CN1124364A - 束致变蚀技术 - Google Patents
束致变蚀技术 Download PDFInfo
- Publication number
- CN1124364A CN1124364A CN 94118843 CN94118843A CN1124364A CN 1124364 A CN1124364 A CN 1124364A CN 94118843 CN94118843 CN 94118843 CN 94118843 A CN94118843 A CN 94118843A CN 1124364 A CN1124364 A CN 1124364A
- Authority
- CN
- China
- Prior art keywords
- bombardment
- sio
- corrosion
- catalyst
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Drying Of Semiconductors (AREA)
Abstract
本发明涉及半导体芯片二氧化硅表面束致变蚀技术。本发明包括使用一种或两种粒子束诸如离子束、电子束和等离子束对二氧化硅表面进行选择轰击,使二氧化硅表面的腐蚀特性发生明显变化;在该选择轰击的二氧化硅表面上涂一层催化剂混合物层;在一定温度下经过用氮鼓泡的氟化氢溶液的混合气体中腐蚀。可使选择轰击二氧化硅表面的二个区的腐蚀速率比达到1∶100,刻蚀分辨率为亚微米级,正负图形可变并且清晰完整,可靠性高。
Description
本发明涉及半导体集成电路及器件制造领域,特另涉及作为集成电路制作中、介质膜SiO2的图形制作技术的束致变蚀技术。
随着微电子技术的不断发展,半导体集成电路进入了VLSI时代,由于VLSI所具有的高性能和高可靠性,它已成为电子工业的基础和核心,而工艺技术又成为发展大规模集成电路的关键,其中,微细图形加工技术的发展又直接导致器件的小型化和高性能化,可使芯片面积大为缩小,实现高集成度。
集成电路制造业的飞速发展已使电路特征尺寸进入亚微米级,常规光刻的尺寸限制和固有弊病已经迫使人们必须寻求其它有效的光刻手段,这些手段中就有已知的离子束曝光,电子束曝光以及软X-射线曝光等光刻技术。但这些光刻技术尽管已能满足制作亚微米级光刻图形的需要,但终究未脱离曝光、显影、坚膜、腐蚀等一系列固有的烦琐工艺模式,因而,不可避免由相应各步骤所引入的缺陷和偏差,因此,它们的应用仍是有局限性的。80年代曾有报通,用N、He、Ar、H离子注入SiO2薄层表面后,用10%HF水溶液腐蚀(湿法)SiO2,获得增蚀效果,注入区(离子轰击区)与非注入区的腐蚀速率比为5倍,离子剂量为72×1016cm-2,能量为30~100KeV,线宽分辨率为0.05μm[J.R.A.C.Leaver,P.J.Heard,A.F.Evason and H.Ahmed,Appl.phys.Lett49/11(1986)];另外也有人用同样方法做出两区的最大腐蚀速率比为8倍。这种增蚀效果虽得到实现,但得不到足够的腐蚀速率比,因而实用性不大,何况又都脱离不了湿法腐蚀固有的弊端;也有文章报导,将离子注入后在SiO2表面产生抗蚀效果的[T.shiokawa,I.Migamoto,P.H.Kim,Y.Ochiai,A.Masuyama,K.Toyoda and S.Namba,Jph,J.Appl.Pbys.24/11(1985)],他们是在Si或SiO2上注入金属子取得的,而金属离子又难以获得,并且又仍沿用湿法腐蚀,因此也未进入实用。此外,在一个芯片的许多引线孔中用时有不同形式的SiO2存在,如P-SiO2、B-SiO2等,其腐蚀速率相差很大,从而影响所制作的图形。更且,只能用一种束向一个方向改变腐蚀而不可能使其恢复,也即只有单向性而无可逆性。为克服上术缺点,发明人对离子注入SiO2或Si表面进行了研究探索,1982年发现离子束注入抗蚀效应,1985年又探索了电子束抗蚀技术,尔后又研究了离子束、电子束和等离子体束的相互关系,经过多年实验与实践,终于完成本发明。
本发明目的在于:提供一种半导体芯片SiO2表面图形加工束致变蚀技术。也即无掩膜、无光刻胶、全干法束致变蚀技术。该技术能避免光刻和湿法腐蚀的缺点,提高SiO2表面粒子束轰击区与非轰击区的腐蚀速率比,使两个区的腐蚀率比达100倍,简化工艺,提高半导体芯片表面微细图形加工的成品率,节省大量化学试剂和减少污染,并能制作亚微米级微细图形。
本发明目的是这样实现的:所提供的束致变蚀技术包括如下步骤:
第一步:用一种或两种粒子束诸如离子束、电子束、等离子体束对SiO2表面进行选择轰击,使SiO2表面能发生明显变化,使随后在用氮气鼓泡HF溶液的混合气体中腐蚀后的轰击区与非轰击区的腐蚀速率比显着增大,所用离子束的离子是N.H.O.Ar,离子注入量是5×1015~1×1016(cm-2),能量为10KeV~100KeV,电子束轰击时所用两极电压为1800~2000V,轰击时间为大于5分钟;等离子体束轰击时所用能量为20~40W,轰击时间20~90秒;
第二步:在粒子束选择轰击的表面上涂一层厚度为200~6000A的催化剂混合物,该催化剂混合物有:
一、环己酮………………100ml
米蚩酮………………1g
肉桂酸………………1g
聚乙烯醇肉桂酸酯…2g;或者
二、环己酮………………100ml
2-羟基-5-硝基苊……1.5g
聚酯………………3g
二胺基二苯醚………0.5g
第三步:在涂上催化剂混合物膜的样品上在室温到190℃下,用氮气鼓泡HF溶液的混合气体进行腐蚀,腐蚀速率大于1000_/分钟;
第四步:去催化剂,即得到所需图形。
本发明效果良好,SiO2的腐蚀速率随催化剂剂量、催化剂种类不同而有不同变化,范围很广,可以从1000A/nin变到零,并且速率可控制;当离子注入剂量达1×1016(cm-2)时,腐蚀速率比(轰击区、非轰击区)达1∶100;刻蚀分辩率为亚微米;刻蚀图形正、负可变,图形清晰完整;工艺简化;可靠性高。
以下结合附图和实施例对本发明进行详细说明。
本发明束致变蚀技术是采用粒子束(离子束、电子束、等离子体束),对SiO2表面进行轰击,从而引起与增蚀作用(IBEE,IonBeam Enhanced Etching)相反的抗蚀作用(IBRE,Ion BeamResistant Etching),使半导体Si衬底上的的SiO2膜的注入区或轰击区的腐蚀速率大大降低,甚至降到完全不被腐蚀,从而可刻出负图形。例如离子注入,在氧化好的硅片上,即SiO2膜用N+、Ar+、O+、H+等离子进行选择注入,然后涂上一层200_~6000_的催化剂层,将该片子放入干法腐蚀系统中,以氮气携带HF溶液的混合气体在温度80~100℃下进行腐蚀数分钟,腐蚀后去掉催化剂得到如下结果:
(1)离子注入剂量与SiO2腐蚀率的关系如附图1所示,当注入离子剂量较低时,SiO2的腐蚀率随离子剂量的增加而减慢,当离子剂量达到1×1016(cm-2)时,SiO2的腐蚀速率不变,趋向为零,即达到临界剂量,达到抗蚀目的;
(2)注入不同离子(且当能量一定)时,不同剂量与SiO2腐蚀率的关系如附图2所示,从图可见,抗蚀性随注入离子的原子量增大而增强。在附图2中a曲线是H+;b曲线是B+;c曲线是N+,d曲线是P+,离子能量为60KeV。
(3)注入离子能量对SiO2腐蚀速率的影响不明显,如附图3所示。N+的注入剂量为1015(cm-2)。
(4)催化剂涂层对腐蚀速率与选择腐蚀有影响,如附图4所示,附图4中有两种(A是第一种;B是第二种,如后所述)催化剂,可见催化剂种类对腐蚀速率和选择腐蚀有一定影响,选择腐蚀比与注入离子的剂量关系非常密切,当剂量达到一定值时,选择腐蚀比较高,当剂量再增加时,选择腐蚀比不变。达到相同比时,所需剂量值不同,催化剂二所需剂量低。
以N、H、O、Ar离子的注入能量直接影响图形质量,能量高些可不影响选择腐蚀比,但大大减少侧向腐蚀,因此所用能量是10~100KeV,剂量为5×1015~1×1016(cm-2),催化剂涂层厚度为200~2000_。
又例如电子束轰击,电子束轰击是把样品放在高压电源的二个电极接正电的电板上进行轰击,有如下结果:
(1)当电压和电流一定时,轰击时间越长则SiO2腐蚀速率越小,如附图5所示,在该附图中示出在0.2A电流和2000V条件下,电子束轰击和离子注入的曲线,可见电子束和离子束轰击到一定时间,SiO2的腐蚀速率减少,趋向于零,达到抗蚀目的;
(2)当电流一定时,电子束轰去时间不变,则随两极电压变化而SiO2腐蚀速率下降,附图6中同时示出离子束,电子束和等离子体束。其中,离子束和电子束的抗蚀趋势相同,当两极电压达到2000~3000V时,SiO2腐蚀速率接近于零。
(3)两极电压大小对SiO2腐蚀速度比有影响,如附图7所示,当电压达到2000V时SiO2腐蚀速度比接近于1∶100;
(4)轰击时间对两个区腐蚀速率差有影响,如附图8所示,当电子束轰击到达5分钟以上时,两区腐蚀速率差接近于不变。
电子束轰击时两极电压在1800~2000V,轰击时间大于5分钟。等离子体是部分离化了的气体,其中有电子、离子和多种中性游离基,用等离子体束作了对SiO2轰击试验,结果同样使SiO2与HF及应速度减慢,有抗蚀效果,但与前两者不同处是无论怎样轰击始终找不到一个可使SiO2腐蚀速度趋于零的条件,如附图6所示其曲线下降平缓。
直到目前为止所有用拉子束对SiO2表面改性的都是一种束,尚未见到用两种束结合起来进行用的。在本发明中可用两种束轰击SiO2表面,从而可使第一种束所致的抗蚀性消失,这里称之为抗蚀消失效应。等离子体束在抗蚀消失效应中作用显著,在第一次为离子注入获得抗蚀效应的部位,再用等离子体束或电子束进行轰击时,则反应速度可恢复到轰击前的水平;当第一次为电子束轰击,而第二次为等离子体束轰击,也可达到抗蚀消失效应,而用离子束轰击则达不到恢复目的,可见第二次粒子束作用后所得到腐蚀速率的变化不仅与粒子束种类有关,而且还与粒子束作用的次序有关,由于这样的抗蚀消失效应,更便于制作出亚微米级图形,但用等离子体束作二次轰击时,轰击的能量和剂量是重要的,并非任意轰击即可取得抗蚀消失效应,轰击条件为真空度4×10-2托、轰击时间10~20秒,轰击功率10~25W以上。其反应如下表示: SiF4↑+H2O
束致变蚀的可逆性如附图9所示。
本发明是集成电路制作中介质膜SiO2的图形制作技术,其中,腐蚀工序也即SiO2膜与含水HF气体的反应速度是重要的。所谓SiO2和HF气体的反应速度是反应物SiO2随时间变化而减薄的量,其单位是每分钟减薄多少埃。在上述气-固反应系统中没有催化剂的参与是难以进行的。也即影响SiO2腐蚀速率有二个主要因素,其一是催化剂参与,其二是SiO2表面能的变化,这里先谈催化剂的参与。当SiO2表面覆盖一层催化剂膜后,在二者界面产生一个接触电场,当含水的氟化氢气与催化膜接触时,首先在其表面上吸附,然后反应气体通过催化剂膜扩散到SiO2与催化剂膜界面,在界面接触电场的作用下,氟化氢发生离化,从而加速反应的进行。反应产物(H2O、SiF4)迅速从界面扩散到催化剂膜外,使反应处于平衡态。该反应速度的快慢与界面电场的强弱有着密切的关系,而电场的强弱与SiO2表面及催化剂膜之间的接触电位差有关。也就是与达到平衡时聚集在界面双方的电荷多少及种类有关,当两者所带电荷多且相反时,反应速度加快;反之则慢。表面涂有催化剂的SiO2表面的反应速度虽因催化剂种类与温度有所不同,但其曲线形状相近,可近似地用 来表示,其.中,V是反应速度,T是反应温度,a是反应速度最高点,b.K和与6是常数。
本发明所用催化剂要求HF和H2O
气体分子与催化剂之间要形成不稳定的化学键,这与吸附的氢键有关,而且只有当催化剂对反应物分子的吸附是中等强度时,其催化活性才较高,而且在中等吸附范围内,其吸附强度越弱,则更有利向产物转化,其催化活性越高。催化剂的作用可看作是降低反应活化能,也可以看作是使反应的分子活化数目的增多,从而反应加速。催化反应可用下面几个反应式概括,其中,水的反应是不可缺少的:
本发明所用催化剂是复合催化剂,即有机物混合物,由主催化剂与催化剂骨架及栽体组成。
本发明中所用催化剂混合物有:
一、环己酮………………l00ml
米蚩酮………………lg
肉桂酸………………lg
聚乙烯醇肉桂酸酯…2g;或者
二、环己酮………………100ml
2-羟基-5-硝基苊……1.5g
聚酯………………3g
二胺基二苯醚………0.5g
以第一种催化剂混合物来说,米蚩酮和肉桂酸都是主催化剂,用于提高SiO2的腐蚀速率。环乙酮起到将主催化剂和催化剂骨架溶合为一体的作用,聚乙烯醇肉桂酸酯是催化剂骨架,其作用是成膜作用好;提高腐蚀均匀性和提高主催化剂的活性。在第二种催化剂混合物中,2-羟基-5-硝基苊及二胺基二苯醚是主催化剂,聚酯是催化剂骨架。
米蚩酮有两个碱性基团和一个可以和HF生成氢键的羰基,除氢键形成吸附外,碱性基团与HF作用形成化学键,该作用的作用能(化学键)比氢键大许多倍,所以米蚩酮吸附HF的能力强,起到良好催化腐蚀作用。
不同的催化剂膜吸附HF的量随温度变化有所不同,在室温为物理吸附,各催化剂的吸附量相同,随温度上升,化学吸附量增加。附图10示出四种催化剂,其中,e是聚乙烯醇肉桂酸酯;f是2-羟基-5-硝基苊,g是KPR胶,h是环化橡胶,从附图10可见在100℃时作为主催化剂的2-羟基-5-硝基苊的吸附量比其它催化剂在固体表面的附吸量都多。当温度继续升高,则有解吸出现。本发明采用的腐蚀温度为室温~190℃。
2-羟基-5-硝基苊可生成四个氢键,对氟化氢有一定的吸附能力。
催化剂活性与催化剂量有密切关系,而催化剂膜的厚度就意味着催化剂量的不同,膜越厚说明主催化剂越多,附图11示出HF的吸附量随催化剂膜厚的关系。在该图中,I曲线代表米蚩酮,II曲线代表聚乙烯醇肉桂酸酯,III曲线代表环乙酮,从附图可见,三种催化剂中以曲线I的活性最强。本发明催化剂膜厚随所用催化剂组合物不同而在200A~2000A。
实施例1
将单晶硅在1050℃以下湿氧氧化一层SiO2,其厚度为(20A-5μ),使用常规离子注入设备,能量为60KeV,剂量为1×1016(cm-2),进行选择注入,使用本发明催化剂混合物一,催化剂膜厚800A,温度为180℃,其工艺如附图12所示。结果,腐蚀速率比为1∶102,分辨率达到亚微米,得到如附图13所示用镂空掩膜注入后的离子注入显微照片(5μm线宽)。
实施例2
在两端分别设有高压电源正负极的真空容器中,将表面为SiO2的硅片样品放在接正极进行电子束轰击,两极电压为2×103V,轰击时间为5分钟,用本发明催化剂混合物二,催化剂厚度1000A,温度为150℃,其工艺同离子束注入,得到腐蚀速率比为1∶110,分辨率达到亚微米,得到如附图14用镂空掩膜的刻蚀图形照片,其线宽15μm。
实施例3
对具有SiO2膜表面的硅片在等离子体炉中进等离子体束轰击,其工艺流程与离子束、电子束相同,但所用两极电压为1900V,能量为40W,时间为80秒。
实施例4
当第一次用离子束或电子束使SiO2表面产生抗蚀效应,然后用等离子体束轰击,使其恢复原来状态,即使其抗蚀效应消失。如附图15所示,等离子体束功率为35W,轰击时间为20秒左右。用这种方法制作出亚微米级图形,刻蚀结果见附图16的扫描电镜照片。
Claims (3)
1.束致变蚀技术,其特征在于由下列步骤组成:
第一步:用一种或两种粒子束诸如离子束、电子束、等离子体束对SiO2表面进行选择轰击,使SiO2表面能发生明显变化,使在随后用氮气鼓泡HF溶液的混合气体中腐蚀后的轰击区与非轰击区的腐蚀速率比显著增大或恢复原状,所用离子束的离子是N、H、O、Ar,离子注入量是5×1015~1×1016(cm-2),能量为10KeV~100KeV,电子束轰击时所用两极电压为1800~2000V,轰击时间为大于5分钟;等离子体束轰击时所用能量为20~40W,轰击时间60~90秒:
第二步:在粒子束选择轰击的表面上涂一层厚度为200~2000A的催化剂混合物,该催化剂混合物有:
一、环乙酮 … 100ml
米蚩酮 … 1g
肉桂酸 … 1g
聚乙烯醇肉桂酸酯…2g;或者
二、环乙酮 … 100ml
2-羟基-5-硝基苊…1.5g
聚酯 … 3g
二胺基二苯醚 … 0.5g
第三步:在涂上催化剂组合物膜的样品上,在室温到190℃下,用氮气鼓泡HF溶液的混合气体进行腐蚀,腐蚀速率大于1000A/分钟;
第四步:去催化剂,即得到所需图形。
2.按照权利要求1所述束致变蚀技术,其特征在于:在第一次以离子束注入的具有抗蚀性的SiO2表面上,以电子束或等离子束作第二次轰击,使其抗蚀性消失。
3.按照权利要求1所述束致变蚀技术,其特征在于:在第一次以电子束轰击的具有抗蚀性的SiO2表面上,以等离子体束作第二次轰击,使其抗蚀性消失。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN94118843A CN1053764C (zh) | 1994-12-09 | 1994-12-09 | 束致变蚀方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN94118843A CN1053764C (zh) | 1994-12-09 | 1994-12-09 | 束致变蚀方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1124364A true CN1124364A (zh) | 1996-06-12 |
CN1053764C CN1053764C (zh) | 2000-06-21 |
Family
ID=5039045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN94118843A Expired - Fee Related CN1053764C (zh) | 1994-12-09 | 1994-12-09 | 束致变蚀方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1053764C (zh) |
Cited By (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1100606C (zh) * | 1998-11-11 | 2003-02-05 | 中国科学院大连化学物理研究所 | 一种活性中心高隔离过渡金属选择氧化催化剂 |
WO2010135949A1 (zh) * | 2009-05-25 | 2010-12-02 | 天津大学 | 单晶脆性材料粒子束辅助超精密加工方法 |
CN104620363A (zh) * | 2012-09-17 | 2015-05-13 | 应用材料公司 | 差别氧化硅蚀刻 |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9978564B2 (en) | 2012-09-21 | 2018-05-22 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US10062578B2 (en) | 2011-03-14 | 2018-08-28 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10147620B2 (en) | 2015-08-06 | 2018-12-04 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10424463B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5745234A (en) * | 1980-08-29 | 1982-03-15 | Mitsubishi Electric Corp | Method for formation of microscopic pattern |
-
1994
- 1994-12-09 CN CN94118843A patent/CN1053764C/zh not_active Expired - Fee Related
Cited By (114)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1100606C (zh) * | 1998-11-11 | 2003-02-05 | 中国科学院大连化学物理研究所 | 一种活性中心高隔离过渡金属选择氧化催化剂 |
WO2010135949A1 (zh) * | 2009-05-25 | 2010-12-02 | 天津大学 | 单晶脆性材料粒子束辅助超精密加工方法 |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US10062578B2 (en) | 2011-03-14 | 2018-08-28 | Applied Materials, Inc. | Methods for etch of metal and metal-oxide films |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US9887096B2 (en) | 2012-09-17 | 2018-02-06 | Applied Materials, Inc. | Differential silicon oxide etch |
CN104620363A (zh) * | 2012-09-17 | 2015-05-13 | 应用材料公司 | 差别氧化硅蚀刻 |
US9978564B2 (en) | 2012-09-21 | 2018-05-22 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10354843B2 (en) | 2012-09-21 | 2019-07-16 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US11264213B2 (en) | 2012-09-21 | 2022-03-01 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US11024486B2 (en) | 2013-02-08 | 2021-06-01 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10796922B2 (en) | 2014-10-14 | 2020-10-06 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10707061B2 (en) | 2014-10-14 | 2020-07-07 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10490418B2 (en) | 2014-10-14 | 2019-11-26 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10573496B2 (en) | 2014-12-09 | 2020-02-25 | Applied Materials, Inc. | Direct outlet toroidal plasma source |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US12009228B2 (en) | 2015-02-03 | 2024-06-11 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US10147620B2 (en) | 2015-08-06 | 2018-12-04 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10607867B2 (en) | 2015-08-06 | 2020-03-31 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US11158527B2 (en) | 2015-08-06 | 2021-10-26 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10424463B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US11476093B2 (en) | 2015-08-27 | 2022-10-18 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US11735441B2 (en) | 2016-05-19 | 2023-08-22 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US12057329B2 (en) | 2016-06-29 | 2024-08-06 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US11049698B2 (en) | 2016-10-04 | 2021-06-29 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10541113B2 (en) | 2016-10-04 | 2020-01-21 | Applied Materials, Inc. | Chamber with flow-through source |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10224180B2 (en) | 2016-10-04 | 2019-03-05 | Applied Materials, Inc. | Chamber with flow-through source |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10319603B2 (en) | 2016-10-07 | 2019-06-11 | Applied Materials, Inc. | Selective SiN lateral recess |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10770346B2 (en) | 2016-11-11 | 2020-09-08 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10242908B2 (en) | 2016-11-14 | 2019-03-26 | Applied Materials, Inc. | Airgap formation with damage-free copper |
US10600639B2 (en) | 2016-11-14 | 2020-03-24 | Applied Materials, Inc. | SiN spacer profile patterning |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10903052B2 (en) | 2017-02-03 | 2021-01-26 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10325923B2 (en) | 2017-02-08 | 2019-06-18 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10529737B2 (en) | 2017-02-08 | 2020-01-07 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11915950B2 (en) | 2017-05-17 | 2024-02-27 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11361939B2 (en) | 2017-05-17 | 2022-06-14 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10593553B2 (en) | 2017-08-04 | 2020-03-17 | Applied Materials, Inc. | Germanium etching systems and methods |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US11101136B2 (en) | 2017-08-07 | 2021-08-24 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10861676B2 (en) | 2018-01-08 | 2020-12-08 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10699921B2 (en) | 2018-02-15 | 2020-06-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US11004689B2 (en) | 2018-03-12 | 2021-05-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
Also Published As
Publication number | Publication date |
---|---|
CN1053764C (zh) | 2000-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1053764C (zh) | 束致变蚀方法 | |
US4473437A (en) | Dry etching method for organic material layers | |
US4880493A (en) | Electronic-carrier-controlled photochemical etching process in semiconductor device fabrication | |
US5651860A (en) | Ion-implanted resist removal method | |
CA1228180A (en) | Method of making a high performance small area, thin film transistor | |
CN1881078A (zh) | 形成抗蚀刻保护层的方法 | |
KR20160089515A (ko) | 직류 중첩 동결 | |
JP2626913B2 (ja) | シリコン表面の処理方法 | |
JPS6360891B2 (zh) | ||
CN1304552A (zh) | 减小半导体接触电阻的方法 | |
CN1816773A (zh) | 从基底上去除光致抗蚀剂的方法 | |
KR20000022632A (ko) | 건식 에칭 방법 및 건식 에칭 방법을 이용한 반도체 장치의 제조방법 | |
EP0250092B1 (en) | Method for removing resist | |
JP2700316B2 (ja) | 有機物質表面の改質方法 | |
EP0123560A2 (en) | Method for forming flattened film | |
JPH0722359A (ja) | 電子励起された脱離による電子ビーム誘導化学を用いて表面上にナノメートル・サイズの構造を作成する方法 | |
JP2002313777A (ja) | 集積回路構造を製造する方法 | |
KR20030062200A (ko) | 레지스트 패턴 형성방법 | |
JP2639372B2 (ja) | 半導体装置の製造方法 | |
JP3309095B2 (ja) | ドライ現像方法及び半導体装置の製造方法 | |
Mochiji et al. | Improved Dry Etching Resistance of Electron‐Beam Resist by Ion Exposure Process | |
JPS6376438A (ja) | パタ−ン形成方法 | |
JPS58220431A (ja) | 多結晶シリコン層中の開孔の端部角度を設定する方法 | |
JPH02102528A (ja) | アッシング方法 | |
JPH06349786A (ja) | 半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |