WO2010134498A1 - 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 - Google Patents

油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 Download PDF

Info

Publication number
WO2010134498A1
WO2010134498A1 PCT/JP2010/058304 JP2010058304W WO2010134498A1 WO 2010134498 A1 WO2010134498 A1 WO 2010134498A1 JP 2010058304 W JP2010058304 W JP 2010058304W WO 2010134498 A1 WO2010134498 A1 WO 2010134498A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
content
ferrite phase
steel
Prior art date
Application number
PCT/JP2010/058304
Other languages
English (en)
French (fr)
Inventor
秀樹 高部
近藤 邦夫
尚 天谷
大江 太郎
洋平 乙▲め▼
Original Assignee
住友金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011514406A priority Critical patent/JP4930654B2/ja
Priority to ES10777731.0T priority patent/ES2566545T3/es
Priority to RU2011151550/02A priority patent/RU2494166C2/ru
Priority to EP10777731.0A priority patent/EP2434030B1/en
Priority to CN201080022011XA priority patent/CN102428201B/zh
Priority to CA2760297A priority patent/CA2760297C/en
Application filed by 住友金属工業株式会社 filed Critical 住友金属工業株式会社
Priority to BRPI1014949-0A priority patent/BRPI1014949B1/pt
Priority to MX2011012282A priority patent/MX2011012282A/es
Priority to AU2010250501A priority patent/AU2010250501B2/en
Publication of WO2010134498A1 publication Critical patent/WO2010134498A1/ja
Priority to US13/276,374 priority patent/US9109268B2/en
Priority to US14/793,916 priority patent/US9322087B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/02Rigid pipes of metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to stainless steel for oil wells and stainless steel pipes for oil wells. More specifically, the present invention relates to an oil well stainless steel and an oil well stainless steel pipe used in a high temperature oil well environment and a gas well environment (hereinafter referred to as a high temperature environment).
  • oil wells and gas wells are collectively referred to as “oil wells”.
  • stainless steel for oil wells “Includes stainless steel for oil wells and stainless steel for gas wells.”
  • Stainless steel pipes for oil wells “include stainless steel pipes for oil wells and stainless steel tubes for gas wells.)
  • Deep oil wells have a high temperature environment.
  • the “high temperature environment” includes carbon dioxide gas or carbon dioxide gas and hydrogen sulfide gas, both of which are corrosive gases.
  • high temperature refers to a temperature of 150 ° C. or higher.
  • the oil well pipe used in the high temperature environment of the deep oil well is required to satisfy the following three requirements.
  • the 0.2% offset proof stress is 758 MPa or more (110 ksi class or more). Deep wells have deep wells, which increases the length and weight of the steel pipe used. Therefore, high strength is required.
  • the corrosion rate in a high temperature environment is less than 0.1 g / (m 2 ⁇ hr). Furthermore, it is difficult to break even when stress is applied. That is, it has excellent stress corrosion cracking resistance.
  • stress corrosion cracking is also referred to as SCC.
  • excellent corrosion resistance in a high temperature environment means that the corrosion rate is low and the SCC resistance is excellent.
  • Patent Document 1 JP-A-2005-336595 (hereinafter referred to as Patent Document 1), JP-A-2006-16637 (hereinafter referred to as Patent Document 2) and JP-A-2007-332442 (hereinafter referred to as Patent Document 3), Stainless steel has been proposed for use in the environment. Chromium (Cr) is effective for improving the corrosion resistance in a high temperature environment. Therefore, the stainless steels disclosed in Patent Documents 1 to 3 contain a large amount of Cr.
  • the stainless steel pipe disclosed in Patent Document 1 contains 15.5 to 18% Cr, which is higher than conventional martensitic stainless steel (Cr content is 13%). Furthermore, the chemical composition of the stainless steel pipe satisfies the following formula: Cr + Mo + 0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N ⁇ 11.5. By satisfying this formula, the structure becomes a two-phase structure of a ferrite phase and a martensite phase. As a result, hot workability is improved. Further, the chemical composition of the stainless steel pipe contains Ni and Mo as essential elements and Cu as a selective element. Therefore, the corrosion resistance of the stainless steel pipe is improved.
  • the Cr content of the stainless steel pipe disclosed in Patent Document 2 is 15.5 to 18.5%. Furthermore, the stainless steel of Patent Document 2 contains Ni, which improves corrosion resistance, as an essential element. In the stainless steel of Patent Document 2, Mo and Cu are selective elements.
  • the stainless steel pipe disclosed in Patent Document 3 contains 14 to 18% Cr.
  • the stainless steel pipe of Patent Document 3 further contains Ni, Mo, and Cu. Therefore, the stainless steel pipe has corrosion resistance.
  • the structure of the stainless steel pipe of Patent Document 3 contains a martensite phase and an austenite phase of 3 to 15% by volume. Therefore, the stainless steel pipe has toughness.
  • the stainless steels disclosed in Patent Documents 1 to 3 contain more than 13% Cr. Furthermore, alloy elements, such as Ni, Mo, and Cu, are contained as essential elements or selective elements. Therefore, the corrosion rate in a high temperature environment decreases. For example, in the Example of patent document 1, the fall of the corrosion rate in a high temperature environment is proved (refer Table 2 in patent document 1).
  • the object of the present invention is to provide an oil well stainless steel having the following properties: -High strength of 758 MPa or more with 0.2% offset proof stress; • Excellent corrosion resistance in high temperature environments; and • Excellent SSC resistance at room temperature.
  • (B) A structure including a martensite phase and a ferrite phase having a volume ratio of 10 to 40%. Furthermore, the ferrite phase distribution ratio is increased to more than 85%. The ferrite phase distribution rate will be described below.
  • FIG. 1 shows a cross-sectional photograph of the vicinity of the surface of stainless steel according to the present invention.
  • a plurality of ferrite phases 5 extend along a surface 1 of stainless steel. Note that most of the portion other than the ferrite phase 5 in the cross section is the martensite phase 6.
  • the ferrite phase distribution rate is an index indicating the distribution state of the ferrite phase in the vicinity of the surface.
  • the ferrite phase distribution is defined as follows. As shown in FIG. 2, a scale 10 having a length of 200 ⁇ m is prepared. In the scale 10, a plurality of virtual line segments 20 having a length of 50 ⁇ m are arranged in a row over a range of 200 ⁇ m at a pitch of 10 ⁇ m in the length direction of the scale 10. The scale 10 is arranged with the upper side of the scale 10 aligned with the surface 1 of the stainless steel in FIG. The state after arrangement is shown in FIG. Each imaginary line segment 20 has a length of 50 ⁇ m from the surface 1 in the thickness direction of the stainless steel.
  • the plurality of virtual line segments 20 are arranged in a line in a range of 200 ⁇ m at a pitch of 10 ⁇ m along the surface of the stainless steel.
  • the ferrite phase distribution rate (%) is defined by the following equation (a).
  • FIG. 4 shows a cross-sectional photograph of a stainless steel having a ferrite phase distribution ratio of 71.4%. As shown in FIG. 4, the crack 7 generated on the surface 1 propagates in the thickness direction of the stainless steel. When the tip of the crack 7 reaches the ferrite phase 5, the progress of the crack 7 stops.
  • the ferrite phase 5 prevents the progress of cracks.
  • the ferrite phase distribution ratio is 85% or less, the ferrite phase 5 is not widely distributed in the vicinity of the surface (that is, in the range of a depth of 50 ⁇ m from the surface). Therefore, the crack 7 progresses to a certain depth.
  • the ferrite phase distribution of stainless steel shown in FIG. 1 is more than 85%. That is, the ferrite phase 5 is widely distributed in the vicinity of the surface. Therefore, when a crack occurs on the surface 1, the crack reaches the ferrite phase at a shallow position from the surface 1 and stops progressing. Therefore, the SCC resistance in a high temperature environment is improved.
  • Copper (Cu) is an essential element and the Cu content is increased. Specifically, the Cu content is set to 1.5 to 3.0% by mass. In a high temperature environment, Cu suppresses the progress of cracking. Therefore, the SCC resistance in a high temperature environment is improved. The mechanism is estimated as follows. If the Cu content is 1.5 to 3.0%, a passive film is likely to be formed on the surface of the crack where the growth has stopped due to the ferrite phase. Therefore, it can suppress that a new stress corrosion crack generate
  • the oil well stainless steel according to the present invention has the following chemical composition and structure, and has a 0.2% offset proof stress of 758 MPa or more.
  • Chemical composition is mass%, C: 0.05% or less, Si: 0.5% or less, Mn: 0.01 to 0.5%, P: 0.04% or less, S: 0.01% or less Cr: more than 16.0 to 18.0%, Ni: more than 4.0 to 5.6%, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.0%, Al: 0 0.001 to 0.10%, N: 0.050% or less, with the balance being Fe and impurities, satisfying the formulas (1) and (2).
  • the structure includes a martensite phase and a ferrite phase having a volume ratio of 10 to 40%.
  • the 0.2% offset proof stress is defined as follows. In a stress-strain curve graph with stress on the vertical axis and strain on the horizontal axis, the stress corresponding to the intersection of the stress-strain curve and the imaginary straight line parallel to the straight line portion (elastic region) in the curve is the offset proof stress. That's it. The distance between the starting point of the stress-strain curve and the point where the virtual straight line intersects the horizontal axis is called the offset amount. An offset proof strength with an offset amount of 0.2% is referred to as a 0.2% offset proof strength.
  • the chemical composition is a group consisting of V: 0.25% or less, Nb: 0.25% or less, Ti: 0.25% or less, Zr: 0.25% or less instead of part of Fe. 1 type or 2 types or more selected from.
  • the chemical composition is a group consisting of Ca: 0.005% or less, Mg: 0.005% or less, La: 0.005% or less, Ce: 0.005% or less, instead of part of Fe. 1 type or 2 types or more selected from.
  • the structure includes a residual austenite phase having a volume ratio of 10% or less.
  • the stainless steel pipe for oil well according to the present invention is manufactured using the above stainless steel.
  • the method for producing oil well stainless steel according to the present invention includes the following steps S1 to S4. (S1)% by mass, C: 0.05% or less, Si: 0.5% or less, Mn: 0.01 to 0.5%, P: 0.04% or less, S: 0.01% or less, Cr: more than 16.0 to 18.0%, Ni: more than 4.0 to 5.6%, Mo: 1.6 to 4.0%, Cu: 1.5 to 3.0%, Al: 0.0.
  • Area reduction ratio (1-steel material cross-sectional area perpendicular to the steel material longitudinal direction after hot working / steel material cross-sectional area perpendicular to the steel material longitudinal direction before hot working) x 100 (3)
  • the oil well stainless steel according to the present invention has the following chemical composition.
  • % related to elements means “% by mass”.
  • Carbon (C) improves the strength of steel. However, if there is too much C content, the hardness after tempering will become high too much and SSC resistance will fall. Furthermore, in the chemical composition of the present invention, the Ms point decreases as the C content increases. Therefore, if the C content increases, the retained austenite tends to increase and the 0.2% offset proof stress tends to decrease. Therefore, the C content is 0.05% or less. A preferable C content is 0.03% or less. The lower limit of the C content is not particularly limited. However, considering the cost of decarburization in the steel making process, the preferable C content is 0.003% or more, and more preferably 0.007% or more.
  • Si 0.5% or less Silicon (Si) deoxidizes steel. If there is too much Si content, the toughness and hot workability of steel will fall. Therefore, the Si content is 0.5% or less.
  • Mn 0.01 to 0.5%
  • Manganese (Mn) deoxidizes and desulfurizes steel and improves hot workability. If the Mn content is too small, the above effect cannot be obtained effectively. If there is too much Mn content, the corrosion resistance in a high temperature environment will fall. Therefore, the Mn content is 0.01 to 0.5%.
  • a preferable Mn content is 0.05% or more and less than 0.2%.
  • P 0.04% or less Phosphorus (P) is an impurity. P decreases the SSC resistance. Therefore, the P content is 0.04% or less. A preferable P content is 0.025% or less.
  • S 0.01% or less Sulfur (S) is an impurity. S decreases hot workability. Therefore, the S content is 0.01% or less. A preferable S content is 0.005% or less, and a more preferable S content is 0.002% or less.
  • Chromium (Cr) improves the corrosion resistance in a high temperature environment. Specifically, Cr reduces the corrosion rate in a high temperature environment and improves the SCC resistance. If the Cr content is too small, the above effects cannot be obtained effectively. If there is too much Cr content, the ferrite phase in steel will increase and the strength of steel will fall. Therefore, the Cr content is more than 16.0% and not more than 18.0%. A preferable Cr content is 16.3 to 18.0%.
  • Ni more than 4.0 to 5.6%
  • Nickel (Ni) improves the strength of the steel. Ni further improves the corrosion resistance in a high temperature environment. If the Ni content is too small, the above effect cannot be obtained effectively. However, if there is too much Ni content, it will become easy to produce
  • Mo 1.6-4.0% Molybdenum (Mo) improves SSC resistance. If the Mo content is too small, the above effect cannot be obtained effectively. On the other hand, even if Mo is contained excessively, the above effect is saturated. Therefore, the Mo content is 1.6 to 4.0%. A preferable Mo content is 1.8 to 3.3%.
  • Cu 1.5 to 3.0% Copper (Cu) improves the strength of steel by precipitation hardening. Furthermore, as described above, Cu improves the SCC resistance in a high temperature environment. Cu further reduces the corrosion rate. If the Cu content is too small, the above effect cannot be obtained effectively. If there is too much Cu content, hot workability will fall. Therefore, the Cu content is 1.5 to 3.0%.
  • the Cu content is preferably 2.0 to 3.0%, more preferably 2.3 to 2.8%.
  • Al 0.001 to 0.10%
  • Aluminum (Al) deoxidizes steel. If the Al content is too small, the above effect cannot be obtained effectively. If there is too much Al content, the inclusion in steel will increase and corrosion resistance will fall. Therefore, the Al content is 0.001 to 0.10%.
  • N 0.050% or less Nitrogen (N) improves the strength of steel. However, if there is too much N content, the inclusion in steel will increase and corrosion resistance will fall. Therefore, the N content is 0.050% or less. A preferable N content is 0.026% or less. The lower limit of the preferable N content is 0.002%.
  • the chemical composition of the stainless steel according to the present invention further satisfies the following formula (1).
  • the content of the corresponding element is substituted for each element symbol in the formula (1).
  • the stainless steel according to the present invention has a structure containing a ferrite phase of 10 to 40% by volume.
  • the balance other than the ferrite phase of the structure is mainly a martensite phase and additionally contains a retained austenite phase. If the amount of the retained austenite layer increases too much, it is difficult to increase the strength. Therefore, the preferable volume ratio of the retained austenite phase in the steel is 10% or less.
  • the volume fraction of the ferrite phase is determined by the following method. Samples are taken from any location on the stainless steel. The sample surface corresponding to the cross section of stainless steel is polished. After polishing, the polished sample surface is etched using a mixed solution of aqua regia and glycerin. Using an optical microscope (observation magnification: 100 times), the area ratio of the ferrite phase on the etched surface is measured by a point calculation method based on JISG0555. The measured area ratio is defined as the volume ratio of the ferrite phase.
  • the volume fraction of a retained austenite phase is calculated
  • Samples are taken from any location on the stainless steel. The sample size is 15 mm ⁇ 15 mm ⁇ 2 mm.
  • V ⁇ 100 / (1+ (I ⁇ ⁇ R ⁇ ) / (I ⁇ ⁇ R ⁇ )) (4)
  • I ⁇ is the integrated intensity of the ⁇ phase.
  • R ⁇ is a crystallographically calculated value of the ⁇ phase.
  • I ⁇ is the integrated intensity of the ⁇ phase.
  • R ⁇ is a crystallographically calculated value of the ⁇ phase.
  • volume fraction of the ferrite phase is 10 to 40%, a 0.2% offset proof stress of 758 MPa or more is obtained. Furthermore, the ferrite phase prevents the development of cracks. Therefore, the SCC resistance is improved in a high temperature environment.
  • the above-mentioned chemical composition satisfies the formula (2), and the structure of stainless steel produced by the production method described later can have a structure containing 10 to 40% ferrite phase. ⁇ 8 ⁇ 30 (C + N) + 0.5Mn + Ni + Cu / 2 + 8.2-1.1 (Cr + Mo) ⁇ ⁇ 4 (2)
  • the content of the corresponding element is substituted for the element symbol in the formula (2).
  • X 30 (C + N) + 0.5Mn + Ni + Cu / 2 + 8.2-1.1 (Cr + Mo). If X is less than ⁇ 8, the volume fraction of the ferrite phase exceeds 40%. If the volume fraction of the ferrite phase exceeds 40%, cracking is likely to occur in a high temperature environment. The reason is not clear, but the following reason is presumed. Cr concentration distribution occurs between the ferrite phase and the martensite phase. Specifically, the Cr content of the ferrite phase is higher than the Cr content of the martensite phase. Cr is considered to be effective in preventing the progress of cracks in a high temperature environment.
  • the volume fraction of the ferrite phase increases too much and exceeds 40%, the Cr content of the ferrite phase decreases and becomes less than the effective content for preventing crack propagation in a high temperature environment. Therefore, it is considered that cracking is likely to occur.
  • X is larger than ⁇ 4, the volume fraction of the ferrite phase is less than 10%. If the ferrite phase is too small, the progress of cracks cannot be suppressed.
  • a preferable range of X is ⁇ 7.7 to ⁇ 4.3.
  • FIG. 1 shows an example of a cross section of the stainless steel of the present invention.
  • the thickness of the ferrite phase 5 in the vicinity of the surface 1 is mainly about 0.5 to 1 ⁇ m.
  • the length of the ferrite phase 5 is mainly about 50 to 200 ⁇ m.
  • the ferrite phase distribution ratio is higher than 85%, the ferrite phase 5 is entirely distributed under the surface 1. Therefore, the crack generated on the surface 1 reaches the ferrite phase 5 at a shallow position from the surface 1 and is prevented from progressing. Therefore, the SCC resistance is improved.
  • the ferrite phase distribution is 85% or less, the ferrite phase distribution is 85% or less.
  • the length of the ferrite phase 5 parallel to the surface 1 is shorter than the ferrite phase 5 of FIG.
  • the ferrite phase 5 in FIG. 4 is not as widely distributed as in FIG. Therefore, the distance until the crack 7 reaches the ferrite phase 5 is longer than that in FIG. As a result, stress corrosion cracking is likely to occur.
  • the chemical composition of the stainless steel for oil wells according to the present invention may further contain one or more selected from the group consisting of the following elements instead of a part of Fe.
  • V 0.25% or less
  • Nb 0.25% or less
  • Ti 0.25% or less
  • Zr 0.25% or less
  • the contents of V, Nb and Zr are each 0.005 to 0.25%.
  • the Ti content is 0.05 to 0.25%. In this case, the above effect can be obtained particularly effectively.
  • the chemical composition of the stainless steel for oil wells according to the present invention may further contain one or more selected from the group consisting of the following elements instead of part of Fe.
  • Ca 0.005% or less Mg: 0.005% or less La: 0.005% or less Ce: 0.005% or less All of calcium (Ca), magnesium (Mg), lanthanum (La), and cerium (Ce) It is a selective element. These elements improve the hot workability of the steel. However, if there is too much content of these elements, a coarse oxide will be formed and corrosion resistance will fall. Therefore, the content of each element is 0.005% or less.
  • the Ca content, the Mg content, the La content, and the Ce content are each 0.0002 to 0.005%. In this case, the above effect can be obtained particularly effectively.
  • a steel material having the above-described chemical composition and satisfying the formulas (1) and (2) is prepared.
  • the steel material may be a billet manufactured by round CC.
  • the steel material may be a steel piece manufactured by hot working an ingot manufactured by an ingot-making method.
  • the steel material may be a billet obtained from a continuously casted bloom.
  • the prepared steel material is charged into a heating furnace or a soaking furnace and heated.
  • the raw steel tube is manufactured by hot working the heated steel material.
  • the Mannesmann method is performed as hot working. Specifically, a steel material is perforated by a perforator to form a raw pipe. Then, the raw tube is rolled by a mandrel mill or a sizing mill. Hot extrusion may be performed as hot working, or forging may be performed.
  • the area reduction rate (%) is defined by the above formula (3).
  • the structure contains 10 to 40% ferrite phase by volume and has a ferrite phase distribution ratio higher than 85%. Is obtained.
  • the ferrite phase distribution may be 85% or less if the area reduction is less than 50%. .
  • the raw tube after hot working is cooled to room temperature.
  • the cooling method may be air cooling or water cooling.
  • a method for producing a seamless stainless steel pipe has been described as an example of a method for producing stainless steel.
  • Other stainless steel materials manufactured from stainless steel eg, steel plates, ERW steel pipes, laser welded steel pipes
  • a stainless steel plate is manufactured by rolling a steel material with a rolling mill in hot working.
  • steels BA to BI were out of the scope of the present invention.
  • the chemical compositions of steel BA and steel BB are within the scope of the present invention and also satisfy formula (1).
  • the formula (2) was not satisfied.
  • the chemical composition of steel BC was within the scope of the present invention and also satisfied equation (2).
  • the formula (1) was not satisfied.
  • the Mo content of steel BD was less than the lower limit of the Mo content of the present invention.
  • the C content of steel BE exceeded the upper limit of the C content of the present invention.
  • the Cr content and Cu content of steel BF were less than the lower limits of the Cr content and Cu content of the present invention.
  • Formula (1) and Formula (2) were not satisfy
  • the Ni content of steel BG was less than the lower limit of the Ni content of the present invention.
  • the Ni content of steel BH was less than the lower limit of the Ni content of the present invention, and further did not satisfy formula (1).
  • the Cu content of steel BI was less than the lower limit of the Cu content of the present invention.
  • the Ac1 transformation points of steels A to X, AA to AF, and BA to BI were in the range of 630 to 710 ° C, and the Ac3 transformation point was in the range of 720 to 780 ° C.
  • Steel A to X, Steel AA to AD, Steel AF, and Steel BA to BI were cast pieces having a thickness of 30 mm.
  • Steel AE was a solid round billet having a diameter of 191 mm.
  • a plurality of steel S and steel AE were prepared.
  • Stainless steel plates Nos. 1 to 29 and Nos. 33 to 44 were produced as follows.
  • the slabs of Steels A to X, Steels AA to AD, Steels AF, and Steels BA to BI were heated in a heating furnace.
  • the heated slab was hot forged and hot rolled to produce a stainless steel plate having a thickness of 6 to 14.4 mm and a width of 120 mm.
  • the temperature of the slab during hot working was 1000 to 1250 ° C.
  • the area reduction rate during hot working was as shown in Table 2.
  • the area reduction rate was obtained based on the formula (3).
  • the area reduction rate of Nos. 33 to 35 was less than 50%.
  • the area reduction rate of other numbers was 50% or more.
  • the manufactured stainless steel plate was quenched. Specifically, it was heated at a quenching temperature of 980 to 1250 ° C. for 15 minutes and then cooled with water. The quenching temperature was higher than the Ac3 transformation point for the steels of any test number. Then, the quenched steel plate was tempered at 500 to 650 ° C. and adjusted so that the 0.2% offset proof stress was 758 to 966 MPa. The tempering temperature was less than or equal to the Ac1 transformation point for any number of steels.
  • Stainless steel tubes with numbers 30 to 32 were produced as follows. After the round billet of steel AE was heated in a heating furnace, a stainless steel pipe (seamless steel pipe) was manufactured by hot working (including drilling by a punching machine and rolling by a mandrel mill). At this time, the billet temperature during hot working was 950 to 1200 ° C. In addition, the area reduction rate during hot working was as shown in Table 2. The area reduction rate of No. 32 was less than 50%. The area reduction rate of other numbers exceeded 50%. The manufactured stainless steel pipe was quenched and tempered under the same conditions as the stainless steel plate described above, and the 0.2% offset proof stress was adjusted to 758 to 966 MPa.
  • the area ratio of the ferrite phase on the etched sample surface was measured by a point calculation method based on JISG0555. The measured area ratio was defined as the volume ratio of the ferrite phase.
  • the volume fraction of the retained austenite phase was determined by the X-ray diffraction method described above.
  • the martensite phase was assumed to be the remainder other than the ferrite phase and the retained austenite phase. Therefore, the volume ratio (%) of the martensite phase was determined based on the following formula (b).
  • Volume ratio of martensite phase 100 ⁇ (volume ratio of ferrite phase + volume ratio of residual austenite phase) (b)
  • Table 2 shows the volume ratios of the obtained ferrite phase, retained austenite phase, and martensite phase.
  • the ferrite phase distribution ratio was obtained. Specifically, the scale shown in FIG. 2 was arranged in the cross section of each sample number, and the ferrite phase distribution ratio (%) defined by the formula (a) was obtained. Table 2 shows the obtained ferrite phase distribution ratio.
  • Round bar tensile test pieces were collected from stainless steel plates and stainless steel pipes of each test number. A tensile test was performed using a round bar test piece. The longitudinal direction of the round bar tensile test piece was the rolling direction of the stainless steel plate and stainless steel pipe. The diameter of the parallel part of the round bar tensile test piece was 4 mm and the length was 20 mm. The tensile test was performed at normal temperature (25 ° C.).
  • test results are shown in Table 2. “Yes” in the “crack” item in the “high temperature corrosion resistance” column in Table 2 indicates that the crack was confirmed by observation with an optical microscope. “None” indicates that no cracks could be confirmed. “ ⁇ 0.1” in the “Corrosion Rate” item indicates that the corrosion rate was less than 0.1 g / (m 2 ⁇ hr). “ ⁇ 0.1” indicates that the corrosion rate was 0.1 g / (m 2 ⁇ hr) or more.
  • a normal temperature (25 ° C.) autoclave in which 0.099 MPa of Co 2 and 0.001 MPa of H 2 S were enclosed was prepared.
  • the bent specimen was immersed in a 20% by weight aqueous NaCl solution for 1 month in an autoclave. After immersion for 1 month, it was investigated whether or not each test piece was cracked.
  • the criterion for cracking was the same as in the high temperature corrosion resistance test.
  • the test results are shown in Table 2. “Yes” in the “SSC resistance” column in Table 2 indicates that the crack was confirmed by observation with an optical microscope. “None” indicates that no cracks could be confirmed.
  • the chemical compositions of the stainless steel plates and stainless steel pipes numbered 32 to 35 were within the scope of the present invention, and the expressions (1) and (2) were also satisfied. However, the ferrite phase distribution was less than the lower limit of the present invention. Therefore, cracks occurred in the high temperature corrosion resistance test. Since the area reduction ratios of Nos. 32 to 35 were less than 50%, it was estimated that the ferrite phase distribution ratio was less than the lower limit of the present invention.
  • No. 36 steel sheet had a volume fraction of the ferrite phase of less than 10% because the value of formula X exceeded the upper limit of formula (2). Therefore, cracks occurred in the high temperature corrosion resistance test and the SSC resistance test.
  • the value of formula X was less than the lower limit of formula (2), so the volume fraction of the ferrite phase exceeded 40%. Therefore, cracks occurred in the high temperature corrosion resistance test.
  • the steel plate of number 38 did not satisfy Formula (1). Therefore, cracks occurred in the high temperature corrosion resistance test. This is presumably because it was difficult to form a passive film on the surface of the crack after it occurred.
  • the Ni content was less than the lower limit of the Ni content of the present invention, and the value of SI formula X was less than the lower limit of formula (2). Therefore, cracks occurred in the high temperature corrosion resistance test and the SSC resistance test.
  • the Ni content was less than the lower limit of the Ni content of the present invention, and the formula (1) was not satisfied. Therefore, cracks occurred in the high temperature corrosion resistance test and the SSC resistance test.
  • No. 44 had its Cu content less than the lower limit of the Cu content of the present invention. Therefore, cracks occurred in the high temperature corrosion resistance test. This is presumably because it was difficult to form a passive film on the surface of the crack after it occurred.
  • the stainless steel for oil wells according to the present invention can be used for oil wells and gas wells.
  • it can be used for deep oil wells having a high temperature environment.
  • it can be used for a deep oil well having a high temperature environment of 150 ° C. to 250 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

 本発明によるステンレス鋼の化学組成は、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超~18.0%、Ni:4.0超~5.6%、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす。また、組織は、マルテンサイト相と、体積率で10~40%のフェライト相とを含み、かつ、フェライト相分布率が85%よりも多い。 Cr+Cu+Ni+Mo≧25.5 (1) -8≦30(C+N)+0.5Mn+Ni+Cu/2+8.2-1.1(Cr+Mo)≦-4 (2)

Description

油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
 本発明は、油井用ステンレス鋼及び油井用ステンレス鋼管に関する。さらに詳しくは、高温の油井環境やガス井環境(以下、高温環境と称する)で使用される油井用ステンレス鋼及び油井用ステンレス鋼管に関する。
 最近、深層の油井やガス井の開発が進んでいる(以下、本明細書では、油井とガス井とを纏めて、単に「油井」と称する。また、本明細書では、「油井用ステンレス鋼」は、油井用のステンレス鋼とガス井用のステンレス鋼とを含む。「油井用ステンレス鋼管」は、油井用のステンレス鋼管とガス井用のステンレス鋼管とを含む。)。深層油井は高温環境を有する。「高温環境」は、いずれも腐食性のガスである炭酸ガス又は炭酸ガス及び硫化水素ガスを含む。本明細書で「高温」とは150℃以上の温度のことをいう。深層油井の高温環境で使用される油井管は、次の3つの要件を満たすことを要求される。
 (1)高強度である。具体的には、0.2%オフセット耐力が758MPa以上(110ksi級以上)である。深層油井では井戸深さが深いため、利用される鋼管の長さ及び重さが増す。そのため、高強度が要求される。
 (2)優れた耐食性を有する。具体的には、高温環境での腐食速度が0.1g/(m・hr)未満である。さらに、応力が付加された状態でも割れにくい。つまり、優れた耐応力腐食割れ性を有する。以降、応力腐食割れ(Stress Corrosion Cracking)をSCCともいう。本明細書では、高温環境で耐食性が優れるとは、腐食速度が小さく、かつ、耐SCC性に優れることを意味する。
 (3)常温で、優れた耐硫化物応力腐食割れ性を有する。油井用ステンレス鋼管を生産井に使用した場合、高温環境の油井から生産された流体(石油又はガス)がステンレス鋼管内を流れる。油井からの流体の生産が何らかの要因で停止したとき、地表付近のステンレス鋼管内の流体の温度は常温まで低下する。このとき、常温流体と接触しているステンレス鋼管で硫化物応力腐食割れ(Sulfide Stress Corrosion cracking:以降、SSCともいう)が発生する可能性がある。したがって、油井用ステンレス鋼管は高温での耐SCC性だけでなく、常温での耐SSC性も要求される。
 特開2005-336595号公報(以下、特許文献1という)、特開2006-16637号公報(以下、特許文献2という)及び特開2007-332442号公報(以下、特許文献3という)では、高温環境での使用を目的としたステンレス鋼が提案されている。高温環境での耐食性の改善にはクロム(Cr)が有効である。そこで、特許文献1~3で開示されたステンレス鋼は、Crを多く含有する。
 特許文献1に開示されたステンレス鋼管は、従来のマルテンサイト系ステンレス鋼(Cr含有量は13%)よりも多い15.5~18%のCrを含有する。さらに、ステンレス鋼管の化学組成は、次の式:Cr+Mo+0.3Si-43.5C-0.4Mn-Ni-0.3Cu-9N≧11.5を満たす。この式を満たすことにより、組織がフェライト相とマルテンサイト相との二相組織となる。その結果、熱間加工性が向上する。さらに、ステンレス鋼管の化学組成は、Ni及びMoを必須元素として含有し、Cuを選択元素として含有する。そのため、ステンレス鋼管の耐食性が向上する。
 特許文献2に開示されたステンレス鋼管のCr含有量は、15.5~18.5%である。さらに、特許文献2のステンレス鋼は、耐食性を向上するNiを必須元素として含有する。なお、特許文献2のステンレス鋼では、Mo、Cuは選択元素である。
 特許文献3に開示されたステンレス鋼管は、14~18%のCrを含有する。特許文献3のステンレス鋼管はさらに、Ni、Mo、Cuを含有する。そのため、ステンレス鋼管は耐食性を有する。さらに、特許文献3のステンレス鋼管の組織は、マルテンサイト相と、体積率で3~15%のオーステナイト相とを含有する。そのため、ステンレス鋼管は靭性を有する。
 以上のとおり、特許文献1~3に開示されたステンレス鋼は、13%よりも多いCrを含有する。さらに、Ni、Mo、Cu等の合金元素を必須元素又は選択元素として含有する。そのため、高温環境での腐食速度は低下する。たとえば、特許文献1の実施例では、高温環境での腐食速度の低下が立証されている(特許文献1中の表2参照)。
 しかしながら、特許文献1~3に開示されたステンレス鋼管は、高温環境で応力を付加された場合、割れが発生する場合がある。つまり、高温環境で応力腐食割れが発生する場合がある。そのため、上述の特許文献1~3に開示されたステンレス鋼は、上述の(1)~(3)の要件を満たさない場合がある。
 本発明の目的は、次の特性を有する油井用ステンレス鋼を提供することである:
 ・0.2%オフセット耐力で758MPa以上の高強度を有する;
 ・高温環境で優れた耐食性を有する;そして
 ・常温で優れた耐SSC性を有する。
 本発明者らが検討した結果、以下の項目(A)~(C)を満たすステンレス鋼が上記(1)~(3)の要件を満たすことを見出した。
 (A)Cr含有量を質量%で16.0%よりも多くする。さらに、以下の式(1)を満たすように、Cr、Ni、Cu、Moを含有する。
 Cr+Cu+Ni+Mo≧25.5 (1)
 式中の元素記号は、対応する元素の含有量(質量%)が代入される。
 Cr含有量を多くし、かつ、式(1)を満たせば、高温環境でも鋼表面に強固な不動態皮膜が形成される。そのため、耐食性が向上する。より具体的には、高温環境での腐食速度が低下し、かつ、耐SCC性が向上する。
 (B)マルテンサイト相と、体積率で10~40%のフェライト相とを含む組織とする。さらに、フェライト相分布率を85%よりも多くする。フェライト相分布率について以下に説明する。
 図1に本発明によるステンレス鋼の表面近傍の断面写真を示す。図1を参照して、複数のフェライト相5はステンレス鋼の表面1に沿って延びる。なお、断面中のフェライト相5以外の部分のほとんどは、マルテンサイト相6である。
 フェライト相分布率は、表面近傍部分でのフェライト相の分布状態を示す指標である。フェライト相分布率は以下のとおり定義される。図2に示すように、長さ200μmのスケール10を準備する。スケール10は、長さ50μmの複数の仮想線分20がスケール10の長さ方向に10μmピッチで200μmの範囲にわたって一列に配列されている。スケール10の上辺を図1のステンレス鋼の表面1に合わせてスケール10を配置する。配置後の状態を図3に示す。各仮想線分20は、表面1からステンレス鋼の厚さ方向に50μmの長さを有する。複数の仮想線分20は、ステンレス鋼の表面に沿って10μmピッチで200μmの範囲に一列に配列される。図3のようにスケール10をステンレス鋼の断面に配置したとき、フェライト相分布率(%)は以下の式(a)で定義される。
 フェライト相分布率=フェライト相と交差する仮想線分数/仮想線分の総数×100 (a)
 要するに、仮想線分の総数に対する、フェライト相と交差する仮想線分数の割合を、フェライト相分布率(%)と定義する。上述のとおり、フェライト相分布率は85%よりも多い。フェライト相分布率が85%よりも多ければ、高温環境中での耐SCC性が向上する。図4にフェライト相分布率が71.4%であるステンレス鋼の断面写真を示す。図4に示すように、表面1に発生した割れ7はステンレス鋼の厚さ方向に進展する。割れ7の先端がフェライト相5に到達したとき、割れ7の進展が停止する。つまり、フェライト相5は割れの進展を阻止する。図4では、フェライト相分布率が85%以下であるため、フェライト相5が表面近傍(つまり、表面から50μmの深さの範囲)に広く分布していない。そのため、割れ7はある程度の深さまで進展する。
 これに対して、図1に示すステンレス鋼のフェライト相分布率は85%よりも多い。つまり、フェライト相5は表面近傍に広く分布する。そのため、表面1に割れが発生した場合、割れは、表面1から浅い位置でフェライト相に到達し、進展を停止する。したがって、高温環境での耐SCC性が向上する。
 (C)銅(Cu)を必須元素とし、かつ、Cu含有量を多くする。具体的には、Cu含有量を質量%で1.5~3.0%にする。高温環境において、Cuは割れの進展を抑制する。そのため、高温環境での耐SCC性が向上する。そのメカニズムは以下のとおりに推定される。Cu含有量を1.5~3.0%とすれば、フェライト相により進展が停止した割れの表面に不動態皮膜が形成されやすくなる。そのため、割れ表面から新たな応力腐食割れが発生するのを抑制できる。
 以上の知見に基づいて、本発明者らは以下の発明を完成した。
 本発明による油井用ステンレス鋼は、以下の化学組成及び組織を有し、758MPa以上の0.2%オフセット耐力を有する。化学組成は、質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超~18.0%、Ni:4.0超~5.6%、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす。組織は、マルテンサイト相と、体積率で10~40%のフェライト相とを含む。そして、各々がステンレス鋼の表面から厚さ方向に50μmの長さを有し、10μmピッチで200μmの範囲に一列に配列された複数の仮想線分をステンレス鋼の断面に配置したとき、仮想線分の総数に対するフェライト相と交差する仮想線分の数の割合は85%よりも多い。
 Cr+Cu+Ni+Mo≧25.5 (1)
 -8≦30(C+N)+0.5Mn+Ni+Cu/2+8.2-1.1(Cr+Mo)≦-4 (2)
 ここで、式(1)及び式(2)中の元素記号には、各元素の含有量(質量%)が代入される。
 0.2%オフセット耐力は、次のとおり定義される。縦軸に応力、横軸にひずみを示す応力-ひずみ曲線グラフにおいて、応力-ひずみ曲線と、その曲線中の直線部分(弾性領域)と平行な仮想直線との交点に相当する応力を、オフセット耐力という。そして、応力-ひずみ曲線の起点と、仮想直線が横軸と交差する点との距離を、オフセット量という。オフセット量が0.2%のオフセット耐力を0.2%オフセット耐力という。
 好ましくは、上記化学組成は、Feの一部に替えて、V:0.25%以下、Nb:0.25%以下、Ti:0.25%以下、Zr:0.25%以下からなる群から選択された1種又は2種以上を含有する。
 好ましくは、上記化学組成は、Feの一部に替えて、Ca:0.005%以下、Mg:0.005%以下、La:0.005%以下、Ce:0.005%以下からなる群から選択された1種又は2種以上を含有する。
 好ましくは、上記組織は、体積率で10%以下の残留オーステナイト相を含む。
 本発明による油井用ステンレス鋼管は、上記ステンレス鋼を用いて製造される。
 本発明による油井用ステンレス鋼の製造方法は、以下のS1~S4の工程を備える。
 (S1)質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超~18.0%、Ni:4.0超~5.6%、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、残部はFe及び不純物からなり、上記式(1)及び式(2)を満たす化学組成を有する鋼素材を加熱する工程、
 (S2)鋼素材温度が850~1250℃における鋼素材の減面率が50%以上となるよう、鋼素材を熱間加工する工程、
 (S3)熱間加工後、Ac3変態点以上の温度に加熱して焼入れする工程、
 (S4)焼入れ後、Ac1変態点以下の温度で焼戻しする工程。
 減面率(%)は以下の式(3)で定義される。
 減面率=(1-熱間加工後の鋼素材長手方向に垂直な鋼素材断面積/熱間加工前の鋼素材長手方向に垂直な鋼素材断面積)×100 (3)
 以上の工程により上述の化学組成及び組織及び耐力を有する油井用ステンレス鋼が製造される。
本発明による油井用ステンレス鋼の断面写真である。 フェライト相分布率を測定するためのスケールを示す図である。 図2のスケールを用いたフェライト相分布率の測定方法を説明するための図である。 フェライト相分布率が85%以下のステンレス鋼の断面写真である。
 以下、本発明の実施の形態を詳しく説明する。
 1.化学組成
 本発明による油井用ステンレス鋼は、以下の化学組成を有する。以降、元素に関する%は質量%を意味する。
 C:0.05%以下
 炭素(C)は、鋼の強度を向上する。しかしながら、C含有量が多すぎれば、焼戻し後の硬度が高くなり過ぎ、耐SSC性が低下する。さらに、本発明の化学組成では、C含有量が増加するに伴い、Ms点が低下する。そのため、C含有量が増加すれば、残留オーステナイトが増加しやすくなり、0.2%オフセット耐力が低下しやすい。したがって、C含有量は0.05%以下である。好ましいC含有量は0.03%以下である。C含有量の下限は特に限定されない。しかしながら、製鋼工程における脱炭処理に掛かるコストを考慮すれば、好ましいC含有量は0.003%以上であり、さらに好ましくは、0.007%以上である。
 Si:0.5%以下
 珪素(Si)は鋼を脱酸する。Si含有量が多すぎれば、鋼の靭性及び熱間加工性が低下する。したがって、Si含有量は0.5%以下である。
 Mn:0.01~0.5%
 マンガン(Mn)は鋼を脱酸及び脱硫し、熱間加工性を向上する。Mn含有量が少なすぎれば上記効果が有効に得られない。Mn含有量が多すぎれば、高温環境における耐食性が低下する。したがって、Mn含有量は0.01~0.5%である。好ましいMn含有量は0.05%以上0.2%未満である。
 P:0.04%以下
 燐(P)は不純物である。Pは耐SSC性を低下する。したがって、P含有量は0.04%以下である。好ましいP含有量は0.025%以下である。
 S:0.01%以下
 硫黄(S)は不純物である。Sは熱間加工性を低下する。したがって、S含有量は0.01%以下である。好ましいS含有量は0.005%以下であり、より好ましいS含有量は0.002%以下である。
 Cr:16.0超~18.0%
 クロム(Cr)は高温環境での耐食性を向上する。具体的には、Crは、高温環境での腐食速度を低減し、耐SCC性を向上する。Cr含有量が少なすぎれば上記効果が有効に得られない。Cr含有量が多すぎれば鋼中のフェライト相が増加して鋼の強度が低下する。したがって、Cr含有量は16.0%よりも多く18.0%以下である。好ましいCr含有量は16.3~18.0%である。
 Ni:4.0超~5.6%
 ニッケル(Ni)は鋼の強度を向上する。Niはさらに、高温環境での耐食性を向上する。Ni含有量が少なすぎれば上記効果が有効に得られない。しかしながら、Ni含有量が多すぎれば、残留オーステナイトが多く生成されやすくなる。そのため、758MPa以上の0.2%オフセット耐力が得られにくくなる。したがって、Ni含有量は4.0%よりも多く、5.6%以下である。好ましいNi含有量は、4.2~5.4%である。
 Mo:1.6~4.0%
 モリブデン(Mo)は耐SSC性を向上する。Mo含有量が少なすぎれば上記効果は有効に得られない。一方、過剰にMoを含有しても上記効果は飽和する。したがって、Mo含有量は1.6~4.0%である。好ましいMo含有量は1.8~3.3%である。
 Cu:1.5~3.0%
 銅(Cu)は析出硬化により鋼の強度を向上する。さらに、上述のとおり、Cuは高温環境での耐SCC性を向上する。Cuはさらに、腐食速度を低下する。Cu含有量が少なすぎれば上記効果は有効に得られない。Cu含有量が多すぎれば熱間加工性が低下する。したがって、Cu含有量は1.5~3.0%である。好ましいCu含有量は2.0~3.0%であり、さらに好ましくは、2.3~2.8%である。
 Al:0.001~0.10%
 アルミニウム(Al)は鋼を脱酸する。Al含有量が少なすぎれば上記効果は有効に得られない。Al含有量が多すぎれば鋼中の介在物が増加して耐食性が低下する。したがって、Al含有量は0.001~0.10%である。
 N:0.050%以下
 窒素(N)は鋼の強度を向上する。しかしながら、N含有量が多すぎれば、鋼中の介在物が増加して耐食性が低下する。したがって、N含有量は0.050%以下である。好ましいN含有量は0.026%以下である。好ましいN含有量の下限値は0.002%である。
 本発明によるステンレス鋼の化学組成はさらに、以下の式(1)を満たす。
 Cr+Cu+Ni+Mo≧25.5 (1)
 ここで、式(1)中の各元素記号には、対応する元素の含有量が代入される。
 鋼中のCr、Cu、Ni及びMoの含有量が式(1)を満たせば、高温環境において、ステンレス鋼の表面に強固な不動態皮膜が形成される。そのため、高温環境における腐食速度が低下する。さらに高温環境において耐SCC性が向上する。
 2.組織
 本発明によるステンレス鋼は、体積率で10~40%のフェライト相を含む組織を有する。組織のフェライト相以外の残部は主としてマルテンサイト相であり、他に、残留オーステナイト相を含む。残留オーステナイト層の量が増えすぎると、高強度化しにくい。そのため、鋼中の好ましい残留オーステナイト相の体積率は10%以下である。
 フェライト相の体積率は次の方法で決定される。ステンレス鋼の任意の位置から、サンプルを採取する。ステンレス鋼の断面に相当するサンプル表面を研磨する。研磨後、王水とグリセリンとの混合溶液を用いて、研磨されたサンプル表面をエッチングする。光学顕微鏡(観察倍率100倍)を用いて、エッチングされた表面におけるフェライト相の面積率をJISG0555に準拠した点算法で測定する。そして、測定された面積率をフェライト相の体積率と定義する。
 また、残留オーステナイト相の体積率はX線回折法により求められる。ステンレス鋼の任意の位置からサンプルを採取する。サンプルの大きさは15mm×15mm×2mmとする。サンプルを用いて、α(フェライト)相の(200)面、α相の(211)面、γ(残留オーステナイト)相の(200)面、(220)面及び(311)面の各々のX線強度を測定する。そして、各面の積分強度を算出する。算出後、α相の各面と、γ相の各面との組合せ(合計6組)ごとに式(4)を用いて体積率Vγ(%)を算出する。そして、6組の体積率Vγの平均値を残留オーステナイトの体積率(%)と定義する。
 Vγ=100/(1+(Iα・Rγ)/(Iγ・Rα)) (4)
 ここで、Iαはα相の積分強度である。Rαはα相の結晶学的理論計算値である。Iγはγ相の積分強度である。Rγはγ相の結晶学的理論計算値である。
 フェライト相の体積率が10~40%であれば、758MPa以上の0.2%オフセット耐力が得られる。さらに、フェライト相は割れの進展を阻止する。そのため、高温環境で耐SCC性が向上する。
 上記化学組成が式(2)を満たし、後述の製造方法により製造されるステンレス鋼の組織は、10~40%のフェライト相を含む構成を有することができる。
 -8≦30(C+N)+0.5Mn+Ni+Cu/2+8.2-1.1(Cr+Mo)≦-4 (2)
 ここで、式(2)中の元素記号には、対応する元素の含有量が代入される。
 X=30(C+N)+0.5Mn+Ni+Cu/2+8.2-1.1(Cr+Mo)と定義する。Xが-8未満であれば、フェライト相の体積率が40%を超える。フェライト相の体積率が40%を超えると、高温環境で割れが発生しやすくなる。その理由は定かではないが、以下の理由が推定される。フェライト相とマルテンサイト相とでCrの濃度分配が発生する。具体的には、フェライト相のCr含有量がマルテンサイト相のCr含有量よりも高い。Crは高温環境での割れの進展防止に有効であると考えられる。しかしながら、フェライト相の体積率が増えすぎて40%を超える場合、フェライト相のCr含有量が低下して、高温環境で割れ進展を防止するのに有効な含有量未満となる。そのため、割れが発生しやすくなると考えられる。
一方、Xが-4よりも大きければフェライト相の体積率が10%未満となる。フェライト相が少なすぎれば割れの進展を抑制できない。好ましいXの範囲は-7.7~-4.3である。
 さらに上述のとおり、フェライト相分布率は85%よりも多い。図1に本発明のステンレス鋼の断面の一例を示す。表面1近傍のフェライト相5の厚さは主として0.5~1μm程度である。フェライト相5の長さは主として50~200μm程度である。図1では、フェライト相分布率が85%よりも多いため、フェライト相5は表面1下に全体的に分布している。そのため、表面1に発生した割れは、表面1から浅い位置でフェライト相5に到達し、進展を阻止される。したがって、耐SCC性が向上する。
 上記化学組成、式(1)及び式(2)が本発明の範囲内であっても、フェライト相分布率が85%以下であれば、フェライト相分布率が85%以下となる。フェライト相分布率が85%以下である図4では、表面1と平行方向のフェライト相5の長さが図1のフェライト相5よりも短い。図4のフェライト相5は図1ほど広く分布していない。そのため、割れ7がフェライト相5に到達するまでの距離は図1よりも長くなる。その結果、応力腐食割れが発生しやすい。
 3.選択元素
 本発明による油井用ステンレス鋼の化学組成はさらに、Feの一部に替えて、次の複数の元素からなる群から選択された1種又は2種以上を含有してもよい。
 V:0.25%以下
 Nb:0.25%以下
 Ti:0.25%以下
 Zr:0.25%以下
 バナジウム(V)、ニオブ(Nb)、チタン(Ti)、ジルコニウム(Zr)はいずれも選択元素である。これらの元素は炭化物を形成して鋼の強度及び靭性を向上する。しかしながら、これらの元素の含有量が多すぎれば、炭化物が粗大化するために靭性が低下する。また、耐食性も低下する。したがって、V含有量は0.25%以下であり、Nb含有量は0.25%以下であり、Ti含有量は、0.25%以下であり、Zr含有量は、0.25%以下である。好ましくは、V、Nb、Zrの含有量はそれぞれ0.005~0.25%である。また、Ti含有量は0.05~0.25%である。この場合、上記効果が特に有効に得られる。
 本発明による油井用ステンレス鋼の化学組成はさらに、Feの一部に替えて、以下の複数の元素からなる群から選択された1種又は2種以上を含有してもよい。
 Ca:0.005%以下
 Mg:0.005%以下
 La:0.005%以下
 Ce:0.005%以下
 カルシウム(Ca)、マグネシウム(Mg)、ランタン(La)、セリウム(Ce)はいずれも選択元素である。これらの元素は鋼の熱間加工性を向上する。しかしながら、これらの元素の含有量が多すぎれば、粗大な酸化物が形成されるため耐食性が低下する。したがって、各元素の含有量は0.005%以下である。好ましくは、Ca含有量、Mg含有量、La含有量及びCe含有量はそれぞれ、0.0002~0.005%である。この場合、上記効果が特に有効に得られる。
 これらの選択元素が含有されても、2.で説明した組織を得ることができる。
 4.製造方法
 本発明による油井用ステンレス鋼の製造方法を説明する。上述の化学組成及び式(1)、式(2)を満たす鋼素材(鋳片、並びにビレット、ブルーム、スラブ等の鋼片等)を所定の減面率で熱間加工すれば、2.で説明した組織が得られる。以下、本発明による油井用ステンレス鋼の一例として、油井用ステンレス鋼管の製造方法を説明する。
 [S1:鋼素材の準備及び加熱工程]
 上述の化学組成を有し、式(1)及び式(2)を満たす鋼素材を準備する。鋼素材は、ラウンドCCにより製造されたビレットであってもよい。また、鋼素材は、造塊法により製造されたインゴットを熱間加工することにより製造された鋼片でもよい。鋼素材は、連続鋳造されたブルームから得られたビレットでもよい。準備された鋼素材を加熱炉又は均熱炉に装入し、加熱する。
 [S2:熱間加工工程]
 続いて、加熱した鋼素材を熱間加工して素管を製造する。たとえば、熱間加工としてマンネスマン法を実施する。具体的には鋼素材を穿孔機により穿孔して素管とする。そして、マンドレルミルやサイジングミルにより素管を圧延する。熱間加工として熱間押出を実施してもよいし、鍛造を実施してもよい。
 このとき、鋼素材温度が850~1250℃における鋼素材の減面率が50%以上となるように熱間加工を実施する。減面率(%)は上記式(3)で定義される。
 鋼素材温度が850~1250℃における鋼素材の減面率が50%以上であれば、体積率で10~40%のフェライト相を含有し、かつ、フェライト相分布率が85%よりも多い組織が得られる。一方、本発明の化学組成及び式(1)、式(2)を満たす鋼素材であっても、減面率が50%未満であれば、フェライト相分布率が85%以下となる場合がある。
 なお、熱間加工後の素管は常温まで冷却される。冷却方法は空冷でも水冷でもよい。
 [S3及びS4:焼入れ工程及び焼戻し工程]
 熱間加工後、素管を焼入れ及び焼戻しして、0.2%オフセット耐力が758MPa以上となるように調整する。好ましい焼入れ温度はAc3変態点以上である。また、好ましい焼戻し温度はAc1変態点以下である。以上の工程により、本発明によるステンレス鋼管が製造される。
 [他のステンレス鋼材の製造方法]
 上記説明ではステンレス鋼の製造方法の一例として、継目無ステンレス鋼管の製造方法を説明した。ステンレス鋼から製造される他のステンレス鋼材(例:鋼板、電縫鋼管、レーザ溶接鋼管)も上記継目無ステンレス鋼管の製造方法と同様である。たとえば、熱間加工において鋼素材が圧延機で圧延されることにより、ステンレス鋼板が製造される。
 表1に示す化学組成の鋼を溶製し、鋳片又は鋼片を製造した。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、鋼A~X及びAA~AFの化学組成は本発明の化学組成の範囲内であった。また、鋼A~X及びAA~AFの化学組成は式(1)及び式(2)を満たした。
 一方、鋼BA~BIは本発明の範囲から外れた。具体的には、鋼BA及び鋼BBの化学組成は本発明の範囲内であり、式(1)も満たした。しかしながら、式(2)を満たさなかった。鋼BCの化学組成は本発明の範囲内であり、式(2)も満たした。しかしながら、式(1)を満たさなかった。鋼BDのMo含有量は本発明のMo含有量の下限未満であった。鋼BEのC含有量は本発明のC含有量の上限を超えた。鋼BFのCr含有量及びCu含有量は本発明のCr含有量及びCu含有量の下限未満であった。さらに、式(1)及び式(2)を満たさなかった。鋼BGのNi含有量は本発明のNi含有量の下限未満であった。鋼BHのNi含有量は本発明のNi含有量の下限未満であり、さらに、式(1)を満たさなかった。鋼BIのCu含有量は本発明のCu含有量の下限未満であった。なお、鋼A~X、AA~AF及びBA~BIのAc1変態点は630~710℃の範囲内であり、Ac3変態点は720~780℃の範囲内であった。
 鋼A~Xと、鋼AA~ADと、鋼AFと、鋼BA~BIとは、30mmの厚さを有する鋳片であった。また鋼AEは191mmの直径を有する中実の丸ビレットであった。なお、鋼S及び鋼AEは複数本準備した。
 準備した鋳片及び鋼片を用いて表2に示す番号1~44のステンレス鋼板及びステンレス鋼管を製造した。
Figure JPOXMLDOC01-appb-T000002
 [ステンレス鋼板の製造]
 番号1~29及び番号33~44のステンレス鋼板は以下のとおり製造した。鋼A~X、鋼AA~AD、鋼AF及び鋼BA~BIの鋳片を加熱炉で加熱した。そして、加熱後の鋳片を熱間鍛造及び熱間圧延して、6~14.4mmの厚さと120mmの幅とを有するステンレス鋼板を製造した。熱間加工(熱間鍛造及び熱間圧延)中の鋳片の温度は1000~1250℃であった。熱間加工中の減面率は表2に示すとおりであった。減面率は式(3)に基づいて求めた。番号33~35の減面率は50%未満であった。他の番号の減面率は50%以上であった。
 製造されたステンレス鋼板を焼入れした。具体的には、980~1250℃の焼入れ温度で15分加熱した後、水冷した。焼入れ温度はいずれの試験番号の鋼もAc3変態点以上であった。そして、焼入れされた鋼板を500~650℃で焼戻しして、0.2%オフセット耐力が758~966MPaになるように調整した。焼戻し温度はいずれの番号の鋼もAc1変態点以下であった。
 [ステンレス鋼管の製造]
 番号30~32のステンレス鋼管は以下のとおり製造した。鋼AEの丸ビレットを加熱炉で加熱した後、熱間加工(穿孔機による穿孔とマンドレルミルによる圧延を含む)によりステンレス鋼管(継目無鋼管)を製造した。このとき、熱間加工時のビレット温度は950~1200℃であった。また、熱間加工時における減面率は表2の通りであった。番号32の減面率は50%未満であった。他の番号の減面率は50%を超えた。製造されたステンレス鋼管に対して、上述のステンレス鋼板と同様の条件で焼入れ及び焼戻しを実施して0.2%オフセット耐力が758~966MPaとなるように調整した。
 [組織及びフェライト相分布率の調査]
 各番号のステンレス鋼板及び鋼管の任意の位置からステンレス鋼板及び鋼管の表面を含むサンプルを採取した。ステンレス鋼板及び鋼管の断面に相当するサンプル表面を研磨した。研磨後、王水とグリセリンとの混合溶液を用いてサンプル表面をエッチングした。
 エッチングされたサンプル表面におけるフェライト相の面積率をJISG0555に準拠した点算法で測定した。測定された面積率をフェライト相の体積率と定義した。残留オーステナイト相の体積率を上述のX線回折法により求めた。マルテンサイト相はフェライト相と残留オーステナイト相以外の残部と仮定した。したがって、マルテンサイト相の体積率(%)を以下の式(b)に基づいて求めた。
 マルテンサイト相の体積率=100-(フェライト相の体積率+残留オーステナイト相の体積率) (b)
 求めたフェライト相、残留オーステナイト相及びマルテンサイト相の体積率を表2に示す。
 さらに、フェライト相分布率を求めた。具体的には、図2に示すスケールを各番号のサンプルの断面に配置して、式(a)で定義されるフェライト相分布率(%)を求めた。求めたフェライト相分布率を表2に示す。
 [引張試験]
 各試験番号のステンレス鋼板及びステンレス鋼管から、丸棒引張試験片を採取した。丸棒試験片を用いて引張試験を実施した。丸棒引張試験片の長手方向はステンレス鋼板及びステンレス鋼管の圧延方向であった。丸棒引張試験片の平行部の直径は4mm、長さは20mmであった。引張試験は常温(25℃)で実施した。
 [高温耐食性試験]
 各番号のステンレス鋼板及びステンレス鋼管から4点曲げ試験片を採取した。試験片の長さは75mm、幅は10mm、厚さは2mmであった。各試験片に4点曲げによるたわみを付加した。このとき、ASTM G39に準拠して、各試験片に与えられる応力が各試験片の0.2%オフセット耐力と等しくなるように、各試験片のたわみ量を決定した。
 3MPaのCoと0.001MPaのHSとを加圧封入した200℃のオートクレーブを準備した。たわみをかけた各試験片をオートクレーブ内で、重量%で25%のNaCl水溶液に1ヶ月間浸漬した。1ヶ月間浸漬した後、各試験片に割れが発生しているか否かを調査した。具体的には、試験片の引張応力付加部分の断面を100倍視野の光学顕微鏡で観察し、割れの有無を判断した。また、試験前後の各試験片の重量を測定した。測定された重量の変化から各試験片の腐食減量を求めた。そして、腐食減量に基づいて腐食速度(g/(m・hr))を求めた。
 試験結果を表2に示す。表2中の「高温耐食性」欄の「割れ」項目中の「有り」は光学顕微鏡での観察により割れを確認したことを示す。「無し」は割れを確認できなかったことを示す。「腐食速度」項目中の「<0.1」は、腐食速度が0.1g/(m・hr)未満であったことを示す。「≧0.1」は、腐食速度が0.1g/(m・hr)以上であったことを示す。
 [常温での耐SSC性試験]
 各番号の鋼板から、4点曲げ試験片を採取した。試験片の長さは75mm、幅は10mm、厚さは2mmであった。各試験片に4点曲げによるたわみを付加した。このとき、ASTM G39に準拠して、各試験片に与えられる応力が各試験片の0.2%オフセット耐力と等しくなるように、各試験片のたわみ量を決定した。
 0.099MPaのCoと0.001MPaのHSとを封入した常温(25℃)のオートクレーブを準備した。たわみをかけた試験片をオートクレーブ中で、重量%で20%のNaCl水溶液に1ヶ月間浸漬した。1ヶ月間浸漬した後、各試験片に割れが発生しているか否かを調査した。割れの判定基準は高温耐食性試験と同じとした。試験結果を表2に示す。表2中の「耐SSC性」欄の「有り」は光学顕微鏡観察により割れを確認したことを示す。「無し」は割れを確認できなかったことを示す。
 [試験結果]
 表2を参照して、番号1~31は、化学組成及び組織が本発明の範囲内であった。そのため、高温耐食性試験で割れ(SCC)が発生せず、腐食速度も0.1g/(m・hr)未満であった。常温での耐SSC性試験でも割れ(SSC)が発生しなかった。
 番号32~35のステンレス鋼板及びステンレス鋼管の化学組成は本発明の範囲内であり、式(1)及び式(2)も満たした。しかしながら、フェライト相分布率が本発明の下限未満であった。そのため、高温耐食性試験で割れが発生した。番号32~35の減面率は50%未満であったため、フェライト相分布率が本発明の下限未満となったと推定される。
 番号36の鋼板は、式Xの値が式(2)の上限を超えたため、フェライト相の体積率が10%未満であった。そのため、高温耐食性試験及び耐SSC性試験で割れが発生した。番号37の鋼板は、式Xの値が式(2)の下限未満であっため、フェライト相の体積率が40%を超えた。そのため、高温耐食性試験で割れが発生した。番号38の鋼板は式(1)を満たさなかった。そのため、高温耐食性試験で割れが発生した。割れが発生した後、割れの表面に不動態皮膜が形成されにくかったためと推定される。
 番号39は、Mo含有量が本願発明のMo含有量の下限未満であった。そのため、高温耐食性試験及び耐SSC試験で割れが発生した。番号40は、C含有量が本発明のC含有量の上限を超えた。そのため、高温耐食性試験及び耐SSC性試験で割れが発生した。番号41は、Cr含有量及びCu含有量が本発明のCr含有量及びCu含有量の下限未満であり、式(1)及び式(2)を満たさなかった。そのため、高温耐食性試験及び耐SSC試験で割れが発生し、かつ、高温耐食性試験における腐食速度が0.1g/(m・hr)以上であった。番号42は、Ni含有量が本発明のNi含有量の下限未満であり、SI式Xの値が式(2)の下限値未満であった。そのため、高温耐食性試験及び耐SSC性試験で割れが発生した。番号43は、そのNi含有量が本発明のNi含有量の下限未満であり、かつ、式(1)を満たさなかった。そのため、高温耐食性試験及び耐SSC性試験で割れが発生した。番号44は、そのCu含有量が本発明のCu含有量の下限未満であった。そのため、高温耐食性試験で割れが発生した。割れが発生した後、割れの表面に不動態皮膜が形成されにくかったためと推定される。
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 本発明による油井用ステンレス鋼は、油井やガス井に利用できる。特に、高温環境を有する深層油井に利用できる。たとえば、150℃~250℃の高温環境を有する深層油井に利用できる。

Claims (6)

  1.  質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超~18.0%、Ni:4.0超~5.6%、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす化学組成と、
     マルテンサイト相と、体積率で10~40%のフェライト相とを含み、かつ、各々が前記ステンレス鋼の表面から厚さ方向に50μmの長さを有し、10μmピッチで200μmの範囲に一列に配列された複数の仮想線分を前記ステンレス鋼の断面に配置したとき、前記仮想線分の総数に対する前記フェライト相と交差する仮想線分の数の割合が85%よりも多い組織と、
     758MPa以上の0.2%オフセット耐力とを有することを特徴とする油井用ステンレス鋼。
     Cr+Cu+Ni+Mo≧25.5 (1)
     -8≦30(C+N)+0.5Mn+Ni+Cu/2+8.2-1.1(Cr+Mo)≦-4 (2)
     ここで、式(1)及び式(2)中の各元素記号には、各元素の含有量(質量%)が代入される。
  2.  前記化学組成は、前記Feの一部に替えて、V:0.25%以下、Nb:0.25%以下、Ti:0.25%以下、Zr:0.25%以下からなる群から選択された1種又は2種以上を含有することを特徴とする請求項1に記載の油井用ステンレス鋼。
  3.  前記化学組成は、前記Feの一部に替えて、Ca:0.005%以下、Mg:0.005%以下、La:0.005%以下、Ce:0.005%以下からなる群から選択された1種又は2種以上を含有することを特徴とする請求項1又は請求項2に記載の油井用ステンレス鋼。
  4.  前記組織は、体積率で10%以下の残留オーステナイト相を含むことを特徴とする請求項1~請求項3のいずれか1項に記載の油井用ステンレス鋼。
  5.  請求項1~請求項4のいずれか1項に記載のステンレス鋼を用いて製造されることを特徴とする油井用ステンレス鋼管。
  6.  質量%で、C:0.05%以下、Si:0.5%以下、Mn:0.01~0.5%、P:0.04%以下、S:0.01%以下、Cr:16.0超~18.0%、Ni:4.0超~5.6%、Mo:1.6~4.0%、Cu:1.5~3.0%、Al:0.001~0.10%、N:0.050%以下を含有し、残部はFe及び不純物からなり、式(1)及び式(2)を満たす化学組成を有する鋼素材を加熱する工程と、
     鋼素材温度が850~1250℃における前記鋼素材の減面率が50%以上となるよう、前記鋼素材を熱間加工する工程と、
     前記熱間加工後、前記鋼素材をAc3点以上の温度に加熱して焼入れする工程と、
     前記焼入れ後、前記鋼素材をAc1点以下の温度で焼戻しする工程とを備え、
     マルテンサイト相と、体積率で10~40%のフェライト相とを含み、かつ、各々が前記油井用鋼材の表面から厚さ方向に50μmの長さを有し、10μmピッチで200μmの範囲に一列に配列された複数の仮想線分を前記ステンレス鋼の断面に配置したとき、前記仮想線分の総数に対する前記フェライト相と交差する仮想線分の数の割合が85%よりも多い組織と、758MPa以上の0.2%オフセット耐力とを有するステンレス鋼を製造することを特徴とする油井用ステンレス鋼の製造方法。
     Cr+Cu+Ni+Mo≧25.5 (1)
     -8≦30(C+N)+0.5Mn+Ni+Cu/2+8.2-1.1(Cr+Mo)≦-4 (2)
     ここで、式(1)及び式(2)中の各元素記号には、各元素の含有量(質量%)が代入される。
PCT/JP2010/058304 2009-05-18 2010-05-17 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法 WO2010134498A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES10777731.0T ES2566545T3 (es) 2009-05-18 2010-05-17 Acero inoxidable para pozos de petróleo, tubos de acero inoxidable para pozos de petróleo y procedimiento de producción de acero inoxidable para pozos de petróleo
RU2011151550/02A RU2494166C2 (ru) 2009-05-18 2010-05-17 Нержавеющая сталь для нефтяной скважины, труба из нержавеющей стали для нефтяной скважины и способ получения нержавеющей стали для нефтяной скважины
EP10777731.0A EP2434030B1 (en) 2009-05-18 2010-05-17 Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
CN201080022011XA CN102428201B (zh) 2009-05-18 2010-05-17 油井用不锈钢、油井用不锈钢管及油井用不锈钢的制造方法
CA2760297A CA2760297C (en) 2009-05-18 2010-05-17 Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well
JP2011514406A JP4930654B2 (ja) 2009-05-18 2010-05-17 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
BRPI1014949-0A BRPI1014949B1 (pt) 2009-05-18 2010-05-17 Aço inoxidável para poço de petróleo, tubo de aço inoxidável para poço de petróleo, e método de fabricação de aço inoxidável para poço de petróleo.
MX2011012282A MX2011012282A (es) 2009-05-18 2010-05-17 Acero inoxidable para pozo petrolero, tuberia de acero inoxidable para pozo petrolero y metodo de fabricacion de acero inoxidable para pozo petrolero.
AU2010250501A AU2010250501B2 (en) 2009-05-18 2010-05-17 Stainless steel for oil well, stainless steel pipe for oil well, and process for production of stainless steel for oil well
US13/276,374 US9109268B2 (en) 2009-05-18 2011-10-19 Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well
US14/793,916 US9322087B2 (en) 2009-05-18 2015-07-08 Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009119990 2009-05-18
JP2009-119990 2009-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/276,374 Continuation US9109268B2 (en) 2009-05-18 2011-10-19 Stainless steel for oil well, stainless steel pipe for oil well, and method of manufacturing stainless steel for oil well

Publications (1)

Publication Number Publication Date
WO2010134498A1 true WO2010134498A1 (ja) 2010-11-25

Family

ID=43126177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058304 WO2010134498A1 (ja) 2009-05-18 2010-05-17 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法

Country Status (12)

Country Link
US (2) US9109268B2 (ja)
EP (1) EP2434030B1 (ja)
JP (1) JP4930654B2 (ja)
CN (1) CN102428201B (ja)
AR (1) AR076669A1 (ja)
AU (1) AU2010250501B2 (ja)
BR (1) BRPI1014949B1 (ja)
CA (1) CA2760297C (ja)
ES (1) ES2566545T3 (ja)
MX (1) MX2011012282A (ja)
RU (1) RU2494166C2 (ja)
WO (1) WO2010134498A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586693A (zh) * 2011-01-13 2012-07-18 复盛应用科技股份有限公司 高尔夫球杆头合金及其制造方法
CN102839331A (zh) * 2011-06-24 2012-12-26 宝山钢铁股份有限公司 一种高韧性耐腐蚀钢及其制造方法
WO2013146046A1 (ja) 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
WO2013179667A1 (ja) * 2012-05-31 2013-12-05 Jfeスチール株式会社 油井管用高強度ステンレス鋼継目無管およびその製造方法
WO2013190834A1 (ja) 2012-06-21 2013-12-27 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
WO2014097628A1 (ja) 2012-12-21 2014-06-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2016132403A1 (ja) * 2015-02-20 2016-08-25 Jfeスチール株式会社 高強度継目無厚肉鋼管およびその製造方法
WO2017022374A1 (ja) * 2015-08-04 2017-02-09 新日鐵住金株式会社 ステンレス鋼及び油井用ステンレス鋼材
JP2017039966A (ja) * 2015-08-19 2017-02-23 新日鐵住金株式会社 油井管
JP2017039963A (ja) * 2015-08-18 2017-02-23 新日鐵住金株式会社 油井管
JP2017048424A (ja) * 2015-09-01 2017-03-09 新日鐵住金株式会社 油井管
WO2017122405A1 (ja) * 2016-01-13 2017-07-20 新日鐵住金株式会社 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
WO2017138050A1 (ja) 2016-02-08 2017-08-17 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US20180002791A1 (en) * 2012-08-24 2018-01-04 Nkk Tubes Martensitic Stainless Steel with High Strength, High Toughness and High Corrosion Resistance
WO2018020886A1 (ja) 2016-07-27 2018-02-01 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2018131340A1 (ja) 2017-01-13 2018-07-19 Jfeスチール株式会社 高強度ステンレス継目無鋼管およびその製造方法
WO2018155041A1 (ja) 2017-02-24 2018-08-30 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2019035329A1 (ja) 2017-08-15 2019-02-21 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
WO2020013197A1 (ja) 2018-07-09 2020-01-16 日本製鉄株式会社 継目無鋼管及びその製造方法
WO2020202957A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 ステンレス継目無鋼管
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
WO2022224640A1 (ja) 2021-04-21 2022-10-27 Jfeスチール株式会社 ステンレス鋼管およびその製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233180A (zh) * 2013-05-17 2013-08-07 宝山钢铁股份有限公司 一种高强度双相不锈钢管及其制造方法
WO2015064128A1 (ja) * 2013-10-31 2015-05-07 Jfeスチール株式会社 低温靭性に優れたフェライト−マルテンサイト2相ステンレス鋼およびその製造方法
BR102014005015A8 (pt) 2014-02-28 2017-12-26 Villares Metals S/A aço inoxidável martensítico-ferrítico, produto manufaturado, processo para a produção de peças ou barras forjadas ou laminadas de aço inoxidável martensítico-ferrítico e processo para a produção de tudo sem costura de aço inoxidável martensítico-ferrítico
JP6229794B2 (ja) * 2015-01-15 2017-11-15 Jfeスチール株式会社 油井用継目無ステンレス鋼管およびその製造方法
RU2599474C1 (ru) * 2015-05-08 2016-10-10 Публичное акционерное общество "Синарский трубный завод" (ПАО "СинТЗ") Труба повышенной коррозионной стойкости
CN108699645B (zh) * 2016-02-17 2020-06-16 新日铁住金不锈钢株式会社 铁素体-奥氏体系二相不锈钢材及其制造方法
RU2647201C1 (ru) * 2017-05-10 2018-03-14 Публичное акционерное общество "Трубная металлургическая компания" (ПАО "ТМК") Труба коррозионно-стойкая из низкоуглеродистой доперитектической стали для нефтегазопроводов и способ её производства
RU2688017C1 (ru) * 2018-07-19 2019-05-17 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Способ термомеханической обработки жаропрочной стали мартенситного класса
US11471946B2 (en) * 2018-09-06 2022-10-18 Triad National Security, Llc Additive manufacturing of ferritic/martensitic steel with improved high temperature strength
RU2700440C1 (ru) * 2019-05-23 2019-09-17 Акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", АО "НПО "ЦНИИТМАШ" Аустенитно-ферритная нержавеющая сталь
WO2021015141A1 (ja) * 2019-07-24 2021-01-28 日本製鉄株式会社 マルテンサイト系ステンレス鋼管及びマルテンサイト系ステンレス鋼管の製造方法
WO2021084025A1 (de) 2019-10-31 2021-05-06 Deutsche Edelstahlwerke Specialty Steel Gmbh & Co. Kg Korrosionsbeständiger und ausscheidungshärtender stahl, verfahren zur herstellung eines stahlbauteils und stahlbauteil
RU2738033C1 (ru) * 2020-03-26 2020-12-07 Общество с ограниченной ответственностью "Лаборатория специальной металлургии" Мартенситно-стареющая сталь

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179943A (ja) * 1993-12-22 1995-07-18 Nippon Steel Corp 耐食性に優れた高靭性マルテンサイト系ステンレス鋼継目無鋼管の製造法
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2006016637A (ja) 2004-06-30 2006-01-19 Jfe Steel Kk 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
JP2007332442A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
JP2007332431A (ja) * 2006-06-16 2007-12-27 Jfe Steel Kk 拡管性に優れる油井用ステンレス鋼管
JP2008081793A (ja) * 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237583A (ja) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 高張力鋼およびその製造方法
JP4240189B2 (ja) * 2001-06-01 2009-03-18 住友金属工業株式会社 マルテンサイト系ステンレス鋼
US20040238079A1 (en) * 2002-06-19 2004-12-02 Mitsuo Kimura Stainless-steel pipe for oil well and process for producing the same
AR042494A1 (es) * 2002-12-20 2005-06-22 Sumitomo Chemical Co Acero inoxidable martensitico de alta resistencia con excelentes propiedades de resistencia a la corrosion por dioxido de carbono y resistencia a la corrosion por fisuras por tensiones de sulfuro
CN100451153C (zh) * 2003-08-19 2009-01-14 杰富意钢铁株式会社 耐腐蚀性优良的油井用高强度不锈钢管及其制造方法
WO2005042793A1 (ja) 2003-10-31 2005-05-12 Jfe Steel Corporation 耐食性に優れたラインパイプ用高強度ステンレス鋼管およびその製造方法
CN100548559C (zh) * 2006-09-21 2009-10-14 中国石油天然气集团公司 一种13Cr油井管试验实物制备方法
JP4577457B2 (ja) 2008-03-28 2010-11-10 住友金属工業株式会社 油井管に用いられるステンレス鋼

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07179943A (ja) * 1993-12-22 1995-07-18 Nippon Steel Corp 耐食性に優れた高靭性マルテンサイト系ステンレス鋼継目無鋼管の製造法
JP2005336595A (ja) 2003-08-19 2005-12-08 Jfe Steel Kk 耐食性に優れた油井用高強度ステンレス鋼管およびその製造方法
JP2006016637A (ja) 2004-06-30 2006-01-19 Jfe Steel Kk 耐炭酸ガス腐食性に優れる油井用高強度ステンレス鋼管
JP2007332442A (ja) 2006-06-16 2007-12-27 Jfe Steel Kk 耐食性に優れる油井用高靭性超高強度ステンレス鋼管およびその製造方法
JP2007332431A (ja) * 2006-06-16 2007-12-27 Jfe Steel Kk 拡管性に優れる油井用ステンレス鋼管
JP2008081793A (ja) * 2006-09-28 2008-04-10 Jfe Steel Kk 高靭性でかつ耐食性に優れた油井用高強度ステンレス鋼管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2434030A4 *

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586693A (zh) * 2011-01-13 2012-07-18 复盛应用科技股份有限公司 高尔夫球杆头合金及其制造方法
CN102839331A (zh) * 2011-06-24 2012-12-26 宝山钢铁股份有限公司 一种高韧性耐腐蚀钢及其制造方法
WO2013146046A1 (ja) 2012-03-26 2013-10-03 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
US9783876B2 (en) 2012-03-26 2017-10-10 Nippon Steel & Sumitomo Metal Corporation Stainless steel for oil wells and stainless steel pipe for oil wells
WO2013179667A1 (ja) * 2012-05-31 2013-12-05 Jfeスチール株式会社 油井管用高強度ステンレス鋼継目無管およびその製造方法
JP2013249516A (ja) * 2012-05-31 2013-12-12 Jfe Steel Corp 油井管用高強度ステンレス鋼継目無管およびその製造方法
WO2013190834A1 (ja) 2012-06-21 2013-12-27 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス鋼継目無管およびその製造方法
US9758850B2 (en) 2012-06-21 2017-09-12 Jfe Steel Corporation High strength stainless steel seamless pipe with excellent corrosion resistance for oil well and method of manufacturing the same
US20180002791A1 (en) * 2012-08-24 2018-01-04 Nkk Tubes Martensitic Stainless Steel with High Strength, High Toughness and High Corrosion Resistance
US10151011B2 (en) 2012-12-21 2018-12-11 Jfe Steel Corporation High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same
WO2014097628A1 (ja) 2012-12-21 2014-06-26 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
JP2015110822A (ja) * 2012-12-21 2015-06-18 Jfeスチール株式会社 耐食性に優れた油井用高強度ステンレス継目無鋼管およびその製造方法
WO2016132403A1 (ja) * 2015-02-20 2016-08-25 Jfeスチール株式会社 高強度継目無厚肉鋼管およびその製造方法
US10837073B2 (en) 2015-02-20 2020-11-17 Jfe Steel Corporation High-strength heavy-walled stainless steel seamless tube or pipe and method of manufacturing the same
JP6037031B1 (ja) * 2015-02-20 2016-11-30 Jfeスチール株式会社 高強度継目無厚肉鋼管およびその製造方法
US10876183B2 (en) 2015-07-10 2020-12-29 Jfe Steel Corporation High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe
WO2017022374A1 (ja) * 2015-08-04 2017-02-09 新日鐵住金株式会社 ステンレス鋼及び油井用ステンレス鋼材
RU2686727C2 (ru) * 2015-08-04 2019-04-30 Ниппон Стил Энд Сумитомо Метал Корпорейшн Нержавеющая сталь и изделие из нержавеющей стали для нефтяной скважины
JPWO2017022374A1 (ja) * 2015-08-04 2017-12-14 新日鐵住金株式会社 ステンレス鋼及び油井用ステンレス鋼材
AU2016302517B2 (en) * 2015-08-04 2018-11-29 Nippon Steel Corporation Stainless steel and oil well stainless steel material
US10378079B2 (en) 2015-08-04 2019-08-13 Nippon Steel Corporation Stainless steel and stainless steel product for oil well
JP2017039963A (ja) * 2015-08-18 2017-02-23 新日鐵住金株式会社 油井管
JP2017039966A (ja) * 2015-08-19 2017-02-23 新日鐵住金株式会社 油井管
JP2017048424A (ja) * 2015-09-01 2017-03-09 新日鐵住金株式会社 油井管
JP6168245B1 (ja) * 2016-01-13 2017-07-26 新日鐵住金株式会社 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
WO2017122405A1 (ja) * 2016-01-13 2017-07-20 新日鐵住金株式会社 油井用ステンレス鋼管の製造方法及び油井用ステンレス鋼管
US11066718B2 (en) 2016-01-13 2021-07-20 Nippon Steel Corporation Method of manufacturing stainless pipe for oil wells and stainless steel pipe for oil wells
US11085095B2 (en) 2016-02-08 2021-08-10 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods and method of manufacturing high-strength seamless stainless steel pipe
WO2017138050A1 (ja) 2016-02-08 2017-08-17 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11072835B2 (en) 2016-07-27 2021-07-27 Jfe Steel Corporation High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same
WO2018020886A1 (ja) 2016-07-27 2018-02-01 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11268161B2 (en) 2017-01-13 2022-03-08 Jfe Steel Corporation High strength seamless stainless steel pipe and method for producing same
WO2018131340A1 (ja) 2017-01-13 2018-07-19 Jfeスチール株式会社 高強度ステンレス継目無鋼管およびその製造方法
WO2018155041A1 (ja) 2017-02-24 2018-08-30 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11306369B2 (en) 2017-02-24 2022-04-19 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for producing same
WO2019035329A1 (ja) 2017-08-15 2019-02-21 Jfeスチール株式会社 油井用高強度ステンレス継目無鋼管およびその製造方法
US11286548B2 (en) 2017-08-15 2022-03-29 Jfe Steel Corporation High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
WO2020013197A1 (ja) 2018-07-09 2020-01-16 日本製鉄株式会社 継目無鋼管及びその製造方法
JP6819837B1 (ja) * 2019-03-29 2021-01-27 Jfeスチール株式会社 ステンレス継目無鋼管
WO2020202957A1 (ja) * 2019-03-29 2020-10-08 Jfeスチール株式会社 ステンレス継目無鋼管
WO2022224640A1 (ja) 2021-04-21 2022-10-27 Jfeスチール株式会社 ステンレス鋼管およびその製造方法

Also Published As

Publication number Publication date
EP2434030B1 (en) 2016-01-27
US20120031530A1 (en) 2012-02-09
US9109268B2 (en) 2015-08-18
BRPI1014949B1 (pt) 2020-06-02
US9322087B2 (en) 2016-04-26
EP2434030A1 (en) 2012-03-28
CN102428201A (zh) 2012-04-25
CA2760297C (en) 2015-03-03
AU2010250501B2 (en) 2013-07-25
CN102428201B (zh) 2013-07-10
JPWO2010134498A1 (ja) 2012-11-12
AR076669A1 (es) 2011-06-29
ES2566545T3 (es) 2016-04-13
MX2011012282A (es) 2011-12-08
US20150307972A1 (en) 2015-10-29
EP2434030A4 (en) 2014-04-30
CA2760297A1 (en) 2010-11-25
RU2494166C2 (ru) 2013-09-27
JP4930654B2 (ja) 2012-05-16
AU2010250501A1 (en) 2011-11-10
BRPI1014949A2 (pt) 2019-10-01
RU2011151550A (ru) 2013-06-27

Similar Documents

Publication Publication Date Title
JP4930654B2 (ja) 油井用ステンレス鋼、油井用ステンレス鋼管及び油井用ステンレス鋼の製造方法
JP4911266B2 (ja) 高強度油井用ステンレス鋼及び高強度油井用ステンレス鋼管
RU2649919C2 (ru) Бесшовная трубка или труба из высокопрочной нержавеющей стали для трубных изделий нефтегазопромыслового сортамента и способ ее изготовления
JP4577457B2 (ja) 油井管に用いられるステンレス鋼
JP5348354B1 (ja) 油井用ステンレス鋼及び油井用ステンレス鋼管
JP6372070B2 (ja) フェライト・マルテンサイト二相鋼及び油井用鋼管
US20220145438A1 (en) Duplex stainless steel material
JP7425360B2 (ja) マルテンサイト系ステンレス鋼材、及び、マルテンサイト系ステンレス鋼材の製造方法
JP6672620B2 (ja) 油井用ステンレス鋼及び油井用ステンレス鋼管
JP2019163499A (ja) 鋼材
JP7488503B1 (ja) マルテンサイト系ステンレス鋼材
US20240191331A1 (en) Stainless steel pipe and method for manufacturing the same
JP2017075343A (ja) マルテンサイト鋼材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022011.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777731

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514406

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010777731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4397/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2760297

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2010250501

Country of ref document: AU

Date of ref document: 20100517

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/012282

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2011151550

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014949

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014949

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111020