WO2016194977A1 - 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 - Google Patents

酸化物単結晶薄膜を備えた複合ウェーハの製造方法 Download PDF

Info

Publication number
WO2016194977A1
WO2016194977A1 PCT/JP2016/066283 JP2016066283W WO2016194977A1 WO 2016194977 A1 WO2016194977 A1 WO 2016194977A1 JP 2016066283 W JP2016066283 W JP 2016066283W WO 2016194977 A1 WO2016194977 A1 WO 2016194977A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
oxide single
single crystal
temperature
thin film
Prior art date
Application number
PCT/JP2016/066283
Other languages
English (en)
French (fr)
Inventor
昌次 秋山
信 川合
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020177033744A priority Critical patent/KR102554056B1/ko
Priority to US15/577,456 priority patent/US10770648B2/en
Priority to EP16803411.4A priority patent/EP3306644B1/en
Priority to CN201680032041.6A priority patent/CN107615448B/zh
Publication of WO2016194977A1 publication Critical patent/WO2016194977A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/08Shaping or machining of piezoelectric or electrostrictive bodies
    • H10N30/085Shaping or machining of piezoelectric or electrostrictive bodies by machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5826Treatment with charged particles
    • C23C14/5833Ion beam bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8542Alkali metal based oxides, e.g. lithium, sodium or potassium niobates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates

Definitions

  • the present invention relates to the manufacture of composite wafers. More specifically, the present invention relates to a method for manufacturing a composite wafer having an oxide single crystal thin film on a support wafer.
  • Oxide single crystals such as lithium tantalate (LT) and lithium niobate (LN) are general piezoelectric materials and widely used as materials for surface acoustic wave (SAW) devices. It is used.
  • SAW surface acoustic wave
  • Oxide single crystals such as lithium tantalate (LT) and lithium niobate (LN) are general piezoelectric materials and widely used as materials for surface acoustic wave (SAW) devices. It is used.
  • SAW surface acoustic wave
  • an oxide single crystal wafer is made of a material having a thermal expansion coefficient smaller than that of the oxide single crystal, specifically, a sapphire wafer. It has been proposed to suppress the influence of thermal expansion of the oxide single crystal by bonding and thinning the oxide single crystal wafer side to several ⁇ m to several tens of ⁇ m by grinding or the like (Non-patent Document 1). . However, since this method cuts the oxide single crystal wafer after bonding, most of the oxide single crystal wafer is thrown away, and the use efficiency of the material is poor. In addition, since lithium tantalate and lithium niobate used as oxide single crystals are expensive materials, a method with high use efficiency for products and a small amount of disposal is desired in order to reduce production costs.
  • the manufacturing method of SOI wafers thermally bonds the ion-implanted layer by applying a heat treatment at around 500 ° C. after bonding the support wafer to the silicon wafer on which the hydrogen ion layer is formed.
  • Patent Document 1 In order to increase the use efficiency of oxide single crystal wafers in products, an oxide single crystal wafer is applied in place of a smart-cut silicon wafer to form an oxide single crystal thin film on a support wafer. Has been attempted (Non-Patent Documents 2 and 3).
  • Non-Patent Document 2 forms a 121-nm-thick Cr metal layer on the surface of a lithium tantalate wafer on which an ion-implanted layer is formed, and bonds it to a SiO 2 substrate with a thickness of several hundred nm via the metal layer.
  • 200 treated at ⁇ 500 ° C. was peeled at the ion implanted layer, after transferring the lithium tantalate thin film on a SiO 2 substrate via a metal layer, on the opposite side of the surface where the transfer of the lithium tantalate thin films of SiO 2 substrate It has been reported that a lithium-tantalate-metal-on-insulator (LTMOI) structure is fabricated by bonding lithium tantalate wafers.
  • LTMOI lithium-tantalate-metal-on-insulator
  • Non-Patent Document 3 a silicon wafer is bonded to a lithium tantalate wafer on which an ion-implanted layer is formed, heat-treated at 200 ° C. and peeled off by the ion-implanted layer, and a lithium tantalate thin film is heated on the silicon wafer. Have been transcribed.
  • Oxide single crystals such as lithium tantalate (LT) and lithium niobate (LN) are hard and very brittle, and as shown in FIG. 3, their coefficients of thermal expansion are higher than those of silicon, glass and sapphire. Is extremely large. For this reason, when oxide single crystals are bonded to dissimilar wafers such as silicon, glass and sapphire and then heat-treated at a high temperature, peeling and cracking occur between the bonded wafers due to the difference in thermal expansion coefficient of both wafers. There is a problem that it occurs.
  • LT lithium tantalate
  • LN lithium niobate
  • Non-Patent Document 2 describes a structure in which a metal layer and a SiO 2 substrate are sandwiched between a lithium tantalate wafer and a thin film, thereby suppressing peeling and cracking of the wafer due to a difference in thermal expansion during heat treatment. It is a report that enables transfer of thin films.
  • the underlying substrate is the same lithium tantalate as the thin film, the temperature stability, which is a problem as the piezoelectric material described above, cannot be solved.
  • the thin film cannot be transferred unless the heat treatment is performed at 200 ° C. or higher.
  • the metal layer is sandwiched, applicable applications are limited.
  • expensive lithium tantalate must be used more than necessary to suppress cracking of the wafer, and the manufacturing cost increases.
  • Non-Patent Document 3 describes that heat treatment was attempted at 200 to 800 ° C., but as an example of transferring a lithium tantalate thin film onto a silicon wafer using the Smart-Cut method, only 200 ° C. is used. In this example, there is no description as to whether or not the lithium tantalate thin film could be transferred to the entire surface of the silicon wafer.
  • the inventors conducted a verification experiment on peeling by heat treatment at 200 ° C. using the same method as in Non-Patent Document 3, and the lithium tantalate thin film was not transferred to the entire surface of the silicon wafer, Only a small portion of the transcript was observed. In particular, the lithium tantalate thin film was not transferred at all on the outer peripheral portion of the silicon wafer.
  • the inventors of the present invention dare to increase the thermal expansion coefficient of the oxide single crystal unlike conventional approaches that suppress the generation of stress by combining materials with similar thermal expansion coefficients.
  • the supporting wafer By selecting different materials (specifically, having a coefficient of thermal expansion of 7 ppm / K or more smaller than that of oxide single crystals) as the supporting wafer, the supporting wafer can be manufactured at low cost and is less prone to peeling or cracking at the bonding interface.
  • the manufacturing method of the composite wafer provided with the oxide single crystal thin film on it was discovered.
  • an oxide single crystal wafer in which an ion implantation layer is formed using a predetermined hydrogen ion implantation amount and a support wafer having a smaller thermal expansion coefficient than that of the oxide single crystal are bonded between the wafers by surface activation treatment or the like. Bonding with bonding force applied, and applying heat treatment at a low temperature that does not cause thermal separation, and then applying ultrasonic vibration to the ion-implanted layer of the bonded structure, maintaining bonding at the bonding interface The present inventors have found that the ion implantation layer can be exfoliated at a stroke.
  • the present invention Injecting hydrogen atom ions or hydrogen molecular ions from the surface of an oxide single crystal wafer that is a lithium tantalate wafer or a lithium niobate wafer, and forming an ion implantation layer inside the oxide single crystal wafer; A step of performing a surface activation treatment on at least one of the surface of the oxide single crystal wafer ion-implanted and the surface of the support wafer to be bonded to the oxide single crystal wafer; After performing the surface activation treatment, bonding the ion-implanted surface of the oxide single crystal wafer and the surface of the support wafer to obtain a joined body, Heat-treating the joined body at a temperature of 90 ° C.
  • the implantation amount of the hydrogen atom ions is 5.0 ⁇ 10 16 atoms / cm 2 to 2.75 ⁇ 10 17 atoms / cm 2
  • the implantation amount of the hydrogen molecular ions is 2.5 ⁇ 10 16 atoms / cm 2. cm 2 to 1.37 ⁇ 10 17 atoms / cm 2
  • a method for manufacturing a composite wafer including an oxide single crystal thin film on a supporting wafer can be provided.
  • the adhesion at the bonding interface between the supporting wafer and the oxide single crystal thin film is high, and the oxide on the entire surface on the supporting wafer is less likely to be peeled off or cracked.
  • a composite wafer to which the single crystal thin film is transferred can be obtained.
  • the oxide single crystal wafer after the oxide single crystal thin film is transferred and separated onto the support wafer can be used again for the production of the composite wafer, and the cost can be reduced.
  • the present invention relates to a method for manufacturing a composite wafer having an oxide single crystal thin film on a support wafer.
  • the support wafer may be, for example, a wafer made of a material smaller than the thermal expansion coefficient of the oxide single crystal wafer to be bonded by 7 ppm / K or more.
  • the support wafer include a sapphire wafer, a silicon wafer, a silicon wafer with an oxide film, and a glass wafer.
  • the size of the support wafer is not particularly limited, but may be, for example, a wafer having a diameter of 75 to 150 mm and a thickness of 0.2 to 0.8 mm. Although what is marketed may be used for a support wafer, it is not specifically limited.
  • a silicon wafer with an oxide film is a silicon wafer having an oxide film on at least a surface to be bonded, and the silicon wafer is heat-treated at 700 to 1200 ° C. in an air atmosphere to produce an oxide film on the surface of the silicon wafer. May be.
  • the thickness of the oxide film of the silicon wafer with an oxide film is not particularly limited, but is preferably 10 to 500 nm.
  • the oxide single crystal is a compound composed of lithium, a metal element such as tantalum or niobium, and oxygen, and examples thereof include lithium tantalate (LiTaO 3 ) and lithium niobate (LiNbO 3 ).
  • the oxide single crystal is preferably a lithium tantalate single crystal or a lithium niobate single crystal, particularly in applications such as laser elements, piezoelectric elements, and surface acoustic wave elements.
  • the oxide single crystal is usually used in the shape of a wafer.
  • the size of the oxide single crystal wafer is not particularly limited, but may be, for example, a wafer having a diameter of 75 to 150 mm and a thickness of 0.2 to 0.8 mm.
  • a commercially available oxide single crystal wafer may be used, but a known manufacturing method using the Czochralski method or the like (for example, Japanese Patent Application Laid-Open No. 2003-165895, republished 2004-079061) is used as it is. Or a combination of the processes described therein.
  • the support wafer and the oxide single crystal wafer preferably have a surface roughness RMS of 1.0 nm or less on the surfaces to be bonded.
  • a desired surface roughness may be obtained by chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • the surface roughness RMS can be evaluated by, for example, an atomic force microscope (AFM).
  • An oxide single crystal wafer is implanted with hydrogen ions from the surface thereof to form an ion implantation layer inside the oxide single crystal wafer.
  • the ion implantation layer has an implantation energy that can form the ion implantation layer at a desired depth from the surface of the oxide single crystal wafer, and a predetermined dose of hydrogen atom ions (H + ) or hydrogen molecular ions (H 2 + ). It is formed by injecting.
  • the implantation energy can be set to 50 to 200 keV.
  • the implantation amount is 5.0 ⁇ 10 16 atoms / cm 2 to 2.75 ⁇ 10 17 atoms / cm 2 .
  • the implantation amount is 2.5 ⁇ 10 16 atoms / cm 2 to 1.37 ⁇ 10 17 atoms / cm 2 .
  • the implantation amount of hydrogen atom ions may be twice the implantation amount of hydrogen molecular ions.
  • surface activation treatment is performed on at least one of the ion-implanted surface of the oxide single crystal wafer and the surface of the support wafer to be bonded to the oxide single crystal wafer.
  • the surface on which the surface activation treatment is performed may be at least one of the ion-implanted surface of the oxide single crystal wafer and the surface of the support wafer to be bonded to the oxide single crystal wafer.
  • Examples of the surface activation treatment include ozone water treatment, UV ozone treatment, ion beam treatment, and plasma treatment.
  • the surface can be activated with active ozone by introducing ozone gas into pure water to form ozone water and immersing the wafer in ozone water, for example.
  • UV ozone treatment for example, by holding the wafer in an atmosphere in which active ozone is generated by irradiating the atmosphere or oxygen gas with UV light having a short wavelength (for example, a wavelength of about 195 nm), Can be activated.
  • an ion beam of Ar or the like is applied to the wafer surface in a high vacuum (for example, less than 1 ⁇ 10 ⁇ 5 Pa) to expose dangling bonds having high activity. it can.
  • a high vacuum for example, less than 1 ⁇ 10 ⁇ 5 Pa
  • the wafer is placed in a vacuum chamber, and the plasma gas is exposed to the plasma gas under reduced pressure (for example, 0.2 to 1.0 mTorr) for about 5 to 60 seconds.
  • oxygen gas can be used when the surface is oxidized, and hydrogen gas, nitrogen gas, argon gas, or a mixed gas thereof can be used when the surface is not oxidized.
  • organic substances on the wafer surface are oxidized and removed, and OH groups on the surface are increased and activated.
  • the temperature at the time of bonding the oxide single crystal wafer and the support wafer is preferably around room temperature (including room temperature), for example, 10 to 50 ° C.
  • the final product, the composite wafer is often used at around room temperature, and it is desirable that the bonded wafer conform to this temperature range when bonded.
  • the temperature at the time of bonding may be the temperature at the position where the bonding is performed, that is, the ambient temperature in the apparatus or the apparatus.
  • the temperature at the time of bonding can be controlled, for example, by setting the atmospheric temperature in the bonding apparatus.
  • the room temperature is an ambient temperature at which the object is neither heated nor cooled, and is not particularly limited, but is, for example, 10 to 30 ° C., preferably around 25 ° C.
  • the bonded body is heat-treated at a temperature of 90 ° C. or higher, for example, at a temperature at which the bonded interface does not crack.
  • the temperature is lower than 90 ° C., the bonding strength at the bonding interface between the oxide single crystal wafer and the support wafer becomes insufficient, and peeling may occur at the bonding interface.
  • the temperature of the heat treatment may be changed according to the support wafer to be used. For example, when the support wafer is a sapphire wafer, the temperature in the heat treatment step is preferably 90 to 225 ° C., more preferably 90 to 200 ° C.
  • the temperature is preferably 90 to 200 ° C., more preferably 90 to 175 ° C.
  • the temperature is preferably 90 to 110 ° C., more preferably 90 to 100 ° C.
  • the temperature of the joined body may be a temperature obtained by measuring the atmospheric temperature in a furnace or oven using a thermocouple or the like attached to the heat treatment apparatus, for example.
  • the time of the heat treatment at the above temperature is not particularly limited as long as no cracking or peeling occurs, and may be from 10 minutes to several tens of hours, for example, up to 100 hours.
  • the heat treatment temperature is 90 ° C. or more and less than 110 ° C., it is preferably 10 minutes to 100 hours, and when the heat treatment temperature is 110 ° C. or more and less than 175 ° C., preferably 10 minutes to 60 hours, When the heat treatment temperature is 175 ° C.
  • the process can be further simplified.
  • the heat-treated bonded body is left at a temperature near room temperature (including room temperature), for example, 10 to 50 ° C., or cooled and adjusted using a cooler such as a blower.
  • the heat-treated joined body may be allowed to stand in a room adjusted to 25 ° C. to obtain a desired temperature.
  • ultrasonic vibration is applied to the heat-treated bonded body, peeling along the ion implantation layer, and an oxide single crystal thin film transferred onto the support wafer is obtained.
  • Ultrasound is an elastic vibration wave (sound wave) having a high frequency.
  • the method of applying ultrasonic vibration to the bonded body is not particularly limited, and a wedge-shaped blade to which ultrasonic waves are applied, such as a vibrator, for example, an ultrasonic cutter, is used as a side surface of the bonded body, for example, an end of an ion implantation layer. You may give by making it contact.
  • the frequency of the ultrasonic wave is not particularly limited as long as the ion-implanted layer can be embrittled without affecting the bonding interface, but is preferably 20 to 40 kHz.
  • the joined body is immersed in a water tank to which ultrasonic waves are applied, and then given through a liquid. Also good.
  • the ion implantation layer can be more reliably peeled by immersing in a water bath to which ultrasonic vibration is applied for 1 to 60 minutes.
  • the frequency is preferably 26 kHz to 1.6 MHz.
  • a reinforcing material such as a vacuum chuck or an electrostatic chuck on the surface of one side or both sides of the joined body.
  • the reinforcing material is added to the side surface of the bonded body on the side of the supporting wafer, the side surface of the bonded body on the side of the oxide single crystal wafer, or the surface of the side surface of the bonded body on both the supporting wafer side and the side of the oxide single crystal wafer.
  • the vacuum chuck is not particularly limited, and examples thereof include porous polyethylene and alumina vacuum chucks.
  • the electrostatic chuck is not particularly limited, and examples thereof include electrostatic chucks made of ceramics such as silicon carbide and aluminum nitride.
  • the shapes of the vacuum chuck and the electrostatic chuck are not particularly limited, but are preferably larger than the diameter of the joined body.
  • the temperature of the joined body when applying ultrasonic vibration is preferably set to a temperature around room temperature (including room temperature), for example, 10 to 50 ° C. without heating or cooling, or by heating or cooling. 25 to 30 ° C. is more preferable.
  • the temperature of the joined body when applying ultrasonic vibration may be the ambient atmosphere temperature, for example, the temperature measured in the furnace or oven using a thermocouple attached in the heat treatment apparatus, It may be the temperature inside the workplace or the temperature of the water in the water tank.
  • the temperature of the joined body when the ultrasonic vibration is applied has a predetermined preferable temperature range between the temperature at the time of bonding in the step of obtaining the joined body described above.
  • the difference between the temperature at the time of bonding for obtaining a bonded body and the temperature of the bonded body at the time of applying ultrasonic vibration is preferably within 0 to 40 ° C., and the difference is desirably closer to 0 ° C.
  • peeling or cracking may occur at the bonded interface of the joined body.
  • the process of obtaining the joined body is generally performed in an environment such as a clean room (25 to 30 ° C.). In this case, the same atmospheric temperature, that is, 25 to 30 ° C. is applied to the process of applying ultrasonic vibration. It is desirable to carry out at a degree.
  • a composite wafer including a support wafer and an oxide single crystal thin film that is a lithium tantalate thin film or a lithium niobate thin film on the support wafer is obtained.
  • the thickness of the oxide single crystal thin film of the obtained composite wafer corresponds to the hydrogen ion implantation depth at the time of hydrogen ion implantation, and is preferably 100 to 1000 nm, and the surface is polished if necessary. Also good.
  • the manufacturing process of the composite wafer according to the present invention is not particularly limited, but one mode thereof is shown in FIG.
  • Hydrogen ions 12 are implanted from the surface of the oxide single crystal wafer 11 to form an ion implantation layer 13 inside the oxide single crystal wafer 11 (step a).
  • Both the surface 11s into which the oxide single crystal wafer 11 is ion-implanted and the surface 14s of the support wafer 14 to be bonded to the oxide single crystal wafer are irradiated with an ion beam 15 to perform surface activation treatment (step b).
  • the ion-implanted surface 11s of the oxide single crystal wafer and the support wafer surface 14s to be bonded to the oxide single crystal wafer are bonded together to obtain a bonded body 16 (step c).
  • the obtained bonded body 16 is heat-treated at a temperature of 90 ° C. or higher (step d).
  • a wedge-shaped blade 19 of an ultrasonic cutter is brought into contact with the side surface of the heat-treated bonded body 16, that is, the end of the ion-implanted layer 13, and ultrasonic vibration is applied to the bonded body 16.
  • the composite wafer 18 can be obtained by peeling the part 11b of the crystal wafer and transferring the oxide single crystal thin film 11a onto the support wafer 14 (step e).
  • FIG. 2 shows another aspect of the step e.
  • the heat-treated joined body 16 is immersed in a water tank 31 provided with the vibrator 33, ultrasonic waves are applied to the water tank 31, and the liquid 32.
  • the ultrasonic wave is applied to the bonded body 16 via the electrode, the oxide single crystal wafer 11b is peeled off along the ion implantation layer 13, and the oxide single crystal thin film 11a is transferred onto the support wafer 14.
  • a composite wafer 18 may be obtained.
  • a sapphire wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the support wafer.
  • a lithium tantalate wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the oxide single crystal wafer.
  • the surface roughness RMS of the surfaces used for bonding the sapphire wafer and the lithium tantalate wafer to each other was evaluated with an atomic force microscope, it was 1.0 nm or less.
  • the surfaces used for bonding the sapphire wafer and the lithium tantalate wafer to each other were subjected to a plasma treatment using a plasma activation device in a nitrogen atmosphere to perform surface activation.
  • the surfaces of the surface activated sapphire wafer and lithium tantalate wafer were bonded together at room temperature (25 ° C.) to obtain a joined body.
  • the joined body was heated to 70, 80, 90, 100, 110, 125, 150, 175, 200, 225, 250, or 275 ° C., and heat treatment was performed at each temperature for 24 hours.
  • a heat treatment oven was used as the heating means, and the temperature of the atmosphere in the oven was measured with a thermocouple to obtain the temperature of the joined body.
  • Table 1 shows the results of the appearance inspection of the obtained joined body.
  • the appearance inspection was performed by visual inspection, and the case where there was no crack or chipping was evaluated as “ ⁇ ”, the case where there was a minute crack as “ ⁇ ”, and the case where the wafer was damaged as “X”.
  • the support wafer was sapphire, it was confirmed that the sample with a heat treatment temperature of 70 to 225 ° C. was bonded without cracking or chipping.
  • Example 2 A silicon wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the support wafer, and each of the bonded bodies was heated to 70, 80, 90, 100, 110, 125, 150, 175, 200, or 225 ° C. The experiment was performed in the same manner as in Experiment 1 except that the heat treatment was performed at each temperature for 24 hours. The surface roughness RMS of the surfaces used for bonding the silicon wafer and the lithium tantalate wafer to each other was 1.0 nm or less. Table 1 shows the results of the appearance inspection of the obtained joined body. When the supporting wafer was made of silicon, it was confirmed that the sample having a heat treatment temperature of 70 to 200 ° C. was bonded without cracking or chipping.
  • a silicon wafer having a diameter of 100 mm and a thickness of 0.35 mm on a silicon wafer with a 100 nm oxide film was used, and the joined bodies were 70, 80, 90, 100, 110, 125, 150, 175, 200.
  • each experiment was performed in the same manner as in Experiment 1 except that each was heated to 225 ° C. and heat-treated at each temperature for 24 hours.
  • surface roughness RMS of the surface used for mutually bonding a silicon wafer with an oxide film and a lithium tantalate wafer was 1.0 nm or less. Table 1 shows the results of the appearance inspection of the obtained joined body.
  • the silicon wafer with an oxide film was a silicon wafer in which a 100 nm thermal oxide film was grown on the silicon wafer by heating the silicon wafer at 1100 ° C. for about 1 hour in advance.
  • the support wafer was made of silicon with an oxide film, it was confirmed that the sample with a heat treatment temperature of 70 to 200 ° C. was bonded without cracking or chipping.
  • Example 4 A glass wafer having a diameter of 100 mm and a thickness of 0.35 mm is used as a support wafer, and each bonded body is heated to 70, 80, 90, 100, 110, or 125 ° C., and is heated at each temperature for 24 hours.
  • the experiment was performed in the same manner as in Experiment 1 except that.
  • the surface roughness RMS of the surfaces used for bonding the glass wafer and the lithium tantalate wafer to each other was 1.0 nm or less.
  • Table 1 shows the results of the appearance inspection of the obtained joined body. When the supporting wafer was made of glass, it was confirmed that the sample having a heat treatment temperature of 70 to 110 ° C. was bonded without cracking or chipping.
  • Experiments 1 to 4 used lithium tantalate wafers, but the same results as in Table 1 were obtained even when experiments similar to Experiments 1 to 4 were performed using lithium niobate wafers as oxide single crystal wafers. The same results were obtained even when the surface activation treatment was replaced by ozone water treatment, UV ozone treatment, or vacuum ion beam treatment instead of plasma treatment. From these results, it was found that any of the above activation methods is effective and that there is no difference between lithium tantalate and lithium niobate.
  • Example 1 A sapphire wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the support wafer.
  • a lithium tantalate wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the oxide single crystal wafer.
  • the surface roughness RMS of the surfaces used for bonding the sapphire wafer and the lithium tantalate wafer to each other was 1.0 nm or less.
  • ion implantation is performed from the surface of a lithium tantalate wafer using hydrogen atom ions under the conditions of an implantation amount of 7.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
  • a heat treatment oven was used as a heating means, and the temperature of the atmosphere in the oven was measured with a thermocouple to obtain the temperature of the joined body.
  • the heat-treated joined body was allowed to stand until it fell to room temperature, and then the cutter blade was brought into contact with the end of the ion-implanted layer of the joined body at room temperature (25 ° C.) using an ultrasonic cutter equipped with a wedge-shaped blade.
  • an ultrasonic wave (30 kHz) was applied and peeled along the ion implantation layer to obtain a composite wafer in which a lithium tantalate thin film was transferred onto a sapphire wafer.
  • Table 2 shows the results of the appearance inspection of the obtained composite wafer. The appearance inspection was carried out by visual inspection. The thin film transfer was made on the entire surface of the wafer. The thin film transfer was partially defective. The thin film transfer was made poor.
  • Example 2 A silicon wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as a support wafer, and the joined body was heated to 90, 100, 110, 125, 150, 175, or 200 ° C., and each temperature was maintained for 24 hours. It carried out similarly to Example 1 except having performed heat processing. The surface roughness RMS of the surfaces used for bonding the silicon wafer and the lithium tantalate wafer to each other was 1.0 nm or less. Table 2 shows the results of the appearance inspection of the obtained composite wafer.
  • Example 3 As a support wafer, a silicon wafer with a 100 nm oxide film on a silicon wafer having a diameter of 100 mm and a thickness of 0.35 mm is used, and the bonded body becomes 90, 100, 110, 125, 150, 175, or 200 ° C. In the same manner as in Example 1 except that each was heated and heat-treated at each temperature for 24 hours. In addition, surface roughness RMS of the surface used for mutually bonding a silicon wafer with an oxide film and a lithium tantalate wafer was 1.0 nm or less. Table 2 shows the results of the appearance inspection of the obtained composite wafer.
  • the silicon wafer with an oxide film was a silicon wafer in which a 100 nm thermal oxide film was grown on the silicon wafer by heating the silicon wafer at 1100 ° C. for about 1 hour in advance.
  • Example 4 A glass wafer with a diameter of 100 mm and a thickness of 0.35 mm was used as a support wafer, and each bonded body was heated to 90, 100, or 110 ° C., and was subjected to heat treatment at each temperature for 24 hours. Performed as in Example 1. The surface roughness RMS of the surfaces used for bonding the glass wafer and the lithium tantalate wafer to each other was 1.0 nm or less. Table 2 shows the results of the appearance inspection of the obtained composite wafer.
  • the support wafer is sapphire
  • the heat treatment temperature is 90 to 225 ° C.
  • the support wafer is silicon
  • the heat treatment temperature is 90 to 200 ° C.
  • the support wafer is silicon with an oxide film
  • the heat treatment temperature was 80 ° C.
  • a portion where the lithium tantalate thin film was transferred and a portion where the portion was not transferred were generated on the support wafer.
  • the embrittlement at the ion implantation interface was not sufficient, and the bonding force between the two wafers was insufficient, and it was considered that the entire surface was not transferred.
  • the implantation amount is 5.0 ⁇ 10 16 , 7.5 ⁇ 10 16 , 10 ⁇ 10 16 , 12.5 ⁇ 10 16 , 15 ⁇ 10 16 , 17 using hydrogen atom ions.
  • Ion implantation is performed under the conditions of 5 ⁇ 10 16 , 20 ⁇ 10 16 , 22.5 ⁇ 10 16 , 25 ⁇ 10 16 , or 27.5 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and a lithium tantalate wafer Example 1 was carried out in the same manner as in Example 1 except that an ion-implanted layer was formed inside and that the bonded body was heat-treated at 90 ° C. for 24 hours.
  • ion implantation is performed using hydrogen atom ions under the conditions of an implantation amount of 4.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
  • the same operation as in Example 5 was carried out except that it was formed.
  • a lithium tantalate wafer having a diameter of 100 mm and a thickness of 0.35 mm was used as the oxide single crystal wafer.
  • the surface roughness RMS of the surfaces used for bonding the lithium tantalate wafers to each other was 1.0 nm or less.
  • ion implantation was performed using hydrogen atom ions under the conditions of an implantation amount of 30 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV to form an ion implantation layer inside the lithium tantalate wafer.
  • the implantation amount is 5.0 ⁇ 10 16 , 7.5 ⁇ 10 16 , 10 ⁇ 10 16 , 12.5 ⁇ 10 16 , 15 ⁇ 10 16 , 17 using hydrogen atom ions.
  • Ion implantation is performed under the conditions of 5 ⁇ 10 16 , 20 ⁇ 10 16 , 22.5 ⁇ 10 16 , 25 ⁇ 10 16 , or 27.5 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and a lithium tantalate wafer Example 2 was carried out in the same manner as in Example 2 except that an ion-implanted layer was formed inside and that the bonded body was subjected to heat treatment at 90 ° C. for 24 hours.
  • ion implantation is performed using hydrogen atom ions under the conditions of an implantation amount of 4.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
  • the same operation as in Example 6 was carried out except that it was formed.
  • the implantation amount is 5.0 ⁇ 10 16 , 7.5 ⁇ 10 16 , 10 ⁇ 10 16 , 12.5 ⁇ 10 16 , 15 ⁇ 10 16 , 17 using hydrogen atom ions.
  • Ion implantation is performed under the conditions of 5 ⁇ 10 16 , 20 ⁇ 10 16 , 22.5 ⁇ 10 16 , 25 ⁇ 10 16 , or 27.5 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and a lithium tantalate wafer Example 3 was performed in the same manner as in Example 3 except that an ion-implanted layer was formed inside and that the bonded body was subjected to heat treatment at 90 ° C. for 24 hours.
  • ion implantation is performed using hydrogen atom ions under the conditions of an implantation amount of 4.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
  • the same operation as in Example 7 was performed except for formation.
  • the implantation amount is 5.0 ⁇ 10 16 , 7.5 ⁇ 10 16 , 10 ⁇ 10 16 , 12.5 ⁇ 10 16 , 15 ⁇ 10 16 , 17 using hydrogen atom ions.
  • Ion implantation is performed under the conditions of 5 ⁇ 10 16 , 20 ⁇ 10 16 , 22.5 ⁇ 10 16 , 25 ⁇ 10 16 , or 27.5 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and a lithium tantalate wafer Example 4 was performed in the same manner as in Example 4 except that an ion-implanted layer was formed inside and that the bonded body was heat-treated at 90 ° C. for 24 hours.
  • ion implantation is performed using hydrogen atom ions under the conditions of an implantation amount of 4.0 ⁇ 10 16 atoms / cm 2 and an acceleration voltage of 100 KeV, and an ion implantation layer is formed inside the lithium tantalate wafer.
  • the same operation as in Example 8 was carried out except that it was formed.
  • Example 9 The heat-treated joined body is allowed to stand until it falls to room temperature, and then the joined body is immersed in a water bath at 25 ° C. using an ultrasonic cleaning machine, and ultrasonic waves (26 kHz) are applied to the water bath for 120 seconds.
  • a ultrasonic wave was applied to the bonded body to peel off the bonded body along the ion implantation layer to obtain a composite wafer in which a lithium tantalate thin film was transferred onto a sapphire wafer.
  • Table 3 shows the results of the appearance inspection of the obtained composite wafer. The appearance inspection was carried out by visual inspection. The thin film transfer was made on the entire surface of the wafer. The thin film transfer was partially defective. The thin film transfer was made poor.
  • Example 10 The heat-treated joined body is allowed to stand until it falls to room temperature, and then the joined body is immersed in a water bath at 25 ° C. using an ultrasonic cleaning machine, and ultrasonic waves (26 kHz) are applied to the water bath for 120 seconds. This was carried out in the same manner as in Example 2 except that a ultrasonic wave was applied to the joined body to peel off the bonded body along the ion implantation layer to obtain a composite wafer having a lithium tantalate thin film transferred onto the silicon wafer. Table 3 shows the results of the appearance inspection of the obtained composite wafer.
  • Example 11 The heat-treated joined body is allowed to stand until it falls to room temperature, and then the joined body is immersed in a water bath at 25 ° C. using an ultrasonic cleaning machine, and ultrasonic waves (26 kHz) are applied to the water bath for 120 seconds.
  • a ultrasonic wave was applied to the bonded body to peel off the bonded body along the ion-implanted layer to obtain a composite wafer in which a lithium tantalate thin film was transferred onto a silicon wafer with an oxide film. Carried out.
  • Table 3 shows the results of the appearance inspection of the obtained composite wafer.
  • Example 12 The heat-treated joined body is allowed to stand until it falls to room temperature, and then the joined body is immersed in a water bath at 25 ° C. using an ultrasonic cleaning machine, and ultrasonic waves (26 kHz) are applied to the water bath for 120 seconds. This was carried out in the same manner as in Example 4 except that a ultrasonic wave was applied to the bonded body to peel off the bonded body along the ion implantation layer to obtain a composite wafer having a lithium tantalate thin film transferred onto a glass wafer. Table 3 shows the results of the appearance inspection of the obtained composite wafer.
  • the support wafer is sapphire
  • the heat treatment temperature is 90 to 225 ° C.
  • the support wafer is silicon
  • the heat treatment temperature is 90 to 200 ° C.
  • the support wafer is silicon with an oxide film
  • the heat treatment temperature was 80 ° C.
  • a portion where the lithium tantalate thin film was transferred and a portion where the portion was not transferred were generated on the support wafer.
  • the embrittlement at the ion implantation interface was not sufficient, and the bonding force between the two wafers was insufficient, and it was considered that the entire surface was not transferred.
  • oxide single crystal wafer 11s surface of oxide single crystal wafer 11a: oxide single crystal thin film 11b: part of oxide single crystal wafer after peeling 12: hydrogen ion 13: ion implantation layer 14: support wafer 14s: Surface of supporting wafer 15: Ion beam irradiation 16: Bonded body 18: Composite wafer 19: Wedge blade of ultrasonic cutter 31: Water tank 32: Liquid in water tank 33: Vibrator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 支持ウェーハと酸化物単結晶薄膜との貼り合わせ界面に割れや剥がれが生じにくく、支持ウェーハ上の全面にタンタル酸リチウムまたはニオブ酸リチウムである酸化物単結晶の薄膜が転写された複合ウェーハを提供する。具体的には、表面から水素原子イオンまたは水素分子イオンを注入し、酸化物単結晶ウェーハの内部にイオン注入層を形成する工程と、酸化物単結晶ウェーハのイオン注入した表面と支持ウェーハの表面の少なくとも一方に、表面活性化処理を施す工程と、酸化物単結晶ウェーハのイオン注入した表面と支持ウェーハの表面とを貼り合わせて接合体を得る工程と、接合体を90℃以上であって割れを生じない温度で熱処理する工程と、熱処理した接合体に超音波振動を与える工程であって、イオン注入層に沿って剥離し支持ウェーハ上に転写された酸化物単結晶薄膜を得る、工程とを少なくとも含む複合ウェーハの製造方法である。

Description

酸化物単結晶薄膜を備えた複合ウェーハの製造方法
 本発明は、複合ウェーハの製造に関する。より詳しくは、支持ウェーハ上に酸化物単結晶薄膜を備えた複合ウェーハの製造方法に関する。
 近年、スマートフォンに代表される小型通信機器の分野において、通信量の急激な増大や多機能化は進行している。通信量の増大に対応してバンド数を増加させることが行われている一方、小型通信機器は、その形状をスケールアップさせることなく多機能化することが求められている。よって、小型通信機器に用いられる各種部品は、更なる小型化、高性能化が必須となっている。
 タンタル酸リチウム(Lithium Tantalate:LT)やニオブ酸リチウム(Lithium Niobate:LN)等の酸化物単結晶は、一般的な圧電材料であり、表面弾性波(surface acoustic wave:SAW)デバイスの材料として広く用いられている。圧電材料に酸化物単結晶を用いた場合、電磁的エネルギーが力学的エネルギーに変換される効率を示す電気機械結合係数の値が大きいため広帯域化を可能とするが、温度安定性は低く、温度変化によって対応できる周波数がシフトしてしまう。温度に対する低い安定性は、酸化物単結晶の熱膨張係数に起因する。
 電圧材料に酸化物単結晶を用いた場合の温度安定性を向上させる方法として、例えば、酸化物単結晶ウェーハに、酸化物単結晶より小さい熱膨張係数を有する材料、具体的にはサファイアウェーハを貼り合わせて、酸化物単結晶ウェーハ側を研削などで数μm~数十μmに薄化することで、酸化物単結晶の熱膨張の影響を抑えることが提案されている(非特許文献1)。しかし、この方法は、貼り合わせた後に酸化物単結晶ウェーハを削り込むため、酸化物単結晶ウェーハの大部分を捨て去ってしまうことになり、材料の使用効率が悪い。また、酸化物単結晶として用いられるタンタル酸リチウムやニオブ酸リチウムは高価な材料であるので、生産コストを抑えるためにも、製品への利用効率が高く、廃棄する量が少ない手法が望まれる。
 SOIウェーハの製造手法、例えばSmart-Cut法は、端的に言えば、水素イオン層を形成したシリコンウェーハに支持ウェーハを貼り合わせた後に、500℃前後の熱処理を加えることでイオン注入層を熱的に剥離させる方法である(特許文献1)。酸化物単結晶ウェーハの製品への利用効率を上げるために、Smart-Cut法のシリコンウェーハの代わりに酸化物単結晶ウェーハを適用して、支持ウェーハ上に酸化物単結晶の薄膜を形成することが試みられている(非特許文献2、3)。
 非特許文献2は、イオン注入層を形成したタンタル酸リチウムウェーハの表面に厚さ121nmのCrの金属層を形成し、金属層を介して厚さ数百nmのSiO基板と貼り合わせて、200~500℃で熱処理してイオン注入層で剥離させ、金属層を介してSiO基板上にタンタル酸リチウム薄膜を転写した後に、SiO基板のタンタル酸リチウム薄膜を転写した面の反対側にタンタル酸リチウムウェーハを貼り合わせて、LTMOI(lithium-tantalate-metal-on-insulator)構造を作製することを報告している。また、非特許文献3は、イオン注入層を形成したタンタル酸リチウムウェーハにシリコンウェーハを貼り合わせて、200℃で熱処理してイオン注入層で剥離させて、シリコンウェーハ上にタンタル酸リチウム薄膜を熱的に転写したことを報告している。
特許第3048201号公報
太陽誘電株式会社、"スマートフォンのRFフロントエンドに用いられるSAW-Duplexerの温度補償技術"、[online]、2012年11月8日、電波新聞ハイテクノロジー、[平成27年3月20日検索]、インターネット(URL:http://www.yuden.co.jp/jp/product/tech/column/20121108.html) A Tauzinら、"3-inch single-crystal LiTaO3 films onto metallic electrode using Smart CutTM technology"、Electric Letters、19th June 2008、Vol.44、No.13、p.822 Weill Liuら、"Fabrication of single-crystalline LiTaO3 film on silicon substrate using thin film transfer technology"、J. Vac. Sci. Technol. B26(1)、Jan/Feb 2008、p.206
 タンタル酸リチウム(LT)やニオブ酸リチウム(LN)等の酸化物単結晶は、硬く且つ非常に脆いものであり、また、図3に示すように、シリコン、ガラスおよびサファイアと比べて熱膨張係数が極めて大きい。このため、酸化物単結晶は、シリコン、ガラスおよびサファイア等の異種のウェーハと貼り合わせた後に高温で熱処理すると、両ウェーハの熱膨張係数の差によって、貼り合わせたウェーハの間で剥がれや割れが発生してしまうという問題がある。例えば、タンタル酸リチウムと、一般的に支持ウェーハとして用いられる、特に熱膨張係数が大きいサファイアとの差は、図3から確認できるとおり、7×10-6/K(=7ppm/K)以上もある。
 非特許文献2は、タンタル酸リチウムのウェーハと薄膜の間に、金属層とSiO基板を挟む構造とすることで、熱処理時に熱膨張の差によるウェーハの剥がれや割れを抑制し、タンタル酸リチウム薄膜の転写を可能とする報告である。しかし、この方法では、下地の基板を薄膜と同じタンタル酸リチウムとするため、上述した圧電材料としての課題である温度安定性は解決できない。また、熱処理を200℃以上としないと、薄膜を転写することができない。さらに、金属層を挟み込む構造であるため、適用可能な用途は制限される。また、ウェーハの割れを抑制するために高価なタンタル酸リチウムを必要以上に使用しなければならなく、製造コストが高くなる。
 非特許文献3は、熱処理を200~800℃で試みたと記載しているが、具体的にSmart-Cut法を用いてシリコンウェーハ上にタンタル酸リチウム薄膜を転写した例としては200℃のみであり、また、この例において、シリコンウェーハの全面にタンタル酸リチウム薄膜を転写し得たか否かについては記載されていない。本発明者らは、非特許文献3と同様の手法を用いて、200℃での熱処理による剥離についての検証実験を行ったところ、タンタル酸リチウム薄膜は、シリコンウェーハの全面には転写されず、ごく一部分においてのみ転写が認められた。特に、シリコンウェーハの外周部分においては、タンタル酸リチウム薄膜が全く転写されなかった。これは、熱処理中に両ウェーハの熱膨張の差に起因して貼り合わせウェーハの反りが生じ、シリコンウェーハの外周部分においてタンタル酸リチウムウェーハとの貼り合わせ界面から剥がれたものと思われる。また、熱処理温度を200℃以上とした場合についても、上述したように、両ウェーハの熱膨張の差に起因した貼り合わせウェーハの反りを抑制できず、シリコンウェーハの全面にタンタル酸リチウム薄膜を安定的に転写することができないと推察する。
 本発明者らは、鋭意検討を行った結果、予想に反して、熱膨張係数の近い材料を組み合わせて応力の発生を抑える従来のアプローチとは異なり、敢えて酸化物単結晶と熱膨張係数が大きく異なる(具体的には酸化物単結晶よりも7ppm/K以上熱膨張係数の小さい)材料を支持ウェーハとして選択することにより、低コスト、かつ、貼り合わせ界面で剥がれや割れが生じにくい、支持ウェーハ上に酸化物単結晶薄膜を備えた複合ウェーハの製造方法を見出した。具体的には、所定の水素イオン注入量を用いてイオン注入層を形成した酸化物単結晶ウェーハと、酸化物単結晶より熱膨張係数の小さい支持ウェーハとを、表面活性化処理などでウェーハ間に結合力を付与した状態で貼り合わせ、熱剥離を生じさせない程度の低温で熱処理を加えた後に、接合体のイオン注入層に超音波振動を与えることで、貼り合わせ界面の接合を維持したまま、イオン注入層の脆化を一気に進めて剥離できることを見出した。
 すなわち、本発明は、一態様によれば、
 タンタル酸リチウムウェーハまたはニオブ酸リチウムウェーハである酸化物単結晶ウェーハの表面から水素原子イオンまたは水素分子イオンを注入し、前記酸化物単結晶ウェーハの内部にイオン注入層を形成する工程と、
 前記酸化物単結晶ウェーハのイオン注入した表面と、前記酸化物単結晶ウェーハと貼り合わせようとする支持ウェーハの表面の少なくとも一方に、表面活性化処理を施す工程と、
 前記表面活性化処理を施した後、前記酸化物単結晶ウェーハのイオン注入した表面と、前記支持ウェーハの表面とを貼り合わせて接合体を得る工程と、
 前記接合体を90℃以上であって割れを生じない温度で熱処理する工程と、
 前記熱処理した接合体に超音波振動を与える工程であって、前記イオン注入層に沿って剥離し、前記支持ウェーハ上に転写された酸化物単結晶薄膜を得る、工程と
を少なくとも含み、
  前記水素原子イオンの注入量が、5.0×1016atom/cm~2.75×1017atom/cmであり、前記水素分子イオンの注入量が、2.5×1016atoms/cm~1.37×1017atoms/cmである、
支持ウェーハ上に酸化物単結晶薄膜を備えた複合ウェーハの製造方法を提供することができる。
 本発明の製造方法によれば、支持ウェーハと酸化物単結晶薄膜との貼り合わせ界面での密着性が高く、且つ、剥がれや割れが生じにくく、支持ウェーハ上の全面に均一の厚みの酸化物単結晶薄膜が転写された複合ウェーハを得ることができる。また、支持ウェーハ上に酸化物単結晶薄膜を転写して分離した後の酸化物単結晶ウェーハを、再度、複合ウェーハの製造に用いることができ、低コスト化することが可能となる。
本発明の一態様の複合ウェーハの製造方法の模式図である。 接合体に超音波振動を与える工程の他の態様の概念図である。 各種材料の熱膨張係数を比較した図である。
 以下、本発明を実施するための形態を詳細に説明するが、本発明の範囲は、この形態に限定されるものではない。
 本発明は、一態様によれば、支持ウェーハ上に酸化物単結晶薄膜を備えた複合ウェーハの製造方法に関する。
 支持ウェーハは、例えば、貼り合わせる酸化物単結晶ウェーハの熱膨張係数よりも7ppm/K以上小さい材料からなるウェーハであってもよい。支持ウェーハは、サファイアウェーハ、シリコンウェーハ、酸化膜付きシリコンウェーハおよびガラスウェーハ等が挙げられる。支持ウェーハの大きさは、特に限定されるものではないが、例えば直径75~150mm、厚さ0.2~0.8mmのウェーハであってもよい。支持ウェーハは、市販されているものを用いてもよいが、特に限定されるものではない。例えば、酸化膜付きシリコンウェーハは、少なくとも貼り合わせる表面に酸化膜を有するシリコンウェーハであり、シリコンウェーハを大気雰囲気下700~1200℃で熱処理することで、シリコンウェーハの表面上に酸化膜を作製してもよい。酸化膜付きシリコンウェーハの酸化膜の厚さは、特に限定されるものではないが、10~500nmであることが好ましい。
 酸化物単結晶は、リチウムと、タンタルまたはニオブ等の金属元素と、酸素とからなる化合物であって、例えばタンタル酸リチウム(LiTaO)やニオブ酸リチウム(LiNbO)が挙げられる。酸化物単結晶は、特にレーザー素子あるいは圧電素子、表面弾性波素子等の用途において、タンタル酸リチウム単結晶またはニオブ酸リチウム単結晶であることが好ましい。酸化物単結晶は、通常、ウェーハの形状で用いられる。酸化物単結晶ウェーハの大きさは、特に限定されるものではないが、例えば直径75~150mm、厚さ0.2~0.8mmのウェーハであってもよい。酸化物単結晶ウェーハは、市販されているものを用いてもよいが、チョクラルスキー法等を用いた既報の製造方法(例えば特開2003-165795号、再公表2004-079061号)をそのまま用いてまたはそれらに記載される工程を組み合わせて作製してもよい。
 支持ウェーハおよび酸化物単結晶ウェーハは、貼り合わせる表面において、表面粗さRMSが1.0nm以下であることが好ましい。表面粗さRMSが1.0nmより大きいと、貼り合わせ界面に空隙が生じ、剥がれの原因となる場合がある。このため、表面粗さRMSが1.0nmより大きい場合は、化学機械研磨(Chemical Mechanical Polishing:CMP)によって所望の表面粗さとしてもよい。なお、表面粗さRMSは、例えば原子間力顕微鏡(Atomic Force Microscopy:AFM)によって評価することができる。
 酸化物単結晶ウェーハは、その表面から水素イオンを注入し、酸化物単結晶ウェーハの内部にイオン注入層を形成する。イオン注入層は、酸化物単結晶ウェーハの表面から所望の深さにイオン注入層を形成できるような注入エネルギーで、所定の線量の水素原子イオン(H)または水素分子イオン(H )を注入することにより形成される。このときの条件として、例えば注入エネルギーは50~200keVとすることができる。水素原子イオン(H)の場合、注入量は、5.0×1016atom/cm~2.75×1017atom/cmである。5.0×1016atom/cm未満だと、後の工程でイオン注入層の脆化が起こらない。2.75×1017atom/cmを超えると、イオン注入時にイオン注入した面においてマイクロキャビティが生じ、ウェーハ表面に凹凸が形成され所望の表面粗さが得られなくなる。また、水素分子イオン(H )の場合、注入量は、2.5×1016atoms/cm~1.37×1017atoms/cmである。2.5×1016atoms/cm未満だと、後の工程でイオン注入層の脆化が起こらない。1.37×1017atoms/cmを超えると、イオン注入時にイオン注入した面においてマイクロキャビティが生じ、ウェーハ表面に凹凸が形成され所望の表面粗さが得られなくなる。水素原子イオンの注入量は、水素分子イオンの注入量の2倍であってもよい。
 次に、酸化物単結晶ウェーハのイオン注入した表面と、酸化物単結晶ウェーハと貼り合わせようとする支持ウェーハの表面の少なくとも一方に、表面活性化処理を施す。表面活性化処理を施す表面は、酸化物単結晶ウェーハのイオン注入した表面と、酸化物単結晶ウェーハと貼り合わせようとする支持ウェーハの表面の両方であってもよく、少なくとも一方である。表面活性化処理を施すことで、貼り合わせた後に接合強度を高めるための高温での熱処理を用いなくてもよく、比較的低温でも所望の接合強度を得ることができる。とりわけ、タンタル酸リチウムやニオブ酸リチウムなどの硬くて脆い酸化物単結晶ウェーハと、酸化物単結晶ウェーハと比較して熱膨張係数が非常に小さい支持ウェーハとを用い、上述したように表面活性化処理を施して貼り合わせた場合、後の比較的低温での熱処理によって、酸化物単結晶ウェーハと支持ウェーハの熱膨張係数の差から、貼り合わせ界面と並行となる方向に発生した大きな剪断応力が、表面活性化処理によって剪断応力に対抗し得るのに十分な接合強度を付与した貼り合わせ界面ではなく、イオン注入層において剥離しない程度に破壊を促進されることができる。
 表面活性化処理の方法としては、オゾン水処理、UVオゾン処理、イオンビーム処理およびプラズマ処理等が挙げられる。オゾンで処理をする場合は、例えば、純水中にオゾンガスを導入してオゾン水とし、オゾン水中にウェーハを浸漬させることで、活性なオゾンで表面を活性化することができる。また、UVオゾン処理をする場合は、例えば、大気もしくは酸素ガスに短波長のUV光(例えば波長195nm程度)を照射して活性なオゾンを発生させた雰囲気中にウェーハを保持することで、表面を活性化することができる。イオンビーム処理をする場合は、例えば、高真空中(例えば1×10-5Pa未満)でAr等のイオンビームをウェーハ表面に当て、活性度が高いダングリングボンドを露出させることで行うことができる。プラズマで処理をする場合、例えば、真空チャンバ中にウェーハを載置し、プラズマ用ガスを減圧(例えば0.2~1.0mTorr)下で5~60秒程度さらし、表面をプラズマ処理する。プラズマ用ガスとしては、表面を酸化する場合には酸素ガス、酸化しない場合には水素ガス、窒素ガス、アルゴンガスまたはこれらの混合ガスを用いることができる。プラズマで処理することにより、ウェーハ表面の有機物が酸化して除去され、さらに表面のOH基が増加し活性化する。
 次に、表面活性化処理を施した後、酸化物単結晶ウェーハのイオン注入した表面と、支持ウェーハの表面とを貼り合わせて接合体を得る。酸化物単結晶ウェーハと支持ウェーハを貼り合わせる時の温度は、室温近傍(室温を含む)の温度、例えば10~50℃で行うことが好ましい。最終製品である複合ウェーハは室温前後で用いられることが多く、貼り合わせる時もこの温度域に準拠していることが望ましい。なお、貼り合わせる時の温度は、貼り合わせを行う場所の温度、つまり周囲または装置内の雰囲気温度であってもよい。貼り合わせる時の温度は、例えば貼り合わせ装置内の雰囲気温度を設定することで制御することができる。なお、室温は、対象物に加熱も冷却も行わない周囲温度であり、特に限定されないが、例えば10~30℃、好ましくは25℃前後である。
 次に、接合体を90℃以上であって、例えば貼り合わせ界面に割れを生じない温度で熱処理する。90℃未満だと、酸化物単結晶ウェーハと支持ウェーハとの貼り合わせ界面での接合強度が不十分となり、貼り合わせ界面で剥がれが生じる場合がある。熱処理の温度は、用いる支持ウェーハに合わせて変化させてもよい。熱処理する工程における温度は、例えば、支持ウェーハがサファイアウェーハである場合は、好ましくは90~225℃であり、より好ましくは90~200℃である。支持ウェーハがシリコンウェーハまたは酸化膜付きシリコンウェーハである場合は、好ましくは90~200℃であり、より好ましくは90~175℃である。また、支持ウェーハがガラスウェーハである場合は、好ましくは90~110℃であり、より好ましくは90~100℃である。接合体を90℃以上であって割れを生じない温度で熱処理することによって、支持ウェーハと酸化物単結晶ウェーハとの貼り合わせ界面での接合力を向上させるだけでなく、後の工程においてイオン注入層を脆化しやすくすることも可能となる。熱処理手段としては、例えば熱処理炉やオーブン等が挙げられるが、特に限定されない。なお、接合体の温度は、例えば熱処理装置内に付随する熱電対などを用いて、炉やオーブン内の雰囲気温度を測定した温度であってもよい。上記温度での熱処理の時間は、割れや剥離を生じなければ特に限定されず、10分から数十時間、例えば100時間までとしてもよい。例えば、熱処理温度が90℃以上110℃未満である場合、10分間~100時間とすることが好ましく、熱処理温度が110℃以上175℃未満である場合、10分間~60時間とすることが好ましく、熱処理温度が175℃以上200℃未満である場合、10分間~24時間とすることが好ましく、熱処理温度が200℃以上225℃未満である場合、10分間~12時間とすることが好ましい。本発明によれば、接合体に保護ウェーハを備えることなく、熱処理することができるため、工程をより簡易化することが可能である。
 熱処理した接合体は、室温近傍(室温を含む)の温度、例えば10~50℃となるように放置するか、送風機等の冷却機を用いて冷却し、調節することが好ましい。例えば、熱処理した接合体を、25℃に調節した部屋で静置させて所望の温度としてもよい。接合体を貼り合わせ時と同様の室温近傍の温度とすることで、接合体の応力を低減でき、後の超音波振動を与える工程において、接合体の割れや欠陥を生じにくくさせることが可能となる。
 次に、熱処理した接合体に超音波振動を与え、イオン注入層に沿って剥離し、支持ウェーハ上に転写された酸化物単結晶薄膜を得る。超音波は、高い振動数をもつ弾性振動波(音波)である。接合体に超音波振動を与える方法としては、特に限定されず、振動子、例えば超音波カッターのような、超音波を印可した楔形状の刃を接合体の側面、例えばイオン注入層の端部に接触させることで与えてもよい。超音波の周波数としては、貼り合わせ界面に影響を与えることなくイオン注入層を脆化し得れば特に限定されないが、20~40kHzであることが好ましい。接合体に振動を与える他の方法としては、例えば超音波洗浄機のような振動子を備えた水槽を用いて、超音波を印可した水槽中に接合体を浸漬させて液体を介して与えてもよい。液体を介して接合体に超音波振動を与える場合、超音波振動を印加した水槽に1~60分間浸漬させることで、より確実にイオン注入層を剥離させることが可能となる。この場合の周波数としては、26kHz~1.6MHzであることが好ましい。上述した2つの方法は、併用して行うことも可能である。
 超音波を与える際に、場合によって、接合体の片側または両側の表面に、真空チャックまたは静電チャックなどの補強材を固定することが好ましい。例えば、補強材を、接合体の支持ウェーハ側の側面、または、接合体の酸化物単結晶ウェーハ側の側面、若しくは、接合体の支持ウェーハ側と酸化物単結晶ウェーハ側の両方の側面の表面に取り付けてもよい。真空チャックは、特に限定されるものではなく、多孔質ポリエチレン、アルミナ等の真空チャックが挙げられる。静電チャックは、特に限定されるものではなく、炭化ケイ素や窒化アルミニウム等のセラミクス製の静電チャックが挙げられる。真空チャックおよび静電チャックの形状は、特に限定されるものではないが、接合体の直径よりも大きいことが好ましい。補強材を用いることで、接合体に超音波振動を与えた際にイオン注入層以外での剥離や接合体の割れをより防止し、確実に剥離を行うことができる。
 超音波振動を与える時の接合体の温度は、加熱や冷却を行うことなく、あるいは、加熱や冷却を行って、室温近傍(室温を含む)の温度、例えば10~50℃とすることが好ましく、25~30℃とすることがより好ましい。超音波振動を与える時の接合体の温度は、周囲の雰囲気温度、例えば熱処理装置内に付随する熱電対などを用いて、炉やオーブン内の雰囲気温度を測定した温度であってもよいし、作業場の室内の温度であってもよいし、または、水槽内の水の温度であってもよい。超音波振動を与える時の接合体の温度は、上述した接合体を得る工程における貼り合わせる時の温度との間に所定の好ましい温度範囲を有している。例えば、接合体を得るための貼り合わせ時の温度と、超音波振動を与える時の接合体の温度との差は、好ましくは0~40℃以内であり、差が0℃に近いほど望ましい。所定の好ましい温度範囲を超えると、接合体の貼り合わせ界面に剥がれや割れが生じる場合がある。貼り合わせる時と超音波振動を与える時の接合体の温度の差を所定の範囲とすることで、熱膨張に起因する反りの応力を最小限とすることができ、欠陥等の発生が極力抑制され得る。なお、接合体を得る工程は、クリーンルーム等の環境下(25~30℃)で行うことが一般的であり、この場合、超音波振動を与える工程についても同様の雰囲気温度、つまり25~30℃程度で行うことが望ましい。
 以上の手法を用いることで、支持ウェーハと、支持ウェーハ上のタンタル酸リチウム薄膜またはニオブ酸リチウム薄膜である酸化物単結晶薄膜とを備えた複合ウェーハが得られる。得られた複合ウェーハの酸化物単結晶薄膜の厚さは、水素イオン注入時の水素イオンの注入深さに対応し、100~1000nmであることが好ましく、必要に応じてその表面を研磨してもよい。
 本発明にかかる複合ウェーハの製造工程は、特に限定されるものではないが、その一態様を図1に示す。酸化物単結晶ウェーハ11の表面から水素イオン12を注入し、酸化物単結晶ウェーハ11の内部にイオン注入層13を形成する(工程a)。酸化物単結晶ウェーハ11のイオン注入した表面11sと、酸化物単結晶ウェーハと貼り合わせる支持ウェーハ14の表面14sの両方に、イオンビーム15を照射して表面活性化処理を施す(工程b)。表面活性化処理を施した後、酸化物単結晶ウェーハのイオン注入した表面11sと、酸化物単結晶ウェーハと貼り合わせる支持ウェーハの表面14sとを貼り合わせて接合体16を得る(工程c)。得られた接合体16を90℃以上の温度で熱処理する(工程d)。熱処理した接合体16の側面、つまりイオン注入層13の端部に超音波カッターの楔状の刃19を接触させて、接合体16に超音波振動を与え、イオン注入層13に沿って酸化物単結晶ウェーハの一部11bを剥離し、支持ウェーハ14上に酸化物単結晶薄膜11aを転写することによって、複合ウェーハ18を得ることができる(工程e)。または、図2に工程eの別の態様を示すが、工程eにおいて、熱処理した接合体16を、振動子33を備えた水槽31に浸漬させて、水槽31に超音波を印可し、液体32を介して接合体16に超音波振動を与えて、イオン注入層13に沿って酸化物単結晶ウェーハの一部11bを剥離し、支持ウェーハ14上に酸化物単結晶薄膜11aを転写することによって、複合ウェーハ18を得てもよい。
 <実験1>
 支持ウェーハとして、直径100mm、厚さ0.35mmのサファイアウェーハを用いた。酸化物単結晶ウェーハとして、直径100mm、厚さ0.35mmのタンタル酸リチウムウェーハを用いた。サファイアウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSを原子間力顕微鏡で評価したところ、1.0nm以下であった。
 まず、サファイアウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面に、窒素雰囲気下でプラズマ活性化装置を用いてプラズマ処理を施し、表面活性化を行った。次に、表面活性化したサファイアウェーハおよびタンタル酸リチウムウェーハの表面を室温(25℃)で貼り合わせて接合体を得た。次に、接合体が70、80、90、100、110、125、150、175、200、225、250、または275℃となるように各々加熱し、各温度において24時間加熱処理を行った。加熱手段には、熱処理オーブンを用い、熱電対でオーブン内の雰囲気温度を測定して接合体の温度とした。得られた接合体の外観検査の結果を表1に示す。なお、外観検査は目視で行い、割れや欠けがないものを○、微小なクラックが有るものを△、ウェーハが破損したものを×とした。支持ウェーハをサファイアとすると、熱処理温度を70~225℃としたサンプルについては、割れや欠けが発生せず、接合していることが確認できた。
 <実験2>
 支持ウェーハとして、直径100mm、厚さ0.35mmのシリコンウェーハを用いて、接合体が70、80、90、100、110、125、150、175、200、または225℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実験1と同様に行った。なお、シリコンウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた接合体の外観検査の結果を表1に示す。支持ウェーハをシリコンとすると、熱処理温度を70~200℃としたサンプルについては、割れや欠けが発生せず、接合していることが確認できた。
 <実験3>
 支持ウェーハとして、直径100mm、厚さ0.35mmのシリコンウェーハ上に100nmの酸化膜を付したシリコンウェーハを用いて、接合体が70、80、90、100、110、125、150、175、200、または225℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実験1と同様に行った。なお、酸化膜付きシリコンウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた接合体の外観検査の結果を表1に示す。なお、酸化膜付きシリコンウェーハは、予めシリコンウェーハを1100℃で1時間程度加熱することにより、シリコンウェーハ上に100nmの熱酸化膜を成長させたシリコンウェーハとした。支持ウェーハを酸化膜付きシリコンとすると、熱処理温度を70~200℃としたサンプルについては、割れや欠けが発生せず、接合していることが確認できた。
 <実験4>
 支持ウェーハとして、直径100mm、厚さ0.35mmのガラスウェーハを用いて、接合体が70、80、90、100、110、または125℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実験1と同様に行った。なお、ガラスウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた接合体の外観検査の結果を表1に示す。支持ウェーハをガラスとすると、熱処理温度を70~110℃としたサンプルについては、割れや欠けが発生せず、接合していることが確認できた。
Figure JPOXMLDOC01-appb-T000001
                  
 実験1~4はタンタル酸リチウムウェーハを用いたが、酸化物単結晶ウェーハとしてニオブ酸リチウムウェーハを用いて実験1~4と同様の実験を行っても、表1と同じ結果を得た。また、表面活性化処理をプラズマ処理の代わりに、オゾン水処理、UVオゾン処理、真空イオンビーム処理とした場合でも、全く同一の結果が得られた。これらの結果から上記の活性化方法いずれの場合も有効であり、且つ、タンタル酸リチウムとニオブ酸リチウムとの間に差異は無いことが判明した。
 <実施例1>
 支持ウェーハとして、直径100mm、厚さ0.35mmのサファイアウェーハを用いた。酸化物単結晶ウェーハとして、直径100mm、厚さ0.35mmのタンタル酸リチウムウェーハを用いた。サファイアウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。
 まず、タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量7.0×1016atom/cm、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した。次に、イオン注入したタンタル酸リチウムウェーハの表面と、タンタル酸リチウムウェーハと貼り合わせるサファイアウェーハの表面に、7×10-6Pa下で真空イオンビーム装置を用いてArをイオン源とし、真空イオンビーム処理を施し、表面活性化を行った。次に、表面活性化したサファイアウェーハおよびタンタル酸リチウムウェーハの表面を室温(25℃)で貼り合わせて接合体を得た。次に、接合体が90、100、110、125、150、175、200、または225℃となるように各々加熱し、各温度において24時間加熱処理を行った。なお、加熱手段として、熱処理オーブンを用い、熱電対でオーブン内の雰囲気温度を測定して接合体の温度とした。熱処理した接合体を室温に下がるまで静置し、その後、室温(25℃)で、楔状の刃を備えた超音波カッターを用いて、接合体のイオン注入層の端部にカッター刃を接触した状態で超音波(30kHz)を印加して、イオン注入層に沿って剥離し、サファイアウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た。得られた複合ウェーハの外観検査の結果を表2に示す。なお、外観検査は、目視で行い、薄膜の転写がウェーハ全面において出来ているものを○、薄膜の転写が一部不良であるものを△、薄膜の転写ができなかったものを×とした。
 <比較例1>
 接合体を70℃で24時間加熱処理した以外は実施例1と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
 <比較例2>
 接合体を80℃で24時間加熱処理した以外は実施例1と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
 <実施例2>
 支持ウェーハとして、直径100mm、厚さ0.35mmのシリコンウェーハを用いて、接合体が90、100、110、125、150、175、または200℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実施例1と同様に行った。なお、シリコンウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた複合ウェーハの外観検査の結果を表2に示す。
 <比較例3>
 接合体を70℃で24時間加熱処理した以外は実施例2と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
 <比較例4>
 接合体を80℃で24時間加熱処理した以外は実施例2と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
 <実施例3>
 支持ウェーハとして、直径100mm、厚さ0.35mmのシリコンウェーハ上に100nmの酸化膜を付したシリコンウェーハを用いて、接合体が90、100、110、125、150、175、または200℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実施例1と同様に行った。なお、酸化膜付きシリコンウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた複合ウェーハの外観検査の結果を表2に示す。なお、酸化膜付きシリコンウェーハは、予めシリコンウェーハを1100℃で1時間程度加熱することにより、シリコンウェーハ上に100nmの熱酸化膜を成長させたシリコンウェーハとした。
 <比較例5>
 接合体を70℃で24時間加熱処理した以外は実施例3と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
 <比較例6>
 接合体を80℃で24時間加熱処理した以外は実施例3と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
 <実施例4>
 支持ウェーハとして、直径100mm、厚さ0.35mmのガラスウェーハを用いて、接合体が90、100、または110℃となるように各々加熱し、各温度において24時間加熱処理を行った以外は実施例1と同様に行った。なお、ガラスウェーハおよびタンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。得られた複合ウェーハの外観検査の結果を表2に示す。
 <比較例7>
 接合体を70℃で24時間加熱処理した以外は実施例4と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
 <比較例8>
 接合体を80℃で24時間加熱処理した以外は実施例4と同様にして実施した。得られた複合ウェーハの外観検査の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
                  
 表2に示すように、支持ウェーハをサファイアとし、熱処理温度を90~225℃としたサンプル、支持ウェーハをシリコンとし、熱処理温度を90~200℃としたサンプル、支持ウェーハを酸化膜付きシリコンとし、熱処理温度を90~200℃としたサンプル、および、支持ウェーハをガラスとし、熱処理温度を90~110℃としたサンプルについては、支持ウェーハ上の全面にタンタル酸リチウム薄膜が転写されたことを確認した。
 いずれの支持ウェーハにおいても、熱処理温度を70℃とした場合に、イオン注入層での剥離は生じず、貼り合わせた両ウェーハの界面で剥がれが生じた。また、熱処理温度を80℃とした場合には、支持ウェーハ上にタンタル酸リチウム薄膜が転写できた部分と一部未転写の部分が発生した。70℃および80℃ではイオン注入界面での脆化が十分でなく、また、両ウェーハの貼り合わせの接合力が不足し、全面転写に至らなかったものと思われる。
 酸化物単結晶ウェーハとしてニオブ酸リチウムウェーハを用いて実施例1~4と同様の実験についても行ったが、表2と同じ結果を得た。また、表面活性化処理を真空イオンビーム処理の代わりに、オゾン水処理、UVオゾン処理、プラズマ処理とした場合でも結果は全く同一であった。
 <実施例5>
 タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を5.0×1016、7.5×1016、10×1016、12.5×1016、15×1016、17.5×1016、20×1016、22.5×1016、25×1016、または27.5×1016atom/cm、加速電圧100KeVの条件で各々イオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成したことと、接合体を90℃で24時間加熱処理を行った以外は実施例1と同様に実施した。
 <比較例9>
 タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を4.0×1016atom/cm、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した以外は実施例5と同様に実施した。
 <参考例1>
 酸化物単結晶ウェーハとして、直径100mm、厚さ0.35mmのタンタル酸リチウムウェーハを用いた。タンタル酸リチウムウェーハの互いに貼り合わせに用いる面の表面粗さRMSは、1.0nm以下であった。タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量30×1016atom/cm、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した。結果、貼り合わせる前のタンタル酸リチウムウェーハの表面上に凹凸が観察され、貼り合わせ時の所望の表面粗さとならないため貼り合わせを行わなかった。タンタル酸リチウムウェーハの表面上の凹凸は、注入した水素が固溶しきれずに内部で発泡したため生じたと思われる。
 <実施例6>
 タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を5.0×1016、7.5×1016、10×1016、12.5×1016、15×1016、17.5×1016、20×1016、22.5×1016、25×1016、または27.5×1016atom/cm、加速電圧100KeVの条件で各々イオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成したことと、接合体を90℃で24時間加熱処理を行った以外は実施例2と同様に実施した。
 <比較例10>
 タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を4.0×1016atom/cm、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した以外は実施例6と同様に実施した。
 <実施例7>
 タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を5.0×1016、7.5×1016、10×1016、12.5×1016、15×1016、17.5×1016、20×1016、22.5×1016、25×1016、または27.5×1016atom/cm、加速電圧100KeVの条件で各々イオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成したことと、接合体を90℃で24時間加熱処理を行った以外は実施例3と同様に実施した。
 <比較例11>
 タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を4.0×1016atom/cm、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した以外は実施例7と同様に実施した。
 <実施例8>
 タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を5.0×1016、7.5×1016、10×1016、12.5×1016、15×1016、17.5×1016、20×1016、22.5×1016、25×1016、または27.5×1016atom/cm、加速電圧100KeVの条件で各々イオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成したことと、接合体を90℃で24時間加熱処理を行った以外は実施例4と同様に実施した。
 <比較例12>
 タンタル酸リチウムウェーハの表面から、水素原子イオンを用いて注入量を4.0×1016atom/cm、加速電圧100KeVの条件でイオン注入を行い、タンタル酸リチウムウェーハの内部にイオン注入層を形成した以外は実施例8と同様に実施した。
 水素原子イオン注入量を5.0×1016~27.5×1016atom/cmとした実施例5~8の場合、いずれの支持ウェーハを用いた場合でも、支持ウェーハ上の全面にタンタル酸リチウム薄膜が転写されたことを確認した。一方、水素原子イオン注入量を4.0×1016atom/cmとした比較例9~12の場合、いずれの支持ウェーハを用いた場合でも、タンタル酸リチウムウェーハのイオン注入層で剥離は生じなかった。これはイオン注入量が十分ではなく、後の工程で脆化に至らなかったためと思われる。
 なお、実施例5~8では水素原子イオンを用いたが、水素分子イオンを用いてその注入量を水素原子イオンの注入量の半分とすることでも、同様の結果を得ることができた。また、酸化物単結晶ウェーハとしてニオブ酸リチウムウェーハを用いても実施例5~8と同じ結果を得ることができた。
 <実施例9>
 熱処理した接合体を室温に下がるまで静置し、その後、超音波洗浄機を用いて、25℃の水槽中に接合体を浸漬させ、水槽に超音波(26kHz)を120秒間印加して、水を介して接合体に超音波振動を与えてイオン注入層に沿って剥離し、サファイアウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た以外は、実施例1と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。なお、外観検査は、目視で行い、薄膜の転写がウェーハ全面において出来ているものを○、薄膜の転写が一部不良であるものを△、薄膜の転写ができなかったものを×とした。
 <比較例13>
 接合体を70℃で24時間加熱処理した以外は実施例9と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <比較例14>
 接合体を80℃で24時間加熱処理した以外は実施例9と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <実施例10>
 熱処理した接合体を室温に下がるまで静置し、その後、超音波洗浄機を用いて、25℃の水槽中に接合体を浸漬させ、水槽に超音波(26kHz)を120秒間印加して、水を介して接合体に超音波振動を与えてイオン注入層に沿って剥離し、シリコンウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た以外は、実施例2と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <比較例15>
 接合体を70℃で24時間加熱処理した以外は実施例10と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <比較例16>
 接合体を80℃で24時間加熱処理した以外は実施例10と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <実施例11>
 熱処理した接合体を室温に下がるまで静置し、その後、超音波洗浄機を用いて、25℃の水槽中に接合体を浸漬させ、水槽に超音波(26kHz)を120秒間印加して、水を介して接合体に超音波振動を与えてイオン注入層に沿って剥離し、酸化膜付きシリコンウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た以外は、実施例3と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <比較例17>
 接合体を70℃で24時間加熱処理した以外は実施例11と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <比較例18>
 接合体を80℃で24時間加熱処理した以外は実施例11と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <実施例12>
 熱処理した接合体を室温に下がるまで静置し、その後、超音波洗浄機を用いて、25℃の水槽中に接合体を浸漬させ、水槽に超音波(26kHz)を120秒間印加して、水を介して接合体に超音波振動を与えてイオン注入層に沿って剥離し、ガラスウェーハ上にタンタル酸リチウム薄膜を転写した複合ウェーハを得た以外は、実施例4と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <比較例19>
 接合体を70℃で24時間加熱処理した以外は実施例12と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
 <比較例20>
 接合体を80℃で24時間加熱処理した以外は実施例12と同様にして実施した。得られた複合ウェーハの外観検査の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
                  
 表3に示すように、支持ウェーハをサファイアとし、熱処理温度を90~225℃としたサンプル、支持ウェーハをシリコンとし、熱処理温度を90~200℃としたサンプル、支持ウェーハを酸化膜付きシリコンとし、熱処理温度を90~200℃としたサンプル、および、支持ウェーハをガラスとし、熱処理温度を90~110℃としたサンプルについては、支持ウェーハ上の全面にタンタル酸リチウム薄膜が転写されたことを確認した。
 いずれの支持ウェーハにおいても、熱処理温度を70℃とした場合に、イオン注入層での剥離は生じず、貼り合わせた両ウェーハの界面で剥がれが生じた。また、熱処理温度を80℃とした場合には、支持ウェーハ上にタンタル酸リチウム薄膜が転写できた部分と一部未転写の部分が発生した。70℃および80℃ではイオン注入界面での脆化が十分でなく、また、両ウェーハの貼り合わせの接合力が不足し、全面転写に至らなかったものと思われる。
 酸化物単結晶ウェーハとしてニオブ酸リチウムウェーハを用いて実施例9~12と同様の実験についても行ったが、表3と同じ結果を得た。また、表面活性化処理を真空イオンビーム処理の代わりに、オゾン水処理、UVオゾン処理、プラズマ処理とした場合でも結果は全く同一であった。
 11   :酸化物単結晶ウェーハ
 11s  :酸化物単結晶ウェーハの表面
 11a  :酸化物単結晶薄膜
 11b  :剥離した後の酸化物単結晶ウェーハの一部
 12   :水素イオン
 13   :イオン注入層
 14   :支持ウェーハ
 14s  :支持ウェーハの表面
 15   :イオンビーム照射
 16   :接合体
 18   :複合ウェーハ
 19   :超音波カッターの楔状の刃
 31   :水槽
 32   :水槽中の液体
 33   :振動子

Claims (7)

  1.  タンタル酸リチウムウェーハまたはニオブ酸リチウムウェーハである酸化物単結晶ウェーハの表面から水素原子イオンまたは水素分子イオンを注入し、前記酸化物単結晶ウェーハの内部にイオン注入層を形成する工程と、
     前記酸化物単結晶ウェーハのイオン注入した表面と、前記酸化物単結晶ウェーハと貼り合わせようとする支持ウェーハの表面の少なくとも一方に、表面活性化処理を施す工程と、
     前記表面活性化処理を施した後、前記酸化物単結晶ウェーハのイオン注入した表面と、前記支持ウェーハの表面とを貼り合わせて接合体を得る工程と、
     前記接合体を90℃以上であって割れを生じない温度で熱処理する工程と、
     前記熱処理した接合体に超音波振動を与える工程であって、前記イオン注入層に沿って剥離し、前記支持ウェーハ上に転写された酸化物単結晶薄膜を得る、工程と
    を少なくとも含み、
      前記水素原子イオンの注入量が、5.0×1016atom/cm~2.75×1017atom/cmであり、前記水素分子イオンの注入量が、2.5×1016atoms/cm~1.37×1017atoms/cmである、
    支持ウェーハ上に酸化物単結晶薄膜を備えた複合ウェーハの製造方法。
  2.  前記支持ウェーハがサファイア、シリコン、酸化膜付きシリコン、およびガラスからなる群から選ばれるウェーハであり、
     前記熱処理する工程における前記温度が、前記支持ウェーハがサファイアウェーハであるときは90~225℃であり、前記支持ウェーハがシリコンウェーハまたは酸化膜付きシリコンウェーハであるときは90~200℃であり、前記支持ウェーハがガラスウェーハであるときは90~110℃である、請求項1に記載の複合ウェーハの製造方法。
  3.  前記接合体を得るための前記貼り合わせ時の温度と、前記超音波振動を与える時の前記接合体の温度との差が、0~40℃以内である、請求項1または2に記載の複合ウェーハの製造方法。
  4.  前記表面活性化処理が、オゾン水処理、UVオゾン処理、イオンビーム処理、およびプラズマ処理から選ばれる、請求項1~3のいずれか1項に記載の複合ウェーハの製造方法。
  5.  前記超音波振動を与える工程が、振動子を前記接合体の側面に接触させることを含む、請求項1~4のいずれか1項に記載の複合ウェーハの製造方法。
  6.  前記超音波振動を与える工程が、液体を介して前記接合体に前記超音波振動を与えることを含む、請求項1~4のいずれか1項に記載の複合ウェーハの製造方法。
  7.  請求項1~6のいずれか1項に記載の複合ウェーハの製造方法によって得られる、支持ウェーハと、前記支持ウェーハ上のタンタル酸リチウム薄膜またはニオブ酸リチウム薄膜である酸化物単結晶薄膜とを備えた複合ウェーハ。
     
PCT/JP2016/066283 2015-06-02 2016-06-01 酸化物単結晶薄膜を備えた複合ウェーハの製造方法 WO2016194977A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177033744A KR102554056B1 (ko) 2015-06-02 2016-06-01 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법
US15/577,456 US10770648B2 (en) 2015-06-02 2016-06-01 Method for producing composite wafer having oxide single-crystal film
EP16803411.4A EP3306644B1 (en) 2015-06-02 2016-06-01 Method for producing composite wafer provided with oxide single-crystal thin film
CN201680032041.6A CN107615448B (zh) 2015-06-02 2016-06-01 具备氧化物单晶薄膜的复合晶片的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-112333 2015-06-02
JP2015112333A JP6396853B2 (ja) 2015-06-02 2015-06-02 酸化物単結晶薄膜を備えた複合ウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2016194977A1 true WO2016194977A1 (ja) 2016-12-08

Family

ID=57442047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/066283 WO2016194977A1 (ja) 2015-06-02 2016-06-01 酸化物単結晶薄膜を備えた複合ウェーハの製造方法

Country Status (7)

Country Link
US (1) US10770648B2 (ja)
EP (1) EP3306644B1 (ja)
JP (1) JP6396853B2 (ja)
KR (1) KR102554056B1 (ja)
CN (1) CN107615448B (ja)
TW (1) TWI713123B (ja)
WO (1) WO2016194977A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6858587B2 (ja) * 2017-02-16 2021-04-14 株式会社ディスコ ウエーハ生成方法
JP6858586B2 (ja) * 2017-02-16 2021-04-14 株式会社ディスコ ウエーハ生成方法
FR3078822B1 (fr) * 2018-03-12 2020-02-28 Soitec Procede de preparation d’une couche mince de materiau ferroelectrique a base d’alcalin
KR102287005B1 (ko) * 2018-06-22 2021-08-09 엔지케이 인슐레이터 엘티디 접합체 및 탄성파 소자
CN109166793B (zh) * 2018-08-30 2021-11-09 哈尔滨工业大学 一种利用先真空紫外光再氮等离子体两步活化直接键合铌酸锂和硅晶片的方法
FR3093715B1 (fr) * 2019-03-15 2021-03-05 Soitec Silicon On Insulator Dispositif de maintien pour un ensemble à fracturer
CN110296578B (zh) * 2019-06-28 2021-08-24 京东方科技集团股份有限公司 一种干燥方法及干燥设备
CN113714649B (zh) * 2021-08-25 2023-07-14 深圳市大族半导体装备科技有限公司 晶片的制造方法
FR3131980B1 (fr) * 2022-01-17 2024-01-12 Soitec Silicon On Insulator Procédé de fabrication d’un substrat donneur pour le transfert d’une couche piézoélectrique et procédé de transfert d’une couche piézoélectrique sur un substrat support
CN117438293B (zh) * 2023-12-20 2024-03-12 青禾晶元(晋城)半导体材料有限公司 一种注入剥离方法以及其中氢离子注入的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231912A (ja) * 2001-01-31 2002-08-16 Canon Inc 薄膜半導体装置の製造方法
JP2003095798A (ja) * 2001-09-27 2003-04-03 Hoya Corp 単結晶基板の製造方法
JP2010109949A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd 電子デバイスの製造方法および圧電デバイスの製造方法
JP2013149853A (ja) * 2012-01-20 2013-08-01 Shin Etsu Chem Co Ltd 薄膜付き基板の製造方法
WO2014017369A1 (ja) * 2012-07-25 2014-01-30 信越化学工業株式会社 ハイブリッド基板の製造方法及びハイブリッド基板
JP2015046486A (ja) * 2013-08-28 2015-03-12 信越化学工業株式会社 窒化物半導体薄膜を備えた複合基板の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604599B2 (ja) * 1976-03-17 1985-02-05 株式会社東芝 タンタル酸リチウム単結晶の製造方法
US5668057A (en) * 1991-03-13 1997-09-16 Matsushita Electric Industrial Co., Ltd. Methods of manufacture for electronic components having high-frequency elements
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
CA2133300C (en) * 1993-11-01 1999-04-27 Hirotoshi Nagata Optical waveguide device
EP0742598B1 (en) * 1995-05-08 2000-08-02 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a composite substrate and a piezoelectric device using the substrate
US6319430B1 (en) * 1997-07-25 2001-11-20 Crystal Technology, Inc. Preconditioned crystals of lithium niobate and lithium tantalate and method of preparing the same
JPH11163363A (ja) 1997-11-22 1999-06-18 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US6540827B1 (en) 1998-02-17 2003-04-01 Trustees Of Columbia University In The City Of New York Slicing of single-crystal films using ion implantation
JP2000269779A (ja) * 1999-03-18 2000-09-29 Shin Etsu Chem Co Ltd 弾性表面波又は疑似弾性表面波デバイス用圧電性単結晶ウェーハ及びその製造方法
JP2002353082A (ja) 2001-05-28 2002-12-06 Shin Etsu Handotai Co Ltd 貼り合わせウェーハの製造方法
US6803028B2 (en) * 2002-04-08 2004-10-12 Corning Incorporated Method of making stoichiometric lithium niobate
KR20050103515A (ko) * 2003-03-06 2005-10-31 신에쓰 가가꾸 고교 가부시끼가이샤 탄탈산 리튬 결정의 제조방법
US7374612B2 (en) * 2003-09-26 2008-05-20 Shin-Etsu Chemical Co., Ltd. Method of producing single-polarized lithium tantalate crystal and single-polarized lithium tantalate crystal
JP5064695B2 (ja) 2006-02-16 2012-10-31 信越化学工業株式会社 Soi基板の製造方法
US7763502B2 (en) 2007-06-22 2010-07-27 Semiconductor Energy Laboratory Co., Ltd Semiconductor substrate, method for manufacturing semiconductor substrate, semiconductor device, and electronic device
KR101484296B1 (ko) 2007-06-26 2015-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 기판의 제작방법
JP5110092B2 (ja) * 2007-12-25 2012-12-26 株式会社村田製作所 複合圧電基板の製造方法
JP5389627B2 (ja) 2008-12-11 2014-01-15 信越化学工業株式会社 ワイドバンドギャップ半導体を積層した複合基板の製造方法
JP5455595B2 (ja) 2008-12-11 2014-03-26 信越化学工業株式会社 貼り合わせウェーハの製造方法
JP5643509B2 (ja) * 2009-12-28 2014-12-17 信越化学工業株式会社 応力を低減したsos基板の製造方法
FR2961719B1 (fr) 2010-06-24 2013-09-27 Soitec Silicon On Insulator Procede de traitement d'une piece en un materiau compose
US20120247686A1 (en) * 2011-03-28 2012-10-04 Memc Electronic Materials, Inc. Systems and Methods For Ultrasonically Cleaving A Bonded Wafer Pair
CN104078407B (zh) 2013-03-29 2018-12-04 济南晶正电子科技有限公司 薄膜和制造薄膜的方法
US10095057B2 (en) * 2013-10-23 2018-10-09 Honeywell International Inc. Treatment and/or stabilizing gases in an optical gyro based on an inorganic waveguide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231912A (ja) * 2001-01-31 2002-08-16 Canon Inc 薄膜半導体装置の製造方法
JP2003095798A (ja) * 2001-09-27 2003-04-03 Hoya Corp 単結晶基板の製造方法
JP2010109949A (ja) * 2008-10-31 2010-05-13 Murata Mfg Co Ltd 電子デバイスの製造方法および圧電デバイスの製造方法
JP2013149853A (ja) * 2012-01-20 2013-08-01 Shin Etsu Chem Co Ltd 薄膜付き基板の製造方法
WO2014017369A1 (ja) * 2012-07-25 2014-01-30 信越化学工業株式会社 ハイブリッド基板の製造方法及びハイブリッド基板
JP2015046486A (ja) * 2013-08-28 2015-03-12 信越化学工業株式会社 窒化物半導体薄膜を備えた複合基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306644A4 *

Also Published As

Publication number Publication date
CN107615448B (zh) 2021-07-20
EP3306644A1 (en) 2018-04-11
JP2016225539A (ja) 2016-12-28
EP3306644A4 (en) 2019-01-23
EP3306644B1 (en) 2022-03-16
TW201717289A (zh) 2017-05-16
US20180151797A1 (en) 2018-05-31
KR20180014701A (ko) 2018-02-09
CN107615448A (zh) 2018-01-19
JP6396853B2 (ja) 2018-09-26
KR102554056B1 (ko) 2023-07-10
TWI713123B (zh) 2020-12-11
US10770648B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
JP6454606B2 (ja) 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
JP6396853B2 (ja) 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
WO2016194976A1 (ja) 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
JP6396854B2 (ja) 酸化物単結晶薄膜を備えた複合ウェーハの製造方法
KR102371887B1 (ko) 산화물 단결정 박막을 구비한 복합 웨이퍼의 제조 방법
TW202213942A (zh) 具備壓電性單結晶膜之複合基板的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16803411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177033744

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15577456

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016803411

Country of ref document: EP