WO2011007578A1 - 合金鋳塊の製造方法 - Google Patents

合金鋳塊の製造方法 Download PDF

Info

Publication number
WO2011007578A1
WO2011007578A1 PCT/JP2010/004615 JP2010004615W WO2011007578A1 WO 2011007578 A1 WO2011007578 A1 WO 2011007578A1 JP 2010004615 W JP2010004615 W JP 2010004615W WO 2011007578 A1 WO2011007578 A1 WO 2011007578A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium
alloy
refining agent
refining
pool
Prior art date
Application number
PCT/JP2010/004615
Other languages
English (en)
French (fr)
Inventor
中山準平
草道龍彦
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009166725A external-priority patent/JP5395545B2/ja
Priority claimed from JP2009166727A external-priority patent/JP5814500B2/ja
Priority claimed from JP2009166726A external-priority patent/JP5379583B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to RU2012105311/02A priority Critical patent/RU2494158C1/ru
Priority to CN2010800318692A priority patent/CN102471828B/zh
Priority to US13/384,142 priority patent/US8496046B2/en
Priority to EP10799642.3A priority patent/EP2455501B1/en
Priority to KR1020127003876A priority patent/KR101384390B1/ko
Publication of WO2011007578A1 publication Critical patent/WO2011007578A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/003General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals by induction
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/006General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with use of an inert protective material including the use of an inert gas
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/10General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method for producing an alloy ingot, and more particularly to a method for producing an alloy ingot such as high-grade stainless steel or superalloy that requires ultra-high purity (very low impurity content). Specifically, the present invention relates to a method for manufacturing a practical high-purity alloy ingot having a weight of 10 kg or more.
  • Carbon (C), nitrogen (N), oxygen (O), phosphorus (P), sulfur (S) and the like are known as impurity elements that adversely affect the corrosion resistance of the alloy. It is also known that the corrosion resistance of the alloy is greatly improved by reducing the content of these impurity elements to the limit.
  • the vacuum induction melting method an alloy ingot is melted from a high-purity alloy raw material such as electrolytic iron, electrolytic nickel, and metal chromium using a vacuum induction melting apparatus. And [S] can be reduced to about 10 to 20 ppm, [N] and [O] to about 20 to 30 ppm, and [C] to about 30 to 50 ppm.
  • the vacuum induction melting method is not suitable for mass production.
  • the vacuum induction melting method normally uses a refractory crucible, it is known that it is difficult to reduce the content of impurity elements such as P and N in the molten metal in the production of high chromium stainless steel. .
  • This is due to the following principle problem.
  • an oxidation refining method is usually employed as the removal and refining of P in molten steel.
  • P in molten steel is converted to slag-like phosphorus oxide (P 2 O 5 ) and absorbed and removed by slag.
  • Non-Patent Document 1 As a technology for removing impurity elements such as phosphorus (P) when melting high chromium stainless steel, a reduction refining technology shown in Non-Patent Document 1 was developed in the 1970s. Specifically, in a water-cooled copper crucible having an inner diameter of ⁇ 70 mm provided in an electroslag remelting (ESR) apparatus, CaF 2 is used as a molten slag, and a slag bath in which metallic calcium is dissolved is formed to form a consumable electrode Melting and refining stainless steel (SUS304) as a material.
  • ESR electroslag remelting
  • Non-Patent Document 1 is an initial report of a reductive refining method using metallic calcium, and a report showing that impurity elements such as phosphorus (P) present in a Cr-containing alloy can be removed in principle by the reductive refining method. It is.
  • Patent Documents 1 to 3 and Non-Patent Document 2 reduction refining techniques using a magnetic levitation type induction melting apparatus (cold crucible induction melting apparatus) provided with water-cooled copper crucibles as shown in Patent Documents 1 to 3 and Non-Patent Document 2 were developed.
  • stainless steel is melted by induction heating to form a molten metal pool, and metallic calcium and calcium fluoride (CaF 2 ) are added to the molten metal pool as a refining agent, and an impurity element such as phosphorus (P) Remove.
  • CaF 2 metallic calcium and calcium fluoride
  • the present inventors have established a large-scale cold-crucible induction melting technique using a water-cooled copper crucible having an inner diameter of ⁇ 400 mm or more shown in Patent Document 4 as a large-scale cold-crucible induction melting method. .
  • Patent Documents 1 to 3 can be applied as they are to the refining refining in a large cold-crucible induction melting apparatus, and the refining refining techniques described in Patent Documents 1 to 3
  • the specific conditions necessary for stable operation on a practical scale are predicted from Patent Documents 1 to 3, except that the operating conditions in the large cold-crucible induction melting apparatus can be optimized. I can't. Therefore, it is necessary to establish a refining technology on a practical scale separately.
  • the reductive refining described in Patent Documents 1 to 3 uses metallic calcium, and the Ca content of an ingot of alloy such as stainless steel after reductive refining has reached several hundred ppm.
  • An alloy ingot subjected to such reductive refining is concerned about corrosion resistance deterioration due to a high Ca concentration. Therefore, it is preferable to further remove Ca in the molten metal after reduction refining.
  • Patent Document 5 an alloy ingot obtained by performing the reductive refining described in Patent Documents 1 to 3 using a cold-crucible induction melting apparatus is used as a primary ingot, and further 0 using an electron beam melting apparatus. Describes a method for producing an ultra-high purity alloy ingot by removing calcium contained in the primary ingot at a pressure lower than 0.5 Pa. Thus, an ultra-high purity alloy ingot having [C] + [N] + [O] + [P] + [S] ⁇ 100 ppm and [Ca] ⁇ 10 ppm is melted.
  • CCIM method cold crucible induction melting method
  • inexpensive raw materials such as stainless steel scrap, carbon steel material, and ferrochrome material are used as melting raw materials (alloy raw materials), carbon (C), Silicon (Si), manganese (Mn), aluminum (Al), and the like are mixed from the melting raw material into the molten metal.
  • ultra high purity alloy scrap such as ultra high purity stainless steel is used as a melting raw material
  • impurity elements such as phosphorus (P), sulfur (S), tin (Sn), and lead (Pb) are hardly contained in the molten metal.
  • silicon (Si), aluminum (Al), titanium (Ti), zirconium (Zr), hafnium (Hf), boron (B), and the like are mixed from the molten raw material into the molten metal. Therefore, it is necessary to remove and refine elements derived from melting raw materials such as C, Si, Mn, Al, Ti, Zr, and B in accordance with the target composition of the alloy.
  • Patent Document 6 describes a method of removing aluminum dissolved in a molten metal as an impurity element in a cold crucible induction melting method. Specifically, first, 2 kg of high Cr ferritic heat resistant steel (Fe-10Cr), which is a melting raw material, is melted in a water-cooled copper crucible having an inner diameter of ⁇ 84 mm provided in a cold-crucible levitation melting device, and a molten metal pool is formed. Form. Next, 10 g of iron oxide is added to the molten metal pool to oxidize Al dissolved in the molten metal to form aluminum oxide (non-metallic inclusions) such as aluminum oxide that does not dissolve in the molten metal. Thereafter, 75 g of calcium fluoride (CaF 2 ) is added as a flux, so that the aluminum oxide is absorbed and removed by the CaF 2 flux.
  • Fe-10Cr high Cr ferritic heat resistant steel
  • CaF 2 calcium fluoride
  • Patent Document 6 it is effective to use iron oxide as an oxidizing agent for aluminum in the removal and refining of aluminum.
  • Iron oxide was selected as an oxide of an element having a lower affinity for oxygen than aluminum. Because.
  • Patent Document 6 even if an oxide of an element having an affinity for oxygen lower than that of an element for removal is used as an oxidizing agent, it is unclear whether the element for removal is removed, It is also unclear whether an element having a stronger affinity for oxygen than the element intended for removal is removed.
  • the oxidation of Patent Document 6 is performed. Even if the refining technique is adopted, it is unclear whether Si, Mn, and B are removed to the target values. Furthermore, the oxidation refining technique of Patent Document 6 is a principle confirmation test in a small-sized molten metal pool formed in a water-cooled copper crucible having an inner diameter of ⁇ 84 mm, and it is unclear whether it can also be established in a molten pool of a practical scale of 10 kg or more. It is. Even if it is established, the specific oxidative refining conditions necessary for stable operation are unknown.
  • Patent Document 7 discloses a cold-crucible induction melting apparatus using a crucible (halide-based crucible) formed inside with a halide layer containing a calcium halide such as calcium fluoride in a cold-crucible induction melting method. Is described. This cold crucible induction melting device suppresses crucible damage. However, since halides such as calcium fluoride come into contact with the molten metal at the inner wall of the halide crucible, the reaction always proceeds, so a normal water-cooled copper crucible is used. Operation management becomes more difficult than when using.
  • This invention is made
  • the objective is content of at least specific element (phosphorus (P), carbon (C), calcium (Ca), or oxygen (O)) among impurity elements.
  • the object is to provide a method for producing an alloy ingot of a very low amount on a practical scale.
  • One aspect of the present invention is a method for producing an alloy ingot, in which an alloy raw material is charged into a cold crucible in a cold crucible induction melting apparatus, and the molten alloy pool is formed from the alloy raw material by induction heating in an inert gas atmosphere.
  • the ratio of the total weight of calcium and calcium chloride is 5 to 30 wt%, and the ratio of the weight of the metal calcium in the first refining agent to the weight of the molten pool before adding the first refining agent is 0
  • Another aspect of the present invention is a method for producing an alloy ingot, in which an alloy raw material is charged into a cold crucible in a cold crucible induction melting apparatus, and is heated from the alloy raw material by induction heating in an inert gas atmosphere.
  • the process of forming a molten metal pool and the induction heating are continued, and after the second refining agent is added to the molten metal pool, the inert gas is exhausted to the outside and the induction heating is continued for 15 minutes or more in the exhaust state.
  • the second refining agent is a mixture of a first oxide composed of one or more of oxides of main component elements of the alloy raw material and a flux.
  • the flux includes calcium fluoride and at least one of calcium oxide and calcium chloride, and the ratio of the total weight of the calcium oxide and the calcium chloride to the weight of the calcium fluoride is 5 to 30 wt%,
  • the weight of the first oxide in the second refining agent is 0.2 to 4 times the calculated weight calculated for oxidizing at least carbon and calcium of the impurity elements present in the molten pool,
  • the ratio of the weight of the flux in the second refining agent to the weight of the molten pool before adding the second refining agent is 0.5 to 5 wt%.
  • Another aspect of the present invention is a method for producing an alloy ingot, wherein a raw material electrode is supplied into a cold hearth type electron beam melting apparatus, and the raw material electrode is under atmospheric pressure lower than 5 ⁇ 10 ⁇ 4 mbar. Irradiating an electron beam onto the cold hearth in the cold hearth type electron beam melting apparatus to form a molten pool, and adding a third refining agent to the molten pool, and an impurity element present in the molten pool And a step of solidifying the molten metal with the reduced carbon content to form an alloy ingot, wherein the third refining agent is an oxidation of the main component element of the raw material electrode A second oxide composed of one or more of the substances, and the weight of the third refining agent is calculated to oxidize all the carbon of the impurity elements present in the molten pool. Heavy This is a method for producing an alloy ingot that is 1 to 4 times the amount.
  • FIG. 1 is a schematic view showing a cold crucible induction melting apparatus.
  • FIG. 2 is a graph showing the relationship between the metal calcium addition rate and the dephosphorization rate, and the relationship between the metal calcium addition rate and the denitrification rate.
  • FIG. 3 is a graph schematically showing changes in the dephosphorization rate and the denitrification rate with respect to the holding time of the molten metal pool.
  • Fig. 4 is a diagram that models the reductive refining reaction with the addition of the first refining agent (Fig. 4 (a)), and the parameters in this reaction model (dissolution rate constant Kmelt (Ca + Flx) of the first refining agent and the time required for the melting station.
  • 5 is a graph (FIG.
  • FIG. 4B shows the relationship between the other parameters (Ca evaporation rate constant Kev (Ca)) in this reaction model and a graph showing the relationship between the dephosphorization rate (FIG. 4C).
  • FIG. 5 is a graph showing the relationship between the inner diameter of the water-cooled copper crucible and the proper holding time after adding the refining agent.
  • FIG. 6 is a graph showing the correlation between the iron oxide addition ratio (WFe 3 O 4 / MFeO) and the flux addition rate ⁇ Flx ⁇ M in the iron oxide addition / vacuum oxidation refining and the decarburization rate.
  • FIG. 7 is a graph showing the correlation between the iron oxide addition ratio (WFe 3 O 4 / MFeO) and the flux addition rate ⁇ Flx ⁇ M in the addition of iron oxide and vacuum oxidation refining, and the desiliconization rate.
  • FIG. 8 is a schematic diagram showing a cold hearth type electron beam melting apparatus.
  • FIG. 9 is a graph showing the correlation between the iron oxide addition ratio (WFe 2 O 3 / MFeO) and the decarburization rate in the cold hearth electron beam melting oxidation refining.
  • the atmosphere in the vacuum chamber was changed to an inert gas atmosphere in which Ar gas was introduced up to 600 to 800 hPa after evacuating the inside of the vacuum chamber. Then, a molten pool of 20 kg of stainless steel (SUS310 composition) was formed. Thereafter, when a refining agent mixed with 400 g of powdered calcium fluoride (CaF 2 ) and 100 g of granular metallic calcium was added to the molten metal pool, immediately after the refining agent was added, intense evaporation of metallic calcium began, resulting in a black smoke A matter (dust) was generated, and in just a few seconds, the radiation from the surface of the molten metal pool could not be observed.
  • a refining agent mixed with 400 g of powdered calcium fluoride (CaF 2 ) and 100 g of granular metallic calcium was added to the molten metal pool, immediately after the refining agent was added, intense evaporation of metallic calcium began, resulting in a black smoke A matter
  • the present inventors turned off the high-frequency heating power one minute after the addition of the refining agent, and the molten metal inside the water-cooled copper crucible.
  • the operation of solidifying the pool was performed. Specifically, as a solidification operation, a water-cooled copper crucible was allowed to stand for one night after the power was turned off.
  • the inventors of the present invention have proposed a composition of a refining agent added to a molten metal pool in order to sufficiently remove at least phosphorus (P) among impurity elements from a molten metal pool of a practical scale having a product ingot weight of, for example, 10 kg or more.
  • intensive studies have been conducted focusing on the ratio of the refining agent to the molten metal pool.
  • a molten pool is formed in the cold crucible provided in the cold crucible induction melting apparatus, a refining agent is added to the molten pool to remove the impurity elements, and the molten metal from which the impurity elements have been removed is solidified.
  • the flux includes calcium fluoride and at least one of calcium oxide and calcium chloride, and the ratio of the total weight of the calcium oxide and the calcium chloride to the weight of the calcium fluoride is 5 to 30 wt%.
  • An object of the first embodiment according to the present invention is to provide a method for producing an alloy ingot having a very low content of at least phosphorus (P) among impurity elements on a practical scale.
  • the first embodiment according to the present invention includes a step of charging an alloy raw material into a cold crucible in a cold crucible induction melting apparatus and forming a molten pool from the alloy raw material by induction heating in an inert gas atmosphere, A process of continuing induction heating, adding a first refining agent to the molten pool to reduce at least the phosphorus content of the impurity elements present in the molten pool, and a molten metal with a reduced phosphorus content
  • a method for producing an alloy ingot comprising a step of solidifying to form an alloy ingot.
  • FIG. 1 is a schematic view showing a cold crucible induction melting apparatus.
  • a cold-crucible type induction melting apparatus 1 in the method for producing an alloy ingot of the present embodiment, for example, a cold-crucible type induction melting apparatus 1 schematically shown in FIG. 1 can be used.
  • the cold crucible induction melting apparatus 1 is a magnetic levitation type cold crucible induction melting (CCIM) type melting equipment, a raw material feeder 2, a vacuum chamber 4, a cold crucible 3 provided in the vacuum chamber 4,
  • the coil 5 is disposed in the vacuum chamber 4 so as to surround the outer periphery of the side surface of the cold crucible 3.
  • CCIM magnetic levitation type cold crucible induction melting
  • the raw material feeder 2 can supply various shapes of alloy raw materials into the cold crucible 3.
  • the coil 5 is provided slightly apart from the surface of the cold crucible 3 so as to surround the side of the cold crucible 3 with a certain degree of upper and lower ends and spirally.
  • the coil 5 can form the molten metal pool 6 by melting the alloy raw material in the area (induction heating area) surrounded by the coil 5 of the cold crucible 3 by induction heating. In the non-induction heating region located below the induction heating region of the cold crucible 3, the molten metal pool 6 is cooled to form a solidified skull layer 8.
  • the raw material feeder 2 can also supply a refining agent for removing and refining impurity elements to the molten metal pool 6.
  • the atmosphere in the vacuum chamber 4 is controlled.
  • the inside of the vacuum chamber 4 can be maintained in an inert gas atmosphere into which argon (Ar) gas or helium (He) gas is introduced.
  • Ar argon
  • He helium
  • an inert gas such as Ar gas into the vacuum chamber 4 after exhausting the vacuum chamber 4 with a vacuum pump.
  • molten metal calcium used as a refining agent is very active, and if oxygen gas or the like is present in the vacuum chamber 4, Ca is oxidized and consumed before the refining reaction.
  • the cold crucible 3 may be a crucible that does not react with the molten metal pool 6 and the molten slag layer 7 formed around the molten metal pool 6.
  • Examples of the cold crucible 3 include a metal crucible whose surface is cooled by a coolant such as a water-cooled copper crucible.
  • a normal refractory crucible cannot be used in place of the cold crucible 3.
  • a refractory crucible is used. This is because there is a risk that the material may be significantly melted by a melt of calcium halide such as molten calcium fluoride to cause accidents such as melting of a water-cooled copper coil for heating in an induction melting apparatus and steam explosion.
  • the weight of the alloy ingot is required to be at least about 10 kg. Therefore, in order to form the molten metal pool 6 of 10 kg or more, the cold crucible 3 It is desirable that the inner diameter D is 0.2 m or more in diameter. This is because, when the inner diameter of the cold crucible 3 is 0.2 m or less in diameter, the weight of the molten pool 6 that can be formed is reduced, and a molten pool of 10 kg or more cannot always be stably formed.
  • an alloy raw material is introduced into the cold crucible 3 of the cold crucible induction melting apparatus 1 by the raw material feeder 2, and the alloy raw material is melted by induction heating of the coil 5 in an inert gas atmosphere.
  • a molten pool 6 for adjusting components to a predetermined alloy composition is formed (molten pool forming step).
  • a first refining agent is added to the molten metal pool 6, and at least phosphorus among impurity elements in the molten metal pool 6 is added. Is removed (refining process).
  • the refined molten metal from which phosphorus has been removed
  • the induction heating may be stopped after the deglazing process, and the molten metal is solidified in the cold crucible 3 to form an alloy ingot, or the cold crucible 3 Adopting a bottom plate elevating type cold crucible that can move the bottom plate vertically, holding the molten pool in the induction heating area of the cold crucible, while lowering the bottom plate together with the molten pool to the non-inductive heating area, the molten metal is sequentially applied from below
  • An alloy ingot may be formed by solidification, or an alloy ingot may be formed by pouring the molten metal after refining into the mold from the cold crucible 3 and solidifying it.
  • a metal, an alloy, or the like in a granular shape, a plate shape, or a cylindrical shape as an alloy raw material. What is necessary is just to select the shape, purity, and composition of an alloy raw material according to the target composition of an alloy ingot. For example, when melting high nickel high chromium stainless steel, a ferrochrome material, a low carbon steel material (converter material), and electrolytic nickel can be used. Further, for the purpose of further increasing the purity of the alloy ingot (further reducing the content of impurity elements), the alloy ingot obtained in the present embodiment can be used as an alloy raw material.
  • alloy ingots having various component compositions can be manufactured.
  • an alloy material mainly composed of Fe (Fe-based alloy ingot), an alloy material mainly composed of Ni (Ni-based alloy ingot), an alloy material mainly composed of Fe and Ni (Fe—Ni-based alloy) Ingots), alloy materials mainly containing Co (Co-base alloy ingots), and the like can be manufactured.
  • the method for producing an alloy ingot of this embodiment is particularly suitable for producing an Fe-based alloy ingot, a Ni-based alloy ingot, and a Fe—Ni-based alloy ingot.
  • the refining conditions in the present embodiment were clarified by conducting a number of tests and studies using a cold crucible induction melting apparatus 1 having a water-cooled copper crucible (cold crucible 3) having an inner diameter of 220 mm.
  • the first refining agent which is a mixture of calcium metal and a flux containing calcium halide is used.
  • the first refining agent which is a mixture of metallic calcium and a flux containing calcium halide, is used so that the metallic calcium coexists with the molten metal pool 6.
  • the flux contains calcium fluoride and at least one of calcium oxide and calcium chloride, and the ratio of the total weight of calcium oxide and calcium chloride to the weight of calcium fluoride (that is, the total weight of calcium oxide and calcium chloride) / Weight of calcium fluoride) is 5 to 30 wt%.
  • Patent Documents 1 to 3 and Non-Patent Documents 1 and 2 only calcium fluoride (CaF 2 ) is used as a flux in the refining agent.
  • CaF 2 calcium fluoride
  • the main component is calcium fluoride (CaF 2 ), and a mixture containing a compound that lowers the melting point of the flux itself (calcium halide flux or Ca halide). It was found that the flux is easily dissolved in the molten metal pool by using the composition flux).
  • the compound is at least one of calcium oxide (CaO) and calcium chloride (CaCl 2 ). This is because calcium oxide and calcium chloride are compounds that lower the melting point of the flux mainly composed of calcium fluoride and have little influence on the refining reaction.
  • the flux in the first refining agent (that is, calcium halide-based flux) is mainly composed of calcium fluoride and includes at least one of calcium oxide and calcium chloride.
  • “Calcium oxide and calcium chloride relative to the weight of calcium fluoride” Is a mixture having a total weight ratio of 5 to 30 wt%.
  • the melting point of the flux decreases, and the formation of the molten slag layer 7 by heat transfer from the molten metal pool 6 becomes easy.
  • the ratio of the weight of calcium oxide to the weight of calcium fluoride exceeds 30 wt%, the flux is hardly dissolved, and the fluidity of the slag bath is lowered.
  • the upper limit of the ratio of the weight of calcium oxide to the weight of calcium fluoride is 30 wt%.
  • calcium chloride is effective in melting a high-nickel alloy ingot having a low melting point because it has a great effect on lowering the melting point of the flux.
  • calcium chloride has a large evaporation loss, and the refining operation became unstable when a flux in which the ratio of the weight of calcium chloride to the weight of calcium fluoride exceeded 30 wt% was used.
  • the upper limit of the ratio of the weight of calcium chloride to the weight of calcium fluoride is 30 wt%. Based on these, the upper limit of the ratio of the total weight of calcium oxide and calcium chloride to the weight of calcium fluoride is also set to 30 wt%.
  • the ratio of the total weight of “calcium oxide and calcium chloride” to the weight of calcium fluoride is less than 5 wt%
  • the flux is made of calcium fluoride and calcium oxide
  • the flux is made of calcium fluoride and calcium chloride
  • the melting point of the flux is only slightly lowered, and the calcium fluoride may not melt until the refining reaction is completed. Therefore, the lower limit of the ratio of the total weight of “calcium oxide and calcium chloride” with respect to the weight of calcium fluoride is 5 wt%.
  • the flux in the first refining agent may contain other compounds (for example, calcium halides other than calcium fluoride) that have little influence on the refining reaction within a range that does not affect the melting point increase.
  • other compounds for example, calcium halides other than calcium fluoride
  • Examples of the flux in the first refining agent include CaF 2 —CaO (5 to 30 wt%), CaF 2 —CaCl 2 (5 to 30 wt%), and CaF 2 — (CaO + CaCl 2 ) (5 to 30 wt%).
  • CaF 2 —CaO means that calcium oxide is added to calcium fluoride in an amount of 5 to 30 wt% (calculated weight W (CaO) of calcium oxide with respect to mixed weight W of calcium fluoride (CaF 2 )). The ratio, that is, W (CaO) / W (CaF 2 )) is blended.
  • CaF 2 -CaCl 2 means 5 to 30 wt% of calcium chloride in calcium fluoride (the ratio of the weight W (CaCl 2 ) of calcium chloride to the weight W (CaF 2 ) of calcium fluoride. That is, W (CaCl 2 ) / W (CaF 2 )) is blended.
  • CaF 2- (CaO + CaCl 2 ) (5 to 30 wt%) is a total of 5 to 30 wt% of calcium oxide and calcium chloride with respect to calcium fluoride (based on the combined weight of calcium fluoride W (CaF 2 ), The ratio of the total weight W of the calcium oxide W (CaO) and the total weight W of the calcium chloride W (CaCl 2 ), that is, (W (CaO) + W (CaCl 2 )) / W (CaF 2 )) .
  • CaF 2 -CaO relatively (20 wt%) (hereinafter, sometimes represented by "CaF 2 -20CaO”) is first It was effective as a flux in the refining agent.
  • the ratio of the weight of metallic calcium in the first refining agent to the weight of the molten metal pool before adding the first refining agent is 0.4 wt% or more.
  • the ratio ⁇ Ca ⁇ M (wt%) of the weight WCa (kg) of metallic calcium in the first refining agent to the weight M (kg) of the molten metal pool 6 before adding the first refining agent is 0.4 wt% or more. That is, 0.4 ⁇ ⁇ Ca ⁇ M
  • the present inventors have found from a large number of test results that the dephosphorization rate in one refining operation can be greatly improved when satisfying the above condition.
  • ⁇ Ca ⁇ M is defined by the following equation.
  • WCa represents the weight (kg) of metallic calcium in the first refining agent
  • M represents the weight (kg) of the molten pool 6 before the first refining agent is added.
  • the ratio ⁇ Flx ⁇ M (wt%) of the weight WFlx (kg) of the flux in the first refining agent to the weight M (kg) of the molten pool 6 before adding the first refining agent which will be described later, It is defined by the following formula.
  • WFlx represents the weight (kg) of the flux in the first refining agent
  • M represents the weight (kg) of the molten pool 6 before the first refining agent is added.
  • the ratio ⁇ Ca ⁇ M of the weight of metallic calcium in the first refining agent to the weight of the molten pool before adding the first refining agent is defined as “addition ratio of metallic calcium to the molten pool”, “metal Also referred to as “calcium addition rate” or “metallic Ca addition rate”.
  • the ratio ⁇ Flx ⁇ M of the weight of the flux in the first refining agent to the weight of the molten metal pool before the first refining agent is added is also referred to as "flux addition rate to the molten pool” or “flux addition rate”.
  • the amount of metal calcium and the amount of flux at the time of refining can be arranged by the concentration of metal calcium in the refining agent (total of metal calcium and flux) and the concentration of flux in the refining agent under normal handling. Many. However, it is necessary to arrange the ratio of the weight WCa (kg) of the metal calcium to the weight M (kg) of the molten pool 6 and the ratio of the weight WFlx (kg) of the flux to the weight M (kg) of the molten pool 6 as required. It is easy to grasp the amount of metallic calcium and the amount of flux directly.
  • the weight ratio of metal calcium to the molten pool and the weight ratio of flux to the molten pool are used.
  • the weight M of the molten metal pool 6 was assumed to be equal to the weight of the alloy raw material before being put into the water-cooled copper crucible (cold crucible 3).
  • the test was performed under the condition that the metal calcium addition rate was reduced because the state of the surface of the molten metal pool 6 could not be observed after the addition of the first refining agent.
  • Went For example, a 20 kg molten pool (Fe-20Ni-25Cr) is formed in a ⁇ 220 mm water-cooled copper crucible (cold crucible 3), and 30 g of metallic calcium and 270 g of CaF 2 —CaO (25 wt%) are added to the molten pool.
  • the dephosphorization rate under these conditions was about 15 to 30%, and the effect of removing impurities such as phosphorus (P) was completely unsatisfactory.
  • the dephosphorization rate (hereinafter also referred to as the de [P] rate) ⁇ p (%) and the denitrification rate (hereinafter also referred to as the de [N] rate) ⁇ N (%) are respectively It is defined by the following formula.
  • [P] 0 represents the phosphorus concentration (wt%) in the molten metal before refining
  • [P] represents the phosphorus concentration (wt%) in the molten metal after refining.
  • [N] 0 represents the nitrogen concentration (wt%) in the molten metal before refining
  • [N] represents the nitrogen concentration (wt%) in the molten metal after refining.
  • the generated black smoke entered the vacuum chamber 4 within several seconds to several tens of seconds after the addition of metal calcium. And even the radiated light from the surface of the molten metal pool 6 is blocked, and it is impossible to visually observe the surface state of the molten metal pool 6.
  • the refining effect of dephosphorization can be enhanced by adding metal calcium in such an amount that it becomes impossible to observe the emitted light from the molten metal pool 6.
  • FIG. 2 (a) shows that the dephosphorization rate ⁇ P increases as the addition rate ⁇ Ca ⁇ M of metallic calcium to the molten metal pool increases. More specifically, paying attention to the upper limit of the dephosphorization rate, ⁇ Ca ⁇ M rises sharply in the range from 0 to about 0.4, and ⁇ Ca ⁇ M is about 0.4 and about 90%. After that, it gradually rises to about 1.0, and ⁇ Ca ⁇ M is about 1.0 or more and shows a maximum value of 100%.
  • ⁇ Ca ⁇ M rises moderately in the range from 0 to about 0.5
  • ⁇ Ca ⁇ M shows about 9% at about 0.5
  • ⁇ Ca ⁇ M is about 1.0, showing about 41%
  • ⁇ Ca ⁇ M rises moderately in the range from about 1.0 to about 1.7
  • ⁇ Ca ⁇ M is about 1.7 or more and shows a maximum value of about 71%. From such fluctuations in the dephosphorization rate (change in ⁇ P / ⁇ Ca ⁇ M), it can be seen that the dephosphorization reaction proceeds rapidly when ⁇ Ca ⁇ M is 0.5 or more.
  • the metal calcium addition rate ⁇ Ca ⁇ M is set to 0.4 or more.
  • the metal calcium addition rate ⁇ Ca ⁇ M is preferably 0.5 or more, and more preferably 1.0 or more. Thereby, the high dephosphorization effect is acquired by one refining operation.
  • this refining operation (Ca reduction refining) may be repeated a plurality of times. That is, the alloy ingot (primary ingot) obtained by the first melting is melted as an alloy raw material at the second melting.
  • the n-1 primary casting is performed at the n-th melting. Melting is performed using the lump as an alloy raw material (n is a natural number of 3 or more).
  • FIG. 2 (b) shows that the denitrification rate ⁇ N increases as the addition rate ⁇ Ca ⁇ M of metallic calcium to the molten metal pool increases. More specifically, paying attention to the upper limit of the denitrification rate, ⁇ Ca ⁇ M rises sharply in the range from 0 to about 0.4, and ⁇ Ca ⁇ M is about 0.4 and about 76%. After that, it gradually rises to about 1.1, and ⁇ Ca ⁇ M is about 1.1 or more and shows a maximum value of about 92%.
  • ⁇ Ca ⁇ M increases monotonously in the range from 0 to about 0.35, ⁇ Ca ⁇ M shows about 30% at about 0.35, and then It rises more rapidly up to about 0.5, and ⁇ Ca ⁇ M is about 0.5 or more and shows about 50%. From such fluctuations in the denitrification rate (change in ⁇ N / ⁇ Ca ⁇ M), it can be seen that the denitrification reaction proceeds rapidly when ⁇ Ca ⁇ M is 0.35 or more. Therefore, the metal calcium addition rate ⁇ Ca ⁇ M is set to 0.35 or more for the purpose of denitrification. Preferably it is 0.5 or more, More preferably, it is 1.1 or more.
  • the denitrification rate tends to be slightly lower than the dephosphorization rate. This is presumably because nitrogen in the air easily flows into the vacuum chamber 4 and causes nitrogen contamination when a slight atmospheric leak occurs during the refining operation.
  • the following condition (4) is further satisfied from the viewpoint of further improving the dephosphorization effect.
  • the present inventors have found out the results of the above-mentioned numerous refining tests.
  • the ratio of the weight of the flux in the first refining agent to the weight of the molten pool before adding the first refining agent is based on the weight of the molten pool. It is equal to or larger than the ratio of the weight of metallic calcium in the first refining agent (addition ratio of metallic calcium to molten metal pool ⁇ Ca ⁇ M), that is, the following formula is satisfied.
  • ⁇ Flx ⁇ M is 1 of ⁇ Ca ⁇ M in order to stably dissolve metallic calcium in the flux (that is, in the molten flux, metallic calcium is present without being bound to other elements). .5 times or more, that is, ⁇ Ca ⁇ M ⁇ 1.5 ⁇ ⁇ Flx ⁇ M It is more desirable to satisfy.
  • the amount of flux added in advance (also referred to as pre-added flux) satisfies ⁇ Ca ⁇ M ⁇ ⁇ Flx ⁇ M0.
  • ⁇ Flx ⁇ M0 represents the ratio (wt%) of the weight WFlx0 (kg) of the pre-added flux to the weight M (kg) of the molten metal pool 6 before adding the first refining agent.
  • ⁇ Flx ⁇ M0 is also referred to as a pre-addition flux addition rate or pre-addition rate with respect to 6 wt M (kg) of the molten metal pool.
  • the Ca reduction refining method metal calcium-Ca halide reduction refining method
  • the total amount of ⁇ Ca ⁇ M, ⁇ Flx ⁇ M, and ⁇ Flx ⁇ M0 becomes too large, it becomes difficult to form the molten slag layer 7.
  • the total amount of ⁇ Ca ⁇ M, ⁇ Flx ⁇ M, and ⁇ Flx ⁇ M0 is preferably within 5% of the molten metal pool 6 wt M.
  • the addition rate ⁇ Ca ⁇ M of metallic calcium to the molten metal pool 6 is 0.4 wt% or more, that is, by satisfying the above conditions (1) to (3), a high dephosphorization rate is achieved. It can be secured.
  • the removal and refining effect varies depending on the holding time of the molten pool 6 after the refining agent is added to the molten pool 6. For this reason, as shown in FIGS. 2 (a) and 2 (b), the upper limit value and lower limit value of the dephosphorization rate, and the upper limit value and lower limit value of the denitrification rate are the same for the same metal calcium addition rate. It is one of the factors that are far away. In order to obtain a higher removal and refining effect, it is necessary to perform refining with an appropriate holding time of the molten metal pool 6.
  • a cold-crucible induction melting apparatus 1 having a water-cooled copper crucible (cold crucible 3) with an inner diameter of 220 mm, stainless steel (Fe-20Ni-25Cr, Fe-35Ni-25Cr) or the like is introduced into the water-cooled copper crucible 3 for induction.
  • the molten metal pool 6 having a weight M (20 kg, 40 kg, 50 kg) was formed by heating.
  • flux 80 wt% CaF 2 -20 wt% CaO, 80 wt% CaF 2 -10 wt% CaCl 2 -10 wt% CaO, etc.
  • ⁇ Flx ⁇ M0 1.5%
  • molten slag before refining Layer 7 was previously formed.
  • add the first refining agent mixture of metallic calcium and flux
  • ⁇ Ca ⁇ M 1.0%
  • ⁇ Flx ⁇ M 1.5%
  • the high-frequency heating power supply was immediately turned off (that is, induction heating was stopped), and the molten metal pool 6 was rapidly cooled and solidified in the water-cooled copper crucible 3. Thereafter, the content of impurity elements such as phosphorus (P) and nitrogen (N) in the rapidly ingot-solidified ingot was analyzed.
  • impurity elements such as phosphorus (P) and nitrogen (N) in the rapidly ingot-solidified ingot was analyzed.
  • FIG. 3A is a graph schematically showing a change in the dephosphorization rate with respect to the holding time of the molten metal pool 6.
  • FIG. 3B is a graph schematically showing a change in the denitrification rate with respect to the holding time of the molten metal pool 6.
  • the test conditions of the test results schematically shown in FIG. 3 (a) are as follows.
  • the weight of the molten metal pool 6 was 20 kg.
  • the test conditions of the test results schematically shown in FIG. 3 (b) are as follows.
  • the weight of the molten metal pool 6 was 50 kg.
  • both the dephosphorization rate and the denitrification rate are low immediately after the addition of the first refining agent (mixture of metallic calcium and flux). Thereafter, both the dephosphorization rate and the denitrification rate increased.
  • the holding time was 4 to 7 minutes, and in the case of the 50kg molten metal pool 6 (FIG. 3 (b)). With a holding time of 10 to 17 minutes, the dephosphorization rate and denitrification rate reach the maximum values.
  • both the dephosphorization rate and the denitrification rate tend to decrease.
  • the molten metal holding time depends on the conditions such as the inner diameter D of the water-cooled copper crucible 3, the weight M of the molten metal pool 6, and the amount of the first refining agent added (the weight of metallic calcium and the weight of flux). May be controlled within an appropriate time range.
  • the holding time of the molten pool 6 that maximizes the dephosphorization rate is different. From the above test results, it is estimated that in the refining process of this embodiment, the dephosphorization reaction and the denitrification reaction are proceeding according to the following refining reaction mechanism.
  • the metal calcium and the flux in the first refining agent added to the molten metal pool 6 start to be melted by heat transfer from the molten metal pool 6, respectively.
  • a molten slag layer 7 (Ca + flux layer) is formed by melting. As the amount of metallic calcium dissolved in the slag increases, the following dephosphorization and denitrification reactions are promoted.
  • Ca in the molten slag layer 7 continues to evaporate as calcium gas. Because of this evaporation loss, it is considered that the Ca concentration in the molten slag layer 7 gradually decreases after Ca is completely dissolved in the molten slag layer 7. Since the vapor pressure of metallic calcium alone is very high, the evaporation rate of Ca from the molten slag layer 7 is considerably large, and the decrease in the Ca concentration in the molten slag layer 7 proceeds at a considerable rate.
  • FIG. 4A is a diagram modeling the reductive refining reaction by adding the first refining agent (mixture of metallic calcium and flux).
  • numerals 0 to 6 represent time steps
  • [P] 0 to [P] 6 represent phosphorus concentrations in the molten metal at each time step
  • [Ca] 0 to [Ca] 6 represent each step.
  • the calcium concentration in the molten slag layer 7 in the time step is represented.
  • the part with the slanting left slanted line represents the molten metal pool
  • the part with the slanting right slanting line represents the first refining agent layer
  • the part with the horizontal line represents the molten slag layer 7.
  • the inventors constructed the following reaction model. Due to heat transfer from the molten pool 6, the calcium metal and the flux in the first refining agent added to the upper part of the molten pool 6 are sequentially dissolved to form a molten slag layer 7 (time of FIG. 4 (a)). Step 0 to 4). Once the molten slag layer 7 is formed, due to local equilibrium with Ca in the molten slag layer 7, the P concentration and N concentration in the molten pool 6, the Ca 3 P 2 concentration and Ca 3 in the molten slag layer 7. N 2 concentration and the like are determined and dephosphorization reaction and denitrification reaction proceed. However, after the molten slag layer 7 is completely formed (time step 4 in FIG.
  • the Ca in the molten slag layer 7 increases with time due to Ca evaporation loss from the molten slag layer 7.
  • the concentration decreases.
  • this is a reaction model in which the P concentration and the N concentration in the molten metal pool 6 increase again due to a local equilibrium reaction.
  • the molten slag layer 7 is formed in about 1 to 2 minutes. From this, it is estimated that the dissolution rate constant (Kmelt (Ca + Flx)) of the first refining agent is about 0.017 to 0.088 (kg / s / m 2 ). In the case of containing metallic calcium, the slag melting point is lowered, so that it is expected that the rate is slightly higher than that of 80 wt% CaF 2 -20 wt% CaO.
  • the evaporation rate constant (Kev (Ca)) of the Ca vapor from the molten slag layer 7 (for example, 25 wt% Ca-60 wt% CaF 2 -15 wt% CaO) can be obtained by evacuation using the vapor pressure of pure Ca.
  • the evaporation rate constant When calculated from the equation for obtaining the evaporation rate constant, it is about 1 to 2 (kg / s / m 2 ).
  • Ca reduction refining is performed in the vicinity of 1 atm of Ar gas, and hence the evaporation rate is expected to be lower than this.
  • the evaporation rate of Mn in the molten steel pool under an atmosphere of 1 atmosphere of Ar gas is about 1/100 of the evaporation rate of Mn in the molten steel pool under vacuum, RG Ward (JISI, Vol. 201 (1963), p.11).
  • Kev (Ca) is expected to be on the order of 0.01 to 0.02 (kg / s / m 2 ).
  • Kmelt (Ca + Flx) is in the range of about 0.03 to 0.06 (kg / s / m 2 ). This value almost coincides with the rate constant estimated from the flux dissolution rate.
  • Kev (Ca) was changed to obtain the dephosphorization rate obtained.
  • the result is shown in FIG. Since the dephosphorization rate obtained in an actual refining test was about 88% to 94%, the corresponding Kev (Ca) value was 0.002 to 0.012 (kg / s / m 2 ). This value is also generally consistent with the Ca evaporation rate constant value estimated from the vapor pressure of pure Ca, and a reasonable value is obtained.
  • Patent Document 2 and Non-Patent Document 2 report test results in which a 1.6 kg molten pool was created in a water-cooled copper crucible of ⁇ 84 mm, Ca + CaF 2 was added as a refining agent, and the refining time was changed. Yes.
  • Patent Document 2 and Non-Patent Document 2 also disclose that the highest dephosphorization rate (about 85 to 95%) is obtained 1 to 2 minutes after the addition.
  • the Kmelt (Ca + Flx) in a test with a ⁇ 84 mm water-cooled copper crucible is about 0.04 to 0.09 (kg / s / m 2 ).
  • Kev (Ca) was about 0.008 to 0.0027 (kg / s / m 2 ).
  • all the values are almost the same, but they are almost the same, and the above reaction was applied to the Ca reduction refining test using water-cooled copper crucible 3 of almost all diameters. It turns out that the model can be applied.
  • an appropriate molten metal retention time is set when a molten metal pool 6 is formed in a water-cooled copper crucible 3 of an arbitrary size and the first refining agent (mixture of metallic calcium and flux) is added. can do.
  • the molten pool 6 retention time T (min) after the first refining agent (mixture of calcium metal and flux) is added to the molten pool 6 is set to T1 (min) or more and T2 (min) or less. By doing so, as shown in FIG. 3, higher dephosphorization rate and denitrification rate can be obtained.
  • Time T1 and T2 can be set as follows.
  • T1 (min) is 1 ⁇ 2 of the time required for the refining agent to completely melt after the addition of the first refining agent (mixture of metallic calcium and flux).
  • T1 WCa + Flx / S / Kmelt (Ca + Flx) / 60/2
  • WCa + Flx is the total weight (kg) of the first refining agent
  • the weight M (kg) of the molten metal pool 6 the metal calcium addition rate ⁇ Ca ⁇ M (wt%)
  • the flux addition rate ⁇ Flx ⁇ M (wt%) is represented by M ⁇ ( ⁇ Ca ⁇ M + ⁇ Flx ⁇ M) / 100
  • S is a horizontal cross-sectional area (m 2 ) in the water-cooled copper crucible 3, with an inner diameter D (m), represented by [pi] D 2/4.
  • This time (T1 ⁇ 2) is the time at which the refining effect is maximized, but in reality, the variation is large. Therefore, the time T1 which is 1 ⁇ 2 of the time is set as the shortest molten pool 6 holding time. Therefore, a higher dephosphorization rate and denitrification rate can be obtained by holding the molten metal for a time equal to or longer than T1.
  • T2 (minutes) is a time for 1 ⁇ 2 of the metallic calcium in the added first refining agent to be lost from the molten slag layer 7 due to evaporation loss.
  • T2 WCa / 2 / S / Kev (Ca) / 60
  • the refining effect of the time when the added first refining agent (mixture of metallic calcium and flux) is melted and the molten slag layer 7 is formed is the maximum. At that time, it is considered effective to rapidly cool and solidify the molten pool 6 as soon as possible to suppress the reverse phosphorus reaction accompanying Ca evaporation loss.
  • the first refining agent mixed with metallic calcium and flux
  • the impurity removal and refining effect has a steep gradient of time-dependent changes in the dephosphorization rate and denitrification rate at the stage where the refining agent melts.
  • the temporal changes in the dephosphorization rate and the denitrification rate at a stage where the Ca evaporation progresses and the Ca concentration in the molten slag layer 7 decreases are gradual. .
  • the upper limit is the time (T2) that 1 ⁇ 2 of the Ca content in the slag is lost by evaporation.
  • T1 and T2 are respectively expressed by the following equations.
  • T1 t1-t0
  • T2 t2-t0
  • the above relational expression (T1 ⁇ T ⁇ T2) is satisfied.
  • the addition rate ⁇ Ca ⁇ M of the metallic calcium to the molten pool is 0.5 wt% or more
  • the addition rate ⁇ Flx ⁇ M of the flux to the molten pool is ⁇ Ca ⁇ M or more
  • the addition rate of metallic calcium to the molten pool
  • the retention time T of the molten pool to T1 ⁇ T ⁇ T2
  • the content of impurity elements such as phosphorus (P), sulfur (S), tin (Sn), lead (Pb)
  • an alloy raw material is made of a ferrochrome material and a low carbon steel material (converter material) with a high impurity element content and a high-purity electrolytic Ni raw material.
  • a molten steel pool 6 of 50 kg of stainless steel Fe-20Ni-25Cr is formed in the water-cooled copper crucible 3 by induction heating.
  • the molten metal after refining is solidified to obtain a primary ingot.
  • the second Ca reduction refining is performed under the same conditions as the first.
  • the molten metal after completion of the second refining is solidified to obtain a secondary ingot.
  • the third Ca reduction refining is performed under the same conditions as the first.
  • the impurity element concentration after completion of the third refining can be [P] 3 ⁇ 2 ppm and [N] 3 ⁇ 2 ppm. In this way, the concentration of these impurity elements can reach 2 ppm or less, which is the analysis limit of the current chemical analysis method.
  • [P] 0 and [N] 0 represent the phosphorus concentration and nitrogen concentration in the molten metal pool 6 before Ca refining
  • [P] 1, [P] 2, and [P] 3 represent the first time, respectively.
  • a commercially available high-purity raw material that is relatively easy to obtain such as electrolytic iron, electrolytic Ni, and metal Cr, is used as an alloy raw material.
  • An alloy ingot was manufactured by performing reductive refining to which a refining agent satisfying the conditions (1) to (4) described in the embodiment was added. And the content of the impurity element in the molten metal pool 6 before refining (that is, the content of the impurity element in the initial blending stage of the alloy raw material) and the content of the impurity element in the alloy ingot were measured by a chemical analysis method.
  • [P] 0 and [S] 0 represent phosphorus concentration and sulfur concentration in the molten pool 6 before Ca reduction refining
  • [P] 1 and [S] 1 represent the molten pool after completion of Ca reduction refining. 6 represents phosphorus concentration and sulfur concentration.
  • the content of impurity elements such as phosphorus (P) is 2 ppm or less.
  • An alloy ingot of practical scale can be manufactured.
  • a considerable amount of metallic calcium remains in the ingot obtained by refining using metallic calcium, particularly in the ingot containing Ni as an alloy component.
  • the residual calcium concentration is about 0.02 wt%.
  • an alloy with a Ni content of about 20 wt% has a residual calcium concentration of about 0.05 wt%
  • an alloy with a Ni content of about 35 wt% has a residual calcium concentration of about 0.09 wt%.
  • the residual calcium concentration is about 0.12 wt%.
  • the residual calcium concentration is about 0.5 wt%. It is known that alkaline earth elements such as Ca and alkali metal elements in the alloy ingot deteriorate the corrosion resistance. Therefore, a method for producing an alloy ingot having a Ca content of 0.001 wt% or less, desirably 1 ppm or less is required as a method for producing a corrosion-resistant material.
  • elements such as carbon, aluminum, and silicon, which are more easily reduced than Ca, often increase as impurities in the molten metal.
  • a concentration increase of about 30 ppm may occur in C and about 50 ppm in Al or Si. This is presumably because organic substances and ceramics adhering in the vacuum chamber of the induction melting apparatus are reduced by metallic calcium and absorbed into the molten metal pool 6.
  • These impurity elements also need to be removed according to the target composition of the alloy.
  • an ultra-high purity alloy satisfying [C] ⁇ 10 ppm, [Si] ⁇ 0.01 wt% and [Ca] ⁇ 10 ppm may be required.
  • impurity elements such as C and Si together with Ca at the refining stage.
  • boron since boron may significantly deteriorate the corrosion resistance, an ultra-high purity alloy with [B] ⁇ 1 ppm may be required.
  • the present inventors added to a molten metal pool in order to sufficiently remove at least carbon and calcium among impurity elements from a molten metal pool of a practical scale in which the product ingot weight is, for example, 10 kg or more.
  • Research has been conducted with a focus on the composition of the refining agent and the ratio of the refining agent to the molten metal pool.
  • a molten pool is formed in the cold crucible provided in the cold crucible induction melting apparatus, a refining agent is added to the molten pool to remove the impurity elements, and the molten metal from which the impurity elements have been removed is solidified.
  • a second refining agent which is a mixture of a first oxide composed of one or more of oxides of main component elements of an alloy raw material and a flux is used.
  • a flux use calcium halide flux, (7)
  • the weight of the first oxide in the second refining agent is 0.2 to 4 of the calculated weight calculated to oxidize at least carbon and calcium in the impurity element existing in the molten metal pool.
  • Double (8) By making the ratio of the weight of the flux in the second refining agent to the weight of the molten pool before adding the second refining agent 0.5 to 5 wt%, The inventors found that an alloy ingot having a very low content of at least carbon (C) and calcium (Ca) among impurity elements can be produced on a practical scale, and completed the second embodiment according to the present invention.
  • An object of the second embodiment according to the present invention is to provide a method of manufacturing an alloy ingot having a very low content of at least carbon (C) and calcium (Ca) among impurity elements on a practical scale.
  • the second embodiment according to the present invention includes a step of charging an alloy raw material into a cold crucible in a cold crucible induction melting apparatus, and forming a molten metal pool from the alloy raw material by induction heating in an inert gas atmosphere, Continued induction heating, adding a second refining agent to the molten pool to reduce at least the carbon and calcium contents of the impurity elements present in the molten pool, and reducing the carbon and calcium contents And a step of solidifying the molten metal to form an alloy ingot.
  • the cold-crucible induction melting apparatus 1 in the method for producing an alloy ingot of the present embodiment, for example, the cold-crucible induction melting apparatus 1 schematically shown in FIG. 1 can be used.
  • an alloy raw material is introduced into the cold crucible 3 of the cold crucible induction melting apparatus 1 by the raw material feeder 2, and the alloy raw material is melted by induction heating of the coil 5 to adjust the components to a predetermined alloy composition.
  • the molten metal pool 6 for performing is formed (a molten metal pool formation process).
  • a second refining agent is added to the molten metal pool 6, and at least carbon among the impurity elements in the molten metal pool 6 is added. And removing calcium (refining process).
  • the refined molten metal from which carbon and calcium have been removed
  • the induction heating is stopped after the dehulling treatment, and the molten metal is solidified in the cold crucible 3, thereby forming an alloy ingot.
  • a bottom plate raising / lowering type cold crucible in which the bottom plate can move in the vertical direction is adopted, and the molten metal pool is held in the induction heating region of the cold crucible, while the bottom plate is kept together with the molten pool in the non-inductive heating region.
  • the alloy ingot may be formed by sequentially lowering the molten metal from below and solidifying the molten ingot from below, or by injecting the molten metal from the cold crucible 3 into the mold and solidifying it. Good.
  • a metal, an alloy, or the like can be used as an alloy raw material. What is necessary is just to select the shape, purity, and composition of an alloy raw material according to the target composition of an alloy ingot.
  • commercially available stainless steel scrap, a low carbon steel material, or an iron alloy material such as ferrochrome, which is an inexpensive raw material may be used.
  • the oxidative refining in this embodiment can remove C, Si, Mn, Al, and Ca that are contained in a large amount at a level of several hundred to several thousand ppm to a level of several ppm or less.
  • impurity elements such as P, S, Sn, and Pb
  • ultra-high purity alloy scrap to which Al, Ti, Zr, or Si is added, Si, Al, or B is used as an impurity element.
  • High purity metals such as electrolytic iron, electrolytic nickel, and chromium metal may be used. This is because the contents of Ca, Al, Ti, Zr, Si, and B can be reduced by oxidation refining in the present embodiment.
  • the alloy ingot obtained in the present embodiment can also be used as an alloy raw material for the purpose of further increasing the purity of the alloy ingot (further reducing the content of impurity elements).
  • alloy ingots having various component compositions can be manufactured.
  • an Fe-base alloy ingot, an Ni-base alloy ingot, an Fe—Ni-base alloy ingot, a Co-base alloy ingot, and the like can be manufactured.
  • the method for producing an alloy ingot of this embodiment is particularly suitable for producing an Fe-based alloy ingot, a Ni-based alloy ingot, and a Fe—Ni-based alloy ingot.
  • the alloy raw material is charged into the cold crucible 3 of the cold crucible induction melting apparatus 1 to form the molten metal pool 6 in an inert gas atmosphere, and then the following conditions (5) to (8) are satisfied.
  • a satisfactory refining agent carbon (C), silicon (Si), aluminum (Al), titanium (Ti), zirconium (Zr), hafnium (Hf), boron present as impurity elements in the molten metal (B) and other active elements are removed and refined.
  • An alloy solidified skull layer 8 is formed under the molten metal pool 6.
  • FIG. 1 schematically shows the state of refining in this embodiment.
  • the inside of the vacuum chamber 4 is evacuated by a vacuum pump in advance, and then an inert gas such as Ar gas is introduced into the vacuum chamber 4.
  • the refining conditions in the present embodiment were clarified by conducting a number of tests and studies using a cold crucible induction melting apparatus 1 having a water-cooled copper crucible (cold crucible 3) having an inner diameter of 220 mm.
  • a second refining agent that is a mixture of a first oxide composed of one or more of oxides of main constituent elements of the alloy raw material and a flux.
  • the residual oxygen concentration in the alloy ingot is often 5 ppm or less. Has no oxygen source. Therefore, supply of an oxygen source is indispensable for proceeding with the decarburization reaction.
  • the oxide of the main component element of the alloy raw material is a compound of the main component element of the alloy ingot and the oxygen atom contained in the alloy raw material.
  • the alloy ingot is an Fe-based alloy
  • the main component element of the alloy ingot is Fe
  • the oxide of the main component element of the alloy raw material is iron oxide such as Fe 3 O 4 or Fe 2 O 3. is there.
  • the alloy ingot is an Fe—Ni based alloy
  • the main component elements of the alloy ingot are Fe and Ni
  • the oxides of the main component elements of the alloy raw material are iron oxide and nickel oxide.
  • the alloy ingot is a Ni-based alloy
  • the main component element of the alloy ingot is Ni
  • the oxide of the main component element of the alloy raw material is nickel oxide.
  • the main component element of the alloy ingot is Co
  • the oxide of the main component element of the alloy raw material is cobalt oxide. These oxides are solid when added to the molten pool. Since the oxide of the main component element of the alloy raw material acts as an oxidant in the refining reaction (the decarburization reaction) in the present embodiment, it is an oxidant made of metal oxide.
  • the 1st oxide which acts as an oxidizing agent in the 2nd refining agent may be one sort in the oxide of the main component element of an alloy ingot, and may be a combination of 2 or more sorts.
  • alloy elements such as Si, Al, Ti, Zr, Hf, B, and Ca are active metal elements whose oxides are thermodynamically stable as compared with iron and nickel, these alloy elements are removed. In this case, it is necessary to separate and remove the respective oxides in the slag by proceeding with the following oxidation refining reactions.
  • Ca in the molten metal is removed by evaporation even in a molten state, but a slight amount remains in the alloy ingot.
  • SiO 2 formed by oxidizing Si reacts with CaO to form a stable compound such as Ca 2 SiO 4 , thereby reducing the SiO 2 activity in the molten slag layer 7, thereby reducing Si 2. It is effective to facilitate the progress of the oxidation reaction.
  • Al 2 O 3 , TiO 2 , B 2 O 3, etc. it is effective for oxidative removal refining of these elements to react with CaO to form a compound and reduce the activity in the molten slag layer 7. . Therefore, it is effective to match the amount of CaO in the molten slag layer 7 with the amount of various oxides generated by the oxidation reaction.
  • the second refining agent in the refining process of this embodiment needs to advance the decarburization reaction and the oxidation reaction of the metal active element, which are active element removal refining reactions. Therefore, the second refining agent includes the first oxide that acts as an oxidizing agent for the decarburization reaction and the flux (calcium halide) that stably absorbs the oxide generated by the oxidation reaction of the metal active element into the slag layer. System flux).
  • Fe 2 O 3 , Fe 3 O 4 , or the like is used as iron oxide serving as a typical oxygen source.
  • a flux having a high oxide absorption capacity a flux obtained by adding CaO to a Ca halide flux such as calcium fluoride (CaF 2 ) or calcium chloride (CaCl 2 ) is used.
  • the flux in the second refining agent is a calcium halide flux.
  • the component of this flux has the same composition as the flux in the first refining agent. This is because it is effective for promoting the reaction to lower the melting point of the flux and easily melt the added flux by heat transfer from the molten metal pool 6 to form the molten slag layer 7.
  • a flux containing CaO is more effective.
  • a component system in which the amount of CaO necessary for making the generated oxide a stable compound is previously contained in the flux becomes more effective.
  • the weight of the first oxide in the second refining agent is 0.2 to 4 times the calculated weight calculated for oxidizing at least carbon and calcium in the impurity elements present in the molten pool. thing.
  • iron oxide (Fe x O y) when used iron oxide (Fe x O y) is added weight WFe x O y (kg of iron oxide (Fe x O y) ) and, the calculated weight MFeO iron oxide (Fe x O y) (kg ) satisfies the following equation from the relationship.
  • MFeO is expressed by the following equation using the weight of the molten metal pool and the concentration of the active element in the molten metal pool.
  • M Weight of molten metal pool 6 (kg) [C]: C concentration (wt%) in the molten metal pool 6 [Si]: Si concentration in the molten metal pool 6 (wt%) [Al] Al concentration in molten metal pool 6 (wt%) [Ti]: Ti concentration (wt%) in the molten metal pool 6 [Zr]: Zr concentration (wt%) in the molten metal pool 6 [Hf]: Hf concentration (wt%) in the molten metal pool 6 [B]: B concentration (wt%) in the molten metal pool 6 [Ca]: Ca concentration (wt%) in the molten metal pool 6 [O]: O concentration (wt%) in the molten metal pool 6
  • C, Si, Al, and the like are slightly mixed from a fireproof sheet for receiving the scattered molten metal provided on the outer periphery of the cold crucible 3 (water-cooled copper crucible) during Ca reduction refining. Therefore, in the calculation of the amount of oxygen to be added, it is necessary to consider the amount of pickup during the Ca reduction refining. Specifically, based on the test results, [C] is about 30 ppm, and [Si] and [Al] are about 50 ppm each. There is a possibility of pickup due to contamination. As the concentration of each element in the above calculation formula, it is necessary to use a blended calculated value using an analytical value of the charged raw material.
  • [C] is CO gas
  • [Si] SiO 2 slag
  • [Al] is Al 2 O 3 slag
  • [Ti], [Zr] are TiO 2 slag
  • [Ca] is CaO slag
  • concentration values such as [C], [Si], [Al], [Ti], [Zr], [Hf], [B], [Ca] are calculated from the analytical values of the blended dissolved raw materials. Value.
  • the weight of the iron oxide to be added is to satisfy 1.0 ⁇ MFeO ⁇ WFe x O y , and ⁇ It is clear that Flx ⁇ M satisfies 3.0 ⁇ Flx ⁇ M. Furthermore, in order to enhance more surely removed ⁇ , it is necessary to make WFe x O y about twice from 1.5 times MFeO. This is because not all the added iron oxide is used in the reaction. On the other hand, when the weight of iron oxide is added more than 4 times the required amount, oxidation loss such as Cr of the alloy component increases excessively, which is not desirable.
  • [Si] is 0.22 wt% before refining and less than 0.01 wt% after refining. Furthermore, the amount of iron oxide added is 2.0 times or more the amount of MFeO, a CaF 2 —CaO-based or CaF 2 — (CaO + CaCl 2 ) -based flux is used, and the flux addition rate relative to the weight of the molten metal pool 6 ⁇ By making Flx ⁇ M 3.0 wt% or more, removal and refining of Si and B becomes easier.
  • the weight of iron oxide to be added is more than four times the amount of MFeO, the oxidation reaction becomes too intense, and oxidation loss such as Cr, which is an alloy element, will be generated significantly. That is not preferred.
  • a stainless steel having a composition of Fe-20Ni-25Cr is 50 kg using a commercially available low-priced ferrochrome material, a low carbon steel material, etc., and an electrolytic Ni raw material that is a high-purity raw material.
  • the molar amount of oxygen necessary to oxidize them is calculated as 8.9 mol.
  • the impurity concentration is equivalent to the case of using high-purity raw materials such as electrolytic iron, electrolytic nickel, and metallic chromium ([ It has been confirmed that removal and refining can be performed up to (Si) ⁇ 0.01 wt%).
  • the ratio of the weight of metallic calcium in the second refining agent to the weight of the molten metal pool before the second refining agent is added is 0.5 to 5 wt%.
  • the inert gas in the chamber (vacuum chamber 4) is exhausted (evacuated), It is preferable to hold in a state (vacuum state (exhaust state)) for 15 minutes or more.
  • the inside of a chamber will be evacuated, for example with an oil rotary pump. If necessary, evacuation is performed with a mechanical booster pump, diffusion pump, etc., and oxidative refining is performed in a vacuum atmosphere.
  • Patent Document 5 The operation of adding iron oxide to the molten metal pool is described in Patent Document 5. Specifically, iron oxide and CaF 2 are added to a 2 kg molten pool in a ⁇ 84 mm water-cooled copper crucible under an inert gas atmosphere. This condition is the same in that iron oxide is used. However, in the present invention, a molten pool 6 of 10 kg or more is formed in a water-cooled copper crucible 3 of ⁇ 200 mm or more, and the addition conditions of iron oxide and low melting point Ca halide composition flux on a practical scale are clarified. This is different from the prior art.
  • the decarburization reaction is promoted by the vacuum evacuation operation, thereby promoting the formation of the molten slag layer 7 and absorbing the formed oxide.
  • This is different from the prior art. That is, it is a great feature of the present invention that the conditions for obtaining a specific refining effect are clearly indicated.
  • the present inventors have developed a melting method and a composition of a refining agent to be added to the molten pool in order to sufficiently remove impurity elements such as carbon and oxygen from a practical scale molten pool having a product ingot weight of, for example, 10 kg or more.
  • intensive investigations have been made by paying attention to the amount of refining agent added and the appropriate atmospheric pressure range when dissolving the raw materials.
  • the source electrode supplied in the cold hearth type electron beam melting apparatus is irradiated with an electron beam to form a molten pool in the cold hearth provided in the apparatus, and a refining agent is added to the molten pool to add impurity elements.
  • a manufacturing method of forming an alloy ingot by solidifying a molten metal from which impurity elements have been removed (9)
  • the inside of the cold hearth type electron beam melting apparatus at the time of electron beam irradiation is set to a pressure lower than 5 ⁇ 10 ⁇ 4 mbar, (10)
  • a third refining agent which is a second oxide composed of one or more of oxides of main component elements of the raw material electrode is used.
  • An object of the third embodiment according to the present invention is to provide a method for producing an alloy ingot with extremely low contents of carbon (C) and oxygen (O) as impurity elements on a practical scale.
  • a raw material electrode is supplied into a cold hearth type electron beam melting apparatus, and the raw material electrode is irradiated with an electron beam at a pressure lower than 5 ⁇ 10 ⁇ 4 mbar.
  • a step of forming a molten pool in the cold hearth in the hearth-type electron beam melting apparatus, and a third refining agent is added to the molten pool to reduce the content of carbon as an impurity element present in the molten pool.
  • An alloy ingot manufacturing method comprising a step and a step of solidifying a molten metal with a reduced carbon content to form an alloy ingot.
  • FIG. 8 is a schematic diagram showing the cold hearth electron beam melting apparatus 11.
  • a cold hearth type electron beam melting apparatus 11 schematically shown in FIG. 8 can be used.
  • the cold hearth electron beam melting apparatus 11 irradiates a vacuum chamber 4, a raw material supply mechanism (not shown) for sending the raw material electrode 12 to the vacuum chamber 4, and an electron beam indicated by a broken line in the drawing on the tip of the raw material electrode 12.
  • the raw material electrode 12 and iron oxide as the third refining agent are sent together to one end of the cold hearth 9.
  • a raw material feeder for supplying the third refining agent may be added to the cold hearth electron beam melting apparatus 11. Since the raw material feeder is provided, the raw material feeder adds a third refining agent (oxidant (such as Fe x O y )) to the molten metal pool 13 in the cold hearth 9 in accordance with the melting state of the raw material electrode 12. Can do.
  • oxidant such as Fe x O y
  • the cold hearth 9 may be any container that does not react with the molten metal pool 13 and the molten slag layer formed therearound.
  • An example of the cold hearth 9 is a water-cooled copper dish-shaped container having an inner dimension of the dissolution container of 0.2 ⁇ 0.2 m or more.
  • a large-area water-cooled copper dish-shaped container to form a molten pool with a large surface area / volume ratio (ie, shallow and large surface area), a refining reaction involving gasification and evaporation of impurity elements is promoted. Because.
  • the cold crucible 10 may be a crucible that does not react with the molten metal. Examples of the cold crucible 10 include a water-cooled copper mold of a bottom plate raising / lowering type.
  • the cold hearth-type electron beam melting apparatus 11 performs melting-vacuum refining using an electron beam as a heat source under high vacuum. Therefore, the first refining is performed in the removal and refining of carbon as an impurity element to the limit or in the cold-crucible induction melting apparatus. Vacuum refining of nitrogen (N), manganese (Mn), etc. that could not be removed by the reduction refining method using the agent or the oxidizing refining method using the second refining agent becomes possible.
  • the cold hearth electron beam melting apparatus 11 includes a cold hearth 9 (water-cooled copper dish-like container) that forms a molten metal pool having a larger surface area / volume ratio than the cold crucible provided in the cold crucible induction melting apparatus. Therefore, in refining reactions involving gasification and evaporation, it is better than cold crucible induction melting equipment. The impurity element can be surely removed.
  • a cold hearth 9 water-cooled copper dish-like container
  • a rod-like or lump-like raw material electrode 12 (alloy raw material) is supplied from the facing side of the hot water outlet of the cold hearth 9 and melted by electron beam irradiation on the cold hearth 9 to form the molten metal pool 13.
  • a 3rd refining agent is added to the molten metal pool 13, and the carbon which exists as an impurity element in the molten metal pool 13 is removed (refining process).
  • the molten metal overflowing after refining is poured into the cold crucible 10 provided adjacent to the cold hearth 9 from the hearth outlet of the cold hearth 9.
  • the molten metal is solidified in the cold crucible 10 to form an alloy ingot (ingot forming step). Subsequently, by pulling the alloy ingot sequentially downward, a long ingot of practical scale having a product ingot weight of, for example, 10 kg or more is melted.
  • a metal, an alloy, or the like corresponding to the target composition of a rod-like or massive alloy ingot can be used as the raw material electrode.
  • the alloy ingot obtained in this embodiment can also be used as an alloy raw material for the purpose of further increasing the purity of the alloy ingot (further reducing the content of impurity elements).
  • alloy ingots having various component compositions can be manufactured.
  • an Fe-base alloy ingot, an Ni-base alloy ingot, an Fe—Ni-base alloy ingot, a Co-base alloy ingot, and the like can be manufactured.
  • FIG. 8 schematically shows the state of refining in this embodiment.
  • the refining conditions in the present embodiment have been clarified by conducting a number of tests and studies using the cold hearth electron beam melting apparatus 11 having a vacuum degree in the vacuum chamber 4 of 10 ⁇ 6 mbar.
  • the degree of vacuum that is, the lower the atmospheric pressure
  • the degree of vacuum is as high as possible.
  • the reason why the degree of vacuum (atmospheric pressure) is less than 5 ⁇ 10 ⁇ 4 mbar is that a small amount of Ar gas may be introduced into the vacuum chamber 4.
  • an inert gas such as Ar gas is not introduced into the vacuum chamber 4, it is desirable to perform the melting at a pressure lower than 1 ⁇ 10 ⁇ 4 mbar.
  • a third refining agent which is a second oxide composed of one or more oxides of main component elements of the raw material electrode, is used as the refining agent.
  • fine powdered solid oxide such as iron oxide fine powder is caught and scattered in the gas flow at the initial vacuum exhaustion stage of electron beam melting, reaches the vacuum pump, and damages the vacuum pump. Therefore, it is desirable to agglomerate the finely divided solid oxide in advance.
  • iron oxide fine powder is used as the oxide of the main component element of the raw material electrode, it is desirable to add a granulated iron oxide by performing a sintering process in advance.
  • the oxide of the main component element of the raw material electrode is a compound of oxygen components and the main component element of the alloy ingot included in the raw material electrode.
  • the alloy ingot is an Fe-based alloy
  • the main component element of the alloy ingot is Fe
  • the oxide of the main component element of the raw material electrode is iron oxide such as Fe 3 O 4 or Fe 2 O 3. is there.
  • the alloy ingot is an Fe—Ni based alloy
  • the main component elements of the alloy ingot are Fe and Ni
  • the oxides of the main component elements of the raw material electrode are iron oxide and nickel oxide.
  • the alloy ingot is a Ni-based alloy
  • the main component element of the alloy ingot is Ni
  • the oxide of the main component element of the raw material electrode is nickel oxide.
  • the main component element of the alloy ingot is Co
  • the oxide of the main component element of the raw material electrode is cobalt oxide. These oxides are solid when added to the molten pool. Since the oxide of the main component element of the raw material electrode acts as an oxidant in the refining reaction (decarburization reaction) in the present embodiment, it is an oxidant made of metal oxide.
  • the third refining agent is a second oxide that acts as an oxidizing agent, and may be one of the oxides of the main component elements of the raw material electrode, or a combination of two or more.
  • the weight of the third refining agent is 1 to 4 times the calculated weight calculated to oxidize the total amount of carbon among the impurity elements present in the molten metal pool.
  • the weight of the third refining agent was set to 1 to 4 times the “calculated weight calculated to oxidize all the carbon among the impurity elements present in the molten metal pool”.
  • the weight of the third refining agent is 2 to 3 times the calculated weight, the carbon content is almost the lowest value (analysis limit) and the oxygen content is almost the lowest value (analysis limit). I found.
  • the weight of the third refining agent is preferably 2 to 3 times the calculated weight.
  • iron oxide (Fe x O y) is the addition weight WFe x O y iron oxide (Fe x O y) (kg ), iron oxide (Fe x O y) and the calculated weight MFeO (kg) of satisfies the following equation from the above relationship.
  • MFeO 1.0 ⁇ MFeO ⁇ WFe x O y ⁇ 4.0 ⁇ MFeO
  • weight WM (kg) of the raw material electrode and the carbon content [C] (wt%) of the raw material electrode are used, MFeO is expressed by the following formula.
  • Nickel oxide (Ni x O y ) or the like can be used instead of iron oxide as the oxide of the main component element of the raw material electrode.
  • the atomic weight of Ni (58.71) may be used instead of the atomic weight of Fe (55.85).
  • the result is shown in FIG.
  • the iron oxide addition ratio (WFe 2 O 3 / MFeO) is 1 or more
  • the lower limit value of the decarburization rate is about 40% or more
  • the median value of the decarburization rate is about 50% or more. It can be seen that the reaction is accelerated.
  • the present inventors have found that by applying this cold hearth electron beam melting method, the floating separation of non-metallic inclusions in the ingot proceeds, and it is very effective as an oxygen removal method. confirmed. It was confirmed that an alloy ingot with [C] ⁇ 10 ppm and [O] ⁇ 10 ppm could be melted by the method for manufacturing an alloy ingot of this embodiment. It was also confirmed that by optimizing the weight of the third refining agent, an alloy ingot having [C] ⁇ 5 ppm and [O] ⁇ 5 ppm below the analysis limit can be produced. In addition, manganese (Mn), which is an alloy component, was evaporated and removed in the electron beam melting process, and after refining, [Mn] ⁇ 0.01 wt% was often obtained.
  • Mn manganese
  • a refining process in which the reductive refining process of the first embodiment (also referred to as Ca reductive refining process) and the oxidation refining process of the second embodiment (also referred to as oxidation refining process) are appropriately performed may be performed.
  • a refining process in which the reductive refining process of the first embodiment (also referred to as Ca reductive refining process) and the oxidation refining process of the second embodiment (also referred to as oxidation refining process) are appropriately performed may be performed.
  • impurity elements phosphorus (P), sulfur (S), nitrogen (N), trace trump elements (Sn, Pb, As, Sb, Bi, Se, etc.), Boron (B) and the like are removed by the reductive refining of the first embodiment.
  • boron (B), carbon (C), silicon (Si), aluminum (Al), titanium (Ti), zirconium (Zr), calcium (Ca), alkali metal elements, etc. are subjected to the vacuum oxidation of the second embodiment. Remove by refining.
  • content of impurity elements such as phosphorus (P), sulfur (S), tin (Sn), lead (Pb)
  • the content of silicon (Si), aluminum (Al), titanium (Ti), zirconium (Zr), etc. can be reduced to 100 ppm or less by reducing the content of nitrogen (N) to 5 ppm or less.
  • the content of carbon (C) can be reduced to 50 ppm or less, and the content of silicon (Si), calcium (Ca), or the like can be reduced to 1 ppm or less.
  • the oxidizing refining process (for example, the vacuum refining process) of the second embodiment is a Ca refining process. It is desirable to carry out as a post process. However, if the content of impurity elements C, Si, Al, Ti, etc. in the melting raw material is extremely large, before the Ca reduction refining, oxidation refining is performed to contain C, Si, Al, Ti, etc. It is effective to reduce the amount.
  • alloy raw material when stainless steel scrap or the like is used as a melting raw material (alloy raw material), depending on the alloy composition, the carbon content is high, and the content of alloy components such as Si, Al, and Ti is around 1 wt%. Or an alloy with a content of Zr, B or the like added to several tens of ppm. In such a case, it is necessary to significantly increase the amount of added iron oxide during oxidative refining. When such oxidative refining with an increased amount of added iron oxide is performed, there is a possibility that [O] in the molten metal pool 6 will be remarkably increased.
  • oxidation refining for example, vacuum oxidation refining
  • Ca reduction refining is performed to remove P, S, Sn, Pb, N, and the like.
  • the ingot which melted by the oxidation refining process of 2nd Embodiment, or the ingot which added the deoxidation element type alloy component mentioned later to the said ingot, and alloyed it is a primary ingot (alloy raw material). It is also preferable to perform further decarburization and deoxidation in the oxidation refining treatment of the third embodiment. More specifically, using a cold-crucible induction melting apparatus 1 having a cold-crucible 3 having an inner diameter of 200 mm or more, an oxidative refining (for example, vacuum oxidative refining) in which the molten pool weight is 10 kg or more and a second refining agent is added.
  • an oxidative refining for example, vacuum oxidative refining
  • the oxidation refining treatment in the method for producing an alloy ingot of the second embodiment may be continued after the reduction refining treatment. More specifically, using a cold crucible induction melting apparatus 1 having a cold crucible 3 having an inner diameter of ⁇ 200 mm or more, the weight of the molten pool is 10 kg or more, and the metal calcium reduction refining with the addition of the first refining agent is performed.
  • An alloy ingot may be produced by removing and refining impurity elements such as Si and B and solidifying the refined molten metal. Or you may manufacture the ingot which added the deoxidation element type alloy component mentioned later further to the said alloy ingot as needed. Then, after that, decarburization and deoxidation may be performed by the oxidative refining process of the third embodiment to remove and refine to [C] ⁇ 10 ppm and [O] ⁇ 10 ppm. This method makes it possible to produce the highest purity (very low impurity) Fe-based alloy ingot, Fe—Ni-based alloy ingot, and Ni-based alloy ingot.
  • an alloy raw material As an alloy raw material, an ingot that has been melted through the oxidation refining treatment of the second embodiment, or an ingot that has been melted by appropriately combining the reduction refining treatment of the first embodiment and the oxidation refining treatment of the second embodiment is used.
  • a deoxidizing element-based alloy component As an alloy raw material, an ingot that has been melted through the oxidation refining treatment of the second embodiment, or an ingot that has been melted by appropriately combining the reduction refining treatment of the first embodiment and the oxidation refining treatment of the second embodiment is used.
  • a deoxidizing element-based alloy component include elements such as Si, Al, Ti, Zr, and B.
  • an ultra-high purity (very low impurity) Fe-base alloy ingot, Fe—Ni-base alloy ingot or Ni-base alloy ingot having a predetermined alloy composition can be melted.
  • content of P, S, N, Sn, Pb etc. in an ingot is high, it is preferable to implement Ca reductive refining etc.
  • the molten metal pool 6 may be in a state where a large amount of oxygen is contained.
  • an alloy component of an active element deoxidizing element type
  • those deoxidized oxides are generated.
  • a calcium halide flux is suitably about 0.5 to 2 wt% for ⁇ Flx ⁇ M.
  • the addition amount of calcium halide flux is suitably about 0.5 to 2 wt% for ⁇ Flx ⁇ M.
  • [X] represents the content (concentration) of the element X contained in the alloy (or molten metal), and “removal” of the impurity element from the alloy (or molten metal) is the alloy (or molten metal).
  • each element may be represented by an element symbol.
  • ultra high purity means that the sum total of the content of each element which exists as an element which should be removed in an alloy ingot is less than 100 ppm.
  • at least the element to be removed is phosphorus, which means that [P] ⁇ 100 ppm is satisfied.
  • At least the element to be removed is carbon and calcium. Therefore, it means that [C] + [Ca] ⁇ 100 ppm is satisfied.
  • at least the elements to be removed are carbon and oxygen, [C] + [O] ⁇ It means that 40 ppm is satisfied.
  • Example A Reduction refining test using a cold crucible induction melting apparatus
  • a reduction refining test was conducted using a first refining agent that is a mixture of metallic calcium and flux. Specifically, first, in a water-cooled copper crucible (cold crucible 3) having an inner diameter of ⁇ 220 mm provided in the cold crucible induction melting apparatus 1, a ferrochrome material and a low carbon steel material, which are low-priced materials having a high impurity element content, are provided.
  • a molten metal pool 6 having the target composition of alloy types (Fe-20Ni-25Cr, Fe-35Ni-25Cr) shown in Table 1 was formed under an argon gas atmosphere as an alloy raw material.
  • CaF 2 -20CaO is CaF 2 -CaO the (20wt%)
  • CaF 2 -10CaO is a CaF 2 -CaO (10wt%)
  • CaF 2 -10CaO-10CaCl 2 is CaF 2 - (CaO + CaCl 2 ) (20 wt%) respectively.
  • Example B Oxidation refining test 1 using a cold crucible induction melting apparatus
  • An oxidation refining test was performed using a mixture of iron oxide as the first oxide and a flux (that is, the second refining agent). Specifically, first, in a water-cooled copper crucible provided in the cold-crucible induction melting apparatus 1, a ferrochrome material (FeCr) and an ultra-low carbon steel material having a high content of impurities such as carbon (C) and silicon (Si).
  • a ferrochrome material FeCr
  • Si ultra-low carbon steel material having a high content of impurities such as carbon (C) and silicon (Si).
  • electrolytic nickel which is a high-purity raw material, as an alloy raw material, and a molten pool 6 having a target composition of alloy types (Fe-35Ni-25Cr, Fe-20Ni-25Cr) shown in Table 2 under an argon gas atmosphere Formed.
  • iron oxide and flux shown in Table 2 are added to the molten metal pool 6, and the molten metal is held for 10.0 to 30.0 minutes in an exhaust state in which argon gas is discharged to the outside.
  • Oxidative refining was performed.
  • the carbon content [C], silicon content [Si], calcium content [Ca] and boron content [B] after refining were measured by GD-MS analysis. The measurement results are shown in Table 2 together with the test conditions.
  • the alloy raw material contained a large amount of carbon and silicon as impurity elements, and also contained about 50 ppm of boron (B) as an impurity element.
  • CaF 2 -15CaO-5CaCl 2 is CaF 2- (CaO + CaCl 2 ) (20 wt%)
  • CaF 2 -20CaO is CaF 2 -CaO (20 wt%)
  • CaF 2 -21CaO is CaF 2-.
  • CaO (21 wt%) and CaF 2 -22CaO represent CaF 2 -CaO (22 wt%), respectively.
  • Examples B1 and B2 satisfying WFe 3 O 4 /MFeO ⁇ 0.2 and ⁇ Flx ⁇ M ⁇ 0.5 for the purpose of decarburization showed a sufficient decarburization effect.
  • Examples B3 to B5 satisfying WFe 3 O 4 /MFeO ⁇ 1.0 and ⁇ Flx ⁇ M ⁇ 3.0 for the purpose of silicon removal (Si) and boron removal (B) show a sufficient decarburizing effect. In addition, satisfactory desiliconization and deboration effects were exhibited.
  • Example C Oxidation refining test 2 using cold crucible induction melting apparatus
  • Example C A reduction refining test using a cold crucible induction melting apparatus was conducted in the same manner as in Example A using a ferrochrome material, an extremely low carbon steel material, and electrolytic nickel as alloy raw materials, and an alloy ingot (primary ingot) was melted.
  • an oxidation refining test was conducted in the same manner as in Example B under the test conditions in Table 3 instead of the test conditions in Table 2, and the carbon, silicon, calcium and boron after refining The content was measured by GD-MS analysis. The measurement results are shown in Table 3 together with the test conditions.
  • Example D Test 1 by cold hearth electron beam melting method
  • An oxidation refining test using the second oxide as the third refining agent was conducted. Specifically, first, the raw material electrode 12 is fed to the facing side of the hot water outlet of the cold hearth 9 by the raw material supply mechanism of the cold hearth type electron beam melting apparatus 11, and the degree of vacuum is less than 5 ⁇ 10 ⁇ 4 mbar.
  • the molten metal pool 13 having the target composition of the alloy type (Fe-20Ni-25Cr) shown in Table 4 was formed on the cold hearth 9.
  • granular Fe 2 O 3 (second oxide) obtained by sintering fine Fe 2 O 3 powder at 1250 ° C.
  • Examples D1 to D4 satisfying 1 ⁇ WFe 2 O 3 / MFeO ⁇ 4 showed sufficient decarburization and deoxidation effects.
  • Examples D2 and D3 satisfying 2 ⁇ WFe 2 O 3 / MFeO ⁇ 3 a very excellent decarburization and deoxidation effect that the total of the carbon content and the oxygen content was less than 15 ppm was shown.
  • Example E Test 2 by cold hearth electron beam melting method
  • An oxidation refining test using a cold crucible induction melting apparatus was conducted in the same manner as in Example B using a ferrochrome material, an ultra-low carbon steel material, and electrolytic nickel as alloy raw materials, and an alloy ingot (primary ingot) was melted.
  • an oxidation refining test by a cold hearth electron beam melting method was conducted in the same manner as in Example D under the test conditions of Table 5 instead of the test conditions of Table 4, and after the refining Carbon and oxygen contents were measured by GD-MS analysis. The measurement results are shown in Table 5 together with the test conditions.
  • the amount of MFeO calculated from the content of these impurity elements was 0.011 kg.
  • Examples E1 to E4 satisfying 1 ⁇ WFe 2 O 3 / MFeO ⁇ 4 showed sufficient decarburization and deoxidation effects.
  • Examples E2 and E3 satisfying 2 ⁇ WFe 2 O 3 / MFeO ⁇ 3 excellent decarburization and deoxidation effects were obtained in which the total of the carbon content and the oxygen content was 15 ppm or less.
  • Example F Test 3 by cold hearth electron beam melting method
  • a refining refining similar to Example A and an oxidizing refining similar to Example B are performed in a cold crucible induction melting apparatus, and an alloy ingot is melted. did.
  • an oxidation refining test by a cold hearth electron beam melting method was performed in the same manner as in Example D under the test conditions in Table 6 instead of the test conditions in Table 4, and the carbon after refining And the oxygen content were measured by GD-MS analysis. The measurement results are shown in Table 6 together with the test conditions.
  • Examples F1 to F4 satisfying 1 ⁇ WFe 2 O 3 / MFeO ⁇ 4 showed sufficient decarburization and deoxidation effects.
  • Examples F2 and F3 satisfying 2 ⁇ WFe 2 O 3 / MFeO ⁇ 3 excellent decarburization and deoxidation effects were obtained in which the total of the carbon content and the oxygen content was 15 ppm or less.
  • Example G Contrast of impurity element content
  • Two types of ultra-high purity stainless steel ingots (Fe-20Ni-25Cr-0.2Ti and Fe-35Ni-25Cr-) produced by combining the methods for producing the alloy ingots of the first to third embodiments. 0.2Ti) and the content of impurity elements in conventional high-purity ingots were compared. Details will be described below.
  • a ferrochrome material having a high impurity element content and a low carbon steel material are used as alloy raw materials.
  • a cold crucible induction melting apparatus 1 having a water-cooled copper crucible 3 reductive refining (CCIM reductive refining) to which a refining agent satisfying the conditions (1) to (4) described in the first embodiment is added is performed.
  • CCIM reductive refining to which a refining agent satisfying the conditions (1) to (4) described in the first embodiment is added is performed.
  • conditions (5) to (8) described in the second embodiment are satisfied by using a cold crucible induction melting apparatus 1 using the primary ingot as an alloy raw material.
  • a secondary ingot is produced by applying vacuum oxidation refining (CCIM oxidation refining) to which a refining agent is added; and, using this secondary ingot as an alloy raw material, a cold water having a water-cooled copper dish-like container 9 Using a scan type electron beam melting device 11, to produce a product ingot subjected to conditions described (9) to a vacuum oxidation refining which satisfies (11) (EB oxidation refining) in the third embodiment. Then, the impurity element content in each product ingot was measured by an ordinary chemical analysis method of steel materials and a GD-MS analysis method capable of microanalysis.
  • CCIM oxidation refining vacuum oxidation refining
  • Table 1 also shows the results of measuring the impurity element content in From Table 1, it can be seen that a highly purified (impurity-removed) ingot was produced by combining the methods for producing the alloy ingot of the first to third embodiments. Specifically, the refining in the first embodiment is very effective for the removal of P and S and the removal of trace trump elements such as Sn, Sb, Pb, etc., and the purity can be increased as compared with the conventional high purity ingot. Can be seen from Table 1. Although nitrogen cannot be analyzed by the GD-MS analysis method, it was confirmed by the chemical analysis method that nitrogen was removed to the analysis limit of less than 5 ppm, that is, [N] ⁇ 5 ppm.
  • the GD-MS analysis method is an analysis method called glow discharge mass spectrometry, and is an analysis method capable of analyzing trace amounts of metal elements, semiconductor elements, insulator elements and the like up to about 0.01 ppm. For example, it is applied to microanalysis in semiconductor materials and the like.
  • one aspect of the present invention is a method for producing an alloy ingot, in which an alloy raw material is introduced into a cold crucible in a cold crucible induction melting apparatus, and is induced in an inert gas atmosphere.
  • the process of forming a molten metal pool from the alloy raw material by heating and the induction heating are continued, and a first refining agent is added to the molten metal pool so that the content of at least phosphorus among the impurity elements present in the molten metal pool is increased.
  • the first refining agent is a mixture of calcium metal and a flux containing calcium halide, and the first refining agent comprises a step of solidifying the molten metal having a reduced phosphorus content to form an alloy ingot.
  • the flux includes calcium fluoride and at least one of calcium oxide and calcium chloride, and the calcium fluoride
  • the ratio of the total weight of the calcium oxide and the calcium chloride to the weight of 5 to 30 wt%, and the metal calcium in the first refining agent with respect to the weight of the molten pool before adding the first refining agent This is a method for producing an alloy ingot having a weight ratio of 0.4 wt% or more.
  • an alloy ingot having a very low phosphorus (P) content can be produced on a practical scale with a weight of, for example, 10 kg or more.
  • the ratio of the weight of the said flux in the said 1st refining agent with respect to the weight of the said molten metal pool before adding the said 1st refining agent is the said in the said 1st refining agent with respect to the weight of the said molten metal pool.
  • it is equal to or greater than the proportion of the weight of metallic calcium.
  • the induction heating is continued until a predetermined time between t1 and t2 from the time when the first refining agent is added to the molten pool, It is preferable to hold a molten metal pool.
  • t1 represents a time that has elapsed from the time when the first refining agent is added to the molten metal pool by half the time until the first refining agent is completely melted
  • t2 represents the first refining agent. The time when only the time when half of the metallic calcium in the first refining agent evaporates from the time when the refining agent is added to the molten metal pool is represented.
  • an appropriate molten metal holding time can be managed quantitatively, and as a result, higher dephosphorization rate and denitrification rate can be obtained.
  • the step from the step of forming the molten metal pool to the step of forming the alloy ingot is performed at least once using the alloy ingot as an alloy raw material. Is also preferable.
  • an alloy ingot having a lower content of phosphorus (P) and nitrogen (N) can be produced on a practical scale.
  • an alloy ingot formed by the solidification is charged into the cold crucible as a primary ingot, and a molten pool of the primary ingot from the primary ingot by induction heating in an inert gas atmosphere. And the induction heating is continued, a second refining agent is added to the molten pool of the primary ingot, and the content of at least carbon and calcium among the impurity elements present in the molten pool is increased.
  • the second refining agent is an oxide of a main component element of the primary ingot A first oxide composed of one or more of the above and the flux, and the weight of the first oxide in the second refining agent is a molten pool of the primary ingot. 0.2 to 4 times the calculated weight calculated to oxidize all the carbon and calcium at least among the impurity elements present, and the molten pool of the primary ingot before adding the second refining agent It is also preferable that the ratio of the weight of the flux in the second refining agent to the weight is 0.5 to 5 wt%.
  • carbon (C) and calcium (Ca), which are impurity elements, can be removed and refined reliably, so that a practical scale ingot having a very low content of carbon, calcium and phosphorus is produced. Can do.
  • the inert gas is exhausted to the outside and the induction is performed in an exhaust state. More preferably, the heating is continued for 15 minutes or more to maintain the molten pool of the primary ingot. Thereby, the oxide in a molten metal can further be reduced.
  • an alloy ingot formed by solidifying the molten metal with reduced carbon and calcium contents is charged into the cold crucible as a secondary ingot, and the 2 is obtained by induction heating in an inert gas atmosphere.
  • a step of forming a molten pool of a secondary ingot from the secondary ingot, and a step of continuing the induction heating and forming an alloy by adding a deoxidizing element-based alloy component to the molten pool of the secondary ingot And a step of solidifying the molten alloy forming the alloy to form an alloy ingot.
  • the alloy ingot formed by the solidification is supplied as a raw material electrode into a cold hearth type electron beam melting apparatus, and an electron beam is applied to the raw material electrode at a pressure lower than 5 ⁇ 10 ⁇ 4 mbar.
  • Irradiating to form a molten pool of raw material electrodes in the cold hearth in the cold hearth type electron beam melting apparatus, adding a third refining agent to the molten pool of raw material electrodes, and existing in the molten metal pool A step of reducing the content of carbon as an impurity element, and a step of solidifying the molten metal with the reduced carbon content to form an alloy ingot, wherein the third refining agent is a main component of the raw material electrode A second oxide composed of one or more of the oxides of the elements, and the weight of the third refining agent is the amount of the impurity elements present in the molten metal pool of the source electrode It is also preferably 1 to 4 times the calculated weight calculated to oxidize all the carbon.
  • carbon (C) and oxygen (O), which are impurity elements, can be reliably removed and refined, so that a practical scale ingot having a very low content of carbon, oxygen and phosphorus can be produced. Can do.
  • Another aspect of the present invention is a method for producing an alloy ingot, in which an alloy raw material is charged into a cold crucible in a cold crucible induction melting apparatus, and is heated from the alloy raw material by induction heating in an inert gas atmosphere.
  • the process of forming a molten metal pool and the induction heating are continued, and after the second refining agent is added to the molten metal pool, the inert gas is exhausted to the outside and the induction heating is continued for 15 minutes or more in the exhaust state.
  • the second refining agent is a mixture of a first oxide composed of one or more of oxides of main component elements of the alloy raw material and a flux.
  • the flux includes calcium fluoride and at least one of calcium oxide and calcium chloride, and the ratio of the total weight of the calcium oxide and the calcium chloride to the weight of the calcium fluoride is 5 to 30 wt%,
  • the weight of the first oxide in the second refining agent is 0.2 to 4 times the calculated weight calculated for oxidizing at least carbon and calcium of the impurity elements present in the molten pool,
  • the ratio of the weight of the flux in the second refining agent to the weight of the molten pool before adding the second refining agent is 0.5 to 5 wt%.
  • an alloy ingot having a very low content of carbon (C) and calcium (Ca) can be produced on a practical scale having a weight of, for example, 10 kg or more.
  • the flux is composed of calcium fluoride and calcium oxide, and is a mixture in which the ratio of the weight of calcium oxide to the weight of calcium fluoride is 5 to 30 wt%, or composed of calcium fluoride, calcium oxide, and calcium chloride.
  • the ratio of the total weight of calcium oxide and calcium chloride to the weight of calcium fluoride is 5 to 30 wt%
  • the weight of the first oxide in the second refining agent is an impurity present in the molten metal pool 2 to 4 times the calculated weight calculated to oxidize all of at least carbon, calcium, aluminum, and silicon among the elements, and the second refining with respect to the weight of the molten pool before adding the second refining agent
  • the ratio of the weight of the flux in the agent is 3 to 5 wt%.
  • an alloy ingot formed by solidifying the molten metal with reduced content of carbon and calcium is charged into the cold crucible as a primary ingot, and the 1 is obtained by induction heating in an inert gas atmosphere.
  • a step of forming a molten pool of the primary ingot from the primary ingot, a step of continuing the induction heating and forming an alloy by adding a deoxidizing element-based alloy component to the molten pool of the primary ingot And a step of solidifying the molten alloy forming the alloy to form an alloy ingot.
  • the alloy ingot formed by the solidification is supplied as a raw material electrode into a cold hearth type electron beam melting apparatus, and an electron beam is applied to the raw material electrode at a pressure lower than 5 ⁇ 10 ⁇ 4 mbar.
  • Irradiating to form a molten pool of raw material electrodes in the cold hearth in the cold hearth type electron beam melting apparatus, adding a third refining agent to the molten pool of raw material electrodes, and existing in the molten metal pool A step of reducing the content of carbon as an impurity element, and a step of solidifying the molten metal with the reduced carbon content to form an alloy ingot, wherein the third refining agent is a main component of the raw material electrode A second oxide composed of one or more of the oxides of the elements, and the weight of the third refining agent is the amount of the impurity elements present in the molten metal pool of the source electrode It is also preferably 1 to 4 times the calculated weight calculated to oxidize all the carbon.
  • carbon (C) and oxygen (O), which are impurity elements, can be removed and refined reliably, so that a practical scale ingot having a very low content of carbon, oxygen and calcium is produced. Can do.
  • Another aspect of the present invention is a method for producing an alloy ingot, wherein a raw material electrode is supplied into a cold hearth type electron beam melting apparatus, and the raw material electrode is under atmospheric pressure lower than 5 ⁇ 10 ⁇ 4 mbar. Irradiating an electron beam on the cold hearth in the cold hearth type electron beam melting apparatus to form a molten pool, and adding a third refining agent to the molten pool, and an impurity element present in the molten pool And a step of solidifying the molten metal with the reduced carbon content to form an alloy ingot, wherein the third refining agent is an oxidation of the main component element of the raw material electrode A second oxide composed of one or more of the substances, and the weight of the third refining agent is calculated to oxidize all the carbon of the impurity elements present in the molten pool. Heavy This is a method for producing an alloy ingot that is 1 to 4 times the amount.
  • an ultra-pure alloy ingot of a practical scale having a product ingot weight of, for example, 10 kg or more can be produced by melting. It leads to expansion of field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

 コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって合金原料から溶湯プールを形成する工程と、誘導加熱を継続するとともに、溶湯プールに第1精錬剤を添加して溶湯プールに存在する不純物元素のうち少なくともリンの含有量を低減する工程と、リンの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程とを備え、第1精錬剤は金属Caとフラックスとの混合物であり、フラックスはCaFと、CaOおよびCaClの少なくとも一方とを含み、CaFに対するCaOおよびCaClの合計の重量割合が5~30wt%であり、溶湯プールに対する金属Caの重量割合が0.4wt%以上である合金鋳塊の製造方法。

Description

合金鋳塊の製造方法
 本発明は合金鋳塊の製造方法に関し、特に、超高純度(極低不純物含有量)が要求される高級ステンレス鋼や超合金などの合金鋳塊の製造方法に関する。具体的には、重量が10kg以上の実用規模の超高純度合金鋳塊の製造方法に関する。
 合金の耐食性に悪影響を及ぼす不純物元素として、炭素(C)、窒素(N)、酸素(O)、リン(P)、硫黄(S)などが知られている。これら不純物元素の含有量を極限まで低減させることにより、合金の耐食性が大幅に改善されることも知られている。
 従来の電気炉-アルゴン酸素脱炭装置(または真空酸素脱炭装置)によるステンレス鋼の量産製造法では、取鍋精錬で不純物元素の除去処理を施したとしても、これら不純物元素の合計含有量([C]+[N]+[O]+[P]+[S])は250ppmほどに止まっていた。
 一方、真空誘導溶解法では、真空誘導溶解装置を用いて例えば電解鉄、電解ニッケル、金属クロムなどの高純度合金原料から合金鋳塊を溶製するので、不純物元素の含有量を、[P]および[S]では10~20ppm程度に、[N]および[O]では20~30ppm程度に、[C]では30~50ppm程度にまで低減させることができる。しかし、高純度合金原料は高価であるため、真空誘導溶解法は量産に適さない。
 また、真空誘導溶解法は通常では耐火物るつぼを用いるので、高クロムステンレス鋼の溶製において、溶湯中のPやNなどの不純物元素の含有量を低減させるのは難しいことが知られている。これは次に示す原理的な問題に起因する。溶鋼中のPの除去精錬として、通常では酸化精錬法が採用されている。酸化精錬法では、溶鋼中のPをスラグ状のリン酸化物(P)に転換させて、スラグに吸収除去させている。しかしながら、高クロムステンレス鋼の溶製において酸化精錬法を採用すると、溶鋼中のPだけでなく、合金成分であるクロム(Cr)も酸化されてしまい、鋼中のCr含有量が不足することになる。
 そこで、高クロムステンレス鋼を溶製する時のリン(P)などの不純物元素の除去技術として、1970年代には、非特許文献1に示される還元精錬技術が開発された。具体的には、エレクトロスラグ再溶解(ESR)装置が備える内径φ70mmの水冷銅るつぼ内で、溶融スラグとしてCaFを使用し、これに金属カルシウムを溶解させたスラグ浴を形成させて、消耗電極材としてステンレス鋼(SUS304)の溶解精錬を行う。これにより、ステンレス溶鋼中の不純物元素であるリン(P)、錫(Sn)、鉛(Pb)、ヒ素(As)、アンチモン(Sb)、ビスマス(Bi)、酸素(O)、硫黄(S)、セレン(Se)、テルル(Te)、窒素(N)などを除去する。非特許文献1は、金属カルシウムを用いた還元精錬法の初期の報告であり、還元精錬法によりCr含有合金中に存在するリン(P)などの不純物元素を原理的に除去できることを示した報告である。しかしながら、この報告で用いられたESRプロセスでは、スラグ浴自体に交流電流を通電して、その抵抗発熱によりスラグ浴を形成させる必要がある。そのため、精錬効果を高めようとして金属カルシウムの添加量を増やすと、スラグ浴自体の電気抵抗が著しく低くなり、十分な発熱量が得られず、スラグ浴の形成自体が困難となる。すなわち、実用的なプロセスではなかった。
 その後、特許文献1~3および非特許文献2に示される、水冷銅るつぼを備えた磁気浮揚型の誘導溶解装置(コールドクルーシブル式誘導溶解装置)を用いた還元精錬技術が開発された。この精錬技術は、誘導加熱によってステンレス鋼を溶解して溶湯プールを形成し、この溶湯プールに金属カルシウムおよびフッ化カルシウム(CaF)を精錬剤として添加して、リン(P)などの不純物元素を除去する。
 具体的には、フッ化カルシウム(CaF)をフラックスとして使用することで、まずは溶融フッ化カルシウム層を形成し、次にこの溶融フッ化カルシウム層に金属カルシウムを溶解させる。そして、この金属カルシウムと溶湯プール中のリン(P)とを反応させてカルシウムリン化物(Ca)を形成し、フッ化カルシウム浴中にカルシウムリン化物を吸収させる。これにより、脱リンが行われる。この精錬反応では、金属カルシウムを溶解できるCaFなどの溶融フラックスを用いることが不可欠であることから、反応容器として、溶融CaFやCaと反応しない容器である水冷銅るつぼを用いる必要がある。すなわち、この還元精錬技術を、耐火物るつぼを用いた通常の真空誘導溶解法に適用することはできない。
 また、この還元精錬技術では、合金原料として0.8~2kgのステンレス鋼(SUS316L)を内径φ60mmまたは内径φ84mmの水冷銅るつぼに入れ、小規模な溶湯プールを形成して、リン(P)などの除去精錬を行うので、特許文献1~3および非特許文献2に記載された精錬技術は、非特許文献1に記載された精錬技術と同じく、小規模な溶湯プールにおける原理確認試験であり、溶製された鋳塊も、重量が最大で2kg未満の研究用鋳塊に過ぎない。したがって、10kg以上の実用規模の鋳塊を溶製するには、大型のコールドクルーシブル式誘導溶解装置での還元精錬技術を新たに確立する必要がある。
 ここで、本発明者らは、大型コールドクルーシブル式誘導溶解法として、特許文献4に示された、内径φ400mm以上の水冷銅るつぼを用いた大規模なコールドクルーシブル式誘導溶解技術を確立している。しかし、この誘導溶解技術の開発を通じて、内径φ200mm以上の水冷銅るつぼでの溶湯やスラグの挙動は、内径φ100mm未満の水冷銅るつぼと比べて変動が大きく、溶湯の純度を高める(すなわち、不純物元素の含有量を減らす)ほど、大型コールドクルーシブル式誘導溶解装置での精錬の制御は難しくなることが明らかになった。このため、超高純度合金鋳塊の製造に当り、実用的と思われる10kg以上の溶湯プールに対して、特許文献1~3の還元精錬技術が成立するか否かは不明である。また、たとえ成立したとしても、特許文献1~3に記載された還元精錬の条件を大型コールドクルーシブル式誘導溶解装置での還元精錬にそのまま適用できる場合、および、特許文献1~3の還元精錬技術を大型コールドクルーシブル式誘導溶解装置での操業条件に最適化できる場合を除いて、本発明者らの上記知見から、特許文献1~3からは実用規模の安定操業に必要な具体的条件を予測し得ない。そのため、実用規模の精錬技術を別途確立させる必要がある。
 ところで、特許文献1~3に記載された還元精錬は金属カルシウムを用いており、還元精錬後のステンレス鋼などの合金鋳塊のCa含有量は数百ppmに達している。このような還元精錬を行った合金鋳塊は、高Ca濃度に起因した耐食性劣化が懸念される。そのため、還元精錬後、溶湯中のCaをさらに除去することが好ましい。
 特許文献5には、コールドクルーシブル式誘導溶解装置を用いて特許文献1~3に記載された還元精錬を行って得た合金鋳塊を1次鋳塊として、さらに電子ビーム溶解装置を用いて0.5Paよりも低い気圧下において1次鋳塊に含有されるカルシウムを除去することで、超高純度合金鋳塊を製造する方法が記載されている。これにより、[C]+[N]+[O]+[P]+[S]≦100ppmかつ[Ca]≦10ppmの超高純度合金鋳塊を溶製している。
 しかしながら、特許文献5の製造方法に従って還元精錬を行ったとしても、金属カルシウムやフラックスの添加量の多寡および操業条件によって、脱リン、脱炭または脱酸が不十分で、[C]+[N]+[O]+[P]+[S]>100ppmとなることがあった。すなわち、実用規模の合金鋳塊の製造方法が確立していなかった。また、0.5Paよりも低い気圧という超高真空雰囲気下で電子ビーム溶解を行う必要があるので、製造時間が長くなるとともに製造費用もそれだけ嵩み、0.5Paより高い気圧下での電子ビーム溶解が望まれていた。
 ところで、コールドクルーシブル式誘導溶解法(CCIM法)において、ステンレス鋼スクラップ、炭素鋼材、フェロクロム材などの廉価原料を溶解原料(合金原料)として用いた場合には、溶解段階で、炭素(C)、珪素(Si)、マンガン(Mn)、アルミニウム(Al)などが溶解原料から溶湯に混入する。一方、超高純度ステンレス鋼などの超高純度合金スクラップを溶解原料とした場合には、リン(P)、硫黄(S)、錫(Sn)、鉛(Pb)などの不純物元素は溶湯に殆ど混入しないが、珪素(Si)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、硼素(B)などが溶解原料から溶湯に混入する。したがって、合金の目標組成に応じて、C、Si、Mn、Al、Ti、Zr、Bなどの溶解原料由来の元素の除去精錬を行う必要がある。
 特許文献6には、コールドクルーシブル式誘導溶解法における、不純物元素として溶湯中に溶解するアルミニウムを除去する方法が記載されている。具体的には、まず、コールドクルーシブル式浮揚溶解装置に備えられた内径φ84mmの水冷銅るつぼ内で、溶解原料である高Crフェライト系耐熱鋼(Fe-10Cr)2kgを溶解して、溶湯プールを形成する。次に、この溶湯プールに酸化鉄10gを添加して溶湯に溶解しているAlを酸化させて溶湯に溶解しない酸化アルミニウムなどのアルミニウム酸化物(非金属介在物)を形成する。その後、フッ化カルシウム(CaF)75gをフラックスとして添加することにより、アルミニウム酸化物をCaF系フラックスに吸収除去させる。
 特許文献6によれば、アルミニウムの除去精錬において、アルミニウムの酸化剤として酸化鉄を用いることが有効であるのは、アルミニウムよりも酸素との親和力の弱い元素の酸化物として、酸化鉄を選択したからである。しかしながら、特許文献6の実施例に示すように、アルミニウムよりも酸素との親和力の強い元素である炭素(C)、珪素(Si)、硼素(B)などは殆ど除去できていない。特許文献6に記載された反応とは異なる反応機構の下、酸化鉄によってアルミニウムのみが除去されていると推測される。このため、特許文献6の記載内容に従い、除去目的の元素よりも酸素との親和力が弱い元素の酸化物を酸化剤として用いたとしても、除去目的の元素が除去されるかが不明であり、この除去目的の元素よりも酸素との親和力の強い元素が除去されるかも不明である。
 したがって、極限の耐食性が求められる超高純度ステンレス鋼材として、[Si]<0.01wt%、[Mn]<0.01wt%、[B]<1ppmが求められた場合に、特許文献6の酸化精錬技術を採用したとしても、Si、Mn、Bが目標値まで除去されるか否かは不明である。さらに、特許文献6の酸化精錬技術は、内径φ84mmの水冷銅るつぼ内に形成された小規模な溶湯プールにおける原理確認試験であり、10kg以上の実用規模の溶湯プールにおいても成立するか否かも不明である。また、たとえ成立したとしても、安定操業に必要な具体的な酸化精錬条件が不明である。
 また、特許文献7には、コールドクルーシブル式誘導溶解法おいて、フッ化カルシウムなどのカルシウムハロゲン化物を含有したハライド層を内側に形成したるつぼ(ハライド系るつぼ)を用いたコールドクルーシブル式誘導溶解装置が記載されている。このコールドクルーシブル式誘導溶解装置では、るつぼの損傷が抑制されるが、ハライド系るつぼの内壁部ではフッ化カルシウムなどのハロゲン化物が溶湯と接触して常に反応が進行するため、通常の水冷銅るつぼを用いた場合よりも操業管理が困難となる。
 ところで、高純度化されたNi基合金やステンレス鋼の鋳塊を溶製する技術として、上記コールドクルーシブル式誘導溶解法以外に、特許文献8に示す電子ビーム溶解法による鋳塊製造方法がある。しかしながら、電子ビーム溶解法は、Ti、Nb、Taなどの高融点金属の溶解に適用されることが一般的であり、電子ビーム溶解法によって、ステンレス鋼中の炭素(C)、酸素(O)などの不純物元素を除去精錬する方法は、いまだ明らかではない。特に、[C]≦10ppmかつ[O]≦10ppmの脱炭脱酸精錬を安定して行う具体的な条件については、全く不明である。
特開平11-246910号公報 特開2002-69589号公報 特開2003-55744号公報 特開平11-310833号公報 特開2007-154214号公報 特開2003-342629号公報 特開2007-155141号公報 特開2008-274340号公報
Y. Nakamura et. al: Refining of 18%Cr-8%Ni Steel with Ca-CaF2 Solution,Transaction ISIJ, Vol. 16 (1976), p.623 岩崎、櫻谷、福澤:コールドクルーシブル浮揚溶解による極低リンステンレス鋼の溶製:鉄と鋼 Vol. 88 (2002) No.7, p.413
 本発明はこの様な状況に鑑みてなされたものであり、その目的は、不純物元素のうち少なくとも特定元素(リン(P)、炭素(C)、カルシウム(Ca)または酸素(O))の含有量がきわめて低い合金鋳塊を実用規模で製造する方法を提供することにある。
 本発明の一局面は、合金鋳塊の製造方法であって、コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって当該合金原料から溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記溶湯プールに第1精錬剤を添加して当該溶湯プールに存在する不純物元素のうち少なくともリンの含有量を低減する工程と、リンの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程とを備え、前記第1精錬剤は、金属カルシウムと、カルシウムハロゲン化物を含有するフラックスとの混合物であり、前記フラックスはフッ化カルシウムと、酸化カルシウムおよび塩化カルシウムの少なくとも一方とを含み、前記フッ化カルシウムの重量に対する前記酸化カルシウムおよび前記塩化カルシウムの合計重量の割合が5~30wt%であり、前記第1精錬剤を添加する前の前記溶湯プールの重量に対する当該第1精錬剤中の前記金属カルシウムの重量の割合が0.4wt%以上である合金鋳塊の製造方法である。
 本発明の他の一局面は、合金鋳塊の製造方法であって、コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって当該合金原料から溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記溶湯プールに第2精錬剤を添加した後、不活性ガスを外部に排気して排気状態で前記誘導加熱を15分間以上継続して、当該溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムの含有量を低減する工程と、炭素およびカルシウムの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程とを備え、前記第2精錬剤は、前記合金原料の主要成分元素の酸化物のうちの1種または2種以上からなる第1酸化物と、フラックスとの混合物であり、前記フラックスはフッ化カルシウムと、酸化カルシウムおよび塩化カルシウムの少なくとも一方とを含み、前記フッ化カルシウムの重量に対する前記酸化カルシウムおよび前記塩化カルシウムの合計重量の割合が5~30wt%であり、前記第2精錬剤中の前記第1酸化物の重量は、前記溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムを全量酸化させるために算出される算出重量の0.2~4倍であり、前記第2精錬剤を添加する前の前記溶湯プールの重量に対する当該第2精錬剤中の前記フラックスの重量の割合が0.5~5wt%である合金鋳塊の製造方法である。
 本発明の他の一局面は、合金鋳塊の製造方法であって、コールドハース式電子ビーム溶解装置内に原料電極を供給して、5×10-4mbarよりも低い気圧下において当該原料電極に電子ビームを照射して当該コールドハース式電子ビーム溶解装置内のコールドハースに溶湯プールを形成する工程と、前記溶湯プールに第3精錬剤を添加して、当該溶湯プール中に存在する不純物元素としての炭素の含有量を低減する工程と、炭素の含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程とを備え、前記第3精錬剤は前記原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物であり、前記第3精錬剤の重量は、前記溶湯プールに存在する前記不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍である合金鋳塊の製造方法である。
 本発明の目的、特徴、局面および利点は、以下の詳細な説明および図面によって、より明白となる。
図1は、コールドクルーシブル式誘導溶解装置を示す模式図である。 図2は、金属カルシウム添加率と脱リン率との関係、および金属カルシウム添加率と脱窒率との関係を示すグラフである。 図3は、溶湯プールの保持時間に対する、脱リン率および脱窒率の変化を模式的に示すグラフである。 図4は、第1精錬剤添加による還元精錬反応をモデル化した図(図4(a))、この反応モデルにおけるパラメータ(第1精錬剤の溶解速度定数Kmelt(Ca+Flx)と溶解所用時間との関係を示すグラフ(図4(b))およびこの反応モデルにおける他のパラメータ(Ca蒸発速度定数Kev(Ca))と脱リン率との関係を示すグラフ(図4(c))である。 図5は、水冷銅るつぼの内径と精錬剤添加後の適正保持時間との関係を示すグラフである。 図6は、酸化鉄添加・真空酸化精錬における酸化鉄添加割合(WFe/MFeO)およびフラックス添加率{Flx}Mと、脱炭率との相関を示すグラフである。 図7は、酸化鉄添加・真空酸化精錬における酸化鉄添加割合(WFe/MFeO)およびフラックスの添加率{Flx}Mと、脱珪率との相関を示すグラフである。 図8は、コールドハース式電子ビーム溶解装置を示す模式図である。 図9は、コールドハース式電子ビーム溶解酸化精錬における酸化鉄添加割合(WFe/MFeO)と、脱炭率との相関を示すグラフである。
(第1実施形態)
 本発明者らは、特許文献1~3に記載された還元精錬技術が10~50kg級の溶湯プール(合金溶湯プールともいう)においても成立するか否かを見極めるため、内径がφ220mmの水冷銅るつぼと、真空チャンバーとを備えたコールドクルーシブル式誘導溶解装置を用いて、ステンレス鋼(SUS310組成)20kgの溶湯プールを形成し、これにフッ化カルシウムおよび金属カルシウムを添加する試験を試みた。具体的には、まず、市販のフェロクロム材、低炭素鋼材、電解ニッケルなどを合金原料として水冷銅るつぼ内に投入した。次に、真空チャンバー内の雰囲気を、Caの酸化損失を抑制するため、真空チャンバー内を真空排気した後にArガスを600~800hPaまで導入した不活性ガス雰囲気にした。そして、ステンレス鋼(SUS310組成)20kgの溶湯プールを形成した。その後、粉状フッ化カルシウム(CaF)400gと粒状金属カルシウム100gとを混合した精錬剤を溶湯プールに添加したところ、精錬剤の添加直後に、金属カルシウムの激しい蒸発が始まり、黒色の煙状物(ダスト)が発生して、わずか数秒で、溶湯プール表面からの放射光が観察できない状況になった。
 ここで、通常の溶解操作では、溶湯プール表面の溶融状況を観察しながら、溶湯プール状態の保持が行われている。これに対して、上記試験では精錬剤の添加直後に溶湯プール表面が観察できなくなったので、本発明者らは、精錬剤の添加1分後に、高周波加熱電源を切り、水冷銅るつぼ内で溶湯プールを凝固させる操作を行った。具体的には、凝固操作として、上記電源切断後、一晩の間、水冷銅るつぼを静置した。
 そして、翌日、真空チャンバーを開放したところ、黒色のダストはほぼ沈降して真空チャンバーの床面や壁面に落下・付着していた。また、水冷銅るつぼ内には、凝固したステンレス鋼塊および凝固スラグ(CaF-Ca)が存在した。電源切断時と比べてこれらは凝固収縮により直径が小さくなっていたことから、これらを水冷銅るつぼから取り出すことが可能であった。そこで、凝固したステンレス鋼塊およびCaF-Caスラグを取り出した。
 まず、水冷銅るつぼ内の損傷の状況を観察した。CaF-Caスラグにより侵食された形跡はなく、水冷銅るつぼ自体は健全であることが確認された。また、精錬剤として添加した金属カルシウムは全量溶融されていたが、フッ化カルシウムは、その一部が粉体のままで凝固スラグ(CaF-Ca)の上側に付着していた。すなわち、全量が溶融できたのではなかった。
 次に、取り出した凝固鋳塊(凝固したステンレス鋼塊)から分析用試料を切り出して、分析調査を行った。その結果、溶湯プール段階で0.018wt%ほどであった[P]が、0.014wt%ほどになっていた。これにより、若干であるが、リンが除去精錬されていることが確認された。すなわち、実用規模である10kg以上の溶湯プールにおいても、原理的に除去精錬し得ることを確認した。しかしながら、十分な除去精錬効果を得るためには、適正な精錬条件を別途究明する必要があることが判明した。
 そこで、本発明者らは、製品鋳塊重量が例えば10kg以上となる実用規模の溶湯プールから不純物元素のうち少なくともリン(P)を十分に除去するために、溶湯プールに添加する精錬剤の組成および溶湯プールに対する精錬剤の割合に注目して鋭意検討をかさねてきた。その結果、コールドクルーシブル式誘導溶解装置に備えられたコールドクルーシブル内に溶湯プールを形成し、溶湯プールに精錬剤を添加して不純物元素を除去し、不純物元素が除去された溶湯を凝固させて合金鋳塊を形成する製造方法において、
(1)精錬剤として、金属カルシウムと、カルシウムハロゲン化物を含有するフラックスとの混合物である第1精錬剤を用い、
(2)前記フラックスとして、フッ化カルシウムと、酸化カルシウムおよび塩化カルシウムの少なくとも一方とを含むとともに、前記フッ化カルシウムの重量に対する前記酸化カルシウムおよび前記塩化カルシウムの合計重量の割合が5~30wt%であるカルシウムハロゲン化物系フラックスを用い、
(3)前記第1精錬剤を添加する前の前記溶湯プールの重量に対する当該第1精錬剤中の前記金属カルシウムの重量の割合を0.4wt%以上にすることで、
不純物元素のうち少なくともリン(P)の含有量がきわめて低い合金鋳塊を実用規模で製造できることを見出し、本発明に係る第1実施形態を完成した。
 本発明に係る第1実施形態の目的は、不純物元素のうち少なくともリン(P)の含有量がきわめて低い合金鋳塊を実用規模で製造する方法を提供することにある。
 以下、本発明に係る第1実施形態について図面を参照しつつ説明する。
 本発明に係る第1実施形態は、コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって当該合金原料から溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記溶湯プールに第1精錬剤を添加して当該溶湯プールに存在する不純物元素のうち少なくともリンの含有量を低減する工程と、リンの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程とを備えた合金鋳塊の製造方法である。
(コールドクルーシブル式誘導溶解装置)
 図1は、コールドクルーシブル式誘導溶解装置を示す模式図である。本実施形態の合金鋳塊の製造方法におけるコールドクルーシブル式誘導溶解装置として、例えば、図1に模式的に示されるコールドクルーシブル式誘導溶解装置1を用いることができる。コールドクルーシブル式誘導溶解装置1は、磁気浮揚型のコールドクルーシブル誘導溶解(CCIM)方式の溶解設備であり、原料フィーダー2と、真空チャンバー4と、真空チャンバー4内に備えられたコールドクルーシブル3と、真空チャンバー4内でコールドクルーシブル3の側面外周を取り巻くように配置されたコイル5とを有する。
 原料フィーダー2はコールドクルーシブル3内に各種形状の合金原料を供給することができる。コイル5は、コールドクルーシブル3の側面をその上下端をある程度残し、螺旋状に取り巻くようにコールドクルーシブル3の表面より僅かに離れて設けられている。コイル5は誘導加熱によって、コールドクルーシブル3のコイル5で取り巻いた領域(誘導加熱領域)内にある合金原料を溶解して溶湯プール6を形成することができる。コールドクルーシブル3の誘導加熱領域の下に位置する非誘導加熱領域では、溶湯プール6が冷却されて凝固スカル層8を形成される。原料フィーダー2は不純物元素を除去精錬するための精錬剤を溶湯プール6に供給することもできる。
 真空チャンバー4内の雰囲気は制御されている。溶製する合金中からの合金成分の蒸発損失を防ぐために、真空チャンバー4内をアルゴン(Ar)ガスやヘリウム(He)ガスなどを導入した不活性ガス雰囲気に保つことができる。不活性ガス雰囲気を形成するには、真空ポンプで真空チャンバー4内の排気を行った後に、Arガスなどの不活性ガスを真空チャンバー4内に導入することが望ましい。これは、精錬剤として用いる溶融金属カルシウムが非常に活性なため、真空チャンバー4内に酸素ガスなどが存在すると、精錬反応前にCaが酸化されて消耗してしまうためである。なお、金属カルシウムを用いる還元精錬においては、真空チャンバー4からの漏れを極力低減しておくことが望ましい。また、真空チャンバー4内のガスを継続して排出することで真空雰囲気に保ったりすることもできる。
 コールドクルーシブル3は溶湯プール6およびその周囲に形成された溶融スラグ層7と反応しないるつぼであればよい。コールドクルーシブル3として、例えば、水冷銅るつぼなどの冷媒によって表面が冷却された金属製のるつぼを挙げることができる。ただし、コールドクルーシブル3に代えて、通常の耐火物るつぼを用いることはできない。これは、本実施形態では精錬時のフラックスとして、フッ化カルシウム(CaF)などのカルシウムハロゲン化物を含んだフラックスを用いる必要があり、通常の耐火物るつぼを用いた場合には、耐火物るつぼが溶融フッ化カルシウムなどのカルシウムハロゲン化物の溶融体によって著しく溶損されて、誘導溶解装置中の加熱用水冷銅コイルの溶損や水蒸気爆発などの事故を引き起こす危険性があるからである。
 また、ある程度の熱間加工を施し、実用規模での部品を製造するには、合金鋳塊の重量は少なくとも10kg程度必要あるので、10kg以上の溶湯プール6を形成させるには、コールドクルーシブル3の内径Dを直径で0.2m以上にすることが望ましい。コールドクルーシブル3の内径が、直径で0.2m以下の場合、形成できる溶湯プール6の重量が少なくなり、10kg以上の溶湯プールを安定して形成できるとは限らないからである。
 本実施形態では、まず、コールドクルーシブル式誘導溶解装置1のコールドクルーシブル3に原料フィーダー2により合金原料を投入し、不活性ガス雰囲気下において、当該合金原料をコイル5の誘導加熱によって溶解して、所定の合金組成に成分調整するための溶湯プール6を形成する(溶湯プール形成工程)。次に、コイル5の誘導加熱を継続した状態で(すなわち、溶湯プール6を保持した状態で)、溶湯プール6に第1精錬剤を添加して、溶湯プール6中の不純物元素のうち少なくともリンを除去する(精錬工程)。そして、精錬後の(リンが除去された)溶湯を凝固させて合金鋳塊を形成する(鋳塊形成工程)。本実施形態はこれら工程を経て、合金鋳塊を溶製する。
 本実施形態では、鋳塊形成工程において、例えば、除滓処理後に誘導加熱を停止して、コールドクルーシブル3内で溶湯を凝固させることにより、合金鋳塊を形成してもよいし、コールドクルーシブル3として底板が上下方向に移動できる底板昇降型コールドクルーシブルを採用して、コールドクルーシブルの誘導加熱領域内で溶湯プールを保持しながら、底板を溶湯プールとともに非誘導加熱領域まで引き下げて下方から溶湯を逐次凝固させることにより、合金鋳塊を形成してもよいし、精錬後の溶湯をコールドクルーシブル3から鋳型に注入し凝固させることにより、合金鋳塊を形成してもよい。
 本実施形態では、合金原料として粒状、板状、円柱状などの金属、合金などを用いることができる。合金鋳塊の目標組成に応じて、合金原料の形状、純度および組成を選択すればよい。例えば、高ニッケル高クロムステンレス鋼を溶製する場合には、フェロクロム材、低炭素鋼材(転炉材)および電解ニッケルを用いることができる。また、合金鋳塊の純度をさらに高める(不純物元素の含有量をさらに低減させる)目的で、本実施形態で得られた合金鋳塊を合金原料として用いることもできる。
 本実施形態により、様々な成分組成の合金鋳塊を製造することができる。例えば、Feを主成分とする合金材料(Fe基合金鋳塊)、Niを主成分とする合金材料(Ni基合金鋳塊)、FeおよびNiを主成分とする合金材料(Fe-Ni基合金鋳塊)、Coを主成分とする合金材料(Co基合金鋳塊)などを製造することができる。本実施形態の合金鋳塊の製造方法は、Fe基合金鋳塊、Ni基合金鋳塊およびFe-Ni基合金鋳塊の製造に特に適している。
 (コールドクルーシブル式誘導溶解装置を用いた還元精錬方法)
 本実施形態では、コールドクルーシブル式誘導溶解装置1のコールドクルーシブル3内において、溶湯プール6を形成した後、溶湯プール6の重量M(kg)に対して、以下の条件(1)~(3)を満足する精錬剤を添加することにより、リン(P)、硫黄(S)、窒素(N)、錫(Sn)、鉛(Pb)、硼素(B)などの不純物元素を除去精錬する。溶湯プール6の下には凝固スカル層8が形成される。図1は本実施形態における精錬の状況を模式的に表している。
 本実施形態における精錬条件は、内径φ220mmの水冷銅るつぼ(コールドクルーシブル3)を有するコールドクルーシブル式誘導溶解装置1を用いて、多数の試験および検討を行うことで明らかとなった。
 (1)精錬剤として、金属カルシウムと、カルシウムハロゲン化物を含有するフラックスとの混合物である第1精錬剤を用いること。
 金属カルシウムを用いる還元精錬法(Ca還元精錬法ともいう)では、金属カルシウムを溶湯プール6に確実に供給する必要がある。金属カルシウム単体の沸点は、1484℃である。CCIM法で形成される溶湯プールの温度は、Fe基合金で1520℃前後、Ni基合金で1450℃前後である。Fe基合金、Ni基合金またはFe-Ni基合金の製造に当り、金属カルシウムを単体で溶湯プール6に添加すると、金属カルシウムはほぼ蒸発してしまい、精錬反応のための金属カルシウムは殆ど残存しない状況となる。ここで、金属カルシウムは、溶融フッ化カルシウム(CaF)などの溶融カルシウムハロゲン化物(以下、Caハライドともいう)に溶解することが知られている。フッ化カルシウムの融点は1410℃ほどであり、溶湯プール6の温度よりも低いことから、フッ化カルシウムなどのカルシウムハロゲン化物を溶湯プール6に投入することで、溶湯プール6からの伝熱により溶融スラグ層7を形成させることができる。そこで、精錬剤として、金属カルシウムと、カルシウムハロゲン化物を含有するフラックスとの混合物である第1精錬剤を用いることで、金属カルシウムを溶湯プール6と共存させる。
 (2)フラックスが、フッ化カルシウムと、酸化カルシウムおよび塩化カルシウムの少なくとも一方とを含み、フッ化カルシウムの重量に対する酸化カルシウムおよび塩化カルシウムの合計重量の割合(すなわち、酸化カルシウムおよび塩化カルシウムの合計重量/フッ化カルシウムの重量)が5~30wt%であること。
 特許文献1~3および非特許文献1、2では、精錬剤中のフラックスとしてフッ化カルシウム(CaF)のみが用いられている。しかしながら、CCIM法でNi含有量の多いステンレス鋼やNi基合金を溶製する場合、形成される溶湯プールの温度がFe基合金を溶製する場合よりも低いことから、フラックスとしてフッ化カルシウム(CaF)のみを用いると、フッ化カルシウムが溶融されずに粉体のままの状態で精錬反応が終わることがしばしば観察された。その結果、金属カルシウムをフラックス浴に有効に保持する(すなわち、溶融フラックス中で、金属カルシウムを他の元素と結合せずに存在させる)ことが困難となり、不純物除去精錬効果が得られにくくなった。本発明者らは多数の試験を行い、フラックスとして、主成分がフッ化カルシウム(CaF)であり、フラックス自体の融点を降下させる化合物を含有した混合物(カルシウムハロゲン化物系フラックス、または、Caハライド組成フラックスともいう)を用いることで、フラックスが溶湯プールに容易に溶解されることを見出した。上記化合物は酸化カルシウム(CaO)および塩化カルシウム(CaCl)の少なくとも一方である。酸化カルシウムおよび塩化カルシウムは、フッ化カルシウムを主成分とするフラックスの融点を降下させるとともに、精錬反応への影響が少ない化合物だからである。
 第1精錬剤中のフラックス(すなわち、カルシウムハロゲン化物系フラックス)は、フッ化カルシウムが主成分であり、酸化カルシウムおよび塩化カルシウムの少なくとも一方を含み、フッ化カルシウムの重量に対する「酸化カルシウムおよび塩化カルシウム」の合計重量の割合が5~30wt%の混合物である。CaFに少量のCaOおよび/またはCaClを配合することにより、フラックスの融点が低下し、溶湯プール6からの伝熱による溶融スラグ層7の形成が容易となる。しかしながら、フッ化カルシウムの重量に対する酸化カルシウムの重量の割合が30wt%を超えると、フラックスが溶解されにくくなり、スラグ浴の流動性が低下する。これはCaOの溶け残りなどが発生するためと推定される。このため、フッ化カルシウムの重量に対する酸化カルシウムの重量の割合の上限を30wt%とする。一方、塩化カルシウムは、フラックスの低融点化の効果が大きいため、低融点の高ニッケル合金鋳塊を溶製する際に有効である。ただし、塩化カルシウムは蒸発損失が激しく、フッ化カルシウムの重量に対する塩化カルシウムの重量の割合が30wt%を超えたフラックスを用いたときには、精錬操作が不安定となった。このため、フッ化カルシウムの重量に対する塩化カルシウムの重量の割合の上限を30wt%とする。これらを踏まえて、フッ化カルシウムの重量に対する酸化カルシウムと塩化カルシウムの合計重量の割合の上限も30wt%とする。
 また、フッ化カルシウムの重量に対する「酸化カルシウムおよび塩化カルシウム」の合計重量の割合が5wt%未満では、フラックスがフッ化カルシウムおよび酸化カルシウムからなる場合、フッ化カルシウムおよび塩化カルシウムからなる場合並びにフッ化カルシウム、酸化カルシウムおよび塩化カルシウムからなる場合のいずれにおいても、フラックスの融点の低下がわずかで、精錬反応が終了するまでにフッ化カルシウムが溶融しないことがあった。したがって、フッ化カルシウムの重量に対する「酸化カルシウムおよび塩化カルシウム」の合計重量の割合の下限を5wt%とする。
 なお、第1精錬剤中のフラックスは、その融点上昇に影響を与えない範囲で精錬反応への影響が少ない他の化合物(例えば、フッ化カルシウム以外のカルシウムハロゲン化物)を含んでもよい。
 第1精錬剤中のフラックスとして、例えば、CaF-CaO(5~30wt%)、CaF-CaCl(5~30wt%)、CaF-(CaO+CaCl)(5~30wt%)を挙げることができる。ここで、CaF-CaO(5~30wt%)とは、フッ化カルシウムに酸化カルシウムを5~30wt%(フッ化カルシウムの配合重量W(CaF)に対する酸化カルシウムの配合重量W(CaO)の割合、すなわちW(CaO)/W(CaF))配合したものである。CaF-CaCl(5~30wt%)とは、フッ化カルシウムに塩化カルシウムを5~30wt%(フッ化カルシウムの配合重量W(CaF)に対する塩化カルシウムの配合重量W(CaCl)の割合、すなわちW(CaCl)/W(CaF))配合したものである。CaF-(CaO+CaCl)(5~30wt%)とは、フッ化カルシウムに対して、酸化カルシウムと塩化カルシウムとを合計で5~30wt%(フッ化カルシウムの配合重量W(CaF)に対する、酸化カルシウムの配合重量W(CaO)と塩化カルシウムの配合重量のW(CaCl)の合計の割合、すなわち(W(CaO)+W(CaCl))/W(CaF))配合したものである。
 Ni含有量の少ないFe-Ni基合金の溶製に対しては、比較的に融点の高いCaF-CaO(20wt%)(以下、「CaF-20CaO」で表すこともある)が第1精錬剤中のフラックスとして有効であった。
 (3)第1精錬剤を添加する前の溶湯プールの重量に対する当該第1精錬剤中の金属カルシウムの重量の割合が0.4wt%以上であること。
 第1精錬剤を添加する前の溶湯プール6の重量M(kg)に対する当該第1精錬剤中の金属カルシウムの重量WCa(kg)の割合{Ca}M(wt%)が0.4wt%以上のとき、すなわち、
  0.4≦{Ca}M
を満たすとき、1回の精錬操作における脱リン率を大幅に向上させることができることを、本発明者らは多数の試験結果から見出した。
ここで、{Ca}Mは、次式で定義される。
  {Ca}M=WCa/M×100
 上式中、WCaは第1精錬剤中の金属カルシウムの重量(kg)を表し、Mは第1精錬剤を添加する前の溶湯プール6の重量(kg)を表す。
 なお、後述する、第1精錬剤を添加する前の溶湯プール6の重量M(kg)に対する当該第1精錬剤中のフラックスの重量WFlx(kg)の割合{Flx}M(wt%)は、次式で定義される。
  {Flx}M=WFlx/M×100
 上式中、WFlxは第1精錬剤中のフラックスの重量(kg)を表し、Mは第1精錬剤を添加する前の溶湯プール6の重量(kg)を表す。
 本明細書では、第1精錬剤を添加する前の溶湯プールの重量に対する当該第1精錬剤中の金属カルシウムの重量の割合{Ca}Mを「溶湯プールに対する金属カルシウムの添加率」、「金属カルシウム添加率」または「金属Ca添加率」ともいう。一方、第1精錬剤を添加する前の溶湯プールの重量に対する当該第1精錬剤中のフラックスの重量の割合{Flx}Mを「溶湯プールに対するフラックスの添加率」または「フラックス添加率」ともいう。
 なお、精錬時の金属カルシウムの量やフラックスの量は、通常の取り扱いでは、精錬剤(金属カルシウムおよびフラックスの合計)中の金属カルシウムの濃度や精錬剤中のフラックスの濃度で整理されることが多い。しかしながら、溶湯プール6の重量M(kg)に対する金属カルシウムの重量WCa(kg)の割合や溶湯プール6の重量M(kg)に対するフラックスの重量WFlx(kg)の割合として整理する方が、所要の金属カルシウム量やフラックス量を直接的に把握しやすい。そのため、本明細書では、{Ca}Mや{Flx}Mの定義に示すように、溶湯プールに対する金属カルシウムの重量割合や溶湯プールに対するフラックスの重量割合で表すこととした。なお、溶湯プール6の重量Mは、水冷銅るつぼ(コールドクルーシブル3)に投入する前の合金原料の重量と等しいとした。
 以下、金属カルシウム添加率の適正量(0.4≦{Ca}M)について具体的に説明する。
 金属カルシウムとカルシウムハロゲン化物系フラックスとの混合物(すなわち、第1精錬剤)を溶湯プール6に添加すると、直ちに金属カルシウムの蒸発が始まり、黒色の煙が発生した。金属カルシウム添加率が小さいとき({Ca}M<0.1)には、金属カルシウムの蒸発損失により、添加した金属カルシウムの多くが失われるため、除去精錬の効果はほとんど得られなかった。一方、金属カルシウム添加率が大きいとき(0.4≦{Ca}M)には、添加後、数秒から数十秒で、発生する黒煙が真空チャンバー4内に立ち込めて、溶湯プール6表面からの放射光が遮られる状況となり、溶湯プール6の表面状況を観察することが困難となった。
 ここで、金属カルシウム添加率の適正量についての検討の初期段階では、第1精錬剤添加後に溶湯プール6表面の状態が観察できなくなることを懸念して、金属カルシウム添加率を小さくした条件で試験を行った。例えば、φ220mmの水冷銅るつぼ(コールドクルーシブル3)内に20kgの溶湯プール(Fe-20Ni-25Cr)を形成させ、この溶湯プールに、金属カルシウム30gとCaF-CaO(25wt%) 270gとを第1精錬剤として添加する試験({Ca}M=0.15%、{Flx}M=1.35%)を実施した。このような条件であれば、Ca蒸発ダストにより視界は劣化するものの、溶湯プール6表面の観察は、何とか可能な状態であった。
 しかしながら、このような条件での脱リン率は15~30%ほどであり、リン(P)などの不純物除去精錬効果は全く不満足なものであった。ここで、脱リン率(以下、脱[P]率で表すこともある)ηp(%)、および脱窒率(以下、脱[N]率で表すこともある)ηN(%)は、それぞれ次式で定義される。
  ηp=([P]0-[P])/[P]0×100
 上式中、[P]0は精錬前の溶湯中のリン濃度(wt%)を表し、[P]は精錬後の溶湯中のリン濃度(wt%)を表す。
  ηN=([N]0-[N])/[N]0×100
 上式中、[N]0は精錬前の溶湯中の窒素濃度(wt%)を表し、[N]は精錬後の溶湯中の窒素濃度(wt%)を表す。
 また、金属カルシウム添加率{Ca}Mが小さい条件で、精錬試験を多数回に亘って実施した結果、金属カルシウムとカルシウムハロゲン化物系フラックスとを添加する(すなわち、第1精錬剤を添加する)精錬試験を多数回実施しても、水冷銅るつぼ(コールドクルーシブル3)の損傷が発生していないことを確認した。また、溶湯プール6を直接、目視観察しなくても精錬を続行できることが分かった。そこで、次に、金属カルシウム添加率{Ca}Mおよびフラックス添加率{Flx}Mが大きい条件で精錬試験を多数回に亘って実施した。
 金属カルシウム添加率が大きい条件(0.4≦{Ca}M)での精錬操業では、金属カルシウム添加後、数秒から数十秒で、発生する黒煙が真空チャンバー4内に立ち込めた。そして、溶湯プール6表面からの放射光さえも遮られる状況となり、溶湯プール6の表面状況を目視観察することは不可能であった。しかしながら、溶湯プール6からの放射光の観察さえもできなくなるほどの量の金属カルシウムを添加することによって、脱リンの精錬効果が高められることを見出した。
 そして、溶湯プール6の重量Mを20kgから50kgまでの範囲において、金属カルシウム添加率{Ca}Mおよびフラックス添加率{Flx}Mを様々に変化させた条件で、多数の精錬試験を実施した。これらの試験結果から、脱リン率ηPと金属カルシウム添加率{Ca}Mとの間には相関関係があること、そして、脱窒率ηNと金属カルシウム添加率{Ca}Mとの間にも相関関係があることを見出した。金属カルシウム添加率{Ca}Mと脱リン率(脱[P]率)との関係を図2(a)のグラフに示す。また、金属カルシウム添加率{Ca}Mと脱窒率(脱[N]率)との関係を図2(b)のグラフ示す。
 図2(a)から、溶湯プールに対する金属カルシウムの添加率{Ca}Mが大きくなるにつれて脱リン率ηPは増加することが分かる。より具体的には、脱リン率の上限値に着目すると、{Ca}Mが0から約0.4までの範囲では急激に上昇し、{Ca}Mが約0.4で約90%を示し、その後、約1.0までは緩やかに上昇し、{Ca}Mが約1.0以上で最大値100%を示す。一方、脱リン率の下限値に着目すると、{Ca}Mが0から約0.5までの範囲では緩やかに上昇し、{Ca}Mが約0.5で約9%を示し、その後、約1.0までは急激に上昇し、{Ca}Mが約1.0で約41%を示す。そして、{Ca}Mが約1.0から約1.7までの範囲では若干緩やかに上昇し、{Ca}Mが約1.7以上で最大値約71%を示す。このような脱リン率の変動(ηP/{Ca}Mの変化)から、{Ca}Mが0.5以上のときに、脱リン反応が急激に進行することが分かる。したがって、金属カルシウム添加率{Ca}Mは0.4以上とする。金属カルシウム添加率{Ca}Mは0.5以上が好ましく、1.0以上がより好ましい。これにより、1回の精錬操作で高い脱リン効果が得られる。
 なお、不純物元素含有量の多い廉価な原料(例えば[P]0=200~300ppmのフェロクロム材など)を用いて、不純物元素含有量の少ない超高純度合金(例えば、[P]<2ppm)を溶製する場合には、複数回のこの精錬操作(Ca還元精錬)を繰り返せばよい。すなわち、1回目の溶製で得られた合金鋳塊(1次鋳塊)を2回目の溶製時の合金原料として溶製を行い、以下、n回目の溶製時には、n-1次鋳塊を合金原料として用いて溶製を行う(nは3以上の自然数)。
 一方、図2(b)から、溶湯プールに対する金属カルシウムの添加率{Ca}Mが大きくなるにつれて脱窒率ηNは増加することが分かる。より具体的には、脱窒率の上限値に着目すると、{Ca}Mが0から約0.4までの範囲では急激に上昇し、{Ca}Mが約0.4で約76%を示し、その後、約1.1までは緩やかに上昇し、{Ca}Mが約1.1以上で最大値約92%を示す。一方、脱窒率の下限値に着目すると、{Ca}Mが0から約0.35までの範囲では単調に上昇し、{Ca}Mが約0.35で約30%を示し、その後、約0.5まではより急激に上昇し、{Ca}Mが約0.5以上で約50%を示す。このような脱窒率の変動(ηN/{Ca}Mの変化)から、{Ca}Mが0.35以上のときに、脱窒反応が急激に進行することが分かる。したがって、脱窒という目的に対しては金属カルシウム添加率{Ca}Mは0.35以上とする。好ましくは0.5以上であり、より好ましくは1.1以上である。
 なお、脱リン率と比べて、脱窒率はやや低くなる傾向を示す。これは、窒素については、精錬操作の際に若干の大気リークなどが発生すると、容易に空気中の窒素ガスが真空チャンバー4内へ流入して、窒素混入を引き起こすためと推定される。
 また、金属カルシウム添加率については、原理的には{Ca}Mが大きいほど、確実に不純物除去効果が得られると考えられる。しかしながら、実際の精錬操作においては、{Ca}Mを1.5より大きくすると、Ca還元精錬操業自体は可能であるものの、精錬操作後の鋳塊に付着し、吸収される金属カルシウム量が多くなった。その結果、鋳塊の取り出しなどの後処理で、蒸発したCaダストの発火などの問題が起こりやすくなった。さらには、m-1次鋳塊を合金原料とする、m回目の溶解精錬工程において、鋳塊中に溶解しているカルシウムの蒸発によるダスト発生などの操業阻害が顕著になった(mは2以上の自然数)。本発明者らは、これらの問題を見出したので、安定した精錬操作を行う観点から、{Ca}M≦1.5が好ましい。
 本実施形態において、さらに次の条件(4)を満たすことが、脱リン効果をより一層向上させる点から好ましい。本発明者らは上記多数の精錬試験の結果から見出した。
(4)第1精錬剤を添加する前の溶湯プールの重量に対する当該第1精錬剤中のフラックスの重量の割合(溶湯プールに対するフラックスの添加率{Flx}M)が、当該溶湯プールの重量に対する当該第1精錬剤中の金属カルシウムの重量の割合(溶湯プールに対する金属カルシウムの添加率{Ca}M)に等しいか、またはそれよりも大きいこと、すなわち、次式を満たすこと。
  {Ca}M≦{Flx}M
 上記条件(4)を満たすときには、添加した金属カルシウムの蒸発損失が殆どなく、金属カルシウムのリン捕捉能力がさらに高まるためと考えられる。
 また、金属カルシウムを安定してフラックス中に溶解させる(すなわち、溶融フラックス中で、金属カルシウムを他の元素と結合せずに存在させる)ためには、{Flx}Mが{Ca}Mの1.5倍以上であること、すなわち、
  {Ca}M × 1.5≦{Flx}M
を満たすことがより望ましい。
 また、第1精錬剤(金属カルシウムとフラックス(カルシウムハロゲン化物系フラックス)の混合物)を添加する前に、あらかじめこのフラックスのみを溶湯プールに添加しておくことが好ましい。これにより、第1精錬剤の添加前に溶融カルシウムハロゲン化物系スラグ層が形成されて、添加する金属カルシウムの蒸発損失を抑制することができる。あらかじめ添加しておくフラックス(事前添加フラックスともいう)の量は、{Ca}M≦{Flx}M0を満たすことが有効であった。ここで、{Flx}M0は第1精錬剤を添加する前の溶湯プール6の重量M(kg)に対する事前添加フラックスの重量WFlx0(kg)の割合(wt%)を表す。{Flx}M0は、溶湯プール6重量M(kg)に対する事前添加フラックスの添加率、または、事前添加率ともいう。
 一方、本実施形態におけるCa還元精錬法(金属カルシウム-Caハライド還元精錬法)では、溶湯プール6からの伝熱により、溶融スラグ層7を形成させる必要がある。ここで、{Ca}M、{Flx}Mおよび{Flx}M0の総量が大きくなりすぎると、溶融スラグ層7を形成させることが困難となった。多数の試験の結果から、{Ca}M、{Flx}Mおよび{Flx}M0の総量は、溶湯プール6重量Mの5%以内であることが望ましい。
 本実施形態における還元精錬によって、PおよびN以外の不純物元素のうち、Sは容易に除去された。また、Sn、Pb、Sbなどのトレーストランプ元素は、PおよびNとほぼ同程度の除去効果が得られた。なお、Bは、{Ca}M=1.0における脱硼率は約20%であったので、分離除去精錬が可能である。
 前記したように、溶湯プール6に対する金属カルシウムの添加率{Ca}Mを0.4wt%以上とすることにより、すなわち、上記条件(1)~(3)を満たすことにより、高い脱リン率を確保できる。しかしながら、溶湯プール6に精錬剤を添加した後の溶湯プール6の保持時間によっては除去精錬効果が変化する。このため、図2(a)および図2(b)に示すように、脱リン率の上限値と下限値、および、脱窒率の上限値と下限値それぞれが、同じ金属カルシウム添加率に対して離れている要因の一つとなっている。より高い除去精錬効果を得るには、適正な溶湯プール6の保持時間で精錬を行う必要がある。
 そこで、本発明者らは、下記試験を実施した。
内径φ220mmの水冷銅るつぼ(コールドクルーシブル3)を有するコールドクルーシブル式誘導溶解装置1を用い、ステンレス鋼材(Fe-20Ni-25Cr、Fe-35Ni-25Cr)などを水冷銅るつぼ3に投入して、誘導加熱により重量M(20kg、40kg、50kg)の溶湯プール6を形成させた。その後、フラックス(80wt%CaF-20wt%CaO、80wt%CaF-10wt%CaCl-10wt%CaOなど)を{Flx}M0=1.5%の条件で添加して、精錬前に溶融スラグ層7をあらかじめ形成させた。その後、{Ca}M=1.0%、{Flx}M=1.5%の条件で、第1精錬剤(金属カルシウムとフラックスとの混合物)を添加し、ある一定時間誘導加熱を継続して、溶湯プール6と溶融スラグ層7とを保持(2分~60分)した。その後、直ちに高周波加熱電源を切り(すなわち、誘導加熱を中止し)、溶湯プール6を、水冷銅るつぼ3内で急冷凝固させた。その後、急冷凝固させた鋳塊中のリン(P)、窒素(N)などの不純物元素の含有量を分析した。
 上記試験を実施した結果を図3に示す。図3(a)は、溶湯プール6の保持時間に対する脱リン率の変化を模式的に示すグラフである。図3(b)は、溶湯プール6の保持時間に対する脱窒率の変化を模式的に示すグラフである。
 図3(a)に模式的に示した試験結果の試験条件は下記のとおりである。溶湯プール6の重量は20kgとした。精錬前にあらかじめ添加したフラックス(事前添加フラックス)の重量は300g({Flx}M0=1.5)とした。また、第1精錬剤として添加した金属カルシウムの重量は200g({Ca}M=1.0)、フラックスの重量は300g({Flx}M=1.5)とした。
 図3(b)に模式的に示した試験結果の試験条件は下記のとおりである。溶湯プール6の重量は50kgとした。事前添加フラックスの重量は750g({Flx}M0=1.5)とした。また、第1精錬剤として添加した金属カルシウムの重量は500g({Ca}M=1.0)、フラックスの重量は750g({Flx}M=1.5)とした。
 図3(a)、(b)からわかるように、脱リン率、脱窒率とも、第1精錬剤(金属カルシウムとフラックスとの混合物)を添加した直後は低い値を示す。その後、脱リン率、脱窒率とも増加し、20kg溶湯プール6の場合(図3(a))は4~7分の保持時間で、50kg溶湯プール6の場合(図3(b))は10~17分の保持時間で、脱リン率、脱窒率は最大値に達する。しかし、さらに長時間、溶湯の状態(溶解した状態)を保持し続けると、脱リン率、脱窒率とも減少する傾向が認められる。溶湯プール6の重量が40kgの場合も、同様な傾向を示した。なお、40kgの溶湯プール6の場合の脱リン率および脱窒率が最大となる時間は8~11分であった。40kgの溶湯プール6には、{Flx}M0=1.5を満たす条件として、精錬前にフラックス(事前添加フラックス)600gをあらかじめ添加し、その後、第1精錬剤が{Ca}M=1.0および{Flx}M=1.5を満たす条件として金属カルシウム400gとフラックス600gを添加した。
 これらの試験結果から、添加する精錬剤の量が少ない場合(すなわち、溶湯プール6の重量が少ない場合)には、最大の精錬効果が得られるまでの時間が短時間となる傾向が判明した。
 また、図3から、第1精錬剤(金属カルシウムとフラックスとの混合物)を添加した後の溶湯プール6の保持時間が、適正な時間範囲内にあるときには、高い脱リン率や高い脱窒率が得られることが分かる。したがって、精錬技術としては、水冷銅るつぼ3の内径D、溶湯プール6の重量Mおよび第1精錬剤の添加量(金属カルシウムの重量およびフラックスの重量)などの条件に応じて、上記溶湯保持時間を適正な時間範囲内に制御すればよい。
 溶湯プール6の量が異なり、それに応じて添加する第1精錬剤の量(金属カルシウムの量およびフラックスの量)が異なる場合には、脱リン率が最大となる溶湯プール6の保持時間が異なるという上記試験結果から、本実施形態の精錬工程では、次の精錬反応機構に従って脱リン反応および脱窒反応が進行していると推定する。
 溶湯プール6に添加された第1精錬剤中の金属カルシウムおよびフラックスは、溶湯プール6からの伝熱によりそれぞれ融解が始まる。融解によって溶融スラグ層7(Ca+フラックスの層)が形成されていく。スラグ中に溶解した金属カルシウムの量が増加するに伴って、次の脱リン反応および脱窒反応が促進される。
  2[P]+3(Ca)→(Ca
  2[N]+3(Ca)→(Ca
 一方、溶融スラグ層7中のCaは、カルシウムガスとして蒸発し続けている。この蒸発損失のために、溶融スラグ層7中のCa濃度は、溶融スラグ層7にCaが完全に溶解した後、徐々に低下していくと考えられる。金属カルシウム単体の蒸気圧は非常に高いので、Caの溶融スラグ層7からの蒸発速度は相当に大きく、溶融スラグ層7中のCa濃度の低下も相当の速度で進む。溶融スラグ層7中のCa濃度が低下すると、溶融スラグ層7に吸収されてカルシウム化合物(Ca、Caなど)の状態で存在していたCaは、カルシウム化合物の分解によって当初の金属の状態に戻る。その結果、この分解で生じたPおよびNは再び溶湯プール6中に移動する。すなわち、次式に示す、いわゆる復リン反応などが溶融スラグ層7中で発生する。
  (Ca)→Ca(g)↑
  (Ca)→2[P]+3(Ca)
  (Ca)→2[N]+3(Ca)
 このため、溶湯保持精錬時間が必要以上に長い場合には、一旦、溶融スラグ層7に吸収されていたPやNが溶湯プール6側に戻り、十分な精錬効果(脱リン効果、脱窒効果)が得られなくなる。したがって、金属カルシウムを用いる還元精錬法では、精錬剤を添加した後の時間管理が極めて重要となる。溶湯プール6の重量に応じて、添加すべき第1精錬剤の重量(金属カルシウムの重量、フラックスの重量)が異なることから、溶湯保持時間の管理では、添加する金属カルシウムの重量やフラックスの重量に応じて、適正な溶湯保持時間の範囲が異なることとなる。また、形成される溶融スラグ層7の量も、水冷銅るつぼ3の内径によって異なることから、これも考慮する必要がある。
 そこで、本発明者らは、図1に模式的に示した溶解精錬状況を、図4(a)に示すようにモデル化した。図4(a)は、第1精錬剤(金属カルシウムとフラックスとの混合物)添加による還元精錬反応をモデル化した図である。図4(a)中、数字0~6は時間ステップを表し、[P]0~[P]6は各時間ステップにおける溶湯中のリン濃度を表し、[Ca]0~[Ca]6は各時間ステップにおける溶融スラグ層7中のカルシウム濃度を表す。また、左下がり斜線を付した部分は溶湯プールを表し、右下がり斜線を付した部分は第1精錬剤の層を表し、横線を付した部分は溶融スラグ層7を表す。
 本発明者らは、下記の反応モデルを構築した。溶湯プール6からの伝熱により、溶湯プール6の上部に添加した第1精錬剤中の金属カルシウムとフラックスとが順次溶解して、溶融スラグ層7が形成される(図4(a)の時間ステップ0から4への段階)。一旦、溶融スラグ層7が形成されると、溶融スラグ層7中のCaとの局所平衡により、溶湯プール6中のP濃度およびN濃度、溶融スラグ層7中のCa濃度およびCa濃度などが定まり、脱リン反応、脱窒反応が進行する。しかしながら、溶融スラグ層7が完全に形成された(図4(a)の時間ステップ4の段階)後は、溶融スラグ層7からのCa蒸発損失のために、時間と共に溶融スラグ層7中のCa濃度が低下する。このCa濃度の低下に応じて、局所平衡の反応により、再び、溶湯プール6中のP濃度やN濃度が増加する、という反応モデルである。
 この反応モデルにおいて、溶湯プール6の重量が20kg、40kg、50kgの各場合における試験結果と整合するように、2つのパラメータ(第1精錬剤として添加された金属カルシウムとフラックスとが、単位面積単位時間当たりに溶湯プール6からの伝熱により溶解する溶解速度定数Kmelt(Ca+Flx)(kg/s/m)、および、溶融スラグ層7から金属カルシウムが蒸発する、単位時間単位面積当たりのCa蒸発速度定数Kev(Ca)(kg/s/m))の値を求めた。
 φ220mm水冷銅るつぼ3内に80wt%CaF-20wt%CaO 200gを添加すると、約1分~2分ほどで溶融スラグ層7が形成される。このことから、第1精錬剤の溶解速度定数(Kmelt(Ca+Flx))は、0.017~0.088(kg/s/m)程度であると推定する。金属カルシウムを含有する場合は、スラグ融点が低下することから、80wt%CaF-20wt%CaOよりやや早い速度となることが予想される。一方、溶融スラグ層7(例えば25wt%Ca-60wt%CaF-15wt%CaOなど)からのCa蒸気の蒸発速度定数(Kev(Ca))は、純Caの蒸気圧を用いて、真空化での蒸発速度定数を求める式から算出すると、1~2(kg/s/m)程度となる。しかしながら、本実施形態では、例えばArガス1気圧付近でCa還元精錬を実施することから、蒸発速度はこれより低くなることが予想される。これに関連して、Arガス1気圧雰囲気下の溶鋼プール中のMnの蒸発速度が、真空下の溶鋼プール中のMnの蒸発速度の約1/100程度であることが、R. G. Ward (JISI, Vol. 201 (1963), p.11)によって報告されている。Caの蒸発においても同様と仮定すると、Kev(Ca)は0.01~0.02(kg/s/m)のオーダーとなることが予想される。そこで、溶湯プール6重量50kgに対して、{Flx}M0=1.5%を満たす条件としてカルシウムハロゲン化物系フラックス750gを添加して溶融スラグ層7を形成させた後、{Ca}M=1.0%および{Flx}M=1.5%を満たす条件として金属カルシウム500gとフラックス750gとを添加して、精錬時間を変えてCa還元精錬試験を実施した試験条件に対して、反応モデルを用いて精錬剤の溶解速度定数を変化させた場合の添加精錬剤の溶解所要時間を求めた。その結果を図4(b)に示す。この試験では、最も高い脱リン率が得られた反応時間が、10~17分(600~1020秒)ほどと判明している。よって、この時間(600~1020秒)で、第1精錬剤が完全に溶解して溶融スラグ層7になったと判断できる。これより、Kmelt(Ca+Flx)は0.03~0.06(kg/s/m)ほどの範囲となる。この値は、フラックスの溶解速度から推定される速度定数とほぼ一致している。
 次に、Kmelt(Ca+Flx)=0.045として、Kev(Ca)の値を変化させて、得られる脱リン率を求めた。その結果を図4(c)に示す。実際の精錬試験で得られた脱リン率は、88%~94%ほどであったことから、これに対応するKev(Ca)の値は、0.002~0.012(kg/s/m)ほどとなる。この値も、純Caの蒸気圧から推定したCa蒸発速度定数値と概ね一致しており、妥当な値が得られている。
 40kgおよび20kgの各溶湯プールに対して、上記反応モデルより、試験結果を表す値を同様に求めると、Kmelt(Ca+Flx)は、それぞれ0.04~0.07および0.03~0.06(kg/s/m)となり、Kev(Ca)は、それぞれ0.002~0.012および0.002~0.012(kg/s/m)となった。一方、特許文献2および非特許文献2には、φ84mmの水冷銅るつぼ内で1.6kgの溶湯プールをつくり、精錬剤としてCa+CaFを添加して、精錬時間を変えた試験結果が報告されている。特許文献2および非特許文献2には、最も高い脱リン率(85~95%ほど)が得られるのは、添加後1~2分であることも開示されている。このデータに対して、同様に反応モデルによる解析を行うと、φ84mmの水冷銅るつぼでの試験におけるKmelt(Ca+Flx)は、0.04~0.09(kg/s/m)ほど、Kev(Ca)は、0.008~0.0027(kg/s/m)ほどとなった。φ220mmの水冷銅るつぼ3での試験と比べて、いずれもやや大きな値とはなるものの、ほぼ一致しており、ほとんどすべての直径の水冷銅るつぼ3を用いてのCa還元精錬試験に、上記反応モデルを適用できることが判明した。
 以上より、20~50kgの溶湯プール6重量に対して第1精錬剤(金属カルシウムとフラックスとの混合物)を完全溶融させる際の上記Kmelt(Ca+Flx)の範囲は、データのばらつきなどを考慮すると、0.03≦Kmelt(Ca+Flx)≦0.1ほどであり、一方、Kev(Ca)は、0.002≦Kev(Ca)≦0.012ほどであることが判明した。
 これらの値を用いれば、任意のサイズの水冷銅るつぼ3内で溶湯プール6を形成させて第1精錬剤(金属カルシウムとフラックスとの混合物)を添加した場合の、適正な溶湯保持時間を設定することができる。定量的には、第1精錬剤(金属カルシウムとフラックスとの混合物)を溶湯プール6に添加した後の溶湯プール6保持時間T(分)を、T1(分)以上かつT2(分)以下にすることで、図3に示すように、より高い脱リン率、脱窒率を得ることができる。
 時間T1、T2は、次のように設定することができる。
 T1(分)は、第1精錬剤(金属カルシウムとフラックスとの混合物)の添加後、当該精錬剤が完全溶融するために要する所要時間の1/2である。
  T1=WCa+Flx/S/Kmelt(Ca+Flx)/60/2
 上式中、WCa+Flxは第1精錬剤の合計重量(kg)であり、溶湯プール6の重量M(kg)、金属カルシウム添加率{Ca}M(wt%)およびフラックス添加率{Flx}M(wt%)を用いて、M×({Ca}M+{Flx}M)/100で表され、Sは水冷銅るつぼ3内の水平断面積(m)であり、水冷銅るつぼ3の内径D(m)を用いて、πD/4で表される。
 Kmelt(Ca+Flx)(kg/s/m)=0.1として計算される上記時間T1の2倍の時間が、添加した精錬剤が完全溶解して、溶融スラグ層7を形成するための所要時間である。この時間(T1×2)が最も精錬効果が最大となる時間であるが、実際にはばらつきも大きい。そこで、その時間の1/2の時間T1を最短の溶湯プール6保持時間とした。したがって、T1以上の時間、溶湯を保持することで、より高い脱リン率、脱窒率が得られる。
 T2(分)は、添加した第1精錬剤中の金属カルシウムの1/2が蒸発損失により溶融スラグ層7から失われる時間である。
  T2=WCa/2/S/Kev(Ca)/60
 上式中、WCaは第1精錬剤中の金属カルシウムの重量(kg)であり、溶湯プール6の重量M(kg)および金属カルシウム添加率{Ca}M(wt%)を用いて、WCa=M×{Ca}M/100で表される。
 Kev(Ca)(kg/s/m)=0.002として計算される上記時間T2が、添加した金属カルシウムの1/2が蒸発して失われる時間であり、T2以下の時間で溶湯保持を終了させることで、より高い脱リン率、脱窒率が得られる。
 実際の精錬操作に際しては、添加した金属カルシウムの1/2が失われるまで保持する必要性は少ない。定性的には、添加した第1精錬剤(金属カルシウムとフラックスとの混合物)が全量溶融して溶融スラグ層7が形成される時間(T1の2倍ほどの時間)の精錬効果が最大であり、その時点で、できるだけ速やかに溶湯プール6を急冷凝固させて、Ca蒸発損失に伴う復リン反応などを抑制することが有効と考えられる。しかしながら、実際の精錬操作においては、第1精錬剤の添加後、数秒から数十秒ほどの短時間でCa蒸発によるダストによって、溶湯プール6表面の目視観察を行うこと自体が不可能となる。そのため、第1精錬剤がどの時点で完全溶融したかを観察により確認することは不可能であり、時間によってのみ管理することが必要となる。
 この場合、不純物除去精錬効果は、図3に示すように、前記精錬剤が溶融する段階では、脱リン率や脱窒率の時間変化の勾配は急である。逆に、溶融スラグ層7が完全に形成された後、Ca蒸発が進行して溶融スラグ層7中のCa濃度が減少する段階での、脱リン率および脱窒率の時間変化は緩やかである。以上より、確実に脱リン率を確保するためには、やや保持時間が長時間に設定するほうが、より確実である。そこで、スラグ中のCa量の1/2が、蒸発により失われる時間(T2)を上限としている。
 なお、溶湯プールに第1精錬剤を添加した時刻をt0、時刻t0から第1精錬剤が全て溶融するまでの時間の半分の時間だけ経過した時刻をt1、時刻t0から第1精錬剤中の金属カルシウムの半分が蒸発する時間だけ経過した時刻をt2とすると、T1、T2にはそれぞれ次の式で表される。
  T1=t1-t0
  T2=t2-t0
 この関係を、溶湯プール6の重量(L/D=0.75:水冷銅るつぼ3の内径×0.75高さ(L)の円筒状の溶湯プール6の重量)、事前添加フラックスの重量({Flx}M0=1.5)、第1精錬剤の重量({Ca}M=1.0、{Flx}M=1.5)の場合を一例に、水冷銅るつぼ3の内径D(m)に対する適正な溶湯保持時間としてT1およびT2を求めた。その結果を図5に示す。
 図5から、水冷銅るつぼ3の内径により、適正保持時間が変化することが分かる。試験データのばらつきがあるものの、より適正な溶湯保持の時間範囲は、T1としてKmelt(Ca+Flx)(kg/s/m)=0.06で算出した時間から、T2としてKev(Ca)(kg/s/m)=0.006で算出した時間まで、すなわち、図5中の点線および二点鎖線で示した範囲内である。
 以上より、φ200m以上の水冷銅るつぼ3内に形成した溶湯プール6に第1精錬剤(金属カルシウムおよびフラックスの混合物)を添加した精錬操作において、上記の関係式(T1≦T≦T2)を満たす時間、溶湯プールを保持することで、より高い脱リン率、脱窒率(例えば、量産時の1回の精錬操作として望ましい50%以上)を得ることができる。
 前記したように、溶湯プールに対する金属カルシウムの添加率{Ca}Mを0.5wt%以上とし、溶湯プールに対するフラックスの添加率{Flx}Mを溶湯プールに対する金属カルシウムの添加率{Ca}M以上とし、かつ、溶湯プールの保持時間Tを、T1≦T≦T2とすることにより、リン(P)、硫黄(S)、錫(Sn)、鉛(Pb)などの不純物元素の含有量を、それぞれ2ppm以下までに低減することができる。
 例えば、φ220mmの水冷銅るつぼ3を有するコールドクルーシブル式誘導溶解装置1を用いて、不純物元素含有量の多いフェロクロム材および低炭素鋼材(転炉材)と、高純度な電解Ni原料とを合金原料として、水冷銅るつぼ3に投入する。次に、誘導加熱により、水冷銅るつぼ3に50kgのステンレス鋼(Fe-20Ni-25Cr)の溶湯プール6を形成する。その後、CaF-20CaOをフラックスとして用いた第1精錬剤(金属カルシウムおよびフラックスの混合物)を{Ca}M=1.0および{Flx}M=1.5を満たす条件で溶湯プール6に添加する。そして、誘導加熱を継続することで、11~15分間、溶湯プール6を保持する精錬操作を行う。この場合、最初の合金原料配合段階での溶湯プール6中の不純物元素濃度は、[P]0=250ppm、[N]0=250ppm程度である。これをCa還元精錬することにより、脱リン率=約90%、脱窒率=約85%の脱リン反応および脱窒反応が進行し、精錬終了後の不純物元素濃度は、[P]1=25ppm、[N]1=40ppm程度となる。精錬終了後の溶湯を凝固させて1次鋳塊を得る。この1次鋳塊を合金原料として、2回目のCa還元精錬を1回目と同じ条件で行う。2回目の精錬終了後の不純物元素濃度は、[P]2=3ppm、[N]2=6ppm程度となる。さらに2回目の精錬終了後の溶湯を凝固させて2次鋳塊を得る。2次鋳塊を合金原料として、3回目のCa還元精錬を1回目と同じ条件で行う。3回目の精錬終了後の不純物元素濃度は、[P]3<2ppm、[N]3<2ppmとなることができる。このようにして、これら不純物元素の濃度は、現時点での化学分析法の分析限界である2ppm以下に達することができる。なお、[P]0および[N]0はCa還元精錬を行う前の溶湯プール6中のリン濃度および窒素濃度を表し、[P]1、[P]2、[P]3はそれぞれ1回目、2回目、3回目のCa還元精錬終了後の溶湯プール6中のリン濃度を表し、[N]1、[N]2、[N]3はそれぞれ1回目、2回目、3回目のCa還元精錬終了後の溶湯プール6中の窒素濃度を表す。
 また、φ220mmの水冷銅るつぼ3を有するコールドクルーシブル式誘導溶解装置1を用いて、比較的に入手しやすい市販高純度原料である、電解鉄、電解Ni、金属Crなどを合金原料として、第1実施形態に記載した条件(1)~(4)を満足する精錬剤を添加した還元精錬を施して合金鋳塊を製造した。そして、精錬前の溶湯プール6中の不純物元素の含有量(すなわち、合金原料の初期配合段階における不純物元素の含有量)および合金鋳塊中の不純物元素の含有量を化学分析法により測定した。[P]0=10ppm、[S]0=10ppmに対して、[P]1<1ppm、[S]1<1ppmであることが確認された。また、合金鋳塊中のSn、Pb、Sbなどのトレーストランプ元素の含有量は、GD-MS分析法により、それぞれ1ppm以下であることが確認された。すなわち、第1実施形態のCa還元精錬を1回施すだけで、各不純物元素の含有量がそれぞれ2ppm以下まで低減したことが確認できた。なお、[P]0および[S]0はCa還元精錬を行う前の溶湯プール6中のリン濃度および硫黄濃度を表し、[P]1および[S]1はCa還元精錬終了後の溶湯プール6中のリン濃度および硫黄濃度を表す。
 このように、本実施形態の条件(1)~(4)を満足する精錬剤を溶湯プールに添加して還元精錬を行うことにより、リン(P)などの不純物元素の含有量が2ppm以下となる実用規模の合金鋳塊を製造することができる。
(第2実施形態)
 金属カルシウムを用いて精錬して得た合金鋳塊中には、特にNiを合金成分として含有する合金鋳塊中には、相当量の金属カルシウムが残留している。例えば、Ni含有量が0(ゼロ)の合金では、残留カルシウム濃度が約0.02wt%である。これに対して、Ni含有量が20wt%程度の合金では、残留カルシウム濃度が約0.05wt%であり、Ni含有量が35wt%程度の合金では、残留カルシウム濃度が約0.09wt%であり、Ni含有量が45wt%程度の合金では、残留カルシウム濃度が約0.12wt%である。そして、Ni含有量が60wt%程度のNi基合金では、残留カルシウム濃度が約0.5wt%である。合金鋳塊中のCaなどのアルカリ土類元素やアルカリ金属元素などは、耐食性を劣化させることが知られている。したがって、耐食性材料の製造方法として、Ca含有量が0.001wt%以下、望ましくは1ppm以下の合金鋳塊を製造する方法が求められている。
 また、コールドクルーシブル式誘導溶解装置において金属カルシウムを用いて還元精錬を行うと、Caと比べて還元されやすい、炭素、アルミ、珪素などの元素が溶湯中の不純物として増加することがしばしばある。例えば、Cでは30ppm程度、AlやSiでは50ppm程度の濃度増加が発生する場合がある。これは、誘導溶解装置の真空チャンバー内に付着する有機物やセラミック類が、金属カルシウムにより還元されて、溶湯プール6中に吸収されるためと考えられる。これらの不純物元素も、合金の目標組成に応じて除去する必要がある。
 また、用途によっては、[C]<10ppm、[Si]<0.01wt%および[Ca]<10ppmを満たす超高純度合金が求められる場合もある。この場合、精錬段階でCaとともにC、Siなどの不純物元素を除去する必要がある。また、硼素は耐食性を著しく劣化させることがあるので、[B]<1ppmの超高純度合金が求められる場合もある。
 本発明者らは、このような状況を鑑みて、製品鋳塊重量が例えば10kg以上となる実用規模の溶湯プールから不純物元素のうち少なくとも炭素およびカルシウムを十分に除去するために、溶湯プールに添加する精錬剤の組成および溶湯プールに対する精錬剤の割合に注目して鋭意検討をかさねてきた。その結果、コールドクルーシブル式誘導溶解装置に備えられたコールドクルーシブル内に溶湯プールを形成し、溶湯プールに精錬剤を添加して不純物元素を除去し、不純物元素が除去された溶湯を凝固させて合金鋳塊を形成する製造方法において、
(5)精錬剤として、合金原料の主要成分元素の酸化物のうちの1種または2種以上からなる第1酸化物と、フラックスとの混合物である第2精錬剤を用い、
(6)フラックスとして、カルシウムハロゲン化物系フラックスを用い、
(7)前記第2精錬剤中の前記第1酸化物の重量を、前記溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムを全量酸化させるために算出される算出重量の0.2~4倍にし、
(8)前記第2精錬剤を添加する前の前記溶湯プールの重量に対する当該第2精錬剤中の前記フラックスの重量の割合を0.5~5wt%にすることで、
不純物元素のうち少なくとも炭素(C)およびカルシウム(Ca)の含有量がきわめて低い合金鋳塊を実用規模で製造できることを見出し、本発明に係る第2実施形態を完成した。
 本発明に係る第2実施形態の目的は、不純物元素のうち少なくとも炭素(C)およびカルシウム(Ca)の含有量がきわめて低い合金鋳塊を実用規模で製造する方法を提供することにある。
 以下、本発明に係る第2実施形態について図面を参照しつつ説明する。
 本発明に係る第2実施形態は、コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって当該合金原料から溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記溶湯プールに第2精錬剤を添加して当該溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムの含有量を低減する工程と、炭素およびカルシウムの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程とを備えた合金鋳塊の製造方法である。
 本実施形態の合金鋳塊の製造方法におけるコールドクルーシブル式誘導溶解装置として、例えば、前記の図1に模式的に示されるコールドクルーシブル式誘導溶解装置1を用いることができる。
 本実施形態では、まず、コールドクルーシブル式誘導溶解装置1のコールドクルーシブル3に原料フィーダー2により合金原料を投入し、当該合金原料をコイル5の誘導加熱によって溶解して、所定の合金組成に成分調整するための溶湯プール6を形成する(溶湯プール形成工程)。次に、コイル5の誘導加熱を継続した状態で(すなわち、溶湯プール6を保持した状態で)、溶湯プール6に第2精錬剤を添加して、溶湯プール6中の不純物元素のうち少なくとも炭素およびカルシウムを除去する(精錬工程)。そして、精錬後の(炭素およびカルシウムが除去された)溶湯を凝固させて合金鋳塊を形成する(鋳塊形成工程)。本実施形態はこれら工程を経て、合金鋳塊を溶製する。
 本実施形態では、第1実施形態と同様に、鋳塊形成工程において、例えば、除滓処理後に誘導加熱を停止して、コールドクルーシブル3内で溶湯を凝固させることにより、合金鋳塊を形成してもよいし、コールドクルーシブル3として底板が上下方向に移動できる底板昇降型コールドクルーシブルを採用して、コールドクルーシブルの誘導加熱領域内で溶湯プールを保持しながら、底板を溶湯プールとともに非誘導加熱領域まで引き下げて下方から溶湯を逐次凝固させることにより、合金鋳塊を形成してもよいし、精錬後の溶湯をコールドクルーシブル3から鋳型に注入し凝固させることにより、合金鋳塊を形成してもよい。
 本実施形態では、合金原料として金属、合金などを用いることができる。合金鋳塊の目標組成に応じて、合金原料の形状、純度および組成を選択すればよい。例えば、廉価原料である市販ステンレス鋼スクラップや低炭素鋼材、フェロクロムなどの合金鉄材を用いてもよい。還元精錬と異なり、本実施形態における酸化精錬によって、数百から数千ppmのレベルで多量に含有するC、Si、Mn、Al、Caを数ppm以下のレベルまで除去できるからである。
 また、例えば、P、S、Sn、Pbなどの不純物元素の含有量は十分に低いものの、Al、Ti、ZrまたはSiが添加された超高純度合金スクラップ、Si、AlまたはBを不純物元素として含有する電解鉄、電解ニッケル、金属クロムなどの高純度な金属を用いてもよい。本実施形態における酸化精錬によって、Ca、Al、Ti、Zr、Si、Bの各含有量を低減させることができるからである。
 なお、合金鋳塊の純度をさらに高める(不純物元素の含有量をさらに低減させる)目的で、本実施形態で得られた合金鋳塊を合金原料として用いることもできる。
 本実施形態により、様々な成分組成の合金鋳塊を製造することができる。例えば、Fe基合金鋳塊、Ni基合金鋳塊、Fe-Ni基合金鋳塊、Co基合金鋳塊などを製造することができる。本実施形態の合金鋳塊の製造方法は、Fe基合金鋳塊、Ni基合金鋳塊およびFe-Ni基合金鋳塊の製造に特に適している。
(コールドクルーシブル式誘導溶解装置を用いた酸化精錬方法)
 本実施形態では、合金原料をコールドクルーシブル式誘導溶解装置1のコールドクルーシブル3に投入して、不活性ガス雰囲気下において、溶湯プール6を形成した後、以下の条件(5)~(8)を満足する精錬剤を添加することにより、溶湯中に不純物元素として存在する、炭素(C)、珪素(Si)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)、硼素(B)などの活性元素を除去精錬する。溶湯プール6の下には合金凝固スカル層8が形成される。図1は本実施形態における精錬の状況を模式的に表している。また、不活性ガスとしては、ArガスやHeガスなどを用いる。真空チャンバー4内を不活性ガス雰囲気とするには、事前に、真空ポンプにより真空チャンバー4内の排気を行った後、Arガスなどの不活性ガスを真空チャンバー4内に導入する。
 本実施形態における精錬条件は、内径φ220mmの水冷銅るつぼ(コールドクルーシブル3)を有するコールドクルーシブル式誘導溶解装置1を用いて、多数の試験および検討を行うことで明らかとなった。
 (5)精錬剤として、合金原料の主要成分元素の酸化物のうちの1種または2種以上からなる第1酸化物と、フラックスとの混合物である第2精錬剤を用いること。
 コールドクルーシブル式誘導溶解装置1を用いて合金鋳塊を製造する際に、溶湯中の不純物元素としての炭素を除去するには、次式の脱炭反応を促進させる必要がある。
  [C]+[O]→CO(g)↑
 この反応を進めるには、溶湯プール6中に酸素を供給するとともに、発生する一酸化炭素ガス(CO(g))を除去して、CO分圧を低下させる必要がある。溶湯プール6への酸素供給方法として、溶湯プールへの酸素ガスの吹込みも可能ではある。しかし、CO(g)の除去方法としては、真空排気を行い、発生する一酸化炭素ガスを真空チャンバー4の外部に排出し続けることが有効である。このため、溶湯プール6への酸素供給方法として、ガス状態の酸素含有物質を吹き込むよりは、固体状態の合金原料の主要成分元素の酸化物を添加する方が有効である。特に、金属カルシウムにより還元精錬された合金鋳塊を合金原料として溶湯プールが形成されている場合には、この合金鋳塊中の残留酸素濃度が多くの場合5ppm以下となっているため、溶湯プールは酸素源のない状態となっている。そのため、上記脱炭反応を進行させるには酸素源の供給が不可欠である。
 ここで、「合金原料の主要成分元素の酸化物」とは、合金原料に含まれる、合金鋳塊の主要成分元素と、酸素原子との化合物である。例えば、合金鋳塊がFe基合金の場合には、合金鋳塊の主要成分元素はFeであり、合金原料の主要成分元素の酸化物はFe、Feなどの酸化鉄である。合金鋳塊がFe-Ni基合金の場合には、合金鋳塊の主要成分元素はFeおよびNiであり、合金原料の主要成分元素の酸化物は酸化鉄や酸化ニッケルである。合金鋳塊がNi基合金の場合には、合金鋳塊の主要成分元素はNiであり、合金原料の主要成分元素の酸化物は酸化ニッケルである。合金鋳塊がCo基合金の場合には、合金鋳塊の主要成分元素はCoであり、合金原料の主要成分元素の酸化物は酸化コバルトである。これらの酸化物は、溶湯プールへの添加時点で固体である。合金原料の主要成分元素の酸化物は、本実施形態中の精錬反応(上記脱炭反応)において、酸化剤として作用するので、酸化金属からなる酸化剤である。第2精錬剤中の酸化剤として作用する第1酸化物は、合金鋳塊の主要成分元素の酸化物のうちの1種でもよいし、2種以上の組合せでもよい。
 一方、Si、Al、Ti、Zr、Hf、B、Caなどの合金元素は、鉄およびニッケルと比べてその酸化物が熱力学的に安定な活性金属元素であるので、これら合金元素を除去するには、以下の酸化精錬反応をそれぞれ進めて、それぞれの酸化物をスラグ中に分離除去する必要がある。
  [Si]+2[O]→(SiO
  2[Al]+3[O]→(Al
  [Ti]+2[O]→(TiO
  [Zr]+2[O]→(ZrO
  2[B]+3[O]→(B
  [Ca]+[O]→(CaO)
 また、溶湯中のCaは溶解状態でも蒸発によって除去されるが、若干量は合金鋳塊中に残留する。溶湯中のCaを完全に除去するには、同じく、酸化精錬を行うことが重要である。これらの元素を酸化物にしてスラグとして吸収する際、溶融スラグ層7中のCaOと反応させて、より安定な化合物として、溶融スラグ層7中でのこれら成分の活量を低下させておくことが、除去精錬反応にとっては有効である。例えば、Siを酸化して形成されるSiOは、CaOと反応させて、CaSiOなどの安定した化合物とすることにより、溶融スラグ層7中のSiO活量を低下させて、Siの酸化反応を進行させやすくすることが有効である。同様に、Al、TiO、Bなどについても、CaOと反応させて化合物化し溶融スラグ層7中の活量を低下させることが、これら元素の酸化除去精錬にとって有効である。そのため、溶融スラグ層7中のCaO量を、酸化反応により発生する種々のこれら酸化物の量に見合うようにしておくことが有効である。
 本実施形態の精錬工程の第2精錬剤は、活性元素の除去精錬反応である、上記脱炭反応と、上記金属活性元素の酸化反応とを進行させる必要がある。そのため、第2精錬剤は上記脱炭反応の酸化剤として作用する第1酸化物と、上記金属活性元素の酸化反応で生成した酸化物を安定してスラグ層に吸収させる上記フラックス(カルシウムハロゲン化物系フラックス)とを含む。
 例えば、代表的な酸素源となる酸化鉄としては、Fe、またはFeなどを使用する。酸化反応の結果、発生する酸化物を、溶融スラグ層7中に安定して吸収させる必要がある。そこで、酸化物吸収能の高いフラックスとして、フッ化カルシウム(CaF)や塩化カルシウム(CaCl)などのCaハライド系フラックスに、CaOを添加したフラックスとしている。
 (6)第2精錬剤中のフラックスがカルシウムハロゲン化物系フラックスであること。
 このフラックスの成分は、第1精錬剤中のフラックスと同じ組成である。これは、フラックスを低融点化させて、溶湯プール6からの伝熱により添加フラックスが容易に溶融して、溶融スラグ層7を形成させることが、反応推進にとって有効なためである。酸化反応により生成する酸化物を吸収するためには、CaOを含有するフラックスがより有効である。発生する酸化物を安定な化合物にするために必要なCaO量を、あらかじめフラックスに含有させた成分系がより有効となる。
 (7)第2精錬剤中の第1酸化物の重量が、溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムを全量酸化させるために算出される算出重量の0.2~4倍であること。
 例えば、第2精錬剤中の合金原料の主要成分元素の酸化物として、酸化鉄(Fe)用いた場合には、酸化鉄(Fe)の添加重量WFe(kg)と、酸化鉄(Fe)の算出重量MFeO(kg)とは上記関係から次式を満足する。
  0.2×MFeO≦WFe≦4.0×MFeO
ここで、MFeOは溶湯プールの重量と、溶湯プール中の活性元素の濃度を用いて、次式で表される。
 MFeO=M/100×([C]/12.01+2×[Si]/28.09+1.5×[Al]/26.98+2×[Ti]/47.9+2×[Zr]/91.22+2×[Hf]/178.49+1.5×[B]/10.811+[Ca]/40.08-[O]/15.9994)/y×(55.85×x+16.0×y)
  M:溶湯プール6の重量(kg)
  [C]:溶湯プール6中のC濃度(wt%)
  [Si]:溶湯プール6中のSi濃度(wt%)
  [Al]溶湯プール6中のAl濃度(wt%)
  [Ti]:溶湯プール6中のTi濃度(wt%)
  [Zr]:溶湯プール6中のZr濃度(wt%)
  [Hf]:溶湯プール6中のHf濃度(wt%)
  [B]:溶湯プール6中のB濃度(wt%)
  [Ca]:溶湯プール6中のCa濃度(wt%)
  [O]:溶湯プール6中のO濃度(wt%)
 C、Si、AlなどはCa還元精錬の際に、コールドクルーシブル3(水冷銅るつぼ)の外周に設けている飛散溶湯受け用の耐火シートなどからの混入などが若干ある。よって、添加する酸素量の計算ではCa還元精錬中のピックアップ量を考慮する必要があり、具体的には、試験結果に基づき、[C]は30ppm、[Si]および[Al]はそれぞれ50ppmほどの汚染によるピックアップの可能性がある。上記計算式中の各元素の濃度は、装入した原料の分析値などを用いた配合計算値を用いる必要がある。上記計算式は、[C]はCOガスに、[Si]はSiOスラグに、[Al]はAlスラグに、[Ti]、[Zr]、[Hf]はそれぞれTiOスラグ、ZrOスラグ、HfOスラグに、[B]はBスラグに、[Ca]はCaOスラグに、変換するために、それぞれの元素の原子量で割って、必要となる酸素モル数を求め、これをFe酸化鉄により酸素供給する場合に必要となる重量を算出する式である。ここで、[C]、[Si]、[Al]、[Ti]、[Zr]、[Hf]、[B]、[Ca]などの濃度値は、配合した溶解原料の分析値から算出される値である。
 なお、上記計算式には含めていないが、活性金属として、アルカリ金属(EI)、アルカリ土類金属(EII)、Y、ランタン系・アクチニウム系金属(ER)などが存在する場合は、これらをEIO、EIIO、Y、ERなどのスラグに変換するために必要な酸素量を、上記計算式に付け加える必要がある。また、マンガン(Mn)については、Feと比べてさほど活性とはいえず、酸化精錬除去が比較的行われにくいこと、さらに、高真空化での溶解において、蒸発除去されやすいといった特性があることから、ここでの酸化精錬では除去対象としていない。なお、酸化剤として、酸化ニッケルまたは酸化コバルトを用いる場合は、上記式中のFe(原子量:55.85)を、Ni(原子量:58.71)またはCo(原子量:58.93)に置き換えて計算すればよい。
 いくつかの溶製精錬試験の結果、脱炭を主目的とする場合は、添加する必要のある酸化鉄重量WFe(kg)は、図6(a)に示すように、計算量MFeO(kg)の0.2倍以上必要であり、フラックス添加率{Flx}Mは、0.5wt%以上必要であることが明らかとなった。WFeが、WFe<0.2×MFeO、{Flx}Mが、{Flx}M<0.5の場合は、脱炭率も大幅に低下し、精錬効果が得られにくいこととなる。また、Al、Tiなどの元素と比べて、その酸化物の熱力学的な安定性が少ないSiやBの酸化除去精錬については、図7のWFe/MFeOおよび{Flx}Mと、脱珪率との関係に示すように、脱珪率として50%以上を得ようとするならば、添加する酸化鉄の重量は、1.0×MFeO<WFeを満足し、かつ{Flx}Mは、3.0<{Flx}Mを満足することが有効であることは明らかである。さらに、より確実に脱珪率を高くするためには、WFeをMFeOの1.5倍から2倍程度にする必要があった。これは、添加した酸化鉄が、全て反応に使われているのではないためである。一方、酸化鉄の重量を所要量の4倍以上添加すると、合金成分のCrなどの酸化損失が増えすぎるため望ましくない。
 添加する酸化鉄の重量を、計算量:MFeOの0.2倍から1.0倍ほどとし、真空酸化精錬を施した場合、C、Al、Ti、Zr、Hf、Caなどのその酸化物が熱力学的に安定な元素除去精錬は進むものの、Si、Bなどの除去はさほど顕著には進行しないことが多い。しかしながら、酸化鉄の添加量をMFeO量の1.0倍以上とし、フラックス添加率{Flx}Mを3wt%以上とすることにより、Si、Bなども除去精錬できるようになる。例えば、[B]は、精錬前の50ppmが精錬後に1ppmとなる。[Si]は、精錬前の0.22wt%が精錬後に0.01wt%未満となる。さらには、酸化鉄の添加量をMFeO量の2.0倍以上とし、CaF-CaO系またはCaF-(CaO+CaCl)系フラックスを使用し、かつ、溶湯プール6の重量に対するフラックス添加率{Flx}Mを3.0wt%以上とすることにより、Si、Bの除去精錬がより容易となる。
 ただし、添加する酸化鉄の重量を、MFeO量の4倍より多くすると、酸化反応が激しくなりすぎて、合金元素であるCrなどの酸化ロスも著しく発生するようになるため、4倍より多くすることは好ましくない。
 これらの量を具体的に示すと、例えば、Fe-20Ni-25Cr組成のステンレス鋼を、市販廉価原料であるフェロクロム材、低炭素鋼材などと、高純度原料である電解Ni原料とを用いて50kgの溶湯プールを形成させると、その溶湯プール中の不純物元素濃度は、[C]=0.02、[Si]=0.21、[Al]=0.015、[Ti]=0.0、[B]=0.005、[Ca]=0.001、[O]=0.02wt%程度となる。これらを酸化するために必要な酸素モル量は、8.9molと計算される。この酸素を、酸化鉄Feにより供給するとすれば、Feは、MFeO=515gとなる。そこで、Feを約800g(約1.5倍)添加すると、[C]は0.005wt%程度、[Al]は0.003wt%程度まで低下する。しかし、[Si]は0.19wt%程度、[B]は0.004wt%程度とあまり低下しない。しかし、Feを1300g(2.5倍)添加すると、[Si]は0.01wt%以下、[B]は0.0001wt%程度まで低下する。この際に用いたフラックスはCaF-CaO(25wt%)であり、添加率は{Flx}M=4.0%(2000g)としている。
 この精錬により、市販の廉価原料であるフェロクロム材や低炭素鋼材などを溶解原料として使用しても、電解鉄や電解ニッケル、金属クロムなどの高純度原料を使用する場合と同等な不純物濃度([Si]<0.01wt%)にまで除去精錬できることが確認されている。
 なお、SiやBの除去が不要な場合は、MFeO量の1.5倍ほどの酸化鉄を添加し、CaO含有量の少ないCaハライド組成フラックスを使用し、さらにフラックスの添加率{Flx}Mを0.5~2%ほどとすることにより、SiやBの低減を抑制してC除去を優先する精錬が可能となる。
 (8)第2精錬剤を添加する前の溶湯プールの重量に対する当該第2精錬剤中の金属カルシウムの重量の割合が0.5~5wt%であること。
 フラックス添加率が少なすぎると、発生酸化物の吸収効果が得られないことから、少なくとも溶湯プール6の重量の0.5wt%のフラックス量は必要である。一方、金属カルシウム還元精錬の場合と同様に{Flx}Mが5.0wt%以上になると、溶湯プール6からの伝熱が不足し、溶融スラグ層7が形成されにくくなるため、5.0wt%を上限とする。
 本実施形態においては、フラックスと酸化鉄との混合物である精錬剤(第2精錬剤)を添加した後、チャンバー(真空チャンバー4)内の不活性ガスを排気し(真空排気を行い)、その状態(真空状態(排気状態))で15分間以上保持することが好ましい。
 フラックスと酸化鉄との混合物である第2精錬剤を溶湯プール6に添加して、溶融スラグ層7が形成されれば、例えば油回転ポンプでチャンバー内の真空排気を行う。必要に応じて、メカニカルブースターポンプ、拡散ポンプなどによる真空排気を行い、真空雰囲気下での酸化精錬を行う。
 真空度が10hPa以下になると、溶湯プール6から細かな溶滴(スプラッッシュ)が飛散するようになる。これは、CがOと反応してCO(g)ガスが放出される際、周囲の溶融メタルを吹き飛ばしているものと推定される。この現象は、溶湯プール6中の炭素濃度が低下すると、反応が終了する。例えば、初期濃度[C]0=250ppmほどの場合でも、およそ10分ほどで、激しいスプラッシュ発生は終了し、[C]は20~60ppmほどとなる。また、真空下で保持することにより、溶湯プール6の表面温度は高くなり、添加したフラックスが溶融しやすくなって、溶融スラグ層7が安定して形成されることが観察される。
 このような脱炭反応の後、溶湯プール6の表面には、酸化物と思われる溶融スラグ片が浮上してくるのが観察される。これらは、フラックスの溶融スラグ層7に徐々に吸収されて消滅する。そして約15分ほどで、酸化物スラグの湧き出しもほとんどなくなり、溶湯プール6表面の浮遊酸化物が少なくなるのが観察される。したがって、15分以上は溶湯を保持する必要がある。
 溶湯プールに酸化鉄を添加する操作は、特許文献5に記載されている。具体的には、不活性ガス雰囲気下において、φ84mm水冷銅るつぼ内の2kgの溶湯プールに対して酸化鉄およびCaFを添加している。本条件は、酸化鉄を利用する点では同じである。しかしながら、本発明では、φ200mm以上の水冷銅るつぼ3内で10kg以上の溶湯プール6を形成させ、実用規模での酸化鉄と低融点Caハライド組成フラックスの添加条件を明らかにしている。この点が先行技術と異なっている。さらに、本発明では、真空排気操作により、脱炭反応を促進させて、それにより溶融スラグ層7の形成を促進させて形成酸化物を吸収させている。この点が先行技術と異なっている。すなわち、具体的な精錬効果を得るための条件を明示していることが、本発明の大きな特徴となっている。
(第3実施形態)
 第2実施形態の合金鋳塊の製造方法では、上記の通り、コールドクルーシブル式誘導溶解装置において酸化精錬を行うことで、実用規模の溶湯プールから不純物元素としての炭素およびカルシウムを除去している。しかし、コールドクルーシブル式誘導溶解装置は、コールドクルーシブル内に溶湯プールを形成するため、溶湯プールの表面積/体積比が相対的に小さく、高真空下で酸化精錬を行なっても、発生するCOガスの除去が不十分となる場合がある。すなわち、脱炭反応が促進されず、[C]<10ppmまでの炭素除去が困難な場合がある。そして、炭素を強制的に除去するために酸化剤を多量に投入して酸化精錬を行うと、[C]<10ppmは達成されるものの、溶湯プール中の[O]が100ppmを超えるほどにまで、著しく高くなることがある。
 そこで、本発明者らは、製品鋳塊重量が例えば10kg以上となる実用規模の溶湯プールから不純物元素である炭素および酸素を十分に除去するため、溶解方式、溶湯プールに添加する精錬剤の組成、精錬剤の添加量および原料溶解時の適切な気圧範囲に注目して鋭意検討をかさねてきた。その結果、コールドハース式電子ビーム溶解装置内に供給した原料電極に電子ビームを照射してこの装置に備えられたコールドハース内に溶湯プールを形成し、溶湯プールに精錬剤を添加して不純物元素を除去し、不純物元素が除去された溶湯を凝固させて合金鋳塊を形成する製造方法において、
(9)電子ビーム照射時のコールドハース式電子ビーム溶解装置内を5×10-4mbarよりも低い気圧にし、
(10)精錬剤として、原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物である第3精錬剤を用い、
(11)第3精錬剤の重量を、溶湯プールに存在する不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍にすることで、
不純物元素である炭素(C)および酸素(O)の含有量がきわめて低い合金鋳塊を実用規模で製造できることを見出し、本発明に係る第3実施形態を完成した。
 本発明に係る第3実施形態の目的は、不純物元素である炭素(C)および酸素(O)の含有量がきわめて低い合金鋳塊を実用規模で製造する方法を提供することにある。
 以下、本発明に係る第3実施形態について図面を参照しつつ説明する。
 本発明に係る第3実施形態は、コールドハース式電子ビーム溶解装置内に原料電極を供給して、5×10-4mbarよりも低い気圧下において当該原料電極に電子ビームを照射して当該コールドハース式電子ビーム溶解装置内のコールドハースに溶湯プールを形成する工程と、前記溶湯プールに第3精錬剤を添加して、当該溶湯プール中に存在する不純物元素としての炭素の含有量を低減する工程と、炭素の含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程とを備えた合金鋳塊の製造方法である。
(コールドハース式電子ビーム溶解装置)
 図8は、コールドハース式電子ビーム溶解装置11を示す模式図である。本実施形態の合金鋳塊の製造方法におけるコールドハース式電子ビーム溶解装置として、例えば、図8に模式的に示されるコールドハース式電子ビーム溶解装置11を用いることができる。コールドハース式電子ビーム溶解装置11は、真空チャンバー4と、真空チャンバー4に原料電極12を送り出す図示されていない原料供給機構と、原料電極12の先端部に図中破線で示される電子ビームを照射して溶解させる電子銃14と、真空チャンバー4内に設置され、溶解で形成された溶湯プールを受け入れるコールドハース9と、真空チャンバー4内に設置され、コールドハース9から出湯される溶湯を受けて鋳塊を形成するコールドクルーシブル10とを有する。
 図8では、原料供給機構は、溶湯プール13を形成した後、原料電極12および第3精錬剤としての酸化鉄を一緒にコールドハース9の一端に送り出している。これに代えて、コールドハース式電子ビーム溶解装置11に第3精錬剤供給用の原料フィーダーを追加してもよい。原料フィーダーが備えられていることで、原料電極12の溶解具合に合わせて、原料フィーダーがコールドハース9内の溶湯プール13に第3精錬剤(酸化剤(Feなど)を添加することができる。
 コールドハース9は溶湯プール13およびその周囲に形成される溶融スラグ層と反応しない容器であればよい。コールドハース9として、例えば、溶解容器の内寸として0.2×0.2m以上を有する水冷銅製皿状容器を挙げることができる。大面積の水冷銅製皿状容器を用いて、表面積/体積比が大きい(すなわち、浅くて表面積の大きい)溶湯プールを形成することによって、不純物元素のガス化や蒸発を伴う精錬反応が促進されるからである。
一方、コールドクルーシブル10は溶湯と反応しないるつぼであればよい。コールドクルーシブル10として、例えば、底板昇降式の水冷銅製鋳型を挙げることができる。
 コールドハース式電子ビーム溶解装置11は、高真空下で電子線を熱源として溶解-真空精錬を行うので、不純物元素である炭素の極限までの除去精錬や、コールドクルーシブル式誘導溶解装置において第1精錬剤を用いた還元精錬方法や第2精錬剤を用いた酸化精錬方法では除去し切れなかった窒素(N)やマンガン(Mn)などの真空除去精錬が可能となる。
 そして、コールドハース式電子ビーム溶解装置11は、コールドクルーシブル式誘導溶解装置が備えるコールドクルーシブルと比べて、表面積/体積比の大きな溶湯プールを形成するコールドハース9(水冷銅製皿状容器)を備えているので、ガス化や蒸発を伴う精錬反応においては、コールドクルーシブル式誘導溶解装置よりも。確実に不純物元素を除去することができる。
 本実施形態では、まず、コールドハース9の出湯口の対面側から、棒状または塊状の原料電極12(合金原料)を供給して、コールドハース9上で電子ビーム照射で溶解させて溶湯プール13を形成する(溶湯プール形成工程)。次に、溶湯プール13に第3精錬剤を添加して、溶湯プール13中に不純物元素として存在する炭素を除去する(精錬工程)。そして、コールドハース9に隣接して設けたコールドクルーシブル10内に、コールドハース9のハース出湯口から精錬後のあふれ出る溶湯を注入する。その後、コールドクルーシブル10内で溶湯を凝固させて合金鋳塊を形成する(鋳塊形成工程)。続いて、合金鋳塊を逐次下方に引き抜くことにより、製品鋳塊重量が例えば10kg以上の実用規模の長尺な鋳塊を溶製する。
 本実施形態では、原料電極として、棒状または塊状の合金鋳塊の目標組成に応じた金属、合金などを用いることができる。なお、合金鋳塊の純度をさらに高める(不純物元素の含有量をさらに低減させる)目的で、本実施形態で得られた合金鋳塊を合金原料として用いることもできる。
 本実施形態により、様々な成分組成の合金鋳塊を製造することができる。例えば、Fe基合金鋳塊、Ni基合金鋳塊、Fe-Ni基合金鋳塊、Co基合金鋳塊などを製造することができる。
 (コールドハース式電子ビーム溶解装置を用いた酸化精錬方法)
 本実施形態では、コールドハース式電子ビーム溶解装置11のコールドハース9上に、溶湯プール13を形成した後、以下の条件(9)~(11)を満足する精錬操作を行うことにより、不純物元素としての炭素(C)および酸素(O)を除去精錬する。図8は本実施形態における精錬の状況を模式的に表している。
 本実施形態における精錬条件は、真空チャンバー4内の到達真空度が10-6mbar台のコールドハース式電子ビーム溶解装置11を用いて、多数の試験および検討を行うことで明らかとなった。
(9)高真空雰囲気(<5×10-4mbar)下で、溶製を行うこと。
 真空度が高い(すなわち、気圧が低い)ほど脱炭反応は促進されやすいからである。極限までに炭素含有量を低減させるには、真空度はできるだけ高いことが望ましい。真空度(気圧)を5×10-4mbar未満としたのは、真空チャンバー4内に微量のArガスを導入する場合があるからである。真空チャンバー4内にArガスなどの不活性ガスを導入しない場合は、1×10-4mbarよりも低い気圧下で溶製を行うことが望ましい。
(10)精錬剤として、原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物である第3精錬剤を用いること。
 コールドハース式電子ビーム溶解装置11を用いて合金鋳塊を製造する際に、溶湯中の不純物元素としての炭素を除去するには、次式の脱炭反応を促進させる必要がある。
  [C]+[O]→CO(g)↑
 しかし、溶湯プール13中の酸素濃度が不足する場合は、真空度<5×10-4mbarの高真空条件下においても、脱炭されることはない。そのため、炭素の酸化に必要な酸素を供給する必要がある。電子ビーム溶解法は、高真空下で実施されるため、酸素ガスを供給することは困難である。そこで、酸素源として固体の原料電極の主要成分元素の酸化物(例えば、高純度な酸化鉄など)を原料電極とともに供給するのが有効である。すなわち、脱炭除去精錬の精錬剤(第3精錬剤)として、原料電極の主要成分元素の酸化物を用いることが有効である。この場合、酸化鉄微粉などの微粉状固体酸化物は、電子ビーム溶解の最初の真空排気の段階で、ガスの流れに巻き込まれて飛散し、真空ポンプにまで達して、当該真空ポンプを傷める。したがって、微粉状固体酸化物は事前に塊状化させることが望ましい。原料電極の主要成分元素の酸化物として、例えば、酸化鉄微粉を用いる場合には、事前に焼結処理などを行い、顆粒状にした酸化鉄を添加することが望ましい。
 ここで、「原料電極の主要成分元素の酸化物」とは、原料電極に含まれる、合金鋳塊の主要成分元素と、酸素原子との化合物である。例えば、合金鋳塊がFe基合金の場合には、合金鋳塊の主要成分元素はFeであり、原料電極の主要成分元素の酸化物はFe、Feなどの酸化鉄である。合金鋳塊がFe-Ni基合金の場合には、合金鋳塊の主要成分元素はFeおよびNiであり、原料電極の主要成分元素の酸化物は酸化鉄や酸化ニッケルである。合金鋳塊がNi基合金の場合には、合金鋳塊の主要成分元素はNiであり、原料電極の主要成分元素の酸化物は酸化ニッケルである。合金鋳塊がCo基合金の場合には、合金鋳塊の主要成分元素はCoであり、原料電極の主要成分元素の酸化物は酸化コバルトである。これらの酸化物は、溶湯プールへの添加時点で固体である。原料電極の主要成分元素の酸化物は、本実施形態中の精錬反応(上記脱炭反応)において、酸化剤として作用するので、酸化金属からなる酸化剤である。第3精錬剤は酸化剤として作用する第2酸化物であり、原料電極の主要成分元素の酸化物のうちの1種でもよいし、2種以上の組合せでもよい。
(11)第3精錬剤の重量が、溶湯プールに存在する不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍であること。
 本発明者らが、第3精錬剤の添加量に伴う不純物元素含有量の変化を実験を通じて検討したところ、第3精錬剤の添加量を0(ゼロ)から徐々に増やしていくとともに脱炭反応は活発になり、第3精錬剤の添加重量が「溶湯プールに存在する不純物元素のうち炭素を全量酸化させるために算出される算出重量」とほほ等しい重量のときには、十分な脱炭反応が進行していることを見出した。そして、さらに第3精錬剤の添加量を増やして、第3精錬剤の添加重量が「溶湯プールに存在する不純物元素のうち炭素を全量酸化させるために算出される算出重量」のほほ4倍を超えたときには、鋳塊の酸素含有量が高くなる傾向を示すことを見出した。
 よって、第3精錬剤の重量を、「溶湯プールに存在する不純物元素のうち炭素を全量酸化させるために算出される算出重量」の1~4倍とした。そして、第3精錬剤の重量がこの算出重量の2~3倍であるときには、炭素含有量はほぼ最低値(分析限界)となるとともに、酸素含有量もほぼ最低値(分析限界)となることを見出した。第3精錬剤の重量は上記算出重量の2~3倍であることが好ましい。
 原料電極の主要成分元素の酸化物として、酸化鉄(Fe)を用いた場合には、酸化鉄(Fe)の添加重量WFe(kg)と、酸化鉄(Fe)の算出重量MFeO(kg)とは上記関係から次式を満足する。
  1.0×MFeO≦WFe≦4.0×MFeO
 ここで、原料電極の重量WM(kg)、原料電極の炭素含有量[C](wt%)を用いると、MFeOは次式で表される。
  MFeO=WM/100×([C]/12.01-[O]/16.0)/y×(55.85×x+16.0×y)
 原料電極の主要成分元素の酸化物として酸化鉄の代わりに酸化ニッケル(Ni)などを用いることもできる。この場合は、MFeOを算出する上式において、Feの原子量(55.85)の代わりにNiの原子量(58.71)を用いればよい。
 比較的に高純度なステンレス鋼を原料電極として用いた場合の、MFeOに対するWFeの比(すなわち、WFe/MFeO、酸化鉄添加割合ともいう)と、脱炭率η[C]=([C]0-[C]EB)/[C]0×100(%)との相関関係を調べた。その結果を図9に示す。酸化鉄添加割合(WFe/MFeO)が1以上のときには、脱炭率の下限値が約40%以上であり、脱炭率の中央値が約50%以上であることから、脱炭反応が促進することが分かる。
 また、本発明者らは、このコールドハース式電子ビーム溶解法を適用することにより、鋳塊中の非金属介在物などの浮上分離が進み、酸素除去方式としても、非常に有効であることを確認した。本実施形態の合金鋳塊の製造方法によって、[C]≦10ppm、[O]≦10ppmの合金鋳塊を溶製できることを確認した。また、第3精錬剤の重量を最適化することで、分析限界以下の[C]<5ppm、[O]<5ppmの合金鋳塊を溶製できることも確認した。なお、合金成分であるマンガン(Mn)は、電子ビーム溶解過程において蒸発除去されて、精錬後は[Mn]≦0.01wt%となる場合が多かった。
(第1~3実施形態の精錬処理の組み合せ)
 第1~3実施形態の精錬処理のいずれか2つ以上を組み合せることも好ましい。
 具体的には、第1実施形態の還元精錬処理(Ca還元精錬処理ともいう)と、第2実施形態の酸化精錬処理(酸化精錬処理ともいう)とを適宜組み合わせた精錬処理を実施することも好ましい。所定の合金組成に成分調整した溶湯プール6から、不純物元素として、リン(P)、硫黄(S)、窒素(N)、トレーストランプ元素(Sn、Pb、As、Sb、Bi、Seなど)、硼素(B)などを第1実施形態の還元精錬により除去する。さらに、硼素(B)、炭素(C)、珪素(Si)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)、カルシウム(Ca)、アルカリ金属元素などを、第2実施形態の真空酸化精錬により除去する。これらにより、リン(P)、硫黄(S)、錫(Sn)、鉛(Pb)などの不純物元素の含有量を2ppm以下までに低減できる。また、窒素(N)の含有量を5ppm以下までに、珪素(Si)、アルミニウム(Al)、チタン(Ti)、ジルコニウム(Zr)などの含有量を100ppm以下までに低減できる。さらに、炭素(C)の含有量を50ppm以下までに、珪素(Si)、カルシウム(Ca)などの含有量を1ppm以下までに低減できる。
 第1実施形態の還元精錬処理により、C、Si、Al、Caなどの元素のピックアップが発生することから、第2実施形態の酸化精錬処理(例えば、真空酸化精錬処理)は、Ca還元精錬の後工程として実施することが望ましい。ただし、溶解原料中の不純物元素であるC、Si、Al、Tiなどの含有量が著しく多い場合は、Ca還元精錬の前に、酸化精錬を施して、C、Si、Al、Tiなどの含有量を低下させておくことが有効である。
 例えば、ステンレス鋼のスクラップなどを溶解原料(合金原料)として用いる場合、合金組成にもよるが、炭素の含有量が高いことや、Si、Al、Tiなどの合金成分の含有量が1wt%前後であったり、またはZr、Bなどの含有量が数十ppmほど添加された合金であることなどもありうる。そのような場合は、酸化精錬の際の添加酸化鉄量を著しく多くすることが必要となる。このような、添加酸化鉄量を増やした酸化精錬を実施すると、溶湯プール6中の[O]が著しく高くなる可能性がある。最終の合金組成に成分調整するために、酸素含有量の高い溶湯プール6に対して活性金属合金元素を添加する場合は、歩留まりの大幅な低下による成分規格はずれや、非金属介在物発生量の著しい増大などを招く可能性がある。このような場合は、酸化精錬を2回に分けて実施することが望ましい。最初に酸化精錬(例えば、真空酸化精錬)を実施して、C、Si、Al、Ti、Bなどを除去する。その後、Ca還元精錬を施して、P、S、Sn、Pb、Nなどを除去する。そして、Ca還元精錬過程でピックアップされる数十から数百ppmのC、Si、Al、Caなどをその後に再実施する(2回目の)真空酸化精錬で除去して、酸素Oを過度に溶湯プール6中に残留させない。
 このように、Ca還元精錬処理と酸化精錬処理(例えば、真空酸化精錬処理)とを適宜組み合わせて精錬を施すことにより、超高純度な超高純度(極低不純物)Fe基合金鋳塊、Fe-Ni基合金鋳塊およびNi基合金鋳塊の溶解精錬が可能となり、超高純度化した合金鋳塊を製造することができる。
 また、第1実施形態の還元精錬処理と第2実施形態の酸化精錬処理とを適宜組み合わせて溶製した鋳塊、または当該鋳塊に後述する脱酸元素系の合金成分を添加して合金化した鋳塊、を2次鋳塊(合金原料)として、第3実施形態の酸化精錬処理で、さらなる脱炭、脱酸を行うことも好ましい。
 そして、第2実施形態の酸化精錬処理により溶製した鋳塊、または当該鋳塊に後述する脱酸元素系の合金成分を添加して合金化した鋳塊、を1次鋳塊(合金原料)として、第3実施形態の酸化精錬処理で、さらなる脱炭、脱酸を行うことも好ましい。詳細に言えば、内径φ200mm以上のコールドクルーシブル3を有するコールドクルーシブル式誘導溶解装置1を用いて、溶湯プールの重量が10kg以上で、第2精錬剤を添加した酸化精錬(例えば、真空酸化精錬)を実施し、C、Al、Ti、Zr、Ca、Si、Bなどの不純物元素の除去精錬を行って合金鋳塊を製造する。あるいは、必要に応じてさらに脱酸元素系の合金成分を当該合金鋳塊に添加した鋳塊を製造する。その後、第3実施形態の酸化精錬処理により、脱炭、脱酸を施して、[C]<10ppm、[O]<10ppmにまで除去精錬することも好ましい。高純度(極低不純物)のFe基合金鋳塊、Fe―Ni基合金鋳塊およびNi基合金鋳塊を製造することが可能となる。
 また、第1実施形態の合金鋳塊の製造方法において、還元精錬処理の後に、第2実施形態の合金鋳塊の製造方法における酸化精錬処理を続けて行ってもよい。詳細に言えば、内径φ200mm以上のコールドクルーシブル3を有するコールドクルーシブル式誘導溶解装置1を用いて、溶湯プールの重量が10kg以上で、第1精錬剤を添加した金属カルシウム還元精錬を実施して、P、S、Sn、Pb、N、Bなどの除去精錬を行い、その後、第2精錬剤を添加した酸化精錬(例えば、真空酸化精錬)を実施して、C、Al、Ti、Zr、Ca、Si、Bなどの不純物元素の除去精錬を行い、精錬後の溶湯を凝固させて合金鋳塊を製造してもよい。あるいは、必要に応じてさらに後述する脱酸元素系の合金成分を当該合金鋳塊に添加した鋳塊を製造してもよい。そして、その後に、第3実施形態の酸化精錬処理により、脱炭、脱酸を施して、[C]<10ppm、[O]<10ppmにまで除去精錬してもよい。この方式により、最も高純度(極低不純物)のFe基合金鋳塊、Fe―Ni基合金鋳塊およびNi基合金鋳塊を製造することが可能となる。
(脱酸元素系の合金成分の添加)
 合金原料として、第2実施形態の酸化精錬処理を経て溶製した鋳塊、または第1実施形態の還元精錬処理と第2実施形態の酸化精錬処理とを適宜組み合わせて溶製した鋳塊を用いる場合には、当該鋳塊から形成した溶湯プールに脱酸元素系の合金成分を添加して合金化する(合金を形成する)ことが好ましい。脱酸元素系の合金成分としては、例えば、Si、Al、Ti、Zr、Bなどの元素がある。これにより、所定の合金組成の超高純度(極低不純物)Fe基合金鋳塊、Fe-Ni基合金鋳塊またはNi基合金鋳塊を溶製することができる。なお、鋳塊中のP、S、N、Sn、Pbなどの含有量が高い場合は、Ca還元精錬などを実施することが好ましい。
 超高純度合金鋳塊の溶製において、最終工程として真空酸化精錬または酸化精錬を施した場合には、溶湯プール6中に多量の酸素が含有された状態となっていることがある。多量の酸素を含有する溶湯プール6に活性元素の(脱酸元素系の)合金成分を添加した場合には、それらの脱酸酸化物が発生する。このような脱酸酸化物を溶湯プール6から分離除去するには、カルシウムハロゲン化物系フラックスを、合金成分とともに添加することが有効である。この場合のカルシウムハロゲン化物系フラックスの添加量は、{Flx}Mで0.5~2wt%程度が適切である。なお、鋳塊中のP、S、N、Sn、Pbなどの含有量が高い場合は、Ca還元精錬などを実施する必要がある。
 なお、本明細書において、[X]は合金(または溶湯)に含まれる元素Xの含有量(濃度)を表し、合金(または溶湯)からの不純物元素の「除去」は、合金(または溶湯)中に存在する不純物元素を完全に取り除く場合だけでなく、不純物元素の含有量を低減する場合も含む。また、本明細書では、各元素を元素記号で表すこともある。そして、超高純度とは、合金鋳塊中に除去すべき元素として存在する各元素の含有量の合計が100ppm未満であることを意味する。例えば、第1実施形態においては、少なくとも除去すべき元素がリンであるので、[P]<100ppmを満たしていることを意味し、第2実施形態においては、少なくとも除去すべき元素が炭素およびカルシウムであるので、[C]+[Ca]<100ppmを満たしていることを意味し、第3実施形態においては、少なくとも除去すべき元素が炭素および酸素であるので、[C]+[O]<40ppmを満たしていることを意味する。
 以下、本発明を実施例により更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 実施例では、図1および図8に模式的に示した溶解装置を用いて、本発明の精錬効果を確認した。溶解装置の概略仕様は、以下の通りである。
(A)コールドクルシ-ブル式誘導溶解(CCIM)装置
 高周波電源       最大出力:400kW,周波数:3000Hz
 コールドクルシ-ブル  内径:φ220mm,セグメント数:24,水冷式,銅製
 到達真空度       10-2mbar台
 真空排気装置      ロータリーポンプ、メカニカルブースターポンプ
(B)コールドハース式電子ビーム溶解(EBCHR)装置
 高圧電源        加速電圧:40kV,最大出力:300kW
 電子ビーム銃      2基
 到達真空度       10-6mbar台
 真空排気装置      ロータリーポンプ、メカニカルブースターポンプ、拡散ポンプ
 原料供給機構      最大φ210×1000Lmm
 鋳塊引抜機構      最大φ200×1000Lmm
(実施例A:コールドクルーシブル式誘導溶解装置を用いた還元精錬試験)
 金属カルシウムとフラックスとの混合物である第1精錬剤を用いた還元精錬試験を行った。具体的には、まず、コールドクルーシブル式誘導溶解装置1に備えられた内径φ220mmの水冷銅るつぼ(コールドクルーシブル3)内に、不純物元素含有量の多い、廉価原料であるフェロクロム材および低炭素鋼材を合金原料として投入し、アルゴンガス雰囲気下で表1に示す合金種(Fe-20Ni-25Cr、Fe-35Ni-25Cr)を目標組成とする溶湯プール6を形成した。次に、第1精錬剤として、表1に示す金属カルシウムおよびフラックスをその溶湯プール6に添加して、2.0~60.0分間溶湯を保持することで還元精錬を行なった。精錬前のリン含有量[P]0および精錬後のリン含有量[P]1をGD-MS分析法により測定し、脱リン率npを求めた。測定結果を試験条件とともに表1に示す。なお、表1中、CaF-20CaOはCaF-CaO(20wt%)を、CaF-10CaOはCaF-CaO(10wt%)を、CaF-10CaO-10CaClはCaF-(CaO+CaCl)(20wt%)をそれぞれ表す。
 表1から明らかなように、金属カルシウム添加率{Ca}M=0.2の比較例A1では、第1精錬剤添加後も溶湯プールを観察できたものの、低い脱リン効果しか得られなかった。これに対して、金属カルシウム添加率{Ca}M=0.4の実施例A1では、第1精錬剤添加後に溶湯プールを観察できなくなったが、十分な脱リン効果が得られた。金属カルシウムの添加量をさらに増加させた、金属カルシウム添加率{Ca}M=1.0の実施例A2では、より優れた脱リン効果が得られた。そして、金属カルシウムの添加量が多く(金属カルシウム添加率が比較的高く({Ca}M≧0.5)、かつ、金属カルシウムに対してフラックスの添加量を多い(フラックス添加率{Flx}M≧{Ca}M)実施例A3~A6では、非常に優れた脱リン効果が得られた。重量が2.5倍の大きな溶湯プール(50.0kg)を形成した場合(実施例A13)でも、非常に優れた脱リン効果が得られた。
 次に、溶湯保持時間に着目すると、溶湯保持時間のみ変更した実施例A7~A11(Fe-20Ni-25Cr合金)および実施例A12~A16(Fe-35Ni-25Cr合金)のいずれの合金種においても、溶湯保持時間を適正に制御することで、優れた脱リン効果が得られた。
Figure JPOXMLDOC01-appb-T000001
(実施例B:コールドクルーシブル式誘導溶解装置を用いた酸化精錬試験1)
 第1酸化物としての酸化鉄と、フラックスとの混合物(すなわち、第2精錬剤)を用いた酸化精錬試験を行った。具体的には、まず、コールドクルーシブル式誘導溶解装置1に備えられた水冷銅るつぼ内に、炭素(C)および珪素(Si)などの不純物含有量の多いフェロクロム材(FeCr)および極低炭素鋼材と、高純度原料である電解ニッケルとを合金原料として投入し、アルゴンガス雰囲気下で表2に示す合金種(Fe-35Ni-25Cr、Fe-20Ni-25Cr)を目標組成とする溶湯プール6を形成した。次に、第2精錬剤として、表2に示す酸化鉄およびフラックスをその溶湯プール6に添加した後、アルゴンガスを外部に排出する排気状態で、10.0~30.0分間溶湯を保持することで酸化精錬を行なった。精錬後の炭素含有量[C]、珪素含有量[Si]、カルシウム含有量[Ca]および硼素含有量[B]をGD-MS分析法により測定した。測定結果を試験条件とともに表2に示す。なお、上記合金原料は、表2に示すように、不純物元素としての炭素および珪素を多く含むとともに、不純物元素としての硼素(B)も50ppmほど含んでいた。
 また、表2中、CaF-15CaO-5CaClはCaF-(CaO+CaCl)(20wt%)を、CaF-20CaOはCaF-CaO(20wt%)を、CaF-21CaOはCaF-CaO(21wt%)を、CaF-22CaOはCaF-CaO(22wt%)をそれぞれ表す。
 表2から明らかなように、WFe/MFeO=0.15の比較例B1は、酸化鉄の添加量が少なすぎる(WFe/MFeO<0.2)ため、高い脱炭効果を示さなかった。これに対して、脱炭目的でWFe/MFeO≧0.2かつ{Flx}M≧0.5を満たす実施例B1、B2は、十分な脱炭効果を示した。また、脱珪(Si)、脱硼(B)目的でWFe/MFeO≧1.0かつ{Flx}M≧3.0を満たす実施例B3~B5は、十分な脱炭効果を示すとともに、満足できる脱珪、脱硼効果を示した。一方、WFe/MFeO=4.5の比較例B2では、酸化鉄の添加量が多すぎる(WFe/MFeO>4)ため、真空精錬時に脱炭反応に伴う激しい溶滴飛散(スプラッシュ)が発生して、安定した精錬操作が行えなかった。
Figure JPOXMLDOC01-appb-T000002
(実施例C:コールドクルーシブル式誘導溶解装置を用いた酸化精錬試験2)
 フェロクロム材、極低炭素鋼材および電解ニッケルを合金原料として、実施例Aと同様にコールドクルーシブル式誘導溶解装置を用いた還元精錬試験を行い、合金鋳塊(1次鋳塊)を溶製した。次に、この1次鋳塊を合金原料として、表2の試験条件に代えて表3の試験条件で実施例Bと同様に酸化精錬試験を行い、精錬後の炭素、珪素、カルシウムおよび硼素の含有量をGD-MS分析法により測定した。測定結果を試験条件とともに表3に示す。
 表3から明らかなように、WFe/MFeO=0.1の比較例C1は、酸化鉄の添加量が少なすぎる(WFe/MFeO<0.2)ため、高い脱炭効果を示さなかった。これに対して、脱炭目的でWFe/MFeO≧0.2かつ{Flx}M≧0.5を満たす実施例C1、C2は、十分な脱炭効果を示した。また、脱珪(Si)、脱硼(B)目的でWFe/MFeO≧1.0かつ{Flx}M≧3.0を満たす実施例C3~C5は、十分な脱炭効果を示すとともに、満足できる脱珪、脱硼効果を示した。一方、WFe/MFeO=5.0の比較例C2では、酸化鉄の添加量が多すぎる(WFe/MFeO>4)ため、真空精錬時に脱炭反応に伴う激しい溶滴飛散(スプラッシュ)が発生して、安定した精錬操作が行えなかった。
Figure JPOXMLDOC01-appb-T000003
(実施例D:コールドハース式電子ビーム溶解法による試験1)
 第3精錬剤である第2酸化物を用いた酸化精錬試験を行った。具体的には、まず、コールドハース式電子ビーム溶解装置11の原料供給機構により、原料電極12をコールドハース9の出湯口の対面側まで送り出し、真空度5×10-4mbar未満の真空雰囲気下で表4に示す合金種(Fe-20Ni-25Cr)を目標組成とする溶湯プール13をコールドハース9上に形成した。次に、第3精錬剤として、微粒のFe粉末を1250℃で焼結して得た顆粒状のFe(第2酸化物)をコールドハース9上の溶湯プール13に添加して酸化精錬を行なった。精錬後の炭素含有量[C]および酸素含有量[O]をGD-MS分析法により測定した。測定結果を試験条件とともに表4に示す。
 なお、原料電極12の試験前の不純物元素の含有量(wt%)は、[C]=0.005、[O]=0.003であった。また、これら不純物元素の含有量から算出したMFeO量は0.011kgであった。
 表4から明らかなように、WFe/MFeO=0.5の比較例D1は、高い脱炭効果を示さなかった。これは、酸化鉄の添加量が少なすぎて、期待される脱炭反応に必要な酸素量に比べて、Feの量が少ない(WFe/MFeO<1)ため、脱炭反応の進行が不十分であったためだと考えられる。
 これに対して、1≦WFe/MFeO≦4を満たす実施例D1~D4は、十分な脱炭、脱酸効果を示した。特に、2≦WFe/MFeO≦3を満たす実施例D2、D3においては、炭素含有量と酸素含有量の合計が15ppm未満という極めて優れた脱炭、脱酸効果を示した。
 一方、WFe/MFeO=5.0の比較例D2は、十分な脱炭効果を示したものの、脱酸効果を全く示さず、酸素含有量は精錬前よりも増加した。これは、酸化鉄の添加量が多すぎて、期待される脱炭反応に必要な酸素量に比べて、Feの量が多い(WFe/MFeO>4)ため、すなわち、脱炭反応で消費されるよりも過剰な酸素が供給されたためだと考えられる。
Figure JPOXMLDOC01-appb-T000004
(実施例E:コールドハース式電子ビーム溶解法による試験2)
 フェロクロム材、極低炭素鋼材および電解ニッケルを合金原料として、実施例Bと同様にコールドクルーシブル式誘導溶解装置を用いた酸化精錬試験を行い、合金鋳塊(1次鋳塊)を溶製した。次に、この1次鋳塊を原料電極として、表4の試験条件に代えて表5の試験条件で実施例Dと同様にコールドハース式電子ビーム溶解法による酸化精錬試験を行い、精錬後の炭素および酸素の含有量をGD-MS分析法により測定した。測定結果を試験条件とともに表5に示す。
 なお、原料電極12の試験前の不純物元素の含有量(wt%)は、[C]=0.0045、[O]=0.0025であった。また、これら不純物元素の含有量から算出したMFeO量は0.011kgであった。
 表5から明らかなように、WFe/MFeO=0.80の比較例E1は、高い脱炭効果を示さなかった。これは、酸化鉄の添加量が少なすぎて、期待される脱炭反応に必要な酸素量に比べて、Feの量が少ない(WFe/MFeO<1)ため、脱炭反応の進行が不十分であったためだと考えられる。
 これに対して、1≦WFe/MFeO≦4を満たす実施例E1~E4は、十分な脱炭、脱酸効果を示した。特に、2≦WFe/MFeO≦3を満たす実施例E2、E3においては、炭素含有量と酸素含有量の合計が15ppm以下という優れた脱炭、脱酸効果を示した。
 一方、WFe/MFeO=5.00の比較例E2は、十分な脱炭効果を示したものの、脱酸効果を全く示さず、酸素含有量は精錬前よりも増加した。これは、酸化鉄の添加量が多すぎて、期待される脱炭反応に必要な酸素量に比べて、Feの量が多い(WFe/MFeO>4)ため、すなわち、脱炭反応で消費されるよりも過剰な酸素が供給されたためだと考えられる。
Figure JPOXMLDOC01-appb-T000005
(実施例F:コールドハース式電子ビーム溶解法による試験3)
 フェロクロム材、極低炭素鋼材および電解ニッケルを合金原料として、コールドクルーシブル式誘導溶解装置で実施例Aと同様な還元精錬と、実施例Bと同様な酸化精錬とを行い、合金鋳塊を溶製した。次に、この合金鋳塊を原料電極として、表4の試験条件に代えて表6の試験条件で実施例Dと同様にコールドハース式電子ビーム溶解法による酸化精錬試験を行い、精錬後の炭素および酸素の含有量をGD-MS分析法により測定した。測定結果を試験条件とともに表6に示す。
 なお、原料電極12の試験前の不純物元素の含有量(wt%)は、[C]=0.005、[O]=0.003であった。また、これら不純物元素の含有量から算出したMFeO量は0.011kgであった。
 表6から明らかなように、WFe/MFeO=0.5の比較例F1は、高い脱炭効果を示さなかった。これは、酸化鉄の添加量が少なすぎて、期待される脱炭反応に必要な酸素量に比べて、Feの量が少ない(WFe/MFeO<1)ため、脱炭反応の進行が不十分であったためだと考えられる。
 これに対して、1≦WFe/MFeO≦4を満たす実施例F1~F4は、十分な脱炭、脱酸効果を示した。特に、2≦WFe/MFeO≦3を満たす実施例F2、F3においては、炭素含有量と酸素含有量の合計が15ppm以下という優れた脱炭、脱酸効果を示した。
 一方、WFe/MFeO=5.0の比較例F2は、十分な脱炭効果を示したものの、脱酸効果を全く示さず、酸素含有量は精錬前よりも増加した。これは、酸化鉄の添加量が多すぎて、期待される脱炭反応に必要な酸素量に比べて、Feの量が多い(WFe/MFeO>4)ため、すなわち、脱炭反応で消費されるよりも過剰な酸素が供給されたためだと考えられる。
Figure JPOXMLDOC01-appb-T000006
(実施例G:不純物元素含有量の対比)
 第1~3実施形態の合金鋳塊の製造方法を組み合せることにより溶製された、2種類の超高純度ステンレス鋼鋳塊(Fe-20Ni-25Cr-0.2TiおよびFe-35Ni-25Cr-0.2Ti)と従来の高純度鋳塊の不純物元素の含有量を比較した。以下、詳細に説明する。
 Fe-20Ni-25Cr-0.2TiおよびFe-35Ni-25Cr-0.2Tiのそれぞれについて、まず、不純物元素含有量の多いフェロクロム材と低炭素鋼材(転炉材)とを合金原料として、φ220mmの水冷銅るつぼ3を有するコールドクルーシブル式誘導溶解装置1を用いて、第1実施形態に記載した条件(1)~(4)を満足する精錬剤を添加した還元精錬(CCIM還元精錬)を施して1次鋳塊を製造し;次に、この1次鋳塊を合金原料として、コールドクルーシブル式誘導溶解装置1を用いて、第2実施形態に記載した条件(5)~(8)を満足する精錬剤を添加した真空酸化精錬(CCIM酸化精錬)を施して2次鋳塊を製造し;そして、この2次鋳塊を合金原料として、水冷銅製皿状容器9を有するコールドハース式電子ビーム溶解装置11を用いて、第3実施形態に記載した条件(9)~(11)を満足する真空酸化精錬(EB酸化精錬)を施して製品鋳塊を製造した。そして、通常の鉄鋼材料の化学分析法および微量分析が可能なGD-MS分析法により、各製品鋳塊中の不純物元素含有量を測定した。化学分析法ではいずれも[P]<2ppm(分析限界値以下)であった、GD-MS分析法では[P]=1.54ppmおよび[P]=0.65ppmであった。このGD-MS分析法で測定したその他不純物元素の含有量(分析値)を表1に示す。比較のために、市販のステンレス鋼材(SUS304ULC)および従来の高純度鋳塊(電解鉄、電解ニッケル、金属クロムを溶解原料として真空誘導溶解-電子ビーム(VIM-EB)法により溶製した鋳塊)中の不純物元素含有量を測定した結果も表1に示す。表1から、第1~3実施形態の合金鋳塊の製造方法を組み合せることによって、高純度化(不純物除去)された鋳塊が製造できたことが分かる。具体的には、第1実施形態における精錬がPおよびSの除去とSn、Sb、Pbなどのトレーストランプ元素の除去に非常に有効であり、従来の高純度鋳塊よりも純度を高めうることが表1より分かる。なお、GD-MS分析法では窒素を分析できないが、化学分析法によって、上記各製品鋳塊では分析限界の5ppm未満、すなわち[N]<5ppmまで窒素が除去されたことを確認した。
 ここで、GD-MS分析法は、グロー放電質量分析法と呼ばれる分析法であり、0.01ppmほどまでの金属元素、半導体元素、絶縁体元素などの微量分析が可能な分析方法である。例えば、半導体材料などでの微量分析に適用されている。
Figure JPOXMLDOC01-appb-T000007
 以上、詳述したように、本発明の一局面は、合金鋳塊の製造方法であって、コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって当該合金原料から溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記溶湯プールに第1精錬剤を添加して当該溶湯プールに存在する不純物元素のうち少なくともリンの含有量を低減する工程と、リンの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程とを備え、前記第1精錬剤は、金属カルシウムと、カルシウムハロゲン化物を含有するフラックスとの混合物であり、前記フラックスはフッ化カルシウムと、酸化カルシウムおよび塩化カルシウムの少なくとも一方とを含み、前記フッ化カルシウムの重量に対する前記酸化カルシウムおよび前記塩化カルシウムの合計重量の割合が5~30wt%であり、前記第1精錬剤を添加する前の前記溶湯プールの重量に対する当該第1精錬剤中の前記金属カルシウムの重量の割合が0.4wt%以上である合金鋳塊の製造方法である。
 本方法によれば、リン(P)の含有量がきわめて低い合金鋳塊を重量が例えば10kg以上の実用規模で製造することができる。
 上記製造方法では、前記第1精錬剤を添加する前の前記溶湯プールの重量に対する当該第1精錬剤中の前記フラックスの重量の割合が、当該溶湯プールの重量に対する当該第1精錬剤中の前記金属カルシウムの重量の割合に等しいか、またはそれよりも大きいことが好ましい。
 この方法によれば、金属カルシウムの蒸発損失が大幅に抑制される結果、リン(P)の含有量がさらに低い合金鋳塊を溶製することができる。
 上記製造方法では、リンの含有量を低減する工程において、前記溶湯プールに前記第1精錬剤を添加した時刻から、t1からt2までの間の所定の時刻まで前記誘導加熱を継続して、前記溶湯プールを保持することが好ましい。ここで、t1は、前記第1精錬剤を前記溶湯プールに添加した時刻から、当該第1精錬剤が全て溶融するまでの時間の半分の時間だけ経過した時刻を表し、t2は、前記第1精錬剤を前記溶湯プールに添加した時刻から、当該第1精錬剤中の前記金属カルシウムの半分が蒸発する時間だけ経過した時刻を表す。
 この方法によれば、適正な溶湯保持時間を定量的に管理することができ、その結果、より高い脱リン率、脱窒率を得ることができる。
 上記製造方法では、前記合金鋳塊を形成する工程の後に、当該合金鋳塊を合金原料として用いて、前記溶湯プールを形成する工程から前記合金鋳塊を形成する工程までを少なくとも1回行うことも好ましい。
 この方法によれば、リン(P)や窒素(N)の含有量がさらに低い合金鋳塊を実用規模で製造することができる。
 上記製造方法が、前記凝固によって形成された合金鋳塊を1次鋳塊として前記コールドクルーシブルに投入して、不活性ガス雰囲気下において誘導加熱によって当該1次鋳塊から1次鋳塊の溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記1次鋳塊の溶湯プールに第2精錬剤を添加して、当該溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムの含有量を低減する工程と、炭素およびカルシウムの含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程とをさらに備え、前記第2精錬剤は、前記1次鋳塊の主要成分元素の酸化物のうちの1種または2種以上からなる第1酸化物と、前記フラックスとの混合物であり、前記第2精錬剤中の前記第1酸化物の重量は、前記1次鋳塊の溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムを全量酸化させるために算出される算出重量の0.2~4倍であり、前記第2精錬剤を添加する前の前記1次鋳塊の溶湯プールの重量に対する当該第2精錬剤中の前記フラックスの重量の割合が0.5~5wt%であることも好ましい。
 この方法によれば、不純物元素である炭素(C)およびカルシウム(Ca)の除去精錬を確実に行うことができるので、炭素、カルシウムおよびリンの含有量が極めて低い実用規模鋳塊を製造することができる。
 この場合において、前記炭素およびカルシウムの含有量を低減する工程では、前記1次鋳塊の溶湯プールに前記第2精錬剤を添加した後、不活性ガスを外部に排気して排気状態で前記誘導加熱を15分間以上継続して、前記1次鋳塊の溶湯プールを保持することがより好ましい。これにより、溶湯中の酸化物をさらに減少させることができる。
 上記製造方法が、前記炭素およびカルシウムの含有量を低減した溶湯を凝固させて形成した合金鋳塊を2次鋳塊として前記コールドクルーシブルに投入して、不活性ガス雰囲気下において誘導加熱によって当該2次鋳塊から2次鋳塊の溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記2次鋳塊の溶湯プールに脱酸元素系の合金成分を添加して合金を形成する工程と、合金を形成した溶湯を凝固させて合金鋳塊を形成する工程とをさらに備えることも好ましい。
 上記製造方法が、前記凝固によって形成された合金鋳塊を原料電極としてコールドハース式電子ビーム溶解装置内に供給して、5×10-4mbarよりも低い気圧下において当該原料電極に電子ビームを照射して当該コールドハース式電子ビーム溶解装置内のコールドハースに原料電極の溶湯プールを形成する工程と、前記原料電極の溶湯プールに第3精錬剤を添加して、当該溶湯プール中に存在する不純物元素としての炭素の含有量を低減する工程と、炭素の含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程とをさらに備え、前記第3精錬剤は前記原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物であり、前記第3精錬剤の重量は、前記原料電極の溶湯プールに存在する前記不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍であることも好ましい。
 この方法によれば、不純物元素である炭素(C)および酸素(O)の除去精錬を確実に行うことができるので、炭素、酸素およびリンの含有量が極めて低い実用規模鋳塊を製造することができる。
 本発明の他の一局面は、合金鋳塊の製造方法であって、コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって当該合金原料から溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記溶湯プールに第2精錬剤を添加した後、不活性ガスを外部に排気して排気状態で前記誘導加熱を15分間以上継続して、当該溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムの含有量を低減する工程と、炭素およびカルシウムの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程とを備え、前記第2精錬剤は、前記合金原料の主要成分元素の酸化物のうちの1種または2種以上からなる第1酸化物と、フラックスとの混合物であり、前記フラックスはフッ化カルシウムと、酸化カルシウムおよび塩化カルシウムの少なくとも一方とを含み、前記フッ化カルシウムの重量に対する前記酸化カルシウムおよび前記塩化カルシウムの合計重量の割合が5~30wt%であり、前記第2精錬剤中の前記第1酸化物の重量は、前記溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムを全量酸化させるために算出される算出重量の0.2~4倍であり、前記第2精錬剤を添加する前の前記溶湯プールの重量に対する当該第2精錬剤中の前記フラックスの重量の割合が0.5~5wt%である合金鋳塊の製造方法である。
 この方法によれば、炭素(C)およびカルシウム(Ca)の含有量がきわめて低い合金鋳塊を重量が例えば10kg以上の実用規模で製造することができる。
 上記製造方法では、前記フラックスは、フッ化カルシウムおよび酸化カルシウムからなり、フッ化カルシウムの重量に対する酸化カルシウム重量の割合が5~30wt%の混合物、または、フッ化カルシウム、酸化カルシウムおよび塩化カルシウムからなり、フッ化カルシウムの重量に対する酸化カルシウムおよび塩化カルシウムの合計重量の割合が5~30wt%の混合物であり、前記第2精錬剤中の前記第1酸化物の重量は、前記溶湯プールに存在する不純物元素のうち少なくとも炭素、カルシウム、アルミニウムおよび珪素を全量酸化させるために算出される算出重量の2~4倍であり、前記第2精錬剤を添加する前の前記溶湯プールの重量に対する当該第2精錬剤中の前記フラックスの重量の割合が3~5wt%であることが好ましい。
 この方法によれば、不純物元素である炭素(C)およびカルシウム(Ca)の除去精錬をより確実に行うとともに不純物元素である珪素(Si)も除去できるので、炭素およびカルシウムリンの含有量がさらに低いとともに珪素の含有量も低い実用規模鋳塊を製造することができる。
 上記製造方法が、前記炭素およびカルシウムの含有量を低減した溶湯を凝固させて形成した合金鋳塊を1次鋳塊として前記コールドクルーシブルに投入して、不活性ガス雰囲気下において誘導加熱によって当該1次鋳塊から1次鋳塊の溶湯プールを形成する工程と、前記誘導加熱を継続するとともに、前記1次鋳塊の溶湯プールに脱酸元素系の合金成分を添加して合金を形成する工程と、合金を形成した溶湯を凝固させて合金鋳塊を形成する工程とをさらに備えることも好ましい。
 上記製造方法が、前記凝固によって形成された合金鋳塊を原料電極としてコールドハース式電子ビーム溶解装置内に供給して、5×10-4mbarよりも低い気圧下において当該原料電極に電子ビームを照射して当該コールドハース式電子ビーム溶解装置内のコールドハースに原料電極の溶湯プールを形成する工程と、前記原料電極の溶湯プールに第3精錬剤を添加して、当該溶湯プール中に存在する不純物元素としての炭素の含有量を低減する工程と、炭素の含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程とをさらに備え、前記第3精錬剤は前記原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物であり、前記第3精錬剤の重量は、前記原料電極の溶湯プールに存在する前記不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍であることも好ましい。
 この方法によれば、不純物元素である炭素(C)および酸素(O)の除去精錬を確実に行うことができるので、炭素、酸素およびカルシウムの含有量が極めて低い実用規模鋳塊を製造することができる。
 本発明の他の一局面は、合金鋳塊の製造方法であって、コールドハース式電子ビーム溶解装置内に原料電極を供給して、5×10-4mbarよりも低い気圧下において当該原料電極に電子ビームを照射して当該コールドハース式電子ビーム溶解装置内のコールドハースに溶湯プールを形成する工程と、前記溶湯プールに第3精錬剤を添加して、当該溶湯プール中に存在する不純物元素としての炭素の含有量を低減する工程と、炭素の含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程とを備え、前記第3精錬剤は前記原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物であり、前記第3精錬剤の重量は、前記溶湯プールに存在する前記不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍である合金鋳塊の製造方法である。
 この方法によれば、不純物元素である炭素(C)および酸素(O)の除去精錬を確実に行うことができ、コールドクルーシブル式誘導溶解装置を用いた場合には製造が困難な極低炭素含有量(例えば、[C]<10ppm)かつ極低酸素含有量(例えば、[O]<10ppm)の実用規模鋳塊を製造することができる。
 本発明の合金鋳塊の製造方法を用いれば、製品鋳塊重量が例えば10kg以上という実用規模の超高純度な合金鋳塊を溶製により製造することができるので、超高純度合金材料の利用分野の拡大につながる。

Claims (13)

  1.  コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって当該合金原料から溶湯プールを形成する工程と、
     前記誘導加熱を継続するとともに、前記溶湯プールに第1精錬剤を添加して当該溶湯プールに存在する不純物元素のうち少なくともリンの含有量を低減する工程と、
     リンの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程と
    を備え、
     前記第1精錬剤は、金属カルシウムと、カルシウムハロゲン化物を含有するフラックスとの混合物であり、
     前記フラックスはフッ化カルシウムと、酸化カルシウムおよび塩化カルシウムの少なくとも一方とを含み、前記フッ化カルシウムの重量に対する前記酸化カルシウムおよび前記塩化カルシウムの合計重量の割合が5~30wt%であり、
     前記第1精錬剤を添加する前の前記溶湯プールの重量に対する当該第1精錬剤中の前記金属カルシウムの重量の割合が0.4wt%以上である合金鋳塊の製造方法。
  2.  前記第1精錬剤を添加する前の前記溶湯プールの重量に対する当該第1精錬剤中の前記フラックスの重量の割合が、当該溶湯プールの重量に対する当該第1精錬剤中の前記金属カルシウムの重量の割合に等しいか、またはそれよりも大きい請求項1に記載の合金鋳塊の製造方法。
  3.  リンの含有量を低減する工程において、前記溶湯プールに前記第1精錬剤を添加した時刻から、t1からt2までの間の所定の時刻まで前記誘導加熱を継続して、前記溶湯プールを保持する請求項1に記載の合金鋳塊の製造方法。
     ここで、t1は、前記第1精錬剤を前記溶湯プールに添加した時刻から、当該第1精錬剤が全て溶融するまでの時間の半分の時間だけ経過した時刻を表し、t2は、前記第1精錬剤を前記溶湯プールに添加した時刻から、当該第1精錬剤中の前記金属カルシウムの半分が蒸発する時間だけ経過した時刻を表す。
  4.  前記合金鋳塊を形成する工程の後に、当該合金鋳塊を合金原料として用いて、前記溶湯プールを形成する工程から前記合金鋳塊を形成する工程までを少なくとも1回行う請求項1に記載の合金鋳塊の製造方法。
  5.  前記凝固によって形成された合金鋳塊を1次鋳塊として前記コールドクルーシブルに投入して、不活性ガス雰囲気下において誘導加熱によって当該1次鋳塊から1次鋳塊の溶湯プールを形成する工程と、
     前記誘導加熱を継続するとともに、前記1次鋳塊の溶湯プールに第2精錬剤を添加して、当該溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムの含有量を低減する工程と、
     炭素およびカルシウムの含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程と
    をさらに備え、
     前記第2精錬剤は、前記1次鋳塊の主要成分元素の酸化物のうちの1種または2種以上からなる第1酸化物と、前記フラックスとの混合物であり、
     前記第2精錬剤中の前記第1酸化物の重量は、前記1次鋳塊の溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムを全量酸化させるために算出される算出重量の0.2~4倍であり、
     前記第2精錬剤を添加する前の前記1次鋳塊の溶湯プールの重量に対する当該第2精錬剤中の前記フラックスの重量の割合が0.5~5wt%である請求項1に記載の合金鋳塊の製造方法。
  6.  前記炭素およびカルシウムの含有量を低減する工程において、
     前記1次鋳塊の溶湯プールに前記第2精錬剤を添加した後、不活性ガスを外部に排気して排気状態で前記誘導加熱を15分間以上継続して、前記1次鋳塊の溶湯プールを保持する請求項5に記載の合金鋳塊の製造方法。
  7.  前記炭素およびカルシウムの含有量を低減した溶湯を凝固させて形成した合金鋳塊を2次鋳塊として前記コールドクルーシブルに投入して、不活性ガス雰囲気下において誘導加熱によって当該2次鋳塊から2次鋳塊の溶湯プールを形成する工程と、
     前記誘導加熱を継続するとともに、前記2次鋳塊の溶湯プールに脱酸元素系の合金成分を添加して合金を形成する工程と、
     合金を形成した溶湯を凝固させて合金鋳塊を形成する工程と
    をさらに備えた請求項6に記載の合金鋳塊の製造方法。
  8.  前記凝固によって形成された合金鋳塊を原料電極としてコールドハース式電子ビーム溶解装置内に供給して、5×10-4mbarよりも低い気圧下において当該原料電極に電子ビームを照射して当該コールドハース式電子ビーム溶解装置内のコールドハースに原料電極の溶湯プールを形成する工程と、
     前記原料電極の溶湯プールに第3精錬剤を添加して、当該溶湯プール中に存在する不純物元素としての炭素の含有量を低減する工程と、
     炭素の含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程と
    をさらに備え、
     前記第3精錬剤は前記原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物であり、
     前記第3精錬剤の重量は、前記原料電極の溶湯プールに存在する前記不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍である請求項1に記載の合金鋳塊の製造方法。
  9.  コールドクルーシブル式誘導溶解装置内のコールドクルーシブルに合金原料を投入して、不活性ガス雰囲気下において誘導加熱によって当該合金原料から溶湯プールを形成する工程と、
     前記誘導加熱を継続するとともに、前記溶湯プールに第2精錬剤を添加した後、不活性ガスを外部に排気して排気状態で前記誘導加熱を15分間以上継続して、当該溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムの含有量を低減する工程と、
     炭素およびカルシウムの含有量が低減された溶湯を凝固させて合金鋳塊を形成する工程と
    を備え、
     前記第2精錬剤は、前記合金原料の主要成分元素の酸化物のうちの1種または2種以上からなる第1酸化物と、フラックスとの混合物であり、
     前記フラックスはフッ化カルシウムと、酸化カルシウムおよび塩化カルシウムの少なくとも一方とを含み、前記フッ化カルシウムの重量に対する前記酸化カルシウムおよび前記塩化カルシウムの合計重量の割合が5~30wt%であり、
     前記第2精錬剤中の前記第1酸化物の重量は、前記溶湯プールに存在する不純物元素のうち少なくとも炭素およびカルシウムを全量酸化させるために算出される算出重量の0.2~4倍であり、
     前記第2精錬剤を添加する前の前記溶湯プールの重量に対する当該第2精錬剤中の前記フラックスの重量の割合が0.5~5wt%である合金鋳塊の製造方法。
  10.  前記フラックスは、フッ化カルシウムおよび酸化カルシウムからなり、フッ化カルシウムの重量に対する酸化カルシウム重量の割合が5~30wt%の混合物、または、フッ化カルシウム、酸化カルシウムおよび塩化カルシウムからなり、フッ化カルシウムの重量に対する酸化カルシウムおよび塩化カルシウムの合計重量の割合が5~30wt%の混合物であり、
     前記第2精錬剤中の前記第1酸化物の重量は、前記溶湯プールに存在する不純物元素のうち少なくとも炭素、カルシウム、アルミニウムおよび珪素を全量酸化させるために算出される算出重量の2~4倍であり、
     前記第2精錬剤を添加する前の前記溶湯プールの重量に対する当該第2精錬剤中の前記フラックスの重量の割合が3~5wt%である請求項9に記載の合金鋳塊の製造方法。
  11.  前記炭素およびカルシウムの含有量を低減した溶湯を凝固させて形成した合金鋳塊を1次鋳塊として前記コールドクルーシブルに投入して、不活性ガス雰囲気下において誘導加熱によって当該1次鋳塊から1次鋳塊の溶湯プールを形成する工程と、
     前記誘導加熱を継続するとともに、前記1次鋳塊の溶湯プールに脱酸元素系の合金成分を添加して合金を形成する工程と、
     合金を形成した溶湯を凝固させて合金鋳塊を形成する工程と
    をさらに備えた請求項9に記載の合金鋳塊の製造方法。
  12.  前記凝固によって形成された合金鋳塊を原料電極としてコールドハース式電子ビーム溶解装置内に供給して、5×10-4mbarよりも低い気圧下において当該原料電極に電子ビームを照射して当該コールドハース式電子ビーム溶解装置内のコールドハースに原料電極の溶湯プールを形成する工程と、
     前記原料電極の溶湯プールに第3精錬剤を添加して、当該溶湯プール中に存在する不純物元素としての炭素の含有量を低減する工程と、
     炭素の含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程と
    をさらに備え、
     前記第3精錬剤は前記原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物であり、
     前記第3精錬剤の重量は、前記原料電極の溶湯プールに存在する前記不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍である請求項9に記載の合金鋳塊の製造方法。
  13.  コールドハース式電子ビーム溶解装置内に原料電極を供給して、5×10-4mbarよりも低い気圧下において当該原料電極に電子ビームを照射して当該コールドハース式電子ビーム溶解装置内のコールドハースに溶湯プールを形成する工程と、
     前記溶湯プールに第3精錬剤を添加して、当該溶湯プール中に存在する不純物元素としての炭素の含有量を低減する工程と、
     炭素の含有量を低減した溶湯を凝固させて合金鋳塊を形成する工程と
    を備え、
     前記第3精錬剤は前記原料電極の主要成分元素の酸化物のうちの1種または2種以上からなる第2酸化物であり、
     前記第3精錬剤の重量は、前記溶湯プールに存在する前記不純物元素のうち炭素を全量酸化させるために算出される算出重量の1~4倍である合金鋳塊の製造方法。
     
     
PCT/JP2010/004615 2009-07-15 2010-07-15 合金鋳塊の製造方法 WO2011007578A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2012105311/02A RU2494158C1 (ru) 2009-07-15 2010-07-15 Способ получения слитка сплава
CN2010800318692A CN102471828B (zh) 2009-07-15 2010-07-15 合金铸锭的制造方法
US13/384,142 US8496046B2 (en) 2009-07-15 2010-07-15 Method for producing alloy ingot
EP10799642.3A EP2455501B1 (en) 2009-07-15 2010-07-15 Method for producing alloy ingot
KR1020127003876A KR101384390B1 (ko) 2009-07-15 2010-07-15 합금 주괴의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009166725A JP5395545B2 (ja) 2009-07-15 2009-07-15 超高純度合金鋳塊の製造方法
JP2009-166726 2009-07-15
JP2009166727A JP5814500B2 (ja) 2009-07-15 2009-07-15 鋳塊中炭素[C]が10ppm以下であるステンレス鋼鋳塊の製造方法
JP2009-166725 2009-07-15
JP2009-166727 2009-07-15
JP2009166726A JP5379583B2 (ja) 2009-07-15 2009-07-15 超高純度合金鋳塊の製造方法

Publications (1)

Publication Number Publication Date
WO2011007578A1 true WO2011007578A1 (ja) 2011-01-20

Family

ID=43449189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004615 WO2011007578A1 (ja) 2009-07-15 2010-07-15 合金鋳塊の製造方法

Country Status (6)

Country Link
US (1) US8496046B2 (ja)
EP (1) EP2455501B1 (ja)
KR (1) KR101384390B1 (ja)
CN (1) CN102471828B (ja)
RU (1) RU2494158C1 (ja)
WO (1) WO2011007578A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012146467A (ja) * 2011-01-11 2012-08-02 Gs Yuasa Corp アルカリ蓄電池
US8496046B2 (en) 2009-07-15 2013-07-30 Kobe Steel. Ltd. Method for producing alloy ingot
CN116287813A (zh) * 2022-09-09 2023-06-23 湖南稀土金属材料研究院有限责任公司 镁合金及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639548B2 (ja) 2011-08-22 2014-12-10 株式会社神戸製鋼所 チタン鋳塊の製造方法
KR20150146087A (ko) 2014-06-20 2015-12-31 백의현 첨가제로써 산화붕소를 사용한 마그네슘 용탕 내 철 및 규소 불순물 제거
US9771634B2 (en) 2014-11-05 2017-09-26 Companhia Brasileira De Metalurgia E Mineração Processes for producing low nitrogen essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
US10041146B2 (en) 2014-11-05 2018-08-07 Companhia Brasileira de Metalurgia e Mineraçäo Processes for producing low nitrogen metallic chromium and chromium-containing alloys and the resulting products
KR101637509B1 (ko) * 2014-12-31 2016-07-08 한국생산기술연구원 가돌리늄을 함유한 철합금의 제조 방법
JP7043217B2 (ja) * 2016-12-13 2022-03-29 株式会社神戸製鋼所 活性金属の鋳造方法
US20180277857A1 (en) * 2017-03-21 2018-09-27 Apollo Energy Systems, Inc. Method of manufacturing a spongy nickel catalyst and spongy nickel catalyst made thereby
US10898949B2 (en) 2017-05-05 2021-01-26 Glassy Metals Llc Techniques and apparatus for electromagnetically stirring a melt material
SE544345C2 (en) * 2019-03-22 2022-04-12 Ovako Sweden Ab A method for manufacturing a steel ingot
CN110343938A (zh) * 2019-08-09 2019-10-18 宁夏亚启科技有限公司 利用变频感应熔化炉重熔铁合金粉粒的方法
CN111468704A (zh) * 2020-05-29 2020-07-31 鞍钢股份有限公司 一种提高大钢锭内部质量的方法
CN113343576B (zh) * 2021-06-22 2022-03-11 燕山大学 基于深度神经网络的钙处理过程中钙的收得率的预测方法
CN113444902A (zh) * 2021-06-29 2021-09-28 哈尔滨工业大学 一种低氧低氮含量钛铝合金锭的制备方法
CN113718123A (zh) * 2021-09-06 2021-11-30 宁夏北鼎新材料产业技术有限公司 一种用真空悬浮感应熔炼炉制备钛铝4822合金棒的方法
CN115233013A (zh) * 2022-07-19 2022-10-25 西安聚能高温合金材料科技有限公司 一种难变形高温合金gh4141合金铸锭制备方法
CN115305370B (zh) * 2022-08-29 2023-06-02 郑州机械研究所有限公司 利用电子废弃物回收合金制备的铜锡镍钎料、方法及系统
CN115921577B (zh) * 2022-12-12 2024-09-10 中国核动力研究设计院 一种热中子吸收用硼不锈钢无缝管的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295470A (ja) * 1992-04-23 1993-11-09 Daido Steel Co Ltd チタンまたはチタン合金の脱酸方法
JP2000219922A (ja) * 1999-02-01 2000-08-08 Japan Energy Corp 高純度チタン及びその製造方法
WO2005049882A1 (ja) * 2003-11-19 2005-06-02 Nikko Materials Co., Ltd. 高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212881A (en) * 1962-12-04 1965-10-19 Westinghouse Electric Corp Purification of alloys
US4198229A (en) * 1976-06-28 1980-04-15 Nippon Steel Corporation Method of dephosphorization of metal or alloy
US4564390A (en) * 1984-12-21 1986-01-14 Olin Corporation Decarburizing a metal or metal alloy melt
JPH02228415A (ja) * 1989-03-02 1990-09-11 Nkk Corp 電子ビーム溶解精錬方法
WO1996017093A1 (fr) * 1994-11-25 1996-06-06 Hitachi Metals, Ltd. Procede d'affinage de metal en fusion
WO1998015667A1 (en) * 1996-10-08 1998-04-16 General Electric Company Reduction-melting process to form rare earth-transition metal alloys and the alloys
US6007597A (en) * 1997-02-28 1999-12-28 Teledyne Industries, Inc. Electron-beam melt refining of ferroniobium
JP3023774B2 (ja) 1998-03-03 2000-03-21 科学技術庁金属材料技術研究所長 ステンレス鋼の脱リン精製方法
JP3571212B2 (ja) 1998-04-28 2004-09-29 株式会社神戸製鋼所 金属・合金の溶解方法及び溶解鋳造方法
JP3563988B2 (ja) 1999-02-01 2004-09-08 新日本製鐵株式会社 液圧成形性に優れた高強度鋼管
RU2209842C2 (ru) * 1999-12-20 2003-08-10 Волков Анатолий Евгеньевич Способ плавки и литья металла
JP3855043B2 (ja) 2000-08-30 2006-12-06 独立行政法人物質・材料研究機構 極低リンステンレス鋼の製造方法
JP3873113B2 (ja) 2001-08-17 2007-01-24 独立行政法人物質・材料研究機構 極低リンステンレス鋼とその製造方法
JP2003271496A (ja) 2002-03-14 2003-09-26 Toreaaru:Kk 情報処理システム及び情報処理方法及び通信端末
JP3790818B2 (ja) 2002-05-20 2006-06-28 独立行政法人物質・材料研究機構 アルミニウム低減化耐熱鋼の製造方法
RU2319752C2 (ru) * 2003-02-05 2008-03-20 Анатолий Евгеньевич Волков Способ индукционной плавки литья металлов и устройство для его осуществления
JP2004266619A (ja) 2003-03-03 2004-09-24 Sharp Corp スキャナ装置
US7381366B2 (en) * 2003-12-31 2008-06-03 General Electric Company Apparatus for the production or refining of metals, and related processes
JP2007155141A (ja) 2005-11-30 2007-06-21 Kobe Steel Ltd ハライド系るつぼを用いる誘導溶解装置、同るつぼの製作法および誘導溶解法
US7967057B2 (en) * 2005-11-30 2011-06-28 Kobe Steel, Ltd. Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
JP2007154214A (ja) * 2005-11-30 2007-06-21 Kobe Steel Ltd 超高純度Fe基、Ni基、Co基合金材料の溶製法
JP4953371B2 (ja) 2007-04-27 2012-06-13 独立行政法人日本原子力研究開発機構 耐硝酸腐食性に優れたNi基合金及びその製造方法
CN102471828B (zh) 2009-07-15 2013-11-20 株式会社神户制钢所 合金铸锭的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295470A (ja) * 1992-04-23 1993-11-09 Daido Steel Co Ltd チタンまたはチタン合金の脱酸方法
JP2000219922A (ja) * 1999-02-01 2000-08-08 Japan Energy Corp 高純度チタン及びその製造方法
WO2005049882A1 (ja) * 2003-11-19 2005-06-02 Nikko Materials Co., Ltd. 高純度ハフニウム、同高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IWASAKI; SAKURAYA; FUKUZAWA, PRODUCTION OF SUPER-LOW PHOSPHORUS STAINLESS STEEL BY COLD CRUCIBLE LEVITATION MELTING: IRON AND STEEL, vol. 88, no. 7, 2002, pages 413
R. G. WARD, JISI, vol. 201, 1963, pages 11
Y. NAKAMURA ET AL., REFINING OF 18%CR-8%NI STEEL WITH CA-CAF2 SOLUTION, TRANSACTION ISIJ, vol. 16, 1976, pages 623

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496046B2 (en) 2009-07-15 2013-07-30 Kobe Steel. Ltd. Method for producing alloy ingot
JP2012146467A (ja) * 2011-01-11 2012-08-02 Gs Yuasa Corp アルカリ蓄電池
CN116287813A (zh) * 2022-09-09 2023-06-23 湖南稀土金属材料研究院有限责任公司 镁合金及其制备方法

Also Published As

Publication number Publication date
RU2494158C1 (ru) 2013-09-27
KR101384390B1 (ko) 2014-04-14
US8496046B2 (en) 2013-07-30
CN102471828A (zh) 2012-05-23
EP2455501A1 (en) 2012-05-23
EP2455501A4 (en) 2016-11-30
RU2012105311A (ru) 2013-08-20
KR20120042983A (ko) 2012-05-03
CN102471828B (zh) 2013-11-20
EP2455501B1 (en) 2019-04-03
US20120145353A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
WO2011007578A1 (ja) 合金鋳塊の製造方法
CN105803233B (zh) 含有铝钛硼锆的镍基合金的冶炼工艺
US7967057B2 (en) Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
JP2007154214A (ja) 超高純度Fe基、Ni基、Co基合金材料の溶製法
ES2751656T3 (es) Procedimientos para la producción de aleaciones basadas en níquel que contienen cromo y cromo más niobio de bajo contenido de nitrógeno y esencialmente libres de nitruro
Shi et al. Non-metallic inclusions in electroslag remelting: A review
JP5395545B2 (ja) 超高純度合金鋳塊の製造方法
JP5379583B2 (ja) 超高純度合金鋳塊の製造方法
WO1996017093A1 (fr) Procede d'affinage de metal en fusion
CN102409137B (zh) 取向硅钢中的氮含量的控制方法
EP3586998B1 (en) Method for producing ti-al alloy
JP4722772B2 (ja) 高清浄度鋼の製造方法
JP5814500B2 (ja) 鋳塊中炭素[C]が10ppm以下であるステンレス鋼鋳塊の製造方法
JP7412197B2 (ja) Ti-Al系合金の製造方法
JPH07316681A (ja) 金属材料又は合金材料の製造方法及び精製剤、並びに耐食性に優れた金属材料又は合金材料
JPH0925522A (ja) 高純度金属材料の製造方法
JP4209964B2 (ja) 金属バナジウム又は/及び金属バナジウム合金の溶解方法並びに鋳造方法
JP7491941B2 (ja) 鋼インゴットの製造方法
Abiko et al. Ultra-purification of iron by ultra-high vacuum melting
JP2009084672A (ja) 溶鋼の加熱方法および圧延鋼材の製造方法
JP5368843B2 (ja) 高清浄度鋼の製造方法
JPH059486B2 (ja)
JP2002285226A (ja) 真空誘導溶解炉及びそれを用いたFe−Ni系合金溶湯の精錬方法
JP2010196114A (ja) 軸受鋼の製造方法
JPS5937338B2 (ja) クロムまたはクロム合金の鋳塊を製造する方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031869.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13384142

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1270/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127003876

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010799642

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012105311

Country of ref document: RU