WO2010137073A1 - Ponシステム、ponシステムにおける局側装置およびその制御方法 - Google Patents

Ponシステム、ponシステムにおける局側装置およびその制御方法 Download PDF

Info

Publication number
WO2010137073A1
WO2010137073A1 PCT/JP2009/002351 JP2009002351W WO2010137073A1 WO 2010137073 A1 WO2010137073 A1 WO 2010137073A1 JP 2009002351 W JP2009002351 W JP 2009002351W WO 2010137073 A1 WO2010137073 A1 WO 2010137073A1
Authority
WO
WIPO (PCT)
Prior art keywords
home
allocation
time slot
allocation rule
onu
Prior art date
Application number
PCT/JP2009/002351
Other languages
English (en)
French (fr)
Inventor
吉田浩章
横本徹哉
重留広二
Original Assignee
富士通テレコムネットワークス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通テレコムネットワークス株式会社 filed Critical 富士通テレコムネットワークス株式会社
Priority to US12/677,258 priority Critical patent/US8340518B2/en
Priority to PCT/JP2009/002351 priority patent/WO2010137073A1/ja
Priority to JP2009528538A priority patent/JP4416053B1/ja
Priority to CN2009801003428A priority patent/CN101984777B/zh
Publication of WO2010137073A1 publication Critical patent/WO2010137073A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/287Remote access server, e.g. BRAS
    • H04L12/2876Handling of subscriber policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2858Access network architectures
    • H04L12/2861Point-to-multipoint connection from the data network to the subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0084Quality of service aspects

Definitions

  • the present invention relates to data communication technology, and more particularly, to a PON (Passive Optical Network) system, a station side device in a PON system, and a control method thereof.
  • PON Passive Optical Network
  • PON type network form as one form of an optical access network that performs data transmission by optical fiber in the access line area.
  • PON systems that achieve a communication speed of 1 Gbps, such as GE-PON (Gigabit Ethernet (registered trademark) -Passive Optical Network), have become widespread by increasing the access line area.
  • GE-PON Gigabit Ethernet (registered trademark) -Passive Optical Network
  • each ONU transmits data requesting a bandwidth for data transmission to the OLT (hereinafter referred to as “bandwidth allocation request” as appropriate).
  • the OLT that has received the bandwidth allocation request allocates a time slot permitting data transmission from the ONU to each ONU.
  • Each ONU transmits data in a time slot assigned to itself, thereby realizing data transmission in a time division manner from a plurality of ONUs.
  • the present invention has been made on the basis of the above-mentioned problem recognition of the present inventor, and the main object of the present invention is to allocate bandwidth based on fairness to a plurality of ONUs having different maximum communication speeds in a PON system. It is to provide the technology to be realized.
  • a station-side device in a PON system is a station-side device in a PON system, and each of a plurality of home-side devices corresponding to different maximum communication speeds The same length of time for transmitting data in a time-sharing manner from each home side device to each of the home side devices and an allocation request receiving unit that receives a bandwidth allocation request for data transmission in the direction An allocation execution unit for allocating slots, and an allocation result notification unit for notifying each home side device of information on allocated time slots.
  • the “maximum communication speed” of the home device may be a PON section, that is, the maximum communication speed between the home device and the station device.
  • the “time slot” may be a period in which data transmission is permitted to a specific home apparatus within a predetermined period, and typically, different time slots are assigned to different home apparatuses.
  • the “time slot information” may specify a data transmission start time and a data transmission amount, or may specify a data transmission start time and a time during which data transmission is allowed. The time and the data transmission end time may be designated.
  • the uplink data transmission time is allocated fairly to each of the plurality of home-side devices having different maximum communication speeds, and each home-side device can transmit the same time data in the uplink direction. .
  • fairness can be maintained from the viewpoint of time allocation when allowing upstream data transmission to each home-side apparatus.
  • Another aspect of the present invention is also a station-side device in the PON system.
  • This device is a station-side device in a PON system, and an allocation request receiving unit that receives a bandwidth allocation request for data transmission in the uplink direction from each of a plurality of home-side devices corresponding to different maximum communication speeds.
  • An allocation execution unit that allocates a time slot whose length is determined according to the maximum communication speed of each home-side device, and an allocation result notification unit that notifies the information on the allocated time slot to each home-side device.
  • the “predetermined unit time” may be a period from which time slots are distributed to each of a plurality of home devices, or may be a grant cycle, that is, a bandwidth allocation cycle. “The length is determined in accordance with the maximum communication speed” may be determined to be shorter as the maximum communication speed is higher and longer as the maximum communication speed is lower. In other words, the length may be determined so as to be inversely correlated with the maximum communication speed.
  • the uplink data transmission amount per unit time is allocated fairly to each of a plurality of home side devices having different maximum communication speeds, and each home side device has the same amount in the uplink direction per unit time. Can be sent. In other words, fairness can be maintained from the viewpoint of throughput allocation when allowing upstream data to each home device.
  • Still another aspect of the present invention is also a station-side device in the PON system.
  • This device is a station-side device in a PON system, and an allocation request receiving unit that receives a bandwidth allocation request for data transmission in the uplink direction from each of a plurality of home-side devices corresponding to different maximum communication speeds.
  • An allocation execution unit for allocating information, an allocation result notification unit for notifying each home-side device of information of allocated time slots, and when a predetermined switching condition is satisfied, the allocation rule applied so far is changed to another allocation rule.
  • An allocation rule switching unit for switching to.
  • the plurality of types of allocation rules include a first allocation rule that allocates time slots of the same length to each home side device, and each home side so that the amount of transmission data from each home side device in a predetermined unit time is the same. And a second allocation rule for allocating a time slot whose length is determined according to the maximum communication speed of the device to each home-side device.
  • the “predetermined switching condition” is a predetermined condition for switching the allocation rule, and may be, for example, a condition relating to the configuration mode of the PON system, such as attribute information and operation status for a plurality of home-side devices. It may be the condition regarding. Further, a switching instruction from a predetermined operator such as an operator of a communication carrier in which the station side device is installed may be detected.
  • an allocation rule up to that point includes an allocation rule including a first allocation rule based on fairness of time allocation and a second allocation rule based on fairness of throughput allocation.
  • the allocation rule can be flexibly switched according to changes in various situations in the PON system, and for example, can be appropriately switched between the first and second allocation rules.
  • the allocation rule switching unit selects an allocation rule to be made to conform to the allocation execution unit between the first and second allocation rules according to a ratio of a device corresponding to the maximum communication speed of a predetermined value or more among a plurality of home-side devices. It may be switched with.
  • “According to the ratio” may mean that the ratio is equal to or higher than a predetermined threshold and lower than the threshold. According to this aspect, whether to maintain the fairness of time allocation or to maintain the fairness of throughput allocation according to the change in the ratio of home-side devices that can handle relatively high communication speeds in the PON system. Can be switched.
  • the allocation rule switching unit changes the allocation rule to be made to conform to the allocation execution unit to the second allocation rule when the ratio of the devices corresponding to the maximum communication speed equal to or higher than the predetermined value among the plurality of home-side devices becomes equal to or higher than the predetermined value. May be switched to the first allocation rule.
  • “Occupying ratio is a predetermined value or more” may be 80% to 90% or more.
  • the fairness of the throughput allocation is maintained in the bandwidth allocation when the ratio of the home-side devices capable of handling a relatively high communication speed in the PON system increases. Can be switched to. As a result, when the replacement from a low-speed home device to a high-speed home device progresses to some extent, the band allocation policy is changed so that the performance of the high-speed home device can be used effectively. It is possible to improve the convenience of a subscriber having a simple home-side device.
  • the allocation rule switching unit sets the allocation rule to be made to conform to the allocation execution unit when the ratio of the devices corresponding to the maximum communication speed equal to or higher than the predetermined value among the plurality of home-side devices is less than the predetermined value. May be switched to the second allocation rule. “The proportion occupied is less than a predetermined value” may be 80% to less than 90%.
  • the fairness of the time allocation is maintained in the bandwidth allocation when the ratio of the home side devices that can cope with a relatively high communication speed in the PON system is reduced. Can be switched to.
  • a high-speed home device is disconnected from the PON system due to a power cut or the like, that is, when the proportion of low-speed home devices increases, the communication band of the low-speed home device is secured.
  • the bandwidth allocation policy is changed, and the convenience of the subscriber having the low-speed home device is easily maintained.
  • a home-side information holding unit that holds a maximum communication speed at UNI in a subscriber home where each of a plurality of home-side devices is installed may be further provided. If the communication speed of the home device estimated by the time slot assigned to a certain home device exceeds the maximum communication speed in UNI, a part of the time slot assigned to the home device is assigned. It may be redistributed to another home device.
  • the “maximum communication speed at UNI” may be the maximum communication speed between a line terminator such as an ONU and a subscriber terminal at the subscriber's home.
  • a connector portion of a UTP cable connected to the line terminator May be the maximum communication speed.
  • the “communication speed of the home device estimated from the time slot” may be a communication speed calculated by the time slot length and the maximum communication speed of the home device, in other words, an effective communication speed.
  • “Redistributing part of the time slot assigned to the home side device to another home side device” means that information on the time slot once assigned to each home side device is notified to each home side device. It is also possible to recalculate the time slots assigned to each home-side device so that the time slots that are substantially surplus due to UNI restrictions are distributed to other home-side devices. Specifically, the time slot length of another home side device is extended by distributing the surplus portion of the time slot corresponding to the size exceeding the maximum communication speed in UNI to another home side device. May be. That is, the time slot length reassigned to another home-side device may be a total value of the time slot length once assigned and the time slot length resulting from the distribution of the extra time slots. The surplus time slot may be distributed according to the number of home-side devices, and may be evenly distributed to a plurality of other home-side devices, for example.
  • the surplus of the time slot generated due to the upper limit of the communication speed that can be substantially enjoyed by the subscriber is reassigned to another home-side apparatus.
  • This makes it possible to effectively utilize the surplus time slot, in other words, the band that would otherwise be wasted, and improve the communication speed of the redistribution destination home side apparatus.
  • the convenience of the redistribution destination subscriber can be improved without impairing the convenience of the redistribution source subscriber.
  • Still another aspect of the present invention is a method for controlling a station side device in a PON system.
  • This method is a method for controlling a station-side device in a PON system, and receiving a bandwidth allocation request for data transmission in the uplink direction from each of a plurality of home-side devices corresponding to different maximum communication speeds And a time slot for transmitting data from each home device in a time-sharing manner to each of the plurality of home devices, and a time whose length is determined according to any of a plurality of types of allocation rules.
  • the plurality of types of allocation rules include a first allocation rule that allocates time slots of the same length to each home side device, and Second allocation rule for allocating a time slot whose length is determined according to the maximum communication speed of each home-side device so that the amount of transmission data from each home-side device in a predetermined unit time is the same And are included.
  • Still another aspect of the present invention is a PON system.
  • a plurality of home-side devices corresponding to different maximum communication speeds and a station-side device are connected, and the station-side device transmits data in the uplink direction from each of the plurality of home-side devices.
  • An allocation execution unit that allocates a time slot whose length is determined according to the above, an allocation result notification unit that notifies the information on the allocated time slot to each home side device, and when a predetermined switching condition is satisfied,
  • An allocation rule switching unit that switches the allocation rule applied up to to another allocation rule.
  • the plurality of types of allocation rules include a first allocation rule that allocates time slots of the same length to each home side device and a home side so that the amount of data transmitted from each home side device in a predetermined unit time is the same. And a second allocation rule for allocating a time slot whose length is determined according to the maximum communication speed of the device to each home-side device.
  • the present invention in the PON system, it is possible to realize bandwidth allocation based on fairness for a plurality of ONUs having different maximum communication speeds.
  • FIG. 1 shows the upstream PON section output rate of ONU. It is a figure which shows the 2nd example about the upstream PON section output rate of ONU. It is a figure which shows the 3rd example about the upstream PON section output rate of ONU.
  • FIG. 1 shows a configuration of a PON system according to an embodiment of the present invention.
  • the OLT 10 is a station-side device installed in a communication carrier, and is an OLT that can support both 1 Gbps and 10 Gbps bit rates.
  • the OLT 10 is connected to an operator terminal 12 which is a general PC terminal operated by an operator of a communication carrier, and an upper network 24 such as a WAN or the Internet. Further, the OLT 10 is connected to the 1G-ONU 16 and the 10G-ONU 18 installed in the subscriber's house via the optical coupler 14.
  • the 1G-ONU 16 is a home-side device with a maximum communication speed of 1 Gbps in both the upstream and downstream directions.
  • the 10G-ONU 18 is a home-side device having a maximum communication speed of 10 Gbps in both upstream and downstream directions.
  • the 1G-ONU 16 and the 10G-ONU 18 are connected to a subscriber terminal 22 which is a general PC terminal via a UNI (User-Network Interface) 20 which is an interface with user equipment.
  • the UNI function may be implemented in each ONU.
  • both 1G-ONU 16 and 10G-ONU 18 are included.
  • each of the 1G-ONU 16 and 10G-ONU 18 and the optical coupler 14 are connected by an optical fiber for each subscriber.
  • the OLT 10 and the optical coupler 14 are connected by a single optical fiber shared by a plurality of subscribers.
  • the OLT 10 receives a bandwidth allocation request from each ONU, specifically, an allocation request for a time slot capable of transmitting data
  • the OLT 10 considers fairness among a plurality of ONUs (hereinafter also referred to as “allocation rules” as appropriate). ))
  • To execute dynamic bandwidth allocation (Dynamic Bandwidth Allocation). That is, a time slot that allows data transmission, in other words, an available bandwidth is allocated to the ONU that is the transmission source of the bandwidth allocation request.
  • FIG. 2 shows an example of an allocation rule.
  • each ONU in the case of applying an assignment rule that maintains fairness from the viewpoint of time assignment (hereinafter also referred to as “equal time assignment rule” as appropriate) is applied.
  • the time slot allocated to is shown.
  • T1 to T4 in the figure indicate time slot lengths assigned to each ONU.
  • the grant cycle in the figure shows a bandwidth allocation period in which time slots should be distributed to each ONU. In other words, a time slot is assigned to each ONU for each grant cycle.
  • the OLT 10 allocates time slots having the same length to each ONU regardless of the maximum communication speed.
  • FIG. 3 shows another example of allocation rules.
  • an allocation rule that maintains fairness from the viewpoint of throughput allocation hereinafter also referred to as “equal transmission amount allocation rule” as appropriate
  • the time slot allocated to ONU is shown.
  • T1 to T4 in the figure also indicate the time slot length allocated to each ONU. Since the maximum communication speed of 1G-ONU is 1/10 of the maximum communication speed of 10G-ONU, the time slot length (T1 and T2) allocated to 1G-ONU is the time slot length allocated to 10G-ONU. It is set to 10 times (T3 and T4).
  • the OLT 10 when the OLT 10 conforms to the equal transmission amount allocation rule, the OLT 10 has a length inversely correlated with the maximum communication speed of each ONU so that the transmission data amount from each ONU in the grant cycle is equal to each ONU. Assign time slots.
  • the OLT 10 transmits information on a time slot assigned to each ONU (hereinafter also referred to as “grant notification” as appropriate) to each ONU.
  • Each ONU transmits transmission data to the upper network 24 to the OLT 10 in a time slot allocated to the ONU according to the grant notification.
  • Each ONU transmits a bandwidth allocation request including information on the amount of data required to be transmitted to the OLT 10 to the OLT 10 as a response to the grant notification.
  • the OLT 10 executes a dynamic bandwidth allocation process between a certain grant cycle and the next grant cycle based on the bandwidth allocation requests accepted so far.
  • FIG. 4 is a block diagram showing a functional configuration of the OLT 10 of FIG. This figure mainly shows functional blocks related to dynamic bandwidth allocation in the present embodiment, but it goes without saying that the OLT 10 may further include functional blocks that provide other functions such as priority control.
  • Each block shown in the block diagram of the present specification can be realized in terms of hardware by an element such as a CPU of a computer or a mechanical device, and in terms of software, it can be realized by a computer program or the like.
  • the functional block realized by those cooperation is drawn. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
  • the OLT 10 includes an optical receiver 30, a reception buffer 32, a data transmitter 34, a data receiver 36, a transmission buffer 38, an optical transmitter 40, and a dynamic band allocation unit 50.
  • the optical receiver 30 receives the optical signals transmitted from the 1G-ONU 16 and the 10G-ONU 18 and performs optical / electrical conversion.
  • the reception buffer unit 32 temporarily holds the data after optical / electrical conversion.
  • the data temporarily stored in the reception buffer unit 32 is notified of the data to be transmitted to the upper network 24 (hereinafter also referred to as “uplink data” as appropriate) and the state of the device installed at the subscriber's home side.
  • Data hereinafter also referred to as “home-side state data” as appropriate
  • bandwidth allocation request data is data transmitted from the subscriber terminal 22 to the upper network 24.
  • the home side state data includes the maximum communication speed of the ONU and the maximum communication speed of the UNI 20 associated with the ONU.
  • the home-side state data may be acquired at the time of auto-negotiation between the OLT 10 and each ONU, may be included in a bandwidth allocation request, or may be periodically transmitted from each ONU.
  • the data transmission unit 34 acquires the uplink data temporarily stored in the reception buffer unit 32 and transmits it to the upper network 24 side.
  • the data receiving unit 36 receives downlink data (hereinafter also referred to as “downlink data” as appropriate) transmitted from the upper network 24 side to the subscriber terminal 22.
  • the transmission buffer unit 38 temporarily stores the received downlink data.
  • the transmission buffer unit 38 also temporarily stores data for notifying the time slot allocated to each ONU, sent from the dynamic band allocation unit 50.
  • the optical transmission unit 40 acquires the downlink data temporarily stored in the transmission buffer unit 38, performs electrical / optical conversion, and transmits an optical signal corresponding to the downlink data to the 1G-ONU 16 and the 10G-ONU 18. Similarly, time slot notification data is transmitted to each ONU.
  • the dynamic bandwidth allocation unit 50 performs dynamic bandwidth allocation for each ONU according to an allocation rule defined to maintain fairness among a plurality of ONUs.
  • the dynamic band allocation unit 50 includes a home side information holding unit 52, an allocation request receiving unit 54, an allocation execution unit 56, an allocation result notification unit 58, an instruction receiving unit 60, and an allocation rule switching unit 62. .
  • the home-side information holding unit 52 acquires the home-side state data temporarily held in the reception buffer unit 32 and stores the home-side state data in a home-side information table that is a predetermined storage area. That is, in the home side information table, home side state data for the ONU currently connected to the OLT 10 is recorded.
  • FIG. 5 shows the structure of the home information table.
  • ONU identification information in the PON system 100 is recorded. This may be, for example, a logical link identifier (LLID) defined in IEEE 802.3, a MAC address, a VLAN-ID defined in IEEE 802.1Q, or a unique identifier for ONU authentication. . Or it may be a combination of a plurality of types of identification information.
  • LLID logical link identifier
  • the maximum communication speed that can be supported by each ONU is recorded.
  • the maximum communication speed in the UNI 20 associated with each ONU in other words, the bit rate between the subscriber terminal 22 and the UNI 20 is recorded.
  • the allocation request reception unit 54 acquires the bandwidth allocation request data temporarily stored in the reception buffer unit 32 and sends it to the allocation execution unit 56.
  • the allocation execution unit 56 executes dynamic bandwidth allocation processing in response to the bandwidth allocation request.
  • a time slot is allocated to an ONU that is a transmission source of a bandwidth allocation request according to an equal time allocation rule or an equal transmission amount allocation rule.
  • a set of transmission start time and transmission allowable time permitting transmission of an optical signal is assigned as a time slot.
  • a pair of transmission start time and transmission data amount or a pair of transmission start time and transmission end time may be assigned.
  • the allocation execution unit 56 allocates a plurality of time slots having the same length to each ONU by the number of accepted bandwidth allocation requests.
  • the time slot length allocated to each ONU may be determined in advance based on the maximum number of connections and the average number of connections of the 1G-ONU 16 and 10G-ONU 18 with respect to the OLT 10, and is appropriately determined based on the operator's knowledge and experiments in the PON system 100 It is only necessary to determine a correct value.
  • the allocation execution unit 56 refers to the home-side state table and determines each ONU in a unit time according to the maximum communication speed in the ONU that is the transmission source of each band allocation request.
  • a time slot whose length is set so that the amount of transmission data from is equal is assigned to each ONU. For example, a time slot 10 times as long as a time slot assigned to 10G-ONU 18 is assigned to 1G-ONU 16. In this case as well, an appropriate time slot length may be determined in advance as described above. Regardless of which allocation rule is applied, the total time slot length allocated to each ONU is the grant cycle length.
  • the allocation execution unit 56 once determines a time slot to be allocated to each ONU, and then notifies each ONU from each ONU based on the length of the time slot before notifying each ONU.
  • the effective communication speed in data transmission to the OLT 10 is estimated. For example, when the time slot length of the 10G-ONU 18 is 1/8 of the grant cycle, the communication speed in the 10G-ONU 18 is estimated to be 1250 Mbps.
  • the allocation execution unit 56 refers to the home side information table and determines whether or not the effective communication speed estimated for each ONU exceeds the UNI input rate corresponding to the ONU.
  • the time to be allocated to each ONU so as to redistribute the surplus portion of the time slot corresponding to the excess to another ONU Recalculate the slot.
  • the surplus time slot is equally distributed to different ONUs. An example of time slot recalculation will be described later.
  • the allocation result notifying unit 58 sends the information on the time slot allocated to each ONU in the allocation executing unit 56 to the transmission buffer unit 38. As a result, the time slot information is notified to the 1G-ONU 16 and the 10G-ONU 18 via the optical transmission unit 40.
  • the instruction receiving unit 60 receives switching instruction data for switching the time slot allocation rule from the operator terminal 12.
  • the allocation rule switching unit 62 switches the switching rule to be conformed to the allocation execution unit 56 between the equal time allocation rule and the equal transmission amount allocation rule in accordance with the switching instruction from the operator terminal 12.
  • the allocation rule switching unit 62 refers to the home-side state table, and according to the ratio of the 10G-ONU 18 among a plurality of ONUs in the PON system 100 (hereinafter also referred to as “10G-ONU occupation ratio” as appropriate).
  • the autonomous time allocation rule and the equal transmission amount allocation rule are autonomously switched.
  • the allocation rule switching unit 62 may calculate the 10G-ONU occupancy rate each time the home-side state table is updated, and may switch the allocation rule at any time following the change. Further, the 10G-ONU occupation ratio may be calculated periodically and the allocation rule may be switched periodically.
  • the allocation execution unit 56 allocates time slots in accordance with the equal transmission amount allocation rule, and the allocation rule switching unit 62 periodically refers to the home side status table to determine the 10G-ONU occupancy rate. Monitor the value.
  • the allocation rule switching unit 62 detects that the 10G-ONU occupancy rate is 80% or more, the allocation rule switching unit 62 switches the allocation rule conforming to the allocation execution unit 56 to the equal time allocation rule.
  • the allocation rule switching unit 62 switches the allocation rule conforming to the allocation execution unit 56 from the equal time allocation rule to the equal transmission amount allocation rule.
  • the allocation rule switching unit 62 prioritizes switching based on the switching instruction acquired via the instruction receiving unit 60, rather than autonomous switching of the allocation request. For example, after autonomous switching from the equal transmission amount allocation rule to the equal transmission amount allocation rule, when returning to the equal transmission amount allocation rule based on the switching instruction, it will not autonomously switch back to the equal transmission amount allocation rule. . Similarly, priority is given to the switching instruction when autonomous switching is performed from the equal time allocation rule to the equal transmission amount allocation rule.
  • the 1G-ONU 16 and the 10G-ONU 18 accept the uplink data to the upper network 24 from the subscriber terminal 22, the 1G-ONU 16 and the 10G-ONU 18 transmit a bandwidth allocation request to the OLT 10.
  • the allocation request receiving unit 54 of the OLT 10 receives bandwidth allocation requests from a plurality of ONUs.
  • the allocation execution unit 56 allocates a time slot that allows transmission of uplink data to each ONU according to either the equal time allocation rule or the equal transmission amount allocation rule.
  • the time slot surplus is assigned to each ONU so as to be distributed to other ONUs.
  • the allocation result notification unit 58 notifies each ONU of information on the allocated time slot.
  • the 1G-ONU 16 and the 10G-ONU 18 transmit optical signals from the plurality of ONUs to the OLT 10 in a time division manner by transmitting optical signals to the OLT 10 in the time slots assigned to the 1G-ONU 16 and the upstream data 24 Forwarded to
  • the allocation rule switching unit 62 autonomously switches the allocation rule in the OLT 10 from the equal transmission amount allocation rule to the equal time allocation rule when the 10G-ONU occupancy rate in the PON system 100 exceeds a predetermined value.
  • the allocation rule in the OLT 10 is autonomously switched from the equal time allocation rule to the equal transmission amount allocation rule.
  • the allocation rule switching unit 62 gives priority to the switching instruction over the autonomous switching, and the allocation rule in the OLT 10 is determined from the isochronous allocation rule. Switch to the transmission amount allocation rule or switch from the equal transmission amount allocation rule to the equal time allocation rule.
  • FIG. 6 shows a first example of the output rate in the upstream PON section of the ONU (hereinafter also referred to as “upstream PON section output rate” as appropriate).
  • upstream PON section output rate indicates the effective communication speed from each of the 1G-ONU 16 and 10G-ONU 18 to the OLT 10, and this value depends on the maximum communication speed of itself and the length of the time slot allocated by the OLT 10. It is determined. That is, the higher the maximum communication speed of the ONU and the longer the time slot length, the higher the upstream PON section output rate.
  • the calculation of the uplink PON section output rate shown in FIGS. 6 to 8 does not consider the interval between grant cycles that are overhead.
  • the upstream PON section output rate of the 1G-ONU 16 is 125 Mbps
  • the output rate of the upstream PON section of the 10G-ONU 18 is 1250 Mbps.
  • time slot reassignment is performed, the following is further executed. That is, due to UNI input rate limitations, 20% of the time slots allocated to the 10G-ONU 18 are surplus, and this is equally distributed to each 1G-ONU 16. As a result, an allocation of 1/280 of the grant cycle is added to each time slot of the 1G-ONU 16. Therefore, the upstream PON section output rate of 1G-ONU 16 is 128.5, and the upstream PON section output rate of 10G-ONU 18 is 1000 Mbps.
  • the time slot length of 1G-ONU 16 is set to 10 times the time slot length of 10G-ONU 18, and therefore 1G-ONU 16 has a time slot corresponding to 10/71 of the grant cycle.
  • the 10G-ONU 18 is assigned a time slot corresponding to 1/71 of the grant cycle.
  • the upstream PON section output rate of 1G-ONU 16 and the upstream PON section output rate of 10G-ONU 18 are both 140.8 Mbps.
  • FIG. 7 shows a second example of the upstream PON section output rate of the ONU.
  • the uplink PON section output rate is the same as in the first example if there is no time slot reassignment.
  • 1/40 of the grant cycle is added to each time slot of the 1G-ONU 16, and therefore the uplink PON section output rate of the 1G-ONU 16 is the first example. Bigger than.
  • each 1G-ONU 16 is assigned a time slot corresponding to 10/44 of the grant cycle
  • each 10G-ONU 18 is assigned a time slot corresponding to 1/44 of the grant cycle. .
  • FIG. 8 shows a third example of the ONU upstream PON section output rate.
  • This example shows the upstream PON section output rate when the number of 1G-ONUs 16 ⁇ the number of 10G-ONUs 18 in the PON system 100.
  • the uplink PON section output rate is the same as in the first example if there is no time slot reassignment.
  • 7/40 of the grant cycle is added to each time slot of the 1G-ONU 16, so the uplink PON section output rate of the 1G-ONU 16 is the second example. Bigger than.
  • each 1G-ONU 16 is assigned a time slot corresponding to 10/17 of the grant cycle
  • each 10G-ONU 18 is assigned a time slot corresponding to 1/17 of the grant cycle. .
  • the fairness of time allocation or the fairness of throughput allocation is improved. Can be maintained. As a result, it is easy to maintain fairness between ONUs, that is, between subscribers, even in a situation where a plurality of ONUs having different maximum communication speeds are connected to one OLT as the access line area increases. Note that even if any allocation rule is selected, the fairness of the time allocation or the throughput allocation can be maintained, so that it becomes easy to suppress the unfairness of the subscriber.
  • the time slot allocation rule can be appropriately switched based on the judgment of the communication carrier. For example, it is conceivable to determine an allocation rule according to a charge difference between a 1G connection service using 1G-ONU 16 and a 10G connection service using 10G-ONU 18. If the price difference between the two services is small, an equal transmission amount allocation rule may be applied. As a result, a relatively large band for the 1G-ONU 16 is secured, and it becomes difficult for the subscriber of the 1G connection service to feel unfair. On the other hand, when the price difference between the two services is large, an equal time allocation rule may be applied. As a result, the communication speed of the 10G-ONU 18 is effectively utilized, and the convenience of the subscriber of the 10G connection service can be improved.
  • the equal transmission amount allocation rule is automatically switched to the equal time allocation rule.
  • the communication speed of the 10G-ONU 18 can be improved, and the convenience of most subscribers can be improved.
  • switching from the equal time allocation rule to the equal transmission amount allocation rule is automatically performed. This facilitates securing the communication speed of the 1G-ONU 16.
  • the above-described concept of allocation rule switching is particularly effective when time slots allocated to each ONU are recalculated based on UNI speed limitations.
  • the extra time slots allocated to the 10G-ONU 18 are distributed to the 1G-ONU 16 to extend the time slot length allocated to the 1G-ONU 16, and the 1G-ONU 16 associated with switching to the equal time allocation rule This is because the reduction in communication speed is compensated.
  • the value after the reassignment exceeds the upstream PON section output rate based on the equal transmission amount allocation rule of FIG. That is, by switching the allocation rule, the convenience of the 10G connection service subscriber can be greatly improved without reducing the convenience of the subscriber of the 1G connection service.
  • the present invention can be used for a PON (Passive Optical Network) system.
  • PON Passive Optical Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

 本発明の実施の1形態であるOLT10は、1G-ONU16および10G-ONU18のそれぞれから帯域割当要求を受け付ける割当要求受付部54と、時間割当の公平性に基づく割当規則またはスループット割当の公平性に基づく割当規則にしたがって、データを送信させるためのタイムスロットを各ONUに割り当てる割当実行部56と、タイムスロットの情報を各ONUに通知する割当結果通知部58とを備える。

Description

PONシステム、PONシステムにおける局側装置およびその制御方法
 この発明は、データ通信技術に関し、特に、PON(Passive Optical Network)システム、PONシステムにおける局側装置およびその制御方法に関する。
 現在、アクセス回線領域において、光ファイバによってデータ伝送を行う光アクセスネットワークの1形態として、PON型のネットワーク形態がある。アクセス回線領域の高速化により、GE-PON(Gigabit Ethernet(登録商標)-Passive Optical Network)等の1Gbpsの通信速度を実現するPONシステムも普及している。
特開2009-10687号公報
 上記特許文献1の図10で示されるように、PONシステムにおいて、加入者宅側に設置された複数のONU(Optical Network Unit)から通信キャリアに設置されたOLT(Optical Line Terminal)にデータを送信する際、各ONUはOLTに対してデータ送信のための帯域を要求するデータ(以下、適宜「帯域割当要求」と呼ぶ。)を送信する。帯域割当要求を受け付けたOLTは、ONUからのデータ送信を許可するタイムスロットを各ONUに割り当てる。各ONUは自身に割り当てられたタイムスロットにてデータを送信することにより、複数のONUからの時分割でのデータ送信が実現される。
 ところで、アクセス回線領域の高速化は今後さらに進展すると考えられ、この過程においては、比較的低速な通信速度までしか対応しないONUと、比較的高速な通信速度まで対応可能なONUとの両方が同一のOLTに接続された状態になると考えられる。これを踏まえ本発明者は、最大通信速度が互いに異なる複数のONUそれぞれに対する帯域割当における公平性がOLTに求められると考えた。しかし、このような複数種類のONUに対して公平に帯域割当を行う発想やその方法は十分提案されていなかった。
 本発明は、本発明者の上記課題認識に基づいてなされたものであり、その主たる目的は、PONシステムにおいて、最大通信速度が互いに異なる複数のONUに対して公平性の観点に基づく帯域割当を実現する技術を提供することである。
 上記課題を解決するために、本発明のある態様のPONシステムにおける局側装置は、PONシステムにおける局側装置であって、互いに異なる最大通信速度に対応した複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付ける割当要求受付部と、複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるための、同じ長さのタイムスロットを割り当てる割当実行部と、割り当てられたタイムスロットの情報を各宅側装置に通知する割当結果通知部と、を備える。
 宅側装置の「最大通信速度」は、PON区間、すなわち宅側装置と局側装置との間における最大通信速度であってもよい。「タイムスロット」は、所定期間のうち特定の宅側装置にデータ送信を許可する期間であってもよく、典型的には、異なる宅側装置に対して異なるタイムスロットが割り当てられる。「タイムスロットの情報」は、データ送信開始時刻およびデータ送信量を指定するものであってもよく、データ送信開始時刻およびデータ送信を許容する時間を指定するものであってもよく、データ送信開始時刻およびデータ送信終了時刻を指定するものであってもよい。
 この態様によると、最大通信速度が互いに異なる複数の宅側装置のそれぞれに対して、上り方向のデータ送信時間が公平に割り当てられ、各宅側装置は上り方向へ同一時間データを送信できることになる。言い換えれば、各宅側装置に対して上り方向のデータ送信を許容するに際し、時間割当の観点から公平性を維持できる。
 本発明の別の態様もまた、PONシステムにおける局側装置である。この装置は、PONシステムにおける局側装置であって、互いに異なる最大通信速度に対応した複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付ける割当要求受付部と、複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるためのタイムスロットであり、所定の単位時間における各宅側装置からの送信データ量を同一とするよう各宅側装置の最大通信速度に応じて長さが決定されたタイムスロットを割り当てる割当実行部と、割り当てられたタイムスロットの情報を各宅側装置に通知する割当結果通知部と、を備える。
 「所定の単位時間」は、複数の宅側装置のそれぞれに対するタイムスロットを分配する元となる期間であってもよく、グラントサイクルすなわち帯域割当周期であってもよい。「最大通信速度に応じて長さが決定された」とは、最大通信速度が大きいほど短く、最大通信速度が小さいほど長く決定されたことでもよい。言い換えれば、最大通信速度の大きさに逆相関するように長さが決定されたことでもよい。
 この態様によると、最大通信速度が互いに異なる複数の宅側装置のそれぞれに対して、単位時間における上り方向のデータ送信量が公平に割り当てられ、各宅側装置は単位時間において上り方向へ同じ量のデータを送信できることになる。言い換えれば、各宅側装置に対して上り方向のデータを許容するに際し、スループット割当の観点から公平性を維持できる。
 本発明のさらに別の態様もまた、PONシステムにおける局側装置である。この装置は、PONシステムにおける局側装置であって、互いに異なる最大通信速度に対応した複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付ける割当要求受付部と、複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるためのタイムスロットであり、複数種の割当規則のうちいずれかにしたがって長さが決定されたタイムスロットを割り当てる割当実行部と、割り当てられたタイムスロットの情報を各宅側装置に通知する割当結果通知部と、所定の切替条件が充足された場合、それまで適用された割当規則を別の割当規則に切り替える割当規則切替部と、を備える。複数種の割当規則には、同じ長さのタイムスロットを各宅側装置に割り当てる第1の割当規則と、所定の単位時間における各宅側装置からの送信データ量を同一とするよう各宅側装置の最大通信速度に応じて長さが決定されたタイムスロットを各宅側装置に割り当てる第2の割当規則とが含まれる。
 「所定の切替条件」とは、割当規則を切り替えるためのあらかじめ定められた条件であり、例えば、PONシステムの構成態様に関する条件であってもよく、複数の宅側装置についての属性情報や運用状態に関する条件であってもよい。また、局側装置が設置された通信キャリアのオペレータ等、所定の運用者からの切替指示が検出されたことでもよい。
 この態様によると、切替条件が充足された場合、時間割当の公平性に基づく第1の割当規則と、スループット割当の公平性に基づく第2の割当規則を含む割当規則について、それまでの割当規則から別の割当規則に切り替えられる。すなわち、PONシステムにおける様々な状況の変化に応じて割当規則を柔軟に切り替えることができ、例えば、第1および第2の割当規則の間で適宜切り替えることができる。
 割当規則切替部は、複数の宅側装置のうち所定値以上の最大通信速度に対応する装置が占める割合に応じて、割当実行部に準拠させる割当規則を第1および第2の割当規則の間で切り替えてもよい。
 「割合に応じて」とは、その割合が所定の閾値以上、閾値未満となることでもよい。この態様によると、PONシステムにおける比較的高速な通信速度まで対応可能な宅側装置の割合の変化に応じて、時間割当の公平性を維持するか、スループット割当の公平性を維持するかを適宜切り替えることができる。
 割当規則切替部は、複数の宅側装置のうち所定値以上の最大通信速度に対応する装置が占める割合が所定値以上となった場合、割当実行部に準拠させる割当規則を第2の割当規則から第1の割当規則に切り替えてもよい。「占める割合が所定値以上」とは、その割合が8割~9割以上であってもよい。
 この態様によると、PONシステムにおける比較的高速な通信速度まで対応可能な宅側装置の割合が大きくなると、帯域割当においてスループット割当の公平性を維持することから、時間割当の公平性を維持するように切り替えられる。これにより、低速な宅側装置から高速な宅側装置へのリプレイスがある程度進展した場合は、高速な宅側装置の性能を有効利用できるように帯域割当のポリシーが変更されることになり、高速な宅側装置を有する加入者の利便性を向上させることができる。
 割当規則切替部は、複数の宅側装置のうち所定値以上の最大通信速度に対応する装置が占める割合が所定値未満となった場合、割当実行部に準拠させる割当規則を第1の割当規則から第2の割当規則に切り替えてもよい。「占める割合が所定値未満」とは、その割合が8割~9割未満であってもよい。
 この態様によると、PONシステムにおける比較的高速な通信速度まで対応可能な宅側装置の割合が小さくなると、帯域割当において時間割当の公平性を維持することから、スループット割当の公平性を維持するように切り替えられる。これにより、高速な宅側装置が電源断等の理由によりPONシステムから切り離された場合、すなわち低速な宅側装置の割合が増加した場合は、低速な宅側装置の通信帯域が確保されるように帯域割り当てのポリシーが変更されることになり、低速な宅側装置を有する加入者の利便性を維持しやすくなる。
 複数の宅側装置のそれぞれが設置された加入者宅におけるUNIでの最大通信速度を保持する宅側情報保持部をさらに備えてもよい。割当実行部は、ある宅側装置に割り当てたタイムスロットにより推定されるその宅側装置の通信速度がUNIでの最大通信速度を超過する場合、その宅側装置に割り当てたタイムスロットの一部を別の宅側装置に再分配してもよい。
 「UNIでの最大通信速度」とは、加入者宅においてONU等の回線終端装置と加入者端末との最大通信速度であってもよく、例えば、回線終端装置と接続されるUTPケーブルのコネクタ部分での最大通信速度であってもよい。「タイムスロットにより推定されるその宅側装置の通信速度」とは、タイムスロット長と宅側装置の最大通信速度とにより算出される通信速度、言い換えれば実効通信速度であってもよい。
 「宅側装置に割り当てたタイムスロットの一部を別の宅側装置に再分配」するとは、各宅側装置に対して一旦割り当てたタイムスロットの情報が各宅側装置に通知される前に、UNIでの制限のため実質的に余剰となったタイムスロットを他の宅側装置に分配するように、各宅側装置に割り当てるタイムスロットを再計算することでもよい。具体的には、UNIでの最大通信速度を超過した大きさに対応するタイムスロットの余剰分を別の宅側装置に対して分配することにより、別の宅側装置のタイムスロット長を延長させてもよい。すなわち、別の宅側装置に再割当されるタイムスロット長は、一旦割り当てられたタイムスロット長と、余剰なタイムスロットが分配された結果のタイムスロット長との合算値であってもよい。タイムスロットの余剰分は、宅側装置の数に応じて分配されてよく、例えば複数の別の宅側装置に対して均等に分配されてもよい。
 この態様によると、実質的に加入者が享受できる通信速度の上限により発生したタイムスロットの余剰分が、他の宅側装置に再度割り当てられる。これにより、タイムスロットの余剰分、言い換えればそのままでは無駄になってしまう帯域を有効活用して、再分配先の宅側装置の通信速度を向上できる。言い換えれば、再分配元の加入者の利便性を損なうことなく、再分配先の加入者の利便性を向上させることができる。
 本発明のさらに別の態様は、PONシステムにおける局側装置の制御方法である。この方法は、PONシステムにおける局側装置を制御する方法であって、互いに異なる最大通信速度に対応した複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付けるステップと、複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるためのタイムスロットであり、複数種の割当規則のうちいずれかにしたがって長さが決定されたタイムスロットを割り当てるステップと、割り当てられたタイムスロットの情報を各宅側装置に通知するステップと、所定の切替条件が充足された場合、それまで適用された割当規則を別の割当規則に切り替えるステップと、を局側装置に実行させ、複数種の割当規則には、同じ長さのタイムスロットを各宅側装置に割り当てる第1の割当規則と、所定の単位時間における各宅側装置からの送信データ量を同一とするよう各宅側装置の最大通信速度に応じて長さが決定されたタイムスロットを各宅側装置に割り当てる第2の割当規則とが含まれる。
 本発明のさらに別の態様は、PONシステムである。このPONシステムは、互いに異なる最大通信速度に対応した複数の宅側装置と、局側装置とが接続され、局側装置は、複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付ける割当要求受付部と、複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるためのタイムスロットであり、複数種の割当規則のうちいずれかにしたがって長さが決定されたタイムスロットを割り当てる割当実行部と、割り当てられたタイムスロットの情報を各宅側装置に通知する割当結果通知部と、所定の切替条件が充足された場合、それまで適用された割当規則を別の割当規則に切り替える割当規則切替部と、を備える。複数種の割当規則には、同じ長さのタイムスロットを各宅側装置に割り当てる第1の割当規則と、所定の単位時間における各宅側装置からの送信データ量を同一とするよう各宅側装置の最大通信速度に応じて長さが決定されたタイムスロットを各宅側装置に割り当てる第2の割当規則とが含まれる。
 なお、以上の構成要素の任意の組合せ、本発明の表現を装置、方法、システム、プログラム、プログラムを格納した記録媒体などの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、PONシステムにおいて、最大通信速度が互いに異なる複数のONUに対して公平性の観点に基づく帯域割当を実現できる。
本発明の実施の形態であるPONシステムの構成を示す図である。 割当規則の1つの例を示す図である。 割当規則の別の例を示す図である。 図1のOLTの機能構成を示すブロック図である。 宅側情報テーブルの構造を示す図である。 ONUの上りPON区間出力レートについてその第1の例を示す図である。 ONUの上りPON区間出力レートについてその第2の例を示す図である。 ONUの上りPON区間出力レートについてその第3の例を示す図である。
 図1は、本発明の実施の形態であるPONシステムの構成を示す。PONシステム100において、OLT10は、通信キャリアに設置された局側装置であり、1Gbpsおよび10Gbps両方のビットレートに対応できるOLTである。OLT10は、通信キャリアのオペレータにより操作される一般的なPC端末であるオペレータ端末12と、WANやインターネット等の上位ネットワーク24とに接続される。さらにOLT10は、光カプラ14を介して、加入者宅に設置された1G-ONU16および10G-ONU18と接続される。
 1G-ONU16は、上り下りの両方向に対して1Gbpsを最大通信速度とする宅側装置である。10G-ONU18は、上り下りの両方向に対して10Gbpsを最大通信速度とする宅側装置である。1G-ONU16および10G-ONU18は、ユーザ機器とのインタフェースであるUNI(User-Network Interface)20を介して、一般的なPC端末である加入者端末22と接続される。なお、UNIの機能は各ONU内に実装されてもよい。以下、単に「ONU」と表記した場合、1G-ONU16および10G-ONU18の両方を含む。
 PONシステム100では、1G-ONU16および10G-ONU18のそれぞれと、光カプラ14とは加入者ごとの光ファイバにより接続される。また、OLT10と光カプラ14とは複数の加入者で共用される1本の光ファイバにより接続される。OLT10は、各ONUから帯域割当要求、具体的にはデータを送信可能なタイムスロットの割当要求を受け付けると、複数のONU間の公平性に配慮した割当アルゴリズム(以下、適宜「割当規則」とも呼ぶ。)にしたがって動的帯域割当(Dynamic Bandwidth Allocation)を実行する。すなわち、帯域割当要求の送信元のONUに対して、データ送信を許容するタイムスロット、言い換えれば利用可能な帯域を割り当てる。
 図2は、割当規則の1つの例を示す。同図は、複数のONUのそれぞれに対するタイムスロットの割当に際し、時間割当の観点から公平性を維持する割当規則(以下、適宜「等時間割当規則」とも呼ぶ。)を適用した場合の、各ONUに割り当てられるタイムスロットを示している。同図のT1~T4は、各ONUに割り当てられるタイムスロット長を示している。また、同図のグラントサイクルは、各ONUに対してタイムスロットを分配すべき帯域割当周期を示している。言い換えれば、グラントサイクルごとに、各ONUに対してタイムスロットが割り当てられる。OLT10は、等時間割当規則に準拠する場合、各ONUに対して、それぞれの最大通信速度によらず、同じ長さのタイムスロットを割り当てる。
 図3は、割当規則の別の例を示す。同図は、複数のONUのそれぞれに対するタイムスロットの割当に際し、スループット割当の観点から公平性を維持する割当規則(以下、適宜「等送信量割当規則」とも呼ぶ。)を適用した場合の、各ONUに割り当てられるタイムスロットを示している。同図のT1~T4も、各ONUに割り当てられるタイムスロット長を示している。1G-ONUの最大通信速度は10G-ONUの最大通信速度の1/10であるため、1G-ONUに割り当てられたタイムスロット長(T1およびT2)は、10G-ONUに割り当てられたタイムスロット長(T3およびT4)の10倍に設定されている。すなわち、OLT10は、等送信量割当規則に準拠する場合、各ONUに対して、グラントサイクルにおける各ONUからの送信データ量が等しくなるように、各ONUの最大通信速度に逆相関した長さのタイムスロットを割り当てる。
 なお、OLT10は、各ONUに対して割り当てたタイムスロットの情報(以下、適宜「グラント通知」とも呼ぶ。)を各ONUに送信する。各ONUは、グラント通知にしたがって、自身に割り当てられたタイムスロットにおいて上位ネットワーク24への送信データをOLT10へ送信する。また各ONUは、グラント通知へのレスポンスとして、OLT10への送信を要求するデータ量の情報を含む帯域割当要求をOLT10へ送信する。OLT10は、あるグラントサイクルと次のグラントサイクルとの間に、それまでに受け付けられた帯域割当要求に基づいて動的帯域割当処理を実行する。
 図4は、図1のOLT10の機能構成を示すブロック図である。同図は、本実施の形態における動的帯域割当に係る機能ブロックを主に示しているが、優先制御等その他の機能を提供する機能ブロックをOLT10がさらに備えてもよいのはもちろんである。本明細書のブロック図において示される各ブロックは、ハードウェア的には、コンピュータのCPUをはじめとする素子や機械装置で実現でき、ソフトウェア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。
 OLT10は、光受信部30と、受信バッファ部32と、データ送信部34と、データ受信部36と、送信バッファ部38と、光送信部40と、動的帯域割当部50とを備える。
 光受信部30は、1G-ONU16および10G-ONU18から送信された光信号を受信して、光・電気変換を行う。受信バッファ部32は、光・電気変換後のデータを一時的に保持する。
 受信バッファ部32に一時的に保持されるデータには、上位ネットワーク24に送信すべきデータ(以下、適宜「上りデータ」とも呼ぶ。)と、加入者宅側に設置された装置の状態を通知するためのデータ(以下、適宜「宅側状態データ」とも呼ぶ。)と、帯域割当要求のデータとが含まれる。上りデータは、加入者端末22が上位ネットワーク24に対して送信したデータである。宅側状態データには、ONUの最大通信速度や、そのONUに対応づけられたUNI20の最大通信速度が含まれる。宅側状態データは、OLT10と各ONUとのオートネゴシエーション時に取得されてもよく、帯域割当要求に含まれてもよく、各ONUから周期的に送信されてもよい。
 データ送信部34は、受信バッファ部32に一時保持された上りデータを取得して上位ネットワーク24側へ送信する。データ受信部36は、上位ネットワーク24側から加入者端末22へ送信された下り方向のデータ(以下、適宜「下りデータ」とも呼ぶ。)を受信する。
 送信バッファ部38は、受信された下りデータを一時的に保持する。また送信バッファ部38は、動的帯域割当部50から送出された、各ONUに割り当てられたタイムスロットを通知するためのデータも一時的に保持する。光送信部40は、送信バッファ部38に一時保持された下りデータを取得して電気・光変換を行い、下りデータに対応する光信号を1G-ONU16および10G-ONU18へ送信する。同様に、タイムスロットの通知データを各ONUへ送信する。
 動的帯域割当部50は、複数のONU間の公平性を維持するよう規定された割当規則にしたがって各ONUに対する動的帯域割当を実行する。動的帯域割当部50は、宅側情報保持部52と、割当要求受付部54と、割当実行部56と、割当結果通知部58と、指示受信部60と、割当規則切替部62とを有する。
 宅側情報保持部52は、受信バッファ部32に一時保持された宅側状態データを取得して所定の記憶領域である宅側情報テーブルにてその宅側状態データを記憶する。すなわち宅側情報テーブルには、OLT10と現在接続中のONUについての宅側状態データが記録される。
 図5は、宅側情報テーブルの構造を示す。同図のONU-ID欄には、PONシステム100におけるONUの識別情報が記録される。これは例えば、IEEE802.3にて規定された論理リンク識別子(LLID)でもよく、MACアドレスでもよく、IEEE802.1Qにて規定されるVLAN-IDでもよく、ONU認証のための独自の識別子でもよい。または複数種の識別情報の組み合わせでもよい。ONU種別欄には、各ONUが対応可能な最大通信速度が記録される。UNI入力レート欄には、各ONUと対応づけられたUNI20における最大通信速度、言い換えれば加入者端末22とUNI20との間のビットレートが記録される。図4に戻る。
 割当要求受付部54は、受信バッファ部32に一時保持された帯域割当要求のデータを取得して割当実行部56に送出する。割当実行部56は、帯域割当要求に応じて動的帯域割当処理を実行する。具体的には、等時間割当規則または等送信量割当規則にしたがって、帯域割当要求の送信元であるONUに対してタイムスロットを割り当てる。本実施の形態では、光信号の送信を許可する送信開始時刻と送信許容時間との組をタイムスロットとして割り当てる。変形例として、送信開始時刻と送信データ量との組、または、送信開始時刻と送信終了時刻との組を割り当ててもよい。
 複数の帯域割当要求に対する、割当実行部56の動的帯域割当処理について説明する。等時間割当規則に準拠する場合、割当実行部56は、帯域割当要求が受け付けられた数だけ、同じ長さの複数のタイムスロットのそれぞれを各ONUに割り当てる。各ONUに割り当てるタイムスロット長は、OLT10対する1G-ONU16および10G-ONU18の最大接続数や平均接続数等に基づいてあらかじめ決定されていてよく、運用者の知見や、PONシステム100における実験により適切な値が決定されればよい。
 一方で、等送信量割当規則に準拠する場合、割当実行部56は、宅側状態テーブルを参照して、各帯域割当要求の送信元のONUにおける最大通信速度に応じて、単位時間における各ONUからの送信データ量が等しくなるように長さが設定されたタイムスロットを各ONUに割り当てる。例えば、1G-ONU16に対しては、10G-ONU18に対して割り当てるタイムスロットの10倍の長さのタイムスロットを割り当てる。この場合も、上記同様に、あらかじめ適切なタイムスロット長が決定されていてよい。いずれの割当規則が適用される場合も、各ONUに割り当てられたタイムスロット長の合計がグラントサイクルの長さとなる。
 また、割当実行部56は、各ONUに対して割り当てるべきタイムスロットを一旦決定した後、そのタイムスロットの情報が各ONUに通知される前に、そのタイムスロットの長さに基づき、各ONUからOLT10へのデータ送信における実効通信速度を推定する。例えば、10G-ONU18に対してそのタイムスロットの長さがグラントサイクルの8分の1であるとき、その10G-ONU18における通信速度を1250Mbpsと推定する。割当実行部56は、宅側情報テーブルを参照して、各ONUに対して推定した実効通信速度がそのONUに対応するUNI入力レートを超過するか否かを判定する。あるONUの実効通信速度がそのONUに対応するUNI入力レートを超過する場合、その超過分に対応するタイムスロットの余剰分を別のONUに再分配するように、各ONUに対して割り当てるべきタイムスロットを再計算する。本実施の形態ではタイムスロットの余剰分を別のONUに均等分配する。タイムスロットの再計算の例は後述する。
 割当結果通知部58は、割当実行部56において各ONUに割り当てられたタイムスロットの情報を送信バッファ部38に送出する。これにより、タイムスロットの情報は、光送信部40を介して、1G-ONU16および10G-ONU18に通知される。
 指示受信部60は、タイムスロットの割当規則を切替えさせるための切替指示のデータをオペレータ端末12から受信する。割当規則切替部62は、オペレータ端末12からの切替指示にしたがって、割当実行部56に準拠させる切替規則を、等時間割当規則と等送信量割当規則との間で切り替える。
 また、割当規則切替部62は、宅側状態テーブルを参照し、PONシステム100における複数のONUのうち10G-ONU18が占める割合(以下、適宜「10G-ONU占有率」とも呼ぶ。)に応じて、等時間割当規則と等送信量割当規則とを自律的に切り替える。割当規則切替部62は、宅側状態テーブルが更新されるたびに10G-ONU占有率を算出して、その変動に追随して割当規則を随時切り替えてもよい。また、定期的に10G-ONU占有率を算出して、定期的に割当規則を切り替えてもよい。
 例えば、OLT10の初期状態において、割当実行部56は等送信量割当規則に準拠してタイムスロットを割り当て、割当規則切替部62は定期的に宅側状態テーブルを参照して10G-ONU占有率の値を監視する。割当規則切替部62は、10G-ONU占有率が8割以上になったことを検出すると、割当実行部56に準拠させる割当規則を等時間割当規則に切り替える。また例えば、割当規則切替部62は、10G-ONU占有率が8割未満になったことを検出すると、割当実行部56に準拠させる割当規則を等時間割当規則から等送信量割当規則に切り替える。
 なお、割当規則切替部62は、割当要求の自律的な切替よりも、指示受信部60を介して取得した切替指示に基づく切替を優先する。例えば、等送信量割当規則から等時間割当規則へと自律的に切替後、切替指示に基づき等送信量割当規則に戻した場合には、等時間割当規則へと再度自律的に切り替えることはしない。同様に、等時間割当規則から等送信量割当規則へと自律的に切り替えた場合も切替指示を優先する。
 以上の構成による動作を以下説明する。
 1G-ONU16および10G-ONU18は、上位ネットワーク24への上りデータを加入者端末22から受け付けると、帯域割当要求をOLT10に送信する。OLT10の割当要求受付部54は、複数のONUからの帯域割当要求を受け付ける。割当実行部56は、帯域割当要求が受け付けられると、等時間割当規則または等送信量割当規則のいずれかにしたがって、各ONUに対して上りデータの送信を許容するタイムスロットを割り当てる。このとき、あるONUに対して割り当てたタイムスロットについてUNI20での制限によりタイムスロットの余剰が生じた場合には、タイムスロットの余剰分を他のONUに分配するように、各ONUに対して割り当てるタイムスロットを再計算する。割当結果通知部58は、割り当てられたタイムスロットの情報を各ONUに通知する。1G-ONU16および10G-ONU18は、自身に割り当てられたタイムスロットにてOLT10に光信号を送信することにより、複数のONUからの光信号が時分割でOLT10に送信され、上りデータが上位ネットワーク24へと転送される。
 割当規則切替部62は、PONシステム100における10G-ONU占有率が所定値以上となったときには、OLT10における割当規則を等送信量割当規則から等時間割当規則へと自律的に切り替える。また、10G-ONU占有率が所定値未満となったときには、OLT10における割当規則を等時間割当規則から等送信量割当規則へと自律的に切り替える。なお、割当規則切替部62は、割当規則の切替指示がオペレータ端末12から受け付けられたとき、自律的な切替よりもその切替指示を優先して取り扱い、OLT10における割当規則を等時間割当規則から等送信量割当規則へ、もしくは、等送信量割当規則から等時間割当規則へと切り替える。
 図6は、ONUの上り方向PON区間での出力レート(以下、適宜「上りPON区間出力レート」とも呼ぶ。)についてその第1の例を示す。この例では、PONシステム100における1G-ONU16の個数>>10G-ONU18の個数であるときの上りPON区間出力レートを示している。この上りPON区間出力レートは、1G-ONU16および10G-ONU18のそれぞれからOLT10への実効通信速度を示しており、自身の最大通信速度と、OLT10により割り当てられたタイムスロットの長さとによってこの値が決定される。すなわち、ONUの最大通信速度が大きいほど、かつ、タイムスロットの長さが長いほど、上りPON区間出力レートは大きくなる。なお、説明の簡明化のため、図6~図8で示す上りPON区間出力レートの算出においては、オーバーヘッドとなるグラントサイクル同士の間隔を考慮しないこととする。
 等時間割当規則が適用された場合、タイムスロットの再割当がなければ、いずれのONUにもグラントサイクルの1/8にあたるタイムスロットが割り当てられるため、1G-ONU16の上りPON区間出力レートは125Mbps、10G-ONU18の上りPON区間出力レートは1250Mbpsとなる。ここで、タイムスロットの再割当が行われる際には、さらに以下が実行される。すなわち、UNI入力レートの制限により、10G-ONU18に割り当てられたタイムスロットの20%は余剰であり、これが1G-ONU16のそれぞれで均等分配される。その結果、1G-ONU16それぞれのタイムスロットには、グラントサイクルの1/280の割当が追加される。したがって、1G-ONU16の上りPON区間出力レートは128.5、10G-ONU18の上りPON区間出力レートは1000Mbpsとなる。
 等送信量割当規則が適用された場合、1G-ONU16のタイムスロット長は10G-ONU18のタイムスロット長の10倍に設定されるため、1G-ONU16にはグラントサイクルの10/71にあたるタイムスロットが割り当てられ、10G-ONU18にはグラントサイクルの1/71にあたるタイムスロットが割り当てられる。その結果、1G-ONU16の上りPON区間出力レートおよび10G-ONU18の上りPON区間出力レートはともに140.8Mbpsとなる。
 図7は、ONUの上りPON区間出力レートについてその第2の例を示す。この例は、PONシステム100における1G-ONU16の個数=10G-ONU18の個数であるときの上りPON区間出力レートを示している。等時間割当規則が適用された場合、タイムスロットの再割当がなければ、上りPON区間出力レートは第1の例と同様である。タイムスロットの再割当が行われる際には、1G-ONU16それぞれのタイムスロットには、グラントサイクルの1/40の割当が追加されるため、1G-ONU16の上りPON区間出力レートは第1の例よりも大きくなる。等送信量割当規則が適用された場合、1G-ONU16のそれぞれにはグラントサイクルの10/44にあたるタイムスロットが割り当てられ、10G-ONU18のそれぞれにはグラントサイクルの1/44にあたるタイムスロットが割り当てられる。
 図8は、ONUの上りPON区間出力レートについてその第3の例を示す。この例は、PONシステム100における1G-ONU16の個数<<10G-ONU18の個数であるときの上りPON区間出力レートを示している。等時間割当規則が適用された場合、タイムスロットの再割当がなければ、上りPON区間出力レートは第1の例と同様である。タイムスロットの再割当が行われる際には、1G-ONU16それぞれのタイムスロットには、グラントサイクルの7/40の割当が追加されるため、1G-ONU16の上りPON区間出力レートは第2の例よりも大きくなる。等送信量割当規則が適用された場合、1G-ONU16のそれぞれにはグラントサイクルの10/17にあたるタイムスロットが割り当てられ、10G-ONU18のそれぞれにはグラントサイクルの1/17にあたるタイムスロットが割り当てられる。
 本実施の形態のOLT10によれば、同一のPONシステム100内に混在する1G-ONU16および10G-ONU18に対して動的帯域割当を実行するに際し、時間割当の公平性もしくはスループット割当の公平性を維持できる。これにより、アクセス回線領域の高速化に伴い、最大通信速度が互いに異なる複数のONUが1つのOLTに接続される状況であっても、ONU間すなわち加入者間の公平性を維持しやすくなる。なお、いずれの割当規則が選択された場合であっても、時間割当もしくはスループット割当の公平性は維持できるため、加入者の不公平感を抑制しやすくなる。
 またOLT10によれば、タイムスロットの割当規則を通信キャリアの判断により適宜切り替えることができる。例えば、1G-ONU16を使用した1G接続サービスと、10G-ONU18を使用した10G接続サービスとの間の料金格差に応じた割当規則の決定が考えられる。両サービス間の料金格差が小さい場合、等送信量割当規則が適用されてもよい。これにより、1G-ONU16向けの帯域が比較的大きく確保されて、1G接続サービスの加入者が不公平感を抱きにくくなる。その一方、両サービスの料金格差が大きい場合、等時間割当規則が適用されてもよい。これにより、10G-ONU18の通信速度が有効に活用され、10G接続サービスの加入者の利便性を高めることができる。
 さらにOLT10によれば、PONシステム100における10G-ONU占有率が大きくなると、等送信量割当規則から等時間割当規則へと自動的に切り替えられる。これにより、10G-ONU18の通信速度を向上させることができ、大部分の加入者の利便性を向上させることができる。さらにまた、10G-ONU占有率が小さくなると、等時間割当規則から等送信量割当規則へと自動的に切り替えられる。これにより、1G-ONU16の通信速度を確保しやすくなる。
 なお、上記の割当規則切替の考え方は、UNIの速度制限に基づいて、各ONUに割り当てるタイムスロットが再計算される場合に特に有効である。10G-ONU18に割り当てられた余剰なタイムスロットが1G-ONU16のそれぞれへ分配されることにより、1G-ONU16に割り当てられるタイムスロット長が延長され、等時間割当規則への切替に伴う1G-ONU16の通信速度低下を補うからである。例えば、図8の等時間割当規則に基づく上りPON区間出力レートについて、その再割当後の値はいずれも、図7の等送信量割当規則に基づく上りPON区間出力レートを上回っている。すなわち、割当規則の切替により、1G接続サービスの加入者の利便性を低下させることなく、10G接続サービスの加入者の利便性を大きく向上させることができる。
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 請求項に記載の各構成要件が果たすべき機能は、実施の形態および変形例において示された各構成要素の単体もしくはそれらの連携によって実現されることも当業者には理解されるところである。
 10 OLT、 16 1G-ONU、 18 10G-ONU、 20 UNI、 30 光受信部、 32 受信バッファ部、 34 データ送信部、 36 データ受信部、 38 送信バッファ部、 40 光送信部、 50 動的帯域割当部、 52 宅側情報保持部、 54 割当要求受付部、 56 割当実行部、 58 割当結果通知部、 60 指示受信部、 62 割当規則切替部、 100 PONシステム。
 本発明は、PON(Passive Optical Network)システムに利用できる。

Claims (9)

  1.  PON(Passive Optical Network)システムにおける局側装置であって、
     互いに異なる最大通信速度に対応した複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付ける割当要求受付部と、
     前記複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるための、同じ長さのタイムスロットを割り当てる割当実行部と、
     割り当てられたタイムスロットの情報を各宅側装置に通知する割当結果通知部と、
     を備えることを特徴とするPONシステムにおける局側装置。
  2.  PON(Passive Optical Network)システムにおける局側装置であって、
     互いに異なる最大通信速度に対応した複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付ける割当要求受付部と、
     前記複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるためのタイムスロットであり、所定の単位時間における各宅側装置からの送信データ量を同一とするよう各宅側装置の最大通信速度に応じて長さが決定されたタイムスロットを割り当てる割当実行部と、
     割り当てられたタイムスロットの情報を各宅側装置に通知する割当結果通知部と、
     を備えることを特徴とするPONシステムにおける局側装置。
  3.  PON(Passive Optical Network)システムにおける局側装置であって、
     互いに異なる最大通信速度に対応した複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付ける割当要求受付部と、
     前記複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるためのタイムスロットであり、複数種の割当規則のうちいずれかにしたがって長さが決定されたタイムスロットを割り当てる割当実行部と、
     割り当てられたタイムスロットの情報を各宅側装置に通知する割当結果通知部と、
     所定の切替条件が充足された場合、それまで適用された割当規則を別の割当規則に切り替える割当規則切替部と、
     を備え、
     前記複数種の割当規則には、同じ長さのタイムスロットを各宅側装置に割り当てる第1の割当規則と、所定の単位時間における各宅側装置からの送信データ量を同一とするよう各宅側装置の最大通信速度に応じて長さが決定されたタイムスロットを各宅側装置に割り当てる第2の割当規則とが含まれることを特徴とするPONシステムにおける局側装置。
  4.  前記割当規則切替部は、前記複数の宅側装置のうち所定値以上の最大通信速度に対応する装置が占める割合に応じて、前記割当実行部に準拠させる割当規則を前記第1および第2の割当規則の間で切り替えることを特徴とする請求項3に記載の局側装置。
  5.  前記割当規則切替部は、前記複数の宅側装置のうち所定値以上の最大通信速度に対応する装置が占める割合が所定値以上となった場合、前記割当実行部に準拠させる割当規則を前記第2の割当規則から前記第1の割当規則に切り替えることを特徴とする請求項4に記載の局側装置。
  6.  前記割当規則切替部は、前記複数の宅側装置のうち所定値以上の最大通信速度に対応する装置が占める割合が所定値未満となった場合、前記割当実行部に準拠させる割当規則を前記第1の割当規則から前記第2の割当規則に切り替えることを特徴とする請求項4または5に記載の局側装置。
  7.  前記複数の宅側装置のそれぞれが設置された加入者宅におけるUNI(User-Network Interface)での最大通信速度を保持する宅側情報保持部をさらに備え、
     前記割当実行部は、ある宅側装置に割り当てたタイムスロットにより推定されるその宅側装置の通信速度がUNIでの最大通信速度を超過する場合、その宅側装置に割り当てたタイムスロットの一部を別の宅側装置に再分配することを特徴とする請求項1から6のいずれかに記載の局側装置。
  8.  PON(Passive Optical Network)システムにおける局側装置を制御する方法であって、
     互いに異なる最大通信速度に対応した複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付けるステップと、
     前記複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるためのタイムスロットであり、複数種の割当規則のうちいずれかにしたがって長さが決定されたタイムスロットを割り当てるステップと、
     割り当てられたタイムスロットの情報を各宅側装置に通知するステップと、
     所定の切替条件が充足された場合、それまで適用された割当規則を別の割当規則に切り替えるステップと、
     を前記局側装置に実行させ、
     前記複数種の割当規則には、同じ長さのタイムスロットを各宅側装置に割り当てる第1の割当規則と、所定の単位時間における各宅側装置からの送信データ量を同一とするよう各宅側装置の最大通信速度に応じて長さが決定されたタイムスロットを各宅側装置に割り当てる第2の割当規則とが含まれることを特徴とするPONシステムにおける局側装置の制御方法。
  9.  互いに異なる最大通信速度に対応した複数の宅側装置と、局側装置とが接続され、
     前記局側装置は、
     前記複数の宅側装置のそれぞれから、上り方向へのデータ送信のための帯域割当要求を受け付ける割当要求受付部と、
     前記複数の宅側装置のそれぞれに対して、各宅側装置から時分割でデータを送信させるためのタイムスロットであり、複数種の割当規則のうちいずれかにしたがって長さが決定されたタイムスロットを割り当てる割当実行部と、
     割り当てられたタイムスロットの情報を各宅側装置に通知する割当結果通知部と、
     所定の切替条件が充足された場合、それまで適用された割当規則を別の割当規則に切り替える割当規則切替部と、
     を備え、
     前記複数種の割当規則には、同じ長さのタイムスロットを各宅側装置に割り当てる第1の割当規則と、所定の単位時間における各宅側装置からの送信データ量を同一とするよう各宅側装置の最大通信速度に応じて長さが決定されたタイムスロットを各宅側装置に割り当てる第2の割当規則とが含まれることを特徴とするPON(Passive Optical Network)システム。
PCT/JP2009/002351 2009-05-28 2009-05-28 Ponシステム、ponシステムにおける局側装置およびその制御方法 WO2010137073A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/677,258 US8340518B2 (en) 2009-05-28 2009-05-28 PON system, station-side apparatus for PON system, and control method thereof
PCT/JP2009/002351 WO2010137073A1 (ja) 2009-05-28 2009-05-28 Ponシステム、ponシステムにおける局側装置およびその制御方法
JP2009528538A JP4416053B1 (ja) 2009-05-28 2009-05-28 Ponシステム、ponシステムにおける局側装置およびその制御方法
CN2009801003428A CN101984777B (zh) 2009-05-28 2009-05-28 Pon系统、pon系统中的站侧装置及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002351 WO2010137073A1 (ja) 2009-05-28 2009-05-28 Ponシステム、ponシステムにおける局側装置およびその制御方法

Publications (1)

Publication Number Publication Date
WO2010137073A1 true WO2010137073A1 (ja) 2010-12-02

Family

ID=42016864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002351 WO2010137073A1 (ja) 2009-05-28 2009-05-28 Ponシステム、ponシステムにおける局側装置およびその制御方法

Country Status (4)

Country Link
US (1) US8340518B2 (ja)
JP (1) JP4416053B1 (ja)
CN (1) CN101984777B (ja)
WO (1) WO2010137073A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085383B1 (ja) * 2016-03-01 2017-02-22 日本電信電話株式会社 通信システム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006526B (zh) * 2009-09-01 2016-01-20 中兴通讯股份有限公司 一种广播包/组播控制报文处理方法和装置
JP5320257B2 (ja) * 2009-10-28 2013-10-23 株式会社日立製作所 受動光網システムおよび光加入者端局装置
JP5475539B2 (ja) * 2010-04-27 2014-04-16 富士通テレコムネットワークス株式会社 Ponシステムおよび局側装置
EP2512114A3 (en) * 2011-04-14 2013-10-30 Kabushiki Kaisha Toshiba Communication terminal connecting to IP network, and image data transmission method
JP5651548B2 (ja) 2011-06-30 2015-01-14 株式会社日立製作所 局側装置、光ネットワークシステム
KR101343650B1 (ko) * 2011-09-21 2014-01-29 한국전자통신연구원 수동형 광가입자망에서 저전력모드 지원을 위한 동적대역할당 관리 장치 및 방법
JP5687217B2 (ja) * 2012-01-04 2015-03-18 日本電信電話株式会社 帯域割当方法及び端局装置
JP5554452B2 (ja) * 2012-01-17 2014-07-23 三菱電機株式会社 局側装置、省電力制御システム及び省電力制御方法
KR20150145128A (ko) * 2014-06-18 2015-12-29 한국전자통신연구원 Xg-pon 링크에서 g-pon 서비스의 수용을 위한 프레임 변환 기반의 중간 경로 확장 장치 및 방법
JP7071625B2 (ja) * 2018-03-14 2022-05-19 日本電信電話株式会社 光伝送システム、及び通信条件選択方法
US11683102B1 (en) * 2020-10-16 2023-06-20 Cable Television Laboratories, Inc. Bandwidth allocation method and associated optical line terminal
CN112584262B (zh) * 2020-11-20 2021-10-15 华为技术有限公司 一种数据传输方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064524A (ja) * 2000-08-23 2002-02-28 Nec Corp 通信システムにおけるタイムスロット割当てシステム及び方法並びに網側装置
JP2002152228A (ja) * 2000-11-16 2002-05-24 Sony Corp 情報処理装置および情報処理方法、記録媒体、並びに通信システムおよび通信方法
JP2007243770A (ja) * 2006-03-10 2007-09-20 Sumitomo Electric Ind Ltd 動的帯域割当方法並びに局側装置及び宅側装置
JP2008270898A (ja) * 2007-04-16 2008-11-06 Sumitomo Electric Ind Ltd 光加入者線端局装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295034A (ja) 1988-09-30 1990-04-05 Nec Corp 要求割当多元接続方式及び固定割当多元接続方式を用いた衛星通信方式
JPH07288497A (ja) 1994-04-20 1995-10-31 N T T Data Tsushin Kk 衛星通信方法及び衛星通信システム
CA2265313A1 (en) * 1998-04-15 1999-10-15 Lucent Technologies Inc. Method and apparatus enabling multiple access on a broadband communication network
JP2002033757A (ja) 2000-07-14 2002-01-31 Mitsubishi Electric Corp 通信制御装置、通信システムおよびスロット割当て方法
KR100584383B1 (ko) * 2004-01-20 2006-05-26 삼성전자주식회사 광선로가입자장치들의 링크 상태를 관리하기 위한광선로종단장치 및 이를 적용한 기가비트 이더넷 기반의수동 광가입자망
JP4690141B2 (ja) 2005-08-09 2011-06-01 住友電気工業株式会社 光加入者線端局装置および下り帯域制御方法
KR100754602B1 (ko) * 2006-02-14 2007-09-05 삼성전자주식회사 시분할다중 방식의 수동형 광네트웍 및 그 동적 대역폭할당 방법
US8005020B2 (en) * 2006-09-29 2011-08-23 Rosemount Inc. Wireless mesh network with multisized timeslots for TDMA communication
CN102325083B (zh) * 2006-11-09 2014-11-05 华为技术有限公司 用于不同传输率pon共存的带宽分配方法和装置
CN101197622B (zh) * 2006-11-09 2011-12-28 华为技术有限公司 用于不同传输率pon共存的带宽分配方法和装置
JP2009010687A (ja) 2007-06-28 2009-01-15 Sumitomo Electric Ind Ltd Ponシステムとその局側装置、動的帯域割当方法、並びに、動的帯域割当サービスの提供方法及び享受方法
JP5188170B2 (ja) * 2007-12-21 2013-04-24 株式会社日立製作所 ネットワークシステム及びolt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002064524A (ja) * 2000-08-23 2002-02-28 Nec Corp 通信システムにおけるタイムスロット割当てシステム及び方法並びに網側装置
JP2002152228A (ja) * 2000-11-16 2002-05-24 Sony Corp 情報処理装置および情報処理方法、記録媒体、並びに通信システムおよび通信方法
JP2007243770A (ja) * 2006-03-10 2007-09-20 Sumitomo Electric Ind Ltd 動的帯域割当方法並びに局側装置及び宅側装置
JP2008270898A (ja) * 2007-04-16 2008-11-06 Sumitomo Electric Ind Ltd 光加入者線端局装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6085383B1 (ja) * 2016-03-01 2017-02-22 日本電信電話株式会社 通信システム

Also Published As

Publication number Publication date
CN101984777B (zh) 2013-06-12
JPWO2010137073A1 (ja) 2012-11-12
CN101984777A (zh) 2011-03-09
US8340518B2 (en) 2012-12-25
US20110217041A1 (en) 2011-09-08
JP4416053B1 (ja) 2010-02-17

Similar Documents

Publication Publication Date Title
JP4416053B1 (ja) Ponシステム、ponシステムにおける局側装置およびその制御方法
JP3961000B2 (ja) パケット転送装置及びネットワークシステム
KR100415584B1 (ko) 비동기 전송 모드 수동 광통신망(atm-pon)상에서의동적 대역 할당 방법
EP1489877A2 (en) Dynamic bandwidth allocation method considering multiple services in ethernet passive optical network system
WO2011092822A1 (ja) 帯域制御方法、通信システムおよび通信装置
EP3443693B1 (en) Channel bonding in multiple-wavelength passive optical networks (pons)
JP2007142764A (ja) 局側装置における帯域割当装置、帯域割当方法および帯域割当プログラム
WO2021053759A1 (ja) ネットワーク制御装置、通信リソース割り当て方法および通信システム
JP5702867B2 (ja) 波長帯域割当方法
JP4770525B2 (ja) 動的帯域割当方法並びに局側装置及び宅側装置
CN108540221B (zh) 数据发送方法及装置
JP5813539B2 (ja) 局側装置及びponシステム
JP5304184B2 (ja) 動的帯域割当方法及び局側装置
JP2009010687A (ja) Ponシステムとその局側装置、動的帯域割当方法、並びに、動的帯域割当サービスの提供方法及び享受方法
JP2008271611A (ja) パケット転送装置及びネットワークシステム
JP2015033051A (ja) 動的帯域割当方法、局側装置、コンピュータプログラム及びponシステム
JP2014011666A (ja) 上りデータの帯域割当方法及び通信装置
JP4589289B2 (ja) パケット転送装置
JP4877483B2 (ja) 送信割当て方法及び装置
KR100657122B1 (ko) 이더넷 수동광가입자망의 상향 데이터 전송을 위한 동적대역폭 할당방법
JP5290917B2 (ja) 光通信システム及び光通信方法
JP7010055B2 (ja) 局側終端装置、加入者側終端装置、通信システム、局側プログラム、および加入者側プログラム
JP4957758B2 (ja) Ponシステムとその宅側装置
KR100986224B1 (ko) 이더넷 수동광가입자망에서의 동적 대역할당 장치 및 그 방법
KR100735336B1 (ko) Olt 스케줄링 알고리즘을 통한 비례 할당 전송 제어 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100342.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009528538

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12677258

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845141

Country of ref document: EP

Kind code of ref document: A1