WO2010134619A1 - 人工多能性幹細胞からの上皮系前駆細胞・幹細胞群及び角膜上皮細胞群の分化誘導方法 - Google Patents

人工多能性幹細胞からの上皮系前駆細胞・幹細胞群及び角膜上皮細胞群の分化誘導方法 Download PDF

Info

Publication number
WO2010134619A1
WO2010134619A1 PCT/JP2010/058689 JP2010058689W WO2010134619A1 WO 2010134619 A1 WO2010134619 A1 WO 2010134619A1 JP 2010058689 W JP2010058689 W JP 2010058689W WO 2010134619 A1 WO2010134619 A1 WO 2010134619A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
epithelial
cell
cell group
medium
Prior art date
Application number
PCT/JP2010/058689
Other languages
English (en)
French (fr)
Inventor
西田幸二
林竜平
櫻井美晴
景山智文
山中伸弥
沖田圭介
Original Assignee
国立大学法人東北大学
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学, 国立大学法人京都大学 filed Critical 国立大学法人東北大学
Priority to US13/321,130 priority Critical patent/US20120142103A1/en
Priority to JP2011514473A priority patent/JPWO2010134619A1/ja
Publication of WO2010134619A1 publication Critical patent/WO2010134619A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3834Cells able to produce different cell types, e.g. hematopoietic stem cells, mesenchymal stem cells, marrow stromal cells, embryonic stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3869Epithelial tissues other than skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3895Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells using specific culture conditions, e.g. stimulating differentiation of stem cells, pulsatile flow conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0621Eye cells, e.g. cornea, iris pigmented cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0625Epidermal cells, skin cells; Cells of the oral mucosa
    • C12N5/0629Keratinocytes; Whole skin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/11Epidermal growth factor [EGF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/39Steroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/395Thyroid hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1323Adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • C12N2502/1394Bone marrow stromal cells; whole marrow
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells

Definitions

  • the present invention relates to a method for inducing differentiation of an epithelial progenitor / stem cell group or corneal epithelial cell group from induced pluripotent stem cells derived from mammalian somatic cells or undifferentiated stem cells, and cell groups induced by the method Related to the treatment of epithelial diseases.
  • Corneal transplantation by eye donation has been performed for refractory corneal epithelial diseases, but there are problems of absolute donor shortage and rejection after transplantation.
  • treatment methods using the patient's own limbal cells and oral mucosal epithelial cells have been developed.
  • a cultured corneal epithelial cell sheet is prepared from healthy eye corneal limbal cells and oral mucosal epithelial cells and transplanted to the affected eye (Patent Documents 1 and 2, Non-Patent Document 1).
  • the method using corneal limbal epithelial cells cannot be applied to patients with binocular diseases, and the oral mucosal epithelium does not differentiate into a complete corneal epithelium, which may cause blood vessel invasion after transplantation.
  • stem cells undifferentiated cells
  • ES cells embryonic stem cells
  • induced pluripotent stem cells having the same differentiation pluripotency as ES cells have been established by introducing specific factors into somatic cells and undifferentiated stem cells.
  • a typical example is iPS cells established by Yamanaka et al. (Patent Document 3, Non-Patent Documents 2 and 3).
  • Regenerative medicine using these induced pluripotent stem cells has no ethical problem and can also avoid the problem of rejection by using patient-derived cells as a source.
  • human embryos form three germ layers at the stage of development, namely, endoderm, mesoderm, and ectoderm.
  • the endoderm is the mucosal epithelium, liver and pancreas of the stomach and small intestine
  • the mesoderm is muscle, bone, blood vessels and blood, subcutaneous tissue, heart, kidney, etc.
  • the ectoderm is the nerve, eyes (corneal epithelium), epidermis Etc.
  • the neural crest that differentiates into peripheral nerves, glial cells, and some ganglia is sometimes called the fourth germ layer.
  • Non-Patent Documents 5 and 6 Non-Patent Documents 6 to 8).
  • An object of the present invention is to provide a novel means for treating epithelial diseases including corneal transplantation by creating epithelial stem cells / progenitor cells and corneal epithelial cells from the patient's own cells. Is to solve the problem.
  • the inventors have repeated experiments under various conditions in order to induce differentiation of target epithelial cells from induced pluripotent stem cells (iPS cells), and have the same morphology and properties as epithelial stem cells / progenitor cells in vivo.
  • iPS cells induced pluripotent stem cells
  • keratin 12 positive cells which are corneal epithelial differentiation markers, were successfully derived from the iPS cell-derived epithelial stem cells / progenitor cells.
  • this method can create epithelial stem cells / progenitor cells and corneal epithelial cells using induced pluripotent stem cells prepared from the patient's own cells, the cornea can be used without worrying about donor shortage and rejection. Playback is possible.
  • the obtained corneal epithelial cells are used as a stratified cultured corneal epithelial cell sheet by the above-described method, a better corneal regeneration treatment can be provided.
  • the present invention provides, as a first embodiment, a method for inducing differentiation of a group of keratin 14-positive and p63-positive epithelial progenitor cells / stem cells from induced pluripotent stem cells derived from mammalian somatic cells or undifferentiated stem cells.
  • said induced pluripotent stem cells are treated with epidermal growth factor and / or on a support selected from feeder cells or collagen (preferably type I, type IV), basement membrane matrix, amniotic membrane, fibronectin and laminin
  • a method comprising culturing using a medium for epidermal cells containing cholera toxin and serum.
  • the medium preferably further contains one or more selected from hydrocortisone, insulin, transferrin, and selenium.
  • the medium preferably contains BMP4 (Bone Morphogenetic Protein 4), and more preferably contains retinoic acid.
  • retinoic acid includes its normally used salts and derivatives.
  • feeder cells examples include stromal cells such as 3T3 cells, but are not limited thereto.
  • the induced pluripotent stem cells are preferably induced to differentiate into epithelial progenitor cells / stem cells without involving the formation of embryoid bodies.
  • the present invention provides, as a second embodiment, a method for inducing differentiation of a group of keratin 14 positive and p63 positive epithelial progenitor cells / stem cells from induced pluripotent stem cells derived from mammalian somatic cells or undifferentiated stem cells.
  • a method characterized by culturing the induced pluripotent stem cells on 3T3 cells or in the presence of a differentiation factor derived from 3T3 cells.
  • the induced pluripotent stem cells are cultured using an epidermal induction medium containing serum and / or BMP4 or an epidermal cell culture medium (for example, KCM medium) containing epithelial growth factor and / or cholera toxin and serum. Is done.
  • the epithelial induction medium may further contain one or more selected from retinoic acid, non-essential amino acids, ⁇ -mercaptoethanol, and sodium pyruvate.
  • the epidermal cell culture medium may further contain one or more selected from hydrocortisone, insulin, transferrin, and selenium.
  • the induced pluripotent stem cells are preferably cultured using a differentiation medium containing a serum substitute such as KSR and / or BMP4 before culturing using an epithelial induction medium or epidermal cell culture medium.
  • the differentiation medium further preferably contains retinoic acid, and may contain one or more selected from non-essential amino acids, ⁇ -mercaptoethanol, and sodium pyruvate.
  • retinoic acid includes its commonly used salts and derivatives.
  • the epithelial induction medium preferably contains BMP4 (Bone Morphogenic Protein 4).
  • the present invention provides a method for inducing differentiation of an epithelial cell group, characterized in that the epithelial progenitor cell / stem cell group induced to differentiate by the above-described method is further differentiated into an epithelial cell group. To do.
  • Examples of the epithelial cell group in the method include corneal epithelial cell group, oral mucosal epithelial cell group, bladder epithelial cell group, conjunctival epithelial cell group, gastric mucosal epithelial cell group, small intestinal epithelial cell group, large intestine epithelial cell group Kidney epithelial cell group, tubular epithelial cell group, gingival mucosal epithelial cell group, esophageal epithelial cell group, liver epithelial cell group, pancreatic epithelial cell group, lung epithelial cell group, gallbladder epithelial cell group.
  • the above-described method may further include the step of isolating keratin 14 positive and p63 positive cell groups.
  • the present invention provides a keratin 12 positive cornea from the epithelial progenitor / stem cell group by continuing the culture of induced pluripotent stem cells in the method according to the first and second embodiments.
  • a method for inducing differentiation of an epithelial cell group is provided.
  • the method may further comprise the step of isolating keratin 12 positive and keratin 14 negative cell groups.
  • the present invention provides a culture containing an epithelial progenitor cell / stem cell group obtained by the method of the present invention and / or an epithelial cell group induced to differentiate from the cell group.
  • a preferred form of the culture is a culture containing the epithelial progenitor / stem cell group and / or the corneal epithelial cell group obtained by the method of the present invention.
  • the present invention provides, as a sixth embodiment, a cell preparation for epithelial disease comprising an epithelial progenitor cell / stem cell group obtained by the method of the present invention and / or an epithelial cell group differentiated from the cell group.
  • a preferred form of the cell preparation is a cell preparation for epithelial diseases including the epithelial progenitor cell / stem cell group and / or the corneal epithelial cell group obtained by the method of the present invention.
  • the present invention provides, as a sixth embodiment, a cell sheet comprising the epithelial progenitor cell / stem cell group obtained by the method of the present invention and / or a layered epithelial cell group differentiated from the cell group.
  • a preferred form of the cell sheet is a cell sheet containing the epithelial progenitor cell / stem cell group and / or the corneal epithelial cell group obtained by the method of the present invention in a stratified manner. It is preferable that the sheet
  • the epithelial stem cells / progenitor cells and corneal epithelial cells of the present invention are derived from the patient's own cells, there is no fear of rejection.
  • the stratified corneal epithelial cell sheet produced using the corneal epithelial-like cell of the present invention can be used as a safe artificial cornea. That is, the present invention can simultaneously solve the problem of donor shortage and the problem of rejection in the field of regenerative medicine for corneal epithelial diseases.
  • the cells of the present invention are derived from artificial pluripotent stem cells prepared from the patient's own somatic cells and are not derived from ES cells, there is no ethical problem.
  • the present invention can be applied as a basic technology of self-regenerative medical technology for various epithelial diseases. Furthermore, if an epithelial cell is created for each HLA genotype using this technology, an epithelial cell bank capable of reducing rejection can be produced.
  • FIG. 1 shows the induction of differentiation of mouse iPS cells into epithelial cells by the KCM modification method (7, 10, 17, 27 days after induction).
  • FIG. 2 shows the induction of differentiation of mouse iPS cells into corneal epithelial cells by the KCM modification method (17 days after induction) (*: keratin 12 positive corneal epithelial cells).
  • FIG. 3 shows an increase in the epithelial induction efficiency (day 28) of the KCM modification method by addition of BMP4 (induction of epithelial marker keratin 14 positive, p63 positive epithelial progenitor cells / stem cells (ad) when BMP4 is added, Flow cytometry analysis results (e; increase in epithelial induction efficiency 2.9% ⁇ 6.0%)).
  • FIG. 4 shows the results of induction of epithelial progenitor cells / stem cells and corneal epithelial cells (day 28) by the KCM modification method using 3T3 cells as a feeder.
  • FIG. 5 shows the induction of epithelial progenitor cells / stem cells and corneal epithelial cells by the SDIA modification method using PA6 cells as a feeder (8 days in differentiation medium (ac) and 3 days in epithelial induction medium ( df) Result of culture).
  • FIG. 4 shows the results of induction of epithelial progenitor cells / stem cells and corneal epithelial cells (day 28) by the KCM modification method using 3T3 cells as a feeder.
  • FIG. 5 shows the induction of epithelial progenitor cells / stem cells and corneal epithelial cells by the SDIA modification method using PA6 cells as a feeder (8 days in differentiation medium (ac) and 3 days in epithelial induction medium ( df) Result of culture).
  • FIG. 6 shows a comparison of induction of epithelial progenitor cells / stem cells and corneal epithelial cells (Day 22) by the SDIA modification method when PA6 cells or 3T3 cells are used as a feeder (3T3 cells: ac, PA6 cells: df).
  • FIG. 7 shows the induction (Day 15) of epithelial progenitor cells / stem cells and corneal epithelial cells from human iPS cells by the KCM modification method (a: keratin 1414, b: keratin 3, c: keratin 12).
  • FIG. 8 shows the induction of epithelial progenitor cells and stem cells (Day 15) from human iPS cells by the SDIA modification method (a: PA6, b: 3T3, c: 3T3).
  • FIG. 9 shows the results of examining the effect of retinoic acid (RA) on the induction of differentiation of mouse iPS cells and ES cells into epithelial cells by immunostaining.
  • RA retinoic acid
  • FIG. 10 shows the results of examining the effect of retinoic acid (RA) on the induction of differentiation of mouse iPS cells into epithelial cells by real-time PCR.
  • FIG. 11 shows the result of examination of the effect of retinoic acid on the induction of differentiation of human iPS cells into epithelial cells by immunostaining (culture on 3T3 feeder).
  • FIG. 12 shows the result of examining the effect of retinoic acid on the induction of differentiation of human iPS cells into epithelial cells by immunostaining (culture on PA6 feeder, retinoic acid added Day 15; left (phase contrast microscope image), lower right) (P63)).
  • the present invention relates to a method for inducing differentiation of an epithelial progenitor / stem cell group or corneal epithelial cell group from induced pluripotent stem cells derived from mammalian somatic cells or undifferentiated stem cells, and cell groups induced by the method It relates to the use of epithelial tissue for disease treatment.
  • Artificial pluripotent stem cell The "artificial pluripotent stem cell” according to the present invention is a differentiation pluripotency similar to that of ES cells by introducing a specific factor into mammalian somatic cells or undifferentiated stem cells. Cells that have been reprogrammed (initialized) to have
  • “Artificial pluripotent stem cells” were first established by Yamanaka et al. By introducing 4 factors of Oct3 / 4, Sox2, Klf4, c-Myc into mouse fibroblasts, “iPS cells (Induced PluripotentStem Cell)”. (Takahashi K, Yamanaka S., Cell, (2006) 126: 663-676). Thereafter, human iPS was also established by introducing the same four factors into human fibroblasts (Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872.), And c-Myc. (Nakagawa M, Yamanaka S., et al. Nature Biotechnology, (2008) 26, 101-106), etc. successfully established a method for establishing highly safe iPS cells with low tumorigenesis. is doing.
  • Sakurada et al. are not somatic cells, but are induced artificially more efficiently by introducing Oct3 / 4, Sox2, Klf4, c-Myc, and the like using undifferentiated stem cells present in postnatal tissues as cell sources. Reportable stem cells (JP 2008-307007).
  • artificial pluripotent stem cells (Shi Y., Ding S., et al., Cell Stem Cell, (2008)) produced by introducing OCT3 / 4, KLF4, low molecular weight compounds into mouse neural progenitor cells, etc.
  • induced pluripotent stem cells Kim JB
  • KLF4 induced pluripotent stem cells
  • JP 2008-307007 JP 2008-283972, US 2008-2336610, US 2009-047263, WO 2007-069666, WO 2008-118220, WO 2008-124133.
  • WO2008-151058 2009-006930, WO2009-006997, WO2009-007852, and the like.
  • “Artificial pluripotent stem cell” used in the present invention is a known artificial pluripotent stem cell or an equivalent induced artificial pluripotent stem cell as long as it satisfies the definition described at the beginning and does not impair the purpose of the present invention. Including all, cell sources, introduction factors, introduction methods, etc. are not particularly limited.
  • the cell source is derived from a human, and more preferably, to a patient who needs treatment with an epithelial progenitor cell / stem cell group or an epithelial cell group including a corneal epithelium or an epidermis cell group induced to differentiate from the cell. Derived from.
  • Epithelial progenitor cells / stem cells are undifferentiated epithelial cells and do not express differentiation markers. It means a cell group having high proliferation ability.
  • the “epithelial progenitor / stem cell” of the present invention is characterized by the expression of keratin 14, which is a basal epithelial cell marker, and p63, which is an epithelial progenitor / stem cell marker.
  • Corneal epithelial cell The cornea has a three-layered structure from the surface: a corneal epithelial layer, a corneal stroma layer, and a corneal endothelial layer.
  • the “corneal epithelial cell” according to the present invention is a cell constituting the outermost layer of the cornea and is composed of 4 to 5 corneal epithelial cell layers. “Corneal epithelial cells” are derived from epidermal ectoderm, but the corneal stroma and endothelium are derived from neural crests, and it is thought that individual stem cells exist.
  • the “corneal epithelial cell” according to the present invention is characterized by the expression of keratin 12, which is a corneal epithelial differentiation marker.
  • Feeder cells used in the present invention is a cultured cell used for assisting and adjusting the culture conditions of a target cell. Means different cell types. Usually, feeder cells are pretreated with antibiotics such as ⁇ -irradiation and mitomycin C (MMC) so that they do not grow themselves.
  • MMC mitomycin C
  • Feeder cells vary depending on the purpose of the experiment and the cell type. For example, in the case of ES cells or iPS cells, MEF (mouse fetal fibroblasts) or SNL (mouse fetal fibroblast cell lines) are used.
  • various feeder cells such as stromal cells and fibroblasts and coatings such as matrigel, amniotic membrane, type 1 collagen, fibronectin, laminin and the like are used. Can do.
  • stromal cells are used in a method modified from the SDIA method, but 3T3 cells are preferred from the viewpoint of differentiation efficiency.
  • Stromal cells differentiation factors derived from stromal cells
  • the “stromal cells” used in the present invention are cells that support blood cells present in the bone marrow. “Stromal cells” are attached to the wall and proliferate, unlike blood cells that proliferate in suspension in culture. “Stromal cells” are cells derived from the mesenchymal system and contain many stem cells that differentiate into various cells.
  • “Stromal cells” contain many stem cells and have pluripotency in themselves, and thus are expected to be applied to regenerative medicine. However, in the present invention, “stromal cells” are used as feeder cells or the like for promoting differentiation induction from induced pluripotent stem cells into epithelial progenitor cells / stem cell groups or corneal epithelial cells.
  • stromal cells secrete factors that control cell differentiation.
  • the term “stromal cell-derived differentiation factor” used in the present invention means a factor that controls the differentiation of cells secreted by such stromal cells.
  • stromal cell-derived differentiation factor is a factor that controls the differentiation of cells secreted by such stromal cells.
  • ES cells are selectively induced to differentiate into neurons by culturing ES cells with mouse bone marrow-derived stromal cells, as described later.
  • This method of inducing differentiation of a neuronal cell using a stromal cell or a stromal cell-derived differentiation factor is named the SDIA method (Kawasaki, H., Sasai, Y. et al., Neuron).
  • Cell markers keratin 14, p63, keratin 12
  • a marker specific to each cell type is used in order to identify differentiation-induced cells.
  • epithelial progenitor cells / stem cells according to the present invention are identified by keratin 14 positive and p63 positive
  • corneal epithelial cells are identified by keratin 12 positive or keratin 3 positive.
  • Keratin 14 (Cytokeratin 14: K14): Keratin 14 is a representative marker of basal epithelial cells.
  • P63 is a nuclear protein belonging to the p53 gene family, but is a representative marker of epithelial progenitor cells and stem cells, and its expression is observed in normal human epidermis and hair follicle basal cells.
  • Keratin 12 (Cytokeratin 12: K12): Keratins 12 and 3 are representative differentiation markers for corneal epithelium.
  • differentiation induction of an epithelial progenitor cell / stem cell group or a corneal epithelial cell group is induced from induced pluripotent stem cells based on two methods described in detail below.
  • the induced pluripotent stem cells are cultured on feeder cells such as MEF and SNL using an appropriate medium (commercial medium for ES cells, medium for iPS cells, etc.).
  • KCM Keratinocyte Culture Medium
  • KCM medium As a medium for epidermal cells, KCM medium, KSFM medium (invitrogen), Epi-life (Cascadbio), 3T3-conditioned medium, etc. are known, but KCM medium is cholera toxin, fetal bovine serum, hydrocortisone, normal calcium It is distinguished from other epidermal keratinocyte media in that it is a concentration.
  • this method of inducing differentiation into epidermal cells using the KCM medium is referred to as the KCM method.
  • epidermal keratinocytes are limited to epithelial cells in the skin, and in general, epidermal cells have properties such as keratinization and expression of markers such as keratin 1 and keratin 10, A type of differentiation among epithelial cells. Therefore, epidermal corneal cells and epithelial cells are not the same.
  • epidermal keratinocytes are cultured using collagen as a support, but the inventors have used feeder cells to achieve better epithelial progenitor / stem cell groups and corneal epithelial cells. It was confirmed that differentiation induction can be achieved.
  • an induced pluripotent stem cell is transformed into an epidermal growth factor, cholera toxin, fetal bovine serum, etc. on a support selected from feeder cells or collagen, basement membrane matrix (Matrigel (registered trademark)), amniotic membrane, fibronectin, and laminin. Is induced to differentiate into a keratin 14-positive and p63-positive epithelial progenitor / stem cell group.
  • the medium preferably further contains hydrocortisone, insulin, transferrin, selenium and the like.
  • the collagen is preferably type I collagen or type IV collagen, and atelocollagen from which antigenicity has been removed is preferable.
  • the feeder cells used are not particularly limited, and for example, stromal cells, fibroblasts and the like can be used, but stromal cells are particularly preferable, and 3T3 cells can be mentioned as a suitable example.
  • 3T3 cell is a fibroblast cell line derived from mouse skin, and its name is “3 days, transfer, inoculum 3 ⁇ 10 5 cells / 50 mm dish”, that is, a short culture by seeding a relatively large number of cells. It is derived from the characteristic that its function is maintained by passage in a period.
  • 3T3 cells include several cell lines such as Swiss / 3T3, 3T3-swiss albino, BALB / 3T3, NIH / 3T3, and any of them may be used.
  • the KCM medium used in the above method includes DMEM medium, BME medium, ⁇ MEM medium, Dulbecco MEM medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, and Medium 199 as the basic medium.
  • Any medium that can be used for culturing animal cells such as a medium, Eagle's MEM medium, Ham's medium, RPMI 1640 medium, Fischer's medium, McCoy's medium, Williams E medium, and mixed media thereof, is used. be able to.
  • the basic medium is prepared by adding various nutrient sources necessary for the maintenance and growth of cells and components necessary for differentiation induction.
  • nutrient sources include glycerol, glucose, fructose, sucrose, lactose, honey, starch, dextrin and other carbon sources, fatty acids, fats and oils, lecithin, alcohols and other hydrocarbons, ammonium sulfate, ammonium nitrate, ammonium chloride , Nitrogen sources such as urea and sodium nitrate, salt, potassium salt, phosphate, magnesium salt, calcium salt, iron salt, manganese salt and other inorganic salts, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride , Ferrous sulfate, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids and the like.
  • the component that promotes differentiation induction examples include antibiotics such as penicillin and streptomycin, cholera toxin, transferrin, insulin, EGM (Epidmal Growth Factor), serum or serum replacement, KSR (Knockout Serum Replacement), and the like.
  • the pH of the medium obtained by blending these components is in the range of 5.5 to 9.0, preferably 6.0 to 8.0, and more preferably 6.5 to 7.5.
  • Culturing is performed at 36 ° C. to 38 ° C., preferably 36.5 ° C. to 37.5 ° C. under the conditions of 1% to 25% O 2 and 1% to 15% CO 2 .
  • BMP4 Breast Cancer 4)
  • TGF- ⁇ transforming growth factor- ⁇
  • BMP4 is one of the osteogenic factors and belongs to the transforming growth factor- ⁇ (TGF- ⁇ ) superfamily and is known to regulate differentiation, proliferation and various cell functions, and suppresses differentiation into nerves. It is known to promote differentiation into epidermal cells.
  • retinoic acid is a kind of vitamin A derivative and is known to be involved in the regulation of differentiation and proliferation in various cells such as the differentiation and proliferation of epidermal cells.
  • retinoic acid may be a salt or derivative thereof that is usually used.
  • Artificial pluripotent stem cells may be cultured in an aggregated state to cause embryoid body formation, but from the viewpoint of differentiation efficiency, it is preferable to induce differentiation without aggregation but without formation of embryoid body.
  • the SDIA method is an abbreviation of the Strom cell-derived inducing activity method, which uses differentiation factors secreted by stromal cells, and ES cells. It is known that nerve cells are induced from the above (supra).
  • Epithelial cells and neurons are cells derived from the same ectoderm, but nerves are derived from neuroectoderm, epithelial cells are derived from epidermis ectoderm, and functionally and morphologically completely different cells. It is a genealogy.
  • a stromal cell line called PA6 is used.
  • PA6 a stromal cell line
  • 3T3 cells as feeders to induce differentiation into epithelial stem cells / progenitor cells.
  • serum serum
  • differentiation induction efficiency into epithelial stem cells / progenitor cells was higher.
  • PA6 cells were used as feeders, differentiation could be induced into epithelial stem cells / progenitor cells in the same manner as 3T3 feeders by adding a promoter such as retinoic acid.
  • induced pluripotent stem cells are cultured on 3T3 cells or in the presence of 3T3 cell-derived differentiation factors to induce differentiation into keratin 14-positive, p63-positive epithelial progenitor / stem cell groups.
  • DMEM medium As a basic medium, DMEM medium, BME medium, BGJb medium, CMRL 1066 medium, Glasgow MEM medium, Improved MEM Zinc Option medium, IMDM medium, Medium 199 medium, Eagle MEM medium, ⁇ MEM medium, Dulbecco Medium
  • a medium such as a medium, ham medium, RPMI 1640 medium, Fischer's medium, McCoy's medium, Williams E medium, and mixed medium thereof, can be used.
  • the basic medium is prepared by adding various nutrient sources necessary for the maintenance and growth of cells and components necessary for differentiation induction.
  • nutrient sources include glycerol, glucose, fructose, sucrose, lactose, honey, starch, dextrin and other carbon sources, fatty acids, fats and oils, lecithin, alcohols and other hydrocarbons, ammonium sulfate, ammonium nitrate, ammonium chloride , Nitrogen sources such as urea and sodium nitrate, salt, potassium salt, phosphate, magnesium salt, calcium salt, iron salt, manganese salt and other inorganic salts, monopotassium phosphate, dipotassium phosphate, magnesium sulfate, sodium chloride , Ferrous sulfate, sodium molybdate, sodium tungstate and manganese sulfate, various vitamins, amino acids and the like.
  • amino acid reducing agents such as pyruvic acid, pyruvic acid, ⁇ -mercaptoethanol, serum, or serum substitutes can be used as necessary.
  • serum substitutes include albumin (eg, lipid-rich albumin), transferrin, fatty acid, insulin, collagen precursor, trace element, ⁇ -mercaptoethanol or 3 ′ thiol glycerol, commercially available Knockout Serum Replacement (KSR), Chemically -Defined Lipid concentrated (Gibco), Glutamax (Gibco).
  • KSR Knockout Serum Replacement
  • the pH of the medium obtained by blending these components is in the range of 5.5 to 9.0, preferably 6.0 to 8.0, and more preferably 6.5 to 7.5.
  • Culturing is performed at 36 ° C. to 38 ° C., preferably 36.5 ° C. to 37.5 ° C. under the conditions of 1% to 25% O 2 and 1% to 15% CO 2 .
  • Culture of induced pluripotent stem cells is performed using a serum replacement and / or a differentiation medium containing BMP4, and then serum such as fetal calf serum and / or epithelial induction medium or epidermal growth factor and / or cholera containing BMP4 It is more preferable from the viewpoint of differentiation efficiency to culture using a medium for epidermal cells (for example, KCM medium) containing a toxin and serum.
  • the differentiation medium, epithelial induction medium, and epidermal cell culture medium preferably further contain non-essential amino acids, ⁇ -mercaptoethanol, sodium pyruvate, and the like.
  • serum substitutes examples include albumin (for example, lipid-rich albumin), transferrin, fatty acid, insulin, collagen precursor, trace element, ⁇ -mercaptoethanol or 3 ′ thiol glycerol, commercially available Knockout Serum Replacement (KSR), and Chemically.
  • KSR Knockout Serum Replacement
  • Non-essential amino acids mean amino acids other than essential amino acids (amino acids that cannot be synthesized in the animal's body and must be taken as nutrients). In humans, asparagine, aspartic acid, arginine, glutamine, and glutamic acid.
  • Glycine, proline, ornithine, tyrosine, serine, and alanine correspond to non-essential amino acids.
  • the “non-essential amino acid” does not need to include all of the above 11 types, and may be a part of them.
  • 5 or more types including asparagine, aspartic acid, proline, ornithine, and alanine not contained in the basic medium may be included.
  • retinoic acid When retinoic acid is added to the epithelial induction medium or epidermal cell culture medium, further differentiation induction into epithelial progenitor / stem cell groups can be achieved.
  • Retinoic acid can be added not only to the epithelial induction medium but also to the differentiation medium.
  • retinoic acid may be a salt or derivative thereof that is usually used.
  • the epithelial induction medium is a medium containing fetal bovine serum. It has the feature of promoting differentiation into epithelial cells.
  • a specific example of the epidermal cell culture medium is KCM culture medium.
  • Epithelial cells that can be differentiated from epithelial progenitor / stem cells include corneal epithelial cells, epidermis cells, hair follicle cells, oral mucosal epithelial cells, bladder epithelial cells, conjunctival epithelial cells, gastric mucosa Epithelial cells, small intestinal epithelial cells, colonic epithelial cells, kidney epithelial cells, tubule epithelial cells, gingival mucosal epithelial cells, esophageal epithelial cells, liver epithelial cells, pancreatic epithelial cells, lung epithelial cells And gallbladder epithelial cell group.
  • keratin 12 is positive from the epithelial progenitor / stem cell group by continuing culture for a certain period of time.
  • differentiation of keratin 14-negative corneal epithelial cells can be induced.
  • IPS cells can be induced to differentiate into corneal epithelial cells.
  • the culture period for inducing differentiation into the corneal epithelial cell group is appropriately determined depending on the type of cells used and the culture conditions.
  • isolation may be performed using magnetic beads labeled with an antibody, a column on which an antibody is immobilized, and separation using a cell sorter (FACS) using a fluorescently labeled antibody.
  • FACS cell sorter
  • a commercially available antibody may be used, or may be prepared according to a conventional method.
  • integrin alpha 6 and E-cadherin positive cells can be separated by FACS.
  • corneal epithelial cell group induced to differentiate by the method of the present invention can also be isolated using the culture method of the corneal epithelial cell.
  • the differentiation-induced corneal epithelial cell group is collected by trypsin treatment, and again in an epithelial cell culture medium such as KCM or KSFM (invitrogen) medium (in the case of KCM medium) It is possible to purify corneal epithelial cells by seeding and culturing 3T3 cells) and repeating the passage.
  • an epithelial cell culture medium such as KCM or KSFM (invitrogen) medium (in the case of KCM medium) It is possible to purify corneal epithelial cells by seeding and culturing 3T3 cells) and repeating the passage.
  • Epithelial progenitor cells / stem cells obtained by the method of the present invention, and / or epidermis cells differentiated from the cells or cultures containing epithelial cells are As such, it can be used as a raw material for research, regenerative medicine, or cell preparation described later.
  • the administration method of the cell preparation of the present invention is not particularly limited, and depending on the application site, local transplantation by surgical means, intravenous administration, lumbar puncture administration, local injection administration, subcutaneous administration, intradermal administration, intraperitoneal administration, Intramuscular administration, intracerebral administration, intraventricular administration, intravenous administration, and the like are possible.
  • the cell preparation of the present invention may contain scaffold materials and components for assisting cell maintenance / proliferation and administration to the affected area, and other pharmaceutically acceptable carriers.
  • Components necessary for cell maintenance / proliferation include media components such as carbon sources, nitrogen sources, vitamins, minerals, salts, various cytokines, and extracellular matrix preparations such as Matrigel TM .
  • scaffold materials and components that assist administration to the affected area include biodegradable polymers; for example, collagen, polylactic acid, hyaluronic acid, cellulose, and derivatives thereof, and a complex composed of two or more thereof, an aqueous solution for injection;
  • biodegradable polymers for example, collagen, polylactic acid, hyaluronic acid, cellulose, and derivatives thereof, and a complex composed of two or more thereof, an aqueous solution for injection
  • examples include physiological saline, medium, physiological buffer such as PBS, and isotonic solutions (eg, D-sorbitol, D-mannose, D-mannitol, sodium chloride) containing glucose and other adjuvants.
  • Adjuvants such as alcohols, specifically ethanol, polyalcohols such as propylene glycol, polyethylene glycol, nonionic surfactants such as polysorbate 80, HCO-50, etc. may be used in combination.
  • organic solvents polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate, water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose as necessary , Ethyl cellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, mannitol, sorbitol, lactose, surfactants acceptable as pharmaceutical additives, It may contain a buffer, an emulsifier, a suspension, a soothing agent, a stabilizer and the like.
  • a purified antibody is dissolved in a solvent such as physiological saline, buffer solution, glucose solution, etc., and an adsorption inhibitor such as Tween 80, Tween 20, gelatin or the like is added thereto.
  • a solvent such as physiological saline, buffer solution, glucose solution, etc.
  • an adsorption inhibitor such as Tween 80, Tween 20, gelatin or the like is added thereto.
  • Tween 80, Tween 20, gelatin or the like is added thereto.
  • Examples of the disease that can be the subject of the cell preparation of the present invention include Stevens-Johnson syndrome, pemphigoid, heat / chemical trauma, aniridia, Salzmann corneal degeneration, idiopathic keratoconjunctivitis, post trachoma scar, Examples include corneal perforations, corneal ulcers, corneal epithelial detachment after excimer laser treatment, stenosis after esophageal cancer treatment, other keratoconjunctiva, skin, oral mucosa, esophageal mucosa, and gastric mucosa disease patients.
  • the epithelial progenitor cell / stem cell group obtained by the method of the present invention and / or the epithelial cell group induced to differentiate from the cell group may be layered to produce a cultured epithelial cell sheet. it can.
  • the epithelial cell group induced to differentiate by the method of the present invention is cultured in an epithelial cell stratification medium (for example, KCM medium), and epithelial cells are obtained.
  • an epithelial cell stratification medium for example, KCM medium
  • Cultured epithelial cell sheets can be produced by stratified culture (Nishida K et al., N. Engl. J. Med. (2004) 351: 1187-96).
  • the epithelial cells differentiated by the method of the present invention are cultured on the porous membrane, and the medium is always supplied from the lower layer through the porous membrane, so that the epithelial cells are layered and cultured.
  • An epithelial cell sheet can be produced (Japanese Patent Laid-Open No. 2005-130838).
  • Example 1 Induction of epithelial cell differentiation from mouse iPS cells
  • Mouse iPS cell culture Mouse iPS cells were provided by Professor Shinya Yamanaka of Kyoto University (Okita K et al., Nature (2007) 448: 313-317).
  • SNL SNL 76/7 is a copy of Dr. Bayer College of Medicine. Donated by Allan Bradley. Mouse iPS cells were maintained using the SNL feeder medium shown below using this SNL (SNL76 / 7) as a feeder.
  • Gelatin-coated culture dishes were seeded with mitomycin (MMC) -treated SNL cells and used as feeder cells.
  • MMC mitomycin
  • mouse iPS cells were seeded and maintained at 37 ° C., 5% CO 2 using iPS cell culture medium.
  • KCM Keratinocyte culture medium
  • Type 4 collagen (Nitta gelatin) was diluted 10-fold with dilute hydrochloric acid (pH 3), spread thinly on a culture dish, and allowed to dry for 30 minutes or longer in a clean bench. Before use, it was washed 3 times with Phosphate-Buffered Salines (PBS) (Invitrogen).
  • PBS Phosphate-Buffered Salines
  • SDIA Stemcell-derived activity
  • iPS cells are recovered, and further pipetting is performed.
  • a cell suspension of iPS cells was prepared. The obtained cell suspension was incubated for about 1-2 hours on a gelatin-coated culture dish, and the supernatant was collected, whereby only feeder cells were adhered, and only iPS cells were collected.
  • the number of iPS cells obtained was counted, seeded at a density of 0.1-10 ⁇ 10 3 cells / cm 2 on a culture dish seeded with PA6 cells, and cultured at 37 ° C. in a differentiation medium shown below.
  • % CO 2 was cultured for 8 days, and then cultured in epithelial induction medium at 37 ° C. for 2-27 days.
  • the cells were appropriately fixed with PFA. Furthermore, the difference between the case where FBS was not added to the epithelium induction medium and the case where it was added was also evaluated.
  • Epithelial induction medium (SDIA modification method) Differentiation medium ( ⁇ 10% KSR) + 10% FBS (Japan bio serum) * * KSR was removed from the differentiation medium, and 10% FBS was added as the epithelial induction medium.
  • Cytokeratin 12 (keratin 12 (K12)) After cold methanol fixation ( ⁇ 30 ° C./20 minutes), 5% NST was added and blocked at room temperature for 30 minutes. Thereafter, the mixture was reacted with a primary antibody (Cytokeratin 12 (L-15): Santa Cruz Biotechnology) overnight (4 ° C.), washed with PBS, and reacted with a secondary antibody for 2 hours (room temperature). Cell nuclei were stained with Hoechst 33342.
  • Cytokeratin 3 (keratin 3 (K3)) After cold methanol fixation ( ⁇ 30 ° C./20 minutes), 5% NST was added and blocked at room temperature for 30 minutes. Thereafter, the mixture was reacted with a primary antibody (Cytokeratin 3 / 2p (AE5: R & D system) overnight (4 ° C.), washed with PBS, and reacted with a secondary antibody for 2 hours (room temperature). Cell nuclei were stained with Hoechst 33342. did.
  • Cytokeratin 14 The cells were collected with 0.25% Trypsin / EDTA, and fixed and membrane permeabilized using Cytofix / Cytoperm kit (BD Biosciences). After the treatment, a primary antibody (Cytokeratin 14 (AF64): Covance) was added at a 1000-fold dilution and allowed to stand at room temperature for 2 hours. The pellet was washed by centrifugation, and a secondary antibody (anti-rabbit alexa488) was added at a 200-fold dilution, and allowed to stand at room temperature for 1 hour. The pellet was washed by centrifugation and then suspended in 1-2 ml of PBS. The suspension was supplied to a flow cytometer, and the keratin 14 positive cell rate was examined.
  • keratin 14 which is a basal epithelial cell marker is expressed after Day 10
  • both keratin 14 and p63 which is an epithelial progenitor cell / stem cell marker are expressed after Day 17 Cells were observed ( Figure 1).
  • epithelial cells negative for keratin 14 and expressing corneal epithelial differentiation marker keratin 12 were observed (FIG. 2: corneal epithelial differentiation marker keratin 12 (a, d) was expressed and keratin 14 (b, Corneal epithelial cells not expressing e) were observed (c, f)).
  • mouse iPS cells can be induced to differentiate into epithelial stem cells / progenitor cells and corneal epithelial cells by the KCM modification method or the SDIA modification method. It was confirmed that the differentiation induction efficiency into epithelial stem cells / progenitor cells was significantly improved by using 3T3 cells as feeders in both the KCM modification method and the SDIA modification method.
  • Example 2 Induction of epithelial cell differentiation from human iPS cells
  • Human iPS cell culture Human iPS cells were provided by Professor Shinya Yamanaka of Kyoto University (Takahashi K, Yamanaka S., et al. Cell, (2007) 131: 861-872). Human iPS cells were maintained using the following MEF feeder medium using MEF cells (Kitayama Labes) as feeders.
  • a mitomycin-treated MEF cell was seeded on a gelatin-coated culture dish, and this was used as a feeder cell. Then, human iPS cells were seeded thereon and maintained at 37 ° C. and 5% CO 2 using a primate ES cell culture medium (Reprocell) supplemented with 4 ng / ml bFGF.
  • Reprocell primate ES cell culture medium
  • KCM Keratinocyte culture medium modification method
  • iPS cell colonies are disrupted and pipetting is performed several times. A cluster population of iPS cell colonies was collected (not a single cell). The obtained iPS cell colonies were incubated in a KCM medium on a gelatin-coated culture dish for about 1-2 hours, and the supernatant was collected, whereby only MEF feeder cells were adhered and only human iPS cells were collected. .
  • the number of colonies of the obtained human iPS cell colonies was counted, seeded at a density of 10-1000 colonies / cm 2 on a type 4 collagen-coated culture dish, and 0.5 nM BMP4 (R & D System) in the KCM medium shown below. Was added and cultured.
  • Type 4 collagen (Nitta gelatin) was diluted 10-fold with dilute hydrochloric acid (pH 3), spread thinly on a culture dish, and allowed to dry for 30 minutes or longer in a clean bench. Before use, it was washed 3 times with Phosphate-Buffered Salines (PBS) (Invitrogen).
  • PBS Phosphate-Buffered Salines
  • the number of colonies of the obtained human iPS cell colonies was counted, seeded at a density of 100-1000 colonies / cm 2 on a culture dish seeded with PA6 cells, and 37 ° C., 5% CO 2 in the differentiation medium shown below. And then cultured in an epithelial induction medium at 37 ° C. for 7-22 days. The cells were appropriately fixed with PFA. Furthermore, the difference between the case where FBS is not added to the epithelium induction medium and the case where it is added was also evaluated.
  • Epithelial induction medium (SDIA modification method) Differentiation medium ( ⁇ 10% KSR) + 10% FBS (Japan bio serum) * * KSR was removed from the differentiation medium, and 10% FBS was added as the epithelial induction medium.
  • Example 3 Effect of retinoic acid on induction of differentiation into epithelial cells (KCM modification method)
  • KCM modification method KCM modification method
  • mice iPS cells were treated with (i) KCM medium, (ii) 0.5 nm BMP4-added KCM medium, (iii) 0.5 nm BMP4 + 1 ⁇ M retinoic acid Culturing was performed on collagen using added KCM medium.
  • mouse ES cells RF8, provided by Dr. Robert Facese, Jr. of Gladstone Institute
  • RF8 provided by Dr. Robert Facese, Jr. of Gladstone Institute
  • the ES cell markers Oct3 / 4 and Nanog almost disappeared after Day 7 by any differentiation induction method.
  • expression of epithelial progenitor cell markers ⁇ Np63 and K14 increased after day 7, and the expression level showed the highest tendency when BMP4 and retinoic acid were added.
  • Example 4 Effect of retinoic acid on induction of differentiation into epithelial cells (SDIA modification method) Retinoic acid was added to the differentiation medium shown in Example 2, and the influence on differentiation induction from human iPS cells to epithelial cells was examined. In addition, since the inventors confirmed that induction efficiency of human iPS cells was improved when KCM medium was used, KCM medium was used here.
  • Example 2 Differentiation induction in the presence of retinoic acid
  • human iPS cells were seeded on 3T3 or PA6 feeder as a cell mass and cultured using a differentiation medium supplemented with 0.5 nm BMP4 and 1 ⁇ M retinoic acid.
  • the culture medium was changed to KCM medium on the 8th day, and further cultured for 2-8 weeks while changing the medium every other day.
  • the outline of the culture method is shown below.
  • FIGS. 11A to 11D The results of culturing for 15 days (differentiation medium 8 days + epithelial induction medium 7 days) using the epithelial induction medium are shown in FIGS. 11A to 11D, respectively.
  • FIG. 12 shows the results of culturing for 15 days (differentiation medium 8 days + KCM medium 7 days) using a differentiation medium supplemented with 1 ⁇ M retinoic acid on a PA6 feeder.
  • the present invention has no worry of donor shortage or rejection. It is useful as a new regenerative medicine for corneal epithelial diseases. Furthermore, it is possible to regenerate various stratified epithelia such as epidermal cells and oral mucosal epithelium using the epithelial stem cells / progenitor cells of the present invention as a cell source. That is, the present invention can be applied as a basic technology of self-regenerative medical technology for various epithelial diseases. Furthermore, by creating epithelial cells for each HLA genotype using the present invention, it is also possible to produce an epithelial cell bank that can reduce rejection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Transplantation (AREA)
  • General Engineering & Computer Science (AREA)
  • Developmental Biology & Embryology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Vascular Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本発明は、哺乳動物体細胞または未分化幹細胞より誘導された人工多能性幹細胞を、特定の条件下で培養することにより、上皮系前駆細胞・幹細胞群または角膜上皮細胞群に分化誘導する方法、及び前記方法によって得られた上皮系前駆細胞・幹細胞群または角膜上皮細胞群、ならびにこれらの細胞群を用いて作製された上皮系疾患治療用細胞製剤、細胞シートに関する。

Description

人工多能性幹細胞からの上皮系前駆細胞・幹細胞群及び角膜上皮細胞群の分化誘導方法
 本発明は、哺乳動物体細胞または未分化幹細胞より誘導された人工多能性幹細胞から、上皮系前駆細胞・幹細胞群または角膜上皮細胞群を分化誘導する方法、及び前記方法によって誘導された細胞群の上皮系疾患治療への利用に関する。
 難治性角膜上皮疾患に対して、献眼による角膜移植術が施行されているが、絶対的なドナー不足と移植後の拒絶反応という問題がある。これを解決するため、患者自身の角膜輪部細胞や口腔粘膜上皮細胞を用いた治療法が開発されている。この方法では、健眼角膜輪部細胞や口腔粘膜上皮細胞から培養角膜上皮細胞シートを作製し患眼に移植する(特許文献1及び2、非特許文献1)。しかし、角膜輪部上皮細胞を用いる方法は両眼性疾患者には適応できず、口腔粘膜上皮は完全な角膜上皮には分化しないため、移植後に血管侵入を生じる危険性がある。
 これに対し、未分化な細胞(幹細胞)を分化誘導することで、損傷した組織器官の補填を図る再生医療の研究が進められている。胚性幹細胞(ES細胞)は、胎盤以外のすべての細胞に分化可能であるため、各細胞系譜への分化誘導やその分化決定因子の同定が注目されたが、倫理的問題からその研究や利用には制約が多く、また拒絶反応の問題もあることから、未だ臨床応用には至っていない。
 最近、体細胞や未分化な幹細胞に特定の因子を導入することでES細胞と同様の分化多能性を有する人工多能性幹細胞が樹立された。その代表的なものは、Yamanakaらによって樹立されたiPS細胞である(特許文献3、非特許文献2及び3)。これらの人工多能性幹細胞を利用した再生医療は、倫理的問題がないばかりか、患者由来の細胞をソースとすることで拒絶反応の問題も回避することができる。
 ところで、ヒトの胚は、発生の段階で3つの胚葉、すなわち内胚葉、中胚葉、外胚葉を形成する。内胚葉は、胃や小腸の粘膜上皮、肝臓、膵臓等に、中胚葉は筋肉、骨、血管や血液、皮下組織、心臓、腎臓等になる、外胚葉は神経、目(角膜上皮)、表皮等を形成する。このほか、末梢神経、グリア細胞や一部の神経節に分化する神経堤を第4の胚葉ということもある。
 ES細胞から外胚葉系細胞への分化誘導に関しては、これまで表皮細胞と神経細胞への分化誘導が報告されている。すなわち、GreenやHaaseらは、ES細胞から形成した胚葉体、あるいはES細胞をSCID mouseに投与して得たnoduleから単離した細胞を、FAD培地を用いて平板培養することにより、p63+やケラチン14(K14)+の表皮細胞が得られたことを報告している(特許文献4、非特許文献4及び5)。また、SasaiやMizusekiらは、SDIA(Stromal cell−derived inducing activity)法と呼ばれるマウス由来の間質細胞(PA6細胞)を用いた方法により、ES細胞から神経細胞が誘導されたことを報告している(特許文献5及び6、非特許文献6~8)。
 しかしながら、これまでES細胞やiPS細胞から角膜上皮細胞等の上皮細胞への分化誘導について具体的な報告はなされていない。
WO2004/069295 特開2005−130838 WO2007/069666 WO2005/056765 WO2001/088100 WO2003/042384
Nishida K et al.,N.Engl.J.Med.,(2004)351:1187−96 Takahashi K,Yamanaka S.,Cell,(2006)126:663−676 Takahashi K,Yamanaka S.,et al.,Cell,(2007)131:861−872. Green H et al.,Proc.Natl.Acad.Sci.,USA,(2003)15625−15630 Haase I et al.,Eur.J.Cell Biol.,(2007)801−805 Kawasaki,H.,Sasai,Y.et al.,Neuron,(2000)28,31−40. Kawasaki,H.,Sasai,Y.et al.,Proc.Natl.Acad.Sci.,USA 99,(2002)1580−1585 Mizuseki,K.,Sasai,Y.et al.,Proc.Natl.Acad.Sci.,USA 100,(2003)5828−5833
 本発明の課題は、患者自身の細胞から上皮系幹細胞・前駆細胞や角膜上皮細胞を創出することにより、角膜移植を含む上皮系疾患治療のための新規な手段を提供し、ドナー不足や拒絶反応の問題を解決することにある。
 発明者らは、人工多能性幹細胞(iPS細胞)から目的とする上皮系細胞を分化誘導するため、種々の条件で実験を繰り返し、in vivoにおける上皮系幹細胞・前駆細胞と同等の形態と性質(p63陽性、ケラチン14陽性)を有するiPS細胞由来上皮系幹細胞・前駆細胞の誘導に成功した。さらに、このiPS細胞由来上皮系幹細胞・前駆細胞から、角膜上皮分化マーカーであるケラチン12陽性の細胞を誘導することに成功した。
 この方法により、患者自身の細胞から作製した人工多能性幹細胞を用いて上皮系幹細胞・前駆細胞および角膜上皮細胞を創出することができれば、ドナー不足や拒絶反応の問題を心配することなく、角膜再生が可能になる。得られた角膜上皮細胞は、前述した方法により、重層化培養角膜上皮細胞シートにして用いれば、より良好な角膜再生治療が提供できる。
 すなわち本発明は、第1の実施態様として、哺乳動物体細胞または未分化幹細胞より誘導された人工多能性幹細胞から、ケラチン14陽性かつp63陽性の上皮系前駆細胞・幹細胞群を分化誘導する方法であって:前記人工多能性幹細胞を、フィーダー細胞あるいはコラーゲン(I型、IV型が好ましい)、基底膜マトリックス、羊膜、フィブロネクチン、及びラミニンから選ばれる支持体上で、上皮成長因子及び/又はコレラ毒素と、血清とを含む表皮細胞用培地を用いて培養することを特徴とする方法を提供する。
 前記方法において、培地はさらにハイドロコルチゾン、インスリン、トランスフェリン、及びセレニウムから選ばれる1又は2以上を含むことが好ましい。
 また、培地はBMP4(Bone Morphogenetic Protein 4)を含むことが好ましく、さらにレチノイン酸を含むことがより好ましい。なお、レチノイン酸には通常用いられるその塩や誘導体も含まれる。
 用いられるフィーダー細胞の例としては、3T3細胞等の間質細胞を挙げることができるが、これに限定されるものではない。
 前記方法において、人工多能性幹細胞は胚葉体形成を介さずに上皮系前駆細胞・幹細胞群に分化誘導させることが好ましい。
 本発明は、第2の実施態様として、哺乳動物体細胞または未分化幹細胞から誘導された人工多能性幹細胞から、ケラチン14陽性、p63陽性の上皮系前駆細胞・幹細胞群を分化誘導する方法であって:前記人工多能性幹細胞を、3T3細胞上あるいは3T3細胞由来の分化因子存在下で培養することを特徴とする方法を提供する。
 前記方法において、人工多能性幹細胞は、血清及び/又はBMP4を含む上皮誘導培地あるいは上皮成長因子及び/又はコレラ毒素と、血清とを含む表皮細胞用培地(例えば、KCM培地)を用いて培養される。前記上皮誘導培地は、さらにレチノイン酸、非必須アミノ酸、βメルカプトエタノール、及びピルビン酸ナトリウムから選ばれる1又は2以上を含んでいてもよい。また前記表皮細胞用培地は、さらにハイドロコルチゾン、インスリン、トランスフェリン、及びセレニウムから選ばれる1又は2以上を含んでいてもよい。
 前記方法において、人工多能性幹細胞は、上皮誘導培地又は表皮細胞用培地を用いて培養するまえに、KSR等の血清代替物及び/又はBMP4を含む分化培地を用いて培養することが好ましい。前記分化培地は、さらにレチノイン酸を含むことがより好ましく、非必須アミノ酸、βメルカプトエタノール、及びピルビン酸ナトリウムから選ばれる1又は2以上を含んでいてもよい。なお前記したように、レチノイン酸には通常用いられるその塩や誘導体も含まれる。
 とくに、前記上皮誘導培地はBMP4(Bone Morphogenetic Protein 4)を含むことが好ましい。
 本発明は、第3の実施態様として、上記した方法によって分化誘導された上皮系前駆細胞・幹細胞群を、さらに上皮細胞群に分化させることを特徴とする、上皮細胞群の分化誘導方法を提供する。
 前記方法において、上皮細胞群の例としては、例えば、角膜上皮細胞群、口腔粘膜上皮細胞群、膀胱上皮細胞群、結膜上皮細胞群、胃粘膜上皮細胞群、小腸上皮細胞群、大腸上皮細胞群、腎臓上皮細胞群、尿細管上皮細胞群、歯肉粘膜上皮細胞群、食道上皮細胞群、肝臓上皮細胞群、膵臓上皮細胞群、肺上皮細胞群、胆嚢上皮細胞群を挙げられる。
 上記した方法は、さらにケラチン14陽性かつp63陽性の細胞群を単離する工程を含んでいてもよい。
 本発明は、第4の実施態様として、第1及び第2の実施態様にかかる方法において、人工多能性幹細胞の培養を続けることにより、前記上皮系前駆細胞・幹細胞群からケラチン12陽性の角膜上皮細胞群を分化誘導する方法を提供する。
 前記方法は、さらにケラチン12陽性かつケラチン14陰性の細胞群を単離する工程を含んでいてもよい。
 本発明は、第5の実施態様として、本発明の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された上皮細胞群を含む培養物を提供する。培養物の好適な一形態は、本発明の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は角膜上皮細胞群を含む培養物である。
 本発明は、第6の実施態様として、本発明の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された上皮細胞群を含む上皮系疾患用細胞製剤を提供する。細胞製剤の好適な一形態は、本発明の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は角膜上皮細胞群を含む上皮系疾患用細胞製剤である。
 本発明は、第6の実施態様として、本発明の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された上皮細胞群を重層化して含む細胞シートを提供する。細胞シートの好適な一形態は、本発明の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は角膜上皮細胞群を重層化して含む細胞シートである。
 本発明のシートは、細胞が重層化培養によって重層化されたものであることが好ましい。
 本発明の上皮系幹細胞・前駆細胞や角膜上皮様細胞は、患者自身の細胞に由来するため、拒絶反応の心配がない。本発明の角膜上皮様細胞を用いて作製される重層化角膜上皮細胞シートは、安全な人工角膜として利用しうる。すなわち、本発明により、角膜上皮疾患に対する再生医療分野におけるドナー不足の問題と拒絶反応の問題を同時に解決し得る。また、本発明の細胞は患者自身の体細胞より作製した人工多能性幹細胞が細胞源であり、ES細胞由来ではないため、倫理的問題もない。
 角膜上皮細胞のみならず、本発明の上皮系幹細胞・前駆細胞を細胞源として、表皮細胞、口腔粘膜上皮など様々な重層化上皮を再生することが可能である。すなわち、本発明は様々な上皮疾患に対する自家再生医療技術の基盤技術として応用しうる。さらに、本技術を用いてHLAジェノタイプ別に上皮細胞を創出すれば、拒絶反応の軽減可能な上皮細胞バンクを作製することも可能である。
図1は、KCM改変法によるマウスiPS細胞の上皮系細胞への分化誘導(誘導後7,10,17,27日)を示す。 図2は、KCM改変法によるマウスiPS細胞の角膜上皮細胞への分化誘導(誘導後17日)を示す(*:ケラチン12陽性角膜上皮細胞)。 図3は、BMP4添加によるKCM改変法の上皮誘導効率の増加(day28)を示す(BMP4を添加した場合の上皮マーカーケラチン14陽性、p63陽性の上皮前駆細胞・幹細胞の誘導(a−d)、フローサイトメトリー解析結果(e;上皮誘導効率の増加2.9%→6.0%))。 図4は、3T3細胞をフィーダーに用いたKCM改変法による上皮前駆細胞・幹細胞、角膜上皮細胞の誘導(day28)の結果を示す。 図5は、PA6細胞をフィーダーに用いたSDIA改変法による上皮前駆細胞・幹細胞、角膜上皮細胞の誘導を示す(分化培地中で8日間(a−c)、さらに上皮誘導培地中で3日間(d−f)培養した結果)。 図6は、PA6細胞または3T3細胞をフィーダーに用いた場合の、SDIA改変法による上皮前駆細胞・幹細胞、角膜上皮細胞の誘導(Day22)の比較を示す(3T3細胞:a−c、PA6細胞:d−f)。 図7は、ヒトiPS細胞からのKCM改変法による上皮前駆細胞・幹細胞および角膜上皮細胞の誘導(Day15)を示す(a:ケラチン1414、b:ケラチン3、c:ケラチン12)。 図8は、ヒトiPS細胞からのSDIA改変法による上皮前駆細胞・幹細胞の誘導(Day15)を示す(a:PA6、b:3T3、c:3T3)。 図9は、マウスiPS細胞及びES細胞の上皮細胞への分化誘導に対するレチノイン酸(RA)の影響を免疫染色により検討した結果を示す。図中、A−C:マウスiPS(KCM培地)、D−F:マウスiPS(0.5nm BMP4添加KCM培地)、G−I:マウスiPS(0.5nm BMP4+1μMレチノイン酸(RA)添加KCM培地)、J−L:マウスES(0.5nm BMP4+1μMレチノイン酸(RA)添加KCM培地);左列(p63)、中央(K14)、右列(p63/K14)。 図10は、マウスiPS細胞の上皮細胞への分化誘導に対するレチノイン酸(RA)の影響をリアルタイムPCRにより検討した結果を示す。各グラフ中、A:Oct3/4、B:Nanog、C:ΔNp63、D:ケラチン14(K14):KCM培地(■)、0.5nm BMP4添加KCM培地(▲)、0.5nm BMP4+1μMレチノイン酸(RA)添加KCM培地(◆)である。 図11は、ヒトiPS細胞の上皮細胞への分化誘導に対するレチノイン酸の影響を免疫染色により検討した結果を示す(3T3フィーダー上での培養)。 A:分化培地+KCM培地 レチノイン酸添加Day15、B:分化培地+KCM培地 レチノイン酸添加 Day29、C:対照(分化培地+KCM培地 レチノイン酸ナシ) Day15、D:分化培地+上皮誘導培地 レチノイン酸添加 Day15(いずれも上(K14)、左下(p63)、右下(p63+K14))。 図12は、ヒトiPS細胞の上皮細胞への分化誘導に対するレチノイン酸の影響を免疫染色により検討した結果を示す(PA6フィーダー上での培養 レチノイン酸添加 Day15;左(位相差顕微鏡像)、右下(p63))。
 本明細書は、本願の優先権の基礎である特願2009−120053号の明細書に記載された内容を包含する。
 本発明は、哺乳動物体細胞または未分化幹細胞より誘導された人工多能性幹細胞から、上皮系前駆細胞・幹細胞群または角膜上皮細胞群を分化誘導する方法、及び前記方法によって誘導された細胞群の上皮系組織の疾患治療への利用に関する。
1.定義
 以下、本発明にかかる用語のいくつかについて説明する。
(1)人工多能性幹細胞
 本発明にかかる「人工多能性幹細胞」とは、哺乳動物体細胞または未分化幹細胞に、特定の因子を導入することにより、ES細胞と同様の分化多能性を有するように再プログラミング(初期化)された細胞を言う。
 「人工多能性幹細胞」は、Yamanakaらにより、マウス線維芽細胞にOct3/4・Sox2・Klf4・c−Mycの4因子を導入することにより、初めて樹立され「iPS細胞(induced PluripotentStem Cell)」と命名された(Takahashi K,Yamanaka S.,Cell,(2006)126:663−676)。その後、同様の4因子をヒト線維芽細胞に導入することにより、ヒトiPSも樹立され(Takahashi K,Yamanaka S.,et al.Cell,(2007)131:861−872.)、さらにc−Mycを含まない方法等(Nakagawa M,Yamanaka S.,et al.Nature Biotechnology,(2008)26,101−106)、腫瘍形成誘導が低いより安全性の高いiPS細胞を樹立する方法の確立にも成功している。
 Wisconsin大学のThomsonらは、OCT3/4,SOX2,NANOG,LIN28の4遺伝子をヒト線維芽細胞に導入して作製した人工多能性幹細胞の樹立に成功している(Yu J.,Thomson JA.et al.,Science(2007)318:1917−1920.)。また、Harvard大学のDaleyらは、皮膚細胞にOCT3/4,SOX2,KLF4,C−MYC,hTERT,SV40 large Tの6遺伝子を導入して作製した人工多能性幹細胞の樹立について報告している(Park IH,Daley GQ.et al.,Nature(2007)451:141−146)。
 Sakuradaらは、体細胞ではなく、出生後の組織に存在する未分化幹細胞を細胞源として、Oct3/4、Sox2、Klf4及びc−Myc等を導入することで、より効率よく誘導される人工多能性幹細胞を報告している(特開2008−307007)。
 このほか、OCT3/4,KLF4,低分子化合物をマウス神経前駆細胞等に導入して作製された人工多能性幹細胞(Shi Y.,Ding S.,et al.,Cell Stem Cell,(2008)Vol.3,Issue 5,568−574,)、SOX2,C−MYCを内因性に発現しているマウス神経幹細胞にOCT3/4,KLF4を導入して作製された人工多能性幹細胞(Kim JB.,Scholer HR.,et al.,Nature,(2008)454,646−650)、C−MYCを用いることなく、Dnmt阻害剤やHDAC阻害剤を利用して作製された人工多能性幹細胞(Huangfu D.,Melton,DA.,et al.,Nature Biotechnology,(2008)26,No 7,795−797)が報告されている。
 上記を含めて、人工多能性幹細胞に関する公知の特許としては、特開2008−307007号、特開2008−283972号、US2008−2336610、US2009−047263、WO2007−069666、WO2008−118220、WO2008−124133、WO2008−151058、2009−006930WO2009−006997、WO2009−007852等を挙げることができる。
 本発明で用いられる「人工多能性幹細胞」は、冒頭に記載した定義を満たし、本発明の目的を損なわない限りにおいて、公知の人工多能性幹細胞及びこれと等価な人工多能性幹細胞のすべてを含み、細胞源、導入因子、導入方法等は特に限定されない。
 好ましくは、細胞源はヒト由来であり、より好ましくは、当該細胞から分化誘導された上皮系前駆細胞・幹細胞群または角膜上皮を含む上皮細胞群、表皮細胞群による治療を必要とする患者自身に由来する。
(2)上皮系前駆細胞・幹細胞
 本発明にかかる「上皮系前駆細胞・幹細胞(Epithelial progenitor cell/stem cell)」とは、未分化な上皮細胞であり、分化マーカーを発現しておらず、また高い増殖能を有している細胞群を意味する。本発明の「上皮系前駆細胞・幹細胞」は、基底上皮細胞マーカーであるケラチン14、上皮前駆細胞・幹細胞マーカーであるp63の発現によって特徴づけられる。
(3)角膜上皮細胞
 角膜は、表面から、角膜上皮層、角膜実質層、角膜内皮層の3層構造をしている。本発明にかかる「角膜上皮細胞」は、この角膜の一番外側の層を構成する細胞で、4~5層の角膜上皮細胞層から構成されている。「角膜上皮細胞」は表皮外胚葉に由来するが、角膜の実質と内皮は神経堤由来であり、それぞれ個別の幹細胞が存在すると考えられている。本発明にかかる「角膜上皮細胞」は、角膜上皮分化マーカーであるケラチン12の発現によって特徴づけられる。
(4)フィーダー細胞
 本発明で用いられる「フィーダー細胞(あるいは「フィーダー」と略記されることもある)」は、目的とする細胞の培養条件を補助、調整するために用いられる、培養細胞とは異なる種類の細胞を意味する。通常フィーダー細胞は、それ自体増殖することがないようγ線照射やマイトマイシンC(MMC)等の抗生物質で前処理を施しておく。
 フィーダー細胞は、実験の目的や細胞の種類によって異なり、例えば、ES細胞やiPS細胞の場合は,MEF(マウス胎児線維芽細胞)やSNL(マウス胎児由来線維芽細胞株)が用いられる。
 本発明の分化誘導方法においても、後述するKCM法を改変した方法では、間質細胞、線維芽細胞等の様々なフィーダー細胞およびマトリゲル、羊膜、1型コラーゲン、フィブロネクチン、ラミニン等のコーティングを用いることができる。
 一方、SDIA法を改変した方法では、間質細胞が用いられるが、分化効率の点から3T3細胞が好ましい。
(5)間質細胞、間質細胞由来の分化因子
 本発明で用いられる「間質細胞(Stromal Cell)」とは、骨髄に存在する血液の細胞を支持する細胞である。「間質細胞」は、培養により浮遊状態で増殖する血液細胞とは異なり、壁に付着して増殖する。「間質細胞」は間葉系由来の細胞であり、さまざまな細胞に分化する幹細胞を多く含む。
 「間質細胞」は、幹細胞を多く含み、それ自体分化多能性を有するため、再生医療への応用が期待されている。しかしながら、本発明においては、「間質細胞」を人工多能性幹細胞から上皮系前駆細胞・幹細胞群あるいは角膜上皮細胞への分化誘導を促すための、フィーダー細胞等として利用する。
 「間質細胞」には、細胞の分化を制御する因子を分泌することが知られている。本発明で用いられる「間質細胞由来の分化因子」とは、このような間質細胞が分泌する細胞の分化を制御する因子を意味する。「間質細胞由来の分化因子」の実体は未解明であるものの、後述するように、ES細胞をマウス骨髄由来の間質細胞とともに培養することで、ES細胞を選択的に神経細胞に分化誘導できることが確認されており、この間質細胞あるいは間質細胞由来の分化因子を利用した神経細胞の分化誘導法はSDIA法と命名されている(Kawasaki,H.,Sasai,Y.et al.,Neuron,(2000)28,31−40.、Kawasaki,H.,Sasai,Y.et al.,Proc.Natl.Acad.Sci.USA,(2002)99,1580−1585、Mizuseki,K.,Sasai,Y.et al.,Proc.Natl.Acad.Sci.,USA,(2003)100,5828−5833)。
(6)細胞マーカー:ケラチン14、p63、ケラチン12
 本発明では、分化誘導された細胞を同定するために、各細胞種に特異的なマーカーを利用する。具体的には、本発明にかかる上皮前駆細胞・幹細胞は、ケラチン14陽性かつp63陽性によって特定され、角膜上皮細胞はケラチン12陽性もしくはケラチン3陽性によって特定される。
 ケラチン14(Cytokeratin 14:K14):ケラチン14は、基底上皮細胞の代表的マーカーである。
 p63:p63はp53遺伝子ファミリーに属する細胞核たんぱく質であるが、上皮前駆細胞・幹細胞の代表的マーカーで、正常ヒト表皮および毛包基底細胞等で発現が認められる。
 ケラチン12(Cytokeratin 12:K12):ケラチン12および3は、角膜上皮の代表的分化マーカーである。
2.分化誘導方法
 本発明においては、下記に詳述する2つの方法に基づいて、人工多能性幹細胞から、上皮系前駆細胞・幹細胞群あるいは角膜上皮細胞群を分化誘導する。
 なお、人工多能性幹細胞は、MEFやSNL等のフィーダー細胞上で、適当な培地(市販のES細胞用培地や、iPS細胞用培地等)を用いて培養しておく。
2.1 KCM法の改変
 KCM(Keratinocyte Culture Medium)とは、表皮角化細胞培養用培地の略称である。表皮細胞用培地としては、KCM培地、KSFM培地(invitrogen)、Epi−life(Cascadbio)、3T3−conditioned mediumなどが知られているが、KCM培地はコレラ毒素、牛胎児血清、ハイドロコルチゾン、通常カルシウム濃度であるという点で他の表皮角化細胞用培地とは区別される。本明細書中では、このKCM培地を用いた表皮細胞への分化誘導方法をKCM法と記載する。
 発明者らは、このKCM培地を改変して適用することにより、人工多能性幹細胞から上皮系前駆細胞・幹細胞群を分化誘導することに成功した。なお、表皮角化細胞は、皮膚における上皮細胞に限定されており、一般的に表皮細胞は角化することや、ケラチン1,ケラチン10などのマーカーを発現するなどの性質を有しており、上皮細胞の中での分化形態の一種である。そのため、表皮角膜細胞と上皮細胞は同一のものではない。
 一般に、KCM培地を用いた培養法ではコラーゲンを支持体として表皮角化細胞を培養するが、発明者らはフィーダー細胞を用いることでより良好な上皮系前駆細胞・幹細胞群および角膜上皮細胞への分化誘導が達成できることを確認した。
 すなわち、人工多能性幹細胞を、フィーダー細胞あるいはコラーゲン、基底膜マトリックス(マトリゲル(登録商標))、羊膜、フィブロネクチン、及びラミニンから選ばれる支持体上で、上皮成長因子、コレラ毒素、牛胎児血清等の血清を含む表皮細胞用培地を用いて培養することにより、ケラチン14陽性かつp63陽性の上皮系前駆細胞・幹細胞群に分化誘導する。培地は、さらにハイドロコルチゾン、インスリン、トランスフェリン、セレニウム等を含むことが好ましい。また、コラーゲンはI型コラーゲン、IV型コラーゲンが好ましく、抗原性を除去したアテロコラーゲンが好ましい。
 用いられるフィーダー細胞は特に限定されず、例えば、間質細胞、線維芽細胞等を用いることができるが、とくに間質細胞が好ましく、その好適な一例として3T3細胞を挙げることができる。
 3T3細胞は、マウスの皮膚に由来する線維芽細胞培養細胞株で、その名称は「3 days,transfer,inoculum 3 x 10 cells/50mm dish」、つまり比較的多い細胞数を播種して短い培養期間で継代することで、その機能が保たれるという特性に由来する。
 3T3細胞には、Swiss/3T3、3T3−swiss albino、BALB/3T3、NIH/3T3等いくつかの細胞株があるが、そのいずれを用いてもよい。
 上記方法で用いられるKCM培地は、基本培地としては、DMEM培地、BME培地、α MEM培地、Dulbecco MEM培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、ハム培地、RPMI 1640培地、Fischer’s培地、McCoy’s培地、ウイリアムスE培地、およびこれらの混合培地など、動物細胞の培養に用いることのできる培地であればいずれも用いることができる。この基本培地に、細胞の維持増殖に必要な各種栄養源や分化誘導に必要な各成分を添加して作成される。
 例えば、栄養源としては、グリセロール、グルコース、果糖、ショ糖、乳糖、ハチミツ、デンプン、デキストリン等の炭素源、また、脂肪酸、油脂、レシチン、アルコール類等の炭化水素類、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源、食塩、カリウム塩、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等の無機塩類、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、モリブデン酸ナトリウム、タングステン酸ナトリウムおよび硫酸マンガン、各種ビタミン類、アミノ酸類等を含むことができる。
 分化誘導を促す成分としては、ペニシリン、ストレプトマイシン等の抗生物質、コレラトキシン、トランスフェリン、インスリン、EGM(Epidermal Growth Factor)、血清あるいは血清代替物、KSR(Knockout Serum Replacement)等を挙げることができる。
 これらの成分を配合して得られる培地のpHは5.5~9.0、好ましくは6.0~8.0、より好ましくは6.5~7.5の範囲である。
 培養は、36℃~38℃、好ましくは36.5℃~37.5℃で、1%~25% O、1%~15% COの条件下で行われる。
 培地には、BMP4(Bone Morphogenetic Protein 4)を添加すると、より良好な上皮系前駆細胞・幹細胞群への分化誘導が達成できる。BMP4は骨形成因子の一つで、transforming growth factor−β(TGF−β)スーパーファミリーに属し、分化、増殖および様々な細胞機能を調節することが知られており、神経への分化を抑制し、表皮細胞への分化を促進することが知られている。
 培地には、さらにレチノイン酸(retinoic acid)を添加すると、さらに良好な上皮系前駆細胞・幹細胞群への分化誘導が達成できる。レチノイン酸はビタミンA誘導体の一種で、表皮細胞の分化・増殖促進など、種々の細胞において、その分化・増殖の制御に関与していることが知られている。なお、レチノイン酸は、通常用いられるその塩や誘導体であってもよい。
 人工多能性幹細胞は、凝集した状態で培養し、胚葉体形成をさせてもよいが、分化効率の点からは、凝集をさせることなく胚葉体形成を介さずに分化誘導することが好ましい。
2.2 SDIA(Stromal cell−derived inducing activity)法の改変
 SDIA法とは、前述したとおり、Stromal cell−derived inducing activity法の略称で、間質細胞が分泌する分化因子を利用して、ES細胞から神経細胞が誘導されることが知られている(前掲)。
 発明者らは、このSDIA法を改変して適用することにより、人工多能性幹細胞から上皮系前駆細胞・幹細胞群を分化誘導することに成功した。なお、上皮細胞と神経細胞は、同じ外胚葉由来の細胞であるが、神経は神経外胚葉由来であり、上皮系細胞は表皮外胚葉由来であり、また機能的、形態的にもまったく異なる細胞系譜である。
 通常、SDIA法では、PA6という間質細胞株を用いるが、発明者らは、PA6と3T3細胞を比較した結果、3T3細胞をフィーダーとして用いることにより、上皮系幹細胞・前駆細胞への分化誘導効率が有意に向上することを確認した。また、血清存在下のほうが、上皮系幹細胞・前駆細胞への分化誘導効率は高かった。なお、PA6細胞をフィーダーとして用いる場合は、レチノイン酸等の促進因子を添加することにより、3T3フィーダーと同様に上皮系幹細胞・前駆細胞に分化誘導することができた。
 本発明においては、人工多能性幹細胞を、3T3細胞上あるいは3T3細胞由来の分化因子存在下で培養することにより、ケラチン14陽性、p63陽性の上皮系前駆細胞・幹細胞群に分化誘導する。
 用いられる培地は、基本培地としては、DMEM培地、BME培地、BGJb培地、CMRL 1066培地、Glasgow MEM培地、Improved MEM Zinc Option培地、IMDM培地、Medium 199培地、Eagle MEM培地、α MEM培地、Dulbecco MEM培地、ハム培地、RPMI 1640培地、Fischer’s培地、McCoy’s培地、ウイリアムスE培地、およびこれらの混合培地など、動物細胞の培養に用いることのできる培地であればいずれも用いることができる。この基本培地に、細胞の維持増殖に必要な各種栄養源や分化誘導に必要な各成分を添加して作成される。
 例えば、栄養源としては、グリセロール、グルコース、果糖、ショ糖、乳糖、ハチミツ、デンプン、デキストリン等の炭素源、また、脂肪酸、油脂、レシチン、アルコール類等の炭化水素類、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム、尿素、硝酸ナトリウム等の窒素源、食塩、カリウム塩、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等の無機塩類、リン酸一カリウム、リン酸二カリウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、モリブデン酸ナトリウム、タングステン酸ナトリウムおよび硫酸マンガン、各種ビタミン類、アミノ酸類等を含むことができる。
 その他必要に応じて、ピルビン酸、ピルビン酸、βメルカプトエタノール等のアミノ酸還元剤、血清あるいは血清代替物等を挙げることができる。なお血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン)、トランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、βメルカプトエタノール又は3’チオールグリセロール、市販のKnockout Serum Replacement(KSR)、Chemically−defined Lipid concentrated(Gibco社製)、Glutamax(Gibco社製)が挙げられる。
 これらの成分を配合して得られる培地のpHは5.5~9.0、好ましくは6.0~8.0、より好ましくは6.5~7.5の範囲である。
 培養は、36℃~38℃、好ましくは36.5℃~37.5℃で、1%~25% O、1%~15% COの条件下で行われる。
 人工多能性幹細胞の培養は、血清代替物及び/又はBMP4を含む分化培地を用いて培養したのち、牛胎児血清等の血清及び/又はBMP4を含む上皮誘導培地又は上皮成長因子及び/又はコレラ毒素と、血清とを含む表皮細胞用培地(例えば、KCM培地)を用いて培養するほうが、分化効率の点で好ましい。分化培地や上皮誘導培地、表皮細胞用培地は、さらに非必須アミノ酸、βメルカプトエタノール、ピルビン酸ナトリウム等を含むことが好ましい。なお血清代替物としては、例えば、アルブミン(例えば、脂質リッチアルブミン)、トランスフェリン、脂肪酸、インスリン、コラーゲン前駆体、微量元素、βメルカプトエタノール又は3’チオールグリセロール、市販のKnockout Serum Replacement(KSR)、Chemically−def ined Lipid concentrated(Gibco社製)、Glutamax(Gibco社製)が挙げられる。また、非必須アミノ酸とは、必須アミノ酸(その動物の体内で合成できず、栄養分として摂取しなければならないアミノ酸)以外のアミノ酸を意味し、ヒトの場合、アスパラギン、アスパラギン酸、アルギニン、グルタミン、グルタミン酸、グリシン、プロリン、オルニチン、チロシン、セリン、アラニンの11種が非必須アミノ酸に該当する。本発明において、「非必須アミノ酸」は、上記11種のすべてを含む必要はなく、これらの一部であってもよい。好ましくは、基本培地に含有されないアスパラギン、アスパラギン酸、プロリン、オルニチン、アラニンを含む5種以上が含まれていればよい。
 上皮誘導培地や表皮細胞用培地には、レチノイン酸(retinoic acid)を添加すると、さらに良好な上皮系前駆細胞・幹細胞群への分化誘導が達成できる。上皮誘導培地のみならず、分化培地にも、レチノイン酸を添加することができる。なお前記したように、レチノイン酸は、通常用いられるその塩や誘導体であってもよい。
 いずれの培地も、上記した成分組成を基本とするが、分化培地は牛胎児血清を含んでおらず主に未分化細胞の増殖に寄与すると考えられ、上皮誘導培地は牛胎児血清を含む培地であり、上皮細胞への分化を促進するといった特徴を有している。表皮細胞用培地の具体的な一例はKCM培地である。
3.上皮系前駆細胞・幹細胞群からの分化誘導
3.1 上皮系細胞への分化誘導
 本発明の方法によって分化誘導された上皮系前駆細胞・幹細胞群は、他のさまざまな上皮細胞群に分化させることができる。
 上皮系前駆細胞・幹細胞群から分化誘導可能な上皮細胞群としては、角膜上皮細胞群、表皮細胞群、毛包細胞群、口腔粘膜上皮細胞群、膀胱上皮細胞群、結膜上皮細胞群、胃粘膜上皮細胞群、小腸上皮細胞群、大腸上皮細胞群、腎臓上皮細胞群、尿細管上皮細胞群、歯肉粘膜上皮細胞群、食道上皮細胞群、肝臓上皮細胞群、膵臓上皮細胞群、肺上皮細胞群および胆嚢上皮細胞群等を挙げることができる。
3.2 角膜上皮細胞への分化誘導
 本発明の2種類の方法(KCM改変法とSDIA改変法)のいずれにおいても、一定期間培養を続けることにより、上皮系前駆細胞・幹細胞群からケラチン12陽性かつケラチン14陰性の角膜上皮細胞群を分化誘導することができる。例えば、輪部下線維芽細胞との共培養により、表皮細胞から角膜上皮細胞を分化誘導する方法(Blazejewska E A et al.,Stem Cells,(2009)Mar;27(3):642−652)により、iPS細胞より角膜上皮細胞へ分化誘導することができる。
 角膜上皮細胞群に分化誘導するための培養期間は、用いる細胞の種類と、培養条件によって適宜決定される。
4.細胞の単離(純化)
4.1 上皮系前駆細胞・幹細胞群の単離
 本発明の方法によって分化誘導された上皮系前駆細胞・幹細胞群は、そのマーカーであるケラチン14とp63を利用して、単離することができる。
 常法にしたがい各マーカーに特異的な抗体を用いて容易に実施できる。たとえば、抗体で標識された磁気ビーズ、抗体を固相化したカラム、蛍光標識された抗体を用いたセルソーター(FACS)による分離を用いて単離すればよい。抗体は、市販のものを利用してもよいし、常法にしたがい作製してもよい。
 具体的に言えば、抗integrin α抗体や、抗E−cadherin抗体を固定化した免疫磁気ビーズをそれぞれ調整し、その両方に結合する分画を分離する。あるいは、抗integrin α抗体や、E−cadherin抗体を固定化した担体を用いたカラムクロマグラフィーを用いて分離したり、integrin αとE−cadherin陽性細胞をFACSで分離することもできる。
4.2 角膜上皮細胞群の単離
 本発明の方法によって分化誘導された角膜上皮細胞群についても、その角膜上皮細胞の培養方法を利用して、単離することができる。
 具体的に言えば、前述したように、分化誘導された角膜上皮細胞群を、トリプシン処理により回収し、再びKCMやKSFM(invitrogen)培地等の上皮細胞培養用倍地中(KCM培地の場合は3T3細胞をフィーダーに使用する)に播種、培養を行い、さらに継代を繰り返すことにより、角膜上皮細胞を純化することが可能である。
5.再生医療への利用
5.1 培養物
 本発明の方法によって得られた上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された表皮細胞群あるいは、上皮細胞群を含む培養物は、それ自体、研究、再生医療あるいは後述する細胞製剤の原料として利用することができる。
5.2 上皮疾患治療用細胞製剤
 本発明の方法によって、分化誘導され、単離された上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された表皮細胞群あるいは上皮細胞群は、上皮系疾患用細胞製剤として利用できる。
 本発明の細胞製剤の投与方法は特に限定されず、適用部位に応じて、外科的手段による局所移植、静脈内投与、腰椎穿刺投与、局所注入投与、皮下投与、皮内投与、腹腔内投与、筋肉内投与、脳内投与、脳室内投与、又は静脈投与などが考えられる。
 本発明の細胞製剤は、細胞の維持・増殖、患部への投与を補助する足場材料や成分、他の医薬的に許容しうる担体を含んでいてもよい。
 細胞の維持・増殖に必要な成分としては、炭素源、窒素源、ビタミン、ミネラル、塩類、各種サイトカイン等の培地成分、あるいはマトリゲルTM等の細胞外マトリックス調製品、が挙げられる。
 患部への投与を補助する足場材料や成分としては、生分解性ポリマー;例えば、コラーゲン、ポリ乳酸、ヒアルロン酸、セルロース、及びこれらの誘導体、ならびにその2種以上からなる複合体、注射用水溶液;例えば生理食塩水、培地、PBSなどの生理緩衝液、ブドウ糖やその他の補助剤を含む等張液(例えばD−ソルビトール、D−マンノース、D−マンニトール、塩化ナトリウム)等が挙げられ、適当な溶解補助剤、例えばアルコール、具体的にはエタノール、ポリアルコール、例えばプロピレングリコール、ポリエチレングリコール、非イオン性界面活性剤、例えばポリソルベート80、HCO−50等と併用してもよい。
 その他、必要に応じて、医薬的に許容される有機溶剤、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ペクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤等を含んでいてもよい。
 実際の添加物は、本発明の治療剤の剤型に応じて上記の中から単独で又は適宜組み合わせて選ばれるが、これらに限定するものではない。例えば、注射用製剤として使用する場合、精製された抗体を溶剤、例えば生理食塩水、緩衝液、ブドウ糖溶液等に溶解し、これに吸着防止剤、例えばTween80、Tween20、ゼラチン等を加えたものを使用することができる。
 本発明の細胞製剤の対象となりうる疾患としては、例えば、Stevens−Johnson症候群、眼類天疱瘡、熱・化学外傷、無虹彩症、Salzmann角膜変性症、特発性角結膜上皮症、トラコーマ後瘢痕、角膜穿孔、角膜周辺部潰瘍、エキシマレーザー治療後の角膜上皮剥離、食道癌治療後の狭窄、その他の角結膜、皮膚、口腔粘膜、食道粘膜、胃粘膜疾患患者が挙げられる。
5.3 重層化細胞シート
 本発明の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された上皮細胞群を重層化して培養上皮細胞シートを作製することができる。
 細胞の重層化は、発明者らの既報(WO2004/069295、特開2005−130838号、Nishida K et al.,N.Engl.J.Med.(2004)351:1187−96等)にしたがって実施できる。たとえば、3T3細胞やその他間質細胞をフィーダー細胞として用いて、本発明の方法で分化誘導された上皮細胞群を上皮細胞重層化用培地(例えば、KCM培地)中で培養し、上皮系細胞を重層培養することにより培養上皮細胞シートを作製できる(Nishida K et al.,N.Engl.J.Med.(2004)351:1187−96)。あるいは、本発明の方法で分化誘導された上皮細胞群を多孔膜上で培養し、当該多孔膜を介して培地が下層から常に供給されるようにすることで、上皮系細胞を重層化して培養上皮細胞シートを作製できる(特開2005−130838号)。
6.その他
 本発明の方法を用いてHLAジェノタイプ別に上皮細胞を創出することにより、拒絶反応を軽減可能な上皮細胞バンクを作製することも可能である。細胞バンクを用いた他家再生医療技術は産業化が望まれる分野である。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1:マウスiPS細胞からの上皮細胞の分化誘導
1.マウスiPS細胞の培養:
 マウスiPS細胞は、京都大学山中伸弥教授より供与を受けた(Okita K et al.,Nature(2007)448:313−317)。SNL(SNL76/7)はBayer College of MedicineのDr.Allan Bradleyより供与を受けた。マウスiPS細胞は、このSNL(SNL76/7)をフィーダーとして、下記に示すSNLフィーダー用培地を用いて維持した。
 ゲラチンコートした培養皿にマイトマイシン(MMC)処理したSNL細胞を播種し、これをフィーダー細胞とした。この上にマウスiPS細胞を播種し、iPS細胞培養用培地を用いて37℃、5% COで維持した。
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
2.分化誘導系の準備
2.1.KCM(Keratinocyte culture medium)法
(1)コラーゲン上での培養
 SNLフィーダー上のiPS細胞を0.25%トリプシン/EDTA処理することにより、iPS細胞を回収し、さらにピペッティングを行うことによりiPS細胞の細胞懸濁液(single cell suspension)を作製した。得られた細胞縣濁液をゼラチンコーティングした培養皿上で1−2時間程度インキュベートし、上清を回収することで、フィーダー細胞のみ接着させ、iPS細胞のみを回収した。得られたiPS細胞の細胞数をカウントし、下記のとおり4型コラーゲンをコーティングした培養皿上に0.5 − 10 x 10 cells/cmの密度で播種し、下記に示すKCM培地を用いて37℃、5% COで7−28日間培養した。さらに、KCM培地に0.5nM BMP4(R&D System)を添加して、同様に培養を行った。
<コーティング法>
 4型コラーゲン(新田ゼラチン)を希塩酸(pH3)で10倍希釈し、培養皿に薄く塗り広げ、クリーンベンチ内で30分以上置き乾燥させた。使用前にPhosphate−Buffered Salines(PBS)(Invitrogen)で3回洗浄した。
Figure JPOXMLDOC01-appb-I000003
(2)3T3細胞上での培養
 MMC処理した3T3細胞をフィーダー細胞として播種した培養皿上に、前項と同様にして調製したiPS細胞を、0.1 − 10 x 10 cells/cmの密度で播種して37℃で、7−27日間培養を行った。細胞は適宜PFAによる固定を行った。さらに、KCM培地に0.5nM BMP4(R&D System)を添加して、同様に培養を行った。
2.2.SDIA(Stromal cell−derived activity)法
(1)PA6細胞上での培養
 SNLフィーダー上のiPS細胞を0.25%トリプシン/EDTA処理することにより、iPS細胞を回収し、さらにピペッティングを行うことによりiPS細胞の細胞懸濁液(single cell suspension)を作製した。得られた細胞縣濁液をゼラチンコーティングした培養皿上で1−2時間程度インキュベートし、上清を回収することで、フィーダー細胞のみ接着させ、iPS細胞のみを回収した。得られたiPS細胞の細胞数をカウントし、PA6細胞を播種した培養皿上に0.1−10 x 10 cells/cmの密度で播種し、下記に示す分化培地中で37℃、5% CO、8日間培養し、次いで上皮誘導培地中で37℃、2−27日間培養した。細胞は適宜PFAによる固定を行った。さらに、上皮誘導培地にFBSを添加しない場合と添加する場合の違いについても評価した。
Figure JPOXMLDOC01-appb-I000004
上皮誘導培地(SDIA改変法)
 分化培地(−10%KSR)+10%FBS(Japan bio serum)
 分化培地からKSRを除き、10%FBSを加えたものを上皮誘導培地として用いた。
(2)3T3細胞上での培養
 MMC処理した3T3細胞をフィーダー細胞として播種した培養皿上に、前項と同様にして調製したiPS細胞を0.1−10 x 10 cells/cmの密度で播種し、分化培地中で37℃、5% COで8日間培養し、次いで上皮誘導培地中で37℃、2−27日間培養した。細胞は適宜PFAによる固定を行った。さらに、上皮誘導培地にFBSを添加しない場合と添加する場合の違いについても評価した。
3.分化誘導細胞の検証
 分化誘導後の細胞について、免疫染色法により基底上皮細胞マーカーであるケラチン14、上皮前駆細胞・幹細胞マーカーであるp63、角膜上皮分化マーカーであるケラチン12の発現をみた。また、フローサイトメトリーによりケラチン14陽性細胞について解析した。免疫染色法及びフローサイトメトリー解析の詳細は下記に示す。
<免疫染色法>
 Cytokeratin14(ケラチン14(K14))
 冷メタノール固定(−30℃/20分)後、5%NSTを入れ30分室温に置きブロッキングした。その後、1次抗体(Cytokeratin14(AF64):Covance)で1晩反応(4℃)させた後、PBSで洗浄し、2次抗体に2時間反応(室温)させた。細胞核はHoechst33342で染色した。
 Cytokeratin12(ケラチン12(K12))
 冷メタノール固定(−30℃/20分)後、5%NSTを入れ30分室温に置きブロッキングした。その後、1次抗体(Cytokeratin12(L−15):Santa Cruz Biotechnology)で1晩反応(4℃)させた後、PBSで洗浄し、2次抗体に2時間反応(室温)させた。細胞核はHoechst33342で染色した。
Cytokeratin3(ケラチン3(K3))
 冷メタノール固定(−30℃/20分)後、5%NSTを入れ30分室温に置きブロッキングした。その後、1次抗体(Cytokeratin3/2p(AE5:R&D system)で1晩反応(4℃)させた後、PBSで洗浄し、2次抗体に2時間反応(室温)させた。細胞核はHoechst33342で染色した。
 p63
 冷メタノール固定(−30℃/20分)後、5%NSTを入れ30分室温に置きブロッキングした。その後、1次抗体(p63(S−16):Santa Cruz Biotechnology)で72時間反応(4℃)させた後、PBSで洗浄し、2次抗体に2時間反応(室温)させた。細胞核はHoechst33342で染色した。
<フローサイトメトリー解析>
Cytokeratin14
 細胞を0.25% Trypsin/EDTAで回収し、Cytofix/Cytoperm kit(BD Biosciences)を用いて細胞の固定および膜透過処理を行った。処理後、1次抗体(Cytokeratin14(AF64):Covance)を1000倍希釈で添加し、2時間室温に静置した。遠心分離によりペレットを洗浄し、さらに2次抗体(anti−rabbit alexa488)を200倍希釈で添加し、1時間室温で静置した。遠心分離によりペレットを洗浄した後、1−2mlのPBSに縣濁した。縣濁液をフローサイトメーターに供与し、ケラチン14陽性細胞率を調べた。
3.1.KCM改変法
 KCM培地によるコラーゲン上での分化誘導の結果、Day10以降において、基底上皮細胞マーカーであるケラチン14、Day17以降において、ケラチン14に加え上皮前駆細胞・幹細胞マーカーであるp63の両方を発現する細胞が認められた(図1)。また、Day17以降において、ケラチン14陰性でかつ角膜上皮分化マーカーケラチン12を発現する上皮細胞が認められた(図2:角膜上皮分化マーカーケラチン12(a,d)を発現し、ケラチン14(b,e)を発現しない角膜上皮細胞が認められた(c,f))。
 BMP4を培養系に添加することにより、上皮誘導効率は有意に増加した(図3:Day28におけるBMP4を添加した場合の上皮マーカーケラチン14陽性、p63陽性の上皮前駆細胞・幹細胞の誘導(a−d))。ケラチン14陽性細胞のフローサイトメトリー解析の結果、分化誘導効率は、BMP4添加により2.9%から6.0%に増加することが確認された(図3:e)。
 さらに、コラーゲンの代わりに3T3細胞をフィーダーに用いることで、分化誘導効率は向上することが確認された(図4)。
3.2.SDIA改変法
 PA6細胞をフィーダーとして、分化培地中で8日間(a−c)、さらに上皮誘導培地中で2−27日間培養した(図5(d−f)には3日目の結果を示した)。その結果、p63(a,d)およびケラチン14(b,e)を共発現する複数の上皮細胞コロニーが認められた(c)。さらにFBS含有上皮誘導培地により、上皮細胞への分化が促進されることが確認された(d−f)。
 フィーダーとして3T3細胞を用いた場合(図6:a−c)、PA6細胞を用いた場合(図6:d−f)に比較して、ケラチン14陽性、p63陽性の上皮前駆細胞・幹細胞コロニーが効率良く誘導された(14.9% vs 3.2%)。ケラチン14陽性細胞のフローサイトメトリー解析の結果、Day22における上皮前駆細胞・幹細胞の誘導効率は、3T3細胞とPA6細胞で、それぞれ16.8%と8.1%であった(図6:g)。
4.考察
 以上の結果から、KCM改変法あるいはSDIA改変法により、マウスiPS細胞を上皮系幹細胞・前駆細胞および角膜上皮細胞を分化誘導できることが確認された。上皮系幹細胞・前駆細胞への分化誘導効率は、KCM改変法、SDIA改変法いずれの場合も、3T3細胞をフィーダーとして用いることにより、有意に向上することが確認された。
 また、KCM改変法においてはBMP4の添加により、SDIA改変法においては、上皮誘導培地にFBSを添加することにより、上皮系幹細胞・前駆細胞への分化誘導効率が向上することが確認された。
 以上の結果から、SDIA改変法により上皮系幹細胞・前駆細胞を分化誘導できることが確認された。
実施例2:ヒトiPS細胞からの上皮細胞の分化誘導
1.ヒトiPS細胞の培養:
 ヒトiPS細胞は、京都大学山中伸弥教授より供与を受けた(Takahashi K,Yamanaka S.,et al.Cell,(2007)131:861−872)。ヒトiPS細胞は、MEF細胞(北山ラベス)をフィーダーとして、下記に示すMEFフィーダー用培地を用いて維持した。
 すなわち、ゲラチンコートした培養皿にマイトマイシン処理したMEF細胞を播種し、これをフィーダー細胞とした。そして、この上にヒトiPS細胞を播種し、4ng/mlのbFGFを添加した霊長類ES細胞用培地(リプロセル)を用いて37℃、5% COで維持した。
2.1.KCM(Keratinocyte culture medium)改変法
(1)コラーゲン上での培養
 MEFフィーダー上のヒトiPS細胞を0.25%トリプシン/EDTA処理することにより、iPS細胞コロニーを砕き、ピペッティング数回行うことで、iPS細胞コロニーのクラスター集団を回収した(シングルセルにしない)。得られたiPS細胞コロニーを、KCM培地中で、ゼラチンコーティングした培養皿上で1−2時間程度インキュベートし、上清を回収することで、MEFフィーダー細胞のみ接着させ、ヒトiPS細胞のみを回収した。得られたヒトiPS細胞コロニーのコロニー数をカウントし、4型コラーゲンコーティング培養皿上に、10−1000 colonies/cmの密度で播種し、下記に示すKCM培地に0.5nM BMP4(R&D System)を添加して、培養を行った。
<コーティング法>
 4型コラーゲン(新田ゼラチン)を希塩酸(pH3)で10倍希釈し、培養皿に薄く塗り広げ、クリーンベンチ内で30分以上置き乾燥させた。使用前にPhosphate−Buffered Salines(PBS)(Invitrogen)で3回洗浄した。
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
2.2.分化誘導系(SDIA改変法)の準備
(1)PA6細胞上での培養
 MEFフィーダー上のヒトiPS細胞を0.25%トリプシン/EDTA処理することにより、iPS細胞コロニーを砕き、ピペッティング数回行うことで、iPS細胞コロニーのクラスター集団を回収した(シングルセルにしない)。得られたiPS細胞コロニーを、0.5nM BMP4を含んだ分化培地中で、ゼラチンコーティングした培養皿上で1−2時間程度インキュベートし、上清を回収することで、MEFフィーダー細胞のみ接着させ、ヒトiPS細胞のみを回収した。得られたヒトiPS細胞コロニーのコロニー数をカウントし、PA6細胞を播種した培養皿上に100−1000 colonies/cmの密度で播種し、下記に示す分化培地中で37℃、5% COで8日間培養し、次いで上皮誘導培地中で37℃、7−22日間培養した。細胞は適宜PFAによる固定を行った。さらに、上皮誘導培地にFBSを添加しない場合と添加する場合の違いについても評価した。
Figure JPOXMLDOC01-appb-I000008
上皮誘導培地(SDIA改変法)
 分化培地(−10%KSR)+ 10%FBS(Japan bio serum)
 分化培地からKSRを除き、10%FBSを加えたものを上皮誘導培地として用いた。
(2)3T3細胞上での培養
 MMC処理した3T3細胞をフィーダー細胞として播種した培養皿上に、前項と同様にして調製したヒトiPS細胞コロニーを10−1000 colonies/cmの密度で播種し、分化培地中で37℃、5% COで8日間培養し、次いで上皮誘導培地中で37℃、7−22日間培養した。細胞は適宜PFAによる固定を行った。さらに、上皮誘導培地にFBSを添加しない場合と添加する場合の違いについても評価した。
3.分化誘導細胞の検証
 実施例1と同様にして、分化誘導後の細胞について、免疫染色法による解析を行った。
 その結果、ヒトiPS細胞からKCM改変法を用いて、day15において、ケラチン14陽性上皮前駆細胞およびケラチン12陽性角膜上皮細胞を誘導可能であることが示された(図7)。また、SDIA改変法により、day15においては、PA6細胞をフィーダーに用いた場合ではほとんどケラチン14陽性上皮前駆細胞は認められなかったが、3T3フィーダー細胞をフィーダーに用いた場合では多くのケラチン14陽性細胞が認められた(図8)。
実施例3:上皮細胞への分化誘導に対するレチノイン酸の効果(KCM改変法)
 実施例1に示したKCM改変法において、レチノイン酸添加によるマウスiPS細胞あるいはES細胞から上皮細胞への分化誘導効率の影響を調べた。
1.レチノイン酸存在下での分化誘導
(1)免疫染色法
 実施例1にしたがい、マウスiPS細胞を(i)KCM培地、(ii)0.5nm BMP4添加KCM培地、(iii)0.5nm BMP4+1μMレチノイン酸添加KCM培地を用いて、コラーゲン上で培養を行った。
 同様に、マウスES細胞(RF8,Gladstone InstituteのDr.Robert Farese,Jr.より提供)を、(i)KCM培地、(ii)0.5nm BMP4添加KCM培地、(iii)0.5nm BMP4+1μMレチノイン酸添加KCM培地を用いて、コラーゲン上で培養を行った。
 21日間培養(分化誘導)後の細胞について、それぞれp63(赤)及びケラチン14(K14:緑)の発現を免疫染色法により検討した。結果を図9に示す(A−C:マウスiPS(KCM)、D−F:マウスiPS(KCM+BMP)、G−I:マウスiPS(KCM+BMP+レチノイン酸)、J−L:マウスES(KCM+BMP+レチノイン酸))。
 図9に示されるように、iPS細胞、ES細胞のいずれにおいても、1μMレチノイン酸を添加した場合に、上皮細胞マーカーであるp63及びケラチン14(K14)の高い発現が見られることが確認された。
(2)リアルタイムPCR
 前項と同様にして、マウスiPS細胞及びES細胞を(i)KCM培地、(ii)0.5nm BMP4添加KCM培地、(iii)0.5nm BMP4+1μMレチノイン酸添加KCM培地を用いて、コラーゲン上で培養し、各誘導日数における、Oct3/4、Nanog、ΔNp63、ケラチン14(K14)の発現をリアルタイムPCRにより定量した。結果を図10に示す(A:Oct3/4、B:Nanog、C:ΔNp63、D:ケラチン14(K14))。なお図中レチノイン酸添加群のDay0前は、レチノイン酸を添加したうえで、SNLフィーダー上での通常培養を行っている(実施例1参照)。
 図10に示されるように、ES細胞マーカーであるOct3/4、Nanogはいずれの分化誘導法によってもDay7以降にほぼ消失した。一方day7以降において上皮前駆細胞マーカーΔNp63やK14発現が上昇し、その発現量はBMP4とレチノイン酸を添加した場合に最も高い傾向を示した。
3.考察
 以上の結果から、KCM改変法によるiPS細胞あるいはES細胞からの上皮細胞への分化誘導は、レチノイン酸の添加によって顕著に向上することが確認された。
実施例4:上皮細胞への分化誘導に対するレチノイン酸の効果(SDIA改変法)
 実施例2に示した分化培地にレチノイン酸を添加し、ヒトiPS細胞から上皮細胞への分化誘導に対する影響を調べた。
 なお、発明者らは、ヒトiPS細胞については、KCM培地を用いた場合に誘導効率が向上することを確認しているため、ここではKCM培地を利用した。
1.レチノイン酸存在下での分化誘導
 実施例2にしたがい、ヒトiPS細胞を細胞塊として3T3もしくはPA6フィーダー上に播種し、0.5nm BMP4と1μMレチノイン酸を添加した分化培地を用いて培養した後、8日目にKCM培地に交換し、さらに隔日で培地を交換しながら2−8週間培養を行った。
 培養方法の概要を以下に示す。
Figure JPOXMLDOC01-appb-C000009
 培養後の細胞について、それぞれp63(赤)及びケラチン14(K14:緑)の発現を免疫染色法により検討した。3T3フィーダー上で0.5nm BMP4と1μMのレチノイン酸を添加した分化培地とKCM培地を用いて15日間(分化培地8日間+KCM培地7日間)及び29日間(分化培地8日間+KCM培地21日間)培養した結果、レチノイン酸を添加せずに0.5nm BMP4を添加した分化培地とKCM培地を用いて15日間培養した結果、3T3フィーダー上で0.5nm BMP4と1μMのレチノイン酸を添加した分化培地と上皮誘導培地を用いて15日間(分化培地8日間+上皮誘導培地7日間)培養した結果をそれぞれ図11A~Dに示す。またPA6フィーダー上で1μMのレレチノイン酸を添加した分化培地を用いて15日間(分化培地8日間+KCM培地7日間)培養した結果を図12に示す。
 3T3フィーダー上での培養では、Day15で上皮細胞マーカーであるp63の高い発現が見られ(図11A)、さらにp63の発現に続いてK14の発現も確認された(図11B)が、レチノイン酸を添加しない場合はDay15でもp63陽性細胞は出現せず(図11C)、Day15以降もp63もK14陽性の細胞はほとんど出現しなかった。PA6フィーダー上でレチノイン酸を添加した場合では、3T3フィーダーを用いた場合と同様に、Day15で上皮細胞マーカーであるp63の高い発現が見られた(図12)。また、SDIA法で通常用いられる分化培地+上皮誘導培地ではレチノイン酸を添加してもDay15ではp63陽性細胞は出現しなかった(図11D)。
3.考察
 以上の結果から、SDIA改変法においても、レチノイン酸の添加が上皮細胞への分化誘導に有用であることが確認された。また、ヒトiPS細胞からの上皮細胞誘導効率は、SDIA法で通常用いられる分化培地+上皮誘導培地よりも、分化培地+KCM培地のほうが優れていることが確認された。
 本発明は、ドナー不足や拒絶反応の心配がない。角膜上皮疾患に対する新たな再生医療として有用である。さらに、本発明の上皮系幹細胞・前駆細胞を細胞源として、表皮細胞、口腔粘膜上皮など様々な重層化上皮を再生することが可能である。すなわち、本発明は様々な上皮疾患に対する自家再生医療技術の基盤技術として応用しうる。さらに、本発明を利用してHLAジェノタイプ別に上皮細胞を創出することにより、拒絶反応の軽減可能な上皮細胞バンクを作製することも可能である。
 本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。

Claims (24)

  1.  哺乳動物体細胞または未分化幹細胞より誘導された人工多能性幹細胞から、ケラチン14陽性かつp63陽性の上皮系前駆細胞・幹細胞群を分化誘導する方法であって:
     前記人工多能性幹細胞を、フィーダー細胞あるいはコラーゲン、基底膜マトリックス、羊膜、フィブロネクチン、及びラミニンから選ばれる支持体上で、上皮成長因子及び/又はコレラ毒素と、血清とを含む表皮細胞用培地を用いて培養することを特徴とする方法。
  2.  培地がさらにハイドロコルチゾン、インスリン、トランスフェリン、及びセレニウムから選ばれる1又は2以上を含むことを特徴とする、請求項1に記載の方法。
  3.  フィーダー細胞が間質細胞である、請求項1又は2に記載の方法。
  4.  間質細胞が3T3細胞である、請求項1~3のいずれか1項に記載の方法。
  5.  培地がBMP4(Bone Morphogenetic Protein 4)及び/又はレチノイン酸を含むことを特徴とする、請求項1~4のいずれか1項に記載の方法。
  6.  胚葉体形成を介さずに上皮系前駆細胞・幹細胞群に分化誘導することを特徴とする、請求項1~5のいずれか1項に記載の方法。
  7.  哺乳動物体細胞または未分化幹細胞から誘導された人工多能性幹細胞から、ケラチン14陽性、p63陽性の上皮系前駆細胞・幹細胞群を分化誘導する方法であって:
     前記人工多能性幹細胞を、3T3細胞上あるいは3T3細胞由来の分化因子存在下で培養することを特徴とする前記方法。
  8.  血清及び/又はBMP4を含む上皮誘導培地、あるいは上皮成長因子及び/又はコレラ毒素と、血清とを含む表皮細胞用培地を用いて培養することを特徴とする、請求項7に記載の方法。
  9.  上皮誘導培地が、さらにレチノイン酸、非必須アミノ酸、βメルカプトエタノール、及びピルビン酸ナトリウムから選ばれる1又は2以上を含み、表皮細胞用培地がさらにハイドロコルチゾン、インスリン、トランスフェリン、及びセレニウムから選ばれる1又は2以上を含むことを特徴とする、請求項8に記載の方法。
  10.  血清代替物、BMP4、及びレチノイン酸から選ばれる1又は2以上を含む分化培地を用いて培養したのち、さらに上皮誘導培地又は表皮細胞用培地を用いて培養することを特徴とする、請求項8又は9に記載の方法。
  11.  分化培地が、さらに非必須アミノ酸、βメルカプトエタノール、及びピルビン酸ナトリウムから選ばれる1又は2以上を含むことを特徴とする、請求項10に記載の方法。
  12.  上皮誘導培地がBMP4(Bone Morphogenetic Protein 4)含むことを特徴とする、請求項7~11のいずれか1項に記載の方法。
  13.  請求項1~12のいずれか1項記載の方法によって分化誘導された上皮系前駆細胞・幹細胞群を、さらに上皮細胞群に分化させることを特徴とする、上皮細胞群の分化誘導方法。
  14.  前記上皮細胞群が角膜上皮細胞群、口腔粘膜上皮細胞群、膀胱上皮細胞群、結膜上皮細胞群、胃粘膜上皮細胞群、小腸上皮細胞群、大腸上皮細胞群、腎臓上皮細胞群、尿細管上皮細胞群、歯肉粘膜上皮細胞群、食道上皮細胞群、肝臓上皮細胞群、膵臓上皮細胞群、肺上皮細胞群および胆嚢上皮細胞群から選ばれるいずれかである、請求項13記載の方法。
  15.  請求項1~14のいずれか1項に記載の方法において、培養を続けることにより、前記上皮系前駆細胞・幹細胞群からケラチン12陽性の角膜上皮細胞群を分化誘導する方法。
  16.  さらにケラチン14陽性かつp63陽性の細胞群を単離する工程を含む、請求項1~14のいずれか1項に記載の方法。
  17.  さらにケラチン12陽性かつケラチン14陰性の細胞群を単離する工程を含む、請求項15に記載の方法。
  18.  請求項1~17のいずれか1項に記載の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された上皮細胞群を含む培養物。
  19.  請求項1~17のいずれか1項に記載の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は角膜上皮細胞群を含む培養物。
  20.  請求項1~17のいずれか1項に記載の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された上皮細胞群を含む上皮系疾患用細胞製剤。
  21.  請求項1~17のいずれか1項に記載の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は角膜上皮細胞群を含む上皮系疾患用細胞製剤。
  22.  請求項1~17のいずれか1項に記載の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は前記細胞群から分化誘導された上皮細胞群を重層化して含む細胞シート。
  23.  請求項1~17のいずれか1項に記載の方法で得られた上皮系前駆細胞・幹細胞群、及び/又は角膜上皮細胞群を重層化して含む細胞シート。
  24.  細胞が重層化培養によって重層化されたものである、請求項22又は23に記載の細胞シート。
PCT/JP2010/058689 2009-05-18 2010-05-18 人工多能性幹細胞からの上皮系前駆細胞・幹細胞群及び角膜上皮細胞群の分化誘導方法 WO2010134619A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/321,130 US20120142103A1 (en) 2009-05-18 2010-05-18 Method for inducing differentiation into epithelial progenitor cell/stem cell population and corneal epithelial cell population from induced pluripotent stem cells
JP2011514473A JPWO2010134619A1 (ja) 2009-05-18 2010-05-18 人工多能性幹細胞からの上皮系前駆細胞・幹細胞群及び角膜上皮細胞群の分化誘導方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-120053 2009-05-18
JP2009120053 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134619A1 true WO2010134619A1 (ja) 2010-11-25

Family

ID=43126293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058689 WO2010134619A1 (ja) 2009-05-18 2010-05-18 人工多能性幹細胞からの上皮系前駆細胞・幹細胞群及び角膜上皮細胞群の分化誘導方法

Country Status (3)

Country Link
US (1) US20120142103A1 (ja)
JP (1) JPWO2010134619A1 (ja)
WO (1) WO2010134619A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144582A1 (ja) * 2011-04-20 2012-10-26 国立大学法人大阪大学 角膜上皮分化指向性iPS細胞
WO2013066802A2 (en) * 2011-10-27 2013-05-10 Agency For Science, Technology And Research (A*Star) Compositions and methods for lung regeneration
JP2014503200A (ja) * 2010-12-02 2014-02-13 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 角膜細胞の作製方法および該角膜細胞を含む細胞集団
WO2014030722A1 (ja) * 2012-08-23 2014-02-27 国立大学法人東北大学 Igfを含む成長因子による歯、再生歯および再生歯胚における歯冠および咬頭ならびに歯根の大きさおよび形の制御の方法
JP2016507231A (ja) * 2013-02-05 2016-03-10 グアンジョウ インスティテュート オブ バイオメディスン アンド ヘルス、チャイニーズ アカデミー オブ サイエンスィズGuangzhou Institutes Of Biomedicine And Health, Chinese Academy Of Sciences 幹細胞を使用する歯様構造物の調製
CN105950543A (zh) * 2016-07-19 2016-09-21 安徽惠恩生物科技股份有限公司 一种表皮细胞的扩增制备方法
KR20170092694A (ko) 2015-01-15 2017-08-11 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 다능성 줄기세포로부터의 각막 상피 세포의 분화 유도 방법
WO2018131491A1 (ja) * 2017-01-13 2018-07-19 国立大学法人大阪大学 角膜上皮細胞集団の製造方法
JPWO2018143312A1 (ja) * 2017-01-31 2019-12-12 国立大学法人大阪大学 多能性幹細胞の分化制御方法
CN111733132A (zh) * 2020-06-28 2020-10-02 厦门大学 一种诱导人胚胎干细胞定向分化为角膜上皮细胞的培养方法及应用
EP3647410A4 (en) * 2017-06-30 2021-04-07 Stemlab Inc. METHOD OF DIRECT REPROGRAMMING OF CELLS IN URINE INTO KERATINOCYTE STEM CELLS AND METHOD OF PREPARING A COMPOSITION TO PROMOTE SKIN REGENERATION BY USING REPROGRAMMED KERATINOCYTE

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2932664T3 (es) 2009-11-12 2023-01-23 Technion Res & Dev Foundation Medios de cultivo, cultivos celulares y métodos de cultivo de células madre pluripotentes en estado no diferenciado
WO2016061071A1 (en) * 2014-10-14 2016-04-21 Cellular Dynamics International, Inc. Generation of keratinocytes from pluripotent stem cells and mantenance of keratinocyte cultures
JP6446067B2 (ja) * 2015-01-13 2018-12-26 国立大学法人大阪大学 表面外胚葉系細胞から誘導された角膜上皮様細胞
CN111394311B (zh) * 2020-04-20 2022-07-01 青岛瑞思德生物科技有限公司 一种诱导间充质干细胞向角膜上皮细胞分化的无血清完全培养基

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506374A (ja) * 1995-12-21 2000-05-30 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム 改良した、不死化したヒト皮膚細胞系およびその生産に有用な新規無血清培地
WO2002010349A1 (en) * 2000-07-21 2002-02-07 Cellseed Inc. Cultured epidermal cell sheet, laminated cultured skin sheet and process for producing the same
JP2008521818A (ja) * 2004-11-23 2008-06-26 メデイカル・カレツジ・オブ・ジヨージア ケラチノサイト機能を調節するための方法および組成物
WO2009156398A1 (en) * 2008-06-25 2009-12-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for preparing human skin substitutes from human pluripotent stem cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506374A (ja) * 1995-12-21 2000-05-30 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム 改良した、不死化したヒト皮膚細胞系およびその生産に有用な新規無血清培地
WO2002010349A1 (en) * 2000-07-21 2002-02-07 Cellseed Inc. Cultured epidermal cell sheet, laminated cultured skin sheet and process for producing the same
JP2008521818A (ja) * 2004-11-23 2008-06-26 メデイカル・カレツジ・オブ・ジヨージア ケラチノサイト機能を調節するための方法および組成物
WO2009156398A1 (en) * 2008-06-25 2009-12-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for preparing human skin substitutes from human pluripotent stem cells

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Defined Keratinocyte-SFM Datasheet. [online], GIBCOTM Invitrogen Corporation", June 2001 (2001-06-01), Retrieved from the Internet <URL:http://toolsja.invitrogen.com/content/sfs/manuals/3867.pdf> [retrieved on 20100706] *
ALLEN-HOFFMANN B. L. ET AL.: "Polycyclic aromatic hydrocarbon mutagenesis of human epidermal keratinocytes in culture.", PROC. NATL. ACAD. SCI. USA., vol. 81, no. 24, 1984, pages 7802 - 7806 *
GREEN H. ET AL.: "Marker succession during the development of keratinocytes from cultured human embryonic stem cells.", PROC. NATL. ACAD. SCI. USA., vol. 100, no. 26, 2003, pages 15625 - 15630 *
JI L. ET AL.: "Generation and differentiation of human embryonic stem cell-derived keratinocyte precursors.", TISSUE ENG., vol. 12, no. 4, 2006, pages 665 - 679 *
METALLO C. M. ET AL.: "Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells.", STEM CELLS, vol. 26, no. 2, 2008, pages 372 - 380 *
RYUHEI HAYASHI ET AL.: "iPS Saibo ni yoru Kakumaku Saisei eno Oyo", CLINICIAN, vol. 56, no. 575, January 2009 (2009-01-01), pages 33 - 40 *
WANG Z. ET AL.: "Differentiation of embryonic stem cells into corneal epithelium.", SCIENCE IN CHINA SER. C LIFE SCIENCES, vol. 48, no. 5, 2005, pages 471 - 480 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9574171B2 (en) 2010-12-02 2017-02-21 Technion Research & Development Foundation Ltd. Methods of generating corneal cells and cell populations comprising same
JP2014503200A (ja) * 2010-12-02 2014-02-13 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 角膜細胞の作製方法および該角膜細胞を含む細胞集団
JP2017113003A (ja) * 2010-12-02 2017-06-29 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミテッド 角膜細胞の作製方法および該角膜細胞を含む細胞集団
CN103492555A (zh) * 2011-04-20 2014-01-01 国立大学法人大阪大学 角膜上皮分化取向性iPS细胞
EP2700709A1 (en) * 2011-04-20 2014-02-26 Osaka University iPS CELL HAVING DIFFERENTIATION PROPENSITY FOR CORNEAL EPITHELIUM
WO2012144582A1 (ja) * 2011-04-20 2012-10-26 国立大学法人大阪大学 角膜上皮分化指向性iPS細胞
EP2700709A4 (en) * 2011-04-20 2014-11-19 Univ Osaka IPS CELL HAVING PREDISPOSITION FOR CORNEAL EPITHELIUM DIFFERENTIATION
JP5759536B2 (ja) * 2011-04-20 2015-08-05 国立大学法人大阪大学 角膜上皮分化指向性iPS細胞
WO2013066802A2 (en) * 2011-10-27 2013-05-10 Agency For Science, Technology And Research (A*Star) Compositions and methods for lung regeneration
WO2013066802A3 (en) * 2011-10-27 2013-07-11 Agency For Science, Technology And Research (A*Star) Compositions and methods for lung regeneration
WO2014030722A1 (ja) * 2012-08-23 2014-02-27 国立大学法人東北大学 Igfを含む成長因子による歯、再生歯および再生歯胚における歯冠および咬頭ならびに歯根の大きさおよび形の制御の方法
JP2014039517A (ja) * 2012-08-23 2014-03-06 Tohoku Univ Igfを含む成長因子による歯、再生歯および再生歯胚における歯冠および咬頭ならびに歯根の大きさおよび形の制御の方法
JP2016507231A (ja) * 2013-02-05 2016-03-10 グアンジョウ インスティテュート オブ バイオメディスン アンド ヘルス、チャイニーズ アカデミー オブ サイエンスィズGuangzhou Institutes Of Biomedicine And Health, Chinese Academy Of Sciences 幹細胞を使用する歯様構造物の調製
KR20170092694A (ko) 2015-01-15 2017-08-11 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 다능성 줄기세포로부터의 각막 상피 세포의 분화 유도 방법
JPWO2016114285A1 (ja) * 2015-01-15 2017-09-14 国立大学法人大阪大学 多能性幹細胞からの角膜上皮細胞の分化誘導
US11066641B2 (en) 2015-01-15 2021-07-20 Osaka University Method for inducing differentiation of corneal epithelial cells from pluripotent stem cells
CN105950543A (zh) * 2016-07-19 2016-09-21 安徽惠恩生物科技股份有限公司 一种表皮细胞的扩增制备方法
JPWO2018131491A1 (ja) * 2017-01-13 2019-11-21 国立大学法人大阪大学 角膜上皮細胞集団の製造方法
WO2018131491A1 (ja) * 2017-01-13 2018-07-19 国立大学法人大阪大学 角膜上皮細胞集団の製造方法
JPWO2018143312A1 (ja) * 2017-01-31 2019-12-12 国立大学法人大阪大学 多能性幹細胞の分化制御方法
US11649433B2 (en) 2017-01-31 2023-05-16 Osaka University Method for controlling differentiation of pluripotent stem cells
EP3647410A4 (en) * 2017-06-30 2021-04-07 Stemlab Inc. METHOD OF DIRECT REPROGRAMMING OF CELLS IN URINE INTO KERATINOCYTE STEM CELLS AND METHOD OF PREPARING A COMPOSITION TO PROMOTE SKIN REGENERATION BY USING REPROGRAMMED KERATINOCYTE
CN111733132A (zh) * 2020-06-28 2020-10-02 厦门大学 一种诱导人胚胎干细胞定向分化为角膜上皮细胞的培养方法及应用
CN111733132B (zh) * 2020-06-28 2021-09-21 厦门大学 一种诱导人胚胎干细胞定向分化为角膜上皮细胞的培养方法及应用

Also Published As

Publication number Publication date
US20120142103A1 (en) 2012-06-07
JPWO2010134619A1 (ja) 2012-11-12

Similar Documents

Publication Publication Date Title
WO2010134619A1 (ja) 人工多能性幹細胞からの上皮系前駆細胞・幹細胞群及び角膜上皮細胞群の分化誘導方法
JP5700301B2 (ja) 多能性幹細胞からの神経堤細胞群の分化誘導方法
US8945920B2 (en) Method for culturing cells derived from the adipose tissue and uses thereof
Pennington et al. Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate
JP5761827B2 (ja) 角膜内皮細胞の調製方法
Yoshida et al. Serum-free spheroid culture of mouse corneal keratocytes
WO2016114285A1 (ja) 多能性幹細胞からの角膜上皮細胞の分化誘導
JP2020534004A (ja) ヒト多能性幹細胞由来の胸腺オルガノイドのインビトロ生成
Nair et al. Identification of p63+ keratinocyte progenitor cells in circulation and their matrix-directed differentiation to epithelial cells
WO2019208688A1 (ja) 生体移植用細胞シート及びその製造方法
CN113337458A (zh) 一种提高多能干细胞定向诱导心肌细胞产量及纯度的方法
JP6421335B2 (ja) 肝幹前駆様細胞の培養方法及びその培養物
Zhou et al. Enhanced functional properties of corneal epithelial cells by coculture with embryonic stem cells via the integrin β1-FAK-PI3K/Akt pathway
JP4748222B2 (ja) 軟骨細胞調製方法
JP7016185B2 (ja) 幹細胞由来涙腺組織の作製方法
US20090047738A1 (en) Feeder cell derived from tissue stem cell
JP2012125207A (ja) 角膜実質細胞培養用スキャフォールド
JP6446067B2 (ja) 表面外胚葉系細胞から誘導された角膜上皮様細胞
WO2017150294A1 (ja) 多能性幹細胞様スフェロイドの製造方法および多能性幹細胞様スフェロイド
WO2021039943A1 (ja) 間葉系幹細胞を含む生体由来細胞試料から間葉系幹細胞を製造する方法
JP6785516B2 (ja) ヒト臍帯由来間葉系幹細胞から骨芽細胞の製造を目的としたアクチン重合阻害剤による分化誘導技術
JPWO2015046315A1 (ja) 細胞の培養法
WO2022254961A1 (ja) 幹細胞を作製するための細胞培養補助剤、及び幹細胞の作製方法
US20080044899A1 (en) Differentiated Cells Originating in Precursor Fat Cells and Method of Acquiring the Same
JP2016192962A (ja) ヒトiPS細胞から、ヒト歯原性上皮細胞やヒト歯原性間葉細胞を製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514473

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13321130

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10777849

Country of ref document: EP

Kind code of ref document: A1