WO2010140281A1 - 信号処理装置、信号処理装置の制御方法、制御プログラム、および該制御プログラムを記録したコンピュータ読み取り可能な記録媒体 - Google Patents

信号処理装置、信号処理装置の制御方法、制御プログラム、および該制御プログラムを記録したコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2010140281A1
WO2010140281A1 PCT/JP2010/000299 JP2010000299W WO2010140281A1 WO 2010140281 A1 WO2010140281 A1 WO 2010140281A1 JP 2010000299 W JP2010000299 W JP 2010000299W WO 2010140281 A1 WO2010140281 A1 WO 2010140281A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency component
frequency
harmonic
unit
Prior art date
Application number
PCT/JP2010/000299
Other languages
English (en)
French (fr)
Inventor
合志清一
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/375,251 priority Critical patent/US8655101B2/en
Publication of WO2010140281A1 publication Critical patent/WO2010140281A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/10Image enhancement or restoration using non-spatial domain filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/73Deblurring; Sharpening
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/409Edge or detail enhancement; Noise or error suppression
    • H04N1/4092Edge or detail enhancement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/142Edging; Contouring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/20Circuitry for controlling amplitude response
    • H04N5/205Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic
    • H04N5/208Circuitry for controlling amplitude response for correcting amplitude versus frequency characteristic for compensating for attenuation of high frequency components, e.g. crispening, aperture distortion correction

Definitions

  • the present invention relates to a signal processing device that improves image quality by sharpening an image, a control method for the signal processing device, a control program, and a computer-readable recording medium on which the control program is recorded.
  • a process for sharpening an image is performed by an image processing apparatus or the like in order to improve the image quality of the image.
  • contour compensation is performed to make the rise and fall of an image signal corresponding to the contour portion of an image displayed on the own device steep.
  • This contour compensation is performed by extracting a high frequency component of an image signal (luminance signal) input to a display of a television receiver and adding the extracted high frequency component to the input image signal. Done.
  • the frequency characteristics of the image signal that deteriorates due to processing performed in each circuit in the television receiver is improved, and the apparent image quality is improved.
  • FIG. 19A is a schematic diagram showing a frequency spectrum of an image signal having a sampling frequency fs.
  • FIG. 19B shows the frequency spectrum of the image signal obtained by performing the sharpening process on the image signal having the frequency spectrum shown in FIG. It is a schematic diagram shown.
  • the frequency is 1 ⁇ 2 of the sampling frequency fs as shown in FIG.
  • the frequency component near the Nyquist frequency fs / 2 increases.
  • the above-described sharpening process according to the conventional technique is usually a process of performing a linear operation on an image signal.
  • frequency components higher than the Nyquist frequency high frequency components not included in the image signal to be processed
  • the image quality cannot be improved.
  • Non-Patent Document 1 and Patent Document 3 disclose a technique for increasing the resolution of an image even when the image is enlarged by using autocorrelation between frames or within a frame. .
  • Non-Patent Document 2 a technique for increasing the resolution of an image by using an anisotropic diffusion filter that performs smoothing processing of different degrees in the tangential direction of the edge and the vertical direction of the edge included in the image is disclosed in Non-Patent Document 2. Is disclosed.
  • Patent Document 1 An image using a non-linear circuit for adjusting the coring amount, clipping amount, enhancement amount, limit amount, etc. of the signal to be added to the image signal in order to enhance the high-frequency component and improve the image quality.
  • a processing apparatus is disclosed in Patent Document 1.
  • Non-Patent Document 1 In order to realize the technology disclosed in Non-Patent Document 1, a large-scale LSI (large-scale integration) is required, which increases the cost.
  • Non-Patent Document 2 is not suitable for real-time processing because the processing in the image quality compensation circuit is complicated, so that it can be applied to, for example, a moving image displayed on a television receiver or the like. There is a problem that can not be.
  • Patent Document 1 and Patent Document 2 use nonlinear processing for limited processing such as clipping of a signal to be added to an image signal and suppression of ringing by compensation of a high frequency signal. There is a problem that an image subjected to the enlargement process cannot be sufficiently sharpened.
  • Patent Document 3 has a problem that the degree of improvement varies depending on the original image. That is, depending on the image, there are cases where a great improvement is seen and cases where a great improvement is not seen. Therefore, there is a problem that the degree of improvement varies depending on the area of the image, and in the case of video, the degree of improvement varies depending on the time.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a signal processing device and the like that can sharpen still images and moving images with a simple configuration. .
  • a signal processing apparatus performs a process of sharpening the image on an input signal representing an image, and outputs an output signal representing the sharpened image.
  • a frequency component decomposing means for decomposing the input signal into a plurality of frequency components in different frequency bands, and removing a frequency component in the lowest frequency band from the frequency components decomposed by the frequency component decomposing means.
  • the harmonic generation means is monotonically in a non-linear and broad sense with respect to the frequency component when the sign of the frequency component for which the harmonic is to be generated is maintained and at least when the value of the frequency component is close to 0. It is characterized by comprising non-linear processing means for generating an increasing non-linear processing signal and adding means for generating a harmonic by adding the non-linear processing signal to the frequency component.
  • a control method for a signal processing device performs a process for sharpening the image on an input signal representing an image, and outputs an output signal representing the sharpened image.
  • a frequency component decomposition step for decomposing the input signal into frequency components of a plurality of different frequency bands, and the lowest frequency component among the frequency components decomposed by the frequency component decomposition step.
  • Harmonic generation step for generating each or all of the frequency components excluding frequency components in the frequency band, harmonics generated by the harmonic generation step, and decomposition by the frequency component decomposition step Of the generated frequency components, the frequency components for which no harmonics are generated by the harmonic generation step are synthesized and the output signal is synthesized.
  • the harmonic generation step maintains the sign of the frequency component for which the harmonic is to be generated, and at least the value of the frequency component is in the vicinity of 0.
  • a non-linear processing step for generating a non-linear processing signal that increases monotonously in a broad sense in a non-linear manner with respect to the frequency component, and an adding step for generating a harmonic by adding the non-linear processing signal to the frequency component It is characterized by that.
  • the input signal representing the image is decomposed into frequency components of a plurality of different frequency bands. Then, harmonics are generated for each of some or all of the frequency components excluding the frequency component of the lowest frequency band among the decomposed frequency components. Then, an output signal representing a sharpened image is generated by synthesizing the generated harmonic and a frequency component in which no harmonic is generated among the decomposed frequency components. Furthermore, the generated harmonics have a frequency component for which harmonics are to be generated and the sign of the frequency component is maintained positive and negative, and at least when the value of the frequency component is in the vicinity of 0, The component is added with a nonlinear processing signal that monotonously increases in a broad sense in a nonlinear manner.
  • the generated harmonic is generated, for example, by adding a frequency component that is a target for generating a harmonic and a nonlinear processing signal that has been subjected to nonlinear processing such as squaring the frequency component.
  • the sign of the harmonics maintains the sign of the frequency component for which the harmonics are generated.
  • the harmonics generated by performing such nonlinear processing include high frequency components that are not included in the original frequency components.
  • the output signal synthesized using the generated harmonics includes a frequency component higher than the Nyquist frequency, which is a half of the sampling frequency when the input signal is discretized.
  • the signal processing apparatus can make the rise and fall of the signal corresponding to the contour portion (edge) included in the image steeper than the process of performing the linear operation on the input signal. it can. As a result, the image can be sharpened, and the image quality can be greatly improved.
  • the Nyquist frequency that is half the sampling frequency of the image signal after the enlargement processing is performed in the processing that performs linear computation on the input signal. Higher frequency components cannot be extracted.
  • the signal processing apparatus according to the present invention can add a frequency component higher than the Nyquist frequency of the image signal after the enlargement process to the image signal after the enlargement process.
  • the image quality can be greatly improved.
  • FIG. 5 It is a block diagram which shows the structure of the signal processing apparatus which concerns on one Embodiment of this invention. It is a block diagram which shows the structure of the frequency component decomposition
  • FIG. 5B is a diagram schematically illustrating the waveform of the nonlinear processing target signal generated by the harmonic generation unit illustrated in FIG.
  • FIG. 5C is a diagram schematically showing the waveform of the nonlinear signal generated by the harmonic generation unit shown in FIG. (D) of FIG. 5 is a figure which shows typically the waveform of the code conversion signal produced
  • generation part shown in FIG. (E) of FIG. 5 is a figure which shows typically the waveform of the harmonic produced
  • FIG. 6A is a diagram schematically illustrating a waveform of a signal input to the harmonic generation unit illustrated in FIG.
  • FIG. 6B is a diagram schematically showing a waveform obtained by enhancing the signal shown in FIG.
  • FIG. 9 is a diagram schematically illustrating the waveform of the nonlinear processing target signal generated by the harmonic generation unit illustrated in FIG.
  • FIG. 9C is a diagram schematically showing the waveform of the nonlinear signal generated by the harmonic generation unit shown in FIG. (D) of FIG. 9 is a figure which shows typically the waveform of the differential signal produced
  • FIG. 9 is a figure which shows typically the waveform of the code conversion signal produced
  • FIG. 11B is a diagram schematically illustrating the waveform of the nonlinear processing target signal generated by the harmonic generation unit illustrated in FIG.
  • FIG. 11C is a diagram schematically showing the waveform of the nonlinear signal generated by the harmonic generation unit shown in FIG.
  • FIG. 20 is a schematic diagram illustrating a frequency spectrum of an image signal after a sharpening process is performed on the image signal having the frequency spectrum illustrated in FIG. 19A by the signal processing device illustrated in FIG. 1. It is a figure which shows the image containing the image used as the object which performs a sharpening process.
  • FIG. 14A is an image obtained by enlarging the upper right region of the original image shown in FIG.
  • FIG. 14B is a diagram illustrating an image after the sharpening process according to the related art is performed on the image illustrated in FIG.
  • FIG. 14C is a diagram showing an image after the image sharpening process shown in FIG.
  • FIG. 15A is a schematic diagram illustrating general frequency characteristics of a low-pass filter and a high-pass filter that are used in a pair in wavelet transform and inverse wavelet transform.
  • FIG. 15B shows the frequency characteristics of the low-pass filter and the high-pass filter used as a pair in the wavelet transform and inverse transform used in the frequency component decomposition unit and signal reconstruction unit shown in FIG. It is a schematic diagram shown. It is a block diagram which shows the further another structure of the frequency component decomposition
  • FIG. 19A is a schematic diagram showing a frequency spectrum of an image signal having a sampling frequency fs.
  • FIG. 19B is a schematic diagram showing the frequency spectrum of an image signal obtained by performing sharpening processing on the image signal having the frequency spectrum shown in FIG.
  • FIG. 20 is a schematic diagram showing the frequency spectrum of the image signal after the number of pixels is doubled in the horizontal direction by up-converting the image signal having the frequency spectrum shown in FIG. .
  • FIGS. 1 to 18 An embodiment of the present invention will be described with reference to FIGS. 1 to 18 as follows.
  • the signal processing apparatus 500 performs a sharpening process for sharpening the image on a digital signal representing an image (hereinafter also referred to as an image signal) input from the outside.
  • This is an apparatus for outputting a sharpened image signal.
  • the sharpening processing refers to processing for sharpening (enhancing) the rise and fall of a signal corresponding to a contour portion (edge) included in an image.
  • an image signal input to the signal processing device 500 is referred to as an input signal Sin.
  • the image signal output from the signal processing device 500 is referred to as an output signal Sout.
  • the signal processing device 500 uses a high-frequency component that is not included in the input signal Sin (specifically, a Nyquist frequency that is a half of the sampling frequency when the input signal Sin is discretized). High frequency component) can be included in the output signal Sout. Therefore, when the sharpening process is performed by the signal processing device 500, the rise and fall of the signal corresponding to the edge included in the image is caused as compared with the case where the sharpening process is performed using linear calculation as in the conventional technique. It becomes possible to make it steeper.
  • a high-frequency component that is not included in the input signal Sin (specifically, a Nyquist frequency that is a half of the sampling frequency when the input signal Sin is discretized). High frequency component) can be included in the output signal Sout. Therefore, when the sharpening process is performed by the signal processing device 500, the rise and fall of the signal corresponding to the edge included in the image is caused as compared with the case where the sharpening process is performed using linear calculation as in the conventional technique. It becomes possible to make
  • the image represented by the input signal Sin may be a still image or a moving image.
  • the moving image may be displayed in real time on, for example, a receiver of a standard definition television (SDTV: Standard Definition Television) or a high definition television (HDTV: High Definition Television).
  • SDTV Standard Definition Television
  • HDTV High Definition Television
  • the input signal Sin will be described as being composed of a data string (pixel value series) composed of pixel values of pixels arranged adjacent to each other in the horizontal direction (horizontal direction, main scanning direction) of the image. May be constituted by a data string composed of pixel values of pixels arranged adjacent to each other in the vertical direction (vertical direction, sub-scanning direction).
  • FIG. 1 is a block diagram showing the configuration of the signal processing device 500.
  • the signal processing device 500 includes a frequency component decomposition unit (frequency component decomposition unit) 200, a harmonic group generation unit 100, and a signal reconstruction unit (output signal generation unit) 300.
  • the harmonic group generation unit 100 includes one or more harmonic generation units (harmonic generation means) 101.
  • the harmonic generation unit 101 includes at least a nonlinear processing unit (nonlinear processing means) 102.
  • frequency component decomposition units 200a to 200c described later are simply expressed as “frequency component decomposition unit 200”.
  • signal reconstruction units 300a to 300c described later are not distinguished, they are simply expressed as “signal reconstruction unit 300”.
  • harmonic generation units 101a to 101e described later are simply expressed as “harmonic generation unit 101”.
  • nonlinear processing units 102a to 102e described later are simply expressed as “nonlinear processing unit 102”.
  • the signal processing device 500 When the input signal Sin is inputted from the outside, the signal processing device 500 outputs the output signal Sout by performing the processes shown in (1) to (3) below.
  • the configuration of the frequency component decomposition unit 200 will be described later.
  • any method may be used for decomposing the input signal Sin into frequency components of a plurality of different frequency bands.
  • the multi-resolution analysis is to decompose an input signal into frequency components of a plurality of different frequency bands by sequentially performing a process of decomposing the input signal into a high frequency component and a low frequency component. Since multi-resolution analysis is known, the description thereof is omitted here.
  • any method may be used to realize multi-resolution analysis.
  • a Laplacian Pyramid algorithm may be used, or a wavelet transform (Wavelet Transform) may be used.
  • Wavelet Transform Wavelet Transform
  • the signal processing apparatus 500 includes a part or all of the frequency components excluding the lowest frequency component among the frequency components decomposed by the frequency component decomposition unit 200 (SF n to SF m ; n is equal to or less than m).
  • High frequency components not included in the input signal Sin that is, frequency components higher than the Nyquist frequency
  • the frequency component that is the target of generating the harmonic is not particularly limited, and any frequency component is the target.
  • the harmonic generation part 101 is provided for every frequency component made into the object which produces
  • the signal processing device 500 performs the nonlinear processing among the harmonics (HW n to HW m ) generated by the harmonic group generation unit 100 and the frequency components decomposed by the frequency component decomposition unit 200. Based on the frequency components (SF 1 to SF n ⁇ 1 ) that have not been applied, the signal reconstruction unit 300 performs signal reconstruction to generate an output signal Sout.
  • the signal reconstruction unit 300 reconstructs (restores) the signal by performing processing (synthesis, synthesis) reverse to the decomposition performed by the frequency component decomposition unit 200. For example, when the frequency component decomposition unit 200 performs multi-resolution analysis using wavelet transform, the signal reconstruction unit 300 reconstructs a signal using wavelet inverse transform. The configuration of the signal reconstruction unit 300 will be described later.
  • FIG. 1 shows a configuration in which the harmonic generation unit 101 is provided for a part of the frequency components excluding the lowest frequency component among the frequency components decomposed by the frequency component decomposition unit 200.
  • FIG. 1 to generate a harmonic by harmonic generation unit 101 for each frequency component SF n ⁇ SF m harmonics for at least one or more frequency components SF n ⁇ SF m
  • the generation unit 101 may generate harmonics. In this case as well, there is no particular limitation as to which frequency component to generate harmonics is, and any frequency component is targeted.
  • FIG. 2 is a block diagram illustrating configurations of the frequency component decomposition unit 200a and the signal reconstruction unit 300a.
  • the input signal Sin is decomposed into four frequency bands in three stages (ST1 to ST3).
  • the number of stages and the number of frequency bands after decomposition are determined as input. This is appropriately determined according to the number of pixels of the image represented by the signal Sin.
  • FIG. 2 shows an example in which frequency components are decomposed in three stages.
  • a lower frequency component can be used to increase the resolution of an image.
  • the sampling frequency of the signal is 2 fs
  • the Nyquist frequency is fs
  • the band of the frequency component SF 2 is fs / 3 to fs / 2
  • the band of the frequency component SF 3 is fs / 2 to 2 fs / 3
  • the frequency component SF 4 Is assumed to be 2 fs / 3 to fs.
  • a signal having frequency components of fs / 3 to fs is used for higher resolution.
  • the frequency component decomposition unit 200a performs multi-resolution analysis using a Laplacian pyramid algorithm, and decomposes the input signal Sin into frequency components SF 1 to SF 4 in four frequency bands.
  • Frequency component resolution section 200a first, at first stage ST1, an input an input signal Sin, obtain frequency components SF 4 frequency component S91 and highband components of the low-frequency component.
  • the frequency component S91 is obtained by filtering the input signal Sin by a low-pass filter (hereinafter referred to as LPF) 201 and downsampling (decimating) by the downsampler 202.
  • LPF low-pass filter
  • the frequency component SF 4 is obtained by up-sampling (interpolating) the frequency component S 91 by the up-sampler 203 and subtracting the result of filtering by the LPF 204 from the input signal Sin.
  • the frequency component decomposition unit 200a receives the frequency component S91 as input, and the LPF 211, the down sampler 212, the up sampler 213, the LPF 214, and the subtraction unit 215 perform the low frequency component frequency component. S92 and obtain the frequency components SF 3 of the high-frequency component.
  • the LPF 221, the down sampler 222, the up sampler 223, the LPF 224, and the subtractor 225 perform the low frequency component frequency component SF 1 and the high frequency component. obtaining a frequency component SF 2 components.
  • the frequency component decomposition unit 200a performs multi-resolution analysis using the Laplacian pyramid algorithm, and decomposes the input signal Sin into frequency components SF 1 to SF 4 .
  • each of SF 2 to SF 4 excluding the frequency component SF 1 which is the lowest frequency component is subjected to nonlinear processing by the harmonic generation unit 101, and the harmonics HW 2 to HW 4 is generated.
  • the harmonic generation unit 101 it is not always necessary to perform nonlinear processing in the harmonic generation unit 101 for each of the frequency components SF 2 to SF 4 , and the harmonic generation unit 101 for at least one of the frequency components SF 2 to SF 4.
  • a non-linear process may be applied at.
  • which is selected is not particularly limited, and any frequency component can be selected.
  • the signal reconstruction unit 300a reconstructs a signal using a Laplacian pyramid using the frequency component SF 1 and the harmonics HW 2 to HW 4 generated by the harmonic generation unit 101.
  • the frequency component SF 1 is up-sampled by the up-sampler 301 and filtered by the LPF 311. Then, the filtered result is added to the harmonic HW 2 by the adding unit 322. Subsequently, the addition result is upsampled by the upsampler 302 and filtered by the LPF 312. Then, the filtering unit adds the filtered result to the harmonic HW 3 . Subsequently, the result of the addition is upsampled by the upsampler 303 and filtered by the LPF 313. The adding unit 324 adds the filtered result to the harmonic HW 4 . Thereby, an output signal Sout is obtained.
  • the signal reconstruction unit 300a performs signal reconstruction using the Laplacian pyramid.
  • the LPF, the downsampler, and the upsampler included in the frequency component decomposition unit 200a and the signal reconfiguration unit 300a may be known ones, and thus the description thereof is omitted here.
  • FIG. 3 is a block diagram illustrating the configuration of the frequency component decomposition unit 200b and the signal reconstruction unit 300b.
  • FIG. 3 illustrates the case where the number of signals used for higher resolution (that is, input to the harmonic group generation unit 100) is three (three levels). Therefore, the low frequency component is used for high resolution.
  • the signal sampling frequency is 2 fs and the Nyquist frequency is fs
  • the level is 1 level (the number of signals input to the harmonic group generation unit 100 is 1)
  • the signal of fs / 2 to fs can be improved in resolution. Will be used. If it is 2 levels, the signal of fs / 4 to fs is used for higher resolution. If the level is 3, the signal of fs / 8 to fs is used for high resolution.
  • the frequency component decomposition unit 200b performs multi-resolution analysis using wavelet transform, and decomposes the input signal Sin into frequency components SF 1 to SF 4 of four frequency bands (LL, LH, HL, HH). As shown in the figure, the frequency component decomposition unit 200b first inputs the input signal Sin to the LPF 251 and down-samples it by the down sampler 252, thereby obtaining the frequency component S93 of the low frequency component (L) frequency band. . Similarly, an input signal Sin is input to the HPF 253 and down-sampled by the down sampler 254, thereby obtaining a frequency component S94 in the high frequency component (H) frequency band.
  • the frequency component S93 obtained above is input to the LPF 261 and down-sampled by the down sampler 262, so that the frequency component SF 1 (DC component) of the low frequency component (LL) of the low frequency components is obtained.
  • a frequency component S93 obtained above entered HPF263, by downsampling by a down-sampler 264 to obtain a frequency component SF 2 of frequency bands of the high frequency component of the low-frequency component (LH).
  • the obtained frequency component S94 is input to the LPF 271 and down-sampled by the down sampler 272, thereby obtaining the frequency component SF 3 in the frequency band of the low frequency component (HL) of the high frequency components.
  • the obtained frequency component S94 is input to the HPF 273 and down-sampled by the down sampler 274, thereby obtaining the frequency component SF 4 in the frequency band of the high frequency component (HH) among the high frequency components.
  • the frequency component decomposition unit 200b performs multi-resolution analysis using wavelet transform, and decomposes the input signal Sin into frequency components SF 1 to SF 4 .
  • each of SF 2 to SF 4 excluding the frequency component SF 1 which is the lowest frequency component is subjected to nonlinear processing by the harmonic generation unit 101, and the harmonics HW 2 to HW 4 is generated.
  • it is not always necessary to perform nonlinear processing in the harmonic generation unit 101 for each of SF 2 to SF 4 and nonlinear processing may be performed in the harmonic generation unit 101 for at least one of SF 2 to SF 4 .
  • the signal reconstruction unit 300b reconstructs the signal using the wavelet inverse transform based on the frequency component SF 1 and the harmonics HW 2 to HW 4 generated by the harmonic generation unit 101. Do.
  • the result of up-sampling the frequency component SF 1 by the up-sampler 331 is input to the LPF 332
  • the result of up-sampling the harmonic wave HW 2 by the up-sampler 333 is input to the HPF 334
  • the LPF 332 and The output of the HPF 334 is added by the adder 335 to obtain the frequency component S95 in the low frequency component (L) frequency band.
  • the result of upsampling the harmonic HW 3 by the upsampler 341 is input to the LPF 342.
  • the result of upsampling the harmonic HW 4 by the upsampler 343 is input to the HPF 344, and the outputs of the LPF 342 and HPF 344 are added. Addition is performed by the unit 345 to obtain a frequency component S96 in the frequency band of the high frequency component (H).
  • the result obtained by up-sampling the obtained frequency component S95 by the upsampler 351 is input to the LPF 352, and the result obtained by up-sampling the obtained frequency component S96 by the up-sampler 353 is input to the HPF 354 and the LPF 352. And the output of HPF354 is added by the addition part 355, and the output signal Sout is obtained.
  • the signal reconstruction unit 300b reconstructs a signal by using wavelet inverse transformation.
  • the LPF, HPF, downsampler, and upsampler provided in the frequency component decomposition unit 200b and the signal reconstruction unit 300b may be known ones, and therefore, the description of those configurations is omitted here.
  • frequency components SF n to SF m are not distinguished, they are simply expressed as “frequency components SF”. Further, when the harmonics HW n to HW m are not distinguished, they are simply expressed as “harmonic HW”.
  • FIG. 4 is a block diagram illustrating a configuration of the harmonic generation unit 101a.
  • the harmonic generation unit 101a includes a low-level signal removal unit (noise removal unit) 11, a nonlinear processing unit 102a, and an addition unit (addition unit) 15.
  • the low-level signal removal unit 11 is provided to prevent amplification of noise in the subsequent nonlinear processing unit 102a, and removes a low-level signal that can be regarded as noise included in the frequency component SF, thereby performing a nonlinear processing target signal.
  • S11 is generated. Specifically, among the signal values of the frequency component SF, the signal value whose absolute value is equal to or less than a predetermined threshold value (SV) is changed to “0”.
  • SV predetermined threshold value
  • the threshold value SV is “3”
  • all signal values having an absolute value of “3” or less among the signal values of the frequency component SF are regarded as noise and changed to “0”. It is desirable that the threshold value SV can be appropriately set according to the amount of noise.
  • the harmonic generation unit 101a When there is no need to remove the low level signal of the frequency component SF such that the low level signal such as noise contained in the frequency component SF is very small, the harmonic generation unit 101a includes the low level signal removal unit. 11 may be provided, and only the nonlinear processing unit 102a and the addition unit 15 may be provided. When the harmonic generation unit 101a has only the nonlinear processing unit 102a and the adding unit 15, the frequency component SF is directly used as the nonlinear processing target signal S11.
  • the nonlinear processing unit 102a includes a non-linear operation unit (even power calculation unit) 21, a code conversion unit (code conversion unit) 41, and a limiter (amplitude adjustment unit) 51.
  • the non-linear operation unit 21 performs non-linear operation on the non-linear processing target signal S11 to generate a non-linear signal S21.
  • the nonlinear calculation performed by the nonlinear calculation unit 21 will be described.
  • the input signal value to the non-linear operation unit 21 is x
  • the output signal value from the non-linear operation unit 21 is y
  • the function f (x) is a non-linear function that monotonously increases positively and negatively (originally symmetric).
  • the monotonic increase means a monotonic increase in a broad sense.
  • the function f (x) is preferably
  • at least in the vicinity of x “0”.
  • Examples of such a function f (x) include those represented by the following mathematical formulas (1) to (3).
  • the function f (x) represented by the following mathematical formulas (2) and (3) is used, the function f (x) has a large increase in the value of 0 ⁇ x ⁇ 1, so It is preferable to use it.
  • the nonlinear signal S21 obtained by squaring the nonlinear processing target signal S11 is represented by the data sequence X1 2 , X2 2 , X3. 2 ,...
  • x may be normalized by 255 when using the function f (x).
  • the right side x of the function f (x) represented by the above formula (2) is normalized by x / 255, and the right side is multiplied by 255. ) May be used.
  • the following numerical formula (4) satisfies the condition of f (x)> x.
  • x on the right side of the function f (x) represented by the equation (2) is normalized by 255 and the right side is multiplied by 255, but the value to be multiplied by the right side is normalized. It is not necessary to be the same value as the value (255 in this example), as long as the condition
  • the function f (x) may be a function using a trigonometric function represented by the following mathematical formula (6).
  • the code conversion unit 41 generates, as the code conversion signal S41, a signal obtained by reflecting the code of the nonlinear processing target signal S11 in the nonlinear signal S21 based on the sign bit information of the nonlinear processing target signal S11. That is, the code conversion unit 41 maintains the code as it is for the portion of the nonlinear signal S21 that has the same code as the nonlinear processing target signal S11.
  • the sign of the non-linear signal S21 with the sign different from the non-linear processing target signal S11 is inverted.
  • the limiter 51 performs a process of adjusting the amplitude (signal level, intensity) of the code conversion signal S41 generated by the code conversion unit 41 (hereinafter, also referred to as amplitude adjustment process), whereby the nonlinear processing signal S12 is converted. Generate. Specifically, the limiter 51 adjusts the amplitude of the code conversion signal S41 by multiplying the code conversion signal S41 by a predetermined magnification value (assuming ⁇ ) (
  • magnification value ⁇ can be appropriately set according to the motion of the image and the amount of noise.
  • the absolute value is 0.5 or less.
  • the limiter 51 does not further amplify a signal having sufficient energy, so that the signal value of the nonlinear processing signal S12 is equal to or less than a predetermined upper limit value (UV) in order to further amplify the signal having sufficient energy.
  • a predetermined upper limit value UV
  • processing for changing the absolute value to the upper limit value UV or less hereinafter also referred to as clip processing
  • clip processing For example, for a portion where the absolute value of the signal value of the nonlinear processing signal S12 exceeds “64”, the signal value of the portion is changed to “64” or “ ⁇ 64” according to the sign. Alternatively, it may be changed to “0”.
  • the upper limit value UV can be set as appropriate according to the motion of the image and the amount of noise.
  • the upper limit UV is preferably set to a value of 64 or less.
  • the non-linear processing unit 102a may be configured not to include the limiter 51 and to perform neither the amplitude adjustment process nor the clip process of the code conversion signal S41.
  • the code conversion signal S41 generated by the code conversion unit 41 is output from the nonlinear processing unit 102a as the nonlinear processing signal S12.
  • the adder 15 generates the harmonic HW by adding the nonlinear processing signal S12 as a compensation signal to the frequency component SF. It is assumed that the adding unit 15 appropriately includes a delay element for adjusting the timing between the frequency component SF and the nonlinear processing signal S12.
  • the frequency component SF is input to the low-level signal removal unit 11, the low-level signal such as noise is removed, and the nonlinear processing target signal S11 shown in FIG. 5B is generated.
  • non-linear operation performed by the nonlinear operation unit 21, if a f (x) x 2, the non-linear processed signal S11 is squared nonlinear signal S21 has, is generated in the non-linear calculation unit 21 ( (See (c) of FIG. 5).
  • FIG. 6 (a) is the same signal as the frequency component SF shown in FIG. 5 (a).
  • the conventional sharpening process using linear calculation extracts a high frequency signal from the frequency component SF shown in FIG. A method of adding the frequency component SF to the extracted high frequency signal is used. Therefore, in the conventional sharpening process using linear calculation, a signal component exceeding the Nyquist frequency that is not included in the frequency component SF is not added.
  • a signal shown in FIG. 6B is generated.
  • the rise and fall in the signal shown in FIG. 6 (b) are steeper than the rise and fall of the signal in the frequency component SF shown in FIG. 6 (a), but are generated by the harmonic generation unit 101a.
  • the rising and falling of the signal in the harmonic HW to be performed ((e) in FIG. 5) is steeper.
  • the nonlinear processing unit 102a of the harmonic generation unit 101a described above may be configured to differentiate the nonlinear signal S21 generated by the nonlinear calculation unit 21. This is because the direct current component included in the nonlinear signal S21 can be removed by differentiating the nonlinear signal S21.
  • FIG. 7 is a block diagram illustrating a configuration of the harmonic generation unit 101b.
  • the harmonic generation unit 101b includes a low-level signal removal unit 11, a nonlinear processing unit 102b, and an addition unit 15.
  • the non-linear processing unit 102b includes a differentiating unit (differentiating means) 31 between the non-linear calculating unit 21 and the code converting unit 41 in addition to the configuration of the non-linear processing unit 102a shown in FIG.
  • the members other than the low level signal removing unit 11, the differentiating unit 31 of the nonlinear processing unit 102b, and the adding unit 15 are the same as those described above, and thus detailed description thereof is omitted here.
  • the harmonic generation unit 101b includes the low level signal removal unit. 11 may be provided, and only the nonlinear processing unit 102b and the addition unit 15 may be provided.
  • the harmonic generation unit 101b includes only the nonlinear processing unit 102b and the adding unit 15, the frequency component SF is directly used as the nonlinear processing target signal S11.
  • the differentiating unit 31 generates the differential signal S31 by differentiating the non-linear signal S21 generated by the non-linear operation unit 21.
  • FIG. 8 is a block diagram illustrating a configuration of the differentiating unit 31.
  • the differentiating unit 31 includes a unit delay element 3111 and a subtracting unit 3112, and calculates a backward difference with respect to a signal input to the differentiating unit 31.
  • the code converting unit 41 reflects the code of the nonlinear processing target signal S11 in the nonlinear signal S21 based on the sign bit information of the nonlinear processing target signal S11. Is generated as a code conversion signal S42. That is, the code conversion unit 41 maintains the code as it is for the portion of the differential signal S31 whose code is the same as that of the nonlinear processing target signal S11. On the other hand, the sign of the non-linear signal S21 with the sign different from the non-linear processing target signal S11 is inverted.
  • the limiter 51 generates a nonlinear processing signal S12 by performing amplitude adjustment processing and clipping processing on the code conversion signal S42 generated by the code conversion unit 41.
  • the amplitude of the code conversion signal S42 is adjusted by multiplying the code conversion signal S42 by a predetermined magnification value ⁇ .
  • the non-linear processing unit 102b may be configured not to include the limiter 51 and to perform neither the amplitude adjustment process nor the clip process of the code conversion signal S42.
  • the code conversion signal S42 generated by the code conversion unit 41 is output from the nonlinear processing unit 102b as the nonlinear processing signal S12.
  • FIG. (A) to (f) of FIG. 9 are diagrams schematically showing waveforms of signals generated by the respective units of the harmonic generation unit 101b.
  • the signal shown in FIG. 9A is input to the harmonic generation unit 101b as the frequency component SF.
  • the signal shown in (a) of FIG. 9 is the same as the signal shown in (a) of FIG.
  • non-linear operation performed by the nonlinear operation unit 21, if a f (x) x 2, the non-linear processed signal S11 is squared nonlinear signal S21 has, is generated in the non-linear calculation unit 21 ( (See (c) of FIG. 9).
  • a differentiation signal S31 shown in (d) of FIG. 9 is generated.
  • the differential signal S31 the direct current component included in the nonlinear signal S21 is removed.
  • FIG. 10 is a block diagram illustrating a configuration of the harmonic generation unit 101c.
  • the harmonic generation unit 101c includes a low-level signal removal unit 11, a nonlinear processing unit 102c, and an addition unit 15.
  • the nonlinear processing unit 102 c includes a nonlinear computing unit (odd power computing unit) 22 and a limiter 51. Since the low level signal removal unit 11, the limiter 51, and the addition unit 15 are the same as those described above, detailed description thereof is omitted here.
  • the harmonic generation unit 101c includes the low level signal removal unit. 11 may be provided, and only the nonlinear processing unit 102c and the addition unit 15 may be provided.
  • the harmonic generation unit 101c is configured to include only the nonlinear processing unit 102c and the adding unit 15, the frequency component SF is directly used as the nonlinear processing target signal S11.
  • the non-linear operation unit 22 performs non-linear operation on the non-linear processing target signal S11 to generate a non-linear signal S22.
  • the nonlinear calculation performed by the nonlinear calculation unit 22 will be described.
  • the input signal value to the non-linear operation unit 22 is x
  • the output signal value from the non-linear operation unit 22 is y
  • the function g (x) is a non-linear function that monotonously increases positively and negatively (originally symmetric).
  • the monotonic increase means a monotonic increase in a broad sense.
  • the function g (x) is preferably
  • at least in the vicinity of x “0”.
  • the non-linear signal S22 obtained by squaring the non-linear processing target signal S11 is the data sequence X1 3 , X2 3 , X3. 3 ,...
  • the limiter 51 generates the nonlinear processing signal S12 by performing amplitude adjustment processing and clipping processing on the nonlinear signal S22 generated by the nonlinear calculation unit 22.
  • the non-linear processing unit 102c may be configured not to include the limiter 51 and to perform neither the amplitude adjustment process nor the clip process of the non-linear signal S22.
  • the nonlinear signal S22 generated by the nonlinear computing unit 22 is output from the nonlinear processing unit 102c as the nonlinear processing signal S12.
  • FIG. (A) to (d) of FIG. 11 are diagrams schematically showing waveforms of signals generated by the respective units of the harmonic generation unit 101c.
  • the signal shown in FIG. 11A is input to the harmonic generation unit 101c as the frequency component SF.
  • the signal shown to (a) of FIG. 11 is the same as the signal shown to (a) of FIG.
  • the input signal Sin is expressed by a function F (x) in which the position (in the horizontal direction of the image) is x.
  • the function F (x) can be expressed by a Fourier series as shown in the following formula (8).
  • N is the order of the highest frequency harmonic that does not exceed the Nyquist frequency fs / 2 with respect to the sampling frequency fs. That is, the following formula (9) is satisfied.
  • G (x) is expressed by the following formula (10).
  • the frequency component SF input to the harmonic generation unit 101 includes the signal G (x) or the high frequency component of the signal G (x).
  • (G (x)) 2 includes angular frequency components such as (N + 1) ⁇ , (N + 2) ⁇ ,.
  • (G (x)) 2 includes a frequency component higher than the Nyquist frequency fs / 2. That is, the nonlinear signal S21 generated by the nonlinear computing unit 21 includes a frequency component higher than the Nyquist frequency fs / 2, such as a harmonic component such as a frequency 2N ⁇ / (2 ⁇ ).
  • Equations (23) and (24) can be rewritten.
  • (G (x)) 3 includes a frequency component 3N times the basic angular frequency ⁇ and a frequency component -3N times.
  • (G (x)) 3 includes various frequency components from ⁇ 3N to 3N times the basic angular frequency ⁇ . I understand that.
  • (G (x)) 3 includes a frequency component higher than the Nyquist frequency fs / 2. That is, the nonlinear signal S22 generated by the nonlinear operation unit 22 includes a frequency component higher than the Nyquist frequency fs / 2, such as a harmonic component having a frequency of 3N ⁇ / (2 ⁇ ).
  • the harmonic HW generated by the harmonic generation unit 101 includes a high frequency component not included in the frequency component SF, that is, a frequency component higher than the Nyquist frequency.
  • the output signal Sout reconstructed by the signal reconstruction unit 300 using the harmonic HW generated by the harmonic generation unit 101 is a high frequency component not included in the input signal Sin, that is, a frequency component higher than the Nyquist frequency. Will be included.
  • the signal processing device 500 can include a frequency component higher than the Nyquist frequency in the image signal after the sharpening process. Therefore, the frequency spectrum of the image signal after the sharpening process is performed on the image signal having the frequency spectrum shown in FIG. 19A by the signal processing device 500 is, for example, as shown in FIG. Become. As shown in the figure, a frequency component higher than the Nyquist frequency fs / 2 is added to the frequency spectrum. That is, a high frequency component not included in the original signal is added.
  • the signal processing apparatus 500 can add a high-frequency component that cannot be used in the sharpening process using the linear operation as in the related art, and thus the image represented by the image signal after the enlargement process. Can be sharpened.
  • the harmonic HW generated by the harmonic generation unit 101 is compared with the nonlinear processing target signal S11 from which low level signals such as noise included in the frequency component SF input to the harmonic generation unit 101 are removed.
  • the signal is subjected to nonlinear processing. That is, the harmonic HW is generated by performing nonlinear processing on the nonlinear processing target signal S11 and storing the sign of the nonlinear processing target signal S11.
  • the sign of the harmonic HW is the same as that of the nonlinear processing target signal S11.
  • the harmonic HW generated by the harmonic generation unit 101 is nonlinear with respect to the frequency component SF input to the harmonic generation unit 101.
  • the signal is processed, and the sign of the harmonic HW is the same as that of the frequency component SF. That is, the harmonic HW is generated by performing nonlinear processing on the frequency component SF and preserving the sign of the frequency component SF.
  • the harmonic HW includes a frequency component higher than the Nyquist frequency fs / 2 with respect to the sampling frequency fs of the frequency component SF. Therefore, the output signal Sout reconstructed by the signal reconstructing unit 300 using the harmonic HW generated by the harmonic generating unit 101 includes a high-frequency component that is not included in the input signal Sin.
  • the rise and fall of the signal in the output signal Sout are steeper than the rise and fall of the signal when the input signal Sin is sharpened using a linear operation as in the prior art.
  • the sharpening process performed by the signal processing device 500 can sharpen the image to a higher degree than the sharpening process using linear calculation, and can greatly improve the image quality.
  • the signal processing device 500 can be realized with a simple configuration. Therefore, it is possible to easily implement the signal processing device 500 in a television receiver or the like. Therefore, not only a still image but also a moving image displayed in real time can improve image quality without incurring a large cost.
  • the signal processing apparatus 500 can generate a high frequency exceeding the Nyquist frequency fs / 2.
  • the image can be sharpened, and the image quality can be greatly improved.
  • SDTV standard-definition television
  • HDTV high-definition television
  • an HDTV image signal is up-converted and displayed on a display (4K display) having a pixel number of about 4000 ⁇ 2000, which is larger than the number of HDTV pixels
  • the image signal after the up-conversion is displayed. Can be displayed in a state where the image quality of the image to be improved is improved.
  • FIG. 13 is a diagram showing an image including an image to be subjected to the sharpening process (hereinafter referred to as an original image). Note that the original image shown in FIG. 13 is smaller than the actual size due to space limitations.
  • FIG. 14 is an image obtained by enlarging the upper right area of the original image shown in FIG. 13 twice vertically and horizontally.
  • the image shown in FIG. 14A is a target of the sharpening process and is denoted as a target image P.
  • FIG. 14 is a diagram showing an image after subjecting the target image P to a sharpening process according to a conventional technique using a linear operation.
  • the image quality is not significantly improved. For this reason, there is little difference in sharpness and resolution between the image shown in FIG. 14A and the image shown in FIG.
  • (c) of FIG. 14 is a diagram showing an image after the sharpening processing of the target image P is performed by the signal processing device 500.
  • the sharpness and resolution of a human eye such as the brightness of the eyes, the nose muscles, the scarf pattern, and the chair back are improved compared to the image shown in (b) of FIG. 14. You can see that
  • the signal processing apparatus 500 can sharpen the image after the enlargement process and improve the image quality, in particular, compared with the conventional technique that performs the sharpening process using linear calculation. be able to.
  • the harmonic generation unit 101 applies to a part or all of the frequency components (SF n to SF m ) excluding the lowest frequency component among the frequency components decomposed by the frequency component decomposition unit 200. Nonlinear processing is performed to generate harmonics (HW n to HW m ).
  • the higher the frequency component in the higher frequency band the smaller the energy. Therefore, of the frequency components SF n to SF m decomposed by the frequency component decomposition unit 200, the energy of the frequency component in the higher frequency band is smaller.
  • the higher the frequency band among the harmonics HW n to HW m the higher the frequency band contributes to the enhancement of the contour portion of the image represented by the output signal Sout reconstructed by the signal reconstruction unit 300. This contributes to sharpening of the image. Therefore, it is preferable to increase the energy as much as possible as the frequency band is higher among the harmonics HW n to HW m .
  • a value of the magnification value ⁇ is set for each frequency component input to the harmonic generation unit 101. Specifically, it is preferable to set a higher value of the magnification value ⁇ used in the limiter 51 of the harmonic generation unit 101 to which a higher frequency component is input among the frequency components SF n to SF m .
  • the frequency component decomposition unit 200a described with reference to FIG. 3 performs multi-resolution analysis using wavelet transform and decomposes the input signal Sin into frequency components SF 1 to SF 4 of four frequency bands is taken as an example. I will give you a description. Here, it is assumed that the frequency components SF 2 to SF 4 are input to the harmonic generation unit 101a.
  • the frequency component SF 3 is a frequency component in a frequency band twice as high as the frequency component SF 2
  • the frequency component SF 4 is greater than the frequency component SF 3 . It is a frequency component in a frequency band twice as high.
  • the magnification value ⁇ used in the limiter 51 provided in the harmonic generating section 101a the frequency components SF 3 is input
  • the limiter 51 provided in the harmonic generating section 101a the frequency components SF 3 is input Is set to twice the magnification value ⁇ used in the above.
  • the magnification value ⁇ used in each limiter 51 is set to the same value.
  • the higher the frequency band of the harmonics HW n to HW m the greater the energy.
  • the image represented by the output signal Sout can be made sharper than when the magnification value ⁇ used in all the limiters 51 is set to the same value.
  • LPF and HPF are used in pairs as described with reference to FIG. 3 when decomposing into high-frequency components and low-frequency components.
  • LPF and HPF are used in pairs.
  • the LPF and HPF used as a pair are referred to as a so-called Quadrature Mirror Filter.
  • LPF 251 and HPF 253 are used as a pair in order to obtain frequency component S93 and frequency component S94 from input signal Sin.
  • the LPF 332 and the HPF 334 are used in pairs.
  • FIG. 15A is a schematic diagram showing general frequency characteristics of LPF and HPF used as a pair in wavelet transform and inverse wavelet transform.
  • the frequency characteristic LA of the LPF that easily passes a low frequency component is smaller as the frequency is higher.
  • the frequency characteristic HA of the HPF that easily passes high frequency components is larger as the frequency is higher.
  • the frequency characteristic LA and the frequency characteristic HA are usually in a symmetric relationship as shown in FIG.
  • the signal processing device 500 obtains the output signal Sout that has been processed to sharpen the image represented by the input signal Sin. Therefore, in the wavelet transform and inverse transform performed by the signal processing device 500, However, complete reconstruction may not necessarily be realized. Therefore, the frequency characteristics of the LPF and HPF used as a pair in the frequency component decomposition unit 200 and the signal reconstruction unit 300 may be asymmetric.
  • the signal processing device 500 uses an HPF for the purpose of extracting a high frequency component, it is preferable that the frequency component passing through the HPF is larger.
  • the more frequency components that pass through the HPF in the frequency component decomposition unit 200 the more objects to be subjected to nonlinear processing in the harmonic generation unit 101.
  • the image represented by the output signal Sout becomes sharper. Because.
  • FIG. 15B is a schematic diagram showing the frequency characteristics of the LPF and HPF used as a pair in the wavelet transform used in the frequency component decomposition unit 200b and the wavelet inverse transform used in the signal reconstruction unit 300b.
  • the frequency characteristic LA and the frequency characteristic HA may be asymmetric.
  • the HPF used in the wavelet transform and inverse transform performed in this embodiment in order to increase the number of frequency components to pass through as shown in FIG. It is preferable that
  • the input signal Sin is constituted by a data string (pixel value series) including pixel values of pixels arranged adjacent to each other in the horizontal direction (horizontal direction, main scanning direction) of the image.
  • the above-described signal processing device 500 sharpens the image by enhancing the vertical contour portion of the image represented by the input signal Sin.
  • sharpening processing may be performed in the vertical direction (vertical direction, sub-scanning direction) of the image represented by the input signal Sin.
  • the frequency component decomposition unit 200 converts the input signal Sin into pixels adjacent to each other in the vertical direction of the image represented by the input signal Sin. What is necessary is just to reconfigure
  • the frequency component decomposition unit 200 When the input signal Sin is generated by an external device of the signal processing device 500 as a data string (pixel value series) including pixel values in the vertical direction of the image, the frequency component decomposition unit 200 The input signal Sin may be decomposed into frequency components of different frequency bands as they are.
  • the signal processing device 500 when sharpening processing is performed by the signal processing device 500 on a moving image displayed on a television receiver or the like, the pixel value changes with time, so that the horizontal and vertical directions of the image are changed. In addition, it is preferable to perform a sharpening process also in the time direction.
  • the frequency component decomposition unit 200 converts the input signal Sin in the time direction for each pixel in the moving image represented by the input signal Sin. What is necessary is just to reconfigure
  • the moving image can be sharpened in the time direction, and for example, the occurrence of afterimages can be suppressed.
  • the configuration example of the frequency component decomposition unit 200b described with reference to FIG. 3 is a configuration in the case of performing multi-resolution analysis using a general wavelet transform, but can be extended to a configuration including the harmonic generation unit 101. Is possible.
  • the configuration example of the signal reconstruction unit 300b described with reference to FIG. 3 is a configuration example in the case of performing signal reconstruction using a general wavelet inverse transform, and includes a harmonic generation unit 101. It can be extended to configurations.
  • the configuration of the harmonic generation unit 101 may be any of the configuration examples described above and the configuration examples described later.
  • FIG. 16 is a block diagram showing the configuration of the frequency component decomposition unit 200c and the signal reconstruction unit 300c.
  • the frequency component decomposition unit 200c includes a harmonic generation unit 101 between the HPF 253 and the downsampler 254 in addition to the configuration included in the frequency component decomposition unit 200b illustrated in FIG. .
  • the configuration including the harmonic generation unit 101 subsequent to the HPF enhances the high-frequency component generated in the process of performing the multi-resolution analysis on the input signal Sin within the frequency component decomposition unit 200c. Can be made. That is, the frequency component input to the harmonic group generation unit 100 can be enhanced in advance.
  • the harmonic HW 3 and HW 4 are harmonic HW 3 and HW 4 was generated in the harmonic group generation unit 100 of the frequency component resolution section 200b is generated by the harmonic group generation unit 100 of the frequency component resolution section 200c In addition, the rise and fall of the signal becomes steep.
  • the frequency component decomposition unit 200c is configured to include the harmonic generation unit 101 immediately after the HPF 253. However, the harmonic generation unit 101 may be disposed at a subsequent stage of the HPF 253 and after the downsampler 254. There may be.
  • harmonic generation unit 101 may be arranged at the subsequent stage of the HPF 263 and the HPF 273.
  • the frequency component decomposition unit 200c shown in FIG. 16 is configured to perform decomposition up to two levels, but even in a configuration that performs decomposition of three levels or more, the harmonic generation unit 101 is provided in the subsequent stage of each HPF. Can be extended to a configuration comprising
  • the signal reconstruction unit 300c includes a harmonic generation unit 101 at the subsequent stage of the HPF 334 and the HPF 344.
  • S25 and S26 generated by the signal reconstruction unit 300c are enhanced compared to S25 and S26 generated by the signal reconstruction unit 300b.
  • the image represented by the output signal Sout reconstructed by the signal reconstruction unit 300c is sharper than the image represented by the output signal Sout reconstructed by the signal reconstruction unit 300b.
  • the harmonic generation unit 101 may be arranged at the subsequent stage of the HPF 354.
  • the signal reconstructing unit 300c shown in FIG. 16 reconstructs a signal based on frequency components decomposed to two levels.
  • the signal reconstructing unit 300c outputs signals based on frequency components decomposed to three or more levels. Even in the case of reconfiguration, the harmonic generation unit 101 can be expanded to a configuration subsequent to each HPF.
  • FIG. 17 is a block diagram showing a configuration of the harmonic generation unit 101d.
  • the harmonic generation unit 101d includes a low-level signal removal unit 11, a nonlinear processing unit 102d, and an addition unit 15. Since the low level signal removal unit 11 and the addition unit 15 are the same as those described above, detailed description thereof is omitted here.
  • the harmonic generation unit 101d includes the low level signal removal unit. 11 may be provided, and only the nonlinear processing unit 102d and the addition unit 15 may be provided.
  • the frequency component SF is directly used as the nonlinear processing target signal S11.
  • the nonlinear processing unit 102d includes a square calculation unit 61, a first differentiation unit 71, a second differentiation unit 81, and a multiplication unit 91.
  • the square calculator 61 generates a square signal S61 by squaring the nonlinear processing target signal S11. That is, assuming that the data sequence constituting the nonlinear processing target signal S11 is X1, X2, X3,..., The square signal S61 obtained by squaring the nonlinear processing target signal S11 is the data sequence X1 2 , X2 2 , X3. 2 ,...
  • the first differentiating unit 71 generates the first differential signal S71 by differentiating the square signal S61 generated by the square calculating unit 61.
  • the structure of the 1st differentiation part 71 is the structure similar to the differentiation part 31, for example.
  • the second differentiator 81 generates a second differential signal S81 by differentiating the frequency component SF.
  • the structure of the 2nd differentiation part 81 is the structure similar to the differentiation part 31, for example.
  • the multiplication part 91 produces
  • the processing signal S12 is a digital signal composed of data strings U1, V1, U2, V2, U3, V3,.
  • the square calculation unit 61 is provided to perform nonlinear calculation.
  • a fourth power calculation unit that squares the nonlinear processing target signal S11 may be used.
  • a power calculation unit that generates a signal corresponding to the power of the nonlinear processing target signal S11 having an even number of 2 or more as a power exponent may be used.
  • FIG. 18 is a block diagram illustrating a configuration of the harmonic generation unit 101e.
  • the harmonic generation unit 101e includes a low-level signal removal unit 11, a nonlinear processing unit 102e, and an addition unit 15. Since the low level signal removal unit 11 is the same as described above, a detailed description thereof is omitted here.
  • the harmonic generation unit 101e When there is no need to remove the low-level signal of the frequency component SF such that the low-level signal such as noise included in the frequency component SF is very small, the harmonic generation unit 101e includes the low-level signal removal unit. 11 may be provided, and only the nonlinear processing unit 102e and the addition unit 15 may be provided. When the harmonic generation unit 101e is configured to include only the nonlinear processing unit 102e and the adding unit 15, the frequency component SF is directly used as the nonlinear processing target signal S11.
  • the nonlinear processing unit 102e includes an absolute value processing unit 62, a first differentiation unit 71, a second differentiation unit 81, and a multiplication unit 91. Since the first differentiating unit 71, the second differentiating unit 81, and the multiplying unit 91 are the same as those described above, detailed description thereof is omitted here.
  • the absolute value processing unit 62 generates an absolute value signal S62 that is a signal corresponding to the absolute value of the nonlinear processing target signal S11. That is, if the data sequence constituting the nonlinear processing target signal S11 is X1, X2, X3,..., The absolute value signal S62 is configured by the data sequence
  • the first differentiating unit 71 generates the first differential signal S72 by differentiating the absolute value signal S62 generated by the absolute value processing unit 62.
  • the signal processing device 500 has been described as a device that performs a sharpening process for sharpening an image.
  • the object on which the signal processing device 500 performs the sharpening process is not limited to a digital signal representing an image, but may be a digital signal representing a sound (sound signal). That is, the input signal Sin input to the signal processing device 500 may be an audio signal.
  • the signal processing device 500 outputs an output signal Sout in which the rising and falling edges of the audio signal are steep. Even in this case, the output signal Sout includes a high-frequency component (frequency component higher than the Nyquist frequency) that is not included in the input signal Sin. Therefore, when the sharpening process is performed by the signal processing device 500, it is possible to make the rising and falling edges of the audio signal sharper than when the sharpening process is performed using linear calculation.
  • each block of the signal processing device 500 may be configured by hardware logic, or may be realized by software using a CPU (central processing unit) as follows.
  • the signal processing device 500 When implemented by software, the signal processing device 500 (in particular, the harmonic group generation unit 100, the frequency component decomposition unit 200, and the signal reconstruction unit 300) includes a CPU that executes instructions of a control program that implements each function, A ROM (read only memory) storing the program, a RAM (random access memory) for expanding the program, and a storage device (recording medium) such as a memory for storing the program and various data are provided.
  • An object of the present invention is a recording medium on which a program code (execution format program, intermediate code program, source program) of a control program of the signal processing device 500, which is software that realizes the functions described above, is recorded so as to be readable by a computer. This can also be achieved by supplying the signal processing device 500 and reading and executing the program code recorded on the recording medium by the computer (or CPU or MPU).
  • Examples of the recording medium include tapes such as magnetic tapes and cassette tapes, magnetic disks such as floppy (registered trademark) disks / hard disks, and disks including optical disks such as CD-ROM / MO / MD / DVD / CD-R.
  • Card system such as IC card, IC card (including memory card) / optical card, or semiconductor memory system such as mask ROM / EPROM / EEPROM / flash ROM.
  • the signal processing device 500 may be configured to be connectable to a communication network, and the program code may be supplied via the communication network.
  • the communication network is not particularly limited.
  • the Internet intranet, extranet, LAN, ISDN, VAN, CATV communication network, virtual private network, telephone line network, mobile communication network, satellite communication. A net or the like is available.
  • the transmission medium constituting the communication network is not particularly limited. For example, even in the case of wired such as IEEE 1394, USB, power line carrier, cable TV line, telephone line, ADSL line, etc., infrared rays such as IrDA and remote control, Bluetooth ( (Registered trademark), IEEE802.11 radio, HDR, mobile phone network, satellite line, terrestrial digital network, and the like can also be used.
  • the present invention can also be realized in the form of a computer data signal embedded in a carrier wave in which the program code is embodied by electronic transmission.
  • means does not necessarily mean physical means, but includes cases where the functions of each means are realized by software. Further, the function of one means may be realized by two or more physical means, or the functions of two or more means may be realized by one physical means.
  • the signal processing device is a signal processing device that performs the process of sharpening the image on the input signal representing the image and outputs the output signal representing the sharpened image.
  • a frequency component decomposing means for decomposing the input signal into a plurality of frequency components of different frequency bands, and a frequency component excluding the frequency component of the lowest frequency band among the frequency components decomposed by the frequency component decomposing means.
  • Harmonic generation among harmonic generation means for generating each or all of the harmonics, harmonics generated by the harmonic generation means, and frequency components decomposed by the frequency component decomposition means Output signal generation means for generating the output signal by synthesizing with a frequency component for which harmonics are not generated by the means, and generating the harmonic
  • the stage is a non-linear that monotonously increases in a broad sense in a non-linear manner with respect to the frequency component when the sign of the frequency component for which the harmonics are to be generated is maintained and at least when the value of the frequency component is near 0
  • Non-linear processing means for generating a processed signal and adding means for generating a harmonic by adding the non-linear processed signal to the frequency component.
  • control method of the signal processing device controls the signal processing device that performs processing for sharpening the image on the input signal representing the image and outputs an output signal representing the sharpened image.
  • the sign of the frequency component to be generated is maintained positive and negative, and at least when the value of the frequency component is near 0, the frequency component
  • a non-linear processing step for generating a non-linear processing signal that increases monotonically in a broad sense in a non-linear manner and an adding step for generating a harmonic by adding the non-linear processing signal to the frequency component are included.
  • the generated harmonic is generated, for example, by adding a frequency component that is a target for generating a harmonic and a nonlinear processing signal that has been subjected to nonlinear processing such as squaring the frequency component.
  • a frequency component that is a target for generating a harmonic and a nonlinear processing signal that has been subjected to nonlinear processing such as squaring the frequency component.
  • the sign of the harmonics maintains the sign of the frequency component for which the harmonics are generated.
  • the harmonics generated by performing such nonlinear processing include high frequency components that are not included in the original frequency components.
  • the output signal synthesized using the generated harmonics includes a frequency component higher than the Nyquist frequency, which is a half of the sampling frequency when the input signal is discretized.
  • the signal processing apparatus can make the rise and fall of the signal corresponding to the contour portion (edge) included in the image steeper than the process of performing the linear operation on the input signal. it can. As a result, the image can be sharpened, and the image quality can be greatly improved.
  • the Nyquist frequency that is half the sampling frequency of the image signal after the enlargement processing is performed in the processing that performs linear computation on the input signal. Higher frequency components cannot be extracted.
  • the signal processing apparatus according to the present invention can add a frequency component higher than the Nyquist frequency of the image signal after the enlargement process to the image signal after the enlargement process.
  • the image quality can be greatly improved.
  • the non-linear processing means generates an even power signal by raising the frequency component that is a target for generating a harmonic using an even number of 2 or more as a power index.
  • a configuration comprising a power calculation means and a code conversion means for generating the non-linear processing signal by inverting the sign of a part of the even power signal whose sign is different from the frequency component before the power. It is good.
  • an even power signal is generated by raising the frequency component that is a target of generating a harmonic, with an even number of 2 or more being a power index, and among the even power signals,
  • the non-linear processing signal is generated by inverting the sign of the part in which the sign is different from the frequency component before the power.
  • the frequency component that is the target of generating the harmonic is raised to the power of an even number of 2 or more, and the sign is a non-linear one that maintains the sign of the frequency component before the power raised. Since it is generated as a processed signal, the harmonic obtained by adding the frequency component and the nonlinear processed signal includes a high frequency component that is not included in the frequency component for which the harmonic is generated.
  • the image quality can be improved as compared with the method of performing the linear operation on the image signal.
  • the decomposition of the input signal and the synthesis of the output signal can be realized with a simple configuration using a low-pass filter, a high-pass filter, and the like. Since it can be realized with a simple configuration of conversion, the moving image displayed in real time on a television receiver or the like has an effect that the image quality can be greatly improved while suppressing the cost.
  • the non-linear processing means generates an even power signal by raising the frequency component that is a target for generating a harmonic using an even number of 2 or more as a power index.
  • code conversion means for generating the nonlinear processing signal may be adopted.
  • the even number of 2 or more is used as a power index, and the frequency component that is a target for generating a harmonic is raised, and the differential signal is generated by differentiating the even power signal.
  • a non-linear processing signal is generated by inverting the sign of the differential signal where the sign is different from the frequency component before the power.
  • the frequency component that is the target of generating the harmonic is raised by raising the even number of 2 or more as a power, and by removing the direct current component that can be included in the signal after the power raising, Since the signal having the positive / negative sign of the frequency component before the power raised is generated as a nonlinear processing signal, the harmonic obtained by adding the frequency component and the nonlinear processing signal is the harmonic. Frequency components that are not included in the frequency components to be generated are included.
  • the image quality can be improved as compared with the method of performing the linear operation on the image signal.
  • the image quality can be improved as compared with the case where the DC component that can be included in the signal after the squaring is not removed. There is an effect that can be done.
  • the decomposition of the input signal and the synthesis of the output signal can be realized with a simple configuration using a low-pass filter and a high-pass filter. Since it can be realized with a simple configuration such as computation and code conversion, the effect of being able to significantly improve the image quality while suppressing the cost of moving images displayed in real time on a television receiver or the like. Play.
  • the nonlinear processing means generates the nonlinear processing signal by raising the frequency component to be a harmonic generation target with an odd number of 3 or more as a power index. It is good also as a structure.
  • the non-linear processing signal is generated by raising the odd number of 3 or more to the power exponent and raising the frequency component that is the target of generating the harmonic.
  • a frequency component that is a target for generating a harmonic is generated as a non-linear processing signal that is a power of an odd number of 3 or more. Therefore, by adding the non-linear processing signal to the frequency component, The obtained harmonic includes a frequency component that is not included in the frequency component for which the harmonic is generated.
  • the image quality can be improved as compared with the method of performing the linear operation on the image signal.
  • the decomposition of the input signal and the synthesis of the output signal can be realized with a simple configuration using a low-pass filter, a high-pass filter, etc., and the process of generating harmonics is a simple operation called a power operation. Since it can be realized with a simple configuration, even for a moving image displayed in real time on a television receiver or the like, it is possible to significantly improve the image quality while suppressing the cost.
  • the signal processing apparatus may be configured such that the harmonic generation means further includes a noise removal means for removing noise included in a frequency component for which a harmonic is generated by the nonlinear processing means. .
  • noise included in the frequency component that is a target for generating harmonics is further removed.
  • the signal processing apparatus may be configured such that the nonlinear processing means further includes an amplitude adjusting means for adjusting the amplitude of the nonlinear processing signal by multiplying by a predetermined magnification value.
  • the amplitude of the nonlinear processing signal is adjusted by multiplying by a predetermined magnification value.
  • the amplitude of the harmonic can be adjusted to an appropriate size. Therefore, it is possible to prevent the image represented by the output signal from being excessively sharpened.
  • the signal processing apparatus may be configured such that the amplitude adjusting means removes a signal having an absolute value larger than an upper limit value from the nonlinear processing signal.
  • the signal whose absolute value is larger than the upper limit value is further removed from the nonlinear processing signal.
  • the signal processing apparatus may be configured such that the magnification value is set for each frequency component that is a target for generating a harmonic.
  • the magnification value is set for each frequency component that is a target for generating a harmonic.
  • higher harmonics in the frequency band contribute to sharpening of the image represented by the output signal. Therefore, it is preferable to increase the energy as much as possible for the higher harmonics in the frequency band.
  • the input signal is a signal representing a pixel group composed of pixels arranged adjacent to each other in the horizontal direction of the image represented by the input signal
  • the frequency component decomposing means includes
  • the input signal may be decomposed into a plurality of frequency components in different frequency bands.
  • the input signal representing a pixel group composed of pixels lined up adjacent in the horizontal direction of the image is further decomposed into frequency components in a plurality of different frequency bands.
  • harmonics are generated for each of a part or all of the frequency components excluding the frequency component of the lowest frequency band included in the input signal representing the pixel group composed of pixels lined up adjacent in the horizontal direction of the image. At the same time, it is possible to generate an output signal obtained by synthesizing the generated harmonics and frequency components in which no harmonics are generated.
  • the image quality can be improved by emphasizing the vertical outline of the image.
  • the frequency component decomposing means outputs a signal representing a pixel group composed of pixels arranged adjacent to each other in the vertical direction of the image represented by the input signal in a plurality of different frequency bands. It is good also as a structure decomposed
  • the input signal representing a pixel group composed of pixels lined up adjacent in the vertical direction of the image is further decomposed into frequency components of a plurality of different frequency bands.
  • harmonics are generated for each of some or all of the frequency components excluding the frequency component of the lowest frequency band included in the input signal representing the pixel group composed of pixels arranged adjacently in the vertical direction of the image. At the same time, it is possible to generate an output signal obtained by synthesizing the generated harmonics and frequency components in which no harmonics are generated.
  • the input signal represents a moving image
  • the frequency component decomposing means includes pixels arranged adjacent to each other in the time direction of the moving image represented by the input signal.
  • a signal representing a pixel group consisting of a pixel group may be decomposed into a plurality of frequency components in different frequency bands.
  • the input signal representing the pixel group composed of pixels arranged adjacent to each other in the time direction of the moving image is further decomposed into frequency components in a plurality of different frequency bands.
  • harmonics are generated for each part or all of the frequency components excluding the frequency component of the lowest frequency band included in the input signal representing the pixel group consisting of pixels arranged adjacent to each other in the time direction of the moving image.
  • the frequency component decomposition means decomposes the input signal into frequency components of a plurality of different frequency bands using a Laplacian pyramid algorithm
  • the output signal generation means includes the Laplacian
  • the output signal may be generated using a pyramid algorithm.
  • the existing program and design data can be reused simply by changing the filter coefficient, so that the cost can be reduced.
  • the frequency component decomposition means uses wavelet transform to decompose the input signal into frequency components of a plurality of different frequency bands
  • the output signal generation means includes a wavelet inverse unit. It is good also as a structure which produces
  • the existing program and design data can be reused simply by changing the filter coefficient, so that the cost can be reduced.
  • the signal processing apparatus may be configured such that the frequency characteristics of the Quadrature Mirror Filter used in pairs in the wavelet transform and the inverse wavelet transform are asymmetric.
  • the wavelet transform has the property that the image before conversion and the image after reverse conversion are the same. This property is called complete reconstruction. Note that the property of returning to a signal before conversion by inverse conversion is an important property for signal processing.
  • the Fourier transform often used for signal analysis also has a property of returning to a signal before conversion by inverse transform.
  • the degree of freedom in designing a filter for realizing the frequency component decomposition means and the output signal generation means increases. That is, there is an effect that the cost of filter design can be reduced. For example, it is only necessary to change the filter coefficient using an existing library or design data.
  • the configuration of the wavelet transform is similar to the Laplacian pyramid.
  • the signal processing device may be realized by a computer.
  • a control program for the signal processing device that causes the signal processing device to be realized by the computer by causing the computer to operate as the respective means, and A computer-readable recording medium on which it is recorded also falls within the scope of the present invention.
  • the present invention can be applied to a device that processes digital signals representing images and sounds.
  • the present invention can be suitably applied to a display device that displays a still image or a moving image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

 信号処理装置(500)は、画像を表す入力信号を複数の異なる周波数帯域の周波数成分に分解する周波数成分分解部(200)と、上記分解された周波数成分のうち、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成する高調波生成部(101)と、上記生成された高調波と、上記分解された周波数成分のうち高調波が生成されていない周波数成分とを合成し、鮮鋭化させた画像を表す出力信号を生成する信号再構成部(300)とを備えるとともに、高調波生成部(101)は、高調波を生成する対象となる周波数成分の符号の正負が維持され、かつ、少なくとも該周波数成分の値が0の近傍のとき、該周波数成分に対して非線形に広義に単調増加する非線形処理信号を生成する非線形処理部(102)を備え、該周波数成分に非線形処理信号を加算して高調波を生成する。

Description

信号処理装置、信号処理装置の制御方法、制御プログラム、および該制御プログラムを記録したコンピュータ読み取り可能な記録媒体
 本発明は、画像を鮮鋭化することにより画質を向上させる信号処理装置、信号処理装置の制御方法、制御プログラム、および該制御プログラムを記録したコンピュータ読み取り可能な記録媒体に関するものである。
 従来、画像処理装置等にて、画像の画質を改善するために、画像を鮮鋭化する処理(以下、鮮鋭化処理)が行なわれている。例えば、従来のテレビジョン受像機では、自機に表示する画像の輪郭部に相当する画像信号の立ち上がりおよび立ち下がりを急峻にする輪郭補償が行なわれている。この輪郭補償は、テレビジョン受像機のディスプレイに入力された画像信号(輝度信号)の高周波成分を抽出し、該抽出した高周波成分を増幅したものを、上記入力された画像信号に加算することによって行なわれる。これにより、テレビジョン受像機内の各回路で行なれる処理によって劣化する画像信号の周波数特性を改善し、見かけ上の画質を向上させている。
 図19を参照しながら、上述した輪郭補償を行なう従来技術により鮮鋭化処理を施した画像信号の周波数スペクトルの一例について説明する。図19の(a)は、サンプリング周波数fsの画像信号の周波数スペクトルを示す模式図である。そして、図19の(b)は、図19の(a)で示される周波数スペクトルを有する画像信号に対して、上述した輪郭補償を行なう従来技術によって鮮鋭化処理を施した画像信号の周波数スペクトルを示す模式図である。
 上述したように、従来技術により鮮鋭化処理を施した後の画像信号には高周波成分が加算されるので、図19の(b)に示すように、サンプリング周波数fsの1/2の周波数であるナイキスト周波数fs/2の近傍の周波数成分が増大する。
 ところで、上述した従来技術による鮮鋭化処理は、通常、画像信号に対して線形演算を施す処理である。そのため、従来技術による鮮鋭化処理では、ナイキスト周波数よりも高い周波数成分(処理対象となる画像信号に含まれない高周波数成分)を利用することができないため、特に、画像を拡大処理する場合には、画質を改善することができない。
 例えば、高精細テレビジョン(HDTV:High Definition Television)(1080×1920画素のフルハイビジョン)のテレビジョン受像機におけるディスプレイに、解像度がフルハイビジョンの半分の画像を拡大処理して表示する場合について、説明する。ここで、当該拡大処理は、図19の(a)に示した周波数スペクトルを有する画像信号をアップコンバートすることによって、画素数を横方向に2倍に拡大する処理であるとすると、当該拡大処理後の画像信号のサンプリング周波数(Fbsとする)は、サンプリング周波数fsの2倍となる(Fbs=2fs)。
 上記拡大処理後の画像信号の周波数スペクトルについて、図20を参照しながら説明する。図20は、上記拡大処理後の画像信号の周波数スペクトルを示す模式図である。同図に示すように、サンプリング周波数fsに対するナイキスト周波数fs/2と、新たなサンプリング周波数Fbsに対するナイキスト周波数Fbs/2(=fs)との間には、周波数成分が存在しない。Fbs/2と3fs/2との間も同様である。
 したがって、上記拡大処理後の画像信号に対して、従来技術を用いた鮮鋭化処理を施しても、上記拡大処理後の画像信号における高周波成分である、ナイキスト周波数Fbs/2の近傍の周波数成分を抽出することはできない。
 その結果、従来技術を用いた鮮鋭化処理を施しても、拡大処理後の画像は、ぼやけて表示されることになる。
 これに対し、フレーム間またはフレーム内での自己相関等を利用することにより、画像を拡大処理する場合にも画像を高解像度化する技術が、非特許文献1および特許文献3に開示されている。
 また、画像に含まれるエッジの接線方向とエッジの垂直方向とで、程度の異なる平滑化処理を行なう非等方拡散フィルタを利用することにより、画像を高解像度化する技術が、非特許文献2に開示されている。
 また、高周波成分を強調して画質を改善するために、画像信号に加算すべき信号のコアリング量、クリッピング量、エンハンス量、およびリミット量等のそれぞれを調整するための非線形回路を用いた画像処理装置が、特許文献1に開示されている。
 また、映像の品位を低下させずに、高域信号を補償することを目的として、画像信号におけるパルス波形およびステップ波形のエッジ部のリンギング発生を抑制するための非線形変換回路を用いた画質補償回路が、特許文献2に開示されている。
日本国公開特許公報「特開2006-304352号公報(公開日:2006年11月2日)」 日本国公開特許公報「特開平7-312704号公報(公開日:1995年11月28日)」 日本国公開特許公報「特開2007-310837号公報(公開日:2007年11月29日)」
松本信幸,井田孝,「フレーム内再構成型超過解像の領域適応処理による高画質化の検討」,電子情報通信学会技術研究報告,社団法人電子情報通信学会,2008年4月,第108巻,第4号,IE2008-6,p.31-36 Luminita A. Vese and Stanley J.Osher,"Modeling textures with total variation minimization and oscillating patterns in image processing"Jornal of Scientific Computing,Vol.19,Nos.1-3,December 2003
 しかしながら、非特許文献1に開示された技術を実現するためには、大規模なLSI(large-scale integration)を必要とすることから、コストが大きくなるという問題がある。
 また、非特許文献2に開示された技術は、画質補償回路での処理が複雑でありリアルタイム処理には適さないことから、例えば、テレビジョン受像機等において表示される動画像には適用することができないという問題がある。
 また、特許文献1および特許文献2に開示された技術では、画像信号に加算すべき信号のクリッピングや、高域信号の補償によるリンギング発生の抑制という限られた処理に非線形処理を用いているため、拡大処理が施された画像を十分に鮮鋭化することはできないという問題がある。
 また、特許文献3に開示された技術は、原画像によって改善度に差が生じるという問題がある。すなわち、画像によって、大きな改善が見られる場合と、大きな改善が見られない場合とがある。そのため、画像の領域によって改善度が変わったり、映像の場合は時間によって改善度が変わるという問題がある。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、簡易な構成により、静止画像および動画像を高度に鮮鋭化することができる信号処理装置等を提供することにある。
 上記課題を解決するために、本発明に係る信号処理装置は、画像を表す入力信号に対して上記画像を鮮鋭化する処理を施し、該鮮鋭化させた画像を表す出力信号を出力する信号処理装置であって、上記入力信号を複数の異なる周波数帯域の周波数成分に分解する周波数成分分解手段と、上記周波数成分分解手段によって分解された周波数成分のうち、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成する高調波生成手段と、上記高調波生成手段によって生成された高調波と、上記周波数成分分解手段によって分解された周波数成分のうち、上記高調波生成手段によって高調波が生成されていない周波数成分とを合成して、上記出力信号を生成する出力信号生成手段とを備えるとともに、上記高調波生成手段は、高調波を生成する対象となる周波数成分の符号の正負が維持され、かつ、少なくとも該周波数成分の値が0の近傍のとき、該周波数成分に対して非線形に広義に単調増加する非線形処理信号を生成する非線形処理手段と、該周波数成分に上記非線形処理信号を加算することによって、高調波を生成する加算手段とを備えることを特徴としている。
 また、上記課題を解決するために、本発明に係る信号処理装置の制御方法は、画像を表す入力信号に対して上記画像を鮮鋭化する処理を施し、該鮮鋭化させた画像を表す出力信号を出力する信号処理装置の制御方法であって、上記入力信号を複数の異なる周波数帯域の周波数成分に分解する周波数成分分解ステップと、上記周波数成分分解ステップによって分解された周波数成分のうち、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成する高調波生成ステップと、上記高調波生成ステップによって生成された高調波と、上記周波数成分分解ステップによって分解された周波数成分のうち、上記高調波生成ステップによって高調波が生成されていない周波数成分とを合成して、上記出力信号を生成する出力信号生成ステップとを含むとともに、上記高調波生成ステップは、高調波を生成する対象となる周波数成分の符号の正負が維持され、かつ、少なくとも該周波数成分の値が0の近傍のとき、該周波数成分に対して非線形に広義に単調増加する非線形処理信号を生成する非線形処理ステップと、該周波数成分に上記非線形処理信号を加算することによって、高調波を生成する加算ステップとを含むことを特徴としている。
 上記の構成によれば、画像を表す入力信号を複数の異なる周波数帯域の周波数成分に分解する。そして、上記分解された周波数成分のうち、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成する。そして、上記生成された高調波と、上記分解された周波数成分のうち、高調波が生成されていない周波数成分とを合成して、鮮鋭化させた画像を表す出力信号を生成する。さらに、上記生成される高調波は、高調波を生成する対象となる周波数成分と、該周波数成分の符号の正負が維持され、かつ、少なくとも該周波数成分の値が0の近傍のとき、該周波数成分に対して非線形に広義に単調増加する非線形処理信号とを加算したものである。
 よって、画像を表す入力信号に含まれる、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成するとともに、該生成した高調波、および高調波が生成されていない周波数成分を合成した出力信号を生成することができる。ここで、上記生成される高調波は、例えば、高調波を生成する対象となる周波数成分と、該周波数成分を2乗する等の非線形処理を施した非線形処理信号とを加算することにより生成される。ただし、高調波の符号の正負は、該高調波を生成する対象となる周波数成分の符号の正負を維持する。
 このような非線形処理を施すことにより生成される高調波には、元の周波数成分には含まれない高い周波数成分が含まれる。その結果、上記生成された高調波を用いて合成した出力信号は、入力信号を離散化する場合のサンプリング周波数の1/2の周波数であるナイキスト周波数よりも高い周波数成分を含むこととなる。
 これに対して、従来技術のように、入力信号に対して線形演算を施す処理では、ナイキスト周波数を超える高周波域を補償することができない。
 したがって、本発明に係る信号処理装置は、入力信号に対して線形演算を施す処理と比べて、画像に含まれる輪郭部分(エッジ)に相当する信号の立ち上がりおよび立ち下がりをより急峻にすることができる。その結果、画像をより鮮鋭化することができ、画質を大幅に改善することができるという効果を奏する。
 特に、拡大処理を施した画像を表す画像信号を入力信号とする場合、入力信号に対して線形演算を施す処理では、拡大処理後の画像信号のサンプリング周波数の1/2の周波数であるナイキスト周波数より高い周波数成分を抽出することができない。これに対し、本発明に係る信号処理装置は、拡大処理後の画像信号のナイキスト周波数よりも高い周波数成分を、拡大処理後の画像信号に付加することができるので、拡大処理を施した画像についても、画質を大幅に改善することができるという効果を奏する。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
本発明の一実施形態に係る信号処理装置の構成を示すブロック図である。 図1に示した信号処理装置に含まれる周波数成分分解部および信号再構成部の構成を示すブロック図である。 図1に示した信号処理装置に含まれる周波数成分分解部および信号再構成部の他の構成を示すブロック図である。 図1に示した信号処理装置に含まれる高調波生成部の構成を示すブロック図である。 図5の(a)は、図4に示した高調波生成部に入力される信号の波形を模式的に示す図である。図5の(b)は、図4に示した高調波生成部にて生成される非線形処理対象信号の波形を模式的に示す図である。図5の(c)は、図4に示した高調波生成部にて生成される非線形信号の波形を模式的に示す図である。図5の(d)は、図4に示した高調波生成部にて生成される符号変換信号の波形を模式的に示す図である。図5の(e)は、図4に示した高調波生成部にて生成される高調波の波形を模式的に示す図である。 図6の(a)は、図4に示した高調波生成部に入力される信号の波形を模式的に示す図である。図6の(b)は、図6の(a)に示した信号を、従来技術によりエンハンスした波形を模式的に示す図である。 図1に示した信号処理装置に含まれる高調波生成部の他の構成を示すブロック図である。 図7に示した高調波生成部に含まれる微分部の構成を示すブロック図である。 図9の(a)は、図7に示した高調波生成部に入力される信号の波形を模式的に示す図である。図9の(b)は、図7に示した高調波生成部にて生成される非線形処理対象信号の波形を模式的に示す図である。図9の(c)は、図7に示した高調波生成部にて生成される非線形信号の波形を模式的に示す図である。図9の(d)は、図7に示した高調波生成部にて生成される微分信号の波形を模式的に示す図である。図9の(e)は、図7に示した高調波生成部にて生成される符号変換信号の波形を模式的に示す図である。図9の(f)は、図7に示した高調波生成部にて生成される高調波の波形を模式的に示す図である。 図1に示した信号処理装置に含まれる高調波生成部のさらなる他の構成を示すブロック図である。 図11の(a)は、図10に示した高調波生成部に入力される信号の波形を模式的に示す図である。図11の(b)は、図10に示した高調波生成部にて生成される非線形処理対象信号の波形を模式的に示す図である。図11の(c)は、図10に示した高調波生成部にて生成される非線形信号の波形を模式的に示す図である。図11の(d)は、図10に示した高調波生成部にて生成される高調波の波形を模式的に示す図である。 図19の(a)に示した周波数スペクトルを有する画像信号に対して、図1に示した信号処理装置にて鮮鋭化処理を施した後の画像信号の周波数スペクトルを示す模式図である。 鮮鋭化処理を施す対象となる画像を含む画像を示す図である。 図14の(a)は、図13に示した元画像の右上の領域を、縦横それぞれ2倍に拡大した画像である。図14の(b)は、図14の(a)で示される画像に、従来技術による鮮鋭化処理を施した後の画像を示す図である。図14の(c)は、図1に示した信号処理装置にて図14の(a)で示される画像の鮮鋭化処理を施した後の画像を示す図である。 図15の(a)は、ウェーブレット変換およびウェーブレット逆変換において対にして用いられる低域通過フィルタおよび高域通過フィルタの一般的な周波数特性を示す模式図である。図15の(b)は、図3に示した周波数成分分解部および信号再構成部にて用いるウェーブレット変換および逆変換において、対にして用いられる低域通過フィルタおよび高域通過フィルタの周波数特性を示す模式図である。 図1に示した信号処理装置に含まれる周波数成分分解部および信号再構成部のさらなる他の構成を示すブロック図である。 図1に示した信号処理装置に含まれる高調波生成部のさらなる他の構成を示すブロック図である。 図1に示した信号処理装置に含まれる高調波生成部のさらなる他の構成を示すブロック図である。 図19の(a)は、サンプリング周波数fsの画像信号の周波数スペクトルを示す模式図である。図19の(b)は、図19の(a)で示される周波数スペクトルを有する画像信号に対して、従来技術により鮮鋭化処理を施した画像信号の周波数スペクトルを示す模式図である。 図20は、図19の(a)に示した周波数スペクトルを有する画像信号をアップコンバートすることによって、画素数を横方向に2倍に拡大した後の画像信号の周波数スペクトルを示す模式図である。
 本発明の一実施形態について図1から図18に基づいて説明すると以下の通りである。
 (1.信号処理装置の概要)
 本実施の形態に係る信号処理装置500は、外部から入力される、画像を表すデジタル信号(以下、画像信号とも称する)に対して、上記画像を鮮鋭化するための鮮鋭化処理を施し、該鮮鋭化された画像信号を出力する装置である。ここで、鮮鋭化処理とは、画像に含まれる輪郭部分(エッジ)に相当する信号の立ち上がりおよび立ち下がりを急峻にする(エンハンスする)処理を指すものとする。
 以下では、信号処理装置500に入力される画像信号を、入力信号Sinと表記する。また、信号処理装置500から出力される画像信号を、出力信号Soutと表記する。
 なお、後述するように、信号処理装置500は、入力信号Sinに含まれない高周波成分(具体的には、入力信号Sinを離散化する場合のサンプリング周波数の1/2の周波数であるナイキスト周波数より高い周波数成分)を、出力信号Soutに含ませることができる。そのため、信号処理装置500にて鮮鋭化処理を行なうと、従来技術のように線形演算を用いて鮮鋭化処理を行なう場合に比べて、画像に含まれるエッジに相当する信号の立ち上がりおよび立ち下がりを、より急峻にすることが可能となる。
 なお、入力信号Sinで表される画像は、静止画像であってもよいし、動画像であってもよい。さらに、動画像は、例えば、標準画質テレビジョン(SDTV:Standard Definition Television)または高精細テレビジョン(HDTV:High Definition Television)の受像機等にて、リアルタイムに表示されるものであってもよい。
 また、入力信号Sinは、画像の横方向(水平方向、主走査方向)に隣接して並ぶ画素の画素値から成るデータ列(画素値の系列)によって構成されているものとして説明するが、画像の縦方向(垂直方向、副走査方向)に隣接して並ぶ画素の画素値から成るデータ列によって構成されていてもよい。
 (2.信号処理装置の構成)
 図1を参照しながら、信号処理装置500の構成について説明する。図1は、信号処理装置500の構成を示すブロック図である。
 同図に示すように、信号処理装置500は、周波数成分分解部(周波数成分分解手段)200と、高調波群生成部100と、信号再構成部(出力信号生成手段)300とを備えている。さらに、高調波群生成部100は、1または複数の高調波生成部(高調波生成手段)101を備えている。さらに、高調波生成部101は、少なくとも非線形処理部(非線形処理手段)102を備えている。
 なお、後述する周波数成分分解部200a~200cを区別しないときは、単に「周波数成分分解部200」と表記するものとする。また、後述する信号再構成部300a~300cを区別しないときは、単に「信号再構成部300」と表記するものとする。また、後述する高調波生成部101a~101eを区別しないときは、単に「高調波生成部101」と表記するものとする。また、後述する非線形処理部102a~102eを区別しないときは、単に「非線形処理部102」と表記するものとする。
 信号処理装置500は、外部から入力信号Sinが入力されると、下記(1)~(3)に示す処理を行なうことによって、出力信号Soutを出力する。
 (1)まず、信号処理装置500は、周波数成分分解部200によって、入力信号Sinを複数の異なる周波数帯域の周波数成分SF(i=1、2、…、m;mは2以上の正の整数を示す)に分解する(アナライズ)。周波数成分分解部200の構成については後述する。
 なお、入力信号Sinを複数の異なる周波数帯域の周波数成分に分解する方法は、どのような方法であってもよい。例えば、入力信号Sinに対して、いわゆる多重解像度解析を行なうことにより、入力信号Sinを複数の異なる周波数帯域の周波数成分に分解することが考えられる。多重解像度解析とは、入力信号を、高周波成分と低周波成分とに分解する処理を逐次的に行なうことによって、複数の異なる周波数帯域の周波数成分に分解することである。多重解像度解析は公知であるので、ここではその説明を省略する。
 また、多重解像度解析を行なう場合、どのような方法を用いて多重解像度解析を実現してもよい。例えば、ラプラシアンピラミッド(Laplacian Pyramid)アルゴリズムを用いてもよいし、ウェーブレット変換(Wavelet Transform)を用いてもよい。
 (2)次に、信号処理装置500は、周波数成分分解部200が分解した周波数成分のうち最も低い周波数成分を除いた周波数成分の一部または全部(SF~SF;nはm以下の正の整数を示す)のそれぞれに対して、高調波群生成部100が備える高調波生成部101により非線形処理を施し、入力信号Sinに含まれない高周波成分(すなわち、ナイキスト周波数より高い周波数成分)を有する高調波HW(p=n、…、m)を生成する。周波数成分分解部200が分解した周波数成分のうち、高調波を生成する対象とする周波数成分をいずれにするかについては特に限定されず、任意の周波数成分が対象となる。
 なお、高調波生成部101は、周波数成分分解部200が分解した周波数成分のうち、高調波を生成する対象とする周波数成分毎に設けられる。そして、高調波生成部101は、後述するように、非線形処理部102により、高調波生成部101に入力される周波数成分に対して、非線形関数等を用いた非線形処理を施す。その結果、高調波生成部101は、高調波生成部101に入力される信号を離散化する場合のサンプリング周波数fsの1/2の周波数であるナイキスト周波数fs/2より高い周波数成分を含む高調波を生成する。高調波生成部101の構成については後述する。
 (3)次に、信号処理装置500は、高調波群生成部100によって生成された高調波(HW~HW)と、周波数成分分解部200によって分解された周波数成分のうち上記非線形処理を施していない周波数成分(SF~SFn-1)とに基づいて、信号再構成部300にて信号の再構成を行なうことにより、出力信号Soutを生成する。
 なお、信号再構成部300は、周波数成分分解部200が行なう分解と逆の処理(合成、シンセサイズ)を行なうことにより、信号を再構成(復元)する。例えば、周波数成分分解部200がウェーブレット変換を用いた多重解像度解析を行なう場合、信号再構成部300はウェーブレット逆変換を用いて信号を再構成する。信号再構成部300の構成については後述する。
 なお、図1では、周波数成分分解部200によって分解された周波数成分のうち、最も低い周波数成分を除いた周波数成分の一部に対して高調波生成部101を設ける構成を示している。最も低い周波数成分を除いた周波数成分の一部について高調波を生成させることにより、出力信号Soutで表される画像は、入力信号Sinで表される画像よりも鮮鋭な画像となる。
 また、図1では、周波数成分SF~SFのそれぞれに対して高調波生成部101により高調波を生成しているが、周波数成分SF~SFの少なくとも1つ以上に対して高調波生成部101により高調波を生成してもよい。この場合も、高調波を生成する対象とする周波数成分をいずれにするかについては特に限定されず、任意の周波数成分が対象となる。
 (3.周波数成分分解部および信号再構成部の構成)
 次に、図2および図3を参照しながら、周波数成分分解部200および信号再構成部300の構成例について説明する。なお、ここでは、高調波生成部101の構成については説明しないが、高調波生成部101の構成は、後述する構成例のいずれであってもよい。
 (3-1.周波数成分分解部および信号再構成部の構成例1)
 まず、図2を参照しながら、ラプラシアンピラミッドアルゴリズムを用いた多重解像度解析を行なう周波数成分分解部200a、およびラプラシアンピラミッドアルゴリズムを用いた信号の再構成を行なう信号再構成部300aの構成例について説明する。図2は、周波数成分分解部200aおよび信号再構成部300aの構成を示すブロック図である。
 なお、ここでは、説明の便宜上、3つのステージ(ST1~ST3)にて、入力信号Sinを4つの周波数帯域に分解する場合について説明するが、ステージ数および分解後の周波数帯域の数は、入力信号Sinで表される画像の画素数等に応じて適宜決まるものである。
 また、図2では、3つのステージで周波数成分を分解する例を示しているが、ステージ数が多いほど、より低い周波数成分を、画像の高解像度化に利用することが可能となる。ここで、信号のサンプリング周波数を2fs、ナイキスト周波数をfsとし、周波数成分SFの帯域をfs/3~fs/2、周波数成分SFの帯域をfs/2~2fs/3、周波数成分SFの帯域を2fs/3~fsと仮定する。この場合、図2に示す例では、fs/3~fsの周波数成分を有する信号が高解像度化に利用されることになる。ステージ数を増やすことにより、周波数別に細かい制御が可能となる。例えば、fs/3~fs/2の信号は大きく増幅するとともに、2fs/3~fsの信号はノイズと区別し難いので弱めに増幅するといった制御が可能となる。一般に、ステージ数を増やした方が、低域の信号を高解像度化に用いることが可能となる。なお、ステージ数を増やせば、カスケードにつながるフィルタの数が多くなるため、低域の信号まで検出することが可能となる。
 なお、ステージ数を少なくした場合でも、フィルタのタップ長を長くすれば、低域の信号まで高解像度化に利用することが可能である。しかしながら、広い帯域を同じ増幅度で制御する方法は、画作りの上で必ずしも望ましいものではない。このような方法を用いると、高精細度成分とノイズとを同時に増幅することがあるためである。
 周波数成分分解部200aは、ラプラシアンピラミッドアルゴリズムを用いた多重解像度解析を行ない、入力信号Sinを4つの周波数帯域の周波数成分SF~SFに分解する。周波数成分分解部200aは、まず、1つ目のステージST1にて、入力信号Sinを入力として、低域成分の周波数成分S91および高域成分の周波数成分SFを得る。周波数成分S91は、入力信号Sinを、低域通過フィルタ(以下、LPFと表記する)201によってフィルタリングし、ダウンサンプラ202によってダウンサンプリング(間引き)することによって得る。一方、周波数成分SFは、周波数成分S91をアップサンプラ203によってアップサンプリング(補間)し、LPF204によってフィルタリングした結果を、減算部205にて入力信号Sinから減算することによって得る。
 同様に、周波数成分分解部200aは、2つ目のステージST2にて、周波数成分S91を入力として、LPF211、ダウンサンプラ212、アップサンプラ213、LPF214、および減算部215によって、低域成分の周波数成分S92および高域成分の周波数成分SFを得る。また、同様に、3つ目のステージST3にて、周波数成分S92を入力として、LPF221、ダウンサンプラ222、アップサンプラ223、LPF224、および減算部225によって、低域成分の周波数成分SFおよび高域成分の周波数成分SFを得る。
 以上のように、周波数成分分解部200aは、ラプラシアンピラミッドアルゴリズムを用いた多重解像度解析を行ない、入力信号Sinを周波数成分SF~SFに分解する。
 なお、上記分解された周波数成分のうち、最も低い周波数成分である周波数成分SFを除くSF~SFのそれぞれについて、高調波生成部101にて非線形処理を施し、高調波HW~HWを生成する。ただし、上述したように、必ずしも周波数成分SF~SFのそれぞれについて高調波生成部101にて非線形処理を施す必要はなく、周波数成分SF~SFの少なくとも1つについて高調波生成部101にて非線形処理を施せばよい。なお、いずれを選択するかは特に限定されるものではなく、任意の周波数成分が選択可能である。
 次に、信号再構成部300aは、周波数成分SF、および、高調波生成部101にて生成された高調波HW~HWを用いて、ラプラシアンピラミッドにより、信号の再構成を行なう。
 具体的には、まず、周波数成分SFをアップサンプラ301によりアップサンプリングし、LPF311によってフィルタリングする。そして、加算部322により、該フィルタリングした結果を高調波HWに加算する。続いて、上記加算した結果を、アップサンプラ302によりアップサンプリングし、LPF312によってフィルタリングする。そして、加算部323により、該フィルタリングした結果を高調波HWに加算する。さらに続いて、上記加算した結果を、アップサンプラ303によりアップサンプリングし、LPF313によってフィルタリングする。そして、加算部324により、該フィルタリングした結果を高調波HWに加算する。これにより、出力信号Soutを得る。
 以上のように、信号再構成部300aは、ラプラシアンピラミッドを用いて、信号の再構成を行なう。
 なお、周波数成分分解部200aおよび信号再構成部300aが備えるLPF、ダウンサンプラ、およびアップサンプラは、公知のものを用いればよいため、それらの構成については、ここでは説明を省略する。
 (3-2.周波数成分分解部および信号再構成部の構成例2)
 次に、図3を参照しながら、ウェーブレット変換を用いた多重解像度解析を行なう周波数成分分解部200、およびウェーブレット逆変換を用いた信号の再構成を行なう信号再構成部300の構成例について説明する。図3は、周波数成分分解部200bおよび信号再構成部300bの構成を示すブロック図である。
 なお、ここでは、説明の便宜上、4つの周波数帯域に分解する場合について説明するが、分解の数は、入力信号Sinで表される画像の画素数等に応じて適宜決まるものである。図3では、高解像度化に利用する(つまり、高調波群生成部100に入力する)信号の数が3つである(3レベルである)場合を例示しているが、レベル数が多いほど、低い周波数成分まで高解像度化に利用することになる。信号のサンプリング周波数を2fsとし、ナイキスト周波数をfsとすると、1レベル(高調波群生成部100に入力する信号の数が1つ)であれば、fs/2~fsの信号が高解像度化に用いられることになる。また、2レベルであればfs/4~fsの信号が高解像度化に用いられることになる。また、3レベルであればfs/8~fsの信号が高解像度化に用いられることになる。
 周波数成分分解部200bは、ウェーブレット変換を用いて多重解像度解析を行ない、入力信号Sinを4つの周波数帯域(LL、LH、HL、HH)の周波数成分SF~SFに分解する。同図に示すように、周波数成分分解部200bは、まず、LPF251に入力信号Sinを入力し、ダウンサンプラ252によりダウンサンプリングすることによって、低域成分(L)の周波数帯域の周波数成分S93を得る。同様に、HPF253に入力信号Sinを入力し、ダウンサンプラ254によりダウンサンプリングすることよって、高域成分(H)の周波数帯域の周波数成分S94を得る。
 続いて、上記得られた周波数成分S93をLPF261に入力し、ダウンサンプラ262によりダウンサンプリングすることによって、低域成分のうちの低域成分(LL)の周波数帯域の周波数成分SF(直流成分)を得る。また、上記得られた周波数成分S93をHPF263に入力し、ダウンサンプラ264によりダウンサンプリングすることによって、低域成分のうちの高域成分(LH)の周波数帯域の周波数成分SFを得る。
 一方、上記得られた周波数成分S94をLPF271に入力し、ダウンサンプラ272によりダウンサンプリングすることによって、高域成分のうちの低域成分(HL)の周波数帯域の周波数成分SFを得る。同様に、上記得られた周波数成分S94をHPF273に入力し、ダウンサンプラ274によりダウンサンプリングすることによって、高域成分のうちの高域成分(HH)の周波数帯域の周波数成分SFを得る。
 以上のように、周波数成分分解部200bは、ウェーブレット変換を用いた多重解像度解析を行ない、入力信号Sinを周波数成分SF~SFに分解する。
 なお、上記分解された周波数成分のうち、最も低い周波数成分である周波数成分SFを除くSF~SFのそれぞれについて、高調波生成部101にて非線形処理を施し、高調波HW~HWを生成する。ただし、必ずしもSF~SFのそれぞれについて高調波生成部101にて非線形処理を施す必要はなく、SF~SFの少なくとも1つについて高調波生成部101にて非線形処理を施せばよい。
 次に、信号再構成部300bは、周波数成分SF、および、高調波生成部101にて生成された高調波HW~HWに基づいて、ウェーブレット逆変換を用いて、信号の再構成を行なう。
 具体的には、まず、周波数成分SFをアップサンプラ331によりアップサンプリングした結果をLPF332に入力し、また、高調波HWをアップサンプラ333によりアップサンプリングした結果をHPF334に入力するとともに、LPF332およびHPF334の出力を加算部335により加算して、低域成分(L)の周波数帯域の周波数成分S95を得る。
 また、高調波HWをアップサンプラ341によりアップサンプリングした結果をLPF342に入力し、また、高調波HWをアップサンプラ343によりアップサンプリングした結果をHPF344に入力するとともに、LPF342およびHPF344の出力を加算部345により加算して、高域成分(H)の周波数帯域の周波数成分S96を得る。
 そして、上記得られた周波数成分S95をアップサンプラ351によりアップサンプリングした結果をLPF352に入力し、また、上記得られた周波数成分S96をアップサンプラ353によりアップサンプリングした結果をHPF354に入力するとともに、LPF352およびHPF354の出力を加算部355により加算し、出力信号Soutを得る。
 以上のように、信号再構成部300bは、ウェーブレット逆変換を用いて、信号の再構成を行なう。
 なお、周波数成分分解部200bおよび信号再構成部300bが備えるLPF、HPF、ダウンサンプラ、およびアップサンプラは、公知のものを用いればよいため、それらの構成については、ここでは説明を省略する。
 (4.高調波生成部の構成例)
 次に、高調波生成部101の構成例について説明する。ここでは、周波数成分分解部200および信号再構成部300の構成については説明しないが、周波数成分分解部200および信号再構成部300の構成は、上述した構成例のいずれであってもよい。
 なお、以下では、周波数成分SF~SFを区別しないときは、単に「周波数成分SF」と表記するものとする。また、高調波HW~HWを区別しないときは、単に「高調波HW」と表記するものとする。
 (4-1.高調波生成部の構成例1)
 図4は、高調波生成部101aの構成を示すブロック図である。同図に示すとおり、高調波生成部101aは、低レベル信号除去部(ノイズ除去手段)11、非線形処理部102a、および加算部(加算手段)15を備えている。
 まず、低レベル信号除去部11について説明する。低レベル信号除去部11は、後段の非線形処理部102aにてノイズを増幅させないために備えられるものであり、周波数成分SFに含まれるノイズとみなせる低レベル信号を除去することにより、非線形処理対象信号S11を生成する。具体的には、周波数成分SFの信号値のうち、絶対値が所定閾値(SVとする)以下の信号値を“0”に変更する。
 例えば、閾値SVを“3”とすると、周波数成分SFの信号値のうち、絶対値が“3”以下の信号値を全てノイズとみなして“0”に変更する。なお、閾値SVは、ノイズの量に応じて適宜設定可能であることが望ましい。
 なお、周波数成分SFに含まれるノイズ等の低レベル信号が非常に少ない等のように、周波数成分SFの低レベル信号を除去する必要がない場合、高調波生成部101aは、低レベル信号除去部11を備える必要はなく、非線形処理部102aおよび加算部15のみを備える構成としてもよい。なお、高調波生成部101aが非線形処理部102aおよび加算部15のみを備える構成である場合、周波数成分SFを、そのまま非線形処理対象信号S11とする。
 次に、非線形処理部102aについて説明する。非線形処理部102aは、図4に示すように、非線形演算部(偶数冪乗演算手段)21、符号変換部(符号変換手段)41、およびリミッタ(振幅調整手段)51を備えている。
 非線形演算部21は、非線形処理対象信号S11に対して非線形演算を施し、非線形信号S21を生成する。
 ここで、非線形演算部21にて行なう非線形演算について説明する。以下では、非線形演算部21への入力信号値をxとし、非線形演算部21からの出力信号値をyとし、非線形演算部21にて行なう非線形演算を、y=f(x)という関数で表す。
 ここで、関数f(x)は、正負対称(原点対称)に単調増加する非線形関数であるものとする。なお、単調増加とは広義の単調増加を意味するものとする。ただし、関数f(x)は、少なくともx=“0”の近傍で単調増加するものであればよい。また、関数f(x)は、少なくともx=“0”の近傍で、|f(x)|>|x|であることが好ましい。
 このような関数f(x)として、例えば、下記数式(1)~(3)で示されるものが挙げられる。なお、下記数式(2)および(3)で示される関数f(x)を用いる場合、当該関数f(x)は、0≦x≦1の区間での値の増加が大きいため、当該区間で用いることが好ましい。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 関数f(x)として上記数式(1)を用いる場合、非線形演算部21は、2以上の偶数を冪指数として非線形処理対象信号S11を冪乗することにより非線形信号S21(偶数冪乗信号)を生成する。例えば、上記数式(1)においてn=1の場合(つまり、f(x)=xである場合)、非線形演算部21は、非線形処理対象信号S11を2乗することにより、非線形信号S21を生成する。この場合、非線形処理対象信号S11を構成するデータ列が、X1,X2,X3、…であるとすると、非線形処理対象信号S11を2乗した非線形信号S21は、データ列X1,X2,X3、…で構成されるデジタル信号となる。
 ところで、非線形処理対象信号S11の信号値が、-255~255のいずれかの整数値である場合、関数f(x)を用いるにあたり、xを255で正規化してもよい。例えば、上記数式(2)を用いる代わりに、上記数式(2)で示される関数f(x)の右辺のxを、x/255で正規化するとともに、右辺に255を乗算した下記数式(4)を用いてもよい。なお、下記数式(4)は、f(x)>xという条件を満たす。
Figure JPOXMLDOC01-appb-M000004
 上記数式(4)では、上記数式(2)で示される関数f(x)の右辺のxを、255で正規化するとともに、右辺に255を乗算したが、右辺に乗算する数値は正規化するための値(この例では255)と同じ値である必要はなく、|f(x)|>|x|という条件を満たすものであればよい。例えば、255の代わりに右辺に100を乗算した下記数式(5)を用いてもよい。
Figure JPOXMLDOC01-appb-M000005
 また、関数f(x)は、下記数式(6)に示す三角関数を用いたものであってもよい。
Figure JPOXMLDOC01-appb-M000006
 次に、符号変換部41は、非線形処理対象信号S11の符号ビット情報に基づき、非線形信号S21に非線形処理対象信号S11の符号を反映させたものを、符号変換信号S41として生成する。すなわち、符号変換部41は、非線形信号S21のうち、符号が、非線形処理対象信号S11と同じ部分については、符号をそのまま維持する。一方、非線形信号S21のうち、符号が、非線形処理対象信号S11と異なる部分については、符号の正負を反転させる。
 次に、リミッタ51は、符号変換部41が生成する符号変換信号S41の振幅(信号レベル、強度)を調整する処理(以下、振幅調整処理とも表記する)を行なうことにより、非線形処理信号S12を生成する。具体的には、リミッタ51は、符号変換信号S41に、所定の倍率値(αとする)(|α|<1)を乗算することにより、符号変換信号S41の振幅を調整する。
 なお、倍率値αは、映像の動きやノイズの量に応じて適宜設定可能であることが望ましい。固定値にする場合は、例えば、絶対値が0.5以下の値とすることが望ましい。
 さらに、リミッタ51は、既に十分なエネルギーを有する信号をさらに増幅させないために、非線形処理信号S12の信号値が所定の上限値(UVとする)以下となるように、非線形処理信号S12の信号のうち、絶対値が上限値UVよりも大きい部分について、絶対値を当該上限値UV以下に変更する処理(以下、クリップ処理とも表記する)を行なう。例えば、非線形処理信号S12の信号値の絶対値が“64”を超える部分について、当該部分の信号値を、符号に応じて“64”または“-64”に変更する。または、“0”に変更してもよい。
 なお、上限値UVは、映像の動きやノイズの量に応じて適宜設定可能であることが望ましい。固定値にする場合は、例えば、8ビット信号で表される画像に対しては、上限値UVは64以下の値とすることが望ましい。
 なお、非線形処理部102aは、リミッタ51を備えず、符号変換信号S41の振幅調整処理およびクリップ処理を行なわない構成としてもよい。この場合、符号変換部41が生成する符号変換信号S41が、非線形処理信号S12として非線形処理部102aから出力される。
 最後に、加算部15について説明する。加算部15は、非線形処理信号S12を補償用信号として、周波数成分SFに加算することにより、高調波HWを生成するものである。なお、加算部15には、周波数成分SFと非線形処理信号S12との間のタイミングを調整するための遅延素子が適宜含まれているものとする。
 (4-2.信号の波形)
 次に、図5の(a)~(e)を参照しながら、高調波生成部101aの各部にて生成される信号の波形について説明する。図5の(a)~(e)は、高調波生成部101aの各部にて生成される信号の波形を模式的に示す図である。ここでは、周波数成分SFとして、図5の(a)に示す信号が、高調波生成部101aに入力されるものとする。
 まず、周波数成分SFが低レベル信号除去部11に入力されると、ノイズ等の低レベル信号が除去され、図5の(b)に示される非線形処理対象信号S11が生成される。
 続いて、非線形演算部21にて行なわれる非線形演算が、f(x)=xである場合、非線形処理対象信号S11を2乗した非線形信号S21が、非線形演算部21にて生成される(図5の(c)参照)。
 続いて、非線形信号S21が符号変換部41に入力されると、図5の(d)に示される符号変換信号S41が生成される。同図に示すとおり、符号変換信号S41は、図5の(b)に示される非線形処理対象信号S11の符号の正負が維持されている。
 続いて、符号変換信号S41がリミッタ51に入力されると、振幅調整処理およびクリップ処理が行なわれ、非線形処理信号S12が生成される。その後、加算部15によって、非線形処理信号S12が周波数成分SFに加算されると、高調波HWが生成される(図5の(e)参照)。図5の(a)に示す信号と図5の(e)に示す高調波とを比較すると、図5の(e)に示す高調波ではエッジの立ち上がりが急峻になっており、解像度が向上したことがわかる。
 なお、図5の(e)に示した高調波HWにおける信号の立ち上がりおよび立ち下がりは、従来技術のように線形演算を用いて周波数成分SFをエンハンスした場合における信号の立ち上がりおよび立ち下がりよりも、急峻となるので、図6を参照しながら説明する。
 図6の(a)に示す信号は、図5の(a)に示した周波数成分SFの信号と同じものである。そして、図6の(a)に示す周波数成分SFをエンハンスする場合、線形演算を用いた従来の鮮鋭化処理では、図6の(a)に示す周波数成分SFから高域信号を抽出し、該抽出した高域信号に周波数成分SFを加算するという方法が用いられる。したがって、線形演算を用いた従来の鮮鋭化処理では、周波数成分SFに含まれていないナイキスト周波数を超えた信号成分が付加されることはない。
 そのため、線形演算を用いた従来の鮮鋭化処理では、図6の(b)で示される信号が生成される。図6の(b)で示される信号における立ち上がりおよび立ち下がりは、図6の(a)に示す周波数成分SFにおける信号の立ち上がりおよび立ち下がりよりも急峻となるものの、高調波生成部101aにて生成される高調波HW(図5の(e))における信号の立ち上がりおよび立ち下がりの方が、より急峻となる。
 図6の(a)に示す信号と図6の(b)に示す信号とを比較すると、エッジの立ち上がり角度はほぼ同一である。そして、図6の(b)に示す信号では、エッジの立ち上がり前に谷が追加されており、また、エッジの立ち上がり後に山が追加されている。よって、図6の(b)に示す信号で表される画像の絵柄は、縁取りされたように見える。このように、ナイキスト周波数を超える信号成分を用いない従来の鮮鋭化処理は、縁取りにより解像感を向上することしかできず、本発明のように解像度そのものを向上することはできない。
 (4-3.高調波生成部の構成例2)
 上述した高調波生成部101aの非線形処理部102aにおいて、非線形演算部21にて生成される非線形信号S21を微分する構成としてもよい。非線形信号S21を微分することによって、非線形信号S21に含まれる直流成分を除去することができるからである。
 そこで、図7を参照しながら、高調波生成部101bの構成例について説明する。図7は、高調波生成部101bの構成を示すブロック図である。
 同図に示すとおり、高調波生成部101bは、低レベル信号除去部11、非線形処理部102b、および加算部15を備えている。そして、非線形処理部102bは、図4に示した非線形処理部102aの構成に加え、非線形演算部21と符号変換部41との間に、微分部(微分手段)31を備えている。低レベル信号除去部11、非線形処理部102bの微分部31以外の部材、および加算部15は、上述したものと同じものであるので、ここではその詳細な説明を省略する。
 なお、周波数成分SFに含まれるノイズ等の低レベル信号が非常に少ない等のように、周波数成分SFの低レベル信号を除去する必要がない場合、高調波生成部101bは、低レベル信号除去部11を備える必要はなく、非線形処理部102bおよび加算部15のみを備える構成としてもよい。高調波生成部101bが非線形処理部102bおよび加算部15のみを備える構成である場合、周波数成分SFを、そのまま非線形処理対象信号S11とする。
 微分部31は、非線形演算部21にて生成される非線形信号S21を微分することにより、微分信号S31を生成するものである。
 図8を参照しながら、微分部31の構成について説明する。図8は、微分部31の構成を示すブロック図である。同図に示すように、微分部31は、単位遅延素子3111と減算部3112とから構成されており、微分部31に入力される信号に対して後退差分を算出するものである。
 そして、微分部31が生成した微分信号S31に対して、符号変換部41は、非線形処理対象信号S11の符号ビット情報に基づき、非線形信号S21に非線形処理対象信号S11の符号を反映させたものを、符号変換信号S42として生成する。すなわち、符号変換部41は、微分信号S31のうち、符号が、非線形処理対象信号S11と同じ部分については、符号をそのまま維持する。一方、非線形信号S21のうち、符号が、非線形処理対象信号S11と異なる部分については、符号の正負を反転させる。
 そして、リミッタ51は、符号変換部41にて生成される符号変換信号S42に対して、振幅調整処理およびクリップ処理を行なうことによって、非線形処理信号S12を生成する。振幅調整処理では、符号変換信号S42に、所定の倍率値αを乗算することにより、符号変換信号S42の振幅を調整する。
 なお、非線形処理部102bは、リミッタ51を備えず、符号変換信号S42の振幅調整処理およびクリップ処理を行なわない構成としてもよい。この場合、符号変換部41が生成する符号変換信号S42が、非線形処理信号S12として非線形処理部102bから出力される。
 (4-4.信号の波形)
 次に、図9の(a)~(f)を参照しながら、高調波生成部101bの各部にて生成される信号の波形について説明する。図9の(a)~(f)は、高調波生成部101bの各部にて生成される信号の波形を模式的に示す図である。
 ここでは、周波数成分SFとして、図9の(a)に示す信号が、高調波生成部101bに入力されるものとする。なお、図9の(a)に示す信号は、図5の(a)に示す信号と同じである。
 まず、周波数成分SFが低レベル信号除去部11に入力されると、ノイズ等の低レベル信号が除去され、図9の(b)に示される非線形処理対象信号S11が生成される。
 続いて、非線形演算部21にて行なわれる非線形演算が、f(x)=xである場合、非線形処理対象信号S11を2乗した非線形信号S21が、非線形演算部21にて生成される(図9の(c)参照)。
 続いて、非線形信号S21が微分部31に入力されると、図9の(d)に示される微分信号S31が生成される。なお、微分信号S31では、非線形信号S21に含まれていた直流成分が除去されている。
 続いて、微分信号S31が符号変換部41に入力されると、図9の(e)に示される符号変換信号S42が生成される。同図に示すとおり、符号変換信号S42は、図9の(b)に示される非線形処理対象信号S11の符号の正負が維持されている。
 続いて、符号変換信号S41がリミッタ51に入力されると、振幅調整処理およびクリップ処理が行なわれ、非線形処理信号S12が生成される。その後、加算部15によって、非線形処理信号S12が周波数成分SFに加算されると、高調波HWが生成される(図9の(f)参照)。
 なお、図9の(f)に示される高調波HWにおける信号の立ち上がりおよび立ち下がりは、線形演算を用いて鮮鋭化する場合よりも、急峻となる。
 (4-5.高調波生成部の構成例3)
 上述した高調波生成部101aおよび高調波生成部101bの構成では、符号変換部41を備える構成としたが、非線形処理対象信号S11に対して施す非線形演算が、非線形処理対象信号S11の符号の正負を維持するものであれば、符号変換部41を備える必要はない。
 そこで、図10を参照しながら、符号変換部41を備えない高調波生成部101cの構成例について説明する。図10は、高調波生成部101cの構成を示すブロック図である。
 同図に示すとおり、高調波生成部101cは、低レベル信号除去部11、非線形処理部102c、および加算部15を備えている。そして、非線形処理部102cは、非線形演算部(奇数冪乗演算手段)22、およびリミッタ51を備えている。低レベル信号除去部11、リミッタ51、および加算部15は、上述したものと同じものであるので、ここではその詳細な説明を省略する。
 なお、周波数成分SFに含まれるノイズ等の低レベル信号が非常に少ない等のように、周波数成分SFの低レベル信号を除去する必要がない場合、高調波生成部101cは、低レベル信号除去部11を備える必要はなく、非線形処理部102cおよび加算部15のみを備える構成としてもよい。なお、高調波生成部101cが非線形処理部102cおよび加算部15のみを備える構成である場合、周波数成分SFを、そのまま非線形処理対象信号S11とする。
 非線形演算部22は、非線形処理対象信号S11に対して非線形演算を施し、非線形信号S22を生成する。
 ここで、非線形演算部22にて行なう非線形演算について説明する。以下では、非線形演算部22への入力信号値をxとし、非線形演算部22からの出力信号値をyとし、非線形演算部22にて行なう非線形演算を、y=g(x)という関数で表す。
 ここで、関数g(x)は、正負対称(原点対称)に単調増加する非線形関数であるものとする。なお、単調増加とは、広義の単調増加を意味するものとする。ただし、関数g(x)は、少なくともx=“0”の近傍で単調増加するものであればよい。また、関数g(x)は、少なくともx=“0”の近傍で、|g(x)|>|x|であることが好ましい。
 このような関数g(x)として、例えば、下記数式(7)が挙げられる。
Figure JPOXMLDOC01-appb-M000007
 関数g(x)として上記数式(7)を用いる場合、非線形演算部22は、3以上の奇数を冪指数として非線形処理対象信号S11を冪乗することにより非線形信号S22を生成する。例えば、上記数式(7)においてn=1の場合(つまり、g(x)=xである場合)、非線形演算部22は、非線形処理対象信号S11を3乗することにより、非線形信号S22を生成する。この場合、非線形処理対象信号S11を構成するデータ列が、X1,X2,X3、…であるとすると、非線形処理対象信号S11を3乗した非線形信号S22は、データ列X1,X2,X3、…で構成されるデジタル信号となる。
 そして、リミッタ51は、非線形演算部22にて生成される非線形信号S22に対して、振幅調整処理およびクリップ処理を行なうことによって、非線形処理信号S12を生成する。
 なお、非線形処理部102cは、リミッタ51を備えず、非線形信号S22の振幅調整処理およびクリップ処理を行なわない構成としてもよい。この場合、非線形演算部22が生成する非線形信号S22が、非線形処理信号S12として非線形処理部102cから出力される。
 (4-6.信号の波形)
 次に、図11の(a)~(d)を参照しながら、高調波生成部101cの各部にて生成される信号の波形について説明する。図11の(a)~(d)は、高調波生成部101cの各部にて生成される信号の波形を模式的に示す図である。
 ここでは、周波数成分SFとして、図11の(a)に示す信号が、高調波生成部101cに入力されるものとする。なお、図11の(a)に示す信号は、図5の(a)に示す信号と同じである。
 まず、周波数成分SFが低レベル信号除去部11に入力されると、ノイズ等の低レベル信号が除去され、図11の(b)に示される非線形処理対象信号S11が生成される。
 続いて、非線形演算部22にて行なわれる非線形演算が、f(x)=xである場合、非線形処理対象信号S11を3乗した非線形信号S22が、非線形演算部22にて生成される(図11の(c)参照)。
 続いて、非線形信号S22がリミッタ51に入力されると、振幅調整処理およびクリップ処理が行なわれ、非線形処理信号S12が生成される。その後、加算部15によって、非線形処理信号S12が周波数成分SFに加算されると、高調波HWが生成される(図11の(d)参照)。
 なお、図11の(d)に示される高調波HWにおける信号の立ち上がりおよび立ち下がりは、線形演算を用いて鮮鋭化する場合よりも、急峻となっている。
 (4-7.ナイキスト周波数を超える周波数が生成される理由)
 次に、高調波生成部101が生成する高調波HWが、入力信号Sinが有する高調波成分等のナイキスト周波数fs/2を超える高周波成分を含む理由について説明する。
 ここでは、入力信号Sinが、(画像の横方向の)位置をxとした関数F(x)で表現されるものとする。そして、入力信号Sinの基本角周波数をωとすると、関数F(x)は、下記数式(8)のようにフーリエ級数で表現することができる。
Figure JPOXMLDOC01-appb-M000008
 ここで、Nは、サンプリング周波数fsに対するナイキスト周波数fs/2を超えない最高周波数の高調波の次数である。すなわち、下記数式(9)が満たされる。
Figure JPOXMLDOC01-appb-M000009
 次に、関数F(x)で表される入力信号Sinの直流成分a以外の信号をG(x)と表記すると、G(x)は下記数式(10)で表される。
Figure JPOXMLDOC01-appb-M000010
 ここで、高調波生成部101に入力される周波数成分SFは、信号G(x)または信号G(x)の高周波成分を含む。
 そして、例えば、非線形演算部21にて行なわれる非線形演算が、f(x)=xである場合、非線形演算部21にて生成される非線形信号S21は、非線形処理対象信号S11を2乗することにより得られる信号である。ここで、上記数式(10)により、(G(x))の各項は、下記数式(11)~(13)のいずれかで表される(i=±1、±2、…、±N;j=±1、±2、…、±N)。
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 ここで、三角関数に関する公式を用いることにより、上記数式(11)~(13)は、それぞれ、下記数式(14)~(16)に書き直すことができる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 上記数式(14)~(16)から分かるように、(G(x))は、(N+1)ω、(N+2)ω、…、2Nω等の角周波数成分を含む。
 よって、(G(x))は、ナイキスト周波数fs/2より高い周波数成分を含むこととなる。つまり、非線形演算部21にて生成される非線形信号S21は、周波数2Nω/(2π)といった高調波成分等のように、ナイキスト周波数fs/2より高い周波数成分を含むこととなる。
 同様に、例えば、非線形演算部22にて行なわれる非線形演算が、f(x)=xである場合、非線形演算部22にて生成される非線形信号S22は、非線形処理対象信号S11を3乗することにより得られる信号である。ここで、上記数式(10)により、(G(x))の各項は、下記数式(17)~(20)のいずれかで表される(i=±1、±2、…、±N;j=±1、±2、…、±N;k=±1、±2、…、±N)。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
 ここで、例えば、i=j=k=Nである項のうち、上記数式(17)および(20)で示される項に着目すると、これらの項は、三角関数に関する公式を用いることにより、下記数式(21)および(22)に書き直すことができる。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 また、例えば、i=j=k=-Nである項のうち、上記数式(17)および(20)で示される項に着目すると、これらの項は、三角関数に関する公式を用いることにより、下記数式(23)および(24)に書き直すことができる。
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
 上記数式(21)~(24)から分かるように、(G(x))は、基本角周波数ωの3N倍の周波数成分、および、-3N倍の周波数成分を含む。(G(x))の他の項についても三角関数の公式によって書き直すことにより、(G(x))は、基本角周波数ωの-3N倍から3N倍までの様々な周波数成分を含むことが分かる。
 よって、(G(x))は、ナイキスト周波数fs/2より高い周波数成分を含むこととなる。つまり、非線形演算部22にて生成される非線形信号S22は、周波数3Nω/(2π)といった高調波成分等のように、ナイキスト周波数fs/2より高い周波数成分を含むこととなる。
 したがって、高調波生成部101にて生成される高調波HWは、周波数成分SFに含まれない高周波成分、すなわちナイキスト周波数より高い周波数成分を含むこととなる。
 そのため、高調波生成部101にて生成される高調波HWを用いて、信号再構成部300が再構成した出力信号Soutは、入力信号Sinに含まれない高周波成分、すなわちナイキスト周波数より高い周波数成分を含むこととなる。
 (5.拡大処理後の画像の鮮鋭化)
 背景技術の欄にて説明したように、図19の(a)に示した周波数スペクトルを有する画像信号をアップコンバートすることによって画素数を横方向に2倍にする拡大処理が施された後の画像信号の周波数スペクトルには、図20に示したように、サンプリング周波数fsに対するナイキスト周波数fs/2と、新たなサンプリング周波数Fbsに対するナイキスト周波数Fbs/2(=fs)との間には、周波数成分が存在しない。そのため、上記拡大処理後の画像信号に対して、従来技術のように線形演算を用いる鮮鋭化処理を施した場合、ナイキスト周波数Fbs/2の近傍の周波数成分が加算されることはない。
 これに対して、信号処理装置500では、上述したように、鮮鋭化処理を施した後の画像信号に、ナイキスト周波数より高い周波数成分を含めることが可能である。そのため、図19の(a)に示した周波数スペクトルを有する画像信号に対して、信号処理装置500にて鮮鋭化処理を施した後の画像信号の周波数スペクトルは、例えば、図12に示すようになる。同図に示すように、当該周波数スペクトルには、ナイキスト周波数fs/2よりも高い周波数成分が付加されている。つまり、原信号に含まれない高周波数成分が付加されている。
 このように、信号処理装置500は、従来技術のように線形演算を用いる鮮鋭化処理では利用することができない高周波数成分を付加することができるので、拡大処理後の画像信号で表される画像をより鮮鋭化することが可能となる。
 (6.効果)
 上述したように、高調波生成部101が生成する高調波HWは、高調波生成部101に入力される周波数成分SFに含まれるノイズ等の低レベル信号を除去した非線形処理対象信号S11に対して、非線形処理が施された信号である。つまり、非線形処理対象信号S11に対して非線形処理を行なうこと、および、非線形処理対象信号S11の符号を保存することによって、高調波HWを生成する。
 また、高調波HWの符号は、非線形処理対象信号S11と同じである。なお、周波数成分SFに含まれるノイズ等の低レベル信号を除去しない場合は、高調波生成部101が生成する高調波HWは、高調波生成部101に入力される周波数成分SFに対して、非線形処理が施された信号であり、また、高調波HWの符号は、周波数成分SFと同じである。つまり、周波数成分SFに対して非線形処理を行なうこと、および、周波数成分SFの符号を保存することによって、高調波HWを生成する。
 そして、非線形処理を行なった結果、高調波HWは、周波数成分SFのサンプリング周波数fsに対するナイキスト周波数fs/2より高い周波数成分を含んでいる。そのため、高調波生成部101が生成する高調波HWを用いて、信号再構成部300が再構成した出力信号Soutは、入力信号Sinには含まれない高周波成分を含むこととなる。
 よって、出力信号Soutにおける信号の立ち上がりおよび立ち下がりは、入力信号Sinを、従来技術のように線形演算を用いて鮮鋭化する場合における信号の立ち上がりおよび立ち下がりよりも、急峻となる。
 したがって、信号処理装置500で行なう鮮鋭化処理は、線形演算を用いる鮮鋭化処理と比べて、画像をより高度に鮮鋭化することができ、画質を大幅に改善することが可能となる。
 なお、図1、2、3、4、7および10を用いて説明したように、信号処理装置500は、簡単な構成で実現することができる。そのため、テレビジョン受像機等に信号処理装置500を備えることが容易に実現できる。したがって、静止画像のみならず、リアルタイムに表示される動画像についても、大きなコストを発生させることなく、画質を改善させることが可能となる。
 さらに、拡大処理された後の画像信号を信号処理装置500に入力する場合であっても、信号処理装置500は、ナイキスト周波数fs/2を超える高周波を生成することができるので、拡大処理後の画像を鮮鋭化することができ、画質を大幅に改善することが可能となる。例えば、高精細テレビジョン(HDTV)の受像機のディスプレイに、標準画質テレビジョン(SDTV)の画像信号に拡大処理を施した画像を表示する場合、上記高精細テレビジョンの受像機のディスプレイに信号処理装置500を備えることにより、上記拡大処理を施した画像の画質を改善した状態で、表示させることができる。
 また、HDTVの画素数よりも多い、4000×2000程度の画素数のディスプレイ(4Kディスプレイ)に、HDTV用の画像信号をアップコンバートして表示する場合にも、該アップコンバート後の画像信号で表される画像の画質を改善した状態で、表示させることができる。
 (7.実画像による検証)
 図13および図14を参照しながら、線形演算を用いて鮮鋭化処理を行なう従来技術と、信号処理装置500とのそれぞれにて、実画像に鮮鋭化処理を施した様子について説明する。
 まず、図13は、鮮鋭化処理を施す対象となる画像を含む画像(以下、元画像と表記する)を示す図である。なお、図13に示した元画像は、紙面の都合上、実際のサイズより縮小したものである。
 次に、図14の(a)は、図13に示した元画像の右上の領域を、縦横それぞれ2倍に拡大した画像である。ここでは、図14の(a)で示される画像を、鮮鋭化処理の対象とし、対象画像Pと表記する。なお、対象画像Pは、上述したように、拡大処理後のサンプリング周波数Fbs(=2fs)に対するナイキスト周波数Fbs/2(=fs)の近傍の周波数成分を有さない。
 次に、図14の(b)は、対象画像Pに、線形演算を用いる従来技術による鮮鋭化処理を施した後の画像を示す図である。この場合、対象画像Pは、ナイキスト周波数Fb/2(=fs)の近傍の周波数成分を有していないため、画質があまり向上されない。そのため、図14の(a)に示す画像と図14の(b)に示す画像との間には、鮮鋭度および解像度の差異は、あまり認められない。
 次に、図14の(c)は、信号処理装置500にて対象画像Pの鮮鋭化処理を施した後の画像を示す図である。図14の(c)に示す画像では、図14の(b)に示す画像に比べて、人物の目の輝き、鼻筋、スカーフの模様、および、いすの背もたれ等の鮮鋭度および解像度が向上していることがわかる。
 このように、本実施の形態に係る信号処理装置500では、線形演算を用いて鮮鋭化処理を行なう従来技術よりも、特に、拡大処理後の画像を鮮鋭化することができ、画質を向上させることができる。
 (8.リミッタにて乗算する倍率値α)
 上述したように、高調波生成部101は、周波数成分分解部200によって分解された周波数成分のうち、最も低い周波数成分を除いた周波数成分の一部または全部(SF~SF)に対して非線形処理を施し、高調波(HW~HW)を生成する。
 ここで、一般的に知られているように、高い周波数帯域の周波数成分であるほど、そのエネルギーは小さい。したがって、周波数成分分解部200によって分解された周波数成分SF~SFのうち、高い周波数帯域の周波数成分ほどエネルギーが小さい。
 一方、高調波HW~HWのうち、周波数帯域が高いものほど、信号再構成部300により再構成される出力信号Soutで表される画像の輪郭部分の強調に寄与するものであり、当該画像の鮮鋭化に寄与するものである。したがって、高調波HW~HWのうち、周波数帯域が高いものほど、少しでもエネルギーを大きくしておくことが好ましい。
 そこで、高調波生成部101にて生成する高調波HW~HWのうち、周波数帯域が高いものほどエネルギーを大きくするために、高調波生成部101のリミッタ51が行なう振幅調整処理において乗算する倍率値αの値を、高調波生成部101に入力される周波数成分毎に設定する。具体的には、周波数成分SF~SFのうち、より高い周波数成分が入力される高調波生成部101のリミッタ51で用いる倍率値αの値を、より高く設定することが好ましい。
 例えば、図3を用いて説明した周波数成分分解部200aが、ウェーブレット変換を用いて多重解像度解析を行ない、入力信号Sinを4つの周波数帯域の周波数成分SF~SFに分解する場合を例に挙げて説明する。なお、ここでは、周波数成分SF~SFが、高調波生成部101aに入力されるものとする。
 ここで、ウェーブレット変換を用いて多重解像度解析を行なっているため、周波数成分SFは周波数成分SFより2倍高い周波数帯域の周波数成分であり、また、周波数成分SFは周波数成分SFより2倍高い周波数帯域の周波数成分である。
 そこで、この場合、周波数成分SFが入力される高調波生成部101aが備えるリミッタ51で用いる倍率値αは、周波数成分SFが入力される高調波生成部101aが備えるリミッタ51で用いる倍率値αの2倍に設定するとともに、周波数成分SFが入力される高調波生成部101aが備えるリミッタ51で用いる倍率値αは、周波数成分SFが入力される高調波生成部101aが備えるリミッタ51で用いる倍率値αの2倍に設定する。
 このように各リミッタ51で用いる倍率値αを、入力される周波数成分SF~SFに応じてそれぞれ設定することにより、すべてのリミッタ51で用いる倍率値αを同じ値に設定する場合に比べて、高調波HW~HWのうち周波数帯域が高いものほどエネルギーを大きくする。
 このように設定することにより、すべてのリミッタ51で用いる倍率値αを同じ値に設定する場合に比べて、出力信号Soutで表される画像をより鮮鋭にすることができる。
 (9.ウェーブレット変換を用いた多重解像度解析にて使用するHPFの周波数特性)
 ウェーブレット変換を用いた多重解像度解析では、高周波成分と低周波成分とに分解する際、図3を用いて説明したように、LPFとHPFとが対にして用いられる。同様に、ウェーブレット逆変換を用いた信号の再構成において高周波成分と低周波成分とを合成する際、LPFとHPFとが対にして用いられる。これら対にして用いられるLPFとHPFとは、いわゆる、Quadrature Mirror Filterと称される。
 例えば、同図に示すように、入力信号Sinから周波数成分S93および周波数成分S94を得るために、LPF251とHPF253とが対にして用いられる。また、周波数成分S95を得るために、LPF332とHPF334とが対にして用いられる。
 ここで、ウェーブレット変換および逆変換を用いた多重解像度解析では、いわゆる完全再構成が可能であることが知られている。すなわち、ウェーブレット変換により分解した周波数成分のそれぞれを用いて、ウェーブレット逆変換により元の信号を復元することが可能である。そして、完全再構成とするために、対として用いられるLPFおよびHPFの周波数特性は、通常、対称な関係にある。
 図15の(a)を参照しながら、ウェーブレット変換および逆変換において、対にして用いられるLPFおよびHPFの一般的な周波数特性について説明する。図15の(a)は、ウェーブレット変換およびウェーブレット逆変換において対にして用いられるLPFおよびHPFの一般的な周波数特性を示す模式図である。
 同図に示すように、低い周波数成分を通しやすいLPFの周波数特性LAは、周波数が高いほど小さい。一方、高い周波数成分を通しやすいHPFの周波数特性HAは、周波数が高いほど大きい。そして、周波数特性LAと周波数特性HAとは、同図に示すように、通常、対称な関係にある。
 一方、信号処理装置500では、入力信号Sinで表される画像を鮮鋭化するための処理を施した出力信号Soutを得るものであるため、信号処理装置500で行なわれるウェーブレット変換および逆変換においては、必ずしも完全再構成が実現されなくてもよい。そのため、周波数成分分解部200および信号再構成部300にて対にして用いられるLPFおよびHPFの周波数特性は、非対称な関係であってもよい。
 さらに、信号処理装置500では、高周波成分を抽出することを目的としてHPFを用いるので、HPFを通過する周波数成分が多いほど好ましい。例えば、周波数成分分解部200におけるHPFを通過する周波数成分が多いほど、高調波生成部101にて非線形処理を施す対象が多くなり、その結果、出力信号Soutで表される画像がより鮮鋭化するためである。
 図15の(b)を参照しながら、本実施の形態において行なうウェーブレット変換および逆変換において、対にして用いられるLPFおよびHPFの周波数特性について説明する。図15の(b)は、周波数成分分解部200bにて用いるウェーブレット変換、および信号再構成部300bにて用いるウェーブレット逆変換において、対にして用いられるLPFおよびHPFの周波数特性を示す模式図である。同図に示すように、周波数特性LAと周波数特性HAとは非対称な関係であってもよい。
 特に、上述したように、通過させる周波数成分を多くするために、本実施の形態において行なうウェーブレット変換および逆変換において用いるHPFは、同図に示すように、通常よりも低い周波数成分が通りやすいものであることが好ましい。
 (10.変形例)
 (10-1.縦方向および時間方向の鮮鋭化処理)
 上述では、入力信号Sinが、画像の横方向(水平方向、主走査方向)に隣接して並ぶ画素の画素値から成るデータ列(画素値の系列)によって構成されるものとして説明した。この場合、上述した信号処理装置500は、入力信号Sinで表される画像の縦方向の輪郭部分を強調することにより、該画像の鮮鋭化を行なうものである。
 しかしながら、入力信号Sinで表される画像の縦方向(垂直方向、副走査方向)について鮮鋭化処理を施してもよい。
 この場合、周波数成分分解部200は、入力信号Sinを異なる周波数帯域の周波数成分に分解する前に、入力信号Sinを、入力信号Sinで表される画像の縦方向に隣接して並ぶ画素の画素値から成るデータ列(画素値の系列)に構成し直せばよい。その後、当該構成し直した入力信号Sinを、異なる周波数帯域の周波数成分に分解すればよい。そして、信号再構成部300は、信号を再構成した後、入力信号Sinを、画像の横方向に隣接して並ぶ画素の画素値から成るデータ列に構成し直せばよい。
 なお、信号処理装置500の外部装置によって、入力信号Sinが、画像の縦方向の画素値から成るデータ列(画素値の系列)によって構成されるものとして生成される場合は、周波数成分分解部200は、当該入力信号Sinをそのまま、異なる周波数帯域の周波数成分に分解すればよい。
 なお、入力信号Sinで表される画像の横方向および縦方向のいずれか一方だけではなく、両方向についてそれぞれ鮮鋭化処理を施すことがより好ましい。これにより、画像の横方向の輪郭部分および縦方向の輪郭部分をそれぞれ鮮鋭化することができる。
 さらに、テレビジョン受像機等で表示される動画像に対して、信号処理装置500にて鮮鋭化処理を施す場合、画素値は時間に従って変化するものであるため、画像の横方向および縦方向に加えて、時間方向についても鮮鋭化処理を施すことが好ましい。
 この場合、周波数成分分解部200は、入力信号Sinを異なる周波数帯域の周波数成分に分解する前に、入力信号Sinを、入力信号Sinで表される動画像における各画素のそれぞれについての時間方向に隣接して並ぶ画素の画素値から成るデータ列(画素値の系列)に構成し直せばよい。そして、当該構成し直した入力信号Sinに対して、多重解像度解析を行なえばよい。
 これにより、動画像を時間方向に鮮鋭化することができるので、例えば、残像の発生を抑制する等が可能となる。
 (10-2.周波数成分分解部および信号再構成部の他の構成例)
 図3を用いて説明した周波数成分分解部200bの構成例は、一般的なウェーブレット変換を用いた多重解像度解析を行なう場合の構成であるが、高調波生成部101を含む構成に拡張することが可能である。同様に、図3を用いて説明した信号再構成部300bの構成例は、一般的なウェーブレット逆変換を用いた信号の再構成を行なう場合の構成例であるが、高調波生成部101を含む構成に拡張することが可能である。
 そこで、図16を参照しながら、周波数成分分解部200および信号再構成部300の他の構成例について説明する。なお、ここでは、高調波生成部101の構成については説明しないが、高調波生成部101の構成は、上述した構成例および後述する構成例のいずれであってもよい。
 図16は、周波数成分分解部200cおよび信号再構成部300cの構成を示すブロック図である。同図に示すように、周波数成分分解部200cは、図3に示した周波数成分分解部200bが備える構成に加えて、HPF253とダウンサンプラ254との間に、高調波生成部101を備えている。
 このように、HPFの後段に高調波生成部101を備える構成とすることにより、入力信号Sinに対して多重解像度解析を行なう過程で生成される高周波成分を、周波数成分分解部200cの内部でエンハンスさせることができる。つまり、高調波群生成部100に入力する周波数成分を予めエンハンスさせることができる。
 したがって、周波数成分分解部200cの高調波群生成部100にて生成した高調波HWおよびHWは、周波数成分分解部200bの高調波群生成部100にて生成した高調波HWおよびHWよりも、さらに信号の立ち上がりおよび立ち下がりが急峻になる。
 なお、周波数成分分解部200cでは、HPF253の直後に高調波生成部101を備える構成としたが、高調波生成部101を配置する箇所は、HPF253の後段であればよく、ダウンサンプラ254の後であってもよい。
 また、さらに、HPF263およびHPF273の後段に、高調波生成部101を配置してもよい。
 また、図16に示した周波数成分分解部200cは、2レベルまでの分解を行なう構成であるが、3レベル以上の分解を行なう構成であっても、各HPFの後段に、高調波生成部101を備える構成に拡張することができる。
 次に、信号再構成部300cは、図16に示した信号再構成部300bが備える構成に加えて、HPF334およびHPF344の後段に、高調波生成部101を備えている。
 このように、HPFの後段に高調波生成部101を備える構成とすることにより、信号の再構成を行なう過程で生成される高周波成分を信号再構成部300c内部でエンハンスさせることができる。
 よって、信号再構成部300cにて生成されるS25およびS26は、信号再構成部300bにて生成されるS25およびS26と比較して、エンハンスされたものとなる。
 したがって、信号再構成部300cによって再構成された出力信号Soutで表される画像は、信号再構成部300bによって再構成された出力信号Soutで表される画像よりも、鮮鋭な画像となる。
 なお、さらに、HPF354の後段に高調波生成部101を配置してもよい。また、図16に示した信号再構成部300cは、2レベルまでに分解された周波数成分に基づいて信号を再構成するものであるが、3レベル以上に分解された周波数成分に基づいて信号を再構成する場合であっても、各HPFの後段に、高調波生成部101を配置する構成に拡張することができる。
 (10-3.高調波生成部の他の構成例1)
 高調波生成部101にて施す非線形演算は、上述した以外にも様々考えられる。そこで、図17および図18を参照しながら、高調波生成部101dおよび101eの構成例について説明する。
 まず、図17は、高調波生成部101dの構成を示すブロック図である。同図に示すとおり、高調波生成部101dは、低レベル信号除去部11、非線形処理部102d、および加算部15を備えている。低レベル信号除去部11および加算部15は、上述したものと同じものであるので、ここではその詳細な説明を省略する。
 なお、周波数成分SFに含まれるノイズ等の低レベル信号が非常に少ない等のように、周波数成分SFの低レベル信号を除去する必要がない場合、高調波生成部101dは、低レベル信号除去部11を備える必要はなく、非線形処理部102dおよび加算部15のみを備える構成としてもよい。
 なお、高調波生成部101dが非線形処理部102dおよび加算部15のみを備える構成である場合、周波数成分SFを、そのまま非線形処理対象信号S11とする。
 非線形処理部102dは、2乗演算部61、第1微分部71、第2微分部81、および乗算部91を備えている。
 2乗演算部61は、非線形処理対象信号S11を2乗することにより2乗信号S61を生成するものである。すなわち、非線形処理対象信号S11を構成するデータ列が、X1、X2、X3、…であるとすると、非線形処理対象信号S11を2乗した2乗信号S61は、データ列X1、X2、X3、…によって構成されるデジタル信号となる。
 次に、第1微分部71は、2乗演算部61にて生成される2乗信号S61を微分することにより、第1微分信号S71を生成する。なお、第1微分部71の構成は、例えば、微分部31と同様の構成である。
 次に、第2微分部81は、周波数成分SFを微分することにより、第2微分信号S81を生成する。なお、第2微分部81の構成は、例えば、微分部31と同様の構成である。
 そして、乗算部91は、第1微分信号S71と第2微分信号S81とを乗算することにより、非線形処理信号S12を生成する。すなわち、第1微分信号S71を構成するデータ列が、U1、U2、U3、…であるとし、第2微分信号S81を構成するデータ列が、V1、V2、V3、…であるとすると、非線形処理信号S12は、データ列U1・V1、U2・V2、U3・V3、…によって構成されるデジタル信号となる。
 なお、上述では、非線形演算を施すために2乗演算部61を設ける構成としたが、2乗演算部61に代えて、非線形処理対象信号S11を4乗する4乗演算部を用いてもよい。より一般的には、2以上の偶数を冪指数とする非線形処理対象信号S11の冪乗に相当する信号を生成する冪乗演算部を用いてもよい。
 (10-4.高調波生成部の他の構成例2)
 上述した高調波生成部101dの構成では、2乗演算部61を備える構成としたが、2乗演算部61に代えて、入力された信号の絶対値を計算する絶対値処理部62を備える構成としてもよい。
 そこで、図18を参照しながら、絶対値処理部62を備える高調波生成部101eの構成例について説明する。図18は、高調波生成部101eの構成を示すブロック図である。
 同図に示すとおり、高調波生成部101eは、低レベル信号除去部11、非線形処理部102e、および加算部15を備えている。低レベル信号除去部11は、上述したものと同じものであるので、ここではその詳細な説明を省略する。
 なお、周波数成分SFに含まれるノイズ等の低レベル信号が非常に少ない等のように、周波数成分SFの低レベル信号を除去する必要がない場合、高調波生成部101eは、低レベル信号除去部11を備える必要はなく、非線形処理部102eおよび加算部15のみを備える構成としてもよい。なお、高調波生成部101eが非線形処理部102eおよび加算部15のみを備える構成である場合、周波数成分SFを、そのまま非線形処理対象信号S11とする。
 非線形処理部102eは、絶対値処理部62、第1微分部71、第2微分部81、および乗算部91を備えている。第1微分部71、第2微分部81、および乗算部91は、上述したものと同じものであるので、ここではその詳細な説明を省略する。
 絶対値処理部62は、非線形処理対象信号S11の絶対値に相当する信号である絶対値信号S62を生成する。すなわち、非線形処理対象信号S11を構成するデータ列が、X1,X2,X3、…であるとすると、絶対値信号S62は、データ列|X1|、|X2|、|X3|、…によって構成されるデジタル信号となる。
 次に、第1微分部71は、絶対値処理部62にて生成される絶対値信号S62を微分することにより、第1微分信号S72を生成する。
 そして、乗算部91は、第1微分信号S72と第2微分信号S81とを乗算することにより、非線形処理信号S12を生成する。
 (10-5.音声信号への適用)
 上述では、信号処理装置500は、画像を鮮鋭化するための鮮鋭化処理を施す装置であるものとして説明した。しかしながら、信号処理装置500が鮮鋭化処理を施す対象は、画像を表すデジタル信号に限定されるものではなく、音声を表すデジタル信号(音声信号)であってもよい。すなわち、信号処理装置500に入力される入力信号Sinは、音声信号であってもよい。この場合、信号処理装置500は、音声信号の立ち上がりおよび立ち下がりを急峻にした出力信号Soutを出力する。なお、この場合においても、出力信号Soutには、入力信号Sinに含まれない高周波成分(ナイキスト周波数より高い周波数成分)が含まれる。そのため、信号処理装置500にて鮮鋭化処理を行なうと、線形演算を用いて鮮鋭化処理を行なう場合に比べて、音声信号の立ち上がりおよび立ち下がりを急峻にすることが可能となる。
 (11.付記事項)
 最後に、信号処理装置500の各ブロックは、ハードウェアロジックによって構成してもよいし、次のようにCPU(central processing unit)を用いてソフトウェアによって実現してもよい。
 ソフトウェアによって実現する場合は、信号処理装置500(特に、高調波群生成部100、周波数成分分解部200、および信号再構成部300)は、各機能を実現する制御プログラムの命令を実行するCPU、上記プログラムを格納したROM(read only memory)、上記プログラムを展開するRAM(random access memory)、上記プログラム及び各種データを格納するメモリ等の記憶装置(記録媒体)などを備えている。そして、本発明の目的は、上述した機能を実現するソフトウェアである信号処理装置500の制御プログラムのプログラムコード(実行形式プログラム、中間コードプログラム、ソースプログラム)をコンピュータで読み取り可能に記録した記録媒体を、上記信号処理装置500に供給し、そのコンピュータ(またはCPUやMPU)が記録媒体に記録されているプログラムコードを読み出し実行することによっても、達成可能である。
 上記記録媒体としては、例えば、磁気テープやカセットテープ等のテープ系、フロッピー(登録商標)ディスク/ハードディスク等の磁気ディスクやCD-ROM/MO/MD/DVD/CD-R等の光ディスクを含むディスク系、ICカード(メモリカードを含む)/光カード等のカード系、あるいはマスクROM/EPROM/EEPROM/フラッシュROM等の半導体メモリ系などを用いることができる。
 また、信号処理装置500を通信ネットワークと接続可能に構成し、上記プログラムコードを、通信ネットワークを介して供給してもよい。この通信ネットワークとしては、特に限定されず、例えば、インターネット、イントラネット、エキストラネット、LAN、ISDN、VAN、CATV通信網、仮想専用網(virtual private network)、電話回線網、移動体通信網、衛星通信網等が利用可能である。また、通信ネットワークを構成する伝送媒体としては、特に限定されず、例えば、IEEE1394、USB、電力線搬送、ケーブルTV回線、電話線、ADSL回線等の有線でも、IrDAやリモコンのような赤外線、Bluetooth(登録商標)、IEEE802.11無線、HDR、携帯電話網、衛星回線、地上波デジタル網等の無線でも利用可能である。なお、本発明は、上記プログラムコードが電子的な伝送で具現化された、搬送波に埋め込まれたコンピュータデータ信号の形態でも実現され得る。
 このように本明細書において、手段とは必ずしも物理的手段を意味するものではなく、各手段の機能がソフトウェアによって実現される場合も含む。さらに、1つの手段の機能が2つ以上の物理的手段により実現されても、もしくは2つ以上の手段の機能が1つの物理的手段により実現されてもよい。
 以上のように、本発明に係る信号処理装置は、画像を表す入力信号に対して上記画像を鮮鋭化する処理を施し、該鮮鋭化させた画像を表す出力信号を出力する信号処理装置であって、上記入力信号を複数の異なる周波数帯域の周波数成分に分解する周波数成分分解手段と、上記周波数成分分解手段によって分解された周波数成分のうち、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成する高調波生成手段と、上記高調波生成手段によって生成された高調波と、上記周波数成分分解手段によって分解された周波数成分のうち、上記高調波生成手段によって高調波が生成されていない周波数成分とを合成して、上記出力信号を生成する出力信号生成手段とを備えるとともに、上記高調波生成手段は、高調波を生成する対象となる周波数成分の符号の正負が維持され、かつ、少なくとも該周波数成分の値が0の近傍のとき、該周波数成分に対して非線形に広義に単調増加する非線形処理信号を生成する非線形処理手段と、該周波数成分に上記非線形処理信号を加算することによって、高調波を生成する加算手段とを備えている。
 また、本発明に係る信号処理装置の制御方法は、画像を表す入力信号に対して上記画像を鮮鋭化する処理を施し、該鮮鋭化させた画像を表す出力信号を出力する信号処理装置の制御方法であって、上記入力信号を複数の異なる周波数帯域の周波数成分に分解する周波数成分分解ステップと、上記周波数成分分解ステップによって分解された周波数成分のうち、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成する高調波生成ステップと、上記高調波生成ステップによって生成された高調波と、上記周波数成分分解ステップによって分解された周波数成分のうち、上記高調波生成ステップによって高調波が生成されていない周波数成分とを合成して、上記出力信号を生成する出力信号生成ステップとを含むとともに、上記高調波生成ステップは、高調波を生成する対象となる周波数成分の符号の正負が維持され、かつ、少なくとも該周波数成分の値が0の近傍のとき、該周波数成分に対して非線形に広義に単調増加する非線形処理信号を生成する非線形処理ステップと、該周波数成分に上記非線形処理信号を加算することによって、高調波を生成する加算ステップとを含んでいる。
 ここで、上記生成される高調波は、例えば、高調波を生成する対象となる周波数成分と、該周波数成分を2乗する等の非線形処理を施した非線形処理信号とを加算することにより生成される。ただし、高調波の符号の正負は、該高調波を生成する対象となる周波数成分の符号の正負を維持する。
 このような非線形処理を施すことにより生成される高調波には、元の周波数成分には含まれない高い周波数成分が含まれる。その結果、上記生成された高調波を用いて合成した出力信号は、入力信号を離散化する場合のサンプリング周波数の1/2の周波数であるナイキスト周波数よりも高い周波数成分を含むこととなる。
 したがって、本発明に係る信号処理装置は、入力信号に対して線形演算を施す処理と比べて、画像に含まれる輪郭部分(エッジ)に相当する信号の立ち上がりおよび立ち下がりをより急峻にすることができる。その結果、画像をより鮮鋭化することができ、画質を大幅に改善することができるという効果を奏する。
 特に、拡大処理を施した画像を表す画像信号を入力信号とする場合、入力信号に対して線形演算を施す処理では、拡大処理後の画像信号のサンプリング周波数の1/2の周波数であるナイキスト周波数より高い周波数成分を抽出することができない。これに対し、本発明に係る信号処理装置は、拡大処理後の画像信号のナイキスト周波数よりも高い周波数成分を、拡大処理後の画像信号に付加することができるので、拡大処理を施した画像についても、画質を大幅に改善することができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記非線形処理手段は、2以上の偶数を冪指数として、高調波を生成する対象となる周波数成分を冪乗することにより偶数冪乗信号を生成する偶数冪乗演算手段と、上記偶数冪乗信号のうち、符号の正負が上記冪乗前の周波数成分と異なる部分の符号を反転することによって、上記非線形処理信号を生成する符号変換手段とを備える構成としてもよい。
 上記の構成によれば、さらに、2以上の偶数を冪指数として、高調波を生成する対象となる周波数成分を冪乗することにより偶数冪乗信号を生成するとともに、上記偶数冪乗信号のうち、符号の正負が上記冪乗前の周波数成分と異なる部分の符号を反転することによって、非線形処理信号を生成する。
 よって、高調波を生成する対象となる周波数成分を、2以上の偶数を冪指数として冪乗するとともに、符号の正負は、上記冪乗前の周波数成分の符号の正負を維持したものが、非線形処理信号として生成されるので、該周波数成分と非線形処理信号とを加算することによって得られる高調波は、該高調波を生成する対象となる周波数成分には含まれない高い周波数成分が含まれる。
 したがって、画像信号に対して線形演算を施す方法よりも、画質の改善を図ることができるという効果を奏する。
 さらに、入力信号の分解および出力信号の合成は、低域通過フィルタおよび高域通過フィルタ等を用いた簡易な構成で実現可能であり、また、高調波を生成する処理は、冪乗演算および符号変換という簡易な構成で実現可能であることから、テレビジョン受像機等にてリアルタイムに表示される動画像についても、コストを抑えつつ、画質を大幅に改善することができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記非線形処理手段は、2以上の偶数を冪指数として、高調波を生成する対象となる周波数成分を冪乗することにより偶数冪乗信号を生成する偶数冪乗演算手段と、上記偶数冪乗信号を微分することによって微分信号を生成する微分手段と、上記微分信号のうち、符号の正負が上記冪乗前の周波数成分と異なる部分の符号を反転することによって、上記非線形処理信号を生成する符号変換手段とを備える構成としてもよい。
 上記の構成によれば、さらに、2以上の偶数を冪指数として、高調波を生成する対象となる周波数成分を冪乗するとともに、上記偶数冪乗信号を微分することによって微分信号を生成し、上記微分信号のうち、符号の正負が上記冪乗前の周波数成分と異なる部分の符号を反転することによって、非線形処理信号を生成する。
 よって、高調波を生成する対象となる周波数成分を、2以上の偶数を冪指数として冪乗し、冪乗後の信号に含まれ得る直流成分を微分することによって除去するとともに、符号の正負は、上記冪乗前の周波数成分の符号の正負を維持したものが、非線形処理信号として生成されるので、該周波数成分と非線形処理信号とを加算することによって得られる高調波は、該高調波を生成する対象となる周波数成分には含まれない周波数成分が含まれる。
 したがって、画像信号に対して線形演算を施す方法よりも、画質の改善を図ることができるという効果を奏する。なお、冪乗後の信号に含まれ得る直流成分を微分することによって除去しているので、冪乗後の信号に含まれ得る直流成分を除去しない場合と比べて、画質の改善を図ることができるという効果を奏する。
 さらに、入力信号の分解および出力信号の合成は、低域通過フィルタおよび高域通過フィルタ等を用いた簡易な構成で実現可能であり、また、高調波を生成する処理は、冪乗演算、微分演算、および符号変換という簡易な構成で実現可能であることから、テレビジョン受像機等にてリアルタイムに表示される動画像についても、コストを抑えつつ、画質を大幅に改善することができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記非線形処理手段は、3以上の奇数を冪指数として、高調波を生成する対象となる周波数成分を冪乗することによって、上記非線形処理信号を生成する構成としてもよい。
 上記の構成によれば、さらに、3以上の奇数を冪指数として、高調波を生成する対象となる周波数成分を冪乗することによって、非線形処理信号を生成する。
 よって、高調波を生成する対象となる周波数成分を、3以上の奇数を冪指数として冪乗したものが、非線形処理信号として生成されるので、該周波数成分と非線形処理信号とを加算することによって得られる高調波は、該高調波を生成する対象となる周波数成分には含まれない周波数成分が含まれる。
 したがって、画像信号に対して線形演算を施す方法よりも、画質の改善を図ることができるという効果を奏する。
 さらに、入力信号の分解および出力信号の合成は、低域通過フィルタおよび高域通過フィルタ等を用いた簡易な構成で実現可能であり、また、高調波を生成する処理は、冪乗演算という簡易な構成で実現可能であることから、テレビジョン受像機等にてリアルタイムに表示される動画像についても、コストを抑えつつ、画質を大幅に改善することができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記高調波生成手段は、上記非線形処理手段によって高調波を生成する対象となる周波数成分に含まれるノイズを除去するノイズ除去手段をさらに備える構成としてもよい。
 上記の構成によれば、さらに、高調波を生成する対象となる周波数成分に含まれるノイズを除去する。
 よって、高調波を生成する対象となる周波数成分に含まれるノイズに対しては、高調波を生成しないようにすることができる。
 したがって、出力信号で表される画像にて、ノイズが強調されることを防止することができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記非線形処理手段は、上記非線形処理信号の振幅を、所定の倍率値を乗算することによって調整する振幅調整手段をさらに備える構成としてもよい。
 上記の構成によれば、非線形処理信号の振幅を、所定の倍率値を乗算することによって調整する。
 よって、高調波の振幅を適切な大きさに調整することができる。したがって、出力信号で表される画像が鮮鋭化されすぎることを防止できるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記振幅調整手段は、上記非線形処理信号のうち、絶対値が上限値よりも大きい信号を除去する構成としてもよい。
 上記の構成によれば、さらに、非線形処理信号のうち、絶対値が上限値よりも大きい信号を除去する。
 よって、高調波の信号値が上限値を超えないように制限することができる。したがって、出力信号で表される画像が鮮鋭化されすぎることを防止できるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記倍率値は、高調波を生成する対象となる周波数成分毎に設定される構成としてもよい。
 上記の構成によれば、さらに、上記倍率値は、高調波を生成する対象となる周波数成分毎に設定される。
 よって、例えば、高調波を生成する対象となる周波数成分のうち、周波数帯域が高いもの(つまり、エネルギーの小さい周波数成分)ついての高調波を得るための非線形処理信号の振幅ほど、高い倍率値が乗算されるようにすることができる。つまり、高い周波数帯域の周波数成分に対して生成された高調波ほど、エネルギーを大きくすることができる。
 ここで、周波数帯域が高い高調波ほど、出力信号で表される画像の鮮鋭化に寄与する。そのため、周波数帯域が高い高調波ほど、少しでもエネルギーを大きくしておくことが好ましい。
 したがって、周波数帯域が高い高調波を得るための非線形処理信号に対して、高い倍率値が乗算されるようにしておくことにより、すべての非線形処理信号について同じ倍率値を乗算する場合と比べて、出力信号で表される画像をより鮮鋭化できるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記入力信号は、該入力信号で表される画像の横方向に隣接して並ぶ画素から成る画素群を表す信号であって、上記周波数成分分解手段は、上記入力信号を、複数の異なる周波数帯域の周波数成分に分解する構成としてもよい。
 上記の構成によれば、さらに、画像の横方向に隣接して並ぶ画素から成る画素群を表す入力信号を、複数の異なる周波数帯域の周波数成分に分解する。
 よって、画像の横方向に隣接して並ぶ画素から成る画素群を表す入力信号に含まれる、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成するとともに、該生成した高調波、および高調波が生成されていない周波数成分を合成した出力信号を生成することができる。
 したがって、画像の縦方向の輪郭部分を強調して画質の改善を図ることができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記周波数成分分解手段は、上記入力信号で表される画像の縦方向に隣接して並ぶ画素から成る画素群を表す信号を、複数の異なる周波数帯域の周波数成分に分解する構成としてもよい。
 上記の構成によれば、さらに、画像の縦方向に隣接して並ぶ画素から成る画素群を表す入力信号を、複数の異なる周波数帯域の周波数成分に分解する。
 よって、画像の縦方向に隣接して並ぶ画素から成る画素群を表す入力信号に含まれる、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成するとともに、該生成した高調波、および高調波が生成されていない周波数成分を合成した出力信号を生成することができる。
 したがって、画像の横方向の輪郭部分を強調して画質の改善を図ることができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記入力信号は、動画像を表すものであって、上記周波数成分分解手段は、上記入力信号で表される動画像の時間方向に隣接して並ぶ画素から成る画素群を表す信号を、複数の異なる周波数帯域の周波数成分に分解する構成としてもよい。
 上記の構成によれば、さらに、動画像の時間方向に隣接して並ぶ画素から成る画素群を表す入力信号を、複数の異なる周波数帯域の周波数成分に分解する。
 よって、動画像の時間方向に隣接して並ぶ画素から成る画素群を表す入力信号に含まれる、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成するとともに、該生成した高調波、および高調波が生成されていない周波数成分を合成した出力信号を生成することができる。
 したがって、動画像の時間方向についての画質の改善を図ることができるという効果を奏する。例えば、残像の発生を抑制する等が可能となる。
 さらに、本発明に係る信号処理装置は、上記周波数成分分解手段は、ラプラシアンピラミッドアルゴリズムを用いて、上記入力信号を複数の異なる周波数帯域の周波数成分に分解するとともに、上記出力信号生成手段は、ラプラシアンピラミッドアルゴリズムを用いて、上記出力信号を生成する構成としてもよい。
 ラプラシアンピラミッドアルゴリズムを用いた画像処理は広く普及しており、既存のライブラリやハードウェアが数多く存在する。
 よって、これらの既存のライブラリやハードウェアを用いれば、上記周波数成分分解手段を実現するためのフィルタを新たに設計する必要がないため、コストの削減を図ることができるという効果を奏する。
 また、フィルタを新たに設計する場合であっても、フィルタ係数を変更するだけで既存のプログラムや設計データを再利用できるので、コストの削減を図ることができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記周波数成分分解手段は、ウェーブレット変換を用いて、上記入力信号を複数の異なる周波数帯域の周波数成分に分解するとともに、上記出力信号生成手段は、ウェーブレット逆変換を用いて、上記出力信号を生成する構成としてもよい。
 ここで、ウェーブレット変換を用いた画像処理は広く普及しており、既存のライブラリやハードウェアが数多く存在する。
 よって、これらの既存のライブラリやハードウェアを用いれば、ウェーブレット変換を実現するためのフィルタを新たに設計する必要がないため、コストの削減を図ることができるという効果を奏する。
 また、フィルタを新たに設計する場合であっても、フィルタ係数を変更するだけで既存のプログラムや設計データを再利用できるので、コストの削減を図ることができるという効果を奏する。
 さらに、本発明に係る信号処理装置は、上記ウェーブレット変換および上記ウェーブレット逆変換において対にして用いるQuadrature Mirror Filterの周波数特性が、非対称である構成としてもよい。
 ここで、ウェーブレット変換は、変換前の映像と逆変換後の映像とが同一になるという性質を有している。この性質は、完全再構成と呼ばれている。なお、逆変換により変換前の信号に戻る性質は、信号処理として重要な性質である。信号解析に多く用いられているフーリエ変換も、逆変換により変換前の信号に戻る性質を有している。
 ウェーブレット変換のフィルタは、完全再構成となる条件を満たす必要があるので、対にして用いるQuadrature Mirror Filterの周波数特性は対称な関係にする必要がある。しかしながら、本発明の目的である高解像度化には、完全再構成は必須の条件ではない(つまり、対にして用いるQuadrature Mirror Filterの周波数特性は対称である必要がない)。なぜならば、変換前よりも変換後のほうが画像の解像度が向上するのであるから、完全再構成とならないのは明らかである。
 そして、完全再構成という拘束条件が無ければ、上記周波数成分分解手段および上記出力信号生成手段を実現するためのフィルタを設計する際の自由度が増す。つまり、フィルタ設計のコストの削減を図ることができるという効果を奏する。例えば、既存のライブラリや設計データを用いて、フィルタ係数を変更する等を行なうだけでよい。
 なお、ウェーブレット変換において完全再構成という拘束条件を無くすと、ウェーブレット変換の構成は、ラプラシアンピラミッドと類似した構成となる。
 なお、上記信号処理装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記各手段として動作させることにより上記信号処理装置をコンピュータにて実現させる上記信号処理装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する特許請求事項の範囲内で、いろいろと変更して実施することができるものである。
 本発明は、画像および音声などを表すデジタル信号を処理する装置に適用できる。特に、静止画や動画像などを表示するディスプレイ装置等に好適に適用できる。
 11            低レベル信号除去部(ノイズ除去手段)
 15            加算部(加算手段)
 21            非線形演算部(偶数冪乗演算手段)
 22            非線形演算部(奇数冪乗演算手段)
 31            微分部(微分手段)
 41            符号変換部(符号変換手段)
 51            リミッタ(振幅調整手段)
100            高調波群生成部
101、101a~101e  高調波生成部(高調波生成手段)
102、102a~102e  非線形処理部(非線形処理手段)
200、200a~200c  周波数成分分解部(周波数成分分解手段)
300、300a~300c  信号再構成部(出力信号生成手段)
500            信号処理装置
 HW、HW~HW     高調波
 SF、SF~SF     周波数成分
 S11           非線形処理対象信号
 S12           非線形処理信号
 S21           非線形信号(偶数冪乗信号)
 S22           非線形信号
 S31           微分信号

Claims (17)

  1.  画像を表す入力信号に対して上記画像を鮮鋭化する処理を施し、該鮮鋭化させた画像を表す出力信号を出力する信号処理装置であって、
     上記入力信号を複数の異なる周波数帯域の周波数成分に分解する周波数成分分解手段と、
     上記周波数成分分解手段によって分解された周波数成分のうち、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成する高調波生成手段と、
     上記高調波生成手段によって生成された高調波と、上記周波数成分分解手段によって分解された周波数成分のうち、上記高調波生成手段によって高調波が生成されていない周波数成分とを合成して、上記出力信号を生成する出力信号生成手段とを備えるとともに、
     上記高調波生成手段は、
      高調波を生成する対象となる周波数成分の符号の正負が維持され、かつ、
      少なくとも該周波数成分の値が0の近傍のとき、該周波数成分に対して非線形に広義に単調増加する非線形処理信号を生成する非線形処理手段と、
      該周波数成分に上記非線形処理信号を加算することによって、高調波を生成する加算手段とを備えることを特徴とする信号処理装置。
  2.  上記非線形処理手段は、
     2以上の偶数を冪指数として、高調波を生成する対象となる周波数成分を冪乗することにより偶数冪乗信号を生成する偶数冪乗演算手段と、
     上記偶数冪乗信号のうち、符号の正負が上記冪乗前の周波数成分と異なる部分の符号を反転することによって、上記非線形処理信号を生成する符号変換手段とを備えることを特徴とする請求項1に記載の信号処理装置。
  3.  上記非線形処理手段は、
     2以上の偶数を冪指数として、高調波を生成する対象となる周波数成分を冪乗することにより偶数冪乗信号を生成する偶数冪乗演算手段と、
     上記偶数冪乗信号を微分することによって微分信号を生成する微分手段と、
     上記微分信号のうち、符号の正負が上記冪乗前の周波数成分と異なる部分の符号を反転することによって、上記非線形処理信号を生成する符号変換手段とを備えることを特徴とする請求項1に記載の信号処理装置。
  4.  上記非線形処理手段は、3以上の奇数を冪指数として、高調波を生成する対象となる周波数成分を冪乗することによって、上記非線形処理信号を生成する奇数冪乗演算手段を備えることを特徴とする請求項1に記載の信号処理装置。
  5.  上記高調波生成手段は、上記非線形処理手段によって高調波を生成する対象となる周波数成分に含まれるノイズを除去するノイズ除去手段をさらに備えることを特徴とする請求項1から4のいずれか1項に記載の信号処理装置。
  6.  上記非線形処理手段は、上記非線形処理信号の振幅を、所定の倍率値を乗算することによって調整する振幅調整手段をさらに備えることを特徴とする請求項1から5のいずれか1項に記載の信号処理装置。
  7.  上記振幅調整手段は、さらに、上記非線形処理信号のうち、絶対値が上限値よりも大きい信号を除去することを特徴とする請求項6に記載の信号処理装置。
  8.  上記倍率値は、高調波を生成する対象となる周波数成分毎に設定されることを特徴とする請求項6または7に記載の信号処理装置。
  9.  上記入力信号は、該入力信号で表される画像の横方向に隣接して並ぶ画素から成る画素群を表す信号であって、
     上記周波数成分分解手段は、上記入力信号を、複数の異なる周波数帯域の周波数成分に分解することを特徴とする請求項1から8のいずれか1項に記載の信号処理装置。
  10.  上記周波数成分分解手段は、上記入力信号で表される画像の縦方向に隣接して並ぶ画素から成る画素群を表す信号を、複数の異なる周波数帯域の周波数成分に分解することを特徴とする請求項1から8のいずれか1項に記載の信号処理装置。
  11.  上記入力信号は、動画像を表すものであって、
     上記周波数成分分解手段は、上記入力信号で表される動画像の時間方向に隣接して並ぶ画素から成る画素群を表す信号を、複数の異なる周波数帯域の周波数成分に分解することを特徴とする請求項1から8のいずれか1項に記載の信号処理装置。
  12.  上記周波数成分分解手段は、ラプラシアンピラミッドアルゴリズムを用いて、上記入力信号を複数の異なる周波数帯域の周波数成分に分解するとともに、
     上記出力信号生成手段は、ラプラシアンピラミッドアルゴリズムを用いて、上記出力信号を生成することを特徴とする請求項1から11のいずれか1項に記載の信号処理装置。
  13.  上記周波数成分分解手段は、ウェーブレット変換を用いて、上記入力信号を複数の異なる周波数帯域の周波数成分に分解するとともに、
     上記出力信号生成手段は、ウェーブレット逆変換を用いて、上記出力信号を生成することを特徴とする請求項1から11のいずれか1項に記載の信号処理装置。
  14.  上記ウェーブレット変換および上記ウェーブレット逆変換において対にして用いるQuadrature Mirror Filterの周波数特性が、非対称であることを特徴とするに請求項13に記載の信号処理装置。
  15.  画像を表す入力信号に対して上記画像を鮮鋭化する処理を施し、該鮮鋭化させた画像を表す出力信号を出力する信号処理装置の制御方法であって、
     上記入力信号を複数の異なる周波数帯域の周波数成分に分解する周波数成分分解ステップと、
     上記周波数成分分解ステップによって分解された周波数成分のうち、最も低い周波数帯域の周波数成分を除いた周波数成分の一部または全部のそれぞれ毎の高調波を生成する高調波生成ステップと、
     上記高調波生成ステップによって生成された高調波と、上記周波数成分分解ステップによって分解された周波数成分のうち、上記高調波生成ステップによって高調波が生成されていない周波数成分とを合成して、上記出力信号を生成する出力信号生成ステップとを含むとともに、
     上記高調波生成ステップは、
      高調波を生成する対象となる周波数成分の符号の正負が維持され、かつ、
      少なくとも該周波数成分の値が0の近傍のとき、該周波数成分に対して非線形に広義に単調増加する非線形処理信号を生成する非線形処理ステップと、
      該周波数成分に上記非線形処理信号を加算することによって、高調波を生成する加算ステップとを含むことを特徴とする信号処理装置の制御方法。
  16.  請求項1から14のいずれか1項に記載の信号処理装置が備えるコンピュータを動作させる制御プログラムであって、上記コンピュータを上記の各手段として機能させるための制御プログラム。
  17.  請求項16に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2010/000299 2009-06-04 2010-01-20 信号処理装置、信号処理装置の制御方法、制御プログラム、および該制御プログラムを記録したコンピュータ読み取り可能な記録媒体 WO2010140281A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/375,251 US8655101B2 (en) 2009-06-04 2010-01-20 Signal processing device, control method for signal processing device, control program, and computer-readable storage medium having the control program recorded therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009135285 2009-06-04
JP2009-135285 2009-06-04

Publications (1)

Publication Number Publication Date
WO2010140281A1 true WO2010140281A1 (ja) 2010-12-09

Family

ID=43297424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000299 WO2010140281A1 (ja) 2009-06-04 2010-01-20 信号処理装置、信号処理装置の制御方法、制御プログラム、および該制御プログラムを記録したコンピュータ読み取り可能な記録媒体

Country Status (2)

Country Link
US (1) US8655101B2 (ja)
WO (1) WO2010140281A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124591A1 (ja) * 2011-03-15 2012-09-20 シャープ株式会社 信号処理装置、制御プログラム、および集積回路
WO2012147879A1 (ja) * 2011-04-27 2012-11-01 シャープ株式会社 画像処理装置、表示装置、画像処理方法および画像処理プログラム
JP2013115658A (ja) * 2011-11-29 2013-06-10 Nippon Hoso Kyokai <Nhk> 時空間低相関画像超解像装置、画像空間超解像装置、及びそれらのプログラム
WO2014025067A1 (ja) * 2012-08-09 2014-02-13 株式会社計測技術研究所 画像強調装置、画像強調方法
JP5450668B2 (ja) * 2010-02-15 2014-03-26 シャープ株式会社 信号処理装置、制御プログラム、および集積回路
US8773594B2 (en) 2010-09-29 2014-07-08 Sharp Kabushiki Kaisha Signal processing device, and integrated circuit including oblique lowpass filtering and multiple sharpening components
US8811765B2 (en) 2009-11-17 2014-08-19 Sharp Kabushiki Kaisha Encoding device configured to generate a frequency component extraction signal, control method for an encoding device using the frequency component extraction signal, transmission system, and computer-readable recording medium having a control program recorded thereon
US8824825B2 (en) 2009-11-17 2014-09-02 Sharp Kabushiki Kaisha Decoding device with nonlinear process section, control method for the decoding device, transmission system, and computer-readable recording medium having a control program recorded thereon
JP5629902B1 (ja) * 2013-08-20 2014-11-26 合志 清一 画像処理装置、画像処理方法
JP2015050585A (ja) * 2013-08-30 2015-03-16 合志 清一 画像処理装置及び画像処理方法
CN115864435A (zh) * 2022-12-05 2023-03-28 浙江大学 一种基于单调控制系统理论的电力系统低频减载有效性判别方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687852B2 (en) 2010-02-15 2014-04-01 Sharp Kabushiki Kaisha Motion detection device, control program, and integrated circuit
JP5320538B1 (ja) * 2012-08-09 2013-10-23 清一 合志 画像強調装置、画像強調方法
US11113796B2 (en) * 2018-02-09 2021-09-07 Delta Electronics, Inc. Image enhancement circuit and method thereof
WO2021096191A1 (en) * 2019-11-15 2021-05-20 Samsung Electronics Co., Ltd. Plausible dayscale timelapse generation method and computing device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307897A (ja) * 1996-05-09 1997-11-28 Fuji Photo Film Co Ltd 画像データ圧縮処理方法
WO1998035449A1 (en) * 1997-02-10 1998-08-13 Sony Corporation Method and equipment for processing data
JPH1166311A (ja) * 1997-08-08 1999-03-09 Hitachi Tobu Semiconductor Ltd むら検査方法および装置
JPH11345331A (ja) * 1998-06-03 1999-12-14 Konica Corp 画像処理方法および画像処理装置
JP2001169116A (ja) * 1999-12-10 2001-06-22 Victor Co Of Japan Ltd 画像強調装置及びその方法
JP2003101774A (ja) * 2001-09-25 2003-04-04 Ricoh Co Ltd 画像処理装置
JP2003134352A (ja) * 2001-10-26 2003-05-09 Konica Corp 画像処理方法及び装置並びにプログラム
JP2003283835A (ja) * 2002-03-20 2003-10-03 Ricoh Co Ltd 画像処理装置
JP2005117549A (ja) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd 画像処理方法および装置ならびに画像処理プログラム
JP2006157584A (ja) * 2004-11-30 2006-06-15 Konica Minolta Medical & Graphic Inc 画像処理方法
WO2007078829A1 (en) * 2005-12-29 2007-07-12 Intel Corporation Selective local transient improvement and peaking for video sharpness enhancement
JP2007265122A (ja) * 2006-03-29 2007-10-11 Victor Co Of Japan Ltd 画像処理装置

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166311A (ja) 1987-12-23 1989-06-30 Hitachi Ltd 垂直記録用薄膜磁気ヘッド
DE69214229T2 (de) * 1991-08-14 1997-04-30 Agfa Gevaert Nv Verfahren und Vorrichtung zur Kontrastverbesserung von Bildern
JP3106831B2 (ja) 1993-12-24 2000-11-06 松下電器産業株式会社 映像信号処理装置
JPH07312704A (ja) 1994-05-18 1995-11-28 Victor Co Of Japan Ltd 画質補償回路
JPH08139969A (ja) 1994-11-08 1996-05-31 Matsushita Electric Ind Co Ltd 輪郭補正回路
WO1997001153A1 (en) * 1995-06-23 1997-01-09 Philips Electronics N.V. Image processing for noise reduction
JPH09233489A (ja) 1996-02-23 1997-09-05 Sharp Corp ノイズ低減回路
US5694491A (en) * 1996-03-29 1997-12-02 David Sarnoff Research Center, Inc. Methods and apparatus for assessing the visibility of differences between two image sequences
US5719966A (en) * 1996-03-29 1998-02-17 David Sarnoff Research Center, Inc. Apparatus for assessing the visiblity of differences between two image sequences
JPH09319869A (ja) 1996-05-28 1997-12-12 Nippon Hoso Kyokai <Nhk> 画像エンハンサ
DE69832357T2 (de) * 1997-06-06 2006-08-03 Philips Intellectual Property & Standards Gmbh Geräuschverminderung in einem bild
JPH11340878A (ja) 1998-05-22 1999-12-10 Ricoh Co Ltd 位相等化方式
US6732070B1 (en) * 2000-02-16 2004-05-04 Nokia Mobile Phones, Ltd. Wideband speech codec using a higher sampling rate in analysis and synthesis filtering than in excitation searching
US6791716B1 (en) * 2000-02-18 2004-09-14 Eastmas Kodak Company Color image reproduction of scenes with preferential color mapping
JP2002125200A (ja) 2000-10-16 2002-04-26 Hitachi Ltd 動画像フォーマット変換装置
US6831947B2 (en) 2001-03-23 2004-12-14 Sharp Laboratories Of America, Inc. Adaptive quantization based on bit rate prediction and prediction error energy
JPWO2002084997A1 (ja) 2001-04-11 2004-08-05 ソニー株式会社 輪郭強調装置
JP2003069859A (ja) 2001-08-27 2003-03-07 Seiko Epson Corp 動きに適応した動画像処理
JP2003198878A (ja) 2001-12-28 2003-07-11 Sharp Corp 輪郭補正装置
US7423781B2 (en) 2002-03-20 2008-09-09 Ricoh Company, Ltd. Image processor and image processing method for image enhancement using edge detection
JP4419566B2 (ja) 2003-12-25 2010-02-24 ソニー株式会社 映像信号処理装置、映像信号処理方法および映像信号処理プログラム
US7590589B2 (en) * 2004-09-10 2009-09-15 Hoffberg Steven M Game theoretic prioritization scheme for mobile ad hoc networks permitting hierarchal deference
US7639884B2 (en) 2005-04-26 2009-12-29 Nippon Hoso Kyokai Prefilter, compressive coding pre-processing apparatus and decompressive decoding post-processing apparatus, and compressive coding apparatus and decompressive decoding apparatus
JP4481868B2 (ja) 2005-04-26 2010-06-16 日本放送協会 プリフィルタ
US7676103B2 (en) 2005-06-20 2010-03-09 Intel Corporation Enhancing video sharpness and contrast by luminance and chrominance transient improvement
EP1763188A1 (en) 2005-09-09 2007-03-14 Vrije Universiteit Brussel Multistage tuning-tolerant equalizer filter with detection mechanisms for lower and higher frequency gain loops
IL172480A (en) * 2005-12-08 2011-11-30 Amir Zahavi Method for automatic detection and classification of objects and patterns in low resolution environments
US7590174B2 (en) 2005-12-20 2009-09-15 Altera Corporation Signal adjustment receiver circuitry
JP4116649B2 (ja) 2006-05-22 2008-07-09 株式会社東芝 高解像度化装置および方法
JP4475255B2 (ja) 2006-06-19 2010-06-09 ソニー株式会社 画像処理装置
JP2008103785A (ja) 2006-10-17 2008-05-01 Sony Corp 輪郭強調回路、輪郭強調方法、撮像装置およびビューファインダ
JP2009198935A (ja) 2008-02-25 2009-09-03 Panasonic Corp 液晶表示装置
CN102362486B (zh) 2009-03-31 2015-02-04 夏普株式会社 图像增强装置、图像增强方法、图像增强程序和信号处理装置
WO2010146728A1 (ja) 2009-06-16 2010-12-23 シャープ株式会社 波形整形装置、等化器、受信システム、波形整形装置の制御方法、制御プログラム、および該制御プログラムを記録したコンピュータ読み取り可能な記録媒体
CN101937328B (zh) * 2009-07-01 2014-01-15 深圳迈瑞生物医疗电子股份有限公司 图像优化曲线的生成方法与装置
WO2011061958A1 (ja) 2009-11-17 2011-05-26 シャープ株式会社 復号化装置、復号化装置の制御方法、伝送システム、および制御プログラムを記録したコンピュータ読み取り可能な記録媒体

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307897A (ja) * 1996-05-09 1997-11-28 Fuji Photo Film Co Ltd 画像データ圧縮処理方法
WO1998035449A1 (en) * 1997-02-10 1998-08-13 Sony Corporation Method and equipment for processing data
JPH1166311A (ja) * 1997-08-08 1999-03-09 Hitachi Tobu Semiconductor Ltd むら検査方法および装置
JPH11345331A (ja) * 1998-06-03 1999-12-14 Konica Corp 画像処理方法および画像処理装置
JP2001169116A (ja) * 1999-12-10 2001-06-22 Victor Co Of Japan Ltd 画像強調装置及びその方法
JP2003101774A (ja) * 2001-09-25 2003-04-04 Ricoh Co Ltd 画像処理装置
JP2003134352A (ja) * 2001-10-26 2003-05-09 Konica Corp 画像処理方法及び装置並びにプログラム
JP2003283835A (ja) * 2002-03-20 2003-10-03 Ricoh Co Ltd 画像処理装置
JP2005117549A (ja) * 2003-10-10 2005-04-28 Fuji Photo Film Co Ltd 画像処理方法および装置ならびに画像処理プログラム
JP2006157584A (ja) * 2004-11-30 2006-06-15 Konica Minolta Medical & Graphic Inc 画像処理方法
WO2007078829A1 (en) * 2005-12-29 2007-07-12 Intel Corporation Selective local transient improvement and peaking for video sharpness enhancement
JP2007265122A (ja) * 2006-03-29 2007-10-11 Victor Co Of Japan Ltd 画像処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Picture Coding Symposium of Japan Dai 16 Kai Symposium Shiryo, 14 November 2001 (14.11.2001)", 14 November 2001, article SHINGO AOKI ET AL.: "0-chi Tree Kozo Vector Ryoshika ni yoru Wavelet Henkan Fugoka", pages: 95 - 96 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811765B2 (en) 2009-11-17 2014-08-19 Sharp Kabushiki Kaisha Encoding device configured to generate a frequency component extraction signal, control method for an encoding device using the frequency component extraction signal, transmission system, and computer-readable recording medium having a control program recorded thereon
US8824825B2 (en) 2009-11-17 2014-09-02 Sharp Kabushiki Kaisha Decoding device with nonlinear process section, control method for the decoding device, transmission system, and computer-readable recording medium having a control program recorded thereon
US8891898B2 (en) 2010-02-15 2014-11-18 Sharp Kabushiki Kaisha Signal processing device and control program for sharpening images
JP5450668B2 (ja) * 2010-02-15 2014-03-26 シャープ株式会社 信号処理装置、制御プログラム、および集積回路
US8773594B2 (en) 2010-09-29 2014-07-08 Sharp Kabushiki Kaisha Signal processing device, and integrated circuit including oblique lowpass filtering and multiple sharpening components
WO2012124591A1 (ja) * 2011-03-15 2012-09-20 シャープ株式会社 信号処理装置、制御プログラム、および集積回路
WO2012147879A1 (ja) * 2011-04-27 2012-11-01 シャープ株式会社 画像処理装置、表示装置、画像処理方法および画像処理プログラム
JP2013115658A (ja) * 2011-11-29 2013-06-10 Nippon Hoso Kyokai <Nhk> 時空間低相関画像超解像装置、画像空間超解像装置、及びそれらのプログラム
US9471962B2 (en) 2012-08-09 2016-10-18 Keisoku Giken Co., Ltd. Image enhancement apparatus and image enhancement method
WO2014025067A1 (ja) * 2012-08-09 2014-02-13 株式会社計測技術研究所 画像強調装置、画像強調方法
JP5629902B1 (ja) * 2013-08-20 2014-11-26 合志 清一 画像処理装置、画像処理方法
WO2015025521A1 (ja) 2013-08-20 2015-02-26 株式会社計測技術研究所 画像処理装置、画像処理方法
US9848163B2 (en) 2013-08-20 2017-12-19 Keisoku Giken Co., Ltd. Image processing apparatus and image processing method
JP2015050585A (ja) * 2013-08-30 2015-03-16 合志 清一 画像処理装置及び画像処理方法
US9734563B2 (en) 2013-08-30 2017-08-15 Keisoku Giken Co., Ltd. Image processing apparatus and image processing method
CN115864435A (zh) * 2022-12-05 2023-03-28 浙江大学 一种基于单调控制系统理论的电力系统低频减载有效性判别方法

Also Published As

Publication number Publication date
US20120070098A1 (en) 2012-03-22
US8655101B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
WO2010140281A1 (ja) 信号処理装置、信号処理装置の制御方法、制御プログラム、および該制御プログラムを記録したコンピュータ読み取り可能な記録媒体
JP5281690B2 (ja) 画像強調装置、画像強調方法、画像強調プログラム、および信号処理装置
JP5583780B2 (ja) 信号処理装置および集積回路
JP4203980B2 (ja) データ処理方法及び装置、並びに記録媒体
JP5348145B2 (ja) 画像処理装置および画像処理プログラム
JP5450668B2 (ja) 信号処理装置、制御プログラム、および集積回路
JP5318234B2 (ja) 超解像処理方法及び装置
WO2011061958A1 (ja) 復号化装置、復号化装置の制御方法、伝送システム、および制御プログラムを記録したコンピュータ読み取り可能な記録媒体
JP2008529151A (ja) 複数解像度の画像フィルタリングに関するピラミッド分解
JP5291804B2 (ja) 符号化装置、符号化装置の制御方法、伝送システム、および制御プログラムを記録したコンピュータ読み取り可能な記録媒体
Sakurai et al. Super-resolution through non-linear enhancement filters
WO2012124591A1 (ja) 信号処理装置、制御プログラム、および集積回路
JP5629902B1 (ja) 画像処理装置、画像処理方法
KR101675117B1 (ko) 다계층의 저해상도 영상을 이용한 고해상도 영상 생성 방법 및 그 장치
Lama et al. Color image interpolation for high resolution display based on adaptive directional lifting based wavelet transform
Lakshman et al. Image interpolation using shearlet based sparsity priors
JP5396626B1 (ja) 画像強調装置、画像強調方法
JP5804258B2 (ja) 画像処理装置、電子機器
JP6661434B2 (ja) 画像処理装置
Obaida et al. Image Enhancement Using HSV Color Space, DWT, and BiHE Techniques
JP2002374419A (ja) 画像処理装置、画像処理方法、記録媒体およびプログラム
Bhonsle et al. Image denoising using wavelet thresholding technique in Python
JP2015166976A (ja) 画像処理装置、画像処理方法及びプログラム
JP4700645B2 (ja) 高精細画像生成装置および高精細画像生成プログラム
Yoo et al. An integrated framework for both compression noise reduction and super-resolution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783069

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13375251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP