような可塑剤としては、一般に、二塩基酸とグリコールからなるポリエステル系可塑剤から選択されたものが用いられるが、特に数平均分子量(JIS K0070に準拠して測定したケン化価および水酸基価に基づいて算定)が好ましくは1200以上、より好ましくは1500以上、更に好ましくは1700以上のものが用いられる。ポリエステル系可塑剤の分子量が増大するにつれて、フッ化ビニリデン系樹脂との相溶性は増大する傾向にあるが、過度に分子量が大であると、後述する抽出工程で可塑剤を抽出除去するのに時間を要するおそれがあるので、1万を超える数平均分子量の可塑剤は好ましくない。一般に、ポリエステル系可塑剤の重合度の指標としては、JIS K7117-2(円すい-平板型回転粘度計使用)に準拠して温度25℃で測定した粘度が使用されることも多く、1000mPa・s以上、1000Pa・s以下であるものが好ましい。
 ポリエステル系可塑剤を構成する二塩基酸成分としては、炭素数4~12の脂肪族二塩基酸が好ましい。このような脂肪族二塩基酸成分としては、例えばコハク酸、マレイン酸、フマル酸、グルタミン酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等が挙げられる。なかでもフッ化ビニリデン系樹脂との相溶性が良好なポリエステル系可塑剤が得られる点で炭素数6~10の脂肪族二塩基酸が好ましく、特に工業的な入手の容易性からアジピン酸が好ましい。これら脂肪族二塩基酸は、単独使用でも、二種以上を併用してもよい。
 ポリエステル系可塑剤を構成するグリコール成分としては、炭素数2~18のグリコール類が好ましく、例えばエチレングリコール、1,2-プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチルー1,3-プロパンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2-ジエチルー1,3-プロパンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール、2-ブチル-2-エチル-1,5-プロパンジオール、1,12-オクタデカンジオールなどの脂肪族二価アルコール、ならびにジエチレングリコール、ジプロピレングリコールなどのポリアルキレングリコールが挙げられる。特に炭素数3~10のグリコール類が好ましく用いられ。これらグリコール類は、単独使用でも、2種以上を併用してもよい。
 一般に、ポリエステル系可塑剤の分子鎖末端を封止するために、一価アルコールまたは一価カルボン酸が使用される。一価アルコールとしては、例えばブチルアルコール、ヘキシルアルコール、イソヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、イソオクチルアルコール、2-エチルヘキシルアルコール、ノニルアルコール、イソノニルアルコール、2-メチルオクチルアルコール、デシルアルコール、イソデシルアルコール、ウンデシルアルコール、ドデデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ヘキサデシルアルコール、オクタデシルアルコールなどの炭素数2~22の一価アルコールが挙げられる。特に、炭素数9~18の一価アルコールを用いることが好ましく、フッ化ビニリデン系樹脂との溶融混練物の結晶化温度Tc’の低下が抑制される傾向にある。なかでも、フッ化ビニリデン系樹脂との相溶性およびTc’の抑制傾向のバランスの観点からイソノニルアルコールが特に好ましい。これら一価アルコールは、単独使用でも、2種以上を併用してもよい。また一価カルボン酸としては、動植物油脂類またはその硬化油から誘導される炭素数6~22の脂肪族一価カルボン酸、または酢酸、酪酸、イソ酪酸、ヘプタン酸、イソオクタン酸、2-エチルへキサン酸、ノナン酸およびイソステアリン酸など炭素数2~18の合成一価カルボン酸、ならびに安息香酸、トルイル酸、ジメチル芳香族モノカルボン酸、エチル芳香族モノカルボン酸、クミン酸、テトラメチル芳香族モノカルボン酸、ナフトエ酸、ビフェニルカルボン酸、フロ酸などの芳香族カルボン酸が挙げられ、これらは単独使用でも、2種以上を併用してもよい。
 比較的分子量が大きく、相溶性の大なるポリエステル系可塑剤を単独で用いると、フッ化ビニリデン系樹脂との溶融混練物の結晶化温度Tc’を低下させる(Tc’低下力が増大する)の傾向があるので、ポリエステル系可塑剤に加えて相溶性抑制剤を加えることが好ましい。このような相溶性抑制剤としては、二塩基酸、例えばフタル酸、トリメリト酸等の芳香族二塩基酸、あるいはアジピン酸等の脂肪族二塩基酸と、炭素数が2~22の一価アルコールとからなり、且つフッ化ビニリデン系樹脂とは非相溶性のモノメリックエステル系可塑剤が好ましく用いられる。なかでも、炭素数6~10の脂肪族二塩基酸、特にアジピン酸と、炭素数2~22の一価アルコール、特に炭素数6~18の一価アルコールとからなるモノメリックエステル系可塑剤が好ましい。またポリエステル系可塑剤との相溶性が良好な点で、ポリエステル系可塑剤を構成する二塩基酸、ならびにグリコールおよび末端封鎖一価アルコールと共通の炭素鎖部分を有する一価アルコール、のいずれか少なくとも一が共通な、二塩基酸と一価アルコールとから成るモノメリックエステル系可塑剤が好ましい。本発明において好ましく用いられる二塩基酸としてアジピン酸を用い、末端封鎖イソノニルアルコールを用いるアジピン酸系ポリエステル系可塑剤との組み合わせにおいては、アジピン酸ジイソノニル(DINA)が好適に用いられる。
 このようなモノメリックエステル系可塑剤は、使用するポリエステル系可塑剤のTc’低下力に応じて添加量を決定すべきものであり、フッ化ビニリデン系樹脂との相溶性を損なわず、且つTc’低下力を極力抑制できるように、できれば実験的に添加量を求めるのが好ましい。これはポリエステル系可塑剤のTc’低下力が、ポリエステル系可塑剤を構成する二塩基酸成分、グリコール成分および一価アルコール成分等の構成成分の化学構造、および数平均分子量(重合度)や分子量分布などの影響を複雑に受けるため、一概に予測できないためである。一例として、アジピン酸と、1,2-ブタンジオールおよびイソノニルアルコールとからなる数平均分子量1800のポリエステル系可塑剤を用いる場合、モノメリックエステル系可塑剤を、ポリエステル系可塑剤との合計量を基準として、好ましくは2~30重量%、更に好ましくは5~25重量%、最も好ましくは8~20重量%混合して用いるとよい結果が得られている。またアジピン酸と、1,4-ブタンジオールおよびオクチルアルコールとからなる数平均分子量2200のポリエステル系可塑剤を用いる場合、モノメリックエステル系可塑剤を、ポリエステル系可塑剤との合計量を基準として、好ましくは5~50重量%、更に好ましくは10~45重量%、最も好ましくは15~40重量%混合して用いるとよい結果が得られている。
 前記したような好ましい分子量特性を有するフッ化ビニリデン系樹脂の使用、および好ましいポリエステル系可塑剤(さらには相溶性抑制剤)の選択により、フッ化ビニリデン系樹脂と可塑剤との溶融混練物の結晶化温度Tc'を、好ましくは140℃以上、更に好ましくは143℃以上、最も好ましくは145℃以上とすることができる。一般に、170℃を超えるTc’の実現は困難である。
 更に、ポリエステル系可塑剤とフッ化ビニリデン系樹脂との溶融混練時間を短縮するために、あるいは溶融混練物の粘度調整を行うために、後述する冷却液(好ましくは水)と非相溶性でフッ化ビニリデン系樹脂と相溶性である、溶媒あるいはモノメリックエステル系可塑剤を加えることができる。このような溶媒の例としてはプロピレンカーボネートが、またモノメリックエステル系可塑剤の例としては、グリコールと安息香酸からなるジアルキレングリコールジベンゾエートが挙げられる。但し、このようなフッ化ビニリデン系樹脂と相溶性の溶媒あるいはモノメリックエステル系可塑剤は、過剰に用いると溶融混練物のTc’を低下するので、その使用量は、可塑剤との合計量の10重量%以下、特に5重量%以下に抑えることが好ましい。
 本発明において、ポリエステル系可塑剤(またはポリエステル系可塑剤と相溶性抑制剤等との混合物)は、押出機においてフッ化ビニリデン系樹脂と溶融混練されることによって清澄な(すなわち肉眼で視認できる程度の濁りを与える分散物を残さない)溶融混合物が得られる程度に、フッ化ビニリデン系樹脂と相溶性を有する必要がある。しかしながら、押出機における溶融混練形成物の形成には、機械的条件など、原料に由来する特性以外のファクターも含まれるので、これらのファクターを排除する意味で、本発明では後述する相溶性判定法を用いて、相溶性を判定する。
 (組成物)
 多孔膜形成用の原料組成物は、フッ化ビニリデン系樹脂20~50重量%、好ましくは、25~40重量%に対して、可塑剤(ポリエステル系可塑剤に加えて相溶性抑制剤(モノメリックエステル系可塑剤)を使用する場合はこれを含む)が、50~80重量%、好ましくは、60~85重量%を混合するのが良い。必要に応じて添加する非水溶性の溶媒等は、原料組成物の溶融混練下での溶融粘度等を考慮して、可塑剤の一部を置きかえる態様で用いられる。
 可塑剤量が少な過ぎると本発明の目的とする表面層の空孔率の上昇を得難くなり、多過ぎると溶融粘度が過度に低下し、中空糸の場合は糸つぶれが発生し易くなり、また得られる多孔膜の機械的強度が低下するおそれがある。
 (混合・溶融押出し)
 バレル温度180~250℃、好ましくは200~240℃で溶融混練された溶融押出組成物は、一般に150~270℃、好ましくは170~240℃、の温度Tdで、Tダイあるいは中空ノズルから押出されて膜状化される。従って、最終的に、上記温度範囲の均質組成物が得られる限りにおいて、フッ化ビニリデン系樹脂と、可塑剤および必要に応じて加えられる非水溶性溶媒(以下、これらをまとめて「可塑剤等」と称することがある)の混合並びに溶融形態は任意である。このような組成物を得るための好ましい態様の一つによれば、二軸混練押出機が用いられ、(好ましくは主体樹脂と結晶特性改質用樹脂の混合物からなる)フッ化ビニリデン系樹脂は、該押出機の上流側から供給され、可塑剤等が、下流で供給され、押出機を通過して吐出されるまでに均質混合物とされる。この二軸押出機は、その長手軸方向に沿って、複数のブロックに分けて独立の温度制御が可能であり、それぞれの部位の通過物の内容により適切な温度調節がなされる。ダイまたはノズル温度Tdは、組成物の結晶化温度Tc’に対して、30℃以上、特に50℃以上、高いことが、好ましい。これにより、組成物がエアギャップ通過中に結晶化することなく、冷却浴中で急冷されることで微細な結晶化を生じ、網目状樹脂繊維の平均径が小さい構造が得られるからである。また、高分子量のフッ化ビニリデン系樹脂あるいは可塑剤を含む組成物のメルトフラクチャーを抑制する効果も得られる。
 (冷却)
 次いで溶融押出された中空糸膜状物を-40~90℃、好ましくは0~90℃、より好ましくは5~60℃の、フッ化ビニリデン系樹脂に対して不活性(すなわち非溶媒且つ非反応性)な液体(好ましくは水)からなる冷却浴中に導入して、その外側面から優先的に冷却して固化成膜させる。その際、中空糸膜状物形成に際しては、その中空部に空気あるいは窒素等の不活性ガスを注入しつつ冷却することにより拡径された中空糸膜が得られ、長尺化しても単位膜面積当りの透水量の低下が少い中空糸多孔膜を得るのに有利である(WO2005/03700A公報)。平膜形成のためには、冷却浴のシャワーの外、チルロールによる片側面からの冷却も用いられる。冷却媒体温度が-40℃未満では、固化した膜状物が脆化するために引取りが困難となり、また0℃未満では、大気中の水分で結露あるいは霜が発生しやすくなるため、設備が複雑になる難点がある。他方、90℃を超えると本発明の目的とする被処理水側表面側孔径が小さく傾斜孔径分布を有する多孔膜の形成が困難となる。
 フッ化ビニリデン系樹脂と可塑剤との混練物の結晶化温度Tc’と冷却用不活性液体の温度Tqとの差Tc’-Tqは、好ましくは60℃以上、更に好ましくは75℃以上、最も好ましくは90℃以上である。他方、この温度差が150℃を超えるためには、冷却用液体温度を0℃未満とすることが一般的に必要となり、好ましい冷却液としての水性媒体の使用が困難となるので好ましくない。
 溶融押出しされた中空糸膜状物の冷却浴中でのつぶれを防止するために、溶融押出後、冷却浴に入るまでの経過時間(エアギャップ通過時間=エアギャップ/溶融押出物引取り速度)は、一般に0.3~10.0秒、特に0.5~5.0秒の範囲が好ましい。
 (抽出)
 冷却・固化された膜状物は、次いで抽出液浴中に導入され、可塑剤等の抽出除去を受ける。抽出液としては、ポリフッ化ビニリデン系樹脂を溶解せず、可塑剤等を溶解できるものであれば特に限定されない。例えばアルコール類ではメタノール、イソプロピルアルコールなど、塩素化炭化水素類ではジクロロメタン、1,1,1-トリクロロエタンなど、の沸点が30~100℃程度の極性溶媒が適当である。
 (延伸)
 抽出後の膜状物は、次いでこれを延伸に付し、空孔率および孔径の増大並びに強伸度の改善をすることが好ましい。特に、延伸に先立って、抽出後の膜状物(多孔膜)の外表面から一定の深さまで選択的に湿潤させ、この状態で延伸すること(以下、「部分湿潤延伸」と称する)が、高い表面層空孔率A1を得る上で好ましい。より詳しくは、延伸に先立って多孔膜の外表面から5μm以上、好ましくは7μm以上、更に好ましくは10μm以上、かつ膜厚さの1/2以下、好ましくは1/3以下、更に好ましくは1/4以下の深さを選択的に湿潤するように行う。湿潤される深さが5μm未満では表面層空孔率A1の増大が十分でなく、1/2を超えると延伸後に乾熱緩和する場合に、湿潤液の乾燥が不均一になり、熱処理あるいは緩和処理が不均一になる恐れがある。
 上記部分湿潤延伸によると、何故、表面層空孔率A1が向上するのか、その理由は明らかになっていないが本発明者らは次のように推定している。すなわち、長手方向に延伸する際に膜厚さ方向には圧縮応力が働くと考えられるが、外表面から一定の深さを湿潤することによって、(イ)加熱浴中での熱伝達が改善され、特に表面層の温度勾配が緩和されて膜厚さ方向への圧縮応力が低減すること、(ロ)空隙内に液体が充満した状態であるため、延伸によって膜厚さ方向への圧縮応力が働いても孔がつぶれにくくなること、が推定される。
 外表面から一定の深さを湿潤する具体的方法としては、メタノール、エタノール等のフッ化ビニリデン系樹脂を濡らす溶媒あるいはその水溶液の多孔膜外表面への選択的塗布も可能である。しかし、フッ化ビニリデン系樹脂多孔膜の外表面への選択的塗布性を与えるために、表面張力が25~45mN/mである湿潤性改善液の塗布(浸漬による場合を含む)が好ましい。表面張力が25mN/m未満であるとPVDF多孔膜への浸透速度が速すぎるため外表面に選択的に湿潤性改善液を塗布することが難しい場合があり、表面張力が45mN/mを越えると外表面ではじかれてしまう(PVDF多孔膜への濡れ性あるいは浸透性が不十分である)ために外表面に均一に湿潤性改善液を塗布することが難しい場合がある。特に湿潤性改善液として、界面活性剤を水に添加して得られる界面活性剤液(すなわち界面活性剤の水溶液ないし水性均質分散液)の使用が好ましい。界面活性剤の種類は特に限定されず、アニオン系界面活性剤では、脂肪族モノカルボン酸塩などのカルボン酸塩型、アルキルベンゼンスルホン酸塩などのスルホン酸型、硫酸アルキル塩などの硫酸エステル型、リン酸アルキル塩などのリン酸エステル型;カチオン系界面活性剤では、アルキルアミン塩などのアミン塩型、アルキルトリメチルアンモニウム塩などの第四級アンモニウム塩型;非イオン系界面活性剤では、グリセリン脂肪酸エステルなどのエステル型、ポリオキシエチレンアルキルフェニルエーテルなどのエーテル型、ポリエチレングリコール脂肪酸エステルなどのエステルエーテル型;両性界面活性剤では、N,N-ジメチル-N-アルキルアミノ酢酸ベタインなどのカルボキシベタイン型、2-アルキル-1-ヒドロキシエチル-カルボキシメチルイミダゾリニウムベタインなどのグリシン型などが挙げられる。特に、ポリグリセリン脂肪酸エステルが、最終的に多孔膜に残留しても衛生上問題のない湿潤性改善液として好ましく使用される。
 界面活性剤はHLB(親水性親油性バランス)が8以上のものが好ましい。HLBが8未満であると、界面活性剤が水に細かく分散せず、結果的に均一な湿潤性改善が困難になる。特に好ましく用いられる界面活性剤として、HLBが8~20、さらには10~18の非イオン系界面活性剤あるいはイオン系(アニオン系、カチオン系および両性)界面活性剤が挙げられ、なかでも非イオン系界面活性剤が好ましい。
 多くの場合において、多孔膜外表面への湿潤性改善液の塗布は、多孔膜のバッチ的あるいは連続的な浸漬によることが好ましい。この浸漬処理は、平膜に対しては両面塗布処理、中空糸膜に対しては片面塗布処理になる。平膜のバッチ浸漬処理は適当な大きさに裁断したものを重ねて浸漬することにより、中空糸膜のバッチ浸漬処理は、ボビン巻きあるいはカセ巻きにより束ねられた中空糸膜の浸漬により行われる。バッチ処理の場合、上記範囲内で比較的低いHLB、より具体的には8~13のHLBを有する界面活性剤を用いて、比較的大きなエマルジョン粒子を形成することが好ましい。連続処理は、平膜の場合も、中空糸膜の場合も、長尺の多孔膜を連続的に処理液中に送通浸漬することにより行われる。平膜の片面のみに選択的に塗布する場合には、処理液の散布も好ましく用いられる。連続処理の場合、上記範囲内で比較的高いHLB、より具体的には8~20、より好ましくは10~18のHLBを有する界面活性剤を用いて、比較的小さなエマルジョン粒子を形成することが好ましい。
 湿潤性改善液の粘度に特に制約はないが、湿潤性改善液の塗布方法に応じて、湿潤性改善液を高粘度にすることにより浸透速度を適度に遅くすること、あるいは低粘度にして浸透速度を速くすることが可能である。
 湿潤性改善液の温度に特に制約はないが、湿潤性改善液の塗布方法に応じて、湿潤性改善液を低温度にすることにより浸透速度を適度に遅くすること、あるいは高温度にして浸透速度を速くすることが可能である。このように湿潤性改善液の粘度と温度は互いに逆方向に作用するものであり、湿潤性改善液の浸透速度の調整のために補完的に制御することができる。
 中空糸膜の延伸は、一般に、周速度の異なるローラ対等による中空糸膜の長手方向への一軸延伸として行うことが好ましい。これは、本発明のフッ化ビニリデン系樹脂中空糸多孔膜の空孔率と強伸度を調和させるためには、延伸方向に沿って延伸フィブリル(繊維)部と未延伸ノード(節)部が交互に現われる微細構造が好ましいことが知見されているからである。延伸倍率は、1.1~4.0倍程度、特に1.2~3.0倍程度、最も好ましくは1.4~2.5倍程度が適当である。延伸倍率を過大にすると、中空糸膜の破断の傾向が大となる。延伸温度は25~90℃、特に45~80℃、が好ましい。延伸温度が低過ぎると延伸が不均一になり、中空糸膜の破断が生じ易くなる。他方、延伸温度が高過ぎると、延伸倍率を上げても空孔率の増大が得難い。平膜の場合には、逐次又は同時の二軸延伸も可能である。延伸操作性の向上のために、予め80~160℃、好ましくは100~140℃の範囲の温度で1秒~18000秒、好ましくは3秒~3600秒、熱処理して、結晶化度を増大させることも好ましい。
 (緩和処理)
 上記のようにして得られたフッ化ビニリデン系樹脂の中空糸多孔膜を、非湿潤性の雰囲気(あるいは媒体)中で少なくとも一段階、より好ましくは少なくとも二段階の緩和または定長熱処理に付すことが好ましい。非湿潤性の雰囲気は、室温付近でフッ化ビニリデン系樹脂の濡れ張力よりも大きな表面張力(JIS K6768)を有する非湿潤性の液体、代表的には水、あるいは空気をはじめとするほぼ全ての気体が用いられる。中空糸のように一軸延伸された多孔膜の緩和処理は、周速が次第に低減する上流ローラと下流ローラの間に配置された上記した非湿潤性の好ましくは加熱された雰囲気中を、先に得られた延伸された多孔膜を送通することにより得られる。(1-(下流ローラ周速/上流ローラ周速))×100(%)で定まる緩和率は、合計で0%(定長熱処理)~50%の範囲とすることが好ましく、特に1~20%の範囲の緩和熱処理とすることが好ましい。20%を超える緩和率は、前工程での延伸倍率にもよるが、実現し難いか、あるいは実現しても透水量向上効果が飽和するか、あるいは却って低下するため好ましくない。
 初段の定長または緩和熱処理温度は、0~100℃、特に50~100℃が好ましい。処理時間は、所望の熱固定効果、緩和率が得られる限り、短時間でも、長時間でもよい。一般には5秒~1分程度であるが、この範囲内である必要はない。
 後段の定長または緩和熱処理温度は、80~170℃、特に120~160℃で、1~20%の緩和率が得られる程度が好ましい。
 上記した緩和処理による効果は、実質的な膜の分画性能がシャープな状態を維持し、かつ得られる多孔膜の透水量が増大することが顕著な効果である。また上記一段および二段処理を定長下で行うことは、延伸後の熱固定操作となる。
 (フッ化ビニリデン系樹脂多孔膜)
 上記一連の工程を通じて得られる本発明のフッ化ビニリデン系樹脂多孔膜は、(a)一表面(被処理水側表面)から連続する厚さ10μmの部分(表面層)について、集束イオンビーム・走査型電子顕微鏡(FIB-SEM)により測定される(a1)網目状樹脂繊維の平均径が100nm以下、且つ(a2)空孔率A1が60%以上であり、(b)一表面側表面孔径P1が0.3μm以下、という表面層構造を主要な特徴とする。
(a1)網目状樹脂繊維の平均径が小さ過ぎることによる不都合は特に認められないが、一般に10nm未満を実現することは困難である。(a2)空孔率A1は好ましくは65%以上、より好ましくは70%以上であり、上限は表面層の構造的強度に制約され、85%を超えることは困難である。(b)一表面側表面孔径P1は、通常SEMによる表面観察による平均径であり、好ましくは0.20μm以下、より好ましくは0.15μm以下であり、下限は特にないが一般に0.01μm未満とすることは困難である。
 (FIB-SEM法)
 ここで上記した本発明のフッ化ビニリデン系樹脂多孔膜の特性である(a1)網目状樹脂繊維の平均径(nm)および(a2)空孔率A1(%)を測定するために用いたFIB-SEM法の概要を以下に記す。
 中空糸多孔膜を酸化ルテニウムを用いて染色した後、エポキシ樹脂を用いて包埋し、機械研磨により中空糸膜の長手方向に垂直な円環状の断面を露出させた断面試料を作製した。この断面試料を集束イオンビーム-走査型電子顕微鏡(デュアルビームFIB/SEM複合装置、FEI社製「Nova200 NanoLab」)にセットして、中空糸多孔膜の外表面から深さ10μmまでの10μm四方の領域に対しGa(ガリウム)イオンビームを照射して厚さ20ナノメートル削り取って平滑な観察面を形成し、加速電圧3keV、観察倍率1万倍で無蒸着観察し、SEM写真を撮影した。次にこの観察面に再びGa(ガリウム)イオンビームを照射して厚さ20ナノメートル削り取って新たな観察面(10μm四方)を調製し、加速電圧3keV、観察倍率1万倍で無蒸着観察し、写真撮影した。この操作を100回繰り返して最初の観察面から20ナノメートル毎に厚さ(深さ)2μmまで連続するSEM写真100枚を撮影した。
 撮影した写真を二値化した後、三次元画像解析装置を使用して10μm×10μm×2μm(すなわち、外表面の10μm×2μmの領域について深さ10μmまでの試料についての観察総体積(=200μm=2×1011nm))の三次元観察像を構築して、繊維総体積,空隙総体積および以下の構造パラメータを求めた。
・表面層空孔率A1(%)=空隙総体積/観察総体積×100
・繊維平均径(nm):三次元観察像を用いて、繊維中の分岐点間毎に繊維を長手に垂直に切る断面積を測定し、その円相当直径を算出し、平均値として求めた;
・空孔分岐点間数(個):三次元観察像から空孔の中心線を求め、分岐点すなわち3本以上が接している点または空孔の径が異なる点、および終点すなわち他と接しない端点を求め、分岐点と分岐点が隣接する数、分岐点と終点が隣接する数、終点と終点が隣接する数の総和を分岐点間数として求めた。
 なお観察開始から深さ1μmまで掘り下げて得た観察面のSEM写真の二値化画像例を図3~5として示す。
 本発明の多孔膜における表面層は、単位容積当りの空孔分岐点関数が25(個/μm)以下と小さいことを別の特徴とする。これは存在する空孔に分岐ならびに独立空孔が少なく、被処理水の透過性が良好なことを示す。
 上記以外の本発明の多孔膜の特徴を挙げると、上記した表面層の空孔率A1(%)と、多孔膜全層の空孔率A2(%)の比A1/A2が0.90以上、好ましくは0.93以上であり、上限は特に限定されないが、一般に1.1以下である。全層空孔率A2(%)は、好ましくは70~85%、さらに好ましくは75~82%である。
 本発明の多孔膜を好ましい形態である中空糸多孔膜としたときの、その他の一般的特徴を挙げると、ハーフドライ/バブルポイント法(ASTM・F316-86およびASTM・E1294-86)により測定される平均孔径Pmが一般に0.25μm以下、好ましくは0.20~0.01μm、さらに好ましくは0.15~0.05μmであり、最大孔径Pmaxが一般に0.70~0.03μm、好ましくは0.40~0.06μm;引張り破断強度が7MPa以上、引張り破断伸度が30%以上、好ましくは60%以上の特性が得られる。また厚さは、50~800μm程度の範囲が通常であり、好ましくは50~600μm、特に好ましくは150~500μmである。中空糸としての外径は0.3~3mm程度、特に1~3mm程度が適当である。また試長200mm、水温25℃、差圧100kPaにおける純水透水量は、5m/day以上、好ましくは10m/day以上、さらに好ましくは15m/day以上、最も好ましくは20m/day以上である。
 また、本発明は、上記のようにして得られたフッ化ビニリデン系樹脂多孔膜を用いて被処理水をろ過するに際し、ろ過と多孔膜の被処理水側表面の曝気とを同時にまたは交互に行うろ過水の製造方法も含む。
 本発明の多孔膜による濁水のろ過は、多孔膜の被処理水側表面孔径P1が懸濁質の粒子径より十分に小さいために、表面ろ過であると考えられるが、被処理水側表面層の空孔率A1が大きく、好ましくは空孔分岐点間数が少ないために、単位膜面積あたりのろ過水量(ろ過流束)を高めても、表面層の孔に発生する局所流束は(A1が小さい膜に比べて)低く且つ均一になると考えられる。これにより膜面への懸濁質粒子の押し付け力が低減されるが、さらに被処理水側表面に曝気を行うことにより、膜面の懸濁質粒子の流動性が増すことで膜面の懸濁質濃度上昇が抑制され、経時でのろ過圧力の上昇が抑制され、長期にわたり安定的なろ過の継続が可能になる。
 本発明の多孔膜によるろ過は、例えば多孔膜を内蔵した膜モジュールを用いて行うことが好ましい。多孔膜の被処理水側表面を曝気するのに適した膜モジュールとして、WO2007/080910A1、あるいはWO2007/040035A1に開示されるものが例示できる。
 曝気のタイミングとしては、膜モジュールを大気に開放した槽に浸漬してろ過する場合には、ろ過と同時に曝気を行うことが好ましい。曝気を連続で行いながら、間欠的にろ過のみを休止することも好ましい。この場合はろ過を3分間~30分間、好ましくは5分間~15分間連続して行った後、ろ過休止を30秒間~5分間、好ましくは1分間から2分間行う。このような時間配分でろ過とろ過休止を周期的に繰り返すことが好ましい。このようにろ過中の膜面に曝気が作用する方法は、MBR法のように懸濁質粒子の濃度が高く、MLSS(活性汚泥浮遊物質量)として3000~20000mg/L程度あるような場合に好適である。
 曝気量としては、膜モジュールの底面積1mあたり5~200m/h、好ましくは10~100m/h、さらに好ましくは20~70m/hである。5m/h未満ではろ過圧力上昇の抑制が十分でなく、200m/h超ではろ過差圧上昇を抑制する効果は飽和する。
 膜をケーシングに入れて密閉した膜モジュールに被処理水を導入してろ過する場合には、ろ過と曝気を同時に行うことはモジュール構造的に困難であるため、ろ過と交互に曝気を行うことが好ましい。交互に行う場合にはろ過を10分間~5時間、好ましくは30分間~3時間連続して行った後、ろ過を停止して曝気を10秒間~5分間、好ましくは30秒間~3分間行う。このような時間配分でろ過と曝気を周期的に繰り返すことが好ましい。
 曝気量としては、膜モジュールの底面積1mあたり20~400m/h、好ましくは50~300m/hである。20m/h未満ではろ過圧力上昇の抑制が十分でなく、400m/h超ではろ過差圧上昇を抑制する効果は飽和する。
 また、本発明は前記のようにして得られたフッ化ビニリデン系樹脂多孔膜を用いて被処理水をろ過してろ過水を得る工程、およびフッ化ビニリデン系樹脂多孔膜のろ過水側から薬液を注入して膜を洗浄する工程を含むことを特徴とするろ過水の製造方法も含む。
 上記のろ過水の製造方法において、薬液のろ過水側表面からの注入、中空糸膜の場合には中空部からの逆圧注入は、膜をろ過装置に取り付けたまま行う(CIP;Clean In Place法)。
 また、好ましくはろ過と同時にまたは交互に曝気を行うことにより、薬液の注入は膜を装置内且つ被処理水に浸漬したままの状態で行うことも好ましく、CIPを効率的に行うことが出来る。これはCIP法における薬液の注入は膜の表面層を含む膜内部に付着した汚れの除去を主目的とするためであり、曝気による膜表面の除去を併用することにより、膜清浄化効果を総合的に向上し、運転期間の長期的持続が可能になるからである。
 薬液としては、次亜塩素酸ナトリウム、過酸化水素等の酸化剤、塩酸、クエン酸などの酸、水酸化ナトリウム等のアルカリ、等の水溶液が好ましく用いられる。
 薬液濃度は、次亜塩素酸ナトリウムの場合には有効塩素濃度として0.02~1重量%、クエン酸の場合には1~5重量%、水酸化ナトリウムの場合には0.5~2重量%が好ましい。
 薬液の注入による膜洗浄は、ろ過圧力が浸漬ろ過においては60kPa以上に、加圧ろ過においては150kPa以上に上昇した時点で行なうのが好ましく、具体的には2週間~6ヶ月に1回、好ましくは1ヶ月~3ヶ月に1回程度行う。
 CIP法においては一般に、膜洗浄の回数を増やしても経済的負担が軽いため、薬液注入をろ過差圧が顕著に上昇する前に予防的に行うことも好ましい。具体的には1日~1ヶ月に1回、好ましくは3日~2週間に1回行う。
 薬液の注入流束はろ過流束と同等ないし数倍程度でよく、具体的には被処理水側表面積を基準として0.3~10m/day程度である。CIP法は、薬液による化学的な分解あるいは溶解作用によって膜の汚れを除去するものであるから、膜に効率的に薬液が接触することが達成されればよい。このため膜に薬液が接触した後は出来るだけ低流束で注入する方法、具体的には0.1~2m/dayで注入することも好ましく、あるいは膜に薬液が接触した時点で注入を止め、一定時間保持する方法も好ましい。
 膜と薬液の接触時間は、薬液注入1回当たり、注入時間および保持時間の合計として2~240分間、好ましくは3~100分間、さらに好ましくは5~30分間である。
 以下、実施例、比較例により、本発明を更に具体的に説明する。以下の記載を含め、上記したFIB-SEM測定値以外の本明細書に記載の特性値は、以下の方法による測定値に基くものである。
 (結晶融点Tm1,Tm2および結晶化温度Tc、Tc′)
 パーキンエルマー社製の示差走査熱量計「DSC7」を用いて、試料樹脂10mgを測定セルにセットし、窒素ガス雰囲気中で、温度30℃から10℃/分の昇温速度で250℃まで一旦昇温し、ついで250℃で1分間保持した後、250℃から10℃/分の降温速度で30℃まで降温してDSC曲線を求めた。このDSC曲線における昇温過程における吸熱ピーク速度を融点Tm1(℃)とし、降温過程における発熱ピーク温度を結晶化温度Tc(℃)とした。引き続いて、温度30℃で1分間保持した後、再び30℃から10℃/分の昇温速度で250℃まで昇温してDSC曲線を測定した。この再昇温DSC曲線における吸熱ピーク温度を本発明のフッ化ビニリデン系樹脂の結晶特性を規定する本来の樹脂融点Tm2(℃)とした。
 また膜原料としてのフッ化ビニリデン系樹脂と可塑剤等との混合物の結晶化温度Tc′(℃)とは、押出機で溶融混練した後、ノズルから押出され冷却固化された第1中間成形体の10mgを試料として上記と同様の昇降温サイクルにかけてDSC曲線を得、降温過程において検出した発熱ピーク温度をいう。
 (相溶性)
 ポリエステル系可塑剤およびモノメリックエステル系可塑剤からなる相溶性抑制剤のそれぞれ、またはこれらの混合物(以下、本項で単に「可塑剤」と称する)のフッ化ビニリデン系樹脂に対する相溶性は、次の方法により判定した:
 フッ化ビニリデン系樹脂23.73gと、可塑剤46.27gとを、室温で混ぜ合わせてスラリー状混合物を得る。次に、東洋精機(株)製「ラボプラストミル」(ミキサータイプ:「R-60」)のバレルをフッ化ビニリデン系樹脂の融点より10℃以上高い(例えば約17~37℃高い)所定の温度に調整しておいて,上記スラリー状混合物を投入して3分間予熱し、続いてミキサー回転数50rpmで溶融混練する。混練開始後、10分以内に清澄な(すなわち目視で濁りの原因となる分散物のない程度に透明な)溶融混練物が得られる場合には、その可塑剤はフッ化ビニリデン系樹脂に対して相溶性であると判定する。なお、溶融混練物の粘度が高い場合などには気泡の抱きこみにより白濁して見えることがあるので、そのときは、適宜、熱プレスするなどの方法により脱気して判定する。一旦、冷却固化した場合には、再度加熱して溶融状態にしてから清澄か否かを判定する。
 (重量平均分子量(Mw))
 日本分光社製のGPC装置「GPC-900」を用い、カラムに昭和電工社製の「Shodex KD-806M」、プレカラムに「Shodex KD-G」、溶媒にNMPを使用し、温度40℃、流量10mL/分にて、ゲルパーミエーションクロマトグラフィー(GPC)法によりポリスチレン換算分子量として測定した。
 (全層空孔率A2)
 平膜および中空糸膜を含む多孔膜の見掛け体積V(cm)を算出し、更に多孔膜の重量W(g)を測定して次式より全層空孔率A2を求めた:
  [数1]
  全層空孔率A2(%)=(1-W/(V×ρ))×100
        ρ:PVDFの比重(=1.78g/cm
 なお、抽出後且つ延伸前の膜について同様の方法により測定される未延伸膜全層空孔率A0(%)と溶融押出混合物中の可塑剤(および溶媒)混合物Bの割合RB(重量%)の比A0/RBの概数は、混合物Bの孔形成効率を示すものと考えられる。
  (平均孔径)
  ASTM F316-86およびASTM E1294-89に準拠し、Porous Materials, Inc.社製「パームポロメータCFP-200AEX」を用いてハーフドライ法により平均孔径Pm(μm)を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。
 (最大孔径)
 ASTM F316-86およびASTM E1294-89に準拠し、Porous Materials, Inc.社製「パームポロメータCFP-200AEX」を用いてバブルポイント法により最大孔径Pmax(μm)を測定した。試液はパーフルオロポリエステル(商品名「Galwick」)を用いた。
 (被処理水側表面孔径P1およびろ過水側表面孔径P2)
 平膜または中空糸状の多孔膜試料について、被処理水側表面(中空糸においては外表面)の平均孔径P1およびろ過水側表面(中空糸においては内表面)の平均孔径P2を、SEM法により測定した(SEM平均孔径)。以下、中空糸多孔膜試料を例にとって、測定法を説明する。中空糸膜試料の外表面および内表面について、それぞれ観察倍率1万5千倍でSEM写真撮影を行う。次に、それぞれのSEM写真について、孔と認識できるすべてのものについて孔径を測定する。孔径は各孔の長径と短径を測定し、孔径=(長径+短径)/2として求める。測定した孔径の算術平均を求め、外表面平均孔径P1および内表面平均孔径P2とする。なお写真内に観察される孔数が多すぎる場合には、写真画像を4等分して、その1つの区域(1/4画面)について、上記の孔径測定を行うことで簡略化してもよい。本発明の中空糸膜の外表面について1/4画面で測定する場合には、測定孔数は概ね200~300個となる。
 (透水量)
 試長L(図1参照)=200mmの試料中空糸多孔膜をエタノールに15分間浸漬し、次いで純水に15分間浸漬して湿潤化した後、水温25℃、差圧100kPaで測定した1日当りの透水量(m/day)を、中空糸多孔膜の膜面積(m)(=外径×π×試長Lとして計算)で除して得た。測定値は、F(100kPa,L=200mm)と表記し、単位はm/day(=m/m・day)で表わす。
 (CIP回復時間(MBR法-CIP処理))
 図2に示す試験装置を用い、中空糸多孔膜試料から形成した浸漬型ミニモジュールについて、ろ過流束1.7m/dayで活性汚泥水の継続的ろ過を行った後、薬品注入逆洗(CIP)処理を行い、中空糸多孔膜内外の差圧がろ過開始直後の値(初期値)まで回復するのに要する時間をCIP回復時間と定義する。
 ミニモジュールは、中空糸多孔膜試料の3本を、上部ヘッダーと下部ヘッダーの間に1本当たりの有効ろ過長さが500mmになるように鉛直に固定することにより形成される。上部ヘッダーは、その下側に中空糸膜の上端が開口された状態で固定されるための上部差込口、この上部差込口に連通するろ過水用内部空間(流路)および上側に吸引ポンプへ向けてろ過水を排出するためのろ過水出口を有する。下部ヘッダーはその上側に中空糸膜をその下端部が閉止された状態で固定するための下部差込口を有し、更にこの下部差込口とは連通しない曝気ノズル(直径1mm×10本)、曝気ノズルに空気を供給するための内部空間(供給路)および内部空間に空気ポンプから空気を供給するための空気供給口を有する。中空糸膜試料3本の上下端は、それぞれエポキシ樹脂により、上部ヘッダーとは液密に接続するように上部差込口に差込み固定され、また下部ヘッダーとは閉止状態となるように下部差込口に差込み固定される。
 このモジュール化した中空糸膜試料をエタノールに15分間浸漬し、次いで純水で置換することにより湿潤化した後、底面積約30cm、水面までの高さ600mmの角筒状試験水槽のほぼ中央に中空糸が鉛直になるように浸漬する。他方、この試験水槽には、内容積20Lの原水タンク中に収容したMLSS(浮遊物質濃度)=8600mg/L、溶存有機物濃度DOC(1μmのガラスフィルターでろ過後のTOC(全有機質濃度)として測定する)=7~9mg/Lの活性汚泥水を、ポンプにより0.2L/分の割合で供給し、オーバーフロー分は原水タンクへと循環する。また、下部ヘッダーからは、空気を5L/分の割合で供給し、試験水槽中の活性汚泥水中に常時バブリングさせる。
 この状態で、吸引ポンプを作動させて上部ヘッダーのろ過水出口から吸引することにより、中空糸多孔膜の外側から内側へと、1.7m/dayの一定ろ過流束で13分間吸引ろ過運転後、2分間のろ過停止を行うサイクルを繰り返しながら24時間の吸引ろ過を行って、中空糸多孔膜内外の差圧(ろ過差圧)の経時変化を測定する。吸引を開始して最初の5分間の差圧平均値を初期差圧TMP1とし、24時間経過した時点での5分間の差圧平均値を到達差圧TMP2として記録する。
 次に、受水容器に代えて次亜塩素酸ソーダ水溶液(有効塩素濃度3000ppm)を満たした薬液容器を取り付け、吸引ポンプの向きを逆向きに切り替えて作動させて、上部ヘッダーのろ過水出口から次亜塩素酸ソーダ水溶液を注入することにより、中空糸多孔膜の内側から外側へと、同じく1.7m/dayの一定ろ過水量で注入を行って、中空糸多孔膜内外の差圧(逆洗差圧)の経時変化を記録する。逆洗差圧が膜の洗浄の進行とともに徐々に低下して平衡値に達するまでの時間tを測定する。
 次に、薬液容器に代えて受水容器を取り付け、吸引ポンプの向きを元に戻して作動させて、再び中空糸多孔膜の外側から内側へと、同じく1.7m/dayの一定ろ過流束で吸引ろ過を行って中空糸多孔膜内外の差圧(ろ過差圧)の経時変化を測定する。吸引を再開して最初の5分間の差圧平均値を回復後差圧TMP3として記録する。このとき下式により算出した差圧回復率が0.95以上であれば時間tをCIP回復時間として記録する:
   差圧回復率=(TMP2-TMP3)/(TMP2-TMP1)
 もし差圧回復率が0.95に満たない場合には次亜塩素酸ソーダ水溶液の注入をさらに10分間行った後、再度吸引ろ過してTMP3を測定して差圧回復率が0.95以上になるまでこの操作を繰り返し、時間tに加算して合計の注入時間をCIP回復時間とする。
 (膜表面堆積物(ケーキ)のSEM観察)
 上記CIP回復時間の測定において24時間の吸引ろ過を行った後、中空糸多孔膜試料のうちの1本を切り出し、純水で表面を洗い流した後、真空乾燥器を用いて24時間乾燥させた。次いで、走査型電子顕微鏡を用いて外表面を観察倍率5000倍で膜表面堆積物(ケーキ)の有無を観察した。
 (表面張力測定)
 デュヌイ表面張力試験器を用いてJIS-K3362に従って輪環法により、温度25℃での湿潤処理液の表面張力を測定した。
 (引っ張り試験)
  引っ張り試験機(東洋ボールドウィン社製「RTM-100」)を使用して、温度23℃、相対湿度50%の雰囲気中で初期試料長100mm、クロスヘッド速度200mm/分の条件下で測定した。
 (実施例1)
 重量平均分子量(Mw)が4.1×10のマトリクス用ポリフッ化ビニリデン(PVDF-I)(粉体)とMwが9.7×10の結晶特性改質用ポリフッ化ビニリデン(PVDF-II)(粉体)を、それぞれ75重量%および25重量%となる割合で、ヘンシェルミキサーを用いて混合して、Mwが5.4×10であるPVDF混合物(混合物A;成膜後の結晶化温度Tc=150.4℃)を得た。
 可塑剤として、アジピン酸系ポリエステル系可塑剤(末端をイソノニルアルコールで封止したアジピン酸と1,2-ブタンジオールのポリエステル;株式会社ジェイ・プラス製「D623N」、数平均分子量約1800、JIS K7117-2(円すい-平板型回転粘度計)による25℃での測定粘度3000mPa・s)と、モノメリックエステル系可塑剤であるアジピン酸ジイソノニル(株式会社ジェイ・プラス製「DINA」)とを、88重量%/12重量%の割合で、常温にて攪拌混合して、可塑剤混合物(混合物B)を得た。
 同方向回転噛み合い型二軸押出機(東芝機械株式会社製「TEM-26SS」、スクリュー直径26mm、L/D=60)を使用し、粉体供給部から混合物Aを供給し、バレル温度220℃で溶融混練して、続いて押出機シリンダの粉体供給部より下流に設けられた液体供給部から混合物Bを、混合物A/混合物B=27.9重量%/72.1重量%の割合で供給して、バレル温度220℃で混練し、混合物を外径6mm、内径4mmの円形スリットを有するノズル(190℃)から中空糸状に押し出した。この際、ノズル中心部に設けた通気口から空気を中空糸の空洞部に注入して内径を調節した。
 押し出された混合物を溶融状態のまま、温度50℃に維持されかつノズルから280mm離れた位置に水面を有する(すなわちエアギャップが280mmの)温度Tq=50℃の水冷却浴中に導き冷却固化させ(冷却浴中の滞留時間:約6秒)、5.0m/分の引取速度で引き取った後、これをボビンに巻き取って第1中間成形体を得た。
 次に、この第1中間成形体をジクロロメタン中に室温で30分間浸漬して可塑剤を抽出した。この際ジクロロメタンが糸に満遍なく行き渡るようにボビンを回転させながら抽出を行った。次いでジクロロメタンを新しいものに取り替えて再び同条件にて抽出する操作を繰り返し、合計4回の抽出を行った。
 次に温度120℃のオーブン中で1時間加熱してジクロロメタンを除去するとともに熱処理を行い第2中間成形体を得た。この際、ボビンの直径が自由に収縮するようにして糸の収縮応力を緩和させた。
 次にこの第2中間成形体をボビンに巻いた状態で、界面活性剤としてポリグリセリン脂肪酸エステル(阪本薬品工業株式会社製「SYグリスター ML-310」、HLB=10.3)を濃度0.05重量%で純水に溶解したエマルジョン水溶液(表面張力=32.4mN/m)に常温で30分間浸漬した。
 更にボビンをエマルジョン水溶液に浸漬したまま、ボビンを回転しつつ第2中間成形体を引き出し、第1のロール速度を20.0m/分にして、60℃の水浴中を通過させ、第2のロール速度を35.0m/分にすることで長手方向に1.75倍に延伸した。次いで温度90℃に制御した温水浴中を通過させ、さらに空間温度80℃に制御した乾熱槽を通過させ熱処理を行った。これを巻き取って本発明のポリフッ化ビニリデン系中空糸多孔膜(第3成形体)を得た。ボビンに巻いた第2中間成形体をすべて延伸するまでに要した時間は約200分であった。
 (比較例1)
 混合物Aとして、PVDF-IとPVDF-IIをそれぞれ95重量%および5重量%となる割合で混合したPVDF混合物を用いたこと;混合物Bとして可塑剤としてアジピン酸ポリエステル系可塑剤(末端をオクチルアルコールで封止したアジピン酸と1,2-プロピレングリコールのポリエステル;株式会社ADEKA製「PN150」、数平均分子量約1000、粘度500mPa・s)とN-メチルピロリドン(NMP)とを、82.5重量%/17.5重量%の割合で、常温にて攪拌混合して、可塑剤・溶媒混合物Bを用いたこと;混合物Aと混合物Bを38.4重量%/61.6重量%の割合で供給したこと;水冷却浴温度を40℃にしたこと;延伸倍率を1.85倍としたこと;延伸後の熱処理として、90℃の水浴中で8%の緩和、ついで140℃の空気中で3%の緩和処理を行ったこと;以外は実施例1と同様にしてポリフッ化ビニリデン系多孔膜を得た。
 (比較例2)
 特許文献2の製膜法により製造されたと推認される市販フッ化ビニリデン系樹脂中空糸多孔膜(三菱レイヨン(株)製「ステラポアーSADF2590」)を用いて物性測定を行った。
 上記実施例および比較例の製造条件の概容および得られたポリフッ化ビニリデン系中空糸多孔膜の物性を、まとめて後記表1に示す。なお比較例2の中空糸多孔膜は、特許文献2の実施例にも示される通り、ポリエステル製マルチフィラメントの単織組紐を芯層として外側にフッ化ビニリデン系樹脂被膜層を形成した複合構造を有するため、その全層空孔率A2は外側層のみについての測定値を示す。また各例の中空糸多孔膜についてFIB-SEM測定を行った際の中間部(厚さ2μmの試料について1μm深さまで表面を更新して得た観察面)の10μm×10μmの視野の二値化したSEM画像(10000倍)を図3~図5に示す。図3~5において、いずれも、図示の左側が外表面側であり、白い部分が樹脂繊維(相)、黒い部分が空孔(相)を、それぞれ示す。図4(比較例1)および図5(比較例2)と比較して、図3(実施例)においては、はるかに繊維径が小さく均質な網目状樹脂繊維構造が認められる。
Figure JPOXMLDOC01-appb-T000001
 なお各例の中空糸多孔膜について、MBR法によるろ過およびCIP回復処理を行った結果を補足すると以下の通りである。
<実施例1>
 MBR法による24時間ろ過後膜の外表面をSEM(5000倍)で観察したところ、全面に開孔が確認され、ケーキは観察されなかった。
 ろ過後の膜にCIP処理を開始して5分後に逆洗差圧が平衡に達し、再度吸引ろ過したところ、差圧回復率が0.98であり、CIP回復時間は5分間であった。
<比較例1>
 24時間ろ過後膜の外表面を観察したところ、外表面の約7割がケーキによって覆われ、開口は一部に確認できるのみであった。ろ過後の膜について、CIP処理を開始して30分後に逆洗差圧が平衡に達し、再度吸引ろ過したところ、差圧回復率が0.98であり、CIP回復時間は40分間であった。
<比較例2>
 ろ過後膜の外表面を観察したところ、全面がケーキによって覆われ、開口を確認することはほとんど出来なかった。ろ過後の膜に、CIP処理を開始して50分後に逆洗差圧が平衡に達し、再度吸引ろ過したところ、差圧回復率が1.00であり、CIP回復時間は50分間であった。
 上記図3~図5、表1も含めた実施例および比較例の評価結果を見れば理解されるように、本発明によれば、ろ水処理に適した小なる表面孔径に加えて、極めて細い網目状樹脂繊維からなり、極めて高い空孔率を有する被処理水側表面層を有することにより、微粒子透過阻止特性に優れる一方で、耐汚染性ならびに再生性が極めて良好なフッ化ビニリデン系樹脂多孔膜、その製造方法ならびにそれを用いるMBR法および/またはCIP法によるろ過水の製造方法が提供される。本発明のフッ化ビニリデン系樹脂多孔膜は、上記のように(濾)水処理に適したものであるが、特に分離特性あるいは選択透過特性に寄与する緻密層の空孔率が改善されたことにより、優れた分離特性あるいは選択透過特性を有しながら、流体の透過あるいはイオン等の移動に対する抵抗が少ない。このため、本発明の多孔膜は、(濾)水処理に限らず、細菌やたんぱく質等の濃縮、重金属類の化学凝集粒子の回収に利用できる分離膜、油水分離や気液分離用の分離膜、リチウムイオン二次電池等の電池隔膜および固体電解質支持体等としても、好適に使用することが出来る。

Claims (20)

  1. 集束イオンビーム・走査型電子顕微鏡により測定される一表面から連続する厚さ10μmの部分における網目状樹脂繊維の平均径が100nm以下且つ空孔率A1が60%以上であり、該一表面側表面孔径P1が0.3μm以下であることを特徴とする、フッ化ビニリデン系樹脂多孔膜。
  2. 体積1立方μmあたりの空孔分岐点間数が25個以下である請求項1に記載の多孔膜。
  3. 一表面側表面層空孔率A1と一表面側表面孔径P1との比A1/P1が400以上である請求項1または2に記載の多孔膜。
  4. 一表面側表面層空孔率A1と全層空孔率A2との比A1/A2が0.9以上である請求項1~3のいずれかに記載の多孔膜。
  5. 引張り破断強度が7MPa以上、引張り破断伸度が30%以上である請求項1~4のいずれかに記載の多孔膜。
  6. 延伸されている請求項1~5のいずれかに記載の多孔膜。
  7. 全体形状が中空糸膜状であり、外表面が前記一表面である請求項1~6のいずれかに記載の多孔膜。
  8. 請求項1~7のいずれかに記載の多孔膜の前記一表面を被処理水側表面とし、逆側表面を透過水側表面として有するろ水処理膜。
  9. 重量平均分子量が30万以上のフッ化ビニリデン系樹脂20~50重量%に対して可塑剤50~80重量%を添加し溶融混練して得られた組成物を膜状に溶融押出し、フッ化ビニリデン系樹脂に対して不活性な液体にて片側面から優先的に冷却して固化成膜した後、可塑剤を抽出して網目状多孔ろ水膜を回収する方法において、前記可塑剤が溶融混練組成物の形成温度においてフッ化ビニリデン系樹脂と相溶性を有し、フッ化ビニリデン系樹脂との混練物にフッ化ビニリデン系樹脂単独の結晶化温度とほぼ等しい結晶化温度を与えるポリエステル系可塑剤であり、更に可塑剤の抽出後の多孔膜を、その外表面から5μm以上、且つ膜厚さの1/2以下の深さまで選択的に湿潤させた状態で延伸する工程を含むことを特徴とする、請求項1~8のいずれかに記載のフッ化ビニリデン系樹脂多孔膜の製造方法。
  10. 組成物の結晶化温度Tc′、溶融押出温度Tdおよび水浴温度Tqの間に、Td-Tc′≧30℃、且つTc′-Tq≧60℃の関係が成立する請求項9に記載の製造方法。
  11. 前記可塑剤が数平均分子量が1200以上のポリエステル系可塑剤に加えてフッ化ビニリデン系樹脂との相溶性抑制剤を含む請求項9または10に記載の製造方法。
  12. 前記可塑剤が前記ポリエステル系可塑剤50~98重量%と相溶性抑制剤としてのモノメリックエステル系可塑剤2~50重量%とを含む請求項11に記載の製造方法。
  13. 前記ポリエステル系可塑剤の温度25℃における粘度が1000mPa・s以上である請求項9~12のいずれかに記載の製造方法。
  14. 前記ポリエステル系可塑剤はアジピン酸とグリコールのポリエステルである請求項9~13のいずれかに記載の製造方法。
  15. 前記ポリエステル系可塑剤は分子鎖末端が炭素数9~18の一価アルコールにより封止されているポリエステルである請求項9~14のいずれかに記載の製造方法。
  16. 前記フッ化ビニリデン系樹脂が、重量平均分子量20万~67万のマトリクス用フッ化ビニリデン系樹脂(PVDF-I)25~98重量%と、重量平均分子量がPVDF-Iの1.8倍以上120万未満を有する結晶特性改質用フッ化ビニリデン系樹脂(PVDF-II)2~75重量部との混合物である請求項9~15のいずれかに記載の製造方法。
  17. 前記組成物を中空糸膜状に溶融押出し、フッ化ビニリデン系樹脂に対して不活性な液体にて外表面側から優先的に冷却して固化成膜する請求項9~16のいずれかに記載の製造方法。
  18. フッ化ビニリデン系樹脂と可塑剤からなる前記組成物のDSC測定による結晶化温度Tc′(℃)が140℃以上である請求項9~17のいずれかに記載の製造方法。
  19. 請求項1に記載のフッ化ビニリデン系樹脂多孔膜を用いて被処理水をろ過するに際し、ろ過と多孔膜の被処理水側表面の曝気とを同時にまたは交互に行うろ過水の製造方法。
  20. 請求項1に記載のフッ化ビニリデン系樹脂多孔膜を用いて被処理水をろ過してろ過水を得る工程、および前記フッ化ビニリデン系樹脂多孔膜のろ過水側から薬液を注入して膜を洗浄する工程を含むことを特徴とするろ過水の製造方法。
PCT/JP2010/061630 2009-07-14 2010-07-08 フッ化ビニリデン系樹脂多孔膜、その製造方法およびろ過水の製造方法 WO2011007714A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/382,199 US9096957B2 (en) 2009-07-14 2010-07-08 Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
CN201080031727.6A CN102470328B (zh) 2009-07-14 2010-07-08 1,1-二氟乙烯系树脂多孔膜、该多孔膜的制造方法和过滤水的制造方法
JP2011522789A JP5576866B2 (ja) 2009-07-14 2010-07-08 フッ化ビニリデン系樹脂多孔膜の製造方法
KR1020127001008A KR101362553B1 (ko) 2009-07-14 2010-07-08 불화비닐리덴계 수지 다공막, 그의 제조 방법 및 여과수의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-165360 2009-07-14
JP2009165360 2009-07-14

Publications (1)

Publication Number Publication Date
WO2011007714A1 true WO2011007714A1 (ja) 2011-01-20

Family

ID=43449323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061630 WO2011007714A1 (ja) 2009-07-14 2010-07-08 フッ化ビニリデン系樹脂多孔膜、その製造方法およびろ過水の製造方法

Country Status (5)

Country Link
US (1) US9096957B2 (ja)
JP (1) JP5576866B2 (ja)
KR (1) KR101362553B1 (ja)
CN (1) CN102470328B (ja)
WO (1) WO2011007714A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039530A (ja) * 2011-08-17 2013-02-28 Toray Ind Inc ポリアセタールを主成分とする多孔質中空糸膜およびその製造方法
JP2013253957A (ja) * 2011-08-29 2013-12-19 Shiseido Co Ltd 化粧料の断面観察方法
JP2019047779A (ja) * 2017-09-07 2019-03-28 旭化成株式会社 多孔質膜を用いた醤油の製造方法
JP2019047781A (ja) * 2017-09-07 2019-03-28 旭化成株式会社 多孔質膜を用いた醤油の製造方法
JP2020142191A (ja) * 2019-03-06 2020-09-10 旭化成株式会社 中空糸膜モジュール、及びこれを用いた海水のろ過方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2583745A1 (en) * 2011-10-20 2013-04-24 Gambro Lundia AB Process for continuously washing a hollow fibre membrane for depleting residuals
US10898864B2 (en) * 2016-03-11 2021-01-26 Asahi Kasei Kabushiki Kaisha Porous membrane, porous membrane module, method for producing porous membrane, method for producing clarified liquid, and method for producing beer
CN111050889B (zh) * 2017-09-01 2023-03-03 旭化成株式会社 多孔性中空纤维膜、多孔性中空纤维膜的制造方法及过滤方法
CN111065723B (zh) * 2017-09-07 2023-11-03 旭化成株式会社 使用多孔膜的酿造酒的制造方法
KR102015709B1 (ko) * 2017-11-24 2019-08-28 롯데케미칼 주식회사 중공사막 및 이의 제조방법
KR102176411B1 (ko) * 2018-10-16 2020-11-09 오스템임플란트 주식회사 감염저항성이 우수한 치조골 재생 차폐막의 제조방법
KR102218062B1 (ko) * 2018-10-18 2021-02-19 주식회사 엘지화학 불소계 수지 다공성 막 및 이의 제조방법
CN114641342A (zh) * 2019-10-25 2022-06-17 株式会社钟化 聚合物水分散液的制造方法
KR102308100B1 (ko) * 2021-03-19 2021-09-30 씨에스케이(주) 탈기용 다공성 필터의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216804A (ja) * 1984-04-13 1985-10-30 Teijin Ltd ポリフツ化ビニリデン系多孔中空糸膜およびその製造方法
WO1999047593A1 (fr) * 1998-03-16 1999-09-23 Asahi Kasei Kogyo Kabushiki Kaisha Film microporeux
WO2005123234A1 (ja) * 2004-06-15 2005-12-29 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法
WO2006087963A1 (ja) * 2005-02-15 2006-08-24 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜、それを用いる水の濾過方法およびその製造方法
WO2007010832A1 (ja) * 2005-07-20 2007-01-25 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜
JP2007313491A (ja) * 2006-04-25 2007-12-06 Kureha Corp 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JP2008036635A (ja) * 2001-03-06 2008-02-21 Asahi Kasei Chemicals Corp 中空糸膜の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078548B2 (ja) 1987-05-29 1995-02-01 東レ株式会社 ポリフッ化ビニリデン系樹脂多孔性膜およびその製法
JPH078549B2 (ja) 1987-05-29 1995-02-01 東レ株式会社 ポリフッ化ビニリデン系樹脂多孔性膜およびその製造方法
US4867881A (en) * 1987-09-14 1989-09-19 Minnesota Minning And Manufacturing Company Orientied microporous film
US4990294A (en) * 1988-05-04 1991-02-05 Millipore Corporation Process for producing fluorocarbon membranes and membrane product
JP2899903B2 (ja) 1989-01-12 1999-06-02 旭化成工業株式会社 ポリフツ化ビニリデン多孔膜及びその製造方法
JP3466734B2 (ja) 1993-10-05 2003-11-17 呉羽化学工業株式会社 フッ化ビニリデン系樹脂多孔質膜とその製造方法
KR100458615B1 (ko) * 1996-01-22 2005-04-21 폴 필트레이션 앤드 세퍼레이션스 그룹 인크. 고다공성폴리비닐리덴디플루오라이드막
US20040135274A1 (en) * 1998-03-16 2004-07-15 Shigenobu Matsuda Microporous membrane
JP2001087636A (ja) 1999-09-21 2001-04-03 Asahi Kasei Corp ポリエチレン製中空糸状多孔膜の製法
TW581709B (en) 1999-10-22 2004-04-01 Asahi Kasei Corp Heat-resistant microporous film
CA2407859C (en) 2001-03-06 2006-04-11 Asahi Kasei Kabushiki Kaisha Method for producing hollow fiber membrane
JP4761967B2 (ja) * 2003-10-03 2011-08-31 株式会社クレハ フッ化ビニリデン系樹脂多孔質中空糸およびその製造方法
JP4987471B2 (ja) 2004-04-14 2012-07-25 株式会社クレハ フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法
CN100411722C (zh) * 2006-12-29 2008-08-20 浙江大学 聚偏氟乙烯共混多孔膜及其制备方法
EP2145675A1 (en) 2007-03-23 2010-01-20 Kureha Corporation Vinylidene fluoride resin hollow-fiber porous membrane and process for production of the same
US20120012521A1 (en) 2009-01-15 2012-01-19 Takeo Takahashi Vinylidene fluoride resin hollow fiber porous membrane and process for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216804A (ja) * 1984-04-13 1985-10-30 Teijin Ltd ポリフツ化ビニリデン系多孔中空糸膜およびその製造方法
WO1999047593A1 (fr) * 1998-03-16 1999-09-23 Asahi Kasei Kogyo Kabushiki Kaisha Film microporeux
JP2008036635A (ja) * 2001-03-06 2008-02-21 Asahi Kasei Chemicals Corp 中空糸膜の製造方法
WO2005123234A1 (ja) * 2004-06-15 2005-12-29 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔濾水膜およびその製造方法
WO2006087963A1 (ja) * 2005-02-15 2006-08-24 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜、それを用いる水の濾過方法およびその製造方法
WO2007010832A1 (ja) * 2005-07-20 2007-01-25 Kureha Corporation フッ化ビニリデン系樹脂中空糸多孔膜
JP2007313491A (ja) * 2006-04-25 2007-12-06 Kureha Corp 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039530A (ja) * 2011-08-17 2013-02-28 Toray Ind Inc ポリアセタールを主成分とする多孔質中空糸膜およびその製造方法
JP2013253957A (ja) * 2011-08-29 2013-12-19 Shiseido Co Ltd 化粧料の断面観察方法
JP2019047779A (ja) * 2017-09-07 2019-03-28 旭化成株式会社 多孔質膜を用いた醤油の製造方法
JP2019047781A (ja) * 2017-09-07 2019-03-28 旭化成株式会社 多孔質膜を用いた醤油の製造方法
JP7204382B2 (ja) 2017-09-07 2023-01-16 旭化成株式会社 多孔質膜を用いた醤油の製造方法
JP2020142191A (ja) * 2019-03-06 2020-09-10 旭化成株式会社 中空糸膜モジュール、及びこれを用いた海水のろ過方法
JP7237656B2 (ja) 2019-03-06 2023-03-13 旭化成株式会社 中空糸膜モジュール、及びこれを用いた海水のろ過方法

Also Published As

Publication number Publication date
CN102470328A (zh) 2012-05-23
US20120103895A1 (en) 2012-05-03
JPWO2011007714A1 (ja) 2012-12-27
JP5576866B2 (ja) 2014-08-20
CN102470328B (zh) 2014-12-31
KR20120024965A (ko) 2012-03-14
KR101362553B1 (ko) 2014-02-13
US9096957B2 (en) 2015-08-04

Similar Documents

Publication Publication Date Title
JP5576866B2 (ja) フッ化ビニリデン系樹脂多孔膜の製造方法
JP5603781B2 (ja) フッ化ビニリデン系樹脂多孔膜およびその製造方法
JP5619532B2 (ja) フッ化ビニリデン系樹脂多孔膜およびその製造方法
US11338253B2 (en) Porous hollow fiber membrane, method for producing same, and water purification method
JP4931796B2 (ja) フッ化ビニリデン系樹脂中空糸多孔膜、それを用いる水の濾過方法およびその製造方法
JP2010094670A (ja) ポリフッ化ビニリデン系複合膜およびその製造方法
JP6577781B2 (ja) 中空糸膜、及び中空糸膜の製造方法
JPWO2009104705A1 (ja) 耐ファウリング性に優れる中空糸型限外ろ過膜
JP2007313491A (ja) 低汚染性フッ化ビニリデン系樹脂多孔水処理膜およびその製造方法
JPWO2010082437A1 (ja) フッ化ビニリデン系樹脂中空糸多孔膜およびその製造方法
JP2006281202A (ja) 中空糸膜、それを用いた浸漬型膜モジュール、分離装置、ならびに中空糸膜の製造方法
JP2012187575A (ja) 複合膜及びその製造方法
WO2011027878A1 (ja) フッ化ビニリデン系樹脂多孔膜およびその製造方法
JP2006263721A (ja) フッ素樹脂系高分子分離膜、その製造方法、およびそれを用いた膜モジュール、分離装置
US20220001335A1 (en) Method of filtration using porous membranes
JP2010075851A (ja) 多孔質膜およびその製造方法
JP2005193200A (ja) 機械的強度に優れる中空糸膜およびその製造方法
JP2005193201A (ja) 親水性中空糸膜およびその製造方法
JP2010110693A (ja) 複合多孔質分離膜の製造方法
JP2007117933A (ja) 複合分離膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031727.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522789

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13382199

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127001008

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10799772

Country of ref document: EP

Kind code of ref document: A1