WO2010143651A1 - 回転培養ベッセル及びそれを用いた自動細胞培養装置 - Google Patents

回転培養ベッセル及びそれを用いた自動細胞培養装置 Download PDF

Info

Publication number
WO2010143651A1
WO2010143651A1 PCT/JP2010/059754 JP2010059754W WO2010143651A1 WO 2010143651 A1 WO2010143651 A1 WO 2010143651A1 JP 2010059754 W JP2010059754 W JP 2010059754W WO 2010143651 A1 WO2010143651 A1 WO 2010143651A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
supply
discharge
syringe
culture vessel
Prior art date
Application number
PCT/JP2010/059754
Other languages
English (en)
French (fr)
Inventor
尚史 津村
浩巳 岡田
壽公 植村
淑美 大藪
Original Assignee
株式会社ジェイテック
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテック, 独立行政法人産業技術総合研究所 filed Critical 株式会社ジェイテック
Priority to JP2011518553A priority Critical patent/JP5257960B2/ja
Priority to US13/375,606 priority patent/US10287539B2/en
Publication of WO2010143651A1 publication Critical patent/WO2010143651A1/ja
Priority to US16/365,524 priority patent/US10597621B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/40Means for regulation, monitoring, measurement or control, e.g. flow regulation of pressure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/10Rotating vessel
    • C12M27/12Roller bottles; Roller tubes

Definitions

  • the present invention relates to a rotary culture vessel and an automatic cell culture apparatus using the same, and more particularly to a rotary culture vessel suitable for automatic exchange of a culture medium and an automatic cell culture apparatus equipped with an automatic culture medium exchange function.
  • Patent Document 1 relating to the prior application of the present applicant, it is possible to handle a plurality of culture cassettes containing culture dishes, and to move them automatically with a robot arm during dispensing operations, It is possible to control the atmosphere such as gas concentration, temperature, humidity, etc. in the incubator, and not only the contamination in the incubator but also the automatic that can prevent the contamination when transferring the culture dish by dispensing work etc.
  • a cell culture system is disclosed.
  • Patent Documents 2 and 3 describe automatic cell culture apparatuses that are automated by performing a culture medium exchange operation or the like with a general-purpose articulated robot in a two-dimensional culture apparatus.
  • this automatic cell culture device is effective in terms of preventing the invasion of germs by minimizing the entry and exit of humans, but it can only perform work equivalent to humans using expensive general-purpose industrial robots. Therefore, an increase in device cost is inevitable.
  • it is not an apparatus for realizing three-dimensional culture without leaving the area of a normal two-dimensional cell culture apparatus.
  • mesenchymal stem cells derived from bone marrow have pluripotency to differentiate into tissues such as bone, cartilage, fat, and ligament, but in normal culture in vitro, the cells are brought to the bottom of the petri dish by earth gravity. It is known that only the two-dimensional sheet sinks and loses its original cellular character. Therefore, a culture method using an RWV (Rotating wall vessel) bioreactor has been developed to realize three-dimensional culture in a microgravity environment close to weightlessness. Three-dimensional culture is performed under an appropriate differentiation-inducing factor. To differentiate into the original tissue of the cell. A culture device using RWV is marketed by Synthecon Co., Ltd.
  • the structure is a flat cylindrical vessel with a gas permeable membrane on the back side, which rotates around the mounting part of the rotation control device on the horizontal rotating shaft. To do. By rotating the vessel, the direction of gravity on the cells changes constantly, and on a time average, a microgravity environment of 1 / 100th of the ground gravity can be created, so that the cell mass does not settle and floats softly. It can be cultured in a fresh state.
  • This apparatus is generally called a rotary culture apparatus.
  • the RWV used in a conventional rotary culture apparatus is provided with a cell fluid inlet / outlet, a pair of cell fluid supply ports and a discharge port on the front surface orthogonal to the rotation axis. Exchange. In other words, when replacing the culture solution, remove the RWV from the rotating shaft, leave the supply port and discharge port facing upward, remove the rubber cap from the supply port, and insert the tip of the supply syringe containing the new culture solution.
  • an automatic cell culture apparatus as described in Patent Document 4. That is, in this automatic cell culture apparatus, a cell culture inlet and a supply port and a discharge port of a septum seal structure for exchanging the culture medium are provided in a cylindrical culture container having a horizontal rotating shaft in a sealed casing. A rotation culturing apparatus, and the supply port and the discharge port are provided in pairs in the outer peripheral cylindrical surface of the culture vessel at positions spaced apart from each other by a rotation angle of 180 ° in the radial direction, With the supply port and the discharge port arranged on the vertical line and the supply port positioned on the upper side, the injection needle of the supply syringe containing the new culture solution is inserted into and removed from the supply port, and the discharge port is empty.
  • the syringe moving means for inserting and removing the injection needle of the discharge syringe, and the piston of the discharge syringe are simultaneously pushed in while the supply syringe is inserted into the supply port and the discharge syringe is inserted into the discharge port. Pull out Is obtained by a piston driving means for performing work.
  • the rotating culture apparatus using RWV has a function of automatically changing the culture solution, thereby greatly reducing the burden on the culturing workers such as researchers and improving the efficiency of cell culture.
  • the possibility of contamination during culture can be minimized.
  • by providing a plurality of pairs of the supply port and the discharge port for each equiangular interval on the outer peripheral cylindrical surface of the culture vessel according to the culture period and the number of times of replacement of the culture solution it is always new when the culture solution is replaced. Since the supply port and the discharge port can be used, there is an advantage that contamination at the time of culture medium exchange can be suppressed as much as possible.
  • the present invention intends to solve the problem that it is possible to automate cell seeding, culture medium exchange, quality control and the like based on the rotation culture technique using RWV, and culture medium exchange.
  • An object of the present invention is to provide a rotating culture vessel that can simultaneously perform air bleeding without disturbing the cultured cells, and an automatic cell culture apparatus using the same.
  • the present invention puts a cell and a culture solution inside, attaches it to a horizontal rotating shaft of a rotating culture apparatus, and uses the rotation used for three-dimensional culture in a microgravity environment close to weightlessness.
  • a culture vessel is provided with a single or a plurality of inlets and outlets for initial introduction of cells and culture solution into the appropriate place of a flat cylindrical culture vessel, and for taking out the cultured cells.
  • At least a pair of a supply port and a discharge port for culture medium exchange are provided, and the paired supply port and the discharge port are oriented in directions opposite to each other by 180 °, and the center line of the discharge port passes through the rotation center,
  • the center line of the supply port was eccentric with respect to the center of rotation to constitute a rotating culture vessel (Claim 1).
  • the radius of the culture space of the culture vessel is r
  • each supply port and each discharge port are provided on the outer peripheral cylindrical surface of the culture vessel, and that each supply port and each discharge port are provided at equiangular intervals (Claim 3).
  • the supply port and the discharge port have a septum seal structure
  • the supply syringe and the discharge syringe used for exchanging the culture solution each have an injection needle that can penetrate the septum seal at the tip, and a new culture solution is supplied from the supply syringe. It is preferable to allow the old culture solution to be inhaled and air-bleeded with the discharge syringe while injecting gas (Claim 4).
  • a cell fluid inlet for injecting a cell fluid composed of cells and culture fluid is provided on the outer peripheral cylindrical surface of the culture vessel, and an air vent and a cell outlet are provided on the front surface orthogonal to the rotation axis of the culture vessel.
  • the cell fluid inlet and the air outlet have a septum seal structure, and the cell outlet has a rubber cap structure with a large opening.
  • Each port of the septum seal structure has a large diameter introduction flow path for receiving the injection needle behind the septum seal, and a small diameter orifice flow path between the introduction flow path and the culture space of the culture vessel. (Claim 6).
  • the present invention is an automatic cell culture apparatus for three-dimensionally culturing cells in a microgravity environment close to weightlessness using the above-described rotating culture vessel, wherein the cells are rotated and cultured in a middle stage in an airtight housing.
  • An incubator box of the apparatus is arranged, a supply cool box storing a supply syringe for supplying a culture solution in a lower stage, and a discharge cool box storing a discharge syringe for collecting a culture solution in an upper stage, the incubator box,
  • An automatic opening / closing door is provided in front of the supply cooler and the discharge cooler, and the rotary culture apparatus has an axial moving means for moving a horizontal rotating shaft provided in the incubator box back and forth in the axial direction thereof.
  • the rotary culture vessel is detachably attached to the end of the rotary shaft, and the supply XYZ axis moving mechanism is disposed on the front surface of the supply cool box.
  • the supply movable part driven by the mechanism is provided with a fixed chuck for holding the supply syringe upward and a push-up means for pushing up the piston, and a discharge XYZ axis moving mechanism is disposed in front of the discharge cooler.
  • the discharge movable part driven by the mechanism includes a fixed chuck for holding the discharge syringe downward and a pull-up means for pulling up the piston, and opens the open / close doors to drive the axial movement means.
  • the rotary culture vessel appears from the inside of the incubator box, stops the supply port on the lower side and the discharge port on the upper side, drives the supply XYZ axis moving mechanism and the fixed chuck, and supplies the supply
  • the supply syringe is taken out from the inside of the refrigerator, and is positioned below the rotating culture vessel, while the discharge XYZ axis moving mechanism and the fixed chuck are
  • the discharge syringe is taken out from the discharge cooler and positioned above the rotating culture vessel, and the supply XYZ axis moving mechanism and the discharge XYZ axis moving mechanism are driven to move the supply syringe and the discharge syringe.
  • An automatic cell culture apparatus characterized in that, after being connected to the supply port and the discharge port at the same time in an airtight state, the push-up means and the pull-up means are driven in synchronization, and the culture solution in the rotating culture vessel is exchanged. (Claim 7).
  • a rotating revolver type stacker having a vertical rotating shaft controlled by a stepping motor is provided inside the supply cooler and the discharge cooler, and the syringe is vertically disposed around the stacker.
  • a plurality of holders that are elastically detachable from the side in a state of being directed are provided (claim 8).
  • a plurality of rotary shafts that move back and forth by a common axial movement means are arranged side by side without overlapping in the vertical direction, and when the rotary culture vessel is attached to each rotary shaft It is also preferable that the front and rear positions of the end portions of the rotating shaft are shifted so that adjacent rotating culture vessels do not interfere with each other (claim 9).
  • the rotating culture vessel of the present invention as described above is provided with a single or a plurality of inlets and outlets for initially putting cells and culture solution into appropriate portions of a flat cylindrical culture vessel and taking out the cultured cells.
  • At least a pair of a supply port and a discharge port for culture medium exchange are provided on the outer peripheral cylindrical surface of the container, and the paired supply port and the discharge port are oriented in directions opposite to each other by 180 °, and the center line of the discharge port Passes through the center of rotation, and the center line of the supply port is decentered with respect to the center of rotation, so the supply port is stopped downward and the discharge port is stopped upward, and a supply syringe containing a new culture solution is connected to the supply port.
  • the discharge syringe connects to the discharge port, push up the piston of the supply syringe to inject new culture solution into the culture container, and simultaneously pull up the piston of the discharge syringe to remove the old culture solution.
  • the culture medium can be exchanged by entering, but the gas accumulated at the top of the culture vessel at this time can be sucked out by the discharge syringe, and the center line of the supply port is eccentric with respect to the rotation center, Even when the cell mass during culture settles and is located at the bottom of the culture vessel, the supply port is located away from the cell mass, so that the cell mass is prevented from falling apart due to the flow when the culture solution is injected. Can do.
  • the effect is great when the distance between the center line of the supply port and the rotation center is set to 0.5r to 0.9r.
  • the supply port and the discharge port that obstruct the visual field do not exist in front of the culture vessel, it is very easy to observe the progress of the culture.
  • the supply port and the discharge port are provided on the outer peripheral cylindrical surface of the culture vessel, it is possible to exchange the culture solution supplied at the initial stage of the culture with the culture solution three times. It is possible to cover a certain cell culture period and to always use new supply ports and discharge ports when exchanging the culture solution, so that the occurrence of contamination can be minimized. Further, when the supply ports and the discharge ports are provided at equiangular intervals, the stop positions of the supply port and the discharge port can be easily and accurately positioned.
  • the supply port and the discharge port have a septum seal structure.
  • the supply syringe and the discharge syringe used for exchanging the culture solution each have an injection needle that can penetrate the septum seal at the tip, the injection needle penetrates the septum seal. If it does, it can connect in an airtight state, and can inhale an old culture solution and inhale air with the discharge
  • the hole opened by the injection needle is self-repaired and closed, so there is no need for a special opening / closing structure at the supply port or discharge port, and the supply port or discharge port Can be reduced in size, so that three pairs can be provided on the outer peripheral cylindrical surface of the culture vessel.
  • a cell fluid inlet for injecting cell fluid consisting of cells and culture fluid is provided on the outer peripheral cylindrical surface of the culture vessel, and an air vent and a cell outlet are provided on the front surface orthogonal to the rotation axis of the culture vessel.
  • the cell fluid inlet and the air outlet have a septum seal structure, they can be connected in an airtight state simply by piercing the septum seal with the injection needle of a syringe, and the manual operation is simplified.
  • the cell outlet since the cell outlet has a rubber cap structure with a large opening, it becomes easy to take out the cell mass after culturing.
  • Each port of the septum seal structure is provided with a large diameter introduction flow path for receiving the injection needle behind the septum seal, and a small diameter orifice flow path between the introduction flow path and the culture space of the culture vessel. Therefore, the injection needle can be received in the introduction flow path even if the injection needle pierces the septum seal somewhat, and the culture solution is supplied from the supply syringe to the culture space through the orifice flow channel.
  • the disturbance in the culture space due to the above can be suppressed to the minimum, and the air remaining in the introduction channel can be suppressed from entering the culture space through the orifice channel during the rotary culture. Further, since only a small hole of the orifice channel is opened on the circumferential wall surface of the culture space, the culture solution is not disturbed during the rotary culture.
  • the present invention is a method for exchanging a culture medium that has been conventionally performed manually, such as injecting a new culture solution from a supply port into a culture vessel of a rotary culture vessel and simultaneously sucking out an old culture solution from a discharge port using a discharge syringe. Can be fully automated.
  • a new culture solution is injected from the downward supply port with the supply syringe into the culture space of the rotating culture vessel, and at the same time, the old culture solution is sucked with the discharge syringe from the upward discharge port and the air can be vented. .
  • the center line of the supply port is decentered with respect to the rotation center, it is possible to prevent the cell mass from being separated as described above.
  • the old culture solution sucked into the discharge syringe is stored in the discharge cooler, the contamination can be inspected later.
  • the supply port and the discharge port are used only once when exchanging the culture solution.
  • the rotary culture vessel is small and has a relatively small culture space such as 10 ml of culture space and 20 ml of large one. Since there is a limit on the number of pairs of supply ports and discharge ports provided in the section, when culturing for a long period of time, it is assumed that the supply port and the discharge port are used multiple times. Although the number of syringes is more than the number of supply ports, the supply syringe and the discharge syringe can be supplied and stored by using a rotating revolver type stacker provided with a plurality of holders around it.
  • the rotary culture apparatus is provided with a plurality of rotary shafts, and a rotary culture vessel is attached to the end of the rotary culture vessel.
  • the number of supply syringes and discharge syringes is required by multiplying the number of vessels by the number of pairs of supply ports and discharge ports. This can be dealt with by using a rotating revolver type stacker.
  • FIG. 12 is a sectional view taken along line AA in FIG. 11.
  • FIG. 12 is a sectional view taken along line BB in FIG. 11. It is explanatory drawing which shows the state in the exchange operation of the culture solution using the 1st pair of a supply port and a discharge port. It is explanatory drawing which shows the state in the exchange operation of the culture solution using the 2nd pair of a supply port and a discharge port.
  • FIGS. 9 to 15 show the rotary culture vessel of the present invention, in which 1 is an automatic cell culture apparatus, 2 is a rotary culture vessel, and 3 is a rotation cell.
  • the culture apparatus, 4 is a supply cool box, 5 is a discharge cool box, 6 is an axial movement means, 7 is a supply XYZ axis movement mechanism, and 8 is a discharge XYZ axis movement mechanism.
  • the automatic cell culture device 1 of the present invention uses a rotating culture vessel 2 to three-dimensionally culture cells in a microgravity environment close to weightlessness.
  • the incubator box 10 of the rotary culture apparatus 3 for culturing with one or a plurality of vessels 2 is placed, the supply cooler 4 for storing the supply syringe 11 for supplying the culture solution at the lower stage, and the culture solution at the upper stage is collected
  • a discharge cooler 5 for storing the discharge syringe 12 is disposed, and an automatic door (not shown) is provided in front of the incubator box 10, the supply cooler 4, and the discharge cooler 5, and the rotation
  • the culture apparatus 3 is provided with an axial movement means 6 for moving a horizontal rotation shaft 13 provided in the incubator box 10 back and forth in the axial direction.
  • the culture vessel 2 is detachably mounted, and a supply XYZ axis moving mechanism 7 is disposed on the front surface of the supply cool box 4, and the supply syringe 11 is held upward by a supply movable part driven by the mechanism. And a push-up means 15 that pushes up the piston 11A.
  • a discharge XYZ-axis moving mechanism 8 is disposed in front of the discharge cooler 5 and the discharge movable portion driven by the mechanism is connected to the discharge movable portion.
  • a fixed chuck 16 for holding the syringe 12 downward and a pulling means 17 for pulling up the piston 12A are provided.
  • the axial direction of the rotary shaft 13 will be described as the X axis
  • the horizontal direction orthogonal to the X axis will be described as the Y axis
  • the vertical direction will be described as the Z axis.
  • a plurality of rotary shafts 13 that are moved back and forth in the X-axis direction by a common axial movement means 6 are arranged side by side without overlapping in the vertical direction, and the rotary culture vessel is connected to each rotary shaft 13.
  • the front and rear positions of the end portions of the rotating shafts 13 are set to be shifted.
  • the two rotary shafts 13 and 13 are arranged in parallel so that the two rotary culture vessels 2 and 2 can be cultured at the same time.
  • the rotating culture vessel 2 is provided with a cell solution inlet 19 for injecting a cell solution composed of cells and a culture solution on the outer peripheral cylindrical surface of a flat cylindrical culture vessel 18, and on the rotating shaft 13 of the culture vessel 18.
  • An air vent 20 and a cell outlet 21 are provided on the front surface orthogonal to each other, and at least a pair of a supply port 22 and a discharge port 23 for exchanging the culture medium are provided on the outer peripheral cylindrical surface of the culture vessel 18.
  • the supply port 22 and the discharge port 23 are oriented 180 ° opposite to each other, the center line of the discharge port 23 passes through the center of rotation, and the center line of the supply port 22 is eccentric with respect to the center of rotation.
  • the supply port 22 and the discharge port 23 are provided on the outer peripheral cylindrical surface of the culture vessel 18, they are distinguished by A, B, and C.
  • the supply ports 22A, 22B, and 22C and the discharge ports 23A, 23B, and 23C are provided at equiangular intervals.
  • the cell fluid inlet 19 and the cell outlet 21 are provided separately, but it is also possible to use this with a single port.
  • the radius of the culture space of the culture vessel 18 is r
  • the distance between the center line of the supply port 22 and the rotation center is set to 0.5r to 0.9r.
  • the rotating culture vessel 2 has a mounting portion 24 projecting from the central portion on the back side so as to be detachably attached to the end of the rotating shaft 13 of the rotating culture apparatus 3.
  • the structure of the attaching portion 24 can be always attached to the end portion of the rotating shaft 13 at the same rotational position.
  • the volume of the rotary culture vessel 2 of this embodiment is assumed to be 10 to 20 ml because the culture solution is expensive, but they should be determined according to the size of the cell mass to be cultured.
  • an air intake 25 is provided around the mounting portion 24 on the back side of the rotary culture vessel 2, and the gas permeation provided on the inside thereof is provided.
  • Oxygen can be supplied to the culture solution through the membrane 26 and carbon dioxide can be discharged, and the front side has an observation window 27 so that the inside can be seen through.
  • the supply port 22 and the discharge port 23 have a septum seal structure, and the supply syringe 11 and the discharge syringe 12 used for exchanging the culture solution are injections that can penetrate the septum seal 28 at their tips. It has needles 11B, 12B, the supply port 22 faces downward, the discharge port 23 faces upward, and a new culture solution is injected from the supply syringe 11 from the lower side, and the old culture solution is sucked from the upper side by the discharge syringe 12 In addition, the air can be vented.
  • the injection needles 11B and 12B attached to the tips of the supply syringe 11 and the discharge syringe 12 can be passed through the septum seal 28 and connected in an airtight state.
  • the through hole is closed by the elastic restoration, and the airtight state can be maintained.
  • the supply port 22 and the discharge port 23 have the same cross-sectional structure as shown in FIG.
  • the supply port 22 is provided with a septum seal 28 made of silicon rubber in an end portion of a port 29 connected so as to be eccentric from the rotation center of the outer peripheral cylindrical surface of the culture vessel 18 and communicate with the culture space.
  • the outer peripheral portion of 28 is pressed and sealed with a presser cap 30 screwed into the port 29.
  • the discharge port 23 has a septum seal 28 made of silicon rubber in the end of a port 29 connected so as to communicate with the culture space in the radial direction passing through the rotation center of the outer peripheral cylindrical surface of the culture vessel 18.
  • the outer peripheral portion of the septum seal 28 is arranged and pressed by a presser cap 30 screwed into the port 29 to be sealed. Further, inside the port 29 constituting the supply port 22 and the discharge port 23 of the septum seal structure, an introduction channel 31 having a large diameter for receiving the injection needle 11B or 12B behind the septum seal 28, and the introduction flow An orifice channel 32 having a small diameter is provided between the channel 31 and the culture space of the culture vessel 18.
  • the distal end portion of the injection needle 11B of the supply syringe 11 penetrating the septum seal 28 of the supply port 22 is received by the introduction flow path 31 in the port 29, so that the position of the injection needle 11B is the septum seal. Even if it is slightly deviated from the center of 28, the tip of the injection needle 11B does not contact the port 29 and can be used without any problem. Therefore, since the requirement for the positioning accuracy of the supply XYZ axis moving mechanism 7 is reduced, it can be configured using an inexpensive actuator.
  • the orifice channel 32 is provided, the culture solution injected into the introduction channel 31 is introduced into the culture space through the orifice channel 32 having a small diameter. It can be minimized.
  • the distal end portion of the injection needle 12B of the discharge syringe 12 penetrating the ptum seal 28 of the discharge port 23 is also received by the introduction flow path 31 in the port 29 and sucked through the orifice flow path 32 to cause old culture fluid. And the air accumulated inside can be extracted. Even if air accumulates in the introduction channel 31, air does not flow into the culture space through the orifice channel 32 during the rotary culture due to the surface tension of the culture solution.
  • the cell fluid inlet 19 and the air vent 20 have a septum seal structure similar to the above, and the cell outlet 21 has a rubber cap structure having a large opening. That is, the cell fluid inlet 19 is similar to the outlet 23 in the end of the port 29 connected so as to communicate with the culture space in the radial direction passing through the center of rotation. , And the outer periphery of the septum seal 28 is pressed and sealed with a presser cap 30 screwed into the port 29.
  • the air vent 20 and the cell outlet 21 are provided on the peripheral edge on the opposite side of the center of rotation on the front surface of the culture vessel 18.
  • the air vent 20 is provided with a septum seal 34 made of silicon rubber in the end of a port 33 projecting from the front of the culture vessel 18, and the outer periphery of the septum seal 34 is screwed into the port 33. It has a structure that is pressed and sealed with the presser cap 35.
  • the introduction channel 31 and the orifice channel 32 are also provided in the port 29 of the cell fluid inlet 19 and the port 33 of the air vent 20 in the same manner as described above.
  • a recess 36 is formed for storing the air when the rotary culture vessel 2 is placed horizontally.
  • the cell outlet 21 has a rubber cap 38 tightly fitted inside a port 37 having a large inner diameter, and the front end surface of the rubber cap 38 has a culture space so as not to disturb the culture medium during the rotation culture. It is flush with the inner wall.
  • the rotating culture vessel 2 In order to inject cells and culture solution into the rotating culture vessel 2, the rotating culture vessel 2 is placed with the observation window 27 on the upper side and the rotation axis is set in the vertical direction.
  • the septum seal 28 is pierced with an injection needle of a cell fluid injection syringe (not shown) containing cells and culture solution, and an empty air release syringe (not shown) is injected into the septum seal 34 of the air vent 20.
  • the needle is pierced, and air is sucked out with an air bleeding syringe while the cell liquid is injected into the culture space from the cell liquid injection syringe.
  • the air in the culture space finally accumulates in the recess 36, and the air accumulated in the recess 36 is also removed from the culture space.
  • FIG. 1 the hermetic housing 9 is provided with an opening / closing door on the front and one side, and the front corresponds to the rotary culture device 3, the supply cool box 4 and the discharge cool box 5.
  • Three inspection doors 39 are provided.
  • the front panel of the sealed casing 9 is transparent and sees through the inside.
  • a single work door 40 is provided on the side surface of the hermetic housing 9, and the rotary shaft 13 is opened by opening the work door 40 in a preparatory work for performing a series of cultures or a process after the culture.
  • the rotary culture vessel 2 is attached and detached, and the supply syringes 11 are attached to and detached from the inside of the supply cool box 4, and the discharge syringes 12 are attached to and detached from the inside of the discharge cool box 5.
  • the work door 40 is transparent and sees through the inside.
  • the air conditioner 41 provided with the filter function is provided in the ceiling part of the said airtight housing
  • the rotary culture apparatus 3 is provided with a horizontal rotary shaft 13 in the incubator box 10 capable of temperature control, and the rotary shaft 13 is placed at a predetermined rotational speed behind.
  • a rotation control mechanism 42 for driving is provided, and an axial movement means 6 for moving the rotation shaft 13 back and forth in the axial direction together with the rotation control mechanism 42 is provided.
  • the incubator box 10 is provided with an automatic opening and closing door on the front surface, and a door 43 that is manually opened and closed on the side surface on which the working door 40 is provided.
  • the two rotary shafts 13 and 13 are arranged in parallel to the horizontal position, and are respectively supported by cylindrical bearings 44 and 44 so as to be rotatable and slidable in the axial direction.
  • the axial movement means 6 has a structure in which the movable part 46 moves in the front-rear direction along a linear guide 45 provided at the rear part of the incubator box 10. Then, the end portions of the rotary shafts 13 and 13 extending rearward from the rear surface of the incubator box 10 are linked to the rotation control mechanism 42 attached to the movable portion 46 of the axial direction moving means 6 via a timing belt. I am letting.
  • the rotation control mechanism 42 is independent of the two systems so that the rotation shafts 13 and 13 can be independently controlled to rotate, and the stepping motor or the rotation control mechanism 42 can be controlled accurately.
  • the rotational position is controlled by driving a servo motor and reading a marker fixed to the rotating shaft 13 with a sensor. Moreover, the tip positions of the rotary shafts 13 and 13 are shifted back and forth as described above, and the rotary culture vessel 2 filled with the cell solution is manually attached and detached.
  • the supply cool box 4 is provided with an automatic opening / closing door on the front surface of the box capable of temperature control, and manually on the side surface on which the work door 40 is provided.
  • a door 47 that opens and closes is provided, and a rotating revolver type stacker 48 is provided inside.
  • the stacker 48 includes a vertical rotating shaft 50 controlled by a stepping motor 49, and the supply syringe 11 is placed around the stacker 48 from the side with the injection needle 11B facing upward.
  • a plurality of elastically detachable holders 51 are provided.
  • the holder 51 of the stacker 48 is provided with a U-shaped groove that receives and locks the upper and lower portions of the supply syringe 11, and is provided with a holding portion that is elastically held from both sides and is supplied from the side. It is automatically held when the syringe 11 is pushed in, and can be easily taken out by grasping the supply syringe 11 and pulling it out to the side.
  • the discharge cooler 5 has substantially the same structure as the supply cooler 4, but an automatic door is provided in front of the box capable of temperature control.
  • a door 52 that is manually opened and closed is provided on the side surface on which the work door 40 is provided, and a rotating revolver type stacker 53 is provided therein.
  • the stacker 53 is provided with a vertical rotation shaft 55 controlled by a stepping motor 54, and the discharge syringe 12 is placed around the stacker 53 in a vertical direction with the injection needle 12B facing downward.
  • the stacker 53 has substantially the same structure as the stacker 48.
  • the supply XYZ axis moving mechanism 7 for conveying the supply syringe 11 will be described based on FIG. 2, FIG. 3 and FIG.
  • the supply XYZ axis moving mechanism 7 is provided in front of the supply cool box 4 in the sealed casing 9 and fixed to the bottom of the sealed casing 9, and the Y axis moving mechanism
  • a Z-axis moving mechanism 58 fixed to the movable part of the mechanism 57
  • an X-axis moving mechanism 59 fixed to the movable part of the Z-axis moving mechanism 58;
  • a fixed chuck 14 for holding the supply syringe 11 upward and a push-up means 15 for pushing up the piston 11A are provided.
  • the Y-axis moving mechanism 57, the Z-axis moving mechanism 58, and the X-axis moving mechanism 59 are configured by a linear guide and a ball screw drive stepping motor, but are not particularly limited.
  • the fixed chuck 14 includes a U-shaped groove plate 60 that locks the flange portion of the cylinder of the supply syringe 11 and an air-driven hand 61 that sandwiches the side surface.
  • the push-up means 15 has a push-up plate 63 protruding from the movable portion of the Z-axis moving mechanism 62 fixed to the movable portion of the X-axis moving mechanism 59 together with the fixed chuck 14. Structure.
  • the discharge XYZ axis moving mechanism 8 for conveying the discharge syringe 12 will be described with reference to FIGS. 2, 3, and 6.
  • the discharge XYZ axis moving mechanism 8 is provided on the front surface of the discharge cool box 5 in the sealed casing 9 and fixed to the upper front side in the sealed casing 9, and the Y axis
  • a Z-axis moving mechanism 65 fixed to the movable part of the moving mechanism 64 and an X-axis moving mechanism 66 fixed to the movable part of the Z-axis moving mechanism 65 are provided.
  • a fixed chuck 16 for holding the discharge syringe 12 downward and a pulling means 17 for pulling up the piston 12A are provided.
  • the fixed chuck 16 includes a U-shaped groove plate 67 that locks the flange portion of the cylinder of the discharge syringe 12 and an air-driven hand 68 that sandwiches the side surface.
  • the pull-up means 17 is pulled up by being engaged with the flange portion at the upper end of the piston 12A on the movable portion of the Z-axis moving mechanism 69 fixed to the movable portion of the X-axis moving mechanism 66 together with the fixed chuck 16. This is a structure in which a pull-up plate 70 is projected.
  • the procedure for culturing cells using the automatic cell culture apparatus 1 according to the present invention is shown below.
  • the work door 40 of the sealed casing 9 is opened, the door 47 of the supply cool box 4 is opened, a predetermined number of supply syringes 11 are loaded into the stacker 48, and the door 47 is closed.
  • the door 52 of the discharge cooler 5 is opened, the same number of discharge syringes 12,... As the supply syringes 11,.
  • the door 43 of the incubator box 10 of the rotary culture apparatus 3 is opened, the mounting portion 24 of the rotary culture vessel 2 filled with the cell solution is attached to the end of the rotary shaft 13, and the door 43 is closed.
  • the rotary culture vessel 2 is always fixed at an accurate rotational position with respect to the rotary shaft 13. Then, the work door 40 is closed, and the inside of the sealed casing 9 is maintained at a predetermined temperature together with the inside of the incubator box 10. This prevents the temperature inside the incubator box 10 from changing suddenly and changing the culture conditions when the automatic opening / closing door on the front side of the incubator box 10 is opened when exchanging the culture solution. Because. Further, the temperature inside the supply cool box 4 and the discharge cool box 5 is set to be lower than the temperature inside the incubator box 10, and the state of the new culture solution before use and the old culture solution after use is changed. This is to preserve without changing.
  • the rotation control mechanism 42 is driven to rotate the rotary culture vessel 2 at a predetermined rotational speed to culture the cells. Then, after culturing for a certain period, the rotation control mechanism 42 is controlled to stop the first supply port 22A of the rotary culture vessel 2 in the vertically downward direction and the discharge port 23A in the vertically upward direction. Then, the automatic opening / closing door on the front surface of the incubator box 10 is opened, the axial movement means 6 is driven and moved forward, and the rotating culture vessel 2 is positioned in the front space of the incubator box 10.
  • the automatic opening / closing doors in front of the supply cool box 4 and the discharge cool box 5 are opened, and the supply XYZ axis moving mechanism 7 and the discharge XYZ axis moving mechanism 8 are independently set.
  • the fixed chuck 14 is driven to enter the supply cool box 4, and the supply syringe 11 stored in the stacker 48 at a predetermined rotational position is held by the fixed chuck 14.
  • the fixed chuck 16 While taking out to the front space, the fixed chuck 16 enters the inside of the discharge cooler 5 and the discharge syringe 12 stored in the stacker 53 at a predetermined rotation position is held by the fixed chuck 16, and then the discharge cooler. Take out to the front space of the cabinet 5.
  • the supply syringe 11 is positioned directly below the first supply port 22A of the rotary culture vessel 2, while the discharge syringe 12 is positioned directly above the discharge port 23A.
  • the Z-axis moving mechanism 58 of the supply XYZ-axis moving mechanism 7 and the Z-axis moving mechanism 65 of the discharge XYZ-axis moving mechanism 8 are driven in synchronization, and the supply syringe 11
  • the injection needle 11B passes through the septum seal 28 of the supply port 22A, and at the same time, the injection needle 12B of the discharge syringe 12 passes through the septum seal 28 of the discharge port 23A and is connected.
  • the push-up plate 63 of the push-up means 15 is raised to push up the piston 11A of the supply syringe 11 to inject a new culture solution into the culture space of the rotary culture vessel 2, and at the same time, the pull-up means 17 is lifted, the piston 12A of the discharge syringe 12 is pulled up, the old culture solution is sucked out from the culture space of the rotary culture vessel 2, and the air accumulated in the culture space during the culture is simultaneously Suck it out.
  • the Z-axis moving mechanism 58 of the supply XYZ-axis moving mechanism 7 and the Z-axis moving mechanism 65 of the discharging XYZ-axis moving mechanism 8 are driven in synchronization.
  • the injection needle 11B of the supply syringe 11 is removed from the supply port 22A, and at the same time, the injection needle 12B of the discharge syringe 12 is extracted from the discharge port 23A.
  • the supply XYZ axis moving mechanism 7 and the discharge XYZ axis moving mechanism 8 are driven, and the used supply syringe 11 and discharge syringe 12 are loaded at the original positions of the stacker 48 and the stacker 53, respectively.
  • the fixed chuck 14 and the fixed chuck 16 are opened and pulled out from the supply cool box 4 and the discharge cool box 5 and waited at the initial position.
  • the rotation control mechanism 42 is driven to perform a predetermined rotation. The cells are cultured by rotating the rotary culture vessel 2 with a number.
  • the culture medium exchange operation is performed as shown in FIG. 17 using the pair of the supply port 22B and the discharge port 23B of the rotating culture vessel 2, and then using the pair of the supply port 22C and the discharge port 23C as shown in FIG. As shown in FIG. In that case, the stacker 48 and the stacker 53 are rotated by a predetermined angle so that the new supply syringe 11 and the discharge syringe 12 are sequentially brought to the front side.
  • the rotating culture apparatus 3 employed in the present invention can maintain the cells in a floating state within the rotating culture vessel 2 without being settled, so that a three-dimensional assembly can be formed, and agitation stress is applied.
  • There are advantages such as being able to avoid necrosis, being able to efficiently act on a differentiation-inducing substance, and removing waste and supplying nutrients.
  • a culture solution can be sequentially supplied using a plurality of supply syringes 11,..., A culture solution having an optimum component composition can be used according to the cell culture stage.
  • the culture conditions are as follows: (1) Confirmation of change in pH during culture, consumption of medium additives, accumulation of waste products, etc., (2) presence or absence of turbidity of medium due to contamination, (3 ) Confirmation of whether or not a three-dimensional tissue has been formed from floating cells.
  • the observation window 27 is provided in front of the rotating culture vessel 2, the internal situation can be observed through an imaging camera and various analytical instruments arranged toward the observation window 27. It is also possible to analyze the current state by image processing, feedback control the rotation control mechanism 42 based on the current state, and automatically search for the replacement timing of the culture medium.
  • Bioreactor Medium DMEM + 50 ⁇ g / ml ascorbic acid (WAKO) + 40 ⁇ g / ml L-proline + ITS culture suppleent (BD Biosciences), 10-7 dexamethasone (Sigma), 10ng / ml TGF- ⁇ 3 (Sigma) and abtibiotic- antimicotic (BD)
  • the 50 cc vessel used in the examples is the one shown in FIGS. -The number of cells used is the same for both the culture using the automatic cell culture apparatus (Example) and the manual culture (Comparative Example). (4) The cells were cultured for 2 weeks, the tissue was taken out, observed with the naked eye, sliced, and evaluated by a histochemical method.
  • the cell tissue did not collide with the wall of the vessel when the culture solution was exchanged by the automatic cell culture apparatus of the present invention. Moreover, there was no leakage of the culture solution from the injection needle and septum seal of the supply syringe and the discharge syringe. And it has confirmed that the old culture solution in a vessel was replaced
  • FIG. 19 shows the appearance of cartilage tissue constructed by culture.
  • the left side of FIG. 19 shows the results of automatic culture (Example), and the right side shows the results of manual culture (Comparative Example).
  • the macroscopic findings of the cultured cartilage tissue showed that the tissue by manual culture was larger than the automatic culture.
  • FIG. 20 is a graph showing the results of comparison of the production amount of the cartilage matrix GAG. In this round of culturing, the automatic culturing shows a higher value. In several experiments, the production amount of the cartilage matrix GAG was the same or higher in the automatic culture than in the manual culture.
  • FIG. 21 is a photomicrograph showing the results of cartilage tissue stained with Alcian blue. In both cases, it was confirmed that the cartilage matrix was stained in light blue and that the cartilage matrix was abundantly produced. Here, the portion of the cartilage matrix stained light blue is displayed in a dark color in FIG.
  • FIG. 22 is a photomicrograph showing the results of toluidine blue staining of cartilage tissue.
  • the cartilage matrix was stained blue-violet, and it was confirmed that the cartilage matrix was abundantly produced. Also in this case, the portion where the cartilage matrix is stained blue-violet is displayed in a dark color in FIG.
  • FIG. 23 is a photomicrograph showing the results of HE staining (hematoxylin and eosin staining) of cartilage tissue.
  • Cartilage tissue was stained blue-purple with hematoxylin, and mature cartilage-like cells stained in blue-purple were observed in both automatic and manual cultures. Also in this case, the portion dyed blue-violet is displayed in a dark color in FIG.
  • eosin dyes cytoplasm, soft tissue connective tissue, red blood cells, fibrin, endocrine granules, etc. in bright red or blue indigo color, when displayed in monotone, it is displayed in the same dark color, It is indistinguishable from cartilage tissue only by shading.
  • the automatic cell culture device of the present invention can aim for clinical application of regenerative medicine even in a medical institution that does not have a CPC (cell processing center) compatible with GMP (Good Manufacturing Practice), and regenerative medicine is widely spread. Can be made. Typically, it can be used to construct transplantable cartilage tissue from human bone marrow cells. In addition to cartilage regeneration, research on regenerative medicine includes corneal regeneration for retinal detachment and cataracts, bone regeneration for bone defects and osteoporosis, pancreas for diabetes, etc. ) Regenerative, cardiomyopathy for dilated cardiomyopathy, and nerve regeneration for Parkinson's disease and Alzheimer's disease, etc. The device is considered effective.
  • the automatic cell culture device of the present invention can be applied not only to cartilage regenerative medicine but also to general regenerative medicine in the future, and it is believed that it will be an essential and important basic technology for the spread of regenerative medicine.
  • 1 automatic cell culture device 2 rotating culture vessel, 3 rotating culture equipment, 4 cold storage for supply, 5 cold storage for discharge, 6 axial movement means, 7 XYZ axis movement mechanism for supply, 8 XYZ axis movement mechanism for discharge, 9 sealed housing, 10 incubator box, 11 supply syringe, 11A piston, 11B injection needle, 12 discharge syringe, 12A piston, 12B needle, 13 Rotating shaft, 14 Fixed chuck, 15 Push-up means, 16 Fixed chuck, 17 lifting means, 18 culture vessel, 19 Cell fluid inlet, 20 Air vent, 21 Cell outlet, 22, 22A, 22B, 22C supply port, 23, 23A, 23B, 23C outlet, 24 mounting part, 25 intake, 26 gas permeable membrane, 27 observation window, 28 septum seals, 29 ports, 30 cap, 31 introduction channel, 32 orifice channels, 33 ports, 34 septum seals, 35 caps, 36 recesses, 37 ports, 38 Rubber cap, 39 Inspection door, 40 work doors, 41 air conditioners, 42 rotation control mechanism, 43 door, 44 bearings

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】 RWVを用いた回転培養技術をもとに細胞播種、培養液交換、品質管理等を自動化することができるとともに、培養液交換時に培養細胞に擾乱を与えずにエア抜きも同時に行うことができる回転培養ベッセル及びそれを用いた自動細胞培養装置を提供する。 【解決手段】 細胞と培養液を内部に入れて回転培養装置の水平な回転軸に装着し、3次元培養するために用いる回転培養ベッセルであって、偏平円筒形の培養容器18の適所に、初期に細胞と培養液を投入し、また培養した細胞を取り出すための単又は複数の出入口19,20,21を設け、培養容器18の外周円筒面に、培養液交換用の供給口22と排出口23とを少なくとも一対設け、この対となった供給口と排出口は互いに180°反対向きに配向させ且つ、排出口23の中心線は回転中心を通り、供給口22の中心線は回転中心に対して偏心させた。

Description

回転培養ベッセル及びそれを用いた自動細胞培養装置
 本発明は、回転培養ベッセル及びそれを用いた自動細胞培養装置に係わり、更に詳しくは培養液の自動交換に適した回転培養ベッセル及び自動培養液交換機能を備えた自動細胞培養装置に関する。
 従来から自動細胞培養装置は各種提供されている。例えば、本出願人の先願に係る特許文献1には、培養皿を収容した複数の培養カセットを取り扱い、分注作業等の際にロボットアームで自動的に移動させることが可能であるとともに、インキュベータ内のガス濃度や温度、湿度等の雰囲気を管理することが可能であり、インキュベータ内の汚染は勿論のこと、分注作業等で培養皿を移送する際にも汚染を確実に防止できる自動細胞培養システムが開示されている。
 また、特許文献2,3には、2次元培養装置において培養液の交換作業等を汎用の多関節型ロボットで行うことにより自動化した自動細胞培養装置が記載されている。しかし、この自動細胞培養装置は、人の出入りを極力少なくして雑菌の侵入を防ぐという意味では効果的であるが、高価な汎用の産業用ロボットを用いて人と同等な作業を行わせるだけであり、装置コストの高騰は避けられないのである。しかも、通常の2次元細胞培養装置の域を脱せず、3次元培養を実現するための装置ではない。
 ところで、骨髄に由来する間葉系幹細胞は、骨、軟骨、脂肪、靭帯などの組織に分化する多分化能を持つが、生体外での通常の培養では、細胞は地球重力によってシャーレの底に沈み、2次元シートしか作らず本来の細胞の形質を失うことが知られている。そこで、無重力に近い微小重力環境での3次元培養を実現するために開発されたのが、RWV(Rotating wall vessel)バイオリアクターによる培養方法であり、適切な分化誘導因子のもとで3次元培養を行うと細胞本来の組織に分化する。RWVを用いた培養装置は、シンセコン社から発売されており、その構造はガス透過膜を裏側に備えた偏平円筒形のベッセルが、回転制御装置の水平な回転軸への取付部を中心に回転するものである。ベッセルが回転することにより、細胞に及ぼす重力の方向が絶えず変化し、時間平均すると、地上重力の100分の1という微小重力環境を作り出すことができ、それにより細胞塊が沈降せずふわふわと浮いた状態で培養できるのである。この装置を一般的に回転培養装置と称する。
 しかし、従来の回転培養装置に用いるRWVには、回転軸と直交する正面に、細胞液投入取出口と、一対の細胞液の供給口と排出口を備えたものであり、手作業で培養液の交換を行うものである。つまり、培養液の交換作業には、RWVを回転軸から外して供給口と排出口を上向きに静置し、供給口のゴムキャップを外して新しい培養液が入った供給シリンジの先端を前記供給口に密嵌し、他方空の排出シリンジの先端を前記排出口に密嵌した後、供給口と排出口のコックを開き、一方の手で供給シリンジのピストンを押し込んでベッセル内に培養液を供給し、それと同時に他方の手で排出シリンジのピストンを引き抜いてベッセル内の古い培養液を吸い出すのである。通常、細胞の培養期間は2週間程度である場合が多く、数日毎に培地を交換する必要があるため、前述の煩雑で熟練を要する培地交換作業をその都度行わなければならない。この手作業による培地交換作業は、非常に手間と時間を要し、多数のRWVを稼動させている場合には大変な負担となるばかりでなく、培地交換作業中に予期せぬ環境汚染が生じる恐れもある。また、ベッセルの正面に、細胞液投入口や、供給口と排出口が設けられているので、内部の細胞の様子を確認する際に視野が狭まるといった不都合がある。
 そこで、本出願人は、特許文献4に記載されるような自動細胞培養装置を提案した。即ち、この自動細胞培養装置は、密閉筐体内に、水平な回転軸を有する円筒形培養容器に、細胞液投入口と、培養液交換用のセプタムシール構造の供給口と排出口とが設けられた回転培養装置を備え、前記供給口と排出口は対となって前記培養容器の外周円筒面で回転中心に対して互に180°の回転角度離れた位置に半径方向へ向けて設け、該供給口と排出口を鉛直線上に配置し且つ供給口を上に位置させた状態で、前記供給口に新しい培養液が入った供給シリンジの注射針を挿脱するとともに、前記排出口に空の排出シリンジの注射針を挿脱するシリンジ移動手段と、前記供給シリンジを供給口に挿入し且つ前記排出シリンジを排出口に挿入した状態で、供給シリンジのピストンを押し込むと同時に、排出シリンジのピストンを引き抜く操作を行うピストン駆動手段とを備えたものである。
 それにより、RWVを用いた回転培養装置において、自動的に培養液を交換する機能を備えているので、研究者等の培養作業従事者の負担を大幅に低減し、細胞培養の効率化を図ることができるとともに、培養中における汚染の可能性を極力少なくすることができる。また、培養期間と培養液の交換回数に応じて、前記供給口と排出口の対を前記培養容器の外周円筒面に等角間隔毎に複数対設けることにより、培養液の交換実施に際して常に新しい供給口と排出口を使うことができるので、培養液交換時の汚染を極力抑制することができるといった利点がある。
特開2006-014675号公報 特開2006-115798号公報 特開2006-149268号公報 特開2008-237203号公報
 しかしながら、特許文献4に記載された自動細胞培養装置にも若干の課題が残っている。つまり、初期の細胞液投入の際にエアが完全に置換されずにベッセル中に残ることもあるが、培養中に背面の透過膜を通してエアがベッセル中に入ってくることもある。ベッセル中にガス溜まりが存在すると、回転培養中に培養液に乱れを誘発し、細胞に不規則な負荷がかかるのでエア抜きは必須である。従来の培養液の交換は、ベッセルの培養液供給口と排出口を鉛直方向に向け、且つ供給口が上になるように位置させた状態で、上から供給シリンジで培養液を注入し、下から排出シリンジで吸引するので、ベッセルの上部に溜まったガスを抜くことができない。
 そこで、本発明が前述の状況に鑑み、解決しようとするところは、RWVを用いた回転培養技術をもとに細胞播種、培養液交換、品質管理等を自動化することができるとともに、培養液交換時に培養細胞に擾乱を与えずにエア抜きも同時に行うことができる回転培養ベッセル及びそれを用いた自動細胞培養装置を提供する点にある。
 本発明は、前述の課題解決のために、細胞と培養液を内部に入れて回転培養装置の水平な回転軸に装着し、細胞を無重力に近い微小重力環境で3次元培養するために用いる回転培養ベッセルであって、偏平円筒形の培養容器の適所に、初期に細胞と培養液を投入し、また培養した細胞を取り出すための単又は複数の出入口を設けるとともに、培養容器の外周円筒面に、培養液交換用の供給口と排出口とを少なくとも一対設け、この対となった供給口と排出口は互いに180°反対向きに配向させるとともに、前記排出口の中心線は回転中心を通り、前記供給口の中心線は回転中心に対して偏心させたことを特徴とする回転培養ベッセルを構成した(請求項1)。
 ここで、前記培養容器の培養空間の半径をrとしたとき、前記供給口の中心線と回転中心との距離を0.5r~0.9rに設定することがより好ましい(請求項2)。
 また、前記供給口と排出口の対を前記培養容器の外周円筒面に3対設けるとともに、各供給口と各排出口は等角間隔毎に設けていることも好ましい(請求項3)。
 更に、前記供給口と排出口はセプタムシール構造とし、培養液交換のために用いる供給シリンジと排出シリンジはそれぞれ先端に前記セプタムシールを貫通可能な注射針を有し、前記供給シリンジから新しい培養液を注入しながら前記排出シリンジで古い培養液を吸入するとともにエア抜きをすることを可能とすることが好ましい(請求項4)。
 更に、前記培養容器の外周円筒面に、細胞と培養液からなる細胞液を注入する細胞液注入口を設けるとともに、前記培養容器の回転軸に直交する正面にエア抜き口と細胞取出口を設け、前記細胞液注入口とエア抜き口とはセプタムシール構造とし、前記細胞取出口は開口が大きなゴムキャップ構造とした(請求項5)。
 また、前記セプタムシール構造の各口は、セプタムシールの背後に注射針を受け入れる直径の大きな導入流路と、該導入流路と前記培養容器の培養空間との間に直径の小さなオリフィス流路を設けた(請求項6)。
 そして、本発明は、前述の回転培養ベッセルを用い、細胞を無重力に近い微小重力環境で3次元培養するための自動細胞培養装置であって、空調機能を備えた密閉筐体内の中段に回転培養装置のインキュベータボックスを配置するとともに、下段に培養液を供給する供給シリンジを収納する供給用保冷庫、上段に培養液を回収する排出シリンジを収納する排出用保冷庫を配置し、前記インキュベータボックス、供給用保冷庫及び排出用保冷庫の前面には自動開閉扉が設けられ、前記回転培養装置には前記インキュベータボックス内に設けられた水平な回転軸をその軸方向に前後移動する軸方向移動手段を備え、該回転軸の端部に前記回転培養ベッセルを着脱可能に装着し、前記供給用保冷庫の前面には供給用XYZ軸移動機構を配置するとともに、該機構で駆動される供給可動部に前記供給シリンジを上向きに保持する固定チャックとピストンを押し上げる押上手段とを備え、前記排出用保冷庫の前面には排出用XYZ軸移動機構を配置するとともに、該機構で駆動される排出可動部に前記排出シリンジを下向きに保持する固定チャックとピストンを引き上げる引上手段とを備え、前記各開閉扉を開き、前記軸方向移動手段を駆動して前記インキュベータボックス内から回転培養ベッセルを前面側に出現させるとともに、前記供給口を下側、前記排出口を上側に向けて停止し、前記供給用XYZ軸移動機構と固定チャックを駆動して前記供給用保冷庫内から供給シリンジを取り出して前記回転培養ベッセルの下側に位置させる一方、前記排出用XYZ軸移動機構と固定チャックを駆動して前記排出用保冷庫内から排出シリンジを取り出して前記回転培養ベッセルの上側に位置させ、前記供給用XYZ軸移動機構と排出用XYZ軸移動機構を駆動して前記供給シリンジと排出シリンジを前記供給口と排出口に同時に気密状態で接続した後、前記押上手段と引上手段を同調して駆動し、前記回転培養ベッセル内の培養液を交換することを特徴とする自動細胞培養装置を構成した(請求項7)。
 更に、前記供給用保冷庫と排出用保冷庫の内部には、ステッピングモータで制御される鉛直方向の回転軸を備えた回転レボルバー式のスタッカを備え、該スタッカの周囲に前記シリンジを鉛直方向に向けた状態で側方から弾性的に着脱可能なホルダーを複数設けている(請求項8)。
 また、前記回転培養装置には、共通の軸方向移動手段で前後移動する複数の回転軸が上下方向に重なることなく並設されているとともに、各回転軸に前記回転培養ベッセルを装着した際に、隣接する回転培養ベッセルが互いに干渉しないように、前記回転軸の端部の前後位置をずらせて設定していることも好ましい(請求項9)。
 以上にしてなる本発明の回転培養ベッセルは、偏平円筒形の培養容器の適所に、初期に細胞と培養液を投入し、また培養した細胞を取り出すための単又は複数の出入口を設けるとともに、培養容器の外周円筒面に、培養液交換用の供給口と排出口とを少なくとも一対設け、この対となった供給口と排出口は互いに180°反対向きに配向させるとともに、前記排出口の中心線は回転中心を通り、前記供給口の中心線は回転中心に対して偏心させたので、前記供給口を下向き、排出口を上向きに停止させ、新しい培養液の入った供給シリンジを供給口の接続するとともに、排出シリンジを排出口に接続し、供給シリンジのピストンを押し上げて培養容器内に新しい培養液を注入すると同時に排出シリンジのピストンを引き上げて古い培養液を吸入して培養液を交換することができるが、この際に培養容器の上部に溜まったガスを排出シリンジで吸い出すことができ、更に供給口の中心線が回転中心に対して偏心しているので、培養中の細胞塊が沈降して培養容器の下部に位置する場合でも、供給口が細胞塊を避けた位置にあるので、培養液の注入時の流れで細胞塊がバラバラになるのを防ぐことができる。特に、前記培養容器の培養空間の半径をrとしたとき、前記供給口の中心線と回転中心との距離を0.5r~0.9rに設定した場合には、その効果は大きい。また、培養容器の正面には、視界を遮る供給口と排出口が存在しないので、培養経過の観察が非常にやり易くなるのである。
 また、記供給口と排出口の対を前記培養容器の外周円筒面に3対設けることにより、培養初期に投入する培養液と3回の培養液の交換が可能になるので、通常の2週間程度の細胞培養期間をカバーすることができ、更に培養液の交換時に常に新しい供給口と排出口を用いることができるので、汚染の発生を最小限に抑制できる。また、各供給口と各排出口は等角間隔毎に設けた場合には、供給口と排出口の停止位置の位置決めが容易且つ正確になる。
 前記供給口と排出口はセプタムシール構造とし、培養液交換のために用いる供給シリンジと排出シリンジはそれぞれ先端に前記セプタムシールを貫通可能な注射針を有する場合には、注射針をセプタムシールに貫通させると気密状態で接続することができ、それにより前記供給シリンジから新しい培養液を注入しながら前記排出シリンジで古い培養液を吸入するとともにエア抜きをすることができる。また、注射針をセプタムシールから抜くと、注射針で開けられた穴は自己修復して閉じるので、供給口や排出口に特別な開閉操作のための構造を必要とせず、供給口や排出口を小型化でき、それにより培養容器の外周円筒面に3対設けることができるのである。
 前記培養容器の外周円筒面に、細胞と培養液からなる細胞液を注入する細胞液注入口を設けるとともに、前記培養容器の回転軸に直交する正面にエア抜き口と細胞取出口を設けたので、培養容器の正面を上に向けて水平に保ち、細胞液注入口に細胞液供給シリンジを接続するとともに、エア抜き口にエア排出シリンジを接続し、細胞液供給シリンジから細胞液を注入すると同時にエア排出シリンジで培養容器内のエアを吸引し、培養容器内のエアを細胞液で置換して初期の培養準備をすることができる。特に、前記細胞液注入口とエア抜き口とはセプタムシール構造とすれば、シリンジの注射針をセプタムシールに突き刺すだけで簡単に気密状態で接続することができ、マニュアル作業が簡単になる。また、前記細胞取出口は開口が大きなゴムキャップ構造としたので、培養後の細胞塊を取り出すのが容易になる。
 前記セプタムシール構造の各口は、セプタムシールの背後に注射針を受け入れる直径の大きな導入流路と、該導入流路と前記培養容器の培養空間との間に直径の小さなオリフィス流路を設けたので、セプタムシールに注射針を突き刺す位置が多少ずれても注射針を導入流路に受け入れることができ、また供給シリンジから培養液を、オリフィス流路を通して培養空間に供給するので、培養液の流れによる培養空間内の擾乱を最小限に抑制することができ、また導入流路に残ったエアが回転培養中にオリフィス流路を通って培養空間に入ることを抑制することもできるのである。更に、培養空間の円周壁面にはオリフィス流路の小さな孔のみが開口されているので、回転培養中に培養液に擾乱が生じない。
 また、本発明の自動細胞培養装置は、RWVを用いた回転培養技術を前提として、自動的に培養液を交換する機能を備えているので、研究者等の培養作業従事者の負担を大幅に低減し、細胞培養の効率化を図ることができるとともに、培養中における汚染の可能性を極力少なくすることができ、GMP対応のCPCを持たない医療機関でも再生医療の臨床適応を目指すことができるようになり、再生医療を飛躍的に普及させることができる。本発明は、回転培養ベッセルの培養容器に、供給口から供給シリンジで新しい培養液を注入すると同時に、排出口から排出シリンジで古い培養液を吸い出すといった従来から手作業で実績のある培養液交換作業を、完全に自動化することができるのである。そして、下向きの供給口から供給シリンジで新しい培養液を回転培養ベッセルの培養空間に注入すると同時に、上向きの排出口から排出シリンジで古い培養液を吸引するとともに、エア抜きを行うことができるのである。また、供給口の中心線が回転中心に対して偏心しているので、細胞塊がバラバラになるのを防ぐことができることは前述の通りである。また、排出シリンジに吸引された古い培養液は、排出用保冷庫に保存するので、後で汚染を検査することができる。
 また、通常は供給口と排出口は培養液の交換時に一度きり使用するが、回転培養ベッセルは、小さいもので培養空間の容積が10ml、大きいものでも20mlといったように比較的小さいので、その外周部に設ける供給口と排出口の対の数には制限があるので、長期間培養する場合には、供給口と排出口を複数回使用することも想定され、その場合には供給シリンジと排出シリンジは供給口の数以上の本数が必要になるが、周囲に複数のホルダーを設けた回転レボルバー式のスタッカを用いることにより、供給シリンジと排出シリンジを供給、保管することができる。
 また、供給口と排出口を培養液の交換時に一度きりしか使用しない場合でも、回転培養装置に複数の回転軸を備え、その端部に回転培養ベッセルを装着して、複数の回転培養ベッセルで同時に培養する場合には、ベッセルの数に供給口と排出口の対の数を掛けただけの供給シリンジと排出シリンジの本数が必要になるが、その場合にも周囲に複数のホルダーを設けた回転レボルバー式のスタッカを用いることで対応することができる。
本発明に係る自動細胞培養装置の外カバーの一部を省略した全体斜視図である。 同じく自動細胞培養装置の内部構造を示す側面図である。 同じく自動細胞培養装置の内部構造を示す正面図である。 軸方向移動手段を備えた回転培養装置の機構部を示す斜視図である。 供給用XYZ軸移動機構を示す斜視図である。 排出用XYZ軸移動機構を示す斜視図である。 回転レボルバー式のスタッカを備えた供給用保冷庫の斜視図である。 回転レボルバー式のスタッカを備えた排出用保冷庫の斜視図である。 本発明に係る回転培養ベッセルの正面側から見た斜視図である。 同じく回転培養ベッセルの背面側から見た斜視図である。 回転培養ベッセルの正面図である。 回転培養ベッセルの左側面図である。 回転培養ベッセルの背面図である。 図11のA-A線断面図である。 図11のB-B線断面図である。 供給口と排出口の第1対を用いた培養液の交換作業中の状態を示す説明図である。 供給口と排出口の第2対を用いた培養液の交換作業中の状態を示す説明図である。 供給口と排出口の第3対を用いた培養液の交換作業中の状態を示す説明図である。 本発明の自動細胞培養装置(自動培養)と従来の回転培養装置(手動培養)によって、日本白色兎の骨髄細胞を用いた軟骨組織構築実験を行った結果を示す軟骨組織の外観を示す図面代用写真である。 軟骨基質GAGの生産量を比較した結果を示すグラフである。 アルシアンブルー染色した軟骨組織の顕微鏡写真である。 トルイジンブルー染色した軟骨組織の顕微鏡写真である。 HE染色した軟骨組織の顕微鏡写真である。
 次に、添付図面に示した実施形態に基づき、本発明を更に詳細に説明する。図1~図8は本発明の自動細胞培養装置を示し、図9~図15は本発明の回転培養ベッセルを示し、図中符号1は自動細胞培養装置、2は回転培養ベッセル、3は回転培養装置、4は供給用保冷庫、5は排出用保冷庫、6は軸方向移動手段、7は供給用XYZ軸移動機構、8は排出用XYZ軸移動機構をそれぞれ示している。
 本発明の自動細胞培養装置1は、回転培養ベッセル2を用い、細胞を無重力に近い微小重力環境で3次元培養するものであり、空調機能を備えた密閉筐体9内の中段に、回転培養ベッセル2を単又は複数個装着して培養する回転培養装置3のインキュベータボックス10を配置するとともに、下段に培養液を供給する供給シリンジ11を収納する供給用保冷庫4、上段に培養液を回収する排出シリンジ12を収納する排出用保冷庫5を配置し、前記インキュベータボックス10、供給用保冷庫4及び排出用保冷庫5の前面には自動開閉扉(図示せず)が設けられ、前記回転培養装置3には前記インキュベータボックス10内に設けられた水平な回転軸13をその軸方向に前後移動する軸方向移動手段6を備え、該回転軸13の端部に前記回転培養ベッセル2を着脱可能に装着し、前記供給用保冷庫4の前面には供給用XYZ軸移動機構7を配置するとともに、該機構で駆動される供給可動部に前記供給シリンジ11を上向きに保持する固定チャック14とピストン11Aを押し上げる押上手段15とを備え、前記排出用保冷庫5の前面には排出用XYZ軸移動機構8を配置するとともに、該機構で駆動される排出可動部に前記排出シリンジ12を下向きに保持する固定チャック16とピストン12Aを引き上げる引上手段17とを備えたものである。本実施形態では、前記回転軸13の軸方向をX軸、それと直交する水平方向をY軸、鉛直方向をZ軸として説明する。
 本実施形態では、共通の軸方向移動手段6でX軸方向へ前後移動する複数の回転軸13,…が上下方向に重なることなく並設されているとともに、各回転軸13に前記回転培養ベッセル2を装着した際に、隣接する回転培養ベッセル2,2が互いに干渉しないように、前記回転軸13,…の端部の前後位置をずらせて設定している。本実施形態では、2本の回転軸13,13を平行に並設して、同時に二つの回転培養ベッセル2,2で培養することができるようにしている。
 次に、前記回転培養ベッセル2の詳細を図9~図15に基づいて説明する。前記回転培養ベッセル2は、偏平円筒形の培養容器18の外周円筒面に、細胞と培養液からなる細胞液を注入する細胞液注入口19を設けるとともに、前記培養容器18の前記回転軸13に直交する正面にエア抜き口20と細胞取出口21を設け、そして前記培養容器18の外周円筒面に、培養液交換用の供給口22と排出口23とを少なくとも一対設け、この対となった供給口22と排出口23は互いに180°反対向きに配向させるとともに、前記排出口23の中心線は回転中心を通り、前記供給口22の中心線は回転中心に対して偏心させている。
 本実施形態では、供給口22と排出口23を前記培養容器18の外周円筒面に3対設けているので、それらをA,B,Cで区別することにする。また、各供給口22A,22B,22Cと各排出口23A,23B,23Cは等角間隔毎に設けている。本実施形態では、細胞液注入口19と細胞取出口21を別々に設けたが、これを一つの口で供用することも可能である。ここで、前記培養容器18の培養空間の半径をrとしたとき、前記供給口22の中心線と回転中心との距離を0.5r~0.9rに設定している。
 更に、前記回転培養ベッセル2は、背面側の中心部に、前記回転培養装置3の回転軸13の端部に着脱可能に装着する取付部24を突設している。この取付部24の構造は、前記回転軸13の端部に対して常に同じ回転位置で取付けることができるようになっている。また、本実施形態の回転培養ベッセル2の容積は、培養液が高価であることから10~20mlを想定しているが、それらは培養する細胞塊の大きさに応じて決定すべきである。
 また、図10、図13、図14及び図15に示すように、前記回転培養ベッセル2の背面側で取付部24の周囲には、空気の取入口25を設け、その内側に設けたガス透過膜26を通して培養液中に酸素を供給し、二酸化炭素を排出できるようになっており、また正面側は内部を透視可能なように観察窓27となっている。
 更に、図15に示すように、前記供給口22と排出口23はセプタムシール構造とし、培養液交換のために用いる供給シリンジ11と排出シリンジ12はそれぞれ先端に前記セプタムシール28を貫通可能な注射針11B,12Bを有し、前記供給口22を下向き、前記排出口23を上向きとし、前記供給シリンジ11から新しい培養液を下側から注入しながら前記排出シリンジ12で古い培養液を上側から吸入するとともにエア抜きをすることができるようになっている。前記供給口22と排出口23をセプタムシール構造としたことにより、前記供給シリンジ11と排出シリンジ12の先端に装着した注射針11B,12Bをセプタムシール28に貫通させて気密状態で接続することができ、また注射針11B,12Bを抜いてもその弾性復元によって貫通穴が塞がり、気密状態を維持することができるようになっている。
 更に詳しくは、前記供給口22と排出口23は、図15に示すように、同じ断面構造となっておいる。前記供給口22は、前記培養容器18の外周円筒面の回転中心から偏心して培養空間に連通するように接続したポート29の端部内に、シリコンゴムからなるセプタムシール28を配置し、該セプタムシール28の外周部を、前記ポート29に螺合した押えキャップ30で押圧して密閉した構造となっている。一方、前記排出口23は、前記培養容器18の外周円筒面の回転中心を通る半径方向に向けて培養空間に連通するように接続したポート29の端部内に、シリコンゴムからなるセプタムシール28を配置し、該セプタムシール28の外周部を、前記ポート29に螺合した押えキャップ30で押圧して密閉した構造となっている。更に、前記セプタムシール構造の前記供給口22と排出口23を構成するポート29の内部で、前記セプタムシール28の背後に注射針11B又は12Bを受け入れる直径の大きな導入流路31と、該導入流路31と前記培養容器18の培養空間との間に直径の小さなオリフィス流路32を設けている。
 そして、前記供給口22のセプタムシール28を貫通させた前記供給シリンジ11の注射針11Bの先端部は、前記ポート29内の導入流路31に受け入れられるので、前記注射針11Bの位置がセプタムシール28の中心から多少ずれていても、該注射針11Bの先端がポート29に接触することがなく、全く問題なく使用することができる。そのため、前記供給用XYZ軸移動機構7の位置決め精度に対する要求が低くなるので、安価なアクチュエータを用いて構成できる。また、前記オリフィス流路32を設けたので、前記導入流路31に注入された培養液は、直径の小さなオリフィス流路32を通って培養空間に導入されるので、培養空間内に生じる擾乱を最小限に抑制することができる。また、前記排出口23のプタムシール28を貫通させた前記排出シリンジ12の注射針12Bの先端部も前記ポート29内の導入流路31に受け入れられ、吸引することによりオリフィス流路32を通して古い培養液と、内部に溜まったエアを抜くことができる。尚、前記導入流路31にエアが溜まっていても、培養液の表面張力によって回転培養中はエアがオリフィス流路32を通して培養空間に流入することはない。
 また、前記細胞液注入口19とエア抜き口20は、図14に示すように、前記同様のセプタムシール構造とし、前記細胞取出口21は開口が大きなゴムキャップ構造とした。つまり、前記細胞液注入口19は、前記排出口23と同様に、回転中心を通る半径方向に向けて培養空間に連通するように接続したポート29の端部内に、シリコンゴムからなるセプタムシール28を配置し、該セプタムシール28の外周部を、前記ポート29に螺合した押えキャップ30で押圧して密閉した構造となっている。前記エア抜き口20と細胞取出口21は、前記培養容器18の正面で回転中心に対して反対側の周縁部にそれぞれ設けている。前記エア抜き口20は、培養容器18の正面に突設したポート33の端部内に、シリコンゴムからなるセプタムシール34を配置し、該セプタムシール34の外周部を、前記ポート33に螺合した押えキャップ35で押圧して密閉した構造となっている。そして、前記細胞液注入口19のポート29の内部とエア抜き口20のポート33の内部にも、前記同様に導入流路31とオリフィス流路32を設けている。更に、前記エア抜き口20のオリフィス流路32が培養空間に開口した内部には、前記回転培養ベッセル2を水平に置いたときに、内部のエアを溜める凹部36を形成している。また、前記細胞取出口21は、内径の大きなポート37の内部にゴムキャップ38が密嵌し、該ゴムキャップ38の先端面は、回転培養中に培養液に擾乱が生じないように、培養空間の内壁と面一にしている。
 そして、前記回転培養ベッセル2に細胞と培養液を注入するには、該回転培養ベッセル2の観察窓27を上側にして回転軸を鉛直方向に向けて静置し、前記細胞液注入口19のセプタムシール28に細胞と培養液の入った細胞液注入用シリンジ(図示せず)の注射針を突き刺し、前記エア抜き口20のセプタムシール34に空のエア抜き用シリンジ(図示せず)の注射針を突き刺し、細胞液注入用シリンジから細胞液を培養空間に注入しながら、エア抜き用シリンジでエアを吸い出すのである。この際に、前記培養空間のエアは最後に凹部36に溜まり、該凹部36に溜まったエアも培養空間から抜き去られる。
 次に、前記回転培養ベッセル2を用いて、培養液を自動的に交換しながら細胞を培養する自動細胞培養装置1の詳細を図1~図8、図16~図18に基づいて説明する。前記密閉筐体9は、図1に示すように、正面と一側面に開閉扉を設けてあり、正面には前記回転培養装置3、供給用保冷庫4及び排出用保冷庫5に対応して3枚の点検扉39,…を設けている。尚、前記密閉筐体9の正面パネルは、透明にして内部を透視している。また、前記密閉筐体9の側面には、一枚の作業扉40を設け、一連の培養を行うための準備作業、あるいは培養後の処理において、該作業扉40を開放して前記回転軸13に回転培養ベッセル2を着脱し、また供給用保冷庫4の内部に供給シリンジ11,…を着脱するとともに、排出用保冷庫5の内部に排出シリンジ12,…を着脱する。尚、前記作業扉40は、透明にして内部を透視している。そして、前記密閉筐体9の天井部には、フィルター機能を備えた空調機41を設け、内部を適温に保つとともに、空気を清浄化している。
 前記回転培養装置3は、図1~図4に示すように、温度管理が可能な前記インキュベータボックス10内に、水平な回転軸13を設けるとともに、背後に該回転軸13を所定の回転数で駆動する回転制御機構42を備え、前記回転軸13を回転制御機構42とともに軸方向に前後移動する軸方向移動手段6を備えている。前記インキュベータボックス10は、前面に自動開閉扉を設け、前記作業扉40を設けた側の側面に手動で開閉する扉43を設けている。本実施形態では、2本の回転軸13,13が水平位置に平行に配置され、それぞれが円筒状の軸受44,44で回転可能且つ軸方向スライド可能に支持されている。また、前記軸方向移動手段6は、前記インキュベータボックス10の後部に設けたリニアガイド45に沿って可動部46が前後方向へ移動する構造である。そして、前記インキュベータボックス10の後面から後方へ延びた前記回転軸13,13の端部を、前記軸方向移動手段6の可動部46に取付けられた回転制御機構42に、タイミングベルトを介して連動させている。ここで、前記回転制御機構42は、前記回転軸13,13をそれぞれ独立して回転制御可能なように2系列独立してあり、回転数と回転位置を精確に制御できるように、ステッピングモータあるいはサーボモータで駆動し、回転軸13に固定したマーカーをセンサーで読み取る等により回転位置を制御している。また、前記回転軸13,13の先端位置は、前述のように、前後にずらせており、それぞれに細胞液を満たした回転培養ベッセル2を手作業で着脱するのである。
 また、前記供給用保冷庫4は、図1~図3及び図7に示すように、温度管理が可能なボックスの前面に自動開閉扉を設け、前記作業扉40を設けた側の側面に手動で開閉する扉47を設け、内部に回転レボルバー式のスタッカ48を備えている。前記スタッカ48は、ステッピングモータ49で制御される鉛直方向の回転軸50を備え、該スタッカ48の周囲に前記供給シリンジ11を、注射針11Bを上側にして鉛直方向に向けた状態で側方から弾性的に着脱可能なホルダー51,…を複数設けている。前記スタッカ48のホルダー51は、前記供給シリンジ11の上下部を受け入れて係止するU字溝を備えるとともに、弾性的に両側から挟んで保持する挟持部を備えたものであり、側方から供給シリンジ11を押し込めば自動的に保持され、また供給シリンジ11を掴んで側方へ引き出せば簡単に取り出せるようになっている。
 また、前記排出用保冷庫5は、図1~図3及び図8に示すように、前記供給用保冷庫4と略同じ構造であるが、温度管理が可能なボックスの前面に自動開閉扉を設け、前記作業扉40を設けた側の側面に手動で開閉する扉52を設け、内部に回転レボルバー式のスタッカ53を備えている。前記スタッカ53は、ステッピングモータ54で制御される鉛直方向の回転軸55を備え、該スタッカ53の周囲に前記排出シリンジ12を、注射針12Bを下側にして鉛直方向に向けた状態で側方から弾性的に着脱可能なホルダー56,…を複数設けている。このスタッカ53の前記スタッカ48と略同じ構造である。
 次に、前記供給シリンジ11を搬送する供給用XYZ軸移動機構7を、図2、図3及び図5に基づいて説明する。前記供給用XYZ軸移動機構7は、前記密閉筐体9内で供給用保冷庫4の前面に設けられ、密閉筐体9内の底部に固定されたY軸移動機構57と、該Y軸移動機構57の可動部に固定されたZ軸移動機構58と、該Z軸移動機構58の可動部に固定されたX軸移動機構59とを備え、更に該X軸移動機構59の可動部に前記供給シリンジ11を上向きに保持する固定チャック14とピストン11Aを押し上げる押上手段15とを備えている。前記Y軸移動機構57、Z軸移動機構58及びX軸移動機構59は、リニアガイドとボールねじ駆動のステッピングモータで構成されているが、特に限定されない。また、前記固定チャック14は、前記供給シリンジ11のシリンダーのフランジ部を係止するU字溝板60と側面を挟持するエア駆動のハンド61とで構成されている。また、前記押上手段15は、前記固定チャック14とともに前記X軸移動機構59の可動部に固定したZ軸移動機構62の可動部に、前記ピストン11Aの下端に当接する押上板63を突設した構造である。
 最後に、前記排出シリンジ12を搬送する排出用XYZ軸移動機構8を、図2、図3及び図6に基づいて説明する。前記排出用XYZ軸移動機構8は、前記密閉筐体9内で排出用保冷庫5の前面に設けられ、密閉筐体9内の前側上部に固定されたY軸移動機構64と、該Y軸移動機構64の可動部に固定されたZ軸移動機構65と、該Z軸移動機構65の可動部に固定されたX軸移動機構66とを備え、更に該X軸移動機構66の可動部に前記排出シリンジ12を下向きに保持する固定チャック16とピストン12Aを引き上げる引上手段17とを備えている。前記固定チャック16は、前記排出シリンジ12のシリンダーのフランジ部を係止するU字溝板67と側面を挟持するエア駆動のハンド68とで構成されている。また、前記引上手段17は、前記固定チャック16とともに前記X軸移動機構66の可動部に固定したZ軸移動機構69の可動部に、前記ピストン12Aの上端のフランジ部に係止して引き上げる引上板70を突設した構造である。
 本発明に係る自動細胞培養装置1を用いて細胞を培養する手順を以下に示す。先ず、前記密閉筐体9の作業扉40を開き、前記供給用保冷庫4の扉47を開いて、前記スタッカ48に所定数の供給シリンジ11,…を装填し、扉47を閉じる。また、前記排出用保冷庫5の扉52を開いて、前記スタッカ53に前記供給シリンジ11,…と同数の排出シリンジ12,…を装填し、扉52を閉じる。一方、前記回転培養装置3のインキュベータボックス10の扉43を開いて、前記回転軸13の端部に、細胞液を充填した前記回転培養ベッセル2の取付部24を装着し、扉43を閉じる。この際、前記回転軸13に対して回転培養ベッセル2は常に精確な回転位置に固定される。それから、前記作業扉40を閉じ、密閉筐体9の内部をインキュベータボックス10の内部とともに所定温度に維持する。これは、培養液を交換する際に、前記インキュベータボックス10の前面の自動開閉扉を開いたときに、インキュベータボックス10の内部の温度が急激に変化して、培養条件が変化することを防止するためである。また、前記供給用保冷庫4と排出用保冷庫5の内部の温度は、インキュベータボックス10の内部の温度よりも低く設定し、使用前の新しい培養液と使用後の古い培養液を、状態を変化させることなく保存するためである。
 そして、前記回転制御機構42を駆動して所定回転数で回転培養ベッセル2を回転させて細胞を培養する。それから、一定期間培養した後、前記回転制御機構42を制御して前記回転培養ベッセル2の第1の前記供給口22Aが鉛直方向下向き、前記排出口23Aが鉛直方向上向きの状態で停止させる。そして、前記インキュベータボックス10の前面の自動開閉扉を開いて、前記軸方向移動手段6を駆動して前方へ移動させ、前記回転培養ベッセル2をインキュベータボックス10の前側空間に位置させる。それと同時に、又は前後して、前記供給用保冷庫4と排出用保冷庫5の前面の自動開閉扉を開き、前記供給用XYZ軸移動機構7と排出用XYZ軸移動機構8をそれぞれ独立して駆動し、前記固定チャック14を供給用保冷庫4の内部に進入させ、所定回転位置にあるスタッカ48に保管されている供給シリンジ11を該固定チャック14で保持した後、供給用保冷庫4の前面空間に取り出すとともに、前記固定チャック16を排出用保冷庫5の内部に進入させ、所定回転位置にあるスタッカ53に保管されている排出シリンジ12を該固定チャック16で保持した後、排出用保冷庫5の前面空間に取り出す。
 そして、前記回転培養ベッセル2の第1の前記供給口22Aの直下に供給シリンジ11を位置させる一方、前記排出口23Aの直上に前記排出シリンジ12を位置させる。そして、図16に示すように、前記供給用XYZ軸移動機構7のZ軸移動機構58と、前記排出用XYZ軸移動機構8のZ軸移動機構65を同調させて駆動し、前記供給シリンジ11の注射針11Bを供給口22Aのセプタムシール28を貫通させると同時に、前記排出シリンジ12の注射針12Bを排出口23Aのセプタムシール28を貫通させて接続する。この状態を維持しながら、前記押上手段15の押上板63を上昇させて供給シリンジ11のピストン11Aを押し上げて、新しい培養液を回転培養ベッセル2の培養空間内に注入すると同時に、前記引上手段17の引上板70を上昇させて排出シリンジ12のピストン12Aを引き上げて、回転培養ベッセル2の培養空間内から古い培養液を吸い出し、この際に培養中に培養空間内に溜まったエアも同時に吸い出すのである。こうして、前記回転培養ベッセル2の培養液を交換した後、前記供給用XYZ軸移動機構7のZ軸移動機構58と、前記排出用XYZ軸移動機構8のZ軸移動機構65を同調させて駆動し、前記供給シリンジ11の注射針11Bを供給口22Aから抜き去ると同時に、前記排出シリンジ12の注射針12Bを排出口23Aから抜き去る。そして、前記供給用XYZ軸移動機構7と排出用XYZ軸移動機構8を駆動して、使用済の供給シリンジ11と排出シリンジ12をそれぞれ、前記スタッカ48とスタッカ53の元の位置に装填し、固定チャック14と固定チャック16を開いて供給用保冷庫4と排出用保冷庫5から引き出し、初期位置に待機させる。その一方で、前記軸方向移動手段6を駆動して前記回転培養ベッセル2をインキュベータボックス10の内部に格納し、それぞれの自動開閉扉を閉じた後、前記回転制御機構42を駆動して所定回転数で回転培養ベッセル2を回転させて細胞を培養する。
 上記の培養液交換作業を、前記回転培養ベッセル2の供給口22Bと排出口23Bの対を用いて図17に示すように行い、その後、供給口22Cと排出口23Cの対を用いて図18に示すように繰り返し行うのである。その場合、前記スタッカ48とスタッカ53は、順次新しい供給シリンジ11と排出シリンジ12が、正面側に来るように所定角度だけ回転させておくのである。
 本発明で採用している回転培養装置3は、回転培養ベッセル2の内部で細胞は沈降することなく浮遊状態に維持することができるので、三次元集合体を形成することができること、攪拌ストレスによる壊死を回避することができること、効率的に分化誘導物質を作用させることができること、老廃物の除去・養分の供給が可能であること、といった利点がある。本発明では、複数の供給シリンジ11,…を用いて順次培養液を供給することができるので、細胞の培養ステージに応じて最適な成分配合の培養液を用いることもできる。
 また、培養期間中に、培養の状況を確認することは重要である。培養の状況としては、(1)培養中にpHの変化や培地添加物の消費、老廃物の蓄積等による培地の色の変化の確認、(2)コンタミネーションによる培地の濁りの有無、(3)浮遊細胞から三次元の組織が形成されたかどうかの確認等が挙げられる。本発明では、前記回転培養ベッセル2の正面には観察窓27を設けているので、該観察窓27に向けて配置した撮像カメラや各種の分析機器を通して内部の状況を観察することができ、また画像処理によって現状を分析し、それに基づいて回転制御機構42をフィードバック制御したり、培養液の交換タイミングを自動的に探るといったことも可能となる。
 次に、本発明の自動細胞培養装置と、比較対象として手培養(Synthecon社製RCCS-4Dを用いて目視にて回転数を調整)による回転培養を行った。日本白色兎の骨髄細胞を用いた軟骨組織構築実験を行って両者を比較した。実験手順を以下に示す。
(実験の手順)
(1)日本白色兎10日令2匹の長骨より骨髄細胞を採取し、20mlのstandard mediumに懸濁した。
 ・Standard Medium: DMEM (Dulbeccco’s Modified Eagles Medium (DMEM, Sigma, St Louis MO) + 10% FBS (fetal bovine serum) + antibiotic-antimicotic(Invitrogen, Carlsbad, CA)
(2)次に75Tフラスコ(BD)に15mlのstandard mediumとともに播種し、5%CO2,37℃で3週間培養した。
(3)次にトリプシンにより細胞を剥がし、bioreactor mediumに懸濁し、50ccベッセルに移した。
 ・Bioreactor Medium: DMEM + 50μg/ml ascorbic acid (WAKO) +  40μg/ml L-proline +ITS culture suppleent (BD Biosciences), 10-7 dexamethasone (Sigma), 10ng/ml TGF-β3 (Sigma) and abtibiotic-antimicotic (BD)
 ・実施例で使用した50ccベッセルは、図9~図15に示したものである。
 ・使用した細胞数は、自動細胞培養装置による培養(実施例)、手動培養(比較例)とも同じである。
(4)2週間培養し、組織を取りだし、肉眼所見観察、切片を作製し、組織化学的手法により評価した。
 本発明の自動細胞培養装置による培養液の交換時に、細胞組織がベッセルの壁面に衝突することはなかった。また、供給シリンジ及び排出シリンジの注射針とセプタムシールから培養液の漏れはなかった。そして、ベッセル中の古い培養液が、下から順に新しい培養液へ交換されることが確認できた。また、培養液交換後にベッセルの上部にガス溜まりは存在しなかった。
(培養結果)
 図19に培養によって構築した軟骨組織の外観を示している。図19の左側は自動培養(実施例)の結果を示し、右側は手動培養(比較例)の結果を示している。培養した軟骨組織の肉眼所見では、自動培養より手動培養による組織の方が大きいという結果が得られた。
 図20は、軟骨基質GAGの生産量を比較した結果を示すグラフである。この回の培養では自動培養の方が高い値を示している。数回の実験で、軟骨基質GAGの生産量は、自動培養が手動培養に比べ、同じか、高い値を示していた。
 最後に、培養によって構築した軟骨組織の組織学的評価を行った結果を図21~図23に示す。図21は、軟骨組織をアルシアンブルー染色した結果を示す顕微鏡写真である。両者とも、軟骨基質が水色に染色され、豊富に軟骨基質が産生されていることが確認できた。ここで、軟骨基質が水色に染色された部分は、図21中では濃い色で表示されている。
 図22は、軟骨組織をトルイジンブルー染色した結果を示す顕微鏡写真である。両者とも軟骨基質が青紫色に染色され、豊富に軟骨基質が産生されていることが確認できた。この場合も、軟骨基質が青紫色に染色された部分は、図22中では濃い色で表示されている。
 図23は、軟骨組織をHE染色(ヘマトキシリン・エオシン染色)した結果を示す顕微鏡写真である。軟骨組織はヘマトキシリンによって青紫色に染色され、自動培養、手動培養のいずれも青紫色に染色された成熟軟骨様細胞が見られた。この場合も、青紫色に染色された部分は、図23中では濃い色で表示されている。しかし、エオシンによって、細胞質、軟部組織の結合組織、赤血球、線維素、内分泌顆粒などが明るい赤、あるいは青藍色に染まるので、モノトーンで表示した場合には、同じく濃い色で表示されるので、濃淡のみでは軟骨組織と区別ができない。
 以上のように、本発明の自動細胞培養装置を用いた場合と手動にて回転制御を行いながら培養した場合を比較した。兎骨髄細胞をRWVベッセルによる回転培養装置により培養した結果では、自動培養が品質面において手動培養に比べ少なくとも同等以上の品質を与えることが分かった。
 本発明の自動細胞培養装置は、GMP(Good Manufacturing Practice)対応のCPC(セルプロセッシングセンター)を持たない医療機関でも再生医療の臨床適応を目指すことができるようになり、再生医療を飛躍的に普及させることができる。代表的にはヒト骨髄細胞から移植可能な軟骨組織を構築するために使用することができる。更に、軟骨再生以外にも再生医療の研究は、網膜剥離症や白内障などを対象とした角膜再生、骨欠損や骨粗しょう症を対象とした骨再生、糖尿病などを対象とした膵臓(ラ氏島)再生、拡張型心筋症などを対象とする心筋再生、パーキンソン病やアルツハイマー症を対象とする神経再生などにも及んでいるので、これら軟骨再生以外の再生医療においても、本発明の自動細胞培養装置が有効であると考えられる。本発明の自動細胞培養装置は、将来的には軟骨再生医療のみならず再生医療全般に適応され得るものであり、再生医療の普及のための必須かつ重要な基盤技術となるものと確信する。
1 自動細胞培養装置、    2 回転培養ベッセル、
3 回転培養装置、      4 供給用保冷庫、
5 排出用保冷庫、      6 軸方向移動手段、
7 供給用XYZ軸移動機構、 8 排出用XYZ軸移動機構、
9 密閉筐体、        10 インキュベータボックス、
11 供給シリンジ、     11A ピストン、
11B 注射針、       12 排出シリンジ、
12A ピストン、      12B 注射針、
13 回転軸、        14 固定チャック、
15 押上手段、       16 固定チャック、
17 引上手段、       18 培養容器、
19 細胞液注入口、     20 エア抜き口、
21 細胞取出口、
22,22A,22B,22C 供給口、
23,23A,23B,23C 排出口、
24 取付部、        25 取入口、
26 ガス透過膜、      27 観察窓、
28 セプタムシール、    29 ポート、
30 キャップ、       31 導入流路、
32 オリフィス流路、    33 ポート、
34 セプタムシール、    35 キャップ、
36 凹部、         37 ポート、
38 ゴムキャップ、     39 点検扉、
40 作業扉、        41 空調機、
42 回転制御機構、     43 扉、
44 軸受、         45 リニアガイド、
46 可動部、        47 扉、
48 スタッカ、       49 ステッピングモータ、
50 回転軸、        51 ホルダー、
52 扉、          53 スタッカ、
54 ステッピングモータ、  55 回転軸、
56 ホルダー、       57 Y軸移動機構、
58 Z軸移動機構、     59 X軸移動機構、
60 U字溝板、       61 ハンド、
62 Z軸移動機構、     63 押上板、
64 Y軸移動機構、     65 Z軸移動機構、
66 X軸移動機構、     67 U字溝板、
68 ハンド、        69 Z軸移動機構、
70 引上板。

Claims (9)

  1.  細胞と培養液を内部に入れて回転培養装置の水平な回転軸に装着し、細胞を無重力に近い微小重力環境で3次元培養するために用いる回転培養ベッセルであって、偏平円筒形の培養容器の適所に、初期に細胞と培養液を投入し、また培養した細胞を取り出すための単又は複数の出入口を設けるとともに、培養容器の外周円筒面に、培養液交換用の供給口と排出口とを少なくとも一対設け、この対となった供給口と排出口は互いに180°反対向きに配向させるとともに、前記排出口の中心線は回転中心を通り、前記供給口の中心線は回転中心に対して偏心させたことを特徴とする回転培養ベッセル。
  2.  前記培養容器の培養空間の半径をrとしたとき、前記供給口の中心線と回転中心との距離を0.5r~0.9rに設定した請求項1記載の回転培養ベッセル。
  3.  前記供給口と排出口の対を前記培養容器の外周円筒面に3対設けるとともに、各供給口と各排出口は等角間隔毎に設けている請求項1又は2記載の回転培養ベッセル。
  4.  前記供給口と排出口はセプタムシール構造とし、培養液交換のために用いる供給シリンジと排出シリンジはそれぞれ先端に前記セプタムシールを貫通可能な注射針を有し、前記供給シリンジから新しい培養液を注入しながら前記排出シリンジで古い培養液を吸入するとともにエア抜きをすることを可能とした請求項1~3何れかに記載の回転培養ベッセル。
  5.  前記培養容器の外周円筒面に、細胞と培養液からなる細胞液を注入する細胞液注入口を設けるとともに、前記培養容器の回転軸に直交する正面にエア抜き口と細胞取出口を設け、前記細胞液注入口とエア抜き口とはセプタムシール構造とし、前記細胞取出口は開口が大きなゴムキャップ構造とした請求項1~4何れかに記載の回転培養ベッセル。
  6.  前記セプタムシール構造の各口は、セプタムシールの背後に注射針を受け入れる直径の大きな導入流路と、該導入流路と前記培養容器の培養空間との間に直径の小さなオリフィス流路を設けた請求項4又は5記載の回転培養ベッセル。
  7.  請求項1~6何れかに記載した前記回転培養ベッセルを用い、細胞を無重力に近い微小重力環境で3次元培養するための自動細胞培養装置であって、空調機能を備えた密閉筐体内の中段に回転培養装置のインキュベータボックスを配置するとともに、下段に培養液を供給する供給シリンジを収納する供給用保冷庫、上段に培養液を回収する排出シリンジを収納する排出用保冷庫を配置し、前記インキュベータボックス、供給用保冷庫及び排出用保冷庫の前面には自動開閉扉が設けられ、前記回転培養装置には前記インキュベータボックス内に設けられた水平な回転軸をその軸方向に前後移動する軸方向移動手段を備え、該回転軸の端部に前記回転培養ベッセルを着脱可能に装着し、前記供給用保冷庫の前面には供給用XYZ軸駆動機構を配置するとともに、該機構で駆動される供給可動部に前記供給シリンジを上向きに保持する固定チャックとピストンを押し上げる押上手段とを備え、前記排出用保冷庫の前面には排出用XYZ軸駆動機構を配置するとともに、該機構で駆動される排出可動部に前記排出シリンジを下向きに保持する固定チャックとピストンを引き上げる引上手段とを備え、前記各開閉扉を開き、前記軸方向移動手段を駆動して前記インキュベータボックス内から回転培養ベッセルを前面側に出現させるとともに、前記供給口を下側、前記排出口を上側に向けて停止し、前記供給用XYZ軸駆動機構と固定チャックを駆動して前記供給用保冷庫内から供給シリンジを取り出して前記回転培養ベッセルの下側に位置させる一方、前記排出用XYZ軸駆動機構と固定チャックを駆動して前記排出用保冷庫内から排出シリンジを取り出して前記回転培養ベッセルの上側に位置させ、前記供給用XYZ軸駆動機構と排出用XYZ軸駆動機構を駆動して前記供給シリンジと排出シリンジを前記供給口と排出口に同時に気密状態で接続した後、前記押上手段と引上手段を同調して駆動し、前記回転培養ベッセル内の培養液を交換することを特徴とする自動細胞培養装置。
  8.  前記供給用保冷庫と排出用保冷庫の内部には、ステッピングモータで制御される鉛直方向の回転軸を備えた回転レボルバー式のスタッカを備え、該スタッカの周囲に前記シリンジを鉛直方向に向けた状態で側方から弾性的に着脱可能なホルダーを複数設けている請求項7記載の自動細胞培養装置。
  9.  前記回転培養装置には、共通の軸方向移動手段で前後移動する複数の回転軸が上下方向に重なることなく並設されているとともに、各回転軸に前記回転培養ベッセルを装着した際に、隣接する回転培養ベッセルが互いに干渉しないように、前記回転軸の端部の前後位置をずらせて設定している請求項7又は8記載の自動細胞培養装置。
PCT/JP2010/059754 2009-06-09 2010-06-09 回転培養ベッセル及びそれを用いた自動細胞培養装置 WO2010143651A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011518553A JP5257960B2 (ja) 2009-06-09 2010-06-09 回転培養ベッセル及びそれを用いた自動細胞培養装置
US13/375,606 US10287539B2 (en) 2009-06-09 2010-06-09 Rotating culture vessel and automatic cell culture apparatus using same
US16/365,524 US10597621B2 (en) 2009-06-09 2019-03-26 Rotating culture vessel and automatic cell culture apparatus using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-138475 2009-06-09
JP2009138475 2009-06-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/375,606 A-371-Of-International US10287539B2 (en) 2009-06-09 2010-06-09 Rotating culture vessel and automatic cell culture apparatus using same
US16/365,524 Division US10597621B2 (en) 2009-06-09 2019-03-26 Rotating culture vessel and automatic cell culture apparatus using same

Publications (1)

Publication Number Publication Date
WO2010143651A1 true WO2010143651A1 (ja) 2010-12-16

Family

ID=43308906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059754 WO2010143651A1 (ja) 2009-06-09 2010-06-09 回転培養ベッセル及びそれを用いた自動細胞培養装置

Country Status (3)

Country Link
US (2) US10287539B2 (ja)
JP (1) JP5257960B2 (ja)
WO (1) WO2010143651A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231764A (ja) * 2011-05-08 2012-11-29 Kyokko Denki Kk 細胞集合体選別取得装置及び細胞集合体の選別取得方法
JP2014060939A (ja) * 2012-09-20 2014-04-10 Shimadzu Corp 細胞培養チップ及び細胞培養チップ用ジグ
JP2015073449A (ja) * 2013-10-07 2015-04-20 澁谷工業株式会社 インキュベータ
JP2016506742A (ja) * 2013-02-11 2016-03-07 ジーイー・ヘルスケア・ユーケイ・リミテッド 細胞培養及び/又はバイオマニュファクチャリング用システム
WO2016052657A1 (ja) * 2014-09-30 2016-04-07 国立研究開発法人産業技術総合研究所 万能性幹細胞の培養方法
WO2016125863A1 (ja) * 2015-02-05 2016-08-11 オリンパス株式会社 細胞培養装置
JPWO2019107546A1 (ja) * 2017-11-30 2020-11-19 公立大学法人横浜市立大学 細胞塊を集合させる方法及び細胞塊を集合させる装置
EP3770245A1 (en) 2016-04-27 2021-01-27 JTEC Corporation Large-scale cell culture system
KR20220095755A (ko) * 2020-12-30 2022-07-07 중앙대학교 산학협력단 클리노스탯 및 이에 사용되는 배양디쉬
CN115011476A (zh) * 2022-08-08 2022-09-06 深圳市第二人民医院(深圳市转化医学研究院) 一种细胞培养一体机
CN118240648A (zh) * 2024-05-30 2024-06-25 潍坊易北特生物科技有限公司 一种益生菌接种培育系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8278101B2 (en) * 2009-12-07 2012-10-02 Synthecon, Inc. Stem cell bioprocessing and cell expansion
EP3412762A1 (en) * 2017-06-06 2018-12-12 ProDigest BVBA Gastrointestinal tract simulation system, compartments therefor, and method
US10961495B2 (en) * 2017-10-30 2021-03-30 Cyfuse Biomedical K.K. Cell structure producing apparatus
CN108467834B (zh) * 2018-02-11 2023-07-25 温州医科大学 一种压力可控的小型细胞培养装置
KR102371708B1 (ko) * 2018-12-10 2022-03-07 서울대학교산학협력단 생체환경모사장치 및 방법
GB202003403D0 (en) * 2020-03-09 2020-04-22 Oribiotech Ltd A system for cell processing
CN113322155B (zh) * 2021-05-31 2022-07-22 济南千麦医学检验有限公司 幽门螺旋杆菌用培养箱
CN114395478B (zh) * 2022-01-20 2023-09-29 上海美心华域生物科技有限公司 一种用于生物细胞培养转瓶机

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237203A (ja) * 2007-03-27 2008-10-09 J Tec:Kk 自動細胞培養装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988623A (en) * 1988-06-30 1991-01-29 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Rotating bio-reactor cell culture apparatus
US5262055A (en) * 1992-10-19 1993-11-16 The University Of Utah Implantable and refillable biohybrid artificial pancreas
US5437998A (en) * 1993-09-09 1995-08-01 Synthecon, Inc. Gas permeable bioreactor and method of use
US6022733A (en) * 1997-12-02 2000-02-08 Tam; Yun K. Simulated biological dissolution and absorption system
US6080581A (en) * 1998-07-02 2000-06-27 Charles Daniel Anderson Culture vessel for growing or culturing cells, cellular aggregates, tissues and organoids and methods for using same
US7390653B2 (en) * 2002-12-04 2008-06-24 Synthecon, Inc. Culture chamber for biologicals
US9255243B2 (en) * 2003-10-08 2016-02-09 Wilson Wolf Manufacturing Corporation Cell culture methods and devices utilizing gas permeable materials
JP4749684B2 (ja) 2004-07-02 2011-08-17 株式会社ジェイテック インキュベータ及びそれに用いる培養カセット
JP4549806B2 (ja) 2004-10-25 2010-09-22 川崎重工業株式会社 オートクレーブ滅菌を利用した自動細胞培養装置及びその使用方法
JP5459817B2 (ja) 2004-11-29 2014-04-02 川崎重工業株式会社 多関節型ロボットを備えた自動細胞培養装置
WO2009017765A1 (en) * 2007-07-30 2009-02-05 Peter Florez Disposable mini-bioreactor device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237203A (ja) * 2007-03-27 2008-10-09 J Tec:Kk 自動細胞培養装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231764A (ja) * 2011-05-08 2012-11-29 Kyokko Denki Kk 細胞集合体選別取得装置及び細胞集合体の選別取得方法
JP2014060939A (ja) * 2012-09-20 2014-04-10 Shimadzu Corp 細胞培養チップ及び細胞培養チップ用ジグ
JP2016506742A (ja) * 2013-02-11 2016-03-07 ジーイー・ヘルスケア・ユーケイ・リミテッド 細胞培養及び/又はバイオマニュファクチャリング用システム
JP2015073449A (ja) * 2013-10-07 2015-04-20 澁谷工業株式会社 インキュベータ
EP3202896A4 (en) * 2014-09-30 2018-07-04 JTEC Corporation Method for culturing pluripotent stem cells
WO2016052657A1 (ja) * 2014-09-30 2016-04-07 国立研究開発法人産業技術総合研究所 万能性幹細胞の培養方法
JPWO2016052657A1 (ja) * 2014-09-30 2017-07-20 国立研究開発法人産業技術総合研究所 万能性幹細胞の培養方法
US10696951B2 (en) 2014-09-30 2020-06-30 Jtec Corporation Method for culturing pluripotent stem cells
WO2016125863A1 (ja) * 2015-02-05 2016-08-11 オリンパス株式会社 細胞培養装置
JPWO2016125863A1 (ja) * 2015-02-05 2017-11-16 オリンパス株式会社 細胞培養装置
CN107208017A (zh) * 2015-02-05 2017-09-26 奥林巴斯株式会社 细胞培养装置
EP3770245A1 (en) 2016-04-27 2021-01-27 JTEC Corporation Large-scale cell culture system
JPWO2019107546A1 (ja) * 2017-11-30 2020-11-19 公立大学法人横浜市立大学 細胞塊を集合させる方法及び細胞塊を集合させる装置
JP6989828B2 (ja) 2017-11-30 2022-01-12 公立大学法人横浜市立大学 細胞塊を集合させる方法及び細胞塊を集合させる装置
KR20220095755A (ko) * 2020-12-30 2022-07-07 중앙대학교 산학협력단 클리노스탯 및 이에 사용되는 배양디쉬
KR102437985B1 (ko) 2020-12-30 2022-08-29 중앙대학교 산학협력단 클리노스탯 및 이에 사용되는 배양디쉬
CN115011476A (zh) * 2022-08-08 2022-09-06 深圳市第二人民医院(深圳市转化医学研究院) 一种细胞培养一体机
CN115011476B (zh) * 2022-08-08 2022-10-04 深圳市第二人民医院(深圳市转化医学研究院) 一种细胞培养一体机
CN118240648A (zh) * 2024-05-30 2024-06-25 潍坊易北特生物科技有限公司 一种益生菌接种培育系统
CN118240648B (zh) * 2024-05-30 2024-07-26 潍坊易北特生物科技有限公司 一种益生菌接种培育系统

Also Published As

Publication number Publication date
US10597621B2 (en) 2020-03-24
US20120083029A1 (en) 2012-04-05
US20190225924A1 (en) 2019-07-25
JPWO2010143651A1 (ja) 2012-11-29
US10287539B2 (en) 2019-05-14
JP5257960B2 (ja) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5257960B2 (ja) 回転培養ベッセル及びそれを用いた自動細胞培養装置
Sidar et al. Long-term flow through human intestinal organoids with the gut organoid flow chip (GOFlowChip)
JP5722329B2 (ja) 自動培養装置
US9212344B2 (en) Cell culture device having culture medium replacement function
US9951305B2 (en) Cell culture device and transport device
EP2832847B1 (en) Culture vessel and automated culture apparatus
EP3194150B1 (en) Container for accommodating at least of a least one biologically active fluid and at least one preparatory fluid, and a method therefor
JP4563782B2 (ja) 培養装置
EP2468844A1 (en) Cell culture apparatus
WO2018213721A1 (en) Systems and methods for cell dissociation
EP2505635A1 (en) Cell culture apparatus
JP4845950B2 (ja) 自動培養装置
JP2005304303A (ja) 給排ロボットおよび自動培養装置
CN113755331B (zh) 一种模拟高原环境的细胞培养箱
JP5886455B2 (ja) 自動培養装置
JP2005287466A (ja) 培養処理装置
CN116042396A (zh) 一种类器官自动化跨膜培养装置
WO2018035182A1 (en) Storage and preservation of living tissue allografts
JP5161929B2 (ja) 培養装置
JPS608792B2 (ja) 培養容器搬送装置
JP2005204547A (ja) 自動培養装置の検体管理方法および自動培養装置
JP2017113705A (ja) 無菌試験装置及びそれを用いた試験方法
CN115725413A (zh) 一种一体化的细胞药物密闭生产系统
CN118813412A (zh) 一种无菌全肝脏灌流培养系统
JP2005168323A (ja) 培養処理装置および自動培養装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518553

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13375606

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786182

Country of ref document: EP

Kind code of ref document: A1