WO2011007570A1 - 電子モジュールおよびその製造方法 - Google Patents

電子モジュールおよびその製造方法 Download PDF

Info

Publication number
WO2011007570A1
WO2011007570A1 PCT/JP2010/004590 JP2010004590W WO2011007570A1 WO 2011007570 A1 WO2011007570 A1 WO 2011007570A1 JP 2010004590 W JP2010004590 W JP 2010004590W WO 2011007570 A1 WO2011007570 A1 WO 2011007570A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
resin
mold body
electronic module
glass transition
Prior art date
Application number
PCT/JP2010/004590
Other languages
English (en)
French (fr)
Inventor
桑原涼
山口敦史
小野正浩
宮川秀規
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080032137.5A priority Critical patent/CN102474987B/zh
Priority to US13/384,502 priority patent/US9072204B2/en
Priority to JP2011522737A priority patent/JP5436557B2/ja
Publication of WO2011007570A1 publication Critical patent/WO2011007570A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/165Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components

Definitions

  • the present invention relates to an electronic module, and more particularly to an electronic module that includes a circuit board and at least one electronic component, and is configured by sealing an electronic component mounted on the circuit board with a resin composition.
  • a module in which at least one electronic component is mounted on a circuit board so as to perform a specific function is often handled as one component.
  • the electronic component mounted on the circuit substrate is entirely sealed with a resin composition.
  • Such a resin composition mainly contains a thermosetting resin such as an epoxy resin and a phenol resin, and is supplied to the periphery of the electronic component and the gap between the electronic component and the circuit board in a molten state to be cured. Thereby, a solid material (hereinafter referred to as a mold body) that encloses the electronic component is formed.
  • a thermosetting resin such as an epoxy resin and a phenol resin
  • a resin composition containing an epoxy resin or a phenol resin is used for forming a mold body because such a resin composition has a low viscosity in a molten state, and is sufficient for a gap between an electronic component and a circuit board. This is because the amount can be easily supplied.
  • a mold body formed from such a resin composition has a low elastic modulus, and may not be able to reinforce the bonding between the electronic component and the circuit board with sufficient strength against an impact such as dropping.
  • the circuit board when the electronic module is cooled from a high temperature state and the mold body is in a glass state, the circuit board remains in a rubber state. Further, when the circuit board contracts when the circuit board is further cooled to become a glass state, the electronic module is warped.
  • the bonding state between the electrodes arranged on the lower surface of the circuit board and the electrodes on the motherboard is unstable depending on the position of the electrodes Thus, poor bonding is likely to occur. As a result, the reliability of mounting the electronic module is impaired.
  • an object of the present invention is to provide an electronic module that has high impact resistance and is suppressed in warpage despite including a thin circuit board having a thickness of 0.3 to 1.0 mm.
  • a circuit board having a first surface and a second surface on the back side, and made of a first resin; At least one electronic component disposed on a first surface of the circuit board; A mold body including a second resin that seals the electronic component with the first surface of the circuit board, and an electronic module comprising: Furthermore, provided with a shield layer including a third resin disposed on the surface of the mold body, The mold body has an elastic modulus at 25 ° C. of 10 to 18 GPa, The circuit board has a thickness of 0.3 to 1.0 mm; The second resin relates to an electronic module having a higher glass transition point than the first and third resins.
  • aspects of the invention include: (A) An electronic component having a first surface and a second surface on the back side thereof, at least an electrode formed on the first surface and including a first resin, and a terminal disposed opposite to the electrode And the process of preparing, (B) a step of bonding the electrode and the terminal with a bonding material; (C) sealing the electronic component with a mold body including a second resin having a glass transition point higher than that of the first resin on the first surface of the circuit board; and (d) a surface of the mold body. And forming a shield layer containing a third resin having a glass transition point lower than that of the second resin.
  • an electronic module that has high impact resistance and is suppressed in warping despite including a thin circuit board having a thickness of 0.3 to 1.0 mm.
  • An electronic module of the present invention has a first surface and a second surface on the back side thereof, a circuit board containing a first resin, at least one electronic component disposed on the first surface of the circuit board, and an electronic component And a mold body containing a second resin, which is sealed with a first surface of the circuit board. Furthermore, the electronic module of the present invention includes a shield layer including a third resin, which is disposed on the surface of the mold body.
  • the elastic modulus at 25 ° C. of the mold body is 10 to 18 GPa
  • the thickness of the circuit board is 0.3 to 1.0 mm
  • the second resin is the first and It has a glass transition point higher than that of the third resin.
  • the bonding between the electronic component and the circuit board can be reinforced with sufficient strength.
  • the elastic modulus is set to 18 GPa or less, the rigidity of the mold body is too high and brittle, and it is possible to prevent a gap from being easily formed between the electronic component and the mold body and between the circuit board and the mold body. can do. Therefore, an electronic module with high impact resistance can be obtained.
  • the mold body in order to form a highly rigid mold body in order to improve the impact resistance of the electronic module, it is necessary to form the mold body using a resin composition containing a resin having a high glass transition point. Arise.
  • the glass transition point of the second resin contained in the mold body is higher than the glass transition point of the first resin contained in the circuit substrate, and the greater the difference, the more the substrate warps (the first Convex warpage tends to occur on the surface side.
  • the warpage is particularly remarkable.
  • the present invention intends to reduce the warpage of the electronic module by forming a shield layer containing the third resin on the surface of the mold body. That is, when the material of the shield layer is supplied to the surface of the mold body and cured, the shield layer contracts. Thereby, the convex warpage is canceled out on the first surface side of the circuit board. Therefore, the warp of the circuit board or the electronic module can be reduced.
  • the glass transition point of the second resin contained in the mold body is preferably 150 to 250 ° C.
  • the glass transition point of the first resin contained in the circuit board is preferably 130 to 150 ° C.
  • the difference between the glass transition point of the second resin and the glass transition point of the first resin is preferably 5 to 40 ° C.
  • the difference between the two to 40 ° C. or less it is possible to better suppress warping of the circuit board.
  • by making the difference between them 5 ° C. or more it is possible to prevent the circuit board from being warped in reverse due to the shrinkage of the shield layer.
  • the glass transition point of the resin contained in the shield layer is preferably 25 to 30 ° C.
  • the method of manufacturing an electronic module according to the present invention includes (a) a first resin having a first surface and a second surface on the back side, and at least an electrode formed on the first surface.
  • a circuit board including the step of preparing an electronic component having a terminal disposed opposite to the electrode, (b) a step of bonding the electrode and the terminal with a bonding material, and (c) an electronic component of the first circuit board. Sealing with a mold body containing a second resin having a glass transition point higher than that of the first resin on the surface; and (d) a third resin having a glass transition point lower than that of the second resin on the surface of the mold body. Forming a shield layer.
  • the effects of the present invention are more effective when the steps (a) to (d) are performed on a circuit board having a top view area of 80 to 250 cm 2 or a circuit board precursor including a plurality of circuit boards. Become prominent.
  • the first and second resins are heated to 130 to 150 ° C. in the step (c), or when the first, second and third resins are heated to 90 to 110 ° C. in the step (d).
  • the effect of the present invention becomes more remarkable.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of an electronic module according to Embodiment 1 of the present invention.
  • the electronic module 10 in the illustrated example includes a circuit board 12 including a resin (first resin) made of, for example, a printed wiring board, and a predetermined number (two in the illustrated example) mounted on the upper surface (first surface) of the circuit board 12. ), A molded body 16 containing a resin (second resin) that seals the electronic component 14 on the upper surface of the circuit board 12, and a resin formed on the surface so as to enclose the molded body 16 And a shield layer 28 including (third resin).
  • first resin made of, for example, a printed wiring board, and a predetermined number (two in the illustrated example) mounted on the upper surface (first surface) of the circuit board 12.
  • the thickness of the circuit board 12 can be 0.3 to 1.0 mm, and the thickness of the mold body 16 can be 0.7 to 1.0 mm.
  • the height of the electronic component 14 (the height from the upper surface of the circuit board 12 when mounted on the circuit board 12) is 0.3 to 0.6 mm.
  • a plurality of bumps 14a which are electrode terminals, are provided on the lower surface of the electronic component 14.
  • the electronic components 14 are mounted on the circuit board 12 by bonding these bumps 14 a to electrodes (not shown) provided on the upper surface of the circuit board 12 in correspondence with the bumps 14 a.
  • the circuit board 12 preferably contains a first resin such as an epoxy resin, a phenol resin, or a polyimide resin.
  • the glass transition point of the first resin is preferably 130 to 150 ° C.
  • the linear expansion coefficient ( ⁇ 2) of the circuit board 12 at 250 ° C. is preferably 20 to 100 ppm / ° C.
  • the elastic modulus (flexural modulus) of the circuit board 12 at normal temperature is preferably smaller than the elastic modulus of the mold body 16 at normal temperature, and the difference is preferably 1 to 5 GPa.
  • the elastic modulus at normal temperature of the circuit board 12 is preferably 9 to 17 GPa.
  • the mold body 16 is formed using a resin composition containing a thermosetting second resin such as an epoxy resin or a phenol resin, and a predetermined amount of filler.
  • a resin composition is supplied in a molten state to the periphery of the electronic component 14 and the gap between the electronic component 14 and the circuit board 12 by, for example, a vacuum printing method.
  • the mold body 16 is formed by heating the resin composition supplied to predetermined temperature, making it harden
  • the mold body 16 preferably has an elastic modulus (flexural modulus) at room temperature of 10 to 18 GPa. If the elastic modulus is less than 10 GPa, the rigidity of the mold body 16 becomes too small, and the bonding of the electronic component to the circuit board 12 cannot be reinforced with sufficient strength. As a result, the impact resistance of the electronic module 10 decreases. On the other hand, when the elastic modulus exceeds 18 GPa, the rigidity of the mold body 16 becomes too large and the mold body 16 becomes brittle.
  • an elastic modulus flexural modulus
  • the glass transition point of the second resin contained in the mold body 16 is preferably 150 to 250 ° C. Further, the mold body 16 has a linear expansion coefficient of 50 ppm / ° C. or less when heated to a temperature (for example, 250 ° C.) higher than the glass transition point of the second resin contained in the mold body and lower than the melting point or decomposition point. Is preferred.
  • the linear expansion coefficient exceeds 50 ppm / ° C., the volume change when the rubber state changes to the glass state increases. In this case, the circuit board 12 is warped so as to be convex on the lower surface side (second surface side), and the warp is further increased by forming the shield layer 28.
  • the difference between the glass transition point of the first resin contained in the circuit board 12 and the glass transition point of the second resin contained in the mold body 16 is preferably 5 to 40 ° C.
  • a more preferable glass transition point of the second resin contained in the mold body 16 is 150 to 200 ° C.
  • the resin composition has a viscosity of 70 to 250 Pa ⁇ s at room temperature before curing (viscosity measured by a single cylinder type rotational viscometer with the rotational speed of a rotor having a radius of 14 mm set to 5 rpm) before curing. It is preferable that the thixo ratio at 25 ° C. is 1.5 to 2.0 (0.5 rpm / 5 rpm thixo ratio by E-type viscometer).
  • the viscosity is less than 70 Pa ⁇ s, the shape of the resin composition supplied to the periphery of the electronic component 14 by the printing method or the like is not stable, and the molded body 16 formed by curing the resin composition is formed into a desired shape. It will not be done. The same applies when the thixo ratio is less than 1.5. In such a case, the bonding of the electronic component 14 to the circuit board 12 cannot be effectively reinforced.
  • the viscosity of the resin composition at room temperature before curing is more preferably 100 to 200 Pa ⁇ s, and the thixo ratio at room temperature before curing is more preferably 1.7 to 1.8.
  • the average particle size of the filler contained in the resin composition is preferably 0.5 ⁇ m or more and 20 ⁇ m or less. When the average particle diameter of the filler exceeds 20 ⁇ m, the filler may not enter the gap between the electronic component 14 and the circuit board 12, which causes a void. Furthermore, the ratio of the resin to the whole resin composition becomes relatively large, and the reinforcing effect is significantly impaired.
  • the volume-based average particle diameter of the filler is preferably 18 ⁇ m or less.
  • the filler content in the resin composition is preferably 80 to 85% by weight.
  • the shield layer 28 is preferably formed from a mixture of a third resin and a conductive filler.
  • the third resin is preferably an epoxy resin or the like.
  • the linear expansion coefficient ( ⁇ 2) at 250 ° C. of the shield layer 28 is preferably 35 to 40 ppm / ° C.
  • the elastic modulus at room temperature is preferably 3 to 7 GPa.
  • the glass transition point of the resin contained in the shield layer 28 is preferably 25 to 30 ° C.
  • the viscosity of the material of the shield layer 28 at room temperature before curing is preferably 15 to 25 Pa ⁇ s.
  • the conductor is preferably fine particles such as silver and copper.
  • the average particle size is preferably 10 to 20 ⁇ m.
  • silver is most preferable in consideration of price, resistance to rust and conductivity.
  • the content of the conductor with respect to the entire material of the shield layer 28 is preferably 70 to 80% by weight.
  • the shield layer 28 and electrodes provided on the upper surface of the circuit board 12 corresponding to the bumps 14a are provided. It can be made conductive. Thereby, the heat generated by the electronic component 14 can be transmitted from the shield layer 28 to the electrode of the circuit board 12 and further transmitted to the mother board or the like on which the electronic module 10 is mounted. Therefore, the heat dissipation of the electronic module 10 can be improved.
  • the circuit board precursor 30 includes the circuit boards 12 of the plurality of electronic modules 10, and the electronic component group 32, which is a group of electronic components 14 corresponding to one electronic module 10, includes the circuit board precursor 30. It is mounted in a region corresponding to one of the circuit boards 12.
  • a fixed margin 30a to be cut off later is provided at the peripheral edge of the circuit board precursor 30.
  • Through holes 30b are provided at predetermined intervals on the inner boundary line of the fixed margin 30a, whereby the fixed margin 30a can be easily separated.
  • the circuit board precursor 30 on which the electronic component 14 is mounted is placed in a vacuum chamber (not shown). Then, as shown in FIG. 2, a mask 18 having a hole 18 a at a place where the mold body 16 is to be formed is placed so as to cover the circuit board precursor 30.
  • the vacuum chamber is depressurized so that the degree of vacuum (atmospheric pressure) is 400 Pa or less.
  • the resin composition 22 having a high viscosity as described above can be sufficiently filled in the gap between the electronic component 14 and the circuit board 12.
  • the vacuum degree of a more preferable vacuum chamber is 100 Pa or less.
  • the squeegee 20 is moved in the direction of the arrow in the figure while supplying the molten resin composition 22 from above the mask 18.
  • the moving speed of the squeegee is preferably 3 to 10 mm / s.
  • the squeegee printing pressure (printing pressure) is preferably 0.2 MPa or more.
  • the height of the upper surface of the mask 18, that is, the printing height is preferably set to about 0.1 mm above the upper surface of the electronic component 14.
  • the circuit board precursor 30 on which the electronic component 14 is mounted is preferably cleaned before the mold body 16 is formed.
  • the cleaning is preferably performed by plasma cleaning using Ar (argon) or O 2 (oxygen).
  • Ar argon
  • O 2 oxygen
  • the fixing margin 30 a is pressed from above by the upper jig 24. Fix it.
  • the resin composition 22 is heated to a predetermined temperature, cured, and then cooled to form the mold body 16.
  • an intermediate laminate 34 of the circuit board precursor 30, the electronic component 14, and the mold body 16 is obtained.
  • the warpage of the intermediate laminate 34 can be suppressed to some extent.
  • the resin composition is cured and returned to room temperature, the restraint of the intermediate laminate 34 by the upper jig 24 and the lower jig 26 is released. Then, as shown in FIG. 4, dicing is performed so as to remove excess portions between the electronic component groups 32 in the mold body 16. Further, the fixing margin 30 a is separated from the circuit board precursor 30.
  • the material of the shield layer is supplied so as to enclose each mold body 16.
  • the supplied material is heated to a predetermined temperature, cured, and cooled to form a shield layer 28 having a thickness of 0.08 to 0.1 mm on the upper side of the mold body 16 as shown in FIG.
  • the electronic module precursor 36 is formed.
  • the electronic module 10 shown in FIG. 1 is completed by dicing so as to adjust the shape.
  • Example 1 XV5788PA5 (trade name) manufactured by Panasonic Electric Works Co., Ltd. was used as a resin composition for forming a mold body.
  • XV5788PA5 is a mixture of 15% by weight of epoxy resin and 85% by weight of spherical silica as a filler.
  • the glass transition point of the second resin contained in the resin composition is 180 ° C.
  • the viscosity of the resin composition at normal temperature before curing is 200 Pa ⁇ s, and the thixo ratio is 1.8.
  • the average particle diameter of the spherical silica is 17 ⁇ m.
  • the mold body 16 formed using this resin composition has an elastic modulus at room temperature of 18 GPa and a linear expansion coefficient ( ⁇ 2) at 250 ° C. of 45 ppm / ° C.
  • ALIVH registered trademark of Panasonic Corporation
  • DBC765S (trade name) manufactured by Panasonic Electric Works Co., Ltd. was used as the shield layer material.
  • DBC765S is a mixture of 15 wt% epoxy resin and 85 wt% silver fine particles as a filler. As shown in Table 3, the viscosity of this material at normal temperature before curing is 19 Pa ⁇ s, and the glass transition point of the third resin contained therein is 30 ° C. Further, the linear expansion coefficient ( ⁇ 2) at 250 ° C. of the shield layer formed from this material is 40 ppm / ° C.
  • a total of 78 solder bumps provided on the lower surface of each electronic component were bonded to the electrodes provided on the upper surface of the circuit board so that five electronic components including the power transistor were mounted on the circuit board.
  • the resin composition was supplied to the upper surface of the circuit board precursor by vacuum printing.
  • the degree of vacuum in vacuum printing was 130 Pa
  • the squeegee speed was 5 mm / s
  • the squeegee printing pressure was 0.4 MPa.
  • the circuit board precursor supplied with the resin composition is placed on the upper surface of the lower jig, and is fixed by the upper jig. For 30 minutes. Then, the intermediate laminated body in which the mold body was formed was obtained by cooling to normal temperature with a cooling device.
  • the material of the shield layer is supplied by vacuum printing so as to wrap the mold from the upper surface of the circuit board precursor with the apparatus shown in FIG. did.
  • the printing conditions were a degree of vacuum (chamber pressure in the chamber) of 130 Pa, a squeegee speed of 2 mm / s, and a squeegee printing pressure of 0.1 MPa.
  • the intermediate laminate to which the material of the shield layer is supplied is placed on the upper surface of the lower jig, and is fixed by the upper jig, and the interior of the resin curing heating furnace having a furnace temperature of 100 ° C. For 10 minutes. Then, the electronic module precursor in which the shield layer was formed was obtained by cooling an intermediate
  • XV5423RF (trade name) manufactured by Panasonic Electric Works Co., Ltd. was used as the resin composition.
  • XV5423RF is a mixture in which 20% by weight of an epoxy resin and 80% by weight of spherical silica as a filler are mixed.
  • the average particle size of the filler is 17 ⁇ m
  • the viscosity of the resin composition at normal temperature is 70 Pa ⁇ s
  • the thixo ratio is 2.0.
  • the glass transition point of the second resin contained in this resin composition is 155 ° C.
  • the in-furnace temperature of the resin curing heating furnace for curing the resin composition was 150 ° C.
  • the heating time was 30 minutes.
  • the formed mold body had an elastic modulus at room temperature of 12 GPa and a linear expansion coefficient ( ⁇ 2) at 250 ° C. of 50 ppm / ° C.
  • the glass transition point of the resin contained in the shield layer was 25 ° C.
  • the viscosity of the material at normal temperature before curing was 20 Pa ⁇ s.
  • the linear expansion coefficient ( ⁇ 2) at 250 ° C. was 110 ppm / ° C.
  • the elastic modulus at room temperature of the shield layer was 3 GPa.
  • the furnace temperature of the resin curing heating furnace for curing the material of the shield layer was 90 ° C.
  • the heating time was 20 minutes. Except for the above, an electronic module precursor was produced in the same manner as in Example 1.
  • Example 3 As the resin composition, a mixture of 15 wt% epoxy resin and 85 wt% spherical alumina as a filler was used. As shown in Table 1, the average particle diameter of the filler is 19 ⁇ m, the viscosity of the resin composition at room temperature is 240 Pa ⁇ s, and the thixo ratio is 1.7. The glass transition point of the resin contained in this resin composition is 160 ° C.
  • the in-furnace temperature of the resin curing heating furnace for curing the resin composition was 150 ° C.
  • the heating time was 30 minutes.
  • the formed mold body had an elastic modulus at room temperature of 14 GPa and a linear expansion coefficient ( ⁇ 2) at 250 ° C. of 48 ppm / ° C. Except for the above, an electronic module precursor was produced in the same manner as in Example 1.
  • Comparative Example 1 As the resin composition, a mixture of 35% by weight of an epoxy resin and 65% by weight of spherical silica as a filler was used. As shown in Table 1, the average particle diameter of the filler is 19 ⁇ m, the viscosity of the resin composition at normal temperature is 55 Pa ⁇ s, and the thixo ratio is 1.4. The glass transition point of the resin contained in this resin composition is 80 ° C.
  • the temperature inside the resin curing heating furnace for curing the resin composition was 120 ° C.
  • the heating time was 60 minutes.
  • the formed mold body had an elastic modulus at room temperature of 5 GPa and a linear expansion coefficient ( ⁇ 2) at 250 ° C. of 65 ppm / ° C. Except for the above, an electronic module precursor was produced in the same manner as in Example 1.
  • Comparative Example 2 As the resin composition, a mixture of 30% by weight of an epoxy resin and 70% by weight of spherical silica as a filler was used. As shown in Table 1, the average particle size of the filler is 19 ⁇ m, the viscosity of the resin composition at room temperature is 65 Pa ⁇ s, and the thixo ratio is 1.3. The glass transition point of the resin contained in this resin composition is 110 ° C.
  • the temperature inside the resin curing heating furnace for curing the resin composition was 120 ° C.
  • the heating time was 60 minutes.
  • the formed mold body had an elastic modulus at room temperature of 8 GPa and a linear expansion coefficient ( ⁇ 2) at 250 ° C. of 60 ppm / ° C. Except for the above, an electronic module precursor was produced in the same manner as in Example 1.
  • Comparative Example 3 As the resin composition, a mixture of 33 wt% epoxy resin and 67 wt% spherical silica as a filler was used. As shown in Table 1, the average particle size of the filler is 19 ⁇ m, the viscosity of the resin composition at normal temperature is 60 Pa ⁇ s, and the thixo ratio is 1. The glass transition point of the resin contained in this resin composition is 115 ° C.
  • the temperature inside the resin curing heating furnace for curing the resin composition was 120 ° C.
  • the heating time was 60 minutes.
  • the formed mold body had an elastic modulus at room temperature of 8 GPa and a linear expansion coefficient ( ⁇ 2) at 250 ° C. of 62 ppm / ° C. Except for the above, an electronic module precursor was produced in the same manner as in Example 1.
  • the electronic module precursors of Examples 1 to 3 and Comparative Examples 1 to 4 were evaluated for the warpage of the circuit board and the presence or absence of solder flash.
  • the warping of the circuit board precursor is performed by heating the electronic module precursor in a reflow furnace (peak temperature 260 ° C., manufactured by Panasonic Factory Solutions Co., Ltd.), and the warping of the circuit board precursor generated thereby is measured by a flatness measuring device ( The measurement was performed using Core9035a (trade name) manufactured by Cores Co., Ltd. More specifically, the difference in height between the highest point and the lowest point on the lower surface of the circuit board precursor was taken as the warp of the circuit board. And if the said difference was 120 micrometers or less, it evaluated as “good (G)", and if it exceeded 120 micrometers, it evaluated as "defective (NG)."
  • the presence / absence of solder flash was determined based on the measurement result of the solder oozing distance measured by X-ray photography and planar polishing of the electronic module precursor after being heated in the reflow furnace.
  • the portion where the deviation from the original position or the shape of the shadow is distorted was flat-polished, and the length of the distortion was measured.
  • a solder flash occurred at a location where the solder exuded from the electrode beyond 0.1 mm. If even one solder flash was present, the electronic module precursor was evaluated as “defective (NG)”, and the case where no solder flash was present was evaluated as “good (G)”.
  • Table 4 shows the above evaluation results. The number of solder flashes and the amount of warpage of the circuit board precursor are shown in parentheses.
  • the glass transition point of the resin contained in the mold body is higher than the glass transition point of the resin contained in the circuit board and the shield layer.
  • the warp (upward convex warp) of the electronic module precursor that occurs when the circuit board is vitrified after the mold body is vitrified is mitigated by the shrinkage when the shield layer is vitrified. Seems to have become smaller.
  • the electronic module precursors of Examples 1 to 3 have a modulus of elasticity of 10 to 18 GPa at room temperature, it is sufficient to reinforce the bonding between the electronic component and the circuit board against an impact such as dropping. It seems that it has a strong reinforcement strength.
  • the glass transition point of the resin contained in the mold body is lower than the glass transition point of the resin contained in the circuit board.
  • the mold module is vitrified and the electronic module precursor is warped downward, and the warpage is further increased by shrinkage when the shield layer is vitrified, and the warpage is increased. It is done.
  • the electronic module precursor of Example 4 has an elastic modulus at room temperature of 10 to 18 GPa, the bonding between the electronic component and the circuit board is reinforced against an impact such as dropping. It seems to have sufficient reinforcement strength.
  • an electronic module including a circuit board, at least one electronic component mounted thereon, and a mold body that seals the electronic component. Moreover, generation

Abstract

 電子モジュール10は、第1表面及びその裏側の第2表面を有する回路基板12と、これに実装された複数の電子部品14とを含む。電子部品14は、回路基板12の第1表面で樹脂組成物からなるモールド体16により封止されている。モールド体16の表面にはシールド層28が形成されている。モールド体16に含まれる樹脂のガラス転移点は、回路基板12及びシールド層28に含まれる樹脂のガラス転移点よりも高い。モールド体の25℃における弾性率は10~18GPaであり、回路基板の厚みは、0.3~1.0mmである。

Description

電子モジュールおよびその製造方法
 本発明は、電子モジュールに関し、特に、回路基板と少なくとも1つの電子部品とを含み、回路基板に実装された電子部品を樹脂組成物により封止して構成される電子モジュールに関する。
 電子部品は、1つ1つを独立した部品として取り扱う場合の他に、特定の機能を果たすように少なくとも1つの電子部品を回路基板に実装したモジュールを、1つの部品として取り扱う場合も多い。そのような電子モジュールにおいては、電子部品を保護するために、及び、回路基板と電子部品との接合を補強するために、回路基板に実装した電子部品を、樹脂組成物により全体的に封止する場合も多い。
 そのような樹脂組成物は、主にエポキシ樹脂及びフェノール樹脂等の熱硬化性樹脂を含み、それを溶融状態で電子部品の周囲、及び電子部品と回路基板との隙間に供給し、硬化させる。これにより、電子部品を内包するような固形物(以下、モールド体という)が形成される。
 モールド体の形成にエポキシ樹脂またはフェノール樹脂を含む樹脂組成物を使用するのは、そのような樹脂組成物は、溶融状態での粘度が低いために、電子部品と回路基板との隙間に十分な量を容易に供給し得るからである。しかしながら、そのような樹脂組成物から形成されるモールド体は、弾性率が低く、落下等の衝撃に対して、十分な強度で電子部品と回路基板との接合を補強できないことがある。
 そこで、回路基板に実装された電子部品の周囲に補強用のフレームを配し、フレームの内部に樹脂組成物を充填してモールド体を形成することで、十分な補強強度を得るようにした電子モジュールの補強構造が提案されている(特許文献1参照)。
特開2000-151083号公報
 しかしながら、上述した補強構造では、フレームの存在により、電子モジュールの薄型化が非常に困難となるとともに、フレームの取り付けスペースの分だけ、電子部品の実装面積が減少する。
 よって、電子モジュールの薄型化及び高密度実装が求められている現状では、上述したような補強用のフレームを使用することなく、十分な強度で回路基板と電子部品との接合を補強することが望まれる。
 このような要望を実現するためには、より高い弾性率のモールド体を形成することが必要となる。モールド体の弾性率を高くして、モールド体の剛性を大きくすることで、回路基板と電子部品との接合が効果的に補強される。よって、電子モジュールの耐衝撃性が大きくなる。
 ところが、電子モジュールの耐衝撃性を向上させるために、モールド体の弾性率を上げたとしても、電子モジュールを薄型化すればするほどに、電子モジュールの反りが大きな問題となる。
 その点を詳しく説明すると、モールド体の弾性率を高くするためには、その材料である樹脂組成物に、より多くのフィラーを含ませる必要性が生じる。ところが、樹脂組成物に大量のフィラーを含ませると、それを材料として形成されるモールド体が脆くなる傾向がある。モールド体が脆くなることを避けるためには、ガラス転移点の高い樹脂を樹脂組成物に使用することが必要となる。ところが、そのような樹脂組成物を使用すると、モールド体を形成するために樹脂組成物を加熱するときに、一般的な樹脂製の回路基板では、回路基板に含まれる樹脂がガラス転移点を超えて加熱されることがある。
 この場合には、電子モジュールが、高温の状態から冷却されて、モールド体がガラス状態となった時点では回路基板はゴム状態のままである。そして、さらに回路基板が冷却されてガラス状態となるときに、回路基板が収縮すると、電子モジュールに反りが発生する。
 電子モジュールに反りが発生すると、電子モジュールをマザーボード等に実装(二次実装)するときに、回路基板の下面に配置される各電極と、マザーボードの電極との接合状態が電極の位置によって不安定となり、接合不良が発生しやすくなる。その結果、電子モジュールの実装の信頼性が損なわれてしまう。
 さらに、二次実装時には、電子モジュールが加熱されるために、反りが緩和される。電子モジュールの反りが大きいと、反りが緩和されるときに、モールド体と回路基板との接合界面に空隙が生じやすくなる。そのような空隙が生じた状態で、二次実装時の加熱により、電子部品と回路基板とを接合しているはんだが溶融すると、上記空隙に、溶融したはんだがにじみ出す現象(いわゆる、はんだフラッシュ)が発生する。
 そこで、本発明は、耐衝撃性が高く、かつ厚さ0.3~1.0mmの薄い回路基板を含むにもかかわらず、反りが抑制された電子モジュールを提供することを目的とする。
 本発明の一局面は、
 第1表面及びその裏側の第2表面を有し、第1樹脂からなる回路基板と、
 前記回路基板の第1表面に配置された、少なくとも1つの電子部品と、
 前記電子部品を前記回路基板の第1表面で封止する、第2樹脂を含むモールド体と、を備えた電子モジュールであって、
 さらに、前記モールド体の表面に配置された、第3樹脂を含むシールド層を備え、
 前記モールド体の25℃における弾性率が、10~18GPaであり、
 前記回路基板の厚みが、0.3~1.0mmであり、
 前記第2樹脂が、第1及び第3樹脂よりも高いガラス転移点を有する、電子モジュールに関する。
 本発明の他の局面は、
 (a)第1表面及びその裏側の第2表面を有し、少なくとも前記第1表面に電極が形成された、第1樹脂を含む回路基板と、前記電極と対向配置される端子を有する電子部品とを準備する工程、
 (b)前記電極と前記端子とを接合材により接合する工程、
 (c)前記電子部品を、前記回路基板の第1表面で、前記第1樹脂よりもガラス転移点が高い第2樹脂を含むモールド体により封止する工程、並びに
 (d)前記モールド体の表面に、前記第2樹脂よりもガラス転移点が低い第3樹脂を含むシールド層を形成する工程、を含む、電子モジュールの製造方法に関する。
 本発明によれば、耐衝撃性が高く、かつ厚さ0.3~1.0mmの薄い回路基板を含むにもかかわらず、反りが抑制された電子モジュールを提供することができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成及び内容の両方に関し、本発明の他の目的及び特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
本発明の一実施形態に係る電子モジュールを模式的に示す断面図である。 図1の電子モジュールを製造する製造装置と、その第1製造過程の電子モジュールを模式的に示す断面図である。 第2製造過程の電子モジュールを模式的に示す断面図である。 第3製造過程の電子モジュールを模式的に示す断面図である。 第4製造過程の電子モジュールを模式的に示す断面図である。
 本発明の電子モジュールは、第1表面及びその裏側の第2表面を有し、第1樹脂を含む回路基板と、回路基板の第1表面に配置された、少なくとも1つの電子部品と、電子部品を回路基板の第1表面で封止する、第2樹脂を含むモールド体と、を備えている。さらに、本発明の電子モジュールは、モールド体の表面に配置された、第3樹脂を含むシールド層を備えている。そして、本発明の電子モジュールにおいては、モールド体の25℃における弾性率が、10~18GPaであり、回路基板の厚みが、0.3~1.0mmであり、第2樹脂が、第1及び第3樹脂よりも高いガラス転移点を有している。
 25℃における弾性率が10GPa以上という高剛性のモールド体により電子部品を封止することで、十分な強度で電子部品と回路基板との接合を補強することができる。一方、その弾性率を18GPa以下とすることで、モールド体の剛性が高すぎて脆くなり、電子部品とモールド体の間、および回路基板とモールド体との間に隙間ができやすくなるのを防止することができる。よって、耐衝撃性の高い電子モジュールを得ることができる。
 このように、電子モジュールの耐衝撃性を向上させるために高剛性のモールド体を形成するためには、ガラス転移点の高い樹脂を含む樹脂組成物を使用してモールド体を形成する必要性が生じる。その結果、モールド体に含まれる第2樹脂のガラス転移点が、回路基板に含まれる第1樹脂のガラス転移点よりも高くなり、その差異が大きくなればなるほどに、回路基板に反り(第1表面側に凸の反り)が生じやすくなる。厚みが0.3~1.0mmという薄い回路基板を含む電子モジュールでは特にその反りが顕著となる。
 そこで、本発明は、モールド体の表面に第3樹脂を含むシールド層を形成することで、電子モジュールの反りを小さくしようとするものである。すなわち、モールド体の表面にシールド層の材料を供給し、それを硬化させると、シールド層が収縮する。これにより、回路基板の第1表面側に凸の反りが打ち消される。したがって、回路基板ないしは電子モジュールの反りを小さくすることができる。
 ここで、モールド体に含まれる第2樹脂のガラス転移点は、150~250℃とするのが好ましい。回路基板に含まれる第1樹脂のガラス転移点は、130~150℃とするのが好ましい。
 そして、第2樹脂のガラス転移点と、第1樹脂のガラス転移点との差異は5~40℃とするのが好ましい。両者の差異を40℃以下とすることで、回路基板の反りをよりよく抑えることができる。一方、両者の差異を5℃以上とすることで、シールド層の収縮により、回路基板が逆に反ってしまうのを防止することができる。
 シールド層に含まれる樹脂のガラス転移点は、25~30℃とするのが好ましい。
 以上のことに対応して、本発明の電子モジュールの製造方法は、(a)第1表面及びその裏側の第2表面を有し、少なくとも第1表面に電極が形成された、第1樹脂を含む回路基板と、前記電極と対向配置される端子を有する電子部品とを準備する工程、(b)電極と端子とを接合材により接合する工程、(c)電子部品を、回路基板の第1表面で、第1樹脂よりもガラス転移点が高い第2樹脂を含むモールド体により封止する工程、並びに(d)モールド体の表面に、第2樹脂よりもガラス転移点が低い第3樹脂を含むシールド層を形成する工程、を含む。
 ここで、工程(a)~(d)を、上面視の面積が80~250cm2である回路基板または複数の回路基板を含む回路基板前駆体に対して実行する場合に本発明の効果はより顕著となる。また、工程(c)で第1及び第2樹脂が130~150℃まで加熱される場合や、工程(d)で第1、第2及び第3樹脂が90~110℃まで加熱される場合に本発明の効果はより顕著となる。
 以下、本発明の実施形態を、図面を参照して説明する。
 (実施形態1)
 図1に、本発明の実施形態1に係る電子モジュールの概略構成を断面図により示す。
 図示例の電子モジュール10は、例えばプリント配線板からなる、樹脂(第1樹脂)を含む回路基板12と、回路基板12の上面(第1表面)に実装された所定数(図示例では2個)の電子部品14と、回路基板12の上面で電子部品14を封止する、樹脂(第2樹脂)を含むモールド体16と、モールド体16を包み込むように、その表面に形成された、樹脂(第3樹脂)を含むシールド層28とを備える。
 回路基板12の厚みは、0.3~1.0mmとすることができ、モールド体16の厚みは、0.7~1.0mmとすることができる。この場合には、電子部品14の高さ(回路基板12に実装された状態での回路基板12の上面からの高さ)は0.3~0.6mmである。
 電子部品14の下面には、それぞれ、電極端子である複数のバンプ14aが設けられている。これらのバンプ14aが、回路基板12の上面にバンプ14aと対応して設けられた、図示しない電極と接合されることで、電子部品14は、回路基板12に実装される。
 回路基板12は、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂等の第1樹脂を含むのが好ましい。第1樹脂のガラス転移点は、130~150℃とするのが好ましい。250℃における回路基板12の線膨張係数(α2)は、20~100ppm/℃であるのが好ましい。
 回路基板12の常温(25℃)での弾性率(曲げ弾性率)は、モールド体16の常温での弾性率よりも小さいのが好ましく、その差異は、1~5GPaであるのが好ましい。そして、回路基板12の常温での弾性率は、9~17GPaであるのが好ましい。
 モールド体16は、エポキシ樹脂またはフェノール樹脂等の熱硬化性の第2樹脂と、所定量のフィラーとを含む樹脂組成物を使用して形成される。そのような樹脂組成物を、溶融状態で、例えば真空印刷法により、電子部品14の周囲と、電子部品14と回路基板12との隙間とに供給する。そして、供給された樹脂組成物を所定温度まで加熱し、硬化させた後、冷却することで、モールド体16が形成される。
 モールド体16は、常温での弾性率(曲げ弾性率)が10~18GPaであるのが好ましい。弾性率が10GPa未満であると、モールド体16の剛性が小さくなりすぎて、電子部品の回路基板12への接合を十分な強度で補強することができなくなる。その結果、電子モジュール10の耐衝撃性が低下する。一方、弾性率が18GPaを超えると、モールド体16の剛性が大きくなりすぎて、モールド体16が脆くなる。
 モールド体16に含まれる第2樹脂のガラス転移点は、150~250℃であるのが好ましい。さらに、モールド体16は、それに含まれる第2樹脂のガラス転移点以上かつ融点または分解点未満の温度(例えば、250℃)にまで加熱されたときの線膨張係数が50ppm/℃以下であるのが好ましい。上記線膨張係数が50ppm/℃を超えると、ゴム状態からガラス状態に変わるときの体積変化が大きくなる。そして、この場合には、回路基板12が下面側(第2表面側)に凸となるように反ってしまい、シールド層28を形成することによりさらに反りが大きくなってしまう。
 一方、ガラス転移点が250℃を超えると、モールド体16に含まれる第2樹脂のガラス転移点と、回路基板12に含まれる第1樹脂のガラス転移点(例えば、140℃)との差異が大きくなるために、モールド体16が硬化し、ガラス化してから回路基板12がガラス化するまでの回路基板12の変形量が大きくなり、電子モジュールの反りが大きくなる。この点に関連して、回路基板12に含まれる第1樹脂のガラス転移点と、モールド体16に含まれる第2樹脂のガラス転移点との差は、5~40℃であることが好ましい。モールド体16に含まれる第2樹脂のより好ましいガラス転移点は、150~200℃である。
 樹脂組成物は、硬化前の常温での粘度(単一円筒型回転粘度計により、半径14mmのロータの回転数を5rpmに設定して測定した粘度)が70~250Pa・sであり、硬化前の25℃におけるチキソ比が1.5~2.0(E型粘度計による0.5rpm/5rpmのチキソ比)であるのが好ましい。粘度が70Pa・s未満であると、印刷法等により電子部品14の周囲に供給される樹脂組成物の形状が安定せず、それを硬化して形成されるモールド体16が所望の形状に形成されなくなる。チキソ比が1.5未満の場合も同様である。そのような場合には、電子部品14の回路基板12への接合を効果的に補強することができなくなる。
 一方、樹脂組成物の粘度が250Pa・sを超えると、電子部品14と回路基板12との隙間に樹脂組成物が充填され難くなり、はんだフラッシュを発生させる要因となる。また、電子部品14と回路基板12との接合を効果的に補強できなくなる。チキソ比が2.0を超える場合も同様である。
 樹脂組成物の更に好ましい、硬化前の常温での粘度は、100~200Pa・sであり、更に好ましい硬化前の常温でのチキソ比は、1.7~1.8である。
 また、樹脂組成物に含ませるフィラーの平均粒径は、0.5μm以上かつ20μm以下であるのが好ましい。フィラーの平均粒径が20μmを超えると、電子部品14と回路基板12との隙間にフィラーが入り込まないことがあり、空隙の発生する原因となる。さらには、樹脂組成物全体に占める樹脂の割合が相対的に大きくなり、補強効果が著しく損なわれる。フィラーの体積基準の平均粒径は、18μm以下であることが好ましい。また、モールド体16に上述した範囲の弾性率を与えるためには、樹脂組成物におけるフィラーの含有量は、80~85重量%とするのが好ましい。
 シールド層28は、第3樹脂と、導電体のフィラーとの混合物から形成するのが好ましい。第3樹脂は、エポキシ樹脂等とするのが好ましい。シールド層28の250℃における線膨張係数(α2)は、35~40ppm/℃であるのが好ましい。常温での弾性率は、3~7GPaであるのが好ましい。
 シールド層28に含まれる樹脂のガラス転移点は、25~30℃とするのが好ましい。シールド層28の材料の硬化前の常温での粘度は、15~25Pa・sとするのが好ましい。
 導電体は、銀、銅等の微粒子とするのが好ましい。その平均粒径は、10~20μmとするのが好ましい。特に、銀が、価格、錆びにくさ及び導電性を考慮すると、最も好ましい。シールド層28の材料全体に対する導電体の含有率は、70~80重量%とするのが好ましい。
 このようなシールド層28を、下端部が、回路基板12の上面と接触するように形成することで、シールド層28と、回路基板12の上面にバンプ14aと対応して設けられた電極とを導通させることができる。これにより、電子部品14が発した熱を、シールド層28から回路基板12の電極に伝え、さらに、電子モジュール10が実装されるマザーボード等に伝えることが可能となる。したがって、電子モジュール10の放熱性を向上させることができる。
 次に、図2~図5を参照して、図1の電子モジュールの製造工程を説明する。
 まず、回路基板前駆体30に、複数個の電子モジュール10を構成する電子部品14を実装する。回路基板前駆体30は、複数個の電子モジュール10の回路基板12を含むものであり、1つの電子モジュール10に対応する電子部品14のグループである電子部品群32は、回路基板前駆体30の中の1つの回路基板12対応する領域に実装される。
 回路基板前駆体30の周縁部には、後で切り捨てられる固定代部30aが設けられている。固定代部30aの内側の境界線には、所定の間隔で貫通孔30bが設けられており、これにより、固定代部30aの切り離しが容易となる。
 次に、真空チャンバ(図示せず)内に、電子部品14が実装された回路基板前駆体30を設置する。そして、図2に示すように、モールド体16の形成予定箇所に孔18aが空いたマスク18を、回路基板前駆体30の上から被せるように設置する。
 そして、真空チャンバを真空度(気圧)が400Pa以下となるように減圧する。これにより、上述したような粘度の高い樹脂組成物22を、電子部品14と回路基板12との隙間に十分に充填することができる。より好ましい真空チャンバの真空度は100Pa以下である。
 そして、マスク18の上から溶融状態の樹脂組成物22を供給しつつ、スキージ20を図の矢印の方向に移動させる。このとき、スキージを移動させる速度は3~10mm/sとするのが好ましい。また、スキージ印圧(印刷圧)は0.2MPa以上とするのが好ましい。マスク18の上面の高さ、つまり印刷高さは、電子部品14の上面よりも0.1mm程度、上に設定することが好ましい。
 電子部品14が実装された回路基板前駆体30は、モールド体16を形成する前に、洗浄するのが好ましい。洗浄は、Ar(アルゴン)またはO2(酸素)を使用して、プラズマクリーニングにより行うのが好ましい。これにより、モールド体16と回路基板12との密着性を向上させることができる。その結果、モールド体16の充填性が向上し、接合の補強強度が増大する。また、はんだフラッシュをよりよく抑えることができる。
 次に、図3に示すように、下側治具26の基準面26aの上に回路基板前駆体30を載置した状態で、固定代部30aを上側治具24により上から押さえるようにして固定する。この状態で、樹脂組成物22を所定温度まで加熱し、硬化させた後冷却し、モールド体16を形成する。これにより、回路基板前駆体30、電子部品14及びモールド体16の積層体(以下、中間積層体という)34が得られる。
 このように、上側治具24および下側治具26により回路基板12を固定しながらモールド体16を形成することにより、中間積層体34の反りをある程度抑制することが可能となる。
 樹脂組成物が硬化し、室温に戻った後に、上側治具24および下側治具26による中間積層体34の拘束を解除する。そして、図4に示すように、モールド体16のうち各電子部品群32の間の余分なところを取り除くようにダイシングする。また、固定代部30aを回路基板前駆体30から切り離す。
 そして、図2に示したようなマスク18及びスキージ20を再び使用して、シールド層の材料を、各モールド体16を包み込むように供給する。供給された材料を所定温度まで加熱し、硬化させた後冷却することで、図5に示すように、モールド体16の上側での厚みが0.08~0.1mmであるシールド層28が形成されて、電子モジュール前駆体36が形成される。
 さらに、電子モジュール前駆体36を、各モールド体16の間で切り離した後、形を整えるようにダイシングすることで、図1に示した電子モジュール10が完成する。
 次に、本発明の実施例を説明する。なお、本発明は、これらの実施例に限定されるものでない。
 (実施例1)
 モールド体を形成するための樹脂組成物として、パナソニック電工(株)製のXV5788PA5(商品名)を使用した。XV5788PA5は、15重量%のエポキシ樹脂と、フィラーとしての85重量%の球状シリカとを混合したものである。表1に示すように、樹脂組成物に含まれる第2樹脂のガラス転移点は180℃である。樹脂組成物の硬化前の常温での粘度は200Pa・s、チキソ比は1.8である。球状シリカの平均粒径は17μmである。また、この樹脂組成物を使用して形成されるモールド体16の常温での弾性率は18GPa、250℃における線膨張係数(α2)は45ppm/℃である。
 回路基板には、ALIVH(パナソニック(株)の登録商標)プリント回路基板を使用した。表2に示すように、回路基板前駆体の厚みは0.6mm、弾性率は14GPa、これに含まれる第1樹脂のガラス転移点は150℃であった。また、この回路基板前駆体の固定代部を除いた部分のサイズは、86.1×101.5mmである。したがって、この回路基板前駆体からは、12.3×14.5mmの回路基板を49(=7×7)個切り出すことができる。
 シールド層の材料には、パナソニック電工(株)製のDBC765S(商品名)を使用した。DBC765Sは、15重量%のエポキシ樹脂と、フィラーとしての85重量%の銀の微粒子とを混合したものである。表3に示すように、この材料の硬化前の常温での粘度は19Pa・s、これに含まれる第3樹脂のガラス転移点は30℃である。また、この材料から形成されたシールド層の250℃における線膨張係数(α2)は40ppm/℃である。
 パワートランジスタを含む5個の電子部品を回路基板に実装するように、各電子部品の下面に設けられた、合計78個のはんだバンプを、回路基板の上面に設けられた電極に接合した。
 次に、図2に示した装置で、樹脂組成物を、真空印刷により回路基板前駆体の上面に供給した。このとき、真空印刷の真空度(チャンバ内気圧)は130Paとし、スキージ速度は、5mm/sとし、スキージ印圧は、0.4MPaとした。
 次に、樹脂組成物が供給された回路基板前駆体を、下側治具の上面に載せ、それを上側治具により固定した状態で、炉内温度が150℃である樹脂硬化加熱炉の内部で30分間加熱した。その後、冷却装置により、常温となるまで冷却することで、モールド体が形成された中間積層体を得た。
 中間積層体のモールド体を、図4に示したようにダイシングした後、図2に示した装置で、シールド層の材料を、回路基板前駆体の上面からモールド体を包み込むように真空印刷により供給した。その印刷条件は、真空度(チャンバ内気圧)が130Paであり、スキージ速度が2mm/sであり、スキージ印圧が0.1MPaであった。
 次に、シールド層の材料が供給された中間積層体を、下側治具の上面に載せ、それを上側治具により固定した状態で、炉内温度が100℃である樹脂硬化加熱炉の内部で10分間加熱した。その後、冷却装置により、中間積層体を30℃まで冷却することで、シールド層が形成された電子モジュール前駆体を得た。
 (実施例2)
 樹脂組成物として、パナソニック電工(株)製のXV5423RF(商品名)を使用した。XV5423RFは、20重量%のエポキシ樹脂と、フィラーとしての80重量%の球状シリカとを混合した混合物である。表1に示すように、フィラーの平均粒径は17μmであり、樹脂組成物の常温での粘度は70Pa・sであり、チキソ比は2.0である。この樹脂組成物に含まれる第2樹脂のガラス転移点は155℃である。
 樹脂組成物を硬化させるための樹脂硬化加熱炉の炉内温度は、150℃とした。加熱時間は30分間とした。形成されたモールド体の常温での弾性率は12GPa、250℃での線膨張係数(α2)は50ppm/℃であった。
 シールド層に含まれる樹脂のガラス転移点は25℃であった。その材料の硬化前の常温での粘度は20Pa・sであった。250℃での線膨張係数(α2)は110ppm/℃であった。シールド層の常温での弾性率は3GPaであった。シールド層の材料を硬化させるための樹脂硬化加熱炉の炉内温度は、90℃とした。加熱時間は20分間とした。
 以上のこと以外は、実施例1と同様にして、電子モジュール前駆体を作製した。
 (実施例3)
 樹脂組成物として、15重量%のエポキシ樹脂と、フィラーとしての85重量%の球状のアルミナとの混合物を使用した。表1に示すように、フィラーの平均粒径は19μmであり、樹脂組成物の常温での粘度は240Pa・sであり、チキソ比は1.7である。この樹脂組成物に含まれる樹脂のガラス転移点は160℃である。
 樹脂組成物を硬化させるための樹脂硬化加熱炉の炉内温度は、150℃とした。加熱時間は30分間とした。形成されたモールド体の常温での弾性率は14GPa、250℃での線膨張係数(α2)は48ppm/℃であった。以上のこと以外は、実施例1と同様にして、電子モジュール前駆体を作製した。
 (比較例1)
 樹脂組成物として、35重量%のエポキシ樹脂と、フィラーとしての65重量%の球状シリカとの混合物を使用した。表1に示すように、フィラーの平均粒径は19μmであり、樹脂組成物の常温での粘度は55Pa・sであり、チキソ比は1.4である。この樹脂組成物に含まれる樹脂のガラス転移点は80℃である。
 樹脂組成物を硬化させるための樹脂硬化加熱炉の炉内温度は、120℃とした。加熱時間は60分間とした。形成されたモールド体の常温での弾性率は5GPa、250℃での線膨張係数(α2)は65ppm/℃であった。以上のこと以外は、実施例1と同様にして、電子モジュール前駆体を作製した。
 (比較例2)
 樹脂組成物として、30重量%のエポキシ樹脂と、フィラーとしての70重量%の球状シリカとの混合物を使用した。表1に示すように、フィラーの平均粒径は19μmであり、樹脂組成物の常温での粘度は65Pa・sであり、チキソ比は1.3である。この樹脂組成物に含まれる樹脂のガラス転移点は110℃である。
 樹脂組成物を硬化させるための樹脂硬化加熱炉の炉内温度は、120℃とした。加熱時間は60分間とした。形成されたモールド体の常温での弾性率は8GPa、250℃での線膨張係数(α2)は60ppm/℃であった。以上のこと以外は、実施例1と同様にして、電子モジュール前駆体を作製した。
 (比較例3)
 樹脂組成物として、33重量%のエポキシ樹脂と、フィラーとしての67重量%の球状シリカとの混合物を使用した。表1に示すように、フィラーの平均粒径は19μmであり、樹脂組成物の常温での粘度は60Pa・sであり、チキソ比は1である。この樹脂組成物に含まれる樹脂のガラス転移点は115℃である。
 樹脂組成物を硬化させるための樹脂硬化加熱炉の炉内温度は、120℃とした。加熱時間は60分間とした。形成されたモールド体の常温での弾性率は8GPa、250℃での線膨張係数(α2)は62ppm/℃であった。以上のこと以外は、実施例1と同様にして、電子モジュール前駆体を作製した。
 (比較例4)
シールド層を設けなかったこと以外は、実施例1と同様にして、電子モジュール前駆体を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1~3および比較例1~4の電子モジュール前駆体を、回路基板の反り、及びはんだフラッシュの有無について評価した。
 回路基板前駆体の反りは、電子モジュール前駆体を、リフロー炉(ピーク温度260℃、パナソニックファクトリーソリューションズ(株)製)で加熱し、それにより生じた回路基板前駆体の反りを平坦度測定装置((株)コアズ製のcore9035a(商品名))を使用して測定した。より具体的には、回路基板前駆体の下面の最高点および最低点の高さの差を、回路基板の反りとした。そして、上記差が120μm以下であれば「良(G)」と評価し、120μmを超えていれば「不良(NG)」と評価した。
 はんだフラッシュの有無は、リフロー炉で加熱された後の電子モジュール前駆体について、X線写真および平面研磨により、はんだのにじみ出した距離を測定し、その測定結果に基づいて判断した。
 より具体的には、回路基板前駆体の電極と、電子部品の端子との間の78箇所のはんだによる接合箇所について、まず、X線写真により、はんだが本来の位置に存在しているかどうかを観察した。
 そして、本来の位置からのずれや影の形に歪みがある箇所を平面研磨して、その歪みの長さを測定した。ここで、電極から0.1mmを超えてはんだがにじみ出している箇所は、はんだフラッシュが発生していると判定した。そして、はんだフラッシュが1箇所でも存在していれば、その電子モジュール前駆体を「不良(NG)」と評価し、はんだフラッシュが全く存在しない場合を「良(G)」と評価した。
 以上の評価結果を表4に示す。はんだフラッシュの個数及び回路基板前駆体の反りの大きさは、括弧内に示している。
Figure JPOXMLDOC01-appb-T000004
 実施例1~3の電子モジュール前駆体は、モールド体に含まれる樹脂のガラス転移点が、回路基板及びシールド層に含まれる樹脂のガラス転移点よりも高くなっている。その結果、モールド体がガラス化した後で回路基板がガラス化するときに生じる電子モジュール前駆体の反り(上に凸の反り)が、シールド層がガラス化するときの収縮により緩和されて、反りが小さくなったものと考えられる。
 したがって、電子モジュール前駆体がリフロー炉で加熱されて、反りが緩和されたときにも、モールド体と回路基板との間に空隙が発生せず、はんだフラッシュの発生が防止されたものと考えられる。
 また、実施例1~3の電子モジュール前駆体は、モールド体の常温での弾性率が10~18GPaであることから、落下等の衝撃に対して電子部品と回路基板との接合を補強する十分な補強強度を有しているものと思われる。
 これに対して、比較例1~3の電子モジュール前駆体は、いずれも、モールド体に含まれる樹脂のガラス転移点が、回路基板に含まれる樹脂のガラス転移点よりも低くなっている。その結果、モールド体がガラス化により電子モジュール前駆体には下に凸の反りが生じ、その反りが、シールド層がガラス化するときの収縮によりさらに増大されて、反りが大きくなったものと考えられる。
 大きな反りが生じた結果、電子モジュール前駆体がリフロー炉で加熱されて、反りが緩和されたときに、いくつかの接合箇所でモールド体と回路基板との間に空隙が発生し、はんだフラッシュが発生したものと考えられる。
 また、比較例1~3の電子モジュール前駆体は、モールド体の常温での弾性率が10GPa未満であることから、落下等の衝撃に対して電子部品と回路基板との接合を補強する十分な補強強度を有していないものと思われる。
 比較例4は、シールド層を有しないことにより、モールド体がガラス化した後で回路基板がガラス化するときに生じた電子モジュール前駆体の反りが、そのまま維持されてしまい、電子モジュール前駆体の反りが大きくなったものと思われる。その結果、電子モジュール前駆体がリフロー炉で加熱されて、反りが緩和されると、いくつかの接合箇所でモールド体と回路基板との間に空隙が発生し、はんだフラッシュが発生したものと考えられる。
 なお、実施例4の電子モジュール前駆体は、モールド体の常温での弾性率が10~18GPaの範囲内であることから、落下等の衝撃に対して電子部品と回路基板との接合を補強する十分な補強強度を有しているものと思われる。
 本発明によれば、回路基板と、それに実装された少なくとも1つの電子部品と、その電子部品を封止するモールド体とを含む電子モジュールの反りを小さくすることできる。また、はんだフラッシュの発生を抑えることができる。したがって、小型化および軽量化が要求される携帯用電子機器に使用される電子モジュールとして有用である。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形及び改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神及び範囲から逸脱することなく、すべての変形及び改変を包含する、と解釈されるべきものである。
 10  電子モジュール
 12  回路基板
 14  電子部品
 16  モールド体
 28  シールド層

Claims (9)

  1.  第1表面及びその裏側の第2表面を有し、第1樹脂からなる回路基板と、
     前記回路基板の第1表面に配置された、少なくとも1つの電子部品と、
     前記電子部品を前記回路基板の第1表面で封止する、第2樹脂を含むモールド体と、を備えた電子モジュールであって、
     さらに、前記モールド体の表面に配置された、第3樹脂を含むシールド層を備え、
     前記モールド体の25℃における弾性率が、10~18GPaであり、
     前記回路基板の厚みが、0.3~1.0mmであり、
     前記第2樹脂が、第1及び第3樹脂よりも高いガラス転移点を有する、電子モジュール。
  2.  前記第2樹脂のガラス転移点が、150~250℃である、請求項1記載の電子モジュール。
  3.  前記第1樹脂のガラス転移点が、130~150℃である、請求項1または2記載の電子モジュール。
  4.  前記第1樹脂のガラス転移点と、前記第2樹脂のガラス転移点との差異が5~40℃である、請求項1~3のいずれか1項に記載の電子モジュール。
  5.  前記第3樹脂のガラス転移点が、25~30℃である、請求項1~4のいずれか1項に記載の電子モジュール。
  6.  (a)第1表面及びその裏側の第2表面を有し、少なくとも前記第1表面に電極が形成された、第1樹脂を含む回路基板と、前記電極と対応する端子を有する電子部品とを準備する工程、
     (b)前記電極と前記端子とを接合材により接合する工程、
     (c)前記電子部品を、前記回路基板の第1表面で、前記第1樹脂よりもガラス転移点が高い第2樹脂を含むモールド体により封止する工程、並びに
     (d)前記モールド体の表面に、前記第2樹脂よりもガラス転移点が低い第3樹脂を含むシールド層を形成する工程、を含む、電子モジュールの製造方法。
  7.  上面視の面積が100~250cm2である、前記回路基板、または複数の前記回路基板を含む回路基板前駆体に対して、前記工程(a)~(d)を実行する請求項6記載の製造方法。
  8.  前記工程(c)で、前記第1及び第2樹脂が、130~150℃まで加熱される、請求項6または7記載の製造方法。
  9.  前記工程(d)で、前記第1、第2及び第3樹脂が、90~110℃まで加熱される、請求項6~8のいずれか1項に記載の製造方法。
PCT/JP2010/004590 2009-07-17 2010-07-15 電子モジュールおよびその製造方法 WO2011007570A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080032137.5A CN102474987B (zh) 2009-07-17 2010-07-15 电子模块及其制造方法
US13/384,502 US9072204B2 (en) 2009-07-17 2010-07-15 Electronic module and production method therefor
JP2011522737A JP5436557B2 (ja) 2009-07-17 2010-07-15 電子モジュールおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009168625 2009-07-17
JP2009-168625 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011007570A1 true WO2011007570A1 (ja) 2011-01-20

Family

ID=43449180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004590 WO2011007570A1 (ja) 2009-07-17 2010-07-15 電子モジュールおよびその製造方法

Country Status (4)

Country Link
US (1) US9072204B2 (ja)
JP (1) JP5436557B2 (ja)
CN (1) CN102474987B (ja)
WO (1) WO2011007570A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041999A (ja) * 2011-08-17 2013-02-28 Nec Corp モジュール部品の製造方法、モジュール部品の製造装置及びモジュール部品集合体
JP2013110422A (ja) * 2011-03-09 2013-06-06 Sekisui Chem Co Ltd 電子部品用接着剤及び半導体チップ実装体の製造方法
JP2014057041A (ja) * 2012-08-16 2014-03-27 Sumitomo Bakelite Co Ltd 電磁波シールド用フィルム、および電子部品の被覆方法
JP2016500477A (ja) * 2012-12-11 2016-01-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated コンフォーマルシールドのための方法および装置
JP2016502279A (ja) * 2012-12-20 2016-01-21 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミットベシュレンクテル ハフツングConti Temic microelectronic GmbH プラスチックで被覆された電子回路を備えた電子モジュールおよび該電子モジュールを製造する方法
US10500214B2 (en) 2009-03-03 2019-12-10 Allergan Sales, Llc Formulations of deoxycholic acid and salts thereof
WO2020129985A1 (ja) * 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 電子部品搭載基板および電子機器
JP2020098896A (ja) * 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 電子部品搭載基板および電子機器
WO2022249806A1 (ja) * 2021-05-27 2022-12-01 株式会社デンソー 半導体装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI502733B (zh) * 2012-11-02 2015-10-01 環旭電子股份有限公司 電子封裝模組及其製造方法
CN103794573B (zh) * 2012-11-02 2016-09-14 环旭电子股份有限公司 电子封装模块及其制造方法
CN104168722B (zh) * 2013-05-20 2017-06-06 日月光半导体制造股份有限公司 电子模块的制造方法
JP2015176907A (ja) * 2014-03-13 2015-10-05 ルネサスエレクトロニクス株式会社 半導体装置
JP5985785B1 (ja) * 2014-09-30 2016-09-06 タツタ電線株式会社 電子部品のパッケージのシールド用導電性塗料及びそれを用いたシールドパッケージの製造方法
KR102474242B1 (ko) * 2015-01-09 2022-12-06 삼성전자주식회사 반도체 패키지 및 그 제조 방법
WO2016111512A1 (en) 2015-01-09 2016-07-14 Samsung Electronics Co., Ltd. Semiconductor package and method of manufacturing the same
US9257834B1 (en) * 2015-02-13 2016-02-09 The Silanna Group Pty Ltd. Single-laminate galvanic isolator assemblies
JP2017118015A (ja) 2015-12-25 2017-06-29 株式会社トーキン 電子装置及び電磁干渉抑制体の配置方法
CN114024520B (zh) * 2021-11-03 2023-02-10 北京超材信息科技有限公司 声学装置双层覆膜工艺
US20230163100A1 (en) * 2021-11-25 2023-05-25 International Business Machines Corporation Multiple die assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334954A (ja) * 2001-05-08 2002-11-22 Tdk Corp 電子装置およびその製造方法ならびに電子部品保護用キャップおよびその製造方法
WO2005004563A1 (ja) * 2003-07-03 2005-01-13 Hitachi, Ltd. モジュール装置及びその製造方法
JP2008258478A (ja) * 2007-04-06 2008-10-23 Murata Mfg Co Ltd 電子部品装置およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3241669B2 (ja) * 1998-11-09 2001-12-25 埼玉日本電気株式会社 Icパッケージの補強構造
JP4357817B2 (ja) * 2002-09-12 2009-11-04 パナソニック株式会社 回路部品内蔵モジュール
JP2005183430A (ja) 2003-12-16 2005-07-07 Matsushita Electric Ind Co Ltd 電子部品内蔵モジュール
WO2005076351A1 (ja) * 2004-02-09 2005-08-18 Murata Manufacturing Co., Ltd. 部品内蔵モジュールおよびその製造方法
JP4645233B2 (ja) * 2005-03-03 2011-03-09 パナソニック株式会社 弾性表面波装置
US7969741B2 (en) * 2005-08-30 2011-06-28 Panasonic Corporation Substrate structure
US20100020518A1 (en) * 2008-07-28 2010-01-28 Anadigics, Inc. RF shielding arrangement for semiconductor packages

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334954A (ja) * 2001-05-08 2002-11-22 Tdk Corp 電子装置およびその製造方法ならびに電子部品保護用キャップおよびその製造方法
WO2005004563A1 (ja) * 2003-07-03 2005-01-13 Hitachi, Ltd. モジュール装置及びその製造方法
JP2008258478A (ja) * 2007-04-06 2008-10-23 Murata Mfg Co Ltd 電子部品装置およびその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10500214B2 (en) 2009-03-03 2019-12-10 Allergan Sales, Llc Formulations of deoxycholic acid and salts thereof
JP2013110422A (ja) * 2011-03-09 2013-06-06 Sekisui Chem Co Ltd 電子部品用接着剤及び半導体チップ実装体の製造方法
JP2013041999A (ja) * 2011-08-17 2013-02-28 Nec Corp モジュール部品の製造方法、モジュール部品の製造装置及びモジュール部品集合体
KR101799631B1 (ko) * 2012-08-16 2017-11-20 스미또모 베이크라이트 가부시키가이샤 전자파 차폐용 필름, 및 전자부품의 피복 방법
JP2014057041A (ja) * 2012-08-16 2014-03-27 Sumitomo Bakelite Co Ltd 電磁波シールド用フィルム、および電子部品の被覆方法
JP2014057043A (ja) * 2012-08-16 2014-03-27 Sumitomo Bakelite Co Ltd 電磁波シールド用フィルム、および電子部品の被覆方法
JP2016500477A (ja) * 2012-12-11 2016-01-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated コンフォーマルシールドのための方法および装置
US10091918B2 (en) 2012-12-11 2018-10-02 Qualcomm Incorporated Methods and apparatus for conformal shielding
JP2016502279A (ja) * 2012-12-20 2016-01-21 コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミットベシュレンクテル ハフツングConti Temic microelectronic GmbH プラスチックで被覆された電子回路を備えた電子モジュールおよび該電子モジュールを製造する方法
WO2020129985A1 (ja) * 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 電子部品搭載基板および電子機器
JP2020098896A (ja) * 2018-12-18 2020-06-25 東洋インキScホールディングス株式会社 電子部品搭載基板および電子機器
JP2020115582A (ja) * 2018-12-18 2020-07-30 東洋インキScホールディングス株式会社 電子部品搭載基板および電子機器
KR20210094094A (ko) * 2018-12-18 2021-07-28 토요잉크Sc홀딩스주식회사 전자 부품 탑재 기판 및 전자 기기
CN113196895A (zh) * 2018-12-18 2021-07-30 东洋油墨Sc控股株式会社 电子零件搭载基板及电子机器
KR102400969B1 (ko) 2018-12-18 2022-05-24 토요잉크Sc홀딩스주식회사 전자 부품 탑재 기판 및 전자 기기
JP7232996B2 (ja) 2018-12-18 2023-03-06 東洋インキScホールディングス株式会社 電子部品搭載基板および電子機器
CN113196895B (zh) * 2018-12-18 2023-12-15 东洋油墨Sc控股株式会社 电子零件搭载基板及电子机器
WO2022249806A1 (ja) * 2021-05-27 2022-12-01 株式会社デンソー 半導体装置

Also Published As

Publication number Publication date
CN102474987A (zh) 2012-05-23
JPWO2011007570A1 (ja) 2012-12-20
US20120120613A1 (en) 2012-05-17
JP5436557B2 (ja) 2014-03-05
US9072204B2 (en) 2015-06-30
CN102474987B (zh) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5436557B2 (ja) 電子モジュールおよびその製造方法
US9226400B2 (en) Multilayer ceramic electronic device and method for manufacturing the same
US20060272150A1 (en) Module and method for fabricating the same
TW201411806A (zh) 積層型半導體裝置及其製造方法
US20110058342A1 (en) Semiconductor Device
JPWO2013035655A1 (ja) モジュール基板
JP5691573B2 (ja) モジュール部品の製造方法
JP2007214246A (ja) 放熱配線基板とその製造方法
JP2012199342A (ja) 樹脂モールド基板の製造方法および樹脂モールド基板
JP2013004823A (ja) 半導体装置の製造方法
JP2007214602A (ja) 半導体装置の製造方法
JP5003202B2 (ja) 熱伝導基板とその製造方法及び回路モジュール
US8023277B2 (en) Electronic component integrated module
WO2010109703A1 (ja) 電子装置、基板および電子装置の製造方法
JP4283741B2 (ja) 樹脂モールド型モジュールとその製造方法
JP2011211023A (ja) モジュールとその製造方法
JP3870876B2 (ja) 半導体装置の製造方法
JP2010283215A (ja) 電子装置および電子装置を製造する方法
JP5696302B2 (ja) インターポーザ用の金属張積層板とそれを用いた半導体パッケージ
JP2013004648A (ja) 半導体パッケージの製造方法
JP4417294B2 (ja) プローブカード用部品内蔵基板とその製造方法
JP5653893B2 (ja) 積層基板
KR101162505B1 (ko) 반도체 패키지 제조 방법
JP7340009B2 (ja) 電子部品モジュール、及び、窒化珪素回路基板
KR101667457B1 (ko) 반도체 패키지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032137.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799634

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522737

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13384502

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10799634

Country of ref document: EP

Kind code of ref document: A1