WO2010135949A1 - 单晶脆性材料粒子束辅助超精密加工方法 - Google Patents

单晶脆性材料粒子束辅助超精密加工方法 Download PDF

Info

Publication number
WO2010135949A1
WO2010135949A1 PCT/CN2010/072522 CN2010072522W WO2010135949A1 WO 2010135949 A1 WO2010135949 A1 WO 2010135949A1 CN 2010072522 W CN2010072522 W CN 2010072522W WO 2010135949 A1 WO2010135949 A1 WO 2010135949A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
ultra
single crystal
precision
proton beam
Prior art date
Application number
PCT/CN2010/072522
Other languages
English (en)
French (fr)
Inventor
房丰洲
陈耘辉
徐宗伟
仇中军
张效栋
代腾飞
胡小唐
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to EP10774111.8A priority Critical patent/EP2298521A4/en
Priority to JP2012511130A priority patent/JP5616961B2/ja
Publication of WO2010135949A1 publication Critical patent/WO2010135949A1/zh
Priority to US13/159,811 priority patent/US8897910B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/04After-treatment of single crystals or homogeneous polycrystalline material with defined structure using electric or magnetic fields or particle radiation

Definitions

  • the invention belongs to a new technology for ultra-precision cutting processing by surface modification, and particularly relates to an ultra-precision processing method of particle beam-assisted brittle materials.
  • Ultra-precision machining is a high-precision machining technology developed to meet the needs of national defense and the rapid development of the national economy.
  • Ultra-precision machining includes ultra-precision turning, ultra-precision grinding, and grinding and polishing.
  • single-crystal brittle materials such as single-crystal silicon
  • the surface to be processed is brittle, which seriously affects the quality and accuracy of the processing. Book
  • the object of the present invention is to provide an ultra-precision processing technology based on particle beam irradiation target surface modification auxiliary processing, which can significantly improve the processing precision and surface roughness of ultra-precision processing brittle materials. Significantly reduce tool wear.
  • the technical solution adopted by the present invention is as follows: The following steps are included:
  • a) Simulate the machining parameters according to depth of cut, surface roughness or other processing requirements using simulation software; b) bombard or irradiate the surface of the single-crystal brittle material to be processed with particle beam, and apply the energy and agent obtained by the simulation results.
  • Ultra-precision cutting technology performs ultra-precision machining on single crystal material after particle beam bombardment; d) Tests the surface quality of the processed material and compares the improvement of the surface quality.
  • the software used for the simulation is SRIM's software with simulation capabilities.
  • the particle beam is a proton beam or a He ⁇ ion beam.
  • the cutting depth is less than the depth of the particle beam bombardment or illumination.
  • the single crystal brittle material is single crystal silicon or single crystal germanium.
  • ultra-precision cutting technology refers to the use of single crystal diamond tools for cutting.
  • the present invention uses a dose of particle beam to bombard (irradiate) the surface to be processed for a certain period of time.
  • the structure of the surface to be processed changes, so that the plasticity of the surface of the material is improved, and the chipping during processing is effectively reduced.
  • the occurrence of phenomena thus improving the machining accuracy and surface roughness of the ultra-precision machining surface, reducing the tool grinding
  • This method is flexible and convenient, and can fundamentally reduce the influence of surface embrittlement on the surface roughness of ultra-precision machining of brittle materials, improve surface quality, and reduce tool wear.
  • this method is flexible and convenient.
  • the dose and time of particle beam bombardment (irradiation) can be appropriately selected according to the processing depth and the processing material.
  • Fig.1 Proton beam (H + ) bombardment of brittle material (irradiation) (a) Brittle material without proton beam bombardment (irradiation) (b) Brittle material after proton beam bombardment (irradiation) (c) Tool processing not performed A brittle material bombarded (irradiated) by a proton beam, causing a crack (d) a brittle material after proton beam bombardment (irradiation) processed by a tool, without cracking
  • Processing single crystal brittle materials such as single crystal silicon.
  • different processing parameters proton beam dose, applied voltage value, bombardment (irradiation) time
  • proton bombardment irradiation time
  • the sample is placed in a proton generator, and the surface to be processed is bombarded (irradiated) with a proton beam, and a certain proton dose and bombardment (irradiation) time are applied according to processing requirements (cut depth, etc.).
  • the single crystal structure of the surface to be processed changes, resulting in a transition from single crystal to polycrystalline or even amorphous, which improves the plastic properties of the surface of the material and effectively reduces the occurrence of brittle fracture during processing.
  • the purpose of improving the processing precision and surface roughness of the ultra-precision machined surface is achieving the purpose of improving the processing precision and surface roughness of the ultra-precision machined surface.
  • the present invention uses proton beam bombardment (irradiation) of workpiece surface assisted processing to obtain ultra-precision machining techniques for ultra-smooth surfaces, including the following steps:
  • the ultra-precision processing technique of bombarding (illuminating) the surface of the workpiece with a proton beam to obtain an ultra-smooth surface wherein the step (2) uses a proton beam, and the dose and processing time are controllable, and
  • the techniques are not limited to protons, but can also be achieved using other particles (eg, He ions, etc.).
  • the cutting depth is smaller than the proton beam bombardment (irradiation) depth.
  • the material to be processed is a single crystal brittle material, such as single crystal silicon, single crystal germanium or the like.
  • the single crystal brittle material of this embodiment is monocrystalline silicon.
  • the bombardment dose of the proton beam is 10 16 /cm 2
  • the applied voltage value is 2MeV
  • SRIM see http://www.srim. Org/.
  • the single crystal silicon Si material after the bombardment (irradiation) of the proton beam is cut by a single crystal diamond cutter with a cutting depth of 3 ⁇ m, a feed rate of 0.5 mm/min, and a cutting speed of 50 m/min.
  • the single crystal silicon can also be a single crystal germanium.
  • the surface roughness Ra of the single crystal Si subjected to ultra-precision machining was measured to be about 10 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)
  • Milling Processes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

单晶脆性材料粒子束辅助超精密加工方法 技术领域
本发明属于利用表面改性进行超精密切削加工的新技术, 具体涉及粒子束辅助脆性材 料超精密加工方法。
背景技术
超精密加工是为了适应国防及国民经济快速发展的需求而发展起来的高精度加工技 说
术。 超精密加工包括超精密车削、 超精密磨削及研磨和抛光等。 对于单晶脆性材料 (如单 晶硅) 的超精密加工中, 由于材料的硬脆特点, 被加工表面呈脆裂状态, 严重影响加工质 量和精度。 书
如何减小或消除脆性材料加工过程中的脆裂现象, 提高超精密加工的加工精度和表面 粗糙度, 一直是超精密加工领域的研究焦点。
发明内容
为克服现有技术的不足, 本发明的目的在于: 提出一种基于粒子束照射靶材表面改性 辅助加工的超精密加工技术, 能显著提高超精密加工脆性材料的加工精度和表面粗糙度, 大幅度降低刀具的磨损。 本发明采用的技术方案是: 包括下列步骤:
a) 利用仿真软件按照切深、 表面粗糙度或其他加工要求对加工参数进行模拟; b) 使用粒子束轰击或照射待加工单晶脆性材料表面, 施以模拟结果所得的能量和剂 c) 利用超精密切削技术对粒子束轰击后的单晶材料进行超精密切削加工; d) 测试表征加工后的材料表面质量, 对比加工表面质量改善情况。
其中模拟使用的软件是 SRIM具有仿真功能的软件。
粒子束为质子束或 He氦离子束。
所述的切削加工深度小于粒子束轰击或照射的深度。
所述的单晶脆性材料是单晶硅或单晶锗。
利用超精密切削技术是指使用单晶金刚石刀具进行切削加工。
本发明可以带来以下效果:
首先, 本发明使用一定剂量粒子束轰击 (照射) 时间待加工表面一定时间, 在粒子束 的作用下, 表面待加工层的结构发生变化, 使材料表面的塑性性能提高, 有效减少加工中 脆裂现象的发生, 从而达到了提高超精密加工表面的加工精度和表面粗糙度、 降低刀具磨 损的目的。 这种方法灵活、 方便, 可以从加工机理上根本性减小超精密加工脆性材料时表 面脆裂对加工表面粗糙度的影响, 提高表面质量, 并减小刀具磨损。
其次,这种方法灵活、方便。可以根据加工深度和加工材料,适当选择粒子束轰击(照 射) 的剂量和时间。
附图说明
图 1 质子束 (H+) 对脆性材料轰击 (照射) (a) 未进行质子束轰击 (照射) 的脆性 材料(b)进行质子束轰击(照射)后的脆性材料(c)刀具加工未进行质子束轰击(照射) 的脆性材料, 产生裂纹 (d) 刀具加工进行质子束轰击 (照射) 后的脆性材料, 未产生裂 说
纹。
图 2 质子束轰击 (照射) 的 SRIM仿真, 使用质子轰击硅基底, 采用相同剂量的质 书
子。从仿真结果可以看出,质子束轰击(照射)程度、深度等是可控的。 (a)加速电压 200KeV
(b) 加速电压 50KeV。
具体实施方式
加工单晶脆性材料 (如单晶硅)。 首先, 依据理论研究及仿真分析对质子轰击不同加 工参数 (质子束的剂量、 施加电压值、 轰击 (照射) 时间) 进行研究, 获得最优化参数。 其次, 将样品置于质子发生器中, 使用质子束轰击(照射)待加工表面, 按照加工要求(切 深等), 施以一定的质子剂量及轰击 (照射) 时间。 在质子束的作用下, 表面待加工层的 单晶结构发生变化,产生由单晶向多晶甚至非晶形态的转变,使材料表面的塑性性能提高, 有效减少加工中脆裂现象的发生, 从而达到了提高超精密加工表面的加工精度和表面粗糙 度的目的。
单晶脆性材料的单晶向多晶甚至非晶形态的转变, 降低了材料的脆性, 也降低了刀具 的磨损。
下面结合附图和实施例进一步说明本发明。 本发明使用质子束轰击(照射)工件表面辅助加工以获得超光滑表面的超精密加工技 术, 包括下列步骤:
( 1 ) 利用仿真软件按照加工要求 (切深等) 对加工参数进行模拟;
(2) 使用质子束轰击 (照射) 待加工单晶脆性材料表面, 施以模拟结果所得的剂
(3 ) 使用单晶金刚石刀具对质子束轰击(照射)后的单晶脆性材料进行切削加工;
(4) 测试加工表面质量等。 所述的使用质子束轰击(照射)工件表面辅助加工以获得超光滑表面的超精密加工技 术, 其中的步骤 (1 ) 中, 使用的软件是 SRIM或其他具有类似仿真功能的软件。
所述的使用质子束轰击(照射)工件表面辅助加工以获得超光滑表面的超精密加工技 术, 其中的步骤 (2) 说采用的是质子束, 其剂量和加工时间是可控的, 并且这种技术不 仅局限于质子, 也可以使用其他粒子 (例如 He离子等) 实现。
其中的步骤 (3 ) 中, 所述的切削加工深度小于质子束轰击 (照射) 深度。
所述的待加工材料为单晶脆性材料, 如单晶硅, 单晶锗等。
本实施例单晶脆性材料采用单晶硅。
( 1 ) 利用 SRIM仿真软件按照加工要求 (切深等) 对加工参数进行模拟, 模拟结果: 质子束的轰击剂量 1016/cm2、 施加电压值 2MeV, SRIM见 http://www.srim.org/。
(2)使用质子束轰击(照射)待加工表面,书施以模拟结果所得的剂量 1016/cm2及施加 电压值 2MeV
( 3 ) 使用单晶金刚石刀具对质子束轰击 (照射) 后的单晶硅 Si材料进行切削加工, 切削深度 3μηι, 进给速度 0.5mm/min, 切削速度 50m/min。 单晶硅也可为单晶锗。
(4) 测得经过超精密切削加工的单晶 Si表面粗糙度 Ra约为 10nm。
以上实施步骤仅为说明本发明的技术思想及特点, 使本技术能更容易理解并加以实 施, 但本发明的范围并不局限与上述的具体实施步骤, 即凡依照本发明所揭示的精神所做 的同等变化或修饰, 仍涵盖在本发明的保护范围。

Claims

权 利 要 求 书 、 一种粒子束辅助单晶脆性材料超精密加工方法, 其特征是, 包括下列步骤:
a) 利用仿真软件按照切深、 表面粗糙度或其他加工要求对加工参数进行模拟; b) 使用粒子束轰击或照射待加工单晶脆性材料表面, 施以模拟结果所得的能量和剂 c) 利用超精密切削技术对粒子束轰击后的单晶材料进行超精密切削加工;
d) 测试表征加工后的材料表面质量, 对比加工表面质量改善情况。
、 根据权利要求 1 所述的一种质子束辅助脆性材料超精密加工方法, 其特征是, 其中模 拟使用的软件是 SRIM具有仿真功能的软件。
、 根据权利要求 1 所述的一种质子束辅助脆性材料超精密加工方法, 其特征是, 粒子束 为质子束或 He氦离子束。
、 根据权利要求 1 所述的一种质子束辅助脆性材料超精密加工方法, 其特征是, 所述的 切削加工深度小于粒子束轰击或照射的深度。
、 根据权利要求 1 所述的一种质子束辅助脆性材料超精密加工方法, 其特征是, 所述的 单晶脆性材料是单晶硅或单晶锗。
PCT/CN2010/072522 2009-05-25 2010-05-07 单晶脆性材料粒子束辅助超精密加工方法 WO2010135949A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10774111.8A EP2298521A4 (en) 2009-05-25 2010-05-07 Proton beam assisted ultraprecise processing method for processing single-crystal fragile material
JP2012511130A JP5616961B2 (ja) 2009-05-25 2010-05-07 イオンビームアシストによる単結晶脆性材料の超精密加工方法
US13/159,811 US8897910B2 (en) 2009-05-25 2011-06-14 Particle beam-assisted ultra-precision machining method for single-crystal brittle materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910069010XA CN101559627B (zh) 2009-05-25 2009-05-25 粒子束辅助单晶脆性材料超精密加工方法
CN200910069010.X 2009-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/159,811 Continuation-In-Part US8897910B2 (en) 2009-05-25 2011-06-14 Particle beam-assisted ultra-precision machining method for single-crystal brittle materials

Publications (1)

Publication Number Publication Date
WO2010135949A1 true WO2010135949A1 (zh) 2010-12-02

Family

ID=41218684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072522 WO2010135949A1 (zh) 2009-05-25 2010-05-07 单晶脆性材料粒子束辅助超精密加工方法

Country Status (5)

Country Link
US (1) US8897910B2 (zh)
EP (1) EP2298521A4 (zh)
JP (1) JP5616961B2 (zh)
CN (1) CN101559627B (zh)
WO (1) WO2010135949A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120012563A1 (en) * 2009-05-25 2012-01-19 Fengzhou Fang Particle beam-assisted ultra-precision machining method for single-crystal brittle materials
CN112285140A (zh) * 2020-10-20 2021-01-29 北京航空航天大学 一种单晶超高周疲劳内部裂纹早期扩展速率定量表征方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990480B (zh) * 2012-12-19 2015-03-18 中国人民解放军国防科学技术大学 基于离子束抛光的光学元件表面清洗方法
CN103084814A (zh) * 2013-01-18 2013-05-08 天津大学 一种锋利刃口微刀具的制造方法
NO337760B1 (no) * 2013-03-18 2016-06-13 Tco As Anordning ved brønnplugg
JP5683640B2 (ja) * 2013-05-20 2015-03-11 日本航空電子工業株式会社 刃物工具
CN107042591A (zh) * 2017-05-09 2017-08-15 天津大学 基于高能离子辐照电离损伤的晶体材料超精密加工方法
CN107199642B (zh) * 2017-05-19 2019-03-01 天津大学 一种晶体材料超精密车削加工损伤控制方法
BE1025897B1 (nl) * 2018-01-12 2019-08-12 Mp Group Nv Diervoeder systeem voor het afgeven van water of diervoeder
CN108723897B (zh) * 2018-05-31 2020-12-18 西安理工大学 单晶SiC的离子注入表面改性与纳米尺度抛光方法
CN114206537A (zh) * 2019-08-01 2022-03-18 住友电工硬质合金株式会社 切削工具的制造方法以及切削工具
CN110434448A (zh) * 2019-08-09 2019-11-12 苏州大学 硬脆性材料的表层织构化处理辅助加工方法
CN115008324B (zh) * 2022-05-24 2023-08-01 河北工业大学 一种适用于转向精密磨研的超硬材料的筛选方法及加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1124364A (zh) * 1994-12-09 1996-06-12 中国科学院微电子中心 束致变蚀技术
JP2003257981A (ja) * 2002-02-27 2003-09-12 Toshiba Ceramics Co Ltd シリコンウェーハの製造方法
CN1512602A (zh) * 2002-12-30 2004-07-14 �廪��ѧ 制作高温超导器件的表面改性方法
CN1696242A (zh) * 2005-05-31 2005-11-16 哈尔滨工业大学 光致发光薄膜及其辐照改性的制备方法
CN101405847A (zh) * 2006-01-20 2009-04-08 英飞凌科技奥地利股份公司 处理含氧半导体晶片的方法及半导体元件

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635072B2 (ja) * 1986-03-26 1994-05-11 新技術事業団 人工ダイヤモンド膜の切断加工方法
JP2569139B2 (ja) * 1988-08-24 1997-01-08 株式会社日立製作所 イオンビーム加工方法
JPH04167985A (ja) * 1990-10-31 1992-06-16 Nagasaki Pref Gov ウェハの割断方法
JP2662321B2 (ja) * 1991-05-31 1997-10-08 科学技術振興事業団 超低速クラスターイオンビームによる表面処理方法
JP2004155653A (ja) * 1993-03-10 2004-06-03 Sumitomo Electric Ind Ltd ダイヤモンドの研磨方法
JP3363587B2 (ja) * 1993-07-13 2003-01-08 キヤノン株式会社 脆性材料の加工方法及びその装置
US6426507B1 (en) * 1999-11-05 2002-07-30 Energy Sciences, Inc. Particle beam processing apparatus
JP2002222777A (ja) * 2001-01-29 2002-08-09 Murata Mfg Co Ltd 半導体装置及びその製造方法
JP4468643B2 (ja) * 2003-03-20 2010-05-26 株式会社ワイ・ワイ・エル 切断方法
JP2004299018A (ja) * 2003-03-31 2004-10-28 Japan Science & Technology Agency SiC単結晶基板等の研磨による超平滑結晶面形成方法
DE10351059B4 (de) * 2003-10-31 2007-03-01 Roth & Rau Ag Verfahren und Vorrichtung zur Ionenstrahlbearbeitung von Oberflächen
US7173212B1 (en) * 2004-02-13 2007-02-06 Semak Vladimir V Method and apparatus for laser cutting and drilling of semiconductor materials and glass
KR100858983B1 (ko) * 2005-11-16 2008-09-17 가부시키가이샤 덴소 반도체 장치 및 반도체 기판 다이싱 방법
CN100453240C (zh) * 2006-06-12 2009-01-21 宁波赛盟科技发展有限公司 一种多功能连续剖分机
DE102006028718B4 (de) * 2006-06-20 2008-11-13 Infineon Technologies Ag Verfahren zur Vereinzelung von Halbleiterwafern zu Halbleiterchips
JP4873467B2 (ja) * 2006-07-27 2012-02-08 独立行政法人産業技術総合研究所 オフ角を有する単結晶基板の製造方法
JP2008147412A (ja) * 2006-12-11 2008-06-26 Matsushita Electric Ind Co Ltd 半導体ウェハ,半導体装置及び半導体ウェハの製造方法ならびに半導体装置の製造方法
EP1986230A2 (en) * 2007-04-25 2008-10-29 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing SOI substrate and method of manufacturing semiconductor device
JP2009061112A (ja) * 2007-09-06 2009-03-26 Ge Medical Systems Global Technology Co Llc 超音波探触子および超音波撮像装置
JP5688203B2 (ja) * 2007-11-01 2015-03-25 株式会社半導体エネルギー研究所 半導体基板の作製方法
JP5548351B2 (ja) * 2007-11-01 2014-07-16 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP2009260315A (ja) * 2008-03-26 2009-11-05 Semiconductor Energy Lab Co Ltd Soi基板の作製方法及び半導体装置の作製方法
CN101559627B (zh) * 2009-05-25 2011-12-14 天津大学 粒子束辅助单晶脆性材料超精密加工方法
US8806995B2 (en) * 2009-09-08 2014-08-19 The Board Of Trustees Of The University Of Illinois High-precision micro/nano-scale machining system
US8624185B2 (en) * 2010-09-17 2014-01-07 Carl Zeiss Microscopy, Llc Sample preparation
CN102476405A (zh) * 2010-11-23 2012-05-30 大连创达技术交易市场有限公司 一种通过粒子束提高精密加工精度的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1124364A (zh) * 1994-12-09 1996-06-12 中国科学院微电子中心 束致变蚀技术
JP2003257981A (ja) * 2002-02-27 2003-09-12 Toshiba Ceramics Co Ltd シリコンウェーハの製造方法
CN1512602A (zh) * 2002-12-30 2004-07-14 �廪��ѧ 制作高温超导器件的表面改性方法
CN1696242A (zh) * 2005-05-31 2005-11-16 哈尔滨工业大学 光致发光薄膜及其辐照改性的制备方法
CN101405847A (zh) * 2006-01-20 2009-04-08 英飞凌科技奥地利股份公司 处理含氧半导体晶片的方法及半导体元件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120012563A1 (en) * 2009-05-25 2012-01-19 Fengzhou Fang Particle beam-assisted ultra-precision machining method for single-crystal brittle materials
US8897910B2 (en) * 2009-05-25 2014-11-25 Tianjin University Particle beam-assisted ultra-precision machining method for single-crystal brittle materials
CN112285140A (zh) * 2020-10-20 2021-01-29 北京航空航天大学 一种单晶超高周疲劳内部裂纹早期扩展速率定量表征方法
CN112285140B (zh) * 2020-10-20 2022-01-28 北京航空航天大学 一种单晶超高周疲劳内部裂纹早期扩展速率定量表征方法

Also Published As

Publication number Publication date
US8897910B2 (en) 2014-11-25
CN101559627B (zh) 2011-12-14
US20120012563A1 (en) 2012-01-19
EP2298521A4 (en) 2017-08-30
EP2298521A1 (en) 2011-03-23
JP2012527747A (ja) 2012-11-08
CN101559627A (zh) 2009-10-21
JP5616961B2 (ja) 2014-10-29

Similar Documents

Publication Publication Date Title
WO2010135949A1 (zh) 单晶脆性材料粒子束辅助超精密加工方法
CN104075928B (zh) 一种磨削晶圆透射电镜试样机械减薄方法
WO2016194976A1 (ja) 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
JP2015533654A (ja) ワークピースを加工するための方法及び装置
WO2016194977A1 (ja) 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
Yamamura et al. High-integrity finishing of 4H-SiC (0001) by plasma-assisted polishing
JP6001931B2 (ja) ウェーハの加工方法
CN109590811A (zh) 一种激光辅助抛光cvd金刚石的方法
CN110926898A (zh) 一种电子束敏感脆性材料透射电镜样品制备方法
JP2017188550A (ja) 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
US9698289B2 (en) Detachment of a self-supporting layer of silicon <100>
Gao et al. Research progress on ultra-precision machining technologies for soft-brittle crystal materials
CN108723897B (zh) 单晶SiC的离子注入表面改性与纳米尺度抛光方法
US8092560B2 (en) Lapping tool and method for manufacturing the same
CN102476405A (zh) 一种通过粒子束提高精密加工精度的方法
TW202003141A (zh) 倒角加工方法
JP5709698B2 (ja) ダイヤモンド工具の製造方法
JP2000230891A (ja) 透過型電子顕微鏡用試料の作製方法
JP4863494B2 (ja) 微細構造観察用試料の作製方法
TW200825194A (en) Sputtering target, surface treatment, and film thereof
CN107042591A (zh) 基于高能离子辐照电离损伤的晶体材料超精密加工方法
CN109514057A (zh) 一种基于聚焦离子束加工的金刚石刀具可控修锐方法
Miyamoto et al. Crystallinity and strength of diamond bombarded with low energy ion beams
CN106531627A (zh) Nd:YAG晶体及其表面抛光方法
Zhao et al. Research on surface microstructures of nanocomposite ceramics in two-dimensional ultrasonic ultraprecision grinding

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010774111

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012511130

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE