WO2010134485A1 - 光学用透明粘着体、光学用透明粘着積層体及びその製造方法 - Google Patents

光学用透明粘着体、光学用透明粘着積層体及びその製造方法 Download PDF

Info

Publication number
WO2010134485A1
WO2010134485A1 PCT/JP2010/058277 JP2010058277W WO2010134485A1 WO 2010134485 A1 WO2010134485 A1 WO 2010134485A1 JP 2010058277 W JP2010058277 W JP 2010058277W WO 2010134485 A1 WO2010134485 A1 WO 2010134485A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
adhesive
release
silicone gel
sensitive adhesive
Prior art date
Application number
PCT/JP2010/058277
Other languages
English (en)
French (fr)
Inventor
増田 政彦
Original Assignee
株式会社タイカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タイカ filed Critical 株式会社タイカ
Priority to JP2011514398A priority Critical patent/JP4923165B2/ja
Priority to US13/203,923 priority patent/US20110318577A1/en
Priority to EP10777718A priority patent/EP2433993A4/en
Priority to CN201080020984.XA priority patent/CN102421864B/zh
Publication of WO2010134485A1 publication Critical patent/WO2010134485A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/29Laminated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • C09J2301/1242Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape the opposite adhesive layers being different
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2839Web or sheet containing structurally defined element or component and having an adhesive outermost layer with release or antistick coating

Definitions

  • the present invention relates to an optical transparent pressure-sensitive adhesive body, an optical transparent pressure-sensitive adhesive laminate and a method for producing the same, which are used by being attached to an optical component. Separation site selectivity with the sheet can be obtained stably, and when the transparent adhesive is removed from the optical component and re-attached or re-used (recycled), the both sides of the transparent adhesive are removed.
  • the present invention relates to a highly adhesive optical transparent adhesive, an optical transparent adhesive laminate, and a method for producing the same, in which peeling site selectivity is stably and easily expressed.
  • the method of changing the tackiness of the transparent adhesive sheet by applying surface treatment is inferior in mass productivity due to the increase in the surface treatment process, and it is difficult to control slight tackiness. Often, solvents were also used. Furthermore, in the above method, rework at the time of assembly and recycling collection of optical components have not been taken into consideration.
  • Patent Document 1 it can be installed between a liquid crystal display panel and a transparent protective plate for protecting the liquid crystal display panel.
  • the ball number in the inclined ball tack test according to JIS Z0237 is 5-30.
  • a light-transmitting pressure-sensitive adhesive sheet characterized by comprising a transparent gel having an inclination angle of 30 degrees, preferably a silicone gel having a penetration of 20 to 160 (JIS K2207, 50 g load) has been proposed.
  • a cross-linked silicone-based adhesive sheet having a stable peel surface when peeling off the protective film adhered to both surfaces, and such
  • a cross-linked silicone-based adhesive sheet having a film thickness of 100 ⁇ m or less and having a protective film adhered to both surfaces, the peeling force of the protective film on the sheet being
  • the cross-linked silicone adhesive sheet and the cross-linkable silicone composition which are 5.0 N / m or less and the difference in peel strength of the protective film is 0.2 N / m or more, are different from each other.
  • the film is formed in a state of being sandwiched between two protective films made of the above material so that the film thickness of the composition is 100 ⁇ m or less, and then the composition is crosslinked to form a crosslinked silicone adhesive.
  • a method for manufacturing a sheet has been proposed.
  • pressure-sensitive adhesive sheets are supplied with a pressure-sensitive adhesive sheet on which a release film for protecting the pressure-sensitive adhesive surface is laminated in an actual production line incorporated in an image display device.
  • the pressure-sensitive adhesive sheet described in the above-mentioned patent document 1 has no separation surface selectivity on the front and back of the pressure-sensitive adhesive sheet, and is optimal in each case according to the built-in specifications for mass production of image display devices. It was necessary to search for a release sheet, and could not cope with mass production quickly and stably.
  • the crosslinked silicone-based adhesive sheet described in Patent Document 2 the separation site selectivity of the release sheet and the adhesive force to the adherend are good, and the problem of Patent Document 1 is solved, but the sheet thickness is 100 ⁇ m.
  • This technique is based on the following so-called pressure-sensitive adhesive tape, and cannot achieve stable peeling site selectivity in a sheet exceeding 100 ⁇ m, particularly a sheet having viscoelasticity. Furthermore, even when reattaching defective products unavoidable in mass production, no consideration has been given to ensuring good removability and separation site selectivity.
  • necessary rework work when used in a display, when bubbles are involved at the time of pasting, etc., the brightness, brightness, color of the display is uneven due to the bubbles, and display unevenness occurs. Examples include cases where work such as re-sticking is required, or parts replacement due to bonding position displacement or appearance scratches.
  • the applicant of the present A single layer by curing an optically transparent adhesive material having different front and back adhesive properties in the range of 3 to 15 by bringing the adhesive addition-type silicone raw material into different release films on the upper and lower surfaces or by making one-side contact with air.
  • An optical transparent adhesive having both front and back different adhesive properties and front and back peeling selectivity, and also having a peeling site selectivity at the time of rework, and an optical transparent adhesive formed by laminating the optical transparent adhesive body and a release film.
  • a laminate and a method for producing the same have already been proposed (Japanese Patent Application No. 2007-297782).
  • the transparent adhesive material for optics is No. in the ball tack test.
  • the peeling force (peeling strength) with the release film is increased accordingly, and the release film has a remarkably excellent light release property such as conventional fluorine-based, alkyd-based, and silicone-based. Even so, it has been found difficult to achieve good peeling selectivity. Therefore, the development of a light-adhesive light-sensitive adhesive body that has both front and back different adhesive properties and peel selectivity, and a light-transmitting pressure-sensitive adhesive laminate comprising the above-mentioned light-adhesive light-sensitive adhesive material and a release film are laminated. There is a strong demand.
  • the object of the present invention is to stably obtain the peeling site selectivity between both sides of the transparent adhesive body and the release sheet, and remove the transparent adhesive body from the optical component.
  • a highly adhesive optically transparent adhesive that exhibits stable and easy adhesion to both sides of the transparent adhesive when reworking, and that has excellent adhesion stability after application.
  • Another object is to provide an optical transparent adhesive laminate and a method for producing the same.
  • the peel strength between the highly adhesive transparent adhesive sheet cured together with the release sheet and the release sheet is that of the highly adhesive transparent adhesive sheet.
  • Rework stability can be realized by providing a specific difference on both sides, and by giving a specific difference to the adhesiveness on both sides of the transparent adhesive sheet after peeling the release sheet.
  • a specific combination of a highly adhesive transparent adhesive sheet and a specific release treatment agent that is, fatty acid amide release treatment It has been found that the agent achieves stable light peelability with respect to a highly adhesive transparent adhesive body.
  • “high adhesion” means “adhesion in the range of 5 to 32 in the ball number in the inclined ball tack test (inclination angle 30 degrees) according to JIS Z0237”.
  • an optically transparent adhesive body having an adhesive surface (a) and an adhesive surface (b) having different adhesive properties and formed from an addition reaction type silicone gel.
  • the relationship between the adhesive performance (Ga) of the adhesive surface (a) and the adhesive performance (Gb) of the adhesive surface (b) is Ga ⁇ Gb, and the adhesive performance (Ga) and the adhesive performance (Gb) are JIS
  • the ball number in an inclined ball tack test (inclination angle 30 degrees) according to Z0237 is 5 to 32, the ball number difference is 2 to 12, and the adhesive surface (a) and the adhesive surface (b)
  • the uncured raw material of the addition reaction type silicone gel is brought into close contact with different release films (A) and release films (B), heat-cured, and the release films (A) and release films (B) Contains fatty acid amide additives.
  • Optical transparent pressure-sensitive adhesive body characterized in that it has a release treatment layer is provided.
  • an optical transparent adhesive body having an adhesive surface (a) and an adhesive surface (b) having different adhesive properties, and formed from an addition reaction type silicone gel.
  • the relationship between the adhesive performance (Ga) of the adhesive surface (a) and the adhesive performance (Gb) of the adhesive surface (b) is Ga ⁇ Gb, and the adhesive performance (Ga) and the adhesive performance (Gb) are JIS
  • the ball number is 5 to 32 and the ball number difference is 2 to 12 in an inclined ball tack test (inclination angle 30 degrees) in accordance with Z0237, and the adhesive surface (a) is formed from the addition reaction type silicone gel.
  • the uncured raw material is heat-cured by contact with air, and the adhesive surface (b) has a release treatment layer containing the uncured raw material of the addition reaction type silicone gel and a fatty acid amide-based additive on at least one surface.
  • Release process of release film (B) Layered optical transparent pressure-sensitive adhesive body, characterized in that formed by heat curing by contact is provided.
  • the fatty acid amide additive is at least one bisamide selected from saturated fatty acid bisamides or unsaturated fatty acid bisamides.
  • a transparent adhesive body is provided.
  • the release treatment layer comprises bisamide and a resin component as main components, and the content of bisamide is 2 to 4% by weight with respect to the total amount of the release treatment layer. %, An optically transparent adhesive body is provided.
  • the peel strength (F2) between the release film (B) and the adhesive surface (b) is 90 in the adhesive strength test in accordance with JIS Z0237.
  • An optically transparent adhesive body is provided in which the peel-off adhesive strength is 0.5 N / 20 mm or less.
  • the peel strength (F1) between the release film (A) and the adhesive surface (a), the release film (B) and the adhesive surface is JIS Z0237 between the peel strength (F1) and the peel strength (F2).
  • 90 degree peeling adhesive strength difference in the adhesive strength test in conformity with JIS is 0.01 to 0.5 N / 20 mm
  • 90 degree peeling strength difference between peeling strength (F2) and peeling strength (F3) is 0.
  • the transparent adhesive body for optics characterized by being 1 N / 20 mm or more is provided.
  • the silicone gel has an Asker C hardness of 0 to 30 of SRIS 0101 standard or a penetration (25 according to JIS K2207).
  • An optically transparent pressure-sensitive adhesive body characterized by having a temperature of 20 to 200 ° C. is provided.
  • the transmittance of the silicone gel is 80% or more at a wavelength of 380 to 780 nm, and is an optical transparent adhesive body Is provided.
  • the release film (A) is provided on the adhesive surface (a) of the transparent optical adhesive body according to the first or second invention, and the release film (B) is provided on the adhesive surface (b). ) Is laminated to provide a transparent adhesive laminate for optics. Furthermore, according to the tenth invention of the present invention, the release film (B) is laminated on the adhesive surface (b) of the optical transparent adhesive body according to the second invention, and the release film (B) is formed on the adhesive surface (a). ) Is brought into contact with each other and laminated in a roll shape to provide a transparent adhesive laminate for optics.
  • the film (B) is different, and has an exfoliation treatment layer containing a fatty acid amide-based additive on the addition reaction type silicone gel raw material side, for optical use according to the ninth invention
  • a method for producing a transparent adhesive laminate is provided.
  • the release treatment layer of the release film (B) having a release treatment layer containing an uncured liquid addition-reactive silicone gel raw material and a fatty acid amide-based additive on at least one side.
  • the manufacturing method of the optical transparent adhesion laminated body which concerns on 9th invention characterized by consisting of a sticking process is provided. Furthermore, according to the thirteenth aspect of the present invention, the release treatment layer of the release film (B) having an release treatment layer containing an uncured liquid addition-reaction type silicone gel raw material and a fatty acid amide-based additive on at least one side.
  • the heating step in the heating step, the heating temperature on the side where the uncured silicone gel raw material comes into contact with the release film (A) or air
  • a method for producing a transparent adhesive laminate for optics wherein the heating temperature on the side in contact with the release film (B) is different.
  • the cooling step in the cooling step, the cured silicone gel is in contact with the release film (A) or the side in contact with air, and the release film (
  • the cooling rate gradient on the side in contact with B) is different.
  • the present invention relates to an optical transparent pressure-sensitive adhesive body, an optical transparent pressure-sensitive adhesive laminate, and the like, and preferred embodiments thereof include the following.
  • the relationship between the peel strength (F3) between the adhesive surface (a) and the adherend (C) and the peel strength (F4) between the adhesive surface (b) and the adherend (D) is F1 ⁇ F2.
  • the relationship between the peel strength (F3) and the peel strength (F4) between the adhesive surface (b) and the adherend (D) is the peel strength (F3) and the peel strength.
  • a transparent adhesive for optical use characterized in that a 90-degree peel-off adhesive strength difference in an adhesive strength test based on JIS Z0237 with (F4) is 0.1 N / 20 mm or more.
  • the release film (A) and / or the release film (B) has a release treatment layer containing a fatty acid amide-based additive, and a fatty acid amide-based addition
  • An optical transparent adhesive comprising 1.0 to 5.0% by weight of an agent.
  • the optically transparent adhesive body wherein the resin component is a copolyester.
  • the optically transparent adhesive body of the present invention is superior in selective peel stability even in a range where the adhesive force is large, compared to a conventional adhesive adhesive material with different front and back surfaces. Since excellent adhesion can be maintained even after bonding, it is possible to remarkably reduce bonding-specific defects such as generation of bubbles and peeling after bonding, and even for automated integration into image display devices. Since excellent selective peelability can be stably realized, as a result, mass productivity can be improved, costs can be reduced, and quality can be further ensured. In addition, while maintaining the transparency of the transparent adhesive sheet, it is possible to easily control the adhesiveness including the range of hardness and the adhesiveness of conventional optical adhesives with different adhesiveness on the front and back. Yes.
  • a release film to which bisamide is particularly applied as a release treatment agent is excellent in heat resistance, so that the heat curing temperature can be increased, the curing process is shortened, and as a result, the productivity of the optical adhesive body And can contribute to the cost reduction of the production of the optical adhesive body.
  • the production method of the present invention comprises simple steps, is simple, efficient and highly productive.
  • FIG. 1 is a schematic diagram for explaining an optical transparent adhesive body and an optical transparent adhesive laminate according to the present invention.
  • A is a schematic diagram (cross-sectional view) of an optical transparent adhesive laminate
  • (b) is a schematic diagram (cross-sectional view) of a state where a part of the release film of the optical transparent adhesive laminate is peeled off.
  • FIG. 2 is a schematic diagram illustrating an optical transparent adhesive body and an optical transparent adhesive laminate according to another embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining a production process of the optical transparent adhesive body and the optical transparent adhesive laminate of the present invention.
  • FIG. 4 is a schematic view for explaining a production process of an optical transparent adhesive body and an optical transparent adhesive laminate according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram illustrating a continuous production process of the optical transparent adhesive body and the optical transparent adhesive laminate of the present invention.
  • FIG. 6 is a schematic diagram illustrating a continuous production process of an optical transparent adhesive body and an optical transparent adhesive laminate according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram illustrating a continuous production process of an optical transparent adhesive body and an optical transparent adhesive laminate according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram illustrating a continuous production process of an optical transparent adhesive body and an optical transparent adhesive laminate according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram for explaining the procedure of the peel stability test of the example of the present invention.
  • (A) to (c) illustrate the evaluation step (I),
  • (d) to (g) illustrate the evaluation step (II), and
  • (h) to (j) illustrate the evaluation step (III).
  • FIG. 10 is a side view schematically illustrating the configuration of a test piece of a peel strength test for evaluating the peel strengths F1 and F2 of the example of the present invention.
  • FIG. 11 is a side view schematically illustrating the configuration of a test piece of a peel strength test for evaluating the peel strengths F3 and F4 of the example of the present invention.
  • (A) is a test piece structure which measures F3,
  • (b) is a test piece structure which measures F4.
  • FIG. 12 is a schematic diagram (cross-sectional view) illustrating the configuration of an image display device incorporating the optical transparent adhesive body of the present invention.
  • FIG. 13 is a schematic diagram (cross-sectional view) for explaining the configuration of another form of image display device incorporating the optical transparent adhesive body of the present invention.
  • FIG. 14 is a schematic diagram (cross-sectional view) illustrating the configuration of another form of the image display device incorporating the optical transparent adhesive body of the present invention.
  • FIG. 15 is a schematic diagram for explaining an embodiment of the configuration of the release film used in the present invention.
  • (A) is a structure which has a peeling process layer on one side
  • (b) is a structure which has a peeling process layer on both surfaces in a peeling film
  • FIG. 16 is a schematic diagram for explaining another embodiment of the configuration of the release film used in the present invention.
  • (A) is a structure which has a peeling process layer on one side
  • (b) is a structure which has a peeling process layer on both surfaces in a peeling film (B).
  • optical transparent adhesive body of the present invention is used by being sandwiched between two optical components as an intermediate layer of a light guide path of an image display device.
  • an optical transparent adhesive layer is an optical transparent adhesive laminate in which a release film (A) is attached to an adhesive surface (a) and a release film (B) is attached to an adhesive surface (b). Treated as a body.
  • the release film (A) is peeled and removed from the optically transparent adhesive laminate to expose the adhesive surface (a), (II) And, adhere the adherend (C) to the adhesive surface (a), (III) Next, without removing the adherend (C) from the adhesive surface (a), the release film (B) is peeled off from the adhesive laminate, and the adhesive surface (b) is exposed. (IV) Then, the adherend (D) is affixed to the adhesive surface (b).
  • the optical transparent pressure-sensitive adhesive body of the present invention has a pressure-sensitive adhesive surface (a) and a pressure-sensitive adhesive surface (b) having different adhesive properties, and an addition reaction type.
  • a transparent optical adhesive body formed from a silicone gel wherein the relationship between the adhesive performance (Ga) of the adhesive surface (a) and the adhesive performance (Gb) of the adhesive surface (b) is Ga ⁇ Gb, and
  • the adhesion performance (Ga) and adhesion performance (Gb) are characterized in that the ball number is 5 to 32 and the ball number difference is 2 to 12 in the inclined ball tack test (inclination angle 30 degrees) according to JIS Z0237. It is what.
  • the adhesive surface (a) and the adhesive surface (b) are different from the uncured raw material of the addition reaction type silicone gel (that is, not the same). )
  • the release film (A) and the release film (B) are adhered to each other and heat-cured, and the release film (A) and the release film (B) include a release treatment containing a fatty acid amide-based additive on the adhesion surface.
  • a pressure-sensitive adhesive surface (a) is obtained by heat-curing an uncured raw material of the addition reaction type silicone gel by air contact,
  • the surface (b) is heat-cured by bringing the uncured raw material of the addition reaction type silicone gel into close contact with the release treatment layer of the release film (B) having a release treatment layer containing a fatty acid amide-based additive on at least one side.
  • It is characterized by Than is.
  • the optical transparent pressure-sensitive adhesive body of the present invention is excellent in automation compatibility because the selective separation of the adherend in the rework work that has not been studied in the prior art is improved.
  • the optical transparent pressure-sensitive adhesive body, the optical transparent pressure-sensitive adhesive laminate and the production method thereof of the present invention will be described in detail.
  • the optical transparent pressure sensitive adhesive of the present invention is formed from an addition reaction type silicone gel having adhesiveness.
  • the hardness of the silicone gel the Asker C hardness of SRIS 0101 standard is preferably 0 to 30, or the penetration (25 ° C.) according to JIS K2207 “Petroleum Asphalt” is preferably 20 to 200.
  • the term “transparent” means colorless transparent, colored transparent, and translucent.
  • the transparent silicone gel used in the present invention has a total light transmittance (JIS K7105) of visible light having a wavelength of 380 to 780 nm. "Compliant with" Testing method for optical properties of plastic ”) is preferably 80% or more, more preferably 85% or more, and particularly preferably 90% or more.
  • the transmittance is an index of the transparency of the transparent member. When the transmittance is less than 80%, for example, light emitted from the screen is difficult to transmit through the transparent member, and thus visibility is deteriorated.
  • the transmittance is a value measured using a spectrophotometer or the like.
  • the group bonded to the silicon atom is not particularly limited, for example, an alkyl group such as a methyl group, an ethyl group, or a propyl group, a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, a vinyl group, an allyl group, or the like.
  • aryl groups such as alkenyl groups, phenyl groups, and tolyl groups, those in which the hydrogen atoms of these groups are partially substituted with other atoms or bonding groups.
  • silicone gel material trade name: CF-5106 (penetration 150) manufactured by Toray Dow Corning Co., Ltd. is preferable, and this silicone gel material is a silicone as a raw material.
  • the resin is divided into A liquid and B liquid. By mixing and heating both liquids at a predetermined ratio, a silicone gel material having a desired penetration can be obtained.
  • the production method of the addition reaction type (or cross-linked) silicone gel used in the present invention is not particularly limited. Usually, however, organohydrodiene polysiloxane and alkenyl polysiloxane described later are used as raw materials, and both are hydrolyzed in the presence of a catalyst. It can be obtained by a silylation reaction (addition reaction). That is, in the present invention, the raw material for the silicone gel often refers to an organohydropolysiloxane and an alkenylpolysiloxane.
  • the organohydrogenpolysiloxane used as one of the raw materials is preferably one represented by the following general formula (1).
  • R 1 represents the same or different substituted or unsubstituted monovalent hydrocarbon group
  • R 2 , R 3 and R 4 represent R 1 or —H
  • R 2 , R 3 and R At least two of 4 represent -H
  • x and y are integers indicating the number of units, and each unit is arranged in a block or randomly, preferably random
  • x is 0 or more
  • y is an integer of 0 or more, but preferably 1 to 10.
  • x + y is an integer of 5 to 300, preferably 30 to 200.
  • R 1 examples include alkyl groups such as methyl, ethyl, propyl and butyl, cycloalkyl groups such as cyclopentyl and cyclohexyl, aryl groups such as phenyl and tolyl, benzyl and phenylethyl And aralkyl groups such as halogenated hydrocarbons in which these hydrogen atoms are partially substituted by chlorine atoms, fluorine atoms, or the like.
  • Hydrogen bonded directly to a silicon atom is necessary to perform an addition reaction (hydrosilyl reaction) with an alkenyl group bonded directly or indirectly to a silicon atom, and in the organohydrogenpolysiloxane molecule. At least two are required. If the number of hydrogen atoms directly bonded to the silicon atom is small, the number of cross-linking points is too small to form a silicone gel. If the number of directly bonded hydrogen atoms is too large, the number of crosslinking points is excessively large, which is not preferable because it does not change from the properties of silicone rubber.
  • alkenyl polysiloxane which is another raw material used when producing the crosslinked silicone gel according to the present invention, is preferably represented by the following general formula (2).
  • R 1 represents the same or different substituted or unsubstituted monovalent hydrocarbon group
  • R 5 , R 6 and R 7 represent R 1 or an alkenyl group
  • R 5 , R 6 and R 7 represents an alkenyl group
  • s and t are integers indicating the number of each unit, each unit is arranged in a block or randomly, preferably random, and s represents an integer of 0 or more.
  • T represents an integer of 0 or more
  • s + t is an integer of 10 to 600
  • R 1 examples include alkyl groups such as methyl, ethyl, propyl and butyl, cycloalkyl groups such as cyclopentyl and cyclohexyl, aryl groups such as phenyl and tolyl, benzyl and phenylethyl And halogenated hydrocarbons in which these hydrogen atoms are partially substituted with chlorine atoms, fluorine atoms, or the like.
  • alkenyl group (vinyl group, allyl group, etc.) bonded directly or indirectly to a silicon atom is necessary for performing an addition reaction (hydrosilylation reaction) with hydrogen (Si—H) bonded directly to the silicon atom, At least two alkenyl polysiloxane molecules are necessary. If the number of alkenyl groups is small, the number of cross-linking points is too small to form a silicone gel, and the properties of the silicone oil are not changed. When the number of groups is too large, the number of cross-linking points is too large, and the properties of the silicone rubber are not changed, which is not preferable.
  • the hydrogen polysiloxane represented by the general formula (1) has —H (hydrogen group) directly bonded to a silicon atom
  • the alkenyl polysiloxane represented by the general formula (2) is Since it has a carbon-carbon double bond, the carbon-carbon double bond and —H (hydrogen group) cause an addition reaction, which is called a hydrosilylation reaction.
  • the hydrosilylation reaction can be performed using a known technique. That is, this reaction is carried out in an organic solvent such as ethanol, isopropyl alcohol or the like, aromatic hydrocarbon such as toluene or xylene, ether such as dioxane or THF, aliphatic hydrocarbon or chlorinated hydrocarbon. It is carried out without solvent.
  • the reaction temperature is usually 50 to 150 ° C., and the reaction is carried out using a catalyst such as chloroplatinic acid, a complex obtained from chloroplatinic acid and an alcohol, a platinum-olefin complex, a platinum-vinylsiloxane complex, or a platinum-phosphorus complex. be able to.
  • the amount of the catalyst used is usually 1 to 500 ppm as platinum atoms with respect to the alkenyl polysiloxane, and preferably 3 to 250 ppm in view of curability and physical properties of the product after curing.
  • the silicone gel has adhesiveness derived from the non-crosslinked functional group on the surface.
  • the silicone gel is formulated with an MQ resin-type tackifier component, the addition of a non-reactive adhesive component, the non-crosslinked functional group What applied the well-known tackiness imparting methods, such as expressing the adhesiveness by adjusting the length of a side chain, the kind of terminal functional group, etc. can also be used.
  • the transparent adhesive body for optics of this invention has the adhesive surface (a) and adhesive surface (b) from which adhesiveness differs. Furthermore, the optical transparent adhesive body of the present invention satisfies the following relationship. That is, the peel strength (F1) between the release film (A) and the adhesive surface (a), the peel strength (F2) between the release film (B) and the adhesive surface (b), the adhesive surface (a), and the adhesion
  • the relationship between the peel strength (F3) from the body (C) and the peel strength (F4) between the adhesive surface (b) and the adherend (D) is F1 ⁇ F2 ⁇ F3 ⁇ F4, or F1 ⁇ F2. ⁇ F3> F4.
  • the difference between the peel strength (F1) and the peel strength (F2) is 0.01 to about 90 ° peel-off adhesive strength in the adhesive strength test in accordance with JIS Z0237 “Adhesive tape / adhesive sheet test method”.
  • the adhesive strength difference is 0.5 N / 20 mm and the 90 ° peel-off adhesive strength difference between the peel strength (F2) and the peel strength (F3) is 0.1 N / 20 mm or more. This is because, when the difference in peel strength of the release film relative to the optical transparent adhesive is less than the lower limit of the above range, when the release film is peeled off, it becomes unstable which release film side the release surface is on. .
  • the peel strength (F2) is preferably 0.5 N / 20 mm or less. This is not preferred if the peel strength exceeds 0.5 N / 20 mm, because the peel force is too great when the peel film is peeled off, and the peel workability (particularly in automation) becomes poor. Further, if the peel strength is extremely large, the optical transparent adhesive body may be damaged, which is not preferable.
  • the relationship with the adhesive performance (Gb) is an essential requirement that Ga ⁇ Gb.
  • the transparent adhesive is also removed during reworking by removing the transparent adhesive from the adherend optical component and reattaching it.
  • the peel site selectivity on both sides of the body is stable and easily acts on expression.
  • the adhesion performance (Ga) and adhesion performance (Gb) are 5 to 32 in the ball number in the inclined ball tack test (inclination angle 30 degrees) in accordance with JIS Z0237 “Testing method for adhesive tape and adhesive sheet”.
  • the ball number difference between Ga and Gb is preferably 2 to 12, and the ball number difference is more preferably 2 to 5. This is because when the difference in adhesive performance is less than 2, the removal surface from the optical component becomes either one when the transparent adhesive is removed from the optical component that is the adherend and reworking is performed. This is because it becomes unstable. On the other hand, when the difference in the adhesive performance exceeds 12, there is a risk that the adhesive surface (b) of the transparent adhesive body and the optical component may be difficult to peel, and the manufacture becomes difficult.
  • the adhesion performance (Ga) and adhesion performance (Gb) are adjusted by the type of the substance that contacts in an uncrosslinked state before the uncured raw material of the silicone gel starts curing.
  • a release film a base material or a release treatment layer is applicable and assumed
  • a gas such as air
  • a liquid such as a wet coating layer applied to the release film can be applied.
  • the release treatment agent is transferred to the adhesive surface (in other words, the adhesive surface is contaminated by the release treatment agent) or does not diffuse or absorb over time in the cured silicone gel.
  • the combination of substances may be a combination of the same phases such as solid phase-solid phase or a combination of different phases such as solid phase-gas phase or solid phase-liquid phase.
  • the ball tack becomes smaller as the surface energy of the release film surface with which the uncrosslinked silicone gel material comes into contact is smaller.
  • the part brought into contact with the release film which is an example of a solid phase-gas phase
  • the surface brought into contact with air has a small ball tack.
  • the adhesive strength and the peel strength resulting therefrom can be adjusted by the difference in the amount of heating and the amount of electromagnetic radiation such as ultraviolet rays, which is the applied energy that most affects the crosslinking reaction, which is a feature of the addition reaction type silicone gel.
  • the uncrosslinked silicone gel raw material which contacts the said coating layer by providing the coating layer which has hydrogenpolysiloxane which is a crosslinking agent as a main component further on the contact surface side with the uncrosslinked silicone gel raw material of a peeling film. The degree of surface crosslinking may be adjusted.
  • the adhesive on the front and back sides of the adhesive layer is within the range where the thickness of the adhesive (the part of the adhesive layer excluding the release material on both sides of the double-sided adhesive tape) is 100 ⁇ m or less.
  • the properties are mainly affected by the thickness of the pressure-sensitive adhesive layer, when the adherend or release film is peeled off from the pressure-sensitive adhesive body as the thickness increases, the pressure-sensitive adhesive body tends to undergo tensile elastic deformation. In the body, there has been a problem that the peeling stress buffering property acts to lower the peeling site stability.
  • the above-mentioned peeling site stability can be exhibited at a thickness of several tens of ⁇ m or more, which is the thickness region of the conventional optical transparent adhesive tape, in particular, the thickness is Even when the thickness exceeds 100 ⁇ m and the viscoelastic property of the optical transparent adhesive body affects the peel strength, the peel site stability is exhibited.
  • the mechanism of expression of the above-mentioned different adhesive property which is a feature of the present invention, is not clear at present, but at the interface formed by the contact between the uncured silicone gel raw material and the contacted substance such as a release film,
  • the molecular state of the outermost surface (surface energy), the functional group of the uncrosslinked silicone gel or the polarity of the side chain (compatibility), etc. act to change the cross-linked structure near the interface and the proportion of uncrosslinked functional groups, It is presumed that the macroscopic phenomenon is observed as a difference in tackiness.
  • the peel strength between the release film and the pressure sensitive adhesive is based on the thermal expansion / shrinkage history of the interface between the release film and the silicone gel corresponding to the heat history of heating and cooling received during the cross-linking curing process, in addition to the above-mentioned presumed matter of the different adhesion.
  • the resulting interface residual stress acts to increase the adhesion strength at the interface (engagement action between the release film and the silicone gel), and as a result, it is presumed to be involved in the difference in peel strength.
  • peel strength F1 and F2 when the uncrosslinked silicone gel raw material is peeled in a state of being in contact with the release film and being crosslinked, and after being peeled and removed once after being crosslinked in the same manner as described above,
  • the peel strength differs when the same peel film or another peel film is used (referred to as post-sticking), and the latter has a smaller peel strength. This is because the binding force acts on the interface until the interface bond structure formed at the interface between the release film and the uncrosslinked silicone gel raw material is destroyed by the first release in the curing process.
  • the adhesion force developed by contact with the surface (a or b) does not have a binding force equivalent to the formation of the above-described peeling fracture surface, it is assumed that the peeling strength is smaller than that in the case of the first peeling. Therefore, it is necessary to optimize the combination of release films while adjusting the balance with Ga and Gb according to the aforementioned release type.
  • release film (A) and release film (B) are adhered to both surfaces to constitute an optical transparent pressure-sensitive adhesive laminate.
  • the release film (A) and the release film (B) are defined, but generally refers to release sheets, surface protective films, release papers, and the like that are generally used.
  • the release film (A) and the release film (B) are used to adjust the adhesiveness of the optical transparent adhesive body in the process of forming the optical transparent adhesive body, and the adhesive surface of the optical transparent adhesive body Is protected from dust and must be peeled off before use.
  • the transparent adhesive body for optics of this invention has the adhesive surface (a) closely_contact
  • the release film (A) and the release film (B) according to the aspect of the present invention are applied.
  • the release film (A) and the release film (B) both comprise a fatty acid amide release treatment agent and are not the same (ie, fatty acid) It is desirable that the amide type is different, the fatty acid amide type is the same and the content is different, or the base material component (component other than the release treatment agent) is different.
  • the release film (B) comprises a fatty acid amide-based release treatment agent as an essential component, while the post-bonded release film (A) has an adhesive surface (a ) Is formed by heating and curing the uncured raw material of the addition reaction type silicone gel by air contact, and therefore, those satisfying the relational requirements of the peel strengths F1 and F2 according to the present invention can be applied.
  • the release treatment agent may or may not be included, and the release film (B) may be of the same type or different type (material including the main component and additive components), and the release film (B ) May be the same or different.
  • a film in which a release treatment layer is formed (a film having a release treatment layer) can be suitably used on the surface of the substrate for the film that is in contact with at least the uncured raw material of the addition reaction type silicone gel.
  • a film in which a release treatment layer is formed (a film having a release treatment layer) can be suitably used on the surface of the substrate for the film that is in contact with at least the uncured raw material of the addition reaction type silicone gel.
  • a film having a release treatment layer As shown in FIG. It is preferable to use a formed film.
  • film base materials include polyester films (polyethylene terephthalate films, etc.), olefin resin films (polyethylene films, polypropylene films, etc.), polyvinyl chloride films, polyimide films, polyamide films (nylon films), rayon films, etc.
  • plastic base film synthetic resin film
  • papers quality paper, Japanese paper, kraft paper, glassine paper, synthetic paper, top coat paper, etc.
  • films substrate a film substrate using a highly transparent plastic substrate film (particularly, a polyethylene terephthalate film) can be suitably used.
  • a fatty acid amide-based additive is used as the release treatment agent contained in the release treatment layer.
  • a fatty acid amide-based additive is used as the release treatment agent contained in the release treatment layer.
  • the film that has been subjected to the release treatment with the release treatment agent is formed by, for example, a known formation method.
  • conventionally known coating methods such as reverse gravure coating, bar coating, and die coating can be used as a method of providing a release treatment layer on a polyester film.
  • the thickness of the release film (A) and the release film (B) is preferably 1 to 300 ⁇ m, more preferably 50 to 200 ⁇ m.
  • Examples of the fatty acid amide additive used in the present invention include saturated fatty acid amide, unsaturated fatty acid amide (hereinafter abbreviated as monoamide), saturated fatty acid bisamide, unsaturated fatty acid bisamide (hereinafter abbreviated as bisamide), and the like. Can be mentioned.
  • Examples of monoamides include saturated fatty acid amides such as palmitic acid amide, stearic acid amide, and behenic acid amide, and unsaturated fatty acid amides include, for example, oleic acid amide and erucic acid amide.
  • bisamides include saturated fatty acid bisamides such as methylene bisstearic acid amide, ethylene biscapric acid amide, ethylene bislauric acid amide, ethylene bispalmitic acid amide, ethylene bisstearic acid amide, and ethylene bisbehenic acid amide.
  • Ethylene bis arachidic acid amide, ethylene bis lignoceric acid amide, hexamethylene bis stearic acid amide, etc., and unsaturated fatty acid bisamides include, for example, ethylene bis oleic acid amide, hexamethylene bis oleic acid amide, N, N Examples include '-dioleoyl adipic acid amide, N, N'-dioleoyl sebacic acid amide, and the like.
  • preferred compounds can be represented by the general formula (I) from the viewpoint of heat resistance necessary for achieving the object of the present invention and heat curing the transparent adhesive body for optics.
  • R 1 represents a linear or branched alkylene group having 1 to 12 carbon atoms
  • R 2 and R 3 are linear chains having 3 to 23 carbon atoms (preferably 18 to 23 carbon atoms).
  • a branched alkyl group, an alkenyl group, an alkanyl group or a hydroxyalkyl group which may be the same or different.
  • a resin component is used as the base substrate or a resinous binder in the release treatment layer.
  • the resin component may be a homopolyester or a copolyester.
  • a copolymer polyester is preferable from the viewpoint of heat resistance of the resin component.
  • the content of the release treatment agent is set within a range in which the performance of the adhesive strength and the like of the present invention is expressed.
  • a fatty acid amide additive is added to the adhesive body.
  • the fatty acid amide additive is bisamide
  • the content of bisamide is 2 to 4% by weight with respect to the weight of the release treatment layer.
  • the content is preferably 2 to 4% by weight.
  • the release film (A) and the release film (B) can be the same type or different ones (different ones) by changing the bisamide content in the release treatment layer.
  • the release film (A) and the release film (B) can control or change the peel strength of each adhesion surface with respect to the adhesive surface (a) and the adhesive surface (b).
  • the difference in the peel strength of the release film relative to the optical transparent adhesive can be made moderate, which is preferable.
  • the release treatment layer may contain particles, for example, for the purpose of mainly imparting slipperiness within a range not impairing the gist of the present invention.
  • the type of particles to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness, and specific examples thereof include, for example, silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, phosphorus Examples of the particles include magnesium acid, kaolin, aluminum oxide, and titanium oxide.
  • a release control agent may be used in combination in order to adjust the peelability of the release treatment layer.
  • conventionally known antioxidants, antistatic agents, thermal stabilizers, lubricants, dyes, pigments, and the like can be added as necessary in addition to the above-described particles.
  • the above homopolyester is obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol.
  • aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid
  • aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
  • Representative homopolyesters include polyethylene terephthalate (PET), polyethylene-2,6-naphthalenedicarboxylate (PEN), and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalenedicarboxylate
  • the copolymer polyester is obtained by adding a third component as a copolymer component to the homopolyester. The ratio of the third component is usually selected from the range of 30 mol% or less.
  • Examples of other dicarboxylic acid components used in the copolymerized polyester include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, oxycarboxylic acid (for example, P-oxybenzoic acid) and the like.
  • Examples of glycol components other than those mentioned above include propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like.
  • a modified polyester resin obtained by graft polymerization with an organic resin such as an acrylic resin, a urethane resin, an epoxy resin, or an alkyd resin may be used as the copolyester. Good.
  • a peeling film (A) and a peeling film (B) as another aspect other than the film (film which has a peeling process layer) in which said peeling process layer is formed, as FIG.
  • An embodiment in which the release film itself is a release treatment layer for example, a polyester film containing the above fatty acid amide-based additive compound in polyester can also be used.
  • stacked like FIG.16 (b) can be used.
  • the above-mentioned polyesters can be used as the polyester forming the polyester film.
  • the amount of the fatty acid amide additive is set within the range where the performance of the present invention such as adhesive strength is exhibited, but the upper limit of the amount of addition is that the fatty acid amide additive significantly shifts to the adhesive.
  • the fatty acid amide additive is bisamide
  • the content of bisamide should be 1 to 5% by weight with respect to the total amount of the release treatment layer. Is preferred. If the addition amount is less than 1% by weight, the effect is insufficient. On the other hand, if it exceeds 5% by weight, bisamide is excessively eluted during heat curing, and as a result, the bisamide that has migrated to the gel-cured surface is transferred. A thin film is formed, the adhesiveness is significantly lowered, and it becomes difficult to obtain selective peeling stability.
  • the fatty acid amide additive is monoamide
  • the content is preferably 1 to 5% by weight.
  • the fatty acid amide-based additive is preferably added after the polyester resin is produced and before the extrusion.
  • it is directly dispersed and mixed with the polyester resin before extrusion molding, or a high concentration master batch resin is prepared in advance, and this and the polyester polymer are diluted and mixed to a predetermined concentration, and then extrusion molding is performed.
  • the fatty acid amide additive may be appropriately distributed on the surface of the polyester film.
  • a film in which the fatty acid amide additive is dispersed is heat-treated to appropriately dissolve (exude) the fatty acid amide additive. ).
  • the heat treatment temperature is preferably 170 to 250 ° C.
  • the degree of elution of the fatty acid amide-based additive is such that it does not shift to the adhesive surface of the optical transparent adhesive body.
  • the release film (A) and the release film (A) can be used as long as the relational expression of the peel strength and the relational expression of the adhesive performance can be satisfied with the inclusion of the fatty acid amide-based additive as a release treatment as an essential condition.
  • the release film (B) is not limited to the above material.
  • an organic resin such as polyethersulfone resin, cellulose acetate resin, polyimide resin, polyether resin, epoxy resin, phenol resin, polyamide resin, polyolefin (for example, polypropylene), etc.
  • the difference in the release strength of the release film from the optically transparent adhesive can be moderated by using materials made of different materials. Can be.
  • the optical transparent adhesive laminate of the present invention has a release film (A) on the adhesive surface (a) of the optical transparent adhesive body and a release film on the adhesive surface (b).
  • (B) is laminated (for example, refer to FIG. 1).
  • a peeling film (B) is laminated
  • stacked in roll shape for example, refer to FIG. 2.
  • a manufacturing method of the optical transparent adhesion laminated body of this invention it is desirable to consist of the following process.
  • a cooling step for cooling the cured sheet The release film (A) and the release film (B) both have a release treatment layer containing a fatty acid amide-based additive, and the release layer side is brought into contact with an uncured liquid silicone gel raw material (this production) Not only in the method aspect but also in another production method aspect described below, the uncured liquid silicone gel raw material is brought into contact with the release treatment layer side of the release film.
  • the molding step is performed after the uncured liquid silicone gel raw material is sandwiched between the release film (A) and the release film (B) and brought into contact with a part or the entire surface of the uncured material and each of the release films. Pressure is applied to both or one of the release film (A) and release film (B) to set the desired silicone gel thickness. At this time, both the release film (A) and the release film (B) are brought into contact with the uncured silicone gel material on the surface (hereinafter referred to as an adhesion control surface) that develops the adhesiveness and peel strength of the cured silicone gel.
  • the method of sandwiching the uncured liquid silicone gel raw material between the release film (A) and the release film (B) and the thickness setting method are not particularly limited, and a press method, a calendar method, or the like can be applied.
  • a heating method a known heating method can be applied.
  • natural cooling may be sufficient as a cooling process, and well-known cooling devices, such as applying cold air, can be applied.
  • the heating temperature is not limited to the embodiment of the present manufacturing method, and also in another embodiment of the manufacturing method described below, 70 to 100 ° C. is preferable, and the higher the heating temperature (the shorter the time until completion of curing).
  • the adhesiveness can be adjusted high.
  • steps (i) to (iii) may be performed batchwise (for example, see FIG. 3) for each step or may be continuous (for example, see FIG. 5).
  • an uncured liquid silicone gel raw material is formed on the release film (B) to form an uncured layer so as to have a substantially uniform thickness.
  • a known coating method can be applied as appropriate for the thickness setting method.
  • a blade type coater or the like can be applied as a method excellent in mass productivity.
  • the steps (i) to (iii) may be performed batchwise for each step (see, for example, FIG. 4) or may be continuous.
  • the release film attaching step (iv) may be a roll type that continuously supplies the release film (A).
  • a release film may be attached after the cooled sheet is cut into a predetermined sheet.
  • the peel film (A) in the step (iV) is the same as the peel film (B) if the peel strength F1 ⁇ the peel strength F2 and the difference is 0.01 to 0.5 N / 20 mm. May be.
  • a cooling step in which the cured silicone gel is cooled together with the release film (B), and (iv) an adhesive surface (a) formed by contact with air in the heating step and being cured is brought into contact with the back surface of the release film (B). It consists of the winding process wound up with a peeling film (B) (for example, refer FIG. 7).
  • the adhesive surface (a) at the tip of the produced cured sheet is brought into close contact with a core material made of resin or the like, and wound so that no wrinkles or air is mixed.
  • the winding method is not particularly limited, it is preferable to carry out the tension adjustment with a roll winding device because of excellent mass productivity.
  • the thickness of the optically transparent pressure-sensitive adhesive body is easily deformed by compressive stress as the hardness of the produced optical pressure-sensitive adhesive body becomes softer, troubles during winding can be prevented by adjusting the winding speed and winding tension as appropriate. it can.
  • the back surface of the release film (B) is subjected to the same or different release treatment as that of the release film (B), and there is a difference in the peel strength between the adhesive surfaces of the adhesive surface (a) and the back surface of the release film (B). Can be made.
  • the treatment of the back surface for example, it is preferable to lightly release the surface of the release film (B) by changing the content of the fatty acid amide additive.
  • the manufacturing method of the optical transparent adhesion laminated body of this invention it is desirable to consist of the following process. That is, (i) uncured liquid addition reaction type silicone gel raw material is sandwiched between a release film (A) and a release film (B) each having a release treatment layer containing a fatty acid amide additive, and the thickness is set.
  • a molding step (ii) a heating step for heating and curing after molding or simultaneously with molding, and (iii) cooling for cooling the cured silicone gel obtained in the heating and curing step together with the release film (A) and the release film (B).
  • the adhesive temperature Ga and Gb are supplementarily obtained by curing the heating temperature on the release film (A) side and the heating temperature on the release film (B) side differently. You may adjust so that may differ.
  • the adhesive performance is lower on the surface side where the heating temperature is higher.
  • the heating temperature difference between the release film (A) side and the release film (B) side varies depending on the type of silicone raw material and the type of release film (thermal expansion coefficient and heat resistance), but is preferably 10 to 50 ° C., more preferably 10-30 ° C. Further, from the viewpoint of ensuring thickness accuracy, it is preferable to increase the hardness by hardening by increasing the heating temperature on the lower surface side against gravity.
  • the cooling shrinkage rate of the silicone gel and the cooling shrinkage rate of the release film are changed by making the cooling gradients different between the release film (A) side and the release film (B) side.
  • a type of transparent adhesive for optical use that is formed mainly by the peel strength at the time of initial peeling, with an interfacial adhesion structure (for example, the effect of silicone gel adhering to the release film and the biting effect) caused by the balance of It is effective in the case of a laminated body.
  • Control of the cooling rate is not particularly limited, such as a blowing method such as a blower or a method of contacting the cooling plate.
  • the adhesive performance Ga and Gb are made different by curing the heating temperature on the release film (A) side and the heating temperature on the release film (B) side differently. Can be adjusted as follows.
  • the adhesive performance is lower on the surface side where the heating temperature is higher.
  • the heating temperature difference between the release film (A) side and the release film (B) side varies depending on the type of silicone raw material and the type of release film (thermal expansion coefficient and heat resistance), but is preferably 10 to 50 ° C., more preferably 10-30 ° C. Further, from the viewpoint of ensuring thickness accuracy, it is preferable to increase the hardness by hardening by increasing the heating temperature on the lower surface side against gravity.
  • the cooling shrinkage rate of the silicone gel and the cooling shrinkage rate of the release film are changed by making the cooling gradients different between the release film (A) side and the release film (B) side.
  • An optically transparent adhesive of the type that uses an interfacial adhesion structure for example, the effect of silicone gel adherence to the release film and the bite effect
  • Control of the cooling rate is not particularly limited, such as a blowing method such as a blower or a method of contacting the cooling plate.
  • optical transparent adhesive body of the present invention is used, for example, between an image display device and a transparent protective panel.
  • a resin protective panel such as acrylic and a glass surface of the liquid crystal panel (for example, see FIG. 11), or The protective panel and a polarizing sheet made of resin such as TAC (for example, see FIG. 12), and further applied to the polarizing sheets (for example, see FIG. 13).
  • the optical transparent adhesive body of the present invention can be applied so as to fill a space between each light emitting element surface and the front protective panel. it can.
  • it in order to reduce the transmission loss of the optical path of the optical system, it can be applied as a light junction spacer in a space where light scattering occurs.
  • the thickness is set according to the application. For example, in the case of the above-mentioned display application, 0.1 to 5.0 mm, preferably 0.2 to 2.0 mm is suitable because it can impart shock buffering properties. .
  • Example 1 (I) a molding step of setting the thickness by sandwiching an uncured liquid silicone gel raw material between the release film (A) and the release film (B), (ii) a heating step of heating and curing after molding, and (iii) a cured sheet Through a cooling step of cooling, an optical transparent adhesive laminate having a size of 200 mm ⁇ 200 mm ⁇ 2.0 mm in thickness was obtained by laminating a release film (A), an optical transparent adhesive body, and a release film (B) in this order.
  • the uncured liquid silicone gel raw material is a two-component addition reaction type silicone gel (model: SLJ3363, total light transmittance in air of 90%) manufactured by Asahi Kasei Wacker Silicone Co., Ltd., liquid A (main agent + crosslinking catalyst) / Liquid B (main agent + crosslinking agent) blended at 55 parts by weight / 45 parts by weight was used.
  • the release film (A) has a structure in which a release treatment layer is formed on one side of a base sheet, and a polyethylene terephthalate resin (I) that becomes a base sheet and ethylene bisoleic acid amide (NOF) that becomes a release treatment layer.
  • the produced release film (A) has a thickness of 60 ⁇ m, and the release treatment layer has a thickness of 30 ⁇ m.
  • the polyethylene terephthalate resin (I) and the polyethylene terephthalate resin (II) were both the same resin as “Lumilar” manufactured by Toray Industries, Inc.
  • the release film (B) used what formed the peeling process layer like the release film (A) except the addition amount of ethylenebisoleic acid amide having been 3 weight%.
  • the release film (B) is placed on a flat glass substrate with the release action surface facing upward, and spacers with a thickness of 2.0 mm are placed at the four corners of the release film (B).
  • the uncured liquid silicone gel raw material mixed and defoamed into the center of the release film (B) is poured so as not to entrap the bubbles, and then the release film (A
  • the surface of the liquid silicone gel raw material was contact-coated on the surface of the liquid silicone gel, and then a flat glass plate serving as an upper mold was placed on the release film and pressed to form a spacer thickness by hand.
  • the silicone gel raw material is heated and cured in a hot air oven at 75 ° C. for 1 hour, and then removed from the oven to remove the glass substrate, and the optical transparent adhesive laminate is made of wood.
  • the mixture was naturally cooled at room temperature (25 ° C.).
  • the uncured liquid silicone gel raw material is a two-component addition reaction type silicone gel (model: SLJ3363, total light transmittance in air of 90%) manufactured by Asahi Kasei Wacker Silicone Co., Ltd., liquid A (main agent + crosslinking catalyst) / A blend of 52 parts by weight / 48 parts by weight as the B liquid (main agent + crosslinking agent) was used, and the addition amount of each ethylenebisoleic acid amide in the release film (A) and release film (B) was 3% by weight.
  • a sheet-like transparent adhesive laminate for optics was obtained in the same manner as in Example 1 except that the content was 2% by weight.
  • Example 3 (I) Supplying an uncured liquid viscoelastic material onto the release film (B) and setting the thickness; (ii) Opening and heating curing without attaching the release film (A) after molding Heating step, (iii) cooling step for cooling the cured sheet obtained in the heating and curing step, and (iv) peeling for attaching the release film (A) to the surface that has been opened and heated and cured in the heating step.
  • an optical transparent adhesive laminate having a size of 200 mm ⁇ 200 mm ⁇ 2.0 mm in thickness was obtained by laminating a release film (A), an optical transparent adhesive, and a release film (B) in this order.
  • the thickness setting in the molding step (i) is performed by placing a release film (B) on the flat glass substrate with the release action surface facing upward, and further, an inner dimension of 200 mm made of aluminum on the release film (B). Place a frame-shaped spacer of ⁇ 200 mm ⁇ thickness 2.0 mm, pour the uncured silicone gel raw material all the way into the mold, and then squeeze along the upper surface of the mold with a squeegee plate to remove excess uncured silicone gel raw material. It was done by the method of removing Next, in the state where the squeegee surface was brought into air contact under the same conditions as in Example 1, the film was removed by heating and curing, and then the release film (A) was attached to the surface cured by air contact.
  • the silicone gel used is the same as in Example 1, and the release film (A) and the release film (B) are the same as the release film (B) in Example 2, using the same thing.
  • Example 4 In Example 3, a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 3 except that the amount of ethylenebisoleic acid amide added to the release film (B) was 3% by weight.
  • Example 5 In Example 3, a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 3, except that the amount of ethylenebisoleic acid amide added to the release film (B) was 4% by weight.
  • Example 6 the step of affixing the release film (A) to the air contact-cured surface is made up by winding the air contact-cured surface with the release film (B) while bringing the air contact-cured surface into contact with the back surface of the release film (B).
  • the thickness of the release film (B) was changed to 200 ⁇ m by applying a 75 ⁇ m-thick release treatment to the back surface of the release film (B) with an addition amount of ethylenebisoleic acid amide of 3% by weight.
  • a roll-shaped transparent adhesive laminate for optics having a width of 200 mm was obtained under the same conditions as in Example 4 except that.
  • the air contact surface side was brought into close contact with a vinyl-made core material having an outer diameter of 20 mm, and wound so as not to cause wrinkles and air contamination.
  • Example 7 In Example 3, as the uncured liquid silicone gel raw material, the raw material of Example 2 was used by adjusting the blending amount of the two liquids so that the penetration (JIS K2207 10 g) was 60 after curing. Except for the above, a sheet-like transparent adhesive laminate for optics was obtained in the same manner as in Example 3.
  • Example 8 In Example 4, a sheet-like optical transparent adhesive laminate was obtained in the same manner as in Example 4 except that the raw material of Example 2 was used as the uncured liquid silicone gel raw material.
  • Example 9 In Example 3, a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 3 except that the raw material of Example 2 was used as the uncured liquid silicone gel raw material.
  • Example 10 As the uncured liquid silicone gel raw material, the raw material of Example 1 was used by adjusting the blending amount of the two liquids so that the penetration (JIS K2207 10 g) was 150 after curing. Except for the above, a sheet-like transparent adhesive laminate for optics was obtained in the same manner as in Example 4.
  • Example 11 In Example 5, a sheet-like optical transparent adhesive was used in the same manner as in Example 5 except that ethylenebisstearic acid amide (“Alflow H50” manufactured by NOF Corporation) was used instead of ethylenebisoleic acid amide. A laminate was obtained.
  • ethylenebisstearic acid amide (“Alflow H50” manufactured by NOF Corporation)
  • Example 12 In Example 5, instead of ethylene bisoleic acid amide, stearic acid amide (“Alfro S10” manufactured by NOF Corporation) was used in the same manner as in Example 5, and a sheet-like optically transparent adhesive laminate. Got.
  • Example 13 In Example 5, instead of ethylenebisoleic acid amide, an oleic acid amide (“Alfro E10” manufactured by NOF Corporation) was used in the same manner as in Example 5, but a sheet-like optically transparent adhesive laminate. Got.
  • Example 14 the transparent transparent adhesive laminate for optics was used in the same manner as in Example 2 except that the heating conditions were 70 ° C. on the release film (A) side on the upper surface and 100 ° C. on the release film (A) side on the lower surface. Got the body.
  • Example 15 As for the cooling conditions, the release film (A) side is naturally cooled at room temperature, the release film (B) side is forcibly cooled with a 10 ° C. water-cooled cooling plate, and the release film (A) side is compared with the release film (A) side A transparent adhesive laminate for optical use was obtained in the same manner as in Example 2 except that was rapidly cooled (the cooling rate was increased).
  • Example 16 a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 2, except that ethylene bisbehenic acid amide was used instead of ethylene bisoleic acid amide.
  • Example 17 In Example 3, a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 3 except that ethylene bisbehenic acid amide was used instead of ethylene bisoleic acid amide. The same ethylene bisbehenamide as that of Example 16 was used.
  • Example 18 In Example 5, a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 5 except that ethylene bisbehenic acid amide was used instead of ethylene bisoleic acid amide. The same ethylene bisbehenamide as that of Example 16 was used.
  • Example 19 a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 10 except that ethylene bis behenic acid amide was used instead of ethylene bis oleic acid amide. The same ethylene bisbehenamide as that of Example 16 was used.
  • Example 20 a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 6, except that ethylene bisbehenic acid amide was used instead of ethylene bisoleic acid amide. The same ethylene bisbehenamide as that of Example 16 was used.
  • Example 21 a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 2 except that ethylene bislignoceramide was used instead of ethylene bisoleic acid amide.
  • Example 22 In Example 3, a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 3 except that ethylene bislignoceramide was used instead of ethylene bisoleic acid amide. The same ethylene bislignoceramide as that of Example 21 was used.
  • Example 23 In Example 5, a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 5, except that ethylene bislignoceramide was used instead of ethylene bisoleic acid amide. The same ethylene bislignoceramide as that of Example 21 was used.
  • Example 24 a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 10 except that ethylene bislignoceramide was used instead of ethylene bisoleic acid amide. The same ethylene bislignoceramide as that of Example 16 was used.
  • Example 25 a sheet-like transparent optical adhesive laminate was obtained in the same manner as in Example 6, except that ethylene bislignoceramide was used instead of ethylene bisoleic acid amide. The same ethylene bislignoceramide as that of Example 16 was used.
  • Example 26 In Example 5, instead of ethylene bisoleic acid amide, the same as Example 5 except that R 2 in the general formula (I) of bisamide is behenic acid and R 3 is ethylene bis fatty acid amide consisting of stearic acid. Thus, a sheet-like transparent adhesive laminate for optics was obtained.
  • Example 3 A sheet-like optical transparent film in the same manner as in Example 3 except that the release film (B) was replaced with a fluorosilicone release film (model: FZ, film thickness: 0.1 mm) manufactured by Unitika Ltd. An adhesive laminate was obtained.
  • a fluorosilicone release film model: FZ, film thickness: 0.1 mm
  • Example 22 except that the addition amount of ethylenebislignoceramide in the release film (B) was 1% by weight and the difference in adhesive strength between the adhesive performance (Ga) and the adhesive performance (Gb) was 13. Thus, a sheet-like transparent adhesive laminate for optics was obtained.
  • Example 22 except that the amount of ethylenebislignoceramide added to the release film (B) was 7% by weight and the difference in adhesive strength between the adhesive performance (Ga) and the adhesive performance (Gb) was 1. Thus, a sheet-like transparent adhesive laminate for optics was obtained.
  • Adhesiveness (tackiness) Adhesive performance (Ga) and adhesive performance (Gb) are measured on a 30-degree inclined plate according to the inclined ball tack test of JIS Z0237 “Adhesive tape / adhesive sheet test method” in the inclined ball tack test. A test piece was affixed, the ball was rolled on the surface of the test piece, and the maximum ball number among the balls that stopped in the measuring section after 300 seconds was found and used as the ball tackiness value.
  • Evaluation step (I) The release film (A) is peeled and removed from the optically transparent adhesive laminate to expose the adhesive surface (a). At this time, if the release film (B) was not peeled off and only the release film (A) could be peeled and removed, it was judged as ⁇ (passed), and if even the release film (B) was peeled off, it was judged as x (failed).
  • test samples in each evaluation step was five, and only when they were peeled off on the same side, “good” (good), and when even one piece was peeled off on the opposite side, “no good” was judged. Moreover, it was set as completion
  • Peel strength F1, peel strength (F2), peel strength (F3), and peel strength (F4) are 180 degree peeling adhesive strength in the adhesive strength test in accordance with JIS Z0237 “Testing method for adhesive tape and adhesive sheet”. , Measured at a tensile speed of 300 mm / min with a 90 degree peel tester. Test samples for evaluation of peel strength (F1) and peel strength (F2) are primers on the peel film that is the surface opposite to the measured surface, as shown in FIGS. 10 (a) and 10 (b), respectively.
  • the release film was peeled and removed to form a measured adhesive surface (as in the example cured in an open condition), and then an adherend (C or D) ) was wiped with ethanol and washed, and the measurement sample type X adhesive surface was affixed to the washed surface to obtain an evaluation sample (evaluation sample type Y).
  • the sticking condition was one round trip at a speed of 300 mm / min with a 2 kg roller, and then left at 23 ° C. for 20 to 40 minutes.
  • the adherend was an acrylic plate (MR-200 L-001 manufactured by Mitsubishi Rayon Co., Ltd.) having a thickness of 1 mm.
  • the adhesive property surface of the obtained optical transparent adhesive is adjusted with the release film to be used, and the optical transparent adhesive is used.
  • an optical transparent pressure-sensitive adhesive body having different tackiness surfaces is obtained, and the optical transparent pressure-sensitive adhesive laminate formed by laminating the optical transparent pressure-sensitive adhesive body and the release film has good peelability. And peeling selectivity can be realized. It was verified that even an optically transparent adhesive laminate composed of an optically transparent adhesive body having high adhesiveness exceeding 15 can realize excellent peelability and peeling selectivity.
  • the optical transparent adhesive laminate of the present invention can be adjusted in a wide range of adhesiveness because good peelability and peeling selectivity can be obtained even within the adhesive range of conventional optical transparent adhesive bodies. I know that there is.
  • bisamide has the same effect as saturated fatty acid bisamide or unsaturated fatty acid bisamide. It can be seen that the same effect can be obtained with monoamides such as unsaturated fatty acid amides.
  • Ga ⁇ Gb, and Ga and Gb are inclined ball tack tests (in accordance with JIS Z0237) ( When the ball number is 5 to 32 at an inclination angle of 30 degrees and the difference between the ball numbers of Gb and Ga is 2 to 12, preferably 2 to 5, stable peeling selectivity is exhibited in a series of peeling and sticking operations. It was. Moreover, also in the rework operation, one side (low peel strength side) could be peeled stably.
  • any of the optically transparent adhesive bodies of Examples 1 to 15 is highly adhesive, even if it is bonded to an acrylic plate or a glass plate as an adherend and left at room temperature for a long time, it does not peel or cause bubbles. There was no outbreak.
  • the adherend (C) and the adherend (D) were respectively an acrylic plate and a glass plate, the relationship between the peel strengths F3 and F4 is F3 ⁇ This is an example in which the rework workability is evaluated when F4 is used and the adherend (C) is selectively peeled and removed.
  • the above-described peeling stability can be realized by any of the manufacturing methods according to the eleventh to thirteenth aspects (inventions) of the present invention. Further, as in Examples 14 and 15, the heating temperature and cooling in the curing step It can be seen that the peel stability can also be adjusted by the speed.
  • the same effects as in Examples 1 to 15 can be obtained even if the type of fatty acid group is changed as in Examples 16 to 26.
  • the adhesive surface of the transparent optical adhesive body is ball no. It can be seen that this is also effective for the adhesive surface having a large adhesive strength.
  • the adhesive surface of the optical transparent adhesive is ball No. If it exceeds 15, as shown in Comparative Examples 1 to 3 in Table 4, the alkyd-based or fluorosilicone-based release film conventionally used as a light release film is reworked from the removal of the release film (A). In the peeling work up to the above, predetermined peelability and peel selectivity were not obtained. In addition, as in Comparative Examples 4 to 9, even when a release film having a release treatment layer to which any bisamide is added is used, a stable release property can be obtained if it is out of the predetermined addition amount range. I understand that there is no.
  • the optically transparent pressure-sensitive adhesive body of the present invention has a larger adhesive force and superior peel stability than conventional optical adhesives with different adhesiveness on the front and back, so that it is bonded to an adherend such as an image display device. Excellent adhesion can be maintained later.
  • the separation site selectivity between the transparent adhesive body both sides and the release film is stably obtained, and in the case of reworking by removing the transparent adhesive body from the optical component and reattaching, Since the separation site selectivity on both sides of the transparent adhesive body is stably and easily expressed, it can be applied to a wide range of optical components, and can be suitably used particularly for displays. Furthermore, even when recycling is taken into consideration, the separation site selectivity is stabilized, which contributes to the recovery of the image display element.

Abstract

 貼付の際には、透明粘着体両面と剥離シートとの剥離部位選択性が安定して得られ、また、貼り直しというリワークの際には、透明粘着体両面の剥離部位選択性が安定的かつ容易に発現し、しかも、貼付後の密着安定性にも優れた高粘着性の光学用透明粘着体、光学用透明粘着積層体及びその製造方法を提供する。 粘着性の異なる粘着面(a)と粘着面(b)とを有し、付加反応型シリコーンゲルから形成される光学用透明粘着体であって、粘着面(a)の粘着性能(Ga)と粘着面(b)の粘着性能(Gb)との関係は、Ga<Gb であり、及び粘着性能(Ga)と粘着性能(Gb)は、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32で、ボールナンバー差が2~12であり、並びに、粘着面(a)および粘着面(b)は、該付加反応型シリコーンゲルの未硬化原料を剥離フィルム(A)と剥離フィルム(B)に密着させ、加熱硬化してなり、及び剥離フィルム(A)と剥離フィルム(B)は、脂肪酸アミド系添加剤を含む剥離処理層を有していることを特徴とする光学用透明粘着体など。

Description

光学用透明粘着体、光学用透明粘着積層体及びその製造方法
 本発明は、光学部品に貼付して使用される光学用透明粘着体、光学用透明粘着積層体及びその製造方法に関し、詳しくは、光学部品への貼付の際には、透明粘着体両面と剥離シートとの剥離部位選択性が安定して得られ、また、光学部品から透明粘着体を除去して、貼り直しというリワークや光学部品の再使用(リサイクル)の際には、透明粘着体両面の剥離部位選択性が安定的に、容易に発現する高粘着性の光学用透明粘着体、光学用透明粘着積層体及びその製造方法に関する。
 一般に、透明粘着シート貼付により光学部品を組み立てる際の取扱い性や量産性(オートメーション化)の向上には、透明粘着シートと剥離シートとの剥離部位選択性が安定して得られることが重要である。また、環境や資源保護や歩留り向上による生産コスト低減を配慮した製品設計がより重要視され、光学部品の組み立て時のリワークや、リサイクルまで考慮した設計に対応した生産システムにおいては、光学部品から透明粘着シートを除去する際には、剥離部位選択性が安定的に発現することが重要となる。
 透明粘着シートと剥離シートの剥離部位選択性のために、従来から、透明粘着シートの表裏に貼付される剥離シートの剥離力を変える手法、例えば、表裏で剥離シートの種類を変える方法や、透明粘着シートの片面に表面処理を施し、透明粘着シートの粘着性を変える方法が採用されてきた。
 しかしながら、表裏で剥離シートの種類を変える方法では、粘着シートの剥離側の選択性は、安定化できても、光学部品に貼付後に、もう一方の剥離フィルムを剥離する際の安定性まで最適化するように、剥離シートと透明粘着シートの粘着性をマッチングさせるには、多くの試験検証が必要であり、実用化上、大きな課題になっている。また、透明粘着シートの仕様や被接着物など設計変更のたびに、再検討の必要なケースも多く、経験的なマッチングに頼るしかなかった。
 また、表面処理を施して透明粘着シートの粘着性を変える方法では、表面処理工程が増える分、量産性に劣り、さらに、僅かな粘着性をコントロールすることが困難で、特殊な装置や環境負荷溶媒を使用することも、多かった。
 さらに、上記の方法などでは、組み立て時のリワークや光学部品のリサイクル回収まで考慮されていなかった。
 従来から、光学部品用の粘着性シートや接着性シートについて、いくつか提案されており、例えば、特許文献1では、液晶表示パネルと該液晶表示パネルを保護する透明保護板との間に設置できる高い視認性、衝撃吸収性及び生産性を与え、かつ設置に際しては、空気の封入を防止し、貼着可能とするために、JIS Z0237に準拠した傾斜式ボールタック試験におけるボールナンバーが5~30(傾斜角30度)である透明ゲル、好ましくは針入度が20~160(JIS K2207 50g荷重)であるシリコーンゲルからなることを特徴とする光透過性粘着シートが提案され、また、特許文献2では、両面に密着している保護フィルムを剥離する際に、剥離面が安定している架橋シリコーン系接着性シート、およびこのようなシートを効率よく製造する方法を提供するため、膜厚が100μm以下であり、両面に保護フィルムを密着している架橋シリコーン系接着性シートであって、該シートに対する前記保護フィルムの剥離力がそれぞれ5.0N/m以下であり、かつ、前記保護フィルムの剥離力の差が0.2N/m以上であることを特徴とする架橋シリコーン系接着性シート、および架橋性シリコーン組成物を互いに異種の材質からなる2枚の保護フィルムの間に、前記組成物の膜厚が100μm以下となるように挟んだ状態でフィルム状に成形し、次いで、前記組成物を架橋して架橋シリコーン系接着性シートを製造する方法が提案されている。
 これらの粘着シートは、画像表示装置に組込む実際の生産ラインにおいて、粘着面保護用の剥離フィルムが積層された粘着シートが供給され、粘着シートから剥離フィルムを剥離して被着体(例えば液晶デバイス)に貼合されるが、上記特許文献1に記載の粘着シートでは、粘着シートの表裏での剥離面選択性が無く、画像表示装置の量産化に当たっては組込み仕様に応じて、その都度最適な剥離シートを探索しなければならず、迅速かつ安定的に量産化に対応することができなかった。
 また、特許文献2に記載の架橋シリコーン系接着性シートでは、剥離シートの剥離部位選択性や被着体への接着力が良好で、特許文献1の課題は解決されるものの、シート厚みが100μm以下の所謂粘着テープを想定した技術であり、100μmを超えるようなシート、特に粘弾性を有するシートにおいて安定した剥離部位選択性を実現し得るものでなかった。さらに、量産で不可避な不良品のリワーク作業での貼り替え時にも、良好な再剥離性や剥離部位選択性を確保することまでは、考慮されていない。
 リワーク作業の必要な例としては、ディスプレイに用いられる際に、貼り付け時に気泡の巻き込みがあった場合など、該気泡によりディスプレイの輝度、明るさ、色が不均一となり表示むらが発生するため、貼り直しなどの作業が必要になる場合や貼合位置ズレや外観キズによる部品交換等が挙げられる。
 したがって、上記の問題点や不具合に対応して、貼付の際には、透明粘着体シートと剥離シートとの剥離部位選択性が安定して得られることが求められ、また、光学部品から透明粘着体シートを除去して、貼り直しというリワークの際には、透明粘着体シート両面の剥離部位選択性が安定的に、容易に発現する性能が要求されている。
 上記のような要求に対して、本出願人は、ボールタックNo.3~15の粘着特性の範囲で表裏異粘着性を有する光学用透明粘着材を粘着性の付加型シリコーン原料を上下面で異なる剥離フィルム、または片面空気接触させて硬化させることによって、単層で表裏異粘着性と表裏の剥離選択性を有し、さらに、リワーク時の剥離部位選択性を兼ね備えた光学用透明粘着体、前記光学用透明粘着体と剥離フィルムを積層してなる光学用透明粘着積層体及びその製造方法を、既に提案している(特願2007-297782号)。
 本提案によって、従来の課題を解決して、良好な剥離選択性とリワーク性の実現が可能となったが、近年、LCD(液晶ディスプレイ)等の被着物と光学用透明粘着体との貼合の詳細な検討がされる中で、貼合後の長期密着安定性が求められている観点から、さらに、粘着性の高いものが市場要求として高まってきた。例えば、粘着力が不十分であると、被着体としてLCDと該LCDを保護する透明保護板とを、光学用透明粘着体を介して、加圧または真空貼合した場合に、被着物の厚みや平滑性のばらつきとも関係して、貼合後の貼合積層体中の残留応力が発生するが、貼合後に残留応力によって、粘着体と前記被着体の貼合界面に気泡が発生して、画像表示装置として致命的な不良を生じる問題があった。また、近年、画像表示装置用の透明保護板に種々の表面処理(例えば低反射膜処理(AR処理))がなされて、粘着剤との接着性が低いものが適用されている場合があり、被着体の特性を活かしつつ、前記の貼合不良の発生を抑える観点からも、より高い粘着性を有する光学用透明粘着体が求められている。
 しかしながら、光学用透明粘着材料をボールタック試験におけるNo.15を超えるような高粘着性とすると、それに伴い剥離フィルムとの剥離力(剥離強度)も大きくなり、従来のフッ素系やアルキッド系、さらにはシリコーン系といった軽剥離性に著しく優れた剥離フィルムをもってしても、良好な剥離選択性の実現は困難であることが判明した。
 そこで、新たに表裏異粘着性と剥離選択性を兼ね備えた高粘着性の光透過粘着体と、前記高粘着性の光透過粘着体と剥離フィルムを積層してなる光透過粘着積層体の開発が強く求められている。
特開2006-290960号公報 特開2003-176462号公報
 本発明の目的は、上記問題点に鑑み、貼付の際には、透明粘着体両面と剥離シートとの剥離部位選択性が安定して得られ、また、光学部品から透明粘着体を除去して、貼り直しというリワークの際にも、透明粘着体両面の剥離部位選択性が安定的かつ容易に発現し、しかも、貼付後の密着安定性にも優れた、高粘着性の光学用透明粘着体、光学用透明粘着積層体及びその製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、剥離シートとともに硬化された高粘着性の透明粘着体シートと当該剥離シートとの剥離強度について、高粘着性の透明粘着体シートの両面に、特定の差を設けるとともに、さらに、剥離シートを剥離した後の透明粘着体シートの両面の粘着性に、特定の差を持たせることにより、リワーク安定性が実現でき、かつ、安定した軽剥離性を実現するために、種々の剥離処理剤の検討を重ねた結果、高粘着性の透明粘着体シートと特定の剥離処理剤との特定の組合わせが、すなわち、脂肪酸アミド系剥離処理剤が、高粘着性の透明粘着体に対して、安定した軽剥離性を実現することを見出した。そして、本発明は、これらの知見に基づき、完成するに至ったものである。なお、本発明における「高粘着性」とは、前記の「JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32の範囲の粘着性」を意味する。
 すなわち、本発明の第1の発明によれば、粘着性の異なる粘着面(a)と粘着面(b)とを有し、付加反応型シリコーンゲルから形成される光学用透明粘着体であって、粘着面(a)の粘着性能(Ga)と粘着面(b)の粘着性能(Gb)との関係は、Ga<Gb であり、及び粘着性能(Ga)と粘着性能(Gb)は、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32で、ボールナンバー差が2~12であり、並びに、粘着面(a)および粘着面(b)は、該付加反応型シリコーンゲルの未硬化原料を、異なる剥離フィルム(A)と剥離フィルム(B)に密着させ、加熱硬化してなり、及び剥離フィルム(A)と剥離フィルム(B)は、該密着面に、脂肪酸アミド系添加剤を含む剥離処理層を有していることを特徴とする光学用透明粘着体が提供される。
 また、本発明の第2の発明によれば、粘着性の異なる粘着面(a)と粘着面(b)とを有し、付加反応型シリコーンゲルから形成される光学用透明粘着体であって、粘着面(a)の粘着性能(Ga)と粘着面(b)の粘着性能(Gb)との関係は、Ga<Gb であり、及び粘着性能(Ga)と粘着性能(Gb)は、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32で、ボールナンバー差が2~12であり、並びに、粘着面(a)は、該付加反応型シリコーンゲルの未硬化原料を、空気接触にて加熱硬化してなり、かつ粘着面(b)は、該付加反応型シリコーンゲルの未硬化原料を、少なくとも片面に脂肪酸アミド系添加剤を含む剥離処理層を有する剥離フィルム(B)の剥離処理層に、密着させて加熱硬化してなることを特徴とする光学用透明粘着体が提供される。
 本発明の第3の発明によれば、第1又は2の発明において、前記脂肪酸アミド系添加剤は、飽和脂肪酸ビスアミドまたは不飽和脂肪酸ビスアミドから選ばれる少なくとも一種のビスアミドであることを特徴とする光学用透明粘着体が提供される。
 また、本発明の第4の発明によれば、第3の発明において、前記剥離処理層は、ビスアミドと樹脂成分を主成分とし、剥離処理層全量に対し、ビスアミドの含有量が2~4重量%であることを特徴とする光学用透明粘着体が提供される。
 本発明の第5の発明によれば、第1又は2の発明において、前記剥離フィルム(B)と粘着面(b)との剥離強度(F2)は、JIS Z0237に準拠した粘着力試験における90度引きはがし粘着力が0.5N/20mm以下であることを特徴とする光学用透明粘着体が提供される。
 また、本発明の第6の発明によれば、第1又は2の発明において、剥離フィルム(A)と粘着面(a)との剥離強度(F1)と、剥離フィルム(B)と粘着面(b)との剥離強度(F2)と、粘着面(a)と被着体(C)との剥離強度(F3)との関係は、剥離強度(F1)と剥離強度(F2)とのJIS Z0237に準拠した粘着力試験における90度引きはがし粘着力差が0.01~0.5N/20mmであり、剥離強度(F2)と剥離強度(F3)との90度引きはがし粘着力差が0.1N/20mm以上であることを特徴とする光学用透明粘着体が提供される。
 また、本発明の第7の発明によれば、第1又は2の発明において、前記シリコーンゲルの硬度は、SRIS 0101規格のアスカーC硬度が0~30またはJIS K2207に準拠した針入度(25℃)が20~200であることを特徴とする光学用透明粘着体が提供される。
 さらに、本発明の第8の発明によれば、第1又は2の発明において、前記シリコーンゲルの透過率は、波長が380~780nmにおいて80%以上であることを特徴とする光学用透明粘着体が提供される。
 また、本発明の第9の発明によれば、第1又は2の発明に係る光学用透明粘着体の粘着面(a)に剥離フィルム(A)を、粘着面(b)に剥離フィルム(B)を積層してなることを特徴とする光学用透明粘着積層体が提供される。
 さらに、本発明の第10の発明によれば、第2の発明に係る光学用透明粘着体の粘着面(b)に剥離フィルム(B)が積層され、粘着面(a)に剥離フィルム(B)の裏面が接触してロール状に積層されてなることを特徴とする光学用透明粘着積層体が提供される。
 一方、本発明の第11の発明によれば、未硬化の液状の付加反応型シリコーンゲル原料を剥離フィルム(A)と剥離フィルム(B)で挟んで厚み設定する成形工程と、成形後または成形と同時に加熱硬化させる加熱工程と、前記加熱硬化工程で得られた硬化シリコーンゲルを剥離フィルム(A)と剥離フィルム(B)とともに冷却する冷却工程とからなり、及び、剥離フィルム(A)と剥離フィルム(B)は、異なるものであり、かつ、付加反応型シリコーンゲル原料側に、脂肪酸アミド系添加剤を含む剥離処理層を有していることを特徴とする第9の発明に係る光学用透明粘着積層体の製造方法が提供される。
 また、本発明の第12の発明によれば、未硬化の液状の付加反応型シリコーンゲル原料を、少なくとも片面に脂肪酸アミド系添加剤を含む剥離処理層を有する剥離フィルム(B)の剥離処理層上に、供給して厚み設定する成形工程と、成形後または成形と同時に前記剥離フィルム(B)と非接触な前記未硬化シリコーンゲル原料表面の少なくとも一部を空気接触させて加熱硬化させる加熱工程と、前記加熱硬化工程で得られた硬化シリコーンゲルを前記剥離フィルム(B)とともに冷却する冷却工程と、前記加熱工程で空気接触させて加熱硬化した面に剥離フィルム(A)を貼付する剥離フィルム貼付工程からなることを特徴とする第9の発明に係る光学用透明粘着積層体の製造方法が提供される。
 さらに、本発明の第13の発明によれば、未硬化の液状の付加反応型シリコーンゲル原料を、少なくとも片面に脂肪酸アミド系添加剤を含む剥離処理層を有する剥離フィルム(B)の剥離処理層上に、供給して厚み設定する成形工程と、成形後または成形と同時に前記剥離フィルム(B)と非接触な前記未硬化シリコーンゲル原料表面の少なくとも一部を空気接触させて加熱硬化させる加熱工程と、前記加熱硬化工程で得られた硬化シリコーンゲルを前記剥離フィルム(B)とともに冷却する冷却工程と、前記加熱工程で空気接触させて硬化して形成された粘着面(a)を前記剥離フィルム(B)の裏面に接触させて剥離フィルム(B)とともに巻き取る巻取り工程からなることを特徴とする第10の発明に係る光学用透明粘着積層体の製造方法が提供される。
 また、本発明の第14の発明によれば、第11~13のいずれかの発明において、前記加熱工程では、前記未硬化シリコーンゲル原料が剥離フィルム(A)または空気と接触する側の加熱温度と剥離フィルム(B)と接触する側の加熱温度が異なることを特徴とする光学用透明粘着積層体の製造方法が提供される。
 さらに、本発明の第15の発明によれば、第11~13のいずれかの発明において、前記冷却工程では、前記硬化シリコーンゲルが剥離フィルム(A)または空気と接触する側と、剥離フィルム(B)と接触する側との冷却速度勾配が異なることを特徴とする光学用透明粘着積層体の製造方法が提供される。
 本発明は、上記した如く、光学用透明粘着体や光学用透明粘着積層体などに係るものであるが、その好ましい態様としては、次のものが包含される。
(1)第1又は2の発明において、剥離フィルム(A)と粘着面(a)との剥離強度(F1)と、剥離フィルム(B)と粘着面(b)との剥離強度(F2)と、粘着面(a)と被着体(C)との剥離強度(F3)と、および粘着面(b)と被着体(D)との剥離強度(F4)との関係は、F1<F2<F3<F4、またはF1<F2<F3>F4であることを特徴とする光学用透明粘着体。
(2)第1又は2の発明において、前記剥離強度(F3)と、粘着面(b)と被着体(D)との剥離強度(F4)の関係は、剥離強度(F3)と剥離強度(F4)とのJIS Z0237に準拠した粘着力試験における90度引きはがし粘着力差が0.1N/20mm以上であることを特徴とする光学用透明粘着体。
(3)第1又は2の発明において、剥離フィルム(A)及び/又は剥離フィルム(B)は、脂肪酸アミド系添加剤を含む剥離処理層を有していることに替えて、脂肪酸アミド系添加剤を1.0~5.0重量%含有することを特徴とする光学用透明粘着体。
(4)第4の発明において、前記樹脂成分が共重合ポリエステルであることを特徴とする光学用透明粘着体。
(5)第11の発明において、冷却工程後に、剥離フィルム(A)を硬化したシリコーンゲルから剥離して粘着面(a)を表出させる剥離工程と、粘着面(a)を剥離フィルム(B)の裏面に接触させて剥離フィルム(B)とともにロール状に巻き取る巻取り工程からなることを特徴とする光学用透明粘着積層体の製造方法。
 本発明の光学用透明粘着体は、従来の表裏異粘着性の光学粘着体に比べて、粘着力が大きい範囲においても、選択的剥離安定性に優れるので、画像表示装置などの被着体との貼合後も優れた密着性が維持できるため、貼合後の気泡の発生や剥離といった貼合独自の不良を著しく低減でき、また、画像表示装置などへのオートメーション化した組込みであっても、優れた選択的剥離性を安定して実現できるので、その結果、量産性向上やコストダウン、品質確保がより図られる。また、透明粘着体シートの透明性を維持しつつ、硬度や従来の表裏異粘着性の光学粘着体の有する粘着性の範囲をも含めた粘着性を容易にコントロールでき、幅広い仕様変更に迅速に対応できる。さらに、リワークやリサイクル作業での選択剥離性を有するので、リワークやリサイクルの作業性や自動化にも、対応でき、環境負荷低減やコストダウンに貢献するという効果を発揮する。
 また、本発明のうち、剥離処理剤として、特にビスアミドを適用した剥離フィルムは、耐熱性に優れるため、加熱硬化温度を高くでき、硬化工程を短縮して、その結果、光学粘着体の生産性を向上でき、光学粘着体の製造のコストダウンにも、寄与する効果がある。
 さらに、本発明の製造方法は、簡単な工程からなり、簡便であり、効率的で生産性の高い方法である。
図1は、本発明の光学用透明粘着体及び光学用透明粘着積層体を説明する模式図である。(a)は、光学用透明粘着積層体の模式図(断面図)で、(b)は、光学用透明粘着積層体の剥離フィルムの一部を剥離した状態の模式図(断面図)である。 図2は、本発明の別の形態の光学用透明粘着体及び光学用透明粘着積層体を説明する模式図である。 図3は、本発明の光学用透明粘着体及び光学用透明粘着積層体の作製工程を説明する模式図である。(a)は、剥離フィルム(B)を型のセット工程を、(b)は、未硬化原料の充填工程を、(c)~(d)は、剥離フィルム(A)を積層した成形工程を(e)は、加熱硬化工程を、(f)は、冷却工程を、(g)は、光学用透明粘着積層体の完成を説明する図である。 図4は、本発明の別の形態の光学用透明粘着体及び光学用透明粘着積層体の作製工程を説明する模式図である。(a)は、剥離フィルム(B)を型のセット工程を、(b)は、未硬化原料の充填工程を、(c)~(e)は、スキージによる成形工程を、(f)は、加熱硬化工程を、(g)は、冷却工程を、(h)は、剥離フィルム(A)の貼付工程を、(g)は、光学用透明粘着積層体の完成を説明する図である。 図5は、本発明の光学用透明粘着体及び光学用透明粘着積層体の連続生産工程を説明する模式図である。 図6は、本発明の別の形態の光学用透明粘着体及び光学用透明粘着積層体の連続生産工程を説明する模式図である。 図7は、本発明の別の形態の光学用透明粘着体及び光学用透明粘着積層体の連続生産工程を説明する模式図である。 図8は、本発明の別の形態の光学用透明粘着体及び光学用透明粘着積層体の連続生産工程を説明する模式図である。 図9は、本発明の実施例の剥離安定性試験の手順を説明する模式図である。(a)~(c)は、評価ステップ(I)を、(d)~(g)は、評価ステップ(II)を、(h)~(j)は、評価ステップ(III)を説明する図である。 図10は、本発明の実施例の剥離強度F1とF2を評価する剥離強度試験の試験片の構成を説明する模式的に示した側面図である。(a)は、F1を測定する試験片構成、(b)は、F1を測定する試験片構成である。 図11は、本発明の実施例の剥離強度F3とF4を評価する剥離強度試験の試験片の構成を説明する模式的に示した側面図である。(a)は、F3を測定する試験片構成、(b)は、F4を測定する試験片構成である。 図12は、本発明の光学用透明粘着体を組込んだ画像表示装置の構成を説明する模式図(断面図)である。 図13は、本発明の光学用透明粘着体を組込んだ別の形態の画像表示装置の構成を説明する模式図(断面図)である。 図14は、本発明の光学用透明粘着体を組込んだ別の形態の画像表示装置の構成を説明する模式図(断面図)である。 図15は、本発明に使用する剥離フィルムの構成の実施形態例を説明する模式図である。(a)は片面に剥離処理層を有する構成、(b)は剥離フィルム(B)において両面に剥離処理層を有する構成である。 図16は、本発明に使用する剥離フィルムの構成の別の実施形態例を説明する模式図である。(a)は片面に剥離処理層を有する構成、(b)は剥離フィルム(B)において両面に剥離処理層を有する構成である。
 本発明の光学用透明粘着体は、画像表示装置の導光経路の中間層として二つの光学部品で挟設して、使用されるものである。
 画像表示装置等の組み立て工程において、光学用透明粘着体は、粘着面(a)に剥離フィルム(A)が、粘着面(b)に剥離フィルム(B)がそれぞれ貼付された光学用透明粘着積層体として取り扱われる。
 さらに、前記組立工程では、2つの光学部品(例えば、被着体(C)、被着体(D))を光学透明粘着体で接合するために、
(I)先ず、前記光学透明粘着積層体から剥離フィルム(A)を剥離除去して、粘着面(a)を表出させ、
(II)そして、前記粘着面(a)に被着体(C)を貼付し、
(III)次いで、被着体(C)が粘着面(a)から剥離することなく、前記粘着積層体から剥離フィルム(B)を剥離除去して、粘着面(b)を表出させ、
(IV)そして、前記粘着面(b)に、被着体(D)が貼付される。
 さらに、被着体(C)と被着体(D)が光学透明粘着体で接合された後に、貼付不良(例えば、位置ズレや異物混入など)が発見された場合には、被着体と光学透明粘着体を剥離して不良事項を解消するにおいて、
(V)被着体(C)と被着体(D)のいずれか一方が光学用透明粘着体から選択的に安定して剥離させることにより、リワーク作業が合理的にでき、また、作業の機械化にも対応できるようになる。
 上記の(I)~(V)の手順を確実に実現するためには、剥離フィルム(A)と粘着面(a)との剥離強度(F1)と、剥離紙(B)と粘着面(b)との剥離強度(F2)と、粘着面(a)と被着体(C)との剥離強度(F3)と、および粘着面(b)と被着体(D)との剥離強度(F4)との関係は、F1<F2<F3<F4、またはF1<F2<F3>F4となることが必要となる。
 前記剥離力や剥離強度の関係を安定して実現するために、本発明の光学用透明粘着体は、粘着性の異なる粘着面(a)と粘着面(b)とを有し、付加反応型シリコーンゲルから形成される光学用透明粘着体であって、粘着面(a)の粘着性能(Ga)と粘着面(b)の粘着性能(Gb)との関係は、Ga<Gb であり、及び粘着性能(Ga)と粘着性能(Gb)は、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32で、ボールナンバー差が2~12であることを特徴とするものである。また、本発明の光学用透明粘着体では、第1の態様として、粘着面(a)および粘着面(b)は、付加反応型シリコーンゲルの未硬化原料を、異なる(すなわち、同一のものでない)剥離フィルム(A)と剥離フィルム(B)に密着させ、加熱硬化してなり、及び剥離フィルム(A)と剥離フィルム(B)は、該密着面に、脂肪酸アミド系添加剤を含む剥離処理層を有していることを特徴とし、或いは、第2の態様として、粘着面(a)は、該付加反応型シリコーンゲルの未硬化原料を、空気接触にて加熱硬化してなり、かつ粘着面(b)は、該付加反応型シリコーンゲルの未硬化原料を、少なくとも片面に脂肪酸アミド系添加剤を含む剥離処理層を有する剥離フィルム(B)の剥離処理層に、密着させて加熱硬化してなることを特徴とするものである。特に、本発明の光学用透明粘着体は、従来技術では検討されていなかったリワーク作業における被着体の選択的分離が向上するため、オートメーション対応性にも優れたものとなる。
 以下、本発明の光学用透明粘着体、光学用透明粘着積層体及びその製造方法などについて、詳細に説明する。
1.光学用透明粘着体
(i)付加反応型シリコーンゲル
 本発明の光学用透明粘着体は、粘着性を有する付加反応型シリコーンゲルから形成される。
 上記シリコーンゲルの硬度は、SRIS 0101規格のアスカーC硬度が0~30であるか、またはJIS K2207「石油アスファルト」に準拠した針入度(25℃)が20~200であることが望ましい。
 また、本発明において、透明とは、無色透明、着色透明、半透明を包含する意であり、本発明で用いる透明シリコーンゲルの波長が380~780nm領域の可視光の全光線透過率(JIS K7105「プラスチックの光学的特性試験方法」準拠)は、80%以上であることが好ましく、より好ましくは85%以上、特に好ましくは90%以上である。
 透過率は、透明部材の透明度を指標するものであり、透過率が80%未満の場合には、例えば、画面から発せられた光が透明部材を透過しにくくなるので、視認性が低下する。また、透過率が80%以上である波長の領域が380nm~780nmの領域よりも狭い場合には、赤色側(高波長側)あるいは青色側(低波長側)の光の透過性が低下するので好ましくない。ここで、透過率は、分光光度計等を用いて測定する値である。
 上記付加反応型シリコーンゲルとしては、従来から知られ、市販されている種々のシリコーン材料として一般的に使用されているケイ素化合物を適宜選択して用いることができる。よって、加熱硬化型あるいは常温硬化型のもの、硬化機構が縮合型あるいは付加型のものなど、いずれも用いることができ、特に付加型シリコーン組成物から得られるシリコーンゲルが好ましい。また、ケイ素原子に結合する基も、特に限定されるものではなく、例えば、メチル基、エチル基、プロピル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基のほか、これらの基の水素原子が部分的に他の原子又は結合基で置換されたものを挙げることができる。
 具体的な付加反応型シリコーンゲル材としては、東レ・ダウコーニング(株)製の商品名:CF-5106(針入度が150)などが良好であり、このシリコーンゲル材は、原料であるシリコーン樹脂がA液とB液とに分れていて、この両液を所定比率で混合して加熱することにより、所望の針入度を有するシリコーンゲル材を得ることができるものである。
 本発明で用いられる付加反応型(又は架橋)シリコーンゲルの製法は、特に限定されないが、通常は、後述するオルガノハイドロジエンポリシロキサンとアルケニルポリシロキサンとを原料とし、両者を触媒の存在下でハイドロシリル化反応(付加反応)させることにより得られる。すなわち、本発明においてシリコーンゲルの原料物質とは、多くの場合、オルガノハイドロジエンポリシロキサンとアルケニルポリシロキサンを指す。原料の1つとして用いられるオルガノハイドロジェンポリシロキサンは、下記の一般式(1)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000001
 式中、Rは、同一又は異種の置換若しくは非置換の1価の炭化水素基を表し、R、R及びRは、R又は-Hを表し、R、R及びRの少なくとも2つは、-Hを表し、x及びyは、各単位の数を示す整数であり、各単位は、ブロックあるいはランダムに配置されており、ランダムが好ましく、xは、0以上の整数であるが10~30が好ましく、yは、0以上の整数であるが1~10が好ましい。x+yは、5~300の整数であるが30~200が好ましい。また、y/(x+y)≦0.1の範囲が好ましく、この範囲を超えると架橋点が多くなり、本発明の透明粘着体は得られない。
 Rの例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基、或いは、これらの水素原子が部分的に塩素原子、フッ素原子などで置換されたハロゲン化炭化水素などが挙げられる。
 ケイ素原子に直接結合した水素(Si-H)は、ケイ素原子に直接または間接的に結合したアルケニル基と付加反応(ハイドロシリル反応)を行うために必要であり、オルガノハイドロジェンポリシロキサン分子中にすくなくとも2個必要であり、ケイ素原子に直接結合した水素の数が少ないと架橋点の数が少なすぎ、シリコーンゲルを形成することができず、シリコーンオイルの性質と変わらなくなり望ましくなく、ケイ素原子に直接結合した水素の数が多すぎると架橋点の数が多過ぎ、シリコーンゴムの性質と変わらなくなり好ましくない。
 また、本発明に係る架橋シリコーンゲルを製造する際に用いられるもう1つの原料であるアルケニルポリシロキサンは、下記の一般式(2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式中、Rは、同一又は異種の置換もしくは非置換の1価の炭化水素基を表し、R、R及びRは、R又はアルケニル基を表し、R、R及びRの少なくとも2つはアルケニル基を表し、s及びtは、各単位の数を示す整数であり、各単位はブロックあるいはランダムに配置されており、ランダムが好ましく、sは、0以上の整数を表し、tは、0以上の整数を表し、s+tは、10~600の整数であり、かつt/(s+t)≦0.1ある。また、t/(s+t)≦0.1の範囲が好ましく、この範囲を超えると架橋点が多くなり、本発明の光学用透明粘着体は得られない。
 Rの例としては、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、シクロペンチル基、シクロヘキシル基等のシクロアルキル基、フェニル基、トリル基等のアリール基、ベンジル基、フェニルエチル基等のアラルキル基、或いはこれらの水素原子が部分的に塩素原子、フッ素原子などで置換されたハロゲン化炭化水素などが挙げられる。
 ケイ素原子に直接または間接的に結合したアルケニル基(ビニル基、アリル基等)は、ケイ素原子に直接結合した水素(Si-H)と付加反応(ハイドロシリル反応)を行うために必要であり、アルケニルポリシロキサン分子中にすくなくとも2個必要であり、アルケニル基の数が少ないと架橋点の数が少なすぎ、シリコーンゲルを形成することができず、シリコーンオイルの性質と変わらなくなり、望ましくなく、アルケニル基の数が多すぎると、架橋点の数が多過ぎシリコーンゴムの性質と変わらなくなり好ましくない。
 本発明において、一般式(1)で表されるハイドロジェンポリシロキサンは、珪素原子に直結した-H(水素基)を有しており、一般式(2)で表されているアルケニルポリシロキサンは、炭素-炭素二重結合を有しているので、炭素-炭素二重結合と-H(水素基)が付加反応をおこすが、これをハイドロシリル化反応という。
 上記ハイドロシリル化反応は、公知の技術を用いて行うことができる。すなわち、この反応は、エタノール、イソプロピルアルコール等のアルコール系、トルエン、キシレン等の芳香族炭化水素系、ジオキサン、THF等のエーテル系、脂肪族炭化水素系、塩素化炭化水素系の有機溶剤中又は無溶媒で行われる。また、反応温度は、通常50~150℃であり、塩化白金酸、塩化白金酸とアルコールより得られる錯体、白金-オレフィン錯体、白金-ビニルシロキサン錯体、白金-リン錯体等の触媒を用い反応させることができる。触媒の使用量は、アルケニルポリシロキサンに対して、白金原子として通常1~500ppmであり、硬化性及び硬化後の製品の物理的特性を考慮して、3~250ppmが好ましい。
 前記シリコーンゲルは、表面の非架橋官能基に由来する粘着性を有するが、例えば、MQレジン型の粘着付与成分を配合したものや、非反応性の粘着成分の添加や、非架橋官能基の側鎖の長さや末端官能基の種類などを調整して、粘着性を発現させるなど、公知の粘着性付与方法を適用されたものも、用いることができる。
 また、本発明の光学用透明粘着体は、粘着性の異なる粘着面(a)と粘着面(b)とを有している。
 さらに、本発明の光学用透明粘着体は、次の関係を満たすものである。
 すなわち、剥離フィルム(A)と粘着面(a)との剥離強度(F1)と、剥離フィルム(B)と粘着面(b)との剥離強度(F2)と、粘着面(a)と被着体(C)との剥離強度(F3)と、および粘着面(b)と被着体(D)との剥離強度(F4)との関係は、F1<F2<F3<F4、またはF1<F2<F3>F4である。
 上記の関係式において、剥離強度(F1)と剥離強度(F2)との差がJIS Z0237「粘着テープ・粘着シート試験方法」に準拠した粘着力試験における90度引きはがし粘着力で0.01~0.5N/20mmであり、かつ剥離強度(F2)と剥離強度(F3)との90度引きはがし粘着力差が0.1N/20mm以上であることが望ましい。
 これは、光学用透明粘着体に対する剥離フィルムの剥離強度の差が上記範囲の下限未満であると、剥離フィルムを剥がす際に、剥離面がいずれの剥離フィルム側になるのか安定しなくなるからである。
 また、本発明の光学用透明粘着体では、その両面に密着している剥離フィルム(A)と粘着面(a)との剥離強度(F1)と、剥離フィルム(B)と粘着面(b)との剥離強度(F2)が、それぞれ0.5N/20mm以下であることが望ましい。これは、剥離強度が0.5N/20mmを超えると、剥離フィルムを剥がす際に、剥離力が大きすぎて剥離作業性(特に自動化において)が悪くなるので好ましくない。また、著しく剥離力が大きすぎると、光学用透明粘着体を破損したりするおそれがあるから好ましくない。
 上記の剥離力の調整においては、剥離フィルム(A)を剥離除去した際の粘着面(a)の粘着性能(Ga)と、剥離フィルム(B)を剥離除去した際の粘着面(b)の粘着性能(Gb)との関係は、 Ga<Gb であることが必須の要件であり、被着体である光学部品から透明粘着体を除去して、貼り直しというリワークの際にも、透明粘着体両面の剥離部位選択性が安定的に、かつ容易に発現にも有効に作用する。
 さらに、粘着性能(Ga)と粘着性能(Gb)は、JIS Z0237「粘着テープ・粘着シート試験方法」に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32であることと、GaとGbのボールナンバー差が2~12であることが望ましく、さらに前記ボールナンバー差は2~5であることがより好ましい。これは、粘着性能の差が2未満であると、被着体である光学部品から透明粘着体を除去して、貼り直しというリワークの際には、光学部品からの除去面がどちらかになるのか安定しなくなるからである。一方、粘着性能の差が12を超えると、透明粘着体の粘着面(b)と光学部品との剥離が困難になるおそれがあるとともに、製造が困難になる。
 前記粘着性能(Ga)と粘着性能(Gb)は、前記シリコーンゲルの未硬化原料が硬化開始する前の未架橋状態で接触する物質の種類で調整される。
 前記物質として、剥離フィルム(基材材質や剥離処理層が該当し、想定される。)や空気などの気体、剥離フィルムに施されたウェットコーティング層などの液体などが適用できるが、安定した剥離性能を実現する観点から、粘着面への剥離処理剤の転移(言い換えると、剥離処理剤による粘着面の汚染)や前記シリコーンゲル硬化物に経時的に拡散、吸収されないものが望ましい。物質の組み合わせとしては、固相-固相などの同じ相同士の組み合わせでもよいし、固相-気相や固相-液相といった異なる相の組み合わせでもよい。同じ相で、異なる剥離フィルムを接触させてGaとGbを発現させるには、未架橋シリコーンゲル材料が接触する剥離フィルム表面の表面エネルギーが小さい方がボールタックは小さくなる。また、固相-気相の例である剥離フィルムに接触させた部分と空気に接触させて架橋させた場合は、空気に接触させた面が、ボールタックが小さくなる。
 さらに、付加反応型シリコーンゲルの特徴である架橋反応に最も影響する印加エネルギーである加熱量や紫外線などの電磁波照射量での違いでも、粘着力やそれに起因する剥離強度が調整できる。
 また、剥離フィルムの未架橋シリコーンゲル原料との接触面側に、さらに架橋剤であるハイドロジェンポリシロキサンを主成分とするコーティング層を付与することにより、前記コーティング層と接触する未架橋シリコーンゲル原料の表面架橋度を調整してもよい。
 また、従来の両面粘着タイプの光学用透明粘着テープでは、粘着体(両面粘着テープの両面の剥離材を除いた粘着層の部分)の厚みが100μm以下の範囲においては、粘着層の表裏の粘着特性が主体で粘着層の厚みの影響は小さいものの、厚みが増すにしたがって粘着体から被着物または剥離フィルムを剥離させるときに、粘着体の引張り弾性変形が生じやすくなり、特に粘弾性を有する粘着体では、剥離応力緩衝性が作用して剥離部位安定性が低下する問題があった。
 しかしながら、本発明の光学用透明粘着体では、従来の光学用透明粘着テープの厚み領域である数十μm以上の厚みで上記の剥離部位安定性が発揮されることはもちろんのこと、特に厚みが100μmを超えて、光学用透明粘着体の粘弾性特性が剥離強度に影響する厚み領域でも、剥離部位安定性が発揮される。
 本発明の特徴である上記の異粘着性の発現メカニズムは、現状明確でないが、未硬化シリコーンゲル原料と剥離フィルムなどの被接触物質との接触により、形成される界面において、前記被接触物質の最表面の分子状態(表面エネルギー)や未架橋シリコーンゲルの官能基または側鎖の極性(相溶性)などが作用して、界面近傍での架橋構造の違いや未架橋官能基の割合が変わり、マクロな現象として粘着性の違いとして、観測されるものと、推察される。
 また、剥離フィルムと粘着体の剥離強度は、前記異粘着の発現推察事項に加え、架橋硬化過程で受ける加熱や冷却の熱履歴に対応した剥離フィルムとシリコーンゲルとの界面の熱膨張収縮履歴に起因する界面残留応力が作用して、界面の密着強度が増し(剥離フィルムとシリコーンゲルとの噛み合い作用)、その結果、剥離強度の違いに関与しているものと、推察される。
 なお、前述の剥離強度F1とF2において、未架橋シリコーンゲル原料が剥離フィルムに接触して架橋された状態において剥離する場合と、前記と同様に架橋された後に一度剥離フィルムを剥離除去した後に、同じ剥離フィルムまたは別の剥離フィルムに貼り替えた場合(後貼りと称す)で剥離強度が異なり、後者の方が剥離強度は小さくなる。
 これは、硬化過程で剥離フィルムと未架橋シリコーンゲル原料との界面で形成された界面結合構造が初回の剥離で破壊されるまで界面に拘束力が作用するが、後から貼付した剥離フィルムと粘着面(aまたはb)との接触で発現する密着力は、前記の剥離破壊面を形成させるに相当する拘束力がないため、剥離強度は、初回剥離の場合よりも小さくなると、推察される。
 したがって、前述の剥離タイプに応じて、GaおよびGbとのバランスを調整しながら剥離フィルムの組み合わせを最適化する必要がある。
(ii)剥離フィルム(A)と剥離フィルム(B)
 本発明の光学用透明粘着体では、その両面に、剥離フィルム(A)と剥離フィルム(B)を密着させて光学用透明粘着積層体を構成する。
 本発明において、剥離フィルム(A)と剥離フィルム(B)と定義しているが、一般に用いられている剥離シートや表面保護フィルムや剥離紙など全般を指すものである。この剥離フィルム(A)と剥離フィルム(B)は、光学用透明粘着体の形成過程においては、光学用透明粘着体の粘着性を調整するものであり、また、光学用透明粘着体の接着面を塵芥より保護するものであり、使用する際に剥がす必要がある。
 また、本発明の光学用透明粘着体では、剥離フィルム(A)と密着する粘着面(a)と、剥離フィルム(B)と密着する粘着面(b)とを有し、前記の剥離強度の関係式や、粘着性能の関係式を満たすためには、本発明の態様に応じた剥離フィルム(A)と剥離フィルム(B)を適用する。
 具体的には、本発明の第1の態様では、剥離フィルム(A)と剥離フィルム(B)とは、ともに脂肪酸アミド系の剥離処理剤を含んで成り、かつ同一のものでない(すなわち、脂肪酸アミドの種類が異なるもの、脂肪酸アミドの種類が同じで含有量が異なるもの、又は基材成分(剥離処理剤以外の成分)が異なるもの、の少なくともいずれかである。)ことが望ましく、また、本発明の第2の態様では、剥離フィルム(B)は、脂肪酸アミド系の剥離処理剤を必須成分として含んで成り、一方、後貼りされる剥離フィルム(A)は、密着する粘着面(a)が該付加反応型シリコーンゲルの未硬化原料を空気接触にて加熱硬化して形成されるから、本発明に係る剥離強度F1とF2との関係要件を満たすものを適用できるので、脂肪酸アミド系の剥離処理剤を含んでも含まなくてもよく、剥離フィルム(B)とは、種類(主成分や添加成分を含めた材質)が異なっても、同種であってもよく、さらに、剥離フィルム(B)と同一であっても、異なるものであってもよい。
 また、剥離フィルム(A)と剥離フィルム(B)としては、例えば、図15(a)のように、フィルム用基材の少なくとも付加反応型シリコーンゲルの未硬化原料と接触する側の面に、剥離処理層が形成されているフィルム(剥離処理層を有するフィルム)を好適に用いることができ、本発明の第8の態様においては、図15(b)のように、両面に剥離処理層が形成されているフィルムを用いることが好ましい。剥離処理層が形成されているフィルム(剥離処理層を有するフィルム)を用いることにより、剥離処理層に含まれる剥離処理剤の機能、性能を十分に発揮させることができる。
 このようなフィルム用基材としては、ポリエステルフィルム(ポリエチレンテレフタレートフィルム等)、オレフィン系樹脂フィルム(ポリエチレンフィルム、ポリプロピレンフィルム等)、ポリ塩化ビニルフィルム、ポリイミドフィルム、ポリアミドフィルム(ナイロンフィルム)、レーヨンフィルムなどのプラスチック系基材フィルム(合成樹脂フィルム)や、紙類(上質紙、和紙、クラフト紙、グラシン紙、合成紙、トップコート紙など)の他、これらを、ラミネートや共押し出しなどにより、複層化したもの(2~3層の複合体)等が挙げられる。フィルム用基材としては、透明性の高いプラスチック系基材フィルム(特に、ポリエチレンテレフタレートフィルム)が用いられたフィルム用基材を好適に用いることができる。
 本発明の光学用透明粘着体の両面に貼付される剥離フィルム(A)と剥離フィルム(B)では、上記剥離処理層に含まれる剥離処理剤として、特に、脂肪酸アミド系添加剤を用いることに特徴がある。また、脂肪酸アミド系添加剤の剥離処理剤は、単独で又は2種以上組み合わせて使用してもよい。なお、剥離処理剤により剥離処理が施されたフィルムは、例えば、公知の形成方法により、形成される。例えば、ポリエステルフィルムに、剥離処理層を設ける方法として、リバースグラビアコート、バーコート、ダイコート等、従来公知の塗工方式を用いることができる。塗工方式に関しては「コーティング方式」槇書店 原崎勇次著 1979年発行に記載例がある。また、共押出成形やラミネート成形によって、フィルム状の剥離処理層を基材に積層した構造としてもよい。
 また、剥離フィルム(A)と剥離フィルム(B)の厚さは、好ましくは1~300μmであり、より好ましくは50~200μmである。
 本発明で用いられる脂肪酸アミド系添加剤としては、例えば、飽和脂肪酸アミドや不飽和脂肪酸アミド(以下、略してモノアミドという)、飽和脂肪酸ビスアミドや不飽和脂肪酸ビスアミド(以下、略してビスアミドという)等が挙げられる。
 モノアミドの例としては、飽和脂肪酸アミドは、例えば、パルミチン酸アミド、ステアリン酸アミド、ベヘニン酸アミド等が挙げられ、不飽和脂肪酸アミドは、例えば、オレイン酸アミド、エルカ酸アミド等が挙げられる。また、ビスアミドの例としては、飽和脂肪酸ビスアミドは、例えば、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスパルミチン酸アミド、エチレンビスステアリン酸アミド、エチレンビスベヘン酸アミド、エチレンビスアラキジン酸アミド、エチレンビスリグノセリン酸アミド、ヘキサメチレンビスステアリン酸アミド等が挙げられ、不飽和脂肪酸ビスアミドは、例えば、エチレンビスオレイン酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミド等が挙げられる。また、これら以外にも、N,N’-ジヘプタデシルアジピン酸アミド、N,N’-ジヘプタデシルセバシン酸アミド、N,N’-ジヘプタデシルテレフタル酸アミド、N,N’-ジヘンエイコシルテレフタル酸アミド等が挙げられる。
 上記の脂肪酸アミド系添加剤のうち、本発明の目的を達成でき、また、光学用透明粘着体を加熱硬化させる際に必要な耐熱性の観点から、好ましい化合物は、一般式(I)で表されるビスアミドである。
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Rは、炭素数1~12の直鎖又は分岐鎖アルキレン基を示し、R及びRは、炭素数3~23(好ましくは炭素数18~23)の直鎖又は分岐鎖アルキル基、アルケニル基、アルカニル基あるいはヒドロキシアルキル基であり、同一でも異なっていてもよい。
 また、前記剥離処理層には、上記剥離処理剤以外に、ベース基材または樹脂系バインダーとして、樹脂成分が用いられ、該樹脂成分としては、ホモポリエステルであっても、共重合ポリエステルであってもよく、光学用透明粘着体を硬化形成する際において、前記樹脂成分の耐熱性の観点から、共重合ポリエステルが好ましい。
 さらに、剥離処理層において、剥離処理剤の含有量は、本発明の粘着力等の性能が発現される範囲で設定されるが、添加量の上限としては、粘着体に脂肪酸アミド系添加剤が著しく移行して、所望の粘着力が得られなくならない範囲で設定され、例えば、脂肪酸アミド系添加剤がビスアミドの場合には、剥離処理層の重量に対し、ビスアミドの含有量が2~4重量%であることが望ましく、また、モノアミドの場合にも、含有量が2~4重量%であることが望ましい。
 また、剥離フィルム(A)と剥離フィルム(B)とは、この剥離処理層において、ビスアミドの含有量を変えることにより、同種であっても、同一のものでないもの(異なるもの)にすることができ、その結果、剥離フィルム(A)と剥離フィルム(B)は、粘着面(a)と粘着面(b)に対し、それぞれの密着面の剥離強度を、制御または変化させることができ、また、光学用透明粘着体に対する剥離フィルムの剥離強度の差を適度のものにすることができ、好ましい。
 さらに、剥離処理層には、上記剥離処理剤とベース基材としての樹脂成分以外に、本発明の主旨を損なわない範囲において、例えば、易滑性付与を主たる目的として、粒子を配合してもよい。配合する粒子の種類は、易滑性付与可能な粒子であれば、特に限定されるものではなく、具体例としては、例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の粒子が挙げられる。また、剥離処理層の剥離性等を調整するために剥離コントロール剤を、併用してもよい。さらに、上述の粒子以外に、必要に応じて、従来公知の酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料等を添加することもできる。
 上記のホモポリエステルは、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られる。芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などが挙げられ、脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等が挙げられる。代表的なホモポリエステルとしては、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレンジカルボキシレート(PEN)等が例示される。
 また、上記の共重合ポリエステルは、上記のホモポリエステル中に共重合成分として第三成分を含有させて得られる。第三成分の割合は、通常30モル%以下の範囲から選択される。共重合ポリエステルに使用される上記以外のジカルボン酸成分としては、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、アジピン酸、セバシン酸、オキシカルボン酸(例えばP-オキシ安息香酸など)等が挙げられ、上記以外のグリコール成分としては、プロピレングリコール、ブタンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール等が挙げられる。
 さらに、本発明の主旨を損なわない範囲において、上記共重合ポリエステルとして、例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、アルキッド樹脂等の有機樹脂とのグラフト重合等による変性ポリエステル樹脂等を使用してもよい。
 また、剥離フィルム(A)と剥離フィルム(B)として、上記の剥離処理層が形成されているフィルム(剥離処理層を有するフィルム)以外に、別の態様として、図16(a)のように、剥離フィルム自体が剥離処理層である態様、例えば、ポリエステル中に、上記の脂肪酸アミド系添加剤化合物を含有するポリエステルフィルムも、用いることができる。また、本発明の第8の態様においては、図16(b)のように、異なる剥離処理層が積層されたフィルムを用いることができる。
 ここで、上記のポリエステルフィルムを形成するポリエステルとは、上述したポリエステル類を用いることができる。
 また、脂肪酸アミド系添加剤の添加量は、本発明の粘着力等の性能が発現される範囲で設定されるが、添加量の上限としては、粘着体に脂肪酸アミド系添加剤が著しく移行して、所望の粘着力が得られなくならない範囲で設定され、例えば、脂肪酸アミド系添加剤がビスアミドの場合には、剥離処理層全量に対し、ビスアミドの含有量が1~5重量%であることが好ましい。添加量が1重量%未満では、効果が不十分であり、一方、5重量%を超えると、加熱硬化時にビスアミドが過大に溶出し、その結果、ゲル硬化面に溶出したビスアミドが移行したビスアミドの薄膜が形成され、粘着性が著しく低下して、選択的な剥離安定性が得ることが困難となる。また、同様に、脂肪酸アミド系添加剤がモノアミドの場合にも、含有量が1~5重量%であることが好ましい。
 上記のポリエステルフィルムを製造するにあたり、脂肪酸アミド系添加剤を添加する時期としては、ポリエステル樹脂製造後、押出成形前の段階が好ましい。例えば、押出成形前のポリエステル樹脂に直接分散混合するか、或いは、予め高濃度のマスターバッチの樹脂を作成し、これとポリエステルポリマーとを所定の濃度となるように希釈混合した後、押出成形してフィルムとする方法を採ることもできる。
 また、この脂肪酸アミド系添加剤をポリエステルフィルム表面に適度に偏在させてもよく、例えば、脂肪酸アミド系添加剤を分散させたフィルムを熱処理して該脂肪酸アミド系添加剤を適度に溶出(滲み出し)させることが好ましい。そのためには、フィルムを熱処理する必要がある。熱処理温度は、170~250℃が好ましい。ただし、前記脂肪酸アミド系添加剤の溶出の程度は、光学用透明粘着体の粘着面に移行しない程度とすることが好ましい。
 さらに、本発明においては、剥離処理剤としての脂肪酸アミド系添加剤の含有を必須条件として、前記の剥離強度の関係式や、粘着性能の関係式を満たすことができれば、剥離フィルム(A)と剥離フィルム(B)は、上記素材に限定されない。例えば、剥離フィルム(A)と剥離フィルム(B)として、ポリエーテルスルホン樹脂、酢酸セルロース樹脂、ポリイミド樹脂、ポリエーテル樹脂、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂、ポリオレフィン(例えばポリプロピレン)等の有機樹脂からなるフィルム;これらの有機樹脂が他の有機樹脂と積層してなるフィルム、あるいはこれらの有機樹脂が他の有機樹脂フィルムの表面を被覆してなるフィルムが挙げられる。剥離フィルム(A)と剥離フィルム(B)として、これらの素材を用いる際には、互いに異種の材質からなるものを用いることにより、光学用透明粘着体に対する剥離フィルムの剥離強度の差を適度のものとすることができる。
 また、前述の積層構造や表面処理により剥離フィルムの表裏で異なった剥離特性を付与することによって、一枚の剥離フィルムで剥離フィルム(A)と剥離フィルム(B)の機能を持たせてもよく、特に、前記光学用透明粘着積層体の製造形態のひとつであるロール状に回収する場合には、有効である。
2.光学用透明粘着積層体及びその製造方法
 本発明の光学用透明粘着積層体は、上記の光学用透明粘着体の粘着面(a)に剥離フィルム(A)を、粘着面(b)に剥離フィルム(B)を積層してなるものである(例えば、図1参照。)。また、別の形態として、光学用透明粘着体の粘着面(b)に剥離フィルム(B)が積層され、粘着面(a)に剥離フィルム(B)の裏面が接触してロール状に積層されてなるものとしてもよい(例えば、図2参照。)。
 さらに、本発明の光学用透明粘着積層体の製造方法としては、次の工程からなることが望ましい。
 すなわち、(i)未硬化の液状粘弾性材料を、剥離フィルム(A)と剥離フィルム(B)で挟んで厚み設定する成形工程と、(ii)成形後または成形と同時に加熱硬化させる加熱工程と、(iii)硬化シートを冷却する冷却工程とからなる。
 なお、剥離フィルム(A)と剥離フィルム(B)は、ともに脂肪酸アミド系添加剤を含む剥離処理層を有しており、前記剥離層側を未硬化の液状シリコーンゲル原料に接触させる(本製造方法の態様に限らず、以下に述べる別の製造方法の態様においても、未硬化の液状シリコーンゲル原料は、剥離フィルムの剥離処理層側と接触させるものとする。)。
 上記(i)成形工程は、未硬化の液状シリコーンゲル原料を剥離フィルム(A)と剥離フィルム(B)で挟んで前記未硬化材料と前記各剥離フィルムの一部又は全面と接触させた後、剥離フィルム(A)と剥離フィルム(B)の両方または片方に圧力を掛けて目的のシリコーンゲル厚みに設定する。この時、前記剥離フィルム(A)と剥離フィルム(B)とも硬化後のシリコーンゲルの粘着性および剥離強度を発現させる面(以下粘着制御面)を未硬化のシリコーンゲル材料と接触させる。前記の未硬化の液状シリコーンゲル原料を剥離フィルム(A)と剥離フィルム(B)で挟む方法および厚み設定方法は、特に限定しないが、プレス方式やカレンダー方式などを適用できる。また、加熱方法は、公知の加熱方法を適用できる。さらに冷却工程は、自然冷却でもよいし、冷風を当てるなどの公知の冷却装置を適用することができる。
 加熱温度としては、本製造方法の態様に限らず、以下に述べる別の製造方法の態様においても、70~100℃が好ましく、加熱温度を高くするほど(硬化完了するまでの時間が短いほど)粘着性を高く調整できる。また、70℃未満であると、硬化時間が長くなり、所望の粘着性が得られないことに加えて、生産性も低下するため好ましくない。一方、100℃を超えると、剥離フィルムの熱変形に起因した不具合が生じやすくなるため、好ましくない。
 上記(i)~(iii)の工程は、各工程毎にバッチ式(例えば、図3参照。)で行ってもよいし、連続式(例えば、図5参照。)でもよい。
 また、本発明の光学用透明粘着積層体の製造方法の別の態様としては、次の工程からなることが望ましい。
 すなわち、(i)未硬化の液状粘弾性材料を、脂肪酸アミド系添加剤を含む剥離処理層を有した剥離フィルム(B)上に供給して厚み設定する成形工程と、(ii)成形後または成形と同時に少なくとも剥離フィルム(A)を貼付する部分を開放させて加熱硬化させる加熱工程と、(iii)前記加熱硬化工程で得られた硬化シートを冷却する冷却工程と、(iv)前記加熱工程で開放させて加熱硬化した面に剥離フィルム(A)を貼付する剥離フィルム貼付工程からなる。
 前記(i)成形工程は、未硬化の液状シリコーンゲル原料を剥離フィルム(B)上に、略均一厚みとなるように未硬化層を形成させる。厚み設定方法は、公知の塗布方法を適宜適用できる。例えば、量産性に優れる方法としては、ブレード式コーター等が適用できる。
 上記(i)~(iii)の工程は、各工程毎にバッチ式(例えば、図4参照。)で行ってもよいし、連続式でもよい。また、図8に例示したように、(iv)の剥離フィルム貼付工程は、剥離フィルム(A)を連続供給するロール式でもよい。また、別の方法としては、冷却されたシートを所定のシートにカットした後に、剥離フィルムを貼付してもよい。
 なお、(iV)の工程の剥離フィルム(A)は、剥離強度F1<剥離強度F2で、その差が0.01~0.5N/20mmであれば、剥離フィルム(B)と同じものを使用してもよい。
 さらに、本発明の光学用透明粘着積層体の製造方法の別の態様としては、次の工程からなることが望ましい。
 すなわち、(i)未硬化の液状の付加反応型シリコーンゲル原料を、脂肪酸アミド系添加剤を含む剥離処理層を有する剥離フィルム(B)上に供給して厚み設定する成形工程と、(ii)成形後または成形と同時に前記剥離フィルム(B)と非接触な前記未硬化シリコーンゲル原料表面の少なくとも一部を空気接触させて加熱硬化させる加熱工程と、(iii)前記加熱硬化工程で得られた硬化シリコーンゲルを剥離フィルム(B)とともに冷却する冷却工程と、(iv)前記加熱工程で空気接触させて硬化して形成された粘着面(a)を剥離フィルム(B)の裏面に接触させて剥離フィルム(B)とともに巻き取る巻取り工程からなる(例えば、図7参照。)。
 上記巻取り工程では、作製された硬化シートの先端部分の粘着面(a)を、樹脂製等の芯材に密着させて、皺や空気の混入が発生しないように巻き取る。巻き取り方法は、特に限定されないが、ロール巻取り装置でテンション調整しながら行うのが量産性に優れて好ましい。また、作製された光学用粘着体の硬さが柔らかくなるほど圧縮応力で光学透明粘着体の厚みが変形しやすいので、巻き取り速度と巻取りテンションを適宜調整することで巻取り時の不具合が防止できる。また、剥離フィルム(B)の裏面には、剥離フィルム(B)と同じまたは異なる剥離処理を施して、粘着面(a)と剥離フィルム(B)の裏面の密着面の剥離強度に差を持たせることができる。前記裏面の処理としては、例えば、脂肪酸アミド系添加剤の含有量を変えることにより、剥離フィルム(B)の表面側よりも、軽剥離とすることが好適である。
 さらに、本発明の光学用透明粘着積層体の製造方法の別の態様としては、次の工程からなることが望ましい。
 すなわち、(i)未硬化の液状の付加反応型シリコーンゲル原料を、脂肪酸アミド系添加剤を含む剥離処理層をともに有した剥離フィルム(A)と剥離フィルム(B)とで挟んで厚み設定する成形工程と、(ii)成形後または成形と同時に加熱硬化させる加熱工程と、(iii)前記加熱硬化工程で得られた硬化シリコーンゲルを剥離フィルム(A)と剥離フィルム(B)とともに冷却する冷却工程と、(iv)剥離フィルム(A)を硬化したシリコーンゲルから剥離して粘着面(a)を表出させる剥離工程と、(v)粘着面(a)を剥離フィルム(B)の裏面に接触させて剥離フィルム(B)とともにロール状に巻き取る巻取り工程からなる(例えば、図8参照。)。
 また、上述の各製造方法の形態における加熱工程では、剥離フィルム(A)側の加熱温度と剥離フィルム(B)側の加熱温度を、異なって硬化させることにより、補助的に粘着性能GaとGbを異ならせるように調整してもよい。加熱温度が高い面側の方が粘着性能は、低くなる。剥離フィルム(A)側と剥離フィルム(B)側の加熱温度差は、シリコーン原料の種類と剥離フィルムの種類(熱膨張率や耐熱性)によっても異なるが10~50℃が好ましく、より好ましくは10~30℃である。また、厚み精度の確保の点から、重力に対して下面となる側の加熱温度を高くして、硬化によって硬度を高くしておくことが好ましい。
 さらに、上述の各製造方法の形態における冷却工程では、剥離フィルム(A)側と剥離フィルム(B)側との冷却勾配を異ならせることにより、シリコーンゲルの冷却収縮速度と剥離フィルムの冷却収縮速度のバランスに起因した界面密着構造(例えば、剥離フィルムへのシリコーンゲルの密着・食い付き効果など)が形成されて、初期剥離時の剥離強度を主に利用して使用するタイプの光学用透明粘着積層体の場合には効果的である。冷却速度のコントロールは、ブロアー等の吹き付け方式や冷却板に接触させる方式など、特に限定されない。
 また、上述の各製造方法の形態における加熱工程では、剥離フィルム(A)側の加熱温度と剥離フィルム(B)側の加熱温度を、異なって硬化させることにより、粘着性能GaとGbを異ならせるように調整することができる。加熱温度が高い面側の方が粘着性能は、低くなる。剥離フィルム(A)側と剥離フィルム(B)側の加熱温度差は、シリコーン原料の種類と剥離フィルムの種類(熱膨張率や耐熱性)によっても異なるが10~50℃が好ましく、より好ましくは10~30℃である。また、厚み精度の確保の点から、重力に対して下面となる側の加熱温度を高くして、硬化によって硬度を高くしておくことが好ましい。
 さらに、上述の各製造方法の形態における冷却工程では、剥離フィルム(A)側と剥離フィルム(B)側との冷却勾配を異ならせることにより、シリコーンゲルの冷却収縮速度と剥離フィルムの冷却収縮速度のバランスに起因した界面密着構造(例えば、剥離フィルムへのシリコーンゲルの密着・食い付き効果など)が形成されて、初期剥離時の剥離強度を主に利用して使用するタイプの光学用透明粘着積層体の場合には効果的である。冷却速度のコントロールは、ブロアー等の吹き付け方式や冷却板に接触させる方式など、特に限定されない。
3.光学用透明粘着体の用途
 本発明の光学用透明粘着体は、例えば、画像表示デバイスと透明保護パネルの間に、用いられる。被着体(C)と被着体(D)の組み合わせとして、携帯電話の液晶ディスプレイの場合には、アクリル等の樹脂製保護パネルと液晶パネルのガラス面(例えば、図11参照。)、または前記保護パネルとTAC等の樹脂製の偏光シート(例えば、図12参照。)、さらには前記の偏光シート同士への適用(例えば、図13参照。)がある。その他、プラズマディスプレイパネル(PDP)や有機ELタイプのディスプレイの場合には、各発光素子面と前面の保護パネル間の空間を充満するように、本発明の光学用透明粘着体を適用することができる。その他光学系の光路の伝送ロスを軽減するために、光散乱を生じる空間に光接合スペーサーとして、適用することができる。厚みは、用途に応じて設定されるが、例えば上記のディスプレイ用途の場合には、0.1~5.0mm、好ましくは0.2~2.0mmが衝撃緩衝性も付与できて好適である。
 以下、本発明を実施例により具体的に説明するが、本発明は、これらの実施例に特に限定されるものではない。
[実施例1]
 (i)未硬化の液状シリコーンゲル原料を剥離フィルム(A)と剥離フィルム(B)で挟んで厚み設定する成形工程と、(ii)成形後に加熱硬化させる加熱工程と、(iii)硬化シートを冷却する冷却工程を経て、剥離フィルム(A)と光学用透明粘着体と剥離フィルム(B)の順に積層された200mm×200mm×厚み2.0mmの光学用透明粘着積層体を得た。
 未硬化の液状シリコーンゲル原料は、旭化成ワッカーシリコーン(株)社製の二液付加反応型シリコーンゲル(型式:SLJ3363、空気中における全光線透過率90%)をA液(主剤+架橋触媒)/B液(主剤+架橋剤)として55重量部/45重量部で配合したものを用いた。
 剥離フィルム(A)は、基材シートの片面に剥離処理層を形成した構造であって、基材シートとなるポリエチレンテレフタレート樹脂(I)と、剥離処理層となるエチレンビスオレイン酸アミド(日油株式会社製「アルフローAD-281」、以下同様。)を剥離処理層全重量に対して4重量%を混錬分散したポリエチレンテレフタレート樹脂(II)とを、共押出で作製したものを使用した。作製した剥離フィルム(A)の厚さは60μmであり、そのうちの剥離処理層の厚さは30μmである。また、前記ポリエチレンテレフタレート樹脂(I)とポリエチレンテレフタレート樹脂(II)は、ともに東レ(株)製「ルミラー」と同じ樹脂を使用した。
 また、剥離フィルム(B)は、エチレンビスオレイン酸アミドの添加量を3重量%とした以外は、剥離フィルム(A)と同様にして、剥離処理層を形成したものを使用した。
 成形工程の手順としては、平坦なガラス基板上に、剥離フィルム(B)の剥離作用面を上にして敷き、さらに、剥離フィルム(B)の四隅に厚さ2.0mmのスペーサーを置いて成形下型とし、剥離フィルム(B)の中心部に二液混合、脱泡した未硬化の液状シリコーンゲル原料を、気泡を巻き込まないように流し入れ、次いで、気泡を巻き込まないように、剥離フィルム(A)の剥離機能面を前記液状シリコーンゲル原料表面に接触被覆し、次いで、剥離フィルムの上から上押型となる平坦なガラス板を載せて、手で押圧してスペーサー厚みに成形した。
 次に、前記成形工程のガラス板型とともに前記シリコーンゲル原料を熱風式オーブン中で75℃、1時間加熱硬化させ、その後、オーブンから取り出してガラス基板を取り外して、光学用透明粘着積層体を木板上で室温(25℃)にて自然冷却した。
[実施例2]
 未硬化の液状シリコーンゲル原料は、旭化成ワッカーシリコーン(株)社製の二液付加反応型シリコーンゲル(型式:SLJ3363、空気中における全光線透過率90%)をA液(主剤+架橋触媒)/B液(主剤+架橋剤)として52重量部/48重量部で配合したものを用い、剥離フィルム(A)と剥離フィルム(B)のそれぞれのエチレンビスオレイン酸アミドの添加量を、3重量%、2重量%とした以外は、実施例1と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例3]
 (i)未硬化の液状粘弾性材料を剥離フィルム(B)上に供給して、厚み設定する成形工程と、(ii)成形後に剥離フィルム(A)を貼付せずに、開放させて加熱硬化させる加熱工程と、(iii)前記加熱硬化工程で得られた硬化シートを冷却する冷却工程と、(iv)前記加熱工程で開放させて加熱硬化した面に、剥離フィルム(A)を貼付する剥離フィルム貼付工程を経て、剥離フィルム(A)と光学用透明粘着体と剥離フィルム(B)の順に積層された200mm×200mm×厚み2.0mmの光学用透明粘着積層体を得た。
 また、(i)の成形工程での厚み設定は、平坦なガラス基板上に剥離フィルム(B)の剥離作用面を上にして敷き、さらに、剥離フィルム(B)上にアルミニウム製の内寸200mm×200mm×厚み2.0mmの枠型のスペーサーを置き、未硬化シリコーンゲル原料を前記型枠内いっぱいに流し入れてからスキージ板で型枠上面に沿ってスキージして余剰な未硬化シリコーンゲル原料を除去する方法で行った。
 次いで、実施例1と同様条件でスキージ面を空気接触させた状態で、加熱硬化ならびに冷却し、型枠を取り外してから、空気接触で硬化させた面に剥離フィルム(A)を貼付した。
 使用したシリコーンゲルは、実施例1と同じであり、また、剥離フィルム(A)と剥離フィルム(B)とは、同じものを用い、実施例2の剥離フィルム(B)と同じである。
[実施例4]
 実施例3において、剥離フィルム(B)のエチレンビスオレイン酸アミドの添加量を3重量%とした以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例5]
 実施例3において、剥離フィルム(B)のエチレンビスオレイン酸アミドの添加量を4重量%とした以外は、実施例3と同様にしてシート状の光学用透明粘着積層体を得た。
[実施例6]
 実施例4において、空気接触硬化した面に剥離フィルム(A)を貼付する工程を、前記空気接触硬化した面を剥離フィルム(B)の裏面に接触させて剥離フィルム(B)とともに巻き取る巻取り工程で、置き換えたことと、剥離フィルム(B)の裏面にも、エチレンビスオレイン酸アミドの添加量を3重量%として、75μm厚の剥離処理を施して、剥離フィルム(B)の厚みを200μmとしたこと以外は、実施例4と同じ条件で作製して、幅200mmのロール状の光学用透明粘着積層体を得た。
 巻取り工程では、外径φ20mmの塩ビ製の芯材に空気接触面側を密着させて、皺や空気の混入が発生しないように巻き取った。
[実施例7]
 実施例3において、未硬化の液状シリコーンゲル原料として、実施例2の原料を、硬化後に針入度(JIS K2207 10g)が60となるように、二液の配合量を調整したものを使用した以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例8]
 実施例4において、未硬化の液状シリコーンゲル原料を実施例2の原料を用いた以外は、実施例4と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例9]
 実施例3において、未硬化の液状シリコーンゲル原料を実施例2の原料を用いた以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例10]
 実施例4において、未硬化の液状シリコーンゲル原料として、実施例1の原料を、硬化後に針入度(JIS K2207 10g)が150となるように、二液の配合量を調整したものを使用した以外は、実施例4と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例11]
 実施例5において、エチレンビスオレイン酸アミドに替えて、エチレンビスステアリン酸アミド(日油株式会社製「アルフローH50」)とした以外は、実施例5と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例12]
 実施例5において、エチレンビスオレイン酸アミドに替えて、ステアリン酸アミド(日油株式会社製「アルフローS10」)とした以外は、実施例5と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例13]
 実施例5において、エチレンビスオレイン酸アミドに替えて、オレイン酸アミド(日油株式会社製「アルフローE10」)とした以外は、実施例5と同様にして、シート状の光学用透明粘着積層体を得た。
[実施例14]
 実施例2において、加熱条件が上面の剥離フィルム(A)側を70℃、下面の剥離フィルム(A)側を100℃としたこと以外は、実施例2と同様にして、光学用透明粘着積層体を得た。
[実施例15]
 冷却条件を剥離フィルム(A)側を室温で自然冷却し、剥離フィルム(B)側を10℃の水冷冷却板で強制冷却して、剥離フィルム(A)側に対して剥離フィルム(B)側を急冷(冷却速度を大きくした)以外は、実施例2と同様にして、光学用透明粘着積層体を得た。
[実施例16]
 実施例2において、エチレンビスオレイン酸アミドに替えて、エチレンビスベヘン酸アミドとした以外は、実施例2と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスベヘン酸アミドは、ベヘン酸(C2143COOH、東京化成工業株式会社製、純度95%以上)とエチレンジアミン(和光純薬工業株式会社製、純度99%以上)[ベヘン酸:エチレンジアミン=0.67:0.33(モル比)]とを、窒素雰囲気下で溶解、加熱反応させた後、キシレン、アセトン中で精製、ろ過、乾燥したものを用いた。
[実施例17]
 実施例3において、エチレンビスオレイン酸アミドに替えて、エチレンビスベヘン酸アミドとした以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスベヘン酸アミドは、実施例16のものと同じものを使用した。
[実施例18]
 実施例5において、エチレンビスオレイン酸アミドに替えて、エチレンビスベヘン酸アミドとした以外は、実施例5と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスベヘン酸アミドは、実施例16のものと同じものを使用した。
[実施例19]
 実施例10において、エチレンビスオレイン酸アミドに替えて、エチレンビスベヘン酸アミドとした以外は、実施例10と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスベヘン酸アミドは、実施例16のものと同じものを使用した。
[実施例20]
 実施例6において、エチレンビスオレイン酸アミドに替えて、エチレンビスベヘン酸アミドとした以外は、実施例6と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスベヘン酸アミドは、実施例16のものと同じものを使用した。
[実施例21]
 実施例2において、エチレンビスオレイン酸アミドに替えて、エチレンビスリグノセリン酸アミドとした以外は、実施例2と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスリグノセリン酸アミドは、リグノセリン酸とエチレンジアミン[リグノセリン酸:エチレンジアミン=0.71:0.29(モル比)]とを窒素雰囲気下で溶解、加熱反応させた後、キシレン、アセトン中で精製、ろ過、乾燥したものを用いた。
[実施例22]
 実施例3において、エチレンビスオレイン酸アミドに替えて、エチレンビスリグノセリン酸アミドとした以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスリグノセリン酸アミドは、実施例21のものと同じものを使用した。
[実施例23]
 実施例5において、エチレンビスオレイン酸アミドに替えて、エチレンビスリグノセリン酸アミドとした以外は、実施例5と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスリグノセリン酸アミドは、実施例21のものと同じものを使用した。
[実施例24]
 実施例10において、エチレンビスオレイン酸アミドに替えて、エチレンビスリグノセリン酸アミドとした以外は、実施例10と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスリグノセリン酸アミドは、実施例16のものと同じものを使用した。
[実施例25]
 実施例6において、エチレンビスオレイン酸アミドに替えて、エチレンビスリグノセリン酸アミドとした以外は、実施例6と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、エチレンビスリグノセリン酸アミドは、実施例16のものと同じものを使用した。
[実施例26]
 実施例5において、エチレンビスオレイン酸アミドに替えて、ビスアミドの前記一般式(I)におけるRがベヘン酸、Rがステアリン酸からなるエチレンビス脂肪酸アミドとした以外は、実施例5と同様にして、シート状の光学用透明粘着積層体を得た。
 尚、前記エチレンビス脂肪酸アミドは、ベヘン酸とステアリン酸とエチレンジアミン[ベヘン酸:ステアリン酸:エチレンジアミン=0.64:0.03:0.33(モル比)]とを窒素雰囲気下で溶解、加熱反応させた後、キシレン、アセトン中で精製、ろ過、乾燥したものを用いた。
[比較例1]
 剥離フィルム(B)を、パナック社製のアルキッド系の剥離処理された剥離フィルム(型式:T-9、フィルム厚み:0.1mm)に変えた以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
[比較例2]
 剥離フィルム(B)を、パナック社製のアルキッド系の剥離処理された剥離フィルム(型式:T-9、フィルム厚み:0.1mm)に変えた以外は、実施例8と同様にして、シート状の光学用透明粘着積層体を得た。
[比較例3]
 剥離フィルム(B)をユニチカ(株)社製のフロロシリコーン系剥離フィルム(型式:FZ、フィルム厚み:0.1mm)に替えた以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
[比較例4]
 剥離フィルム(B)のエチレンビスオレイン酸アミドの添加量を1重量%として、粘着性能(Ga)と粘着性能(Gb)との粘着力の差を13とした以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
[比較例5]
 剥離フィルム(B)のエチレンビスオレイン酸アミドの添加量を7重量%として、粘着性能(Ga)と粘着性能(Gb)との粘着力を同じとした以外は、実施例3と同様にして、シート状の光学用透明粘着積層体を得た。
[比較例6]
 剥離フィルム(B)のエチレンビスベヘン酸アミドの添加量を1重量%として、粘着性能(Ga)と粘着性能(Gb)との粘着力の差を13とした以外は、実施例17と同様にして、シート状の光学用透明粘着積層体を得た。
[比較例7]
 剥離フィルム(B)のエチレンビスベヘン酸アミドの添加量を7重量%として、粘着性能(Ga)と粘着性能(Gb)との粘着力の差を1とした以外は、実施例17と同様にして、シート状の光学用透明粘着積層体を得た。
[比較例8]
 剥離フィルム(B)のエチレンビスリグノセリン酸アミドの添加量を1重量%として、粘着性能(Ga)と粘着性能(Gb)との粘着力の差を13とした以外は、実施例22と同様にして、シート状の光学用透明粘着積層体を得た。
[比較例9]
 剥離フィルム(B)のエチレンビスリグノセリン酸アミドの添加量を7重量%として、粘着性能(Ga)と粘着性能(Gb)との粘着力の差を1とした以外は、実施例22と同様にして、シート状の光学用透明粘着積層体を得た。
(評価):
 実施例1~26および比較例1~9で作製した光学用透明粘着体及び光学用透明粘着積層体について、次の評価方法で性状、性能を測定した。その評価結果を表1~4に示す。
 尚、表1~4中、bis-A1、bis-A2、bis-A3、bis-A4およびbis-A5の記載は、それぞれエチレンビスオレイン酸アミド、エチレンビスステアリン酸アミド、エチレンビスベヘン酸アミド、エチレンビスリグノセリン酸アミドおよびエチレンビス脂肪酸アミドを表し、mono-A1およびmono-A2は、それぞれステアリン酸アミド、オレイン酸アミドを表す。
(i)接着性(粘着性):
 粘着性能(Ga)と粘着性能(Gb)は、傾斜式ボールタック試験におけるボールナンバー:JIS Z0237「粘着テープ・粘着シート試験方法」の傾斜式ボールタック試験に準拠して、30度の傾斜板に試験片を貼り付け、この試験片表面にボールを転がし、300秒後に測定部内で停止するボールのうち最大のボールナンバーを見出してボールタック性の値とした。
(ii)剥離安定性:
 以下の評価ステップに沿って、順次剥離安定性を評価した。
評価ステップ(I):
 前記光学透明粘着積層体から剥離フィルム(A)を剥離除去して、粘着面(a)を表出させる。このとき、剥離フィルム(B)が剥がれず、剥離フィルム(A)のみ剥離除去できれば○(合格)、僅かでも剥離フィルム(B)が剥離していたら×(不合格)と判定した。
評価ステップ(II):
 前記粘着面(a)に、被着体(C)として厚さ1mmのアクリル板(三菱レイヨン社製 MR-200 L-001)を異物や気泡が混入しないように貼付したのち、被着体(C)を手で固定して剥離フィルム(B)を剥離除去して、粘着面(b)を表出させる。このとき、被着体(C)と粘着面(a)の貼付面が剥離することなく剥離フィルム(B)のみ剥離除去できれば○(合格)、剥離フィルム(B)が剥離し難い場合、または僅かでも被着体(C)と粘着面(a)の貼付面が剥離した場合は、×(不合格)と判定した。
評価ステップ(III):
 前記粘着面(b)に、被着体(D)(前記被着体(C)と同じ仕様のアクリル板)を異物や気泡が混入しないように貼付したのち、1時間室温放置し、被着体(D)を手で固定して被着体(C)を剥離させる。このとき、被着体(D)側が剥離せずに被着体(C)のみ剥離除去できれば○(合格)、被着体(D)側が僅かでも剥離したら×(不合格)と判定した。
 各評価ステップの試験試料は、それぞれ5個とし、全て同じ側に剥離した場合のみ○(合格)とし、1個でも逆側に剥離した場合は×(不合格)と判定した。また、×(不合格)判定が出た時点で評価終了とした。
(iii)剥離強度:
 剥離強度(F1)、剥離強度(F2)、剥離強度(F3)および剥離強度(F4)は、JIS Z0237「粘着テープ・粘着シート試験方法」に準拠した粘着力試験における180度引きはがし粘着力を、90度ピール試験機で引張り速度300mm/minの速さにて測定した。剥離強度(F1)および剥離強度(F2)の評価用の試験試料は、それぞれ図10(a)と図10(b)に示したとおり、被測定面の反対側の面となる剥離フィルムにプライマーを介して未硬化のシリコーンゲル原料を密着させて、実施例1~26および比較例1~9の構成、加熱、冷却条件で硬化させて硬化面の表面温度が23℃となった後、さらに24時間養生させたものとした(評価試料タイプX)。
 また、剥離強度(F3)および剥離強度(F4)の評価は、それぞれ図11(a)と図11(b)に示したとおり、前記評価試料タイプXを作成したのち、被測定面に剥離フィルムを密着させて硬化させた実施例においては、剥離フィルムを剥離除去して、被測定粘着面を形成し(開放条件で硬化させた実施例においてはそのまま)、次いで、被着体(CまたはD)の表面をエタノールで拭いて洗浄し、前記洗浄面に前記評価試料タイプXの被測定粘着面を貼付して評価試料とした(評価試料タイプY)。前記貼付条件は、2kgのローラーで300mm/minの速度で1往復とし、その後23℃で20~40分放置した。
 また、被着体は、厚さ1mmのアクリル板(三菱レイヨン社製 MR-200 L-001)とした。
(iv)その他の性能、性状:
 硬度:JIS K2207「石油アスファルト」に準拠した針入度測定法で求めた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 未硬化シリコーンゲル原料に接触させる剥離フィルムを異ならせて加熱硬化することにより、得られた光学用透明粘着体の粘着特性面の粘着性を、用いる剥離フィルムで調整して、光学用透明粘着体に異なる粘着面を形成する技術において、表1~4の評価結果から明らかなように、剥離処理層に脂肪酸アミド系添加剤を用いた剥離フィルムの適用と、特に、脂肪酸アミド系添加剤としてビスアミドを用いた場合には、剥離処理層全量に対して2~4重量%のビスアミドが添加された剥離処理層を形成することにより、ボールタックNo.5~32の範囲において、粘着性の異なる面を有する光学用透明粘着体が得られ、前記光学用透明粘着体と剥離フィルムとを積層してなる光学用透明粘着積層体は、良好な剥離性と剥離選択性を実現することができ、特にボールNo.15を超える高い粘着性を有する光学用透明粘着体からなる光学用透明粘着積層体であっても、優れた剥離性と剥離選択性を実現できることが検証された。
 また、本発明の光学用透明粘着積層体は、従来の光学用透明粘着体の粘着性の範囲においても、良好な剥離性と剥離選択性が得られることから、幅広い粘着性の調整が可能であることがわかる。
 さらに、実施例5および実施例11~13の結果から、剥離処理層における前記脂肪酸アミド添加剤として、ビスアミドは、飽和脂肪酸ビスアミドまたは不飽和脂肪酸ビスアミドでも同様の効果があり、また、飽和脂肪酸アミドや不飽和脂肪酸アミドといったモノアミドでも、同様の効果が得られることがわかる。
 また、第1の態様である実施例1、2のように、剥離フィルム中のビスアミドの添加条件を異ならせた剥離フィルム(A)と剥離フィルム(B)で挟んで加熱硬化する場合でも、或いは、第2の態様である実施例3~15のように、片面を空気に接触させて他方を剥離フィルム(B)に接触させて硬化させる場合でも、ともに表裏での異粘着性と、良好な剥離性と剥離選択性が実現できることがわかる。
 さらに、実施例6のように、剥離フィルムの両面に所定量のビスアミドを含有する剥離処理を行い、片面を空気に接触させて他方を剥離フィルム(B)に接触させて硬化させた後にロール状に巻いた様態でも同様の効果を発揮することがわかる。
 また、光学用透明粘着体の粘着面(a)の粘着特性Gaと粘着面(b)の粘着特性Gbにおいて、Ga<Gb、かつGaとGbは、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32で、GbとGaのボールナンバー差が2~12、好ましくは2~5とすることにより、一連の剥離、貼付作業において安定した剥離選択性を示した。また、リワーク作業においても、片面(低剥離強度側)が安定して剥離できた。
 さらに、実施例1~15の何れの光学用透明粘着体は、高粘着性であるので、被着体としてアクリル板やガラス板に貼合した後に長時間室温放置しても、剥離や気泡の発生は見られなかった。
 なお、リワーク作業性については、実施例1~26は、被着体(C)、被着体(D)として、それぞれアクリル板、ガラス板としたので、剥離強度F3とF4の関係がF3<F4であり、被着体(C)が選択的に剥離除去される場合のリワーク作業性を評価した例であるが、被着体(C)および被着体(D)の種類(材質、表面状態等)の組合せによって、F3>F4となる(被着体(D)が選択的に剥離除去される)場合においても、リワーク作業性が確保できることは、検証するまでもなく明らかである。
 また、本発明の第11~13の態様(発明)のいずれかの製造方法でも、上述の剥離安定性が実現でき、さらに、実施例14および実施例15のとおり、硬化工程における加熱温度や冷却速度によっても、剥離安定性が調整できることがわかる。
 さらに、実施例16~26のように、脂肪酸基の種類を変えても、実施例1~15と同様の効果が得られることがわかる。特に、光学用透明粘着体の粘着面がボールNo.32の、粘着力が大きい粘着面に対しても、有効であることがわかる。
 一方、光学用透明粘着体の粘着面がボールNo.15を超えると、表4の評価結果の比較例1~3のとおり、従来から軽剥離フィルムとして慣用されているアルキッド系やフロロシリコーン系の剥離フィルムでは、剥離フィルム(A)の剥離除去からリワークに至るまでの剥離作業において、所定の剥離性や剥離選択性が得られなかった。
 また、比較例4~9のとおり、いずれのビスアミドが添加された剥離処理層を有する剥離フィルムを用いた場合であっても、所定の添加量の範囲を外れると、安定した剥離性が得られないことがわかる。特に、比較例5、7および9のように、ビスアミドの添加量が過剰になると、光学用透明粘着体表面にビスアミドが移行して、粘着力を低下させて、粘着性能(Ga)と粘着性能(Gb)との粘着力の差が所望の範囲より小さくなり、その結果、F1とF2が逆転し、剥離フィルム(A)の剥離除去の段階から剥離選択性が極端に悪くなった。
 本発明の光学用透明粘着体は、従来の表裏異粘着性の光学粘着体に比べて、粘着力が大きく、かつ、剥離安定性に優れるので、画像表示装置などの被着体との貼合後も優れた密着性が維持できる。また、貼付の際には、透明粘着体両面と剥離フィルムとの剥離部位選択性が安定して得られ、また、光学部品から透明粘着体を除去して、貼り直しというリワークの際には、透明粘着体両面の剥離部位選択性が安定的に、容易に発現するので、広範囲の光学用部品に適用でき、特にディスプレイなどに好適に用いることができる。
 さらに、リサイクルまで考慮した場合にも、剥離部位選択性の安定化により画像表示素子の回収の効率化にも寄与する。
 1、100、101、102、103、104、105 光学用透明粘着積層体
 2  光学用透明粘着体
 21 粘着面(a)
 22 粘着面(b)
 3  剥離フィルム(A)
 4  剥離フィルム(B)
 31、32、311、41、42、411 剥離処理層
 35、45 フィルム用基材
 5  未硬化の光学用透明粘着体原料
 6  被着体(C)
 61 被着体(D)
 62 保護板
 63、631、632 偏光板
 65 電気式表示素子(液晶素子、有機EL素子、プラズマ発光素子等)
 70 スペーサー(枠型)
 71 原料容器
 73 プライマー
 75 巻き芯
 80 加熱装置(ヒーター)
 81 ドクターブレード(スキージ板)
 82 原料供給装置
 83 冷却装置
 84、841、842、843、844、845 搬送装置(コンベア)
 85 カレンダーロール
 86 シート切断装置
 87 剥離フィルム(A)貼付装置
 91 剥離フィルム(B)供給装置(ロール)
 92 剥離フィルム(A)供給装置(ロール)
 93 剥離フィルム(A)剥離回収装置(ロール)
 94 剥離フィルム(A)貼付用供給装置(ロール)

Claims (15)

  1.  粘着性の異なる粘着面(a)と粘着面(b)とを有し、付加反応型シリコーンゲルから形成される光学用透明粘着体であって、
     粘着面(a)の粘着性能(Ga)と粘着面(b)の粘着性能(Gb)との関係は、Ga<Gb であり、及び粘着性能(Ga)と粘着性能(Gb)は、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32で、ボールナンバー差が2~12であり、並びに、
     粘着面(a)および粘着面(b)は、該付加反応型シリコーンゲルの未硬化原料を、異なる剥離フィルム(A)と剥離フィルム(B)に密着させ、加熱硬化してなり、及び剥離フィルム(A)と剥離フィルム(B)は、該密着面に、脂肪酸アミド系添加剤を含む剥離処理層を有していることを特徴とする光学用透明粘着体。
  2.  粘着性の異なる粘着面(a)と粘着面(b)とを有し、付加反応型シリコーンゲルから形成される光学用透明粘着体であって、
     粘着面(a)の粘着性能(Ga)と粘着面(b)の粘着性能(Gb)との関係は、Ga<Gb であり、及び粘着性能(Ga)と粘着性能(Gb)は、JIS Z0237に準拠した傾斜式ボールタック試験(傾斜角30度)におけるボールナンバーが5~32で、ボールナンバー差が2~12であり、並びに、
     粘着面(a)は、該付加反応型シリコーンゲルの未硬化原料を、空気接触にて加熱硬化してなり、かつ粘着面(b)は、該付加反応型シリコーンゲルの未硬化原料を、少なくとも片面に脂肪酸アミド系添加剤を含む剥離処理層を有する剥離フィルム(B)の剥離処理層に、密着させて加熱硬化してなることを特徴とする光学用透明粘着体。
  3.  前記脂肪酸アミド系添加剤は、飽和脂肪酸ビスアミドまたは不飽和脂肪酸ビスアミドから選ばれる少なくとも一種のビスアミドであることを特徴とする請求項1又は2に記載の光学用透明粘着体。
  4.  前記剥離処理層は、ビスアミドと樹脂成分を主成分とし、剥離処理層全量に対し、ビスアミドの含有量が2~4重量%であることを特徴とする請求項3に記載の光学用透明粘着体。
  5.  前記剥離フィルム(B)と粘着面(b)との剥離強度(F2)は、JIS Z0237に準拠した粘着力試験における90度引きはがし粘着力が0.5N/20mm以下であることを特徴とする請求項1又は2に記載の光学用透明粘着体。
  6.  剥離フィルム(A)と粘着面(a)との剥離強度(F1)と、剥離フィルム(B)と粘着面(b)との剥離強度(F2)と、粘着面(a)と被着体(C)との剥離強度(F3)との関係は、剥離強度(F1)と剥離強度(F2)とのJIS Z0237に準拠した粘着力試験における90度引きはがし粘着力差が0.01~0.5N/20mmであり、剥離強度(F2)と剥離強度(F3)との90度引きはがし粘着力差が0.1N/20mm以上であることを特徴とする請求項1又は2に記載の光学用透明粘着体。
  7.  前記シリコーンゲルの硬度は、SRIS 0101規格のアスカーC硬度が0~30またはJIS K2207に準拠した針入度(25℃)が20~200であることを特徴とする請求項1又は2に記載の光学用透明粘着体。
  8.  前記シリコーンゲルの透過率は、波長が380~780nmにおいて80%以上であることを特徴とする請求項1又は2に記載の光学用透明粘着体。
  9.  請求項1又は2に記載の光学用透明粘着体の粘着面(a)に剥離フィルム(A)を、粘着面(b)に剥離フィルム(B)を積層してなることを特徴とする光学用透明粘着積層体。
  10.  請求項2に記載の光学用透明粘着体の粘着面(b)に剥離フィルム(B)が積層され、粘着面(a)に剥離フィルム(B)の裏面が接触してロール状に積層されてなることを特徴とする光学用透明粘着積層体。
  11.  未硬化の液状の付加反応型シリコーンゲル原料を剥離フィルム(A)と剥離フィルム(B)で挟んで厚み設定する成形工程と、成形後または成形と同時に加熱硬化させる加熱工程と、前記加熱硬化工程で得られた硬化シリコーンゲルを剥離フィルム(A)と剥離フィルム(B)とともに冷却する冷却工程とからなり、及び、剥離フィルム(A)と剥離フィルム(B)は、異なるものであり、かつ、付加反応型シリコーンゲル原料側に、脂肪酸アミド系添加剤を含む剥離処理層を有していることを特徴とする請求項9に記載の光学用透明粘着積層体の製造方法。
  12.  未硬化の液状の付加反応型シリコーンゲル原料を、少なくとも片面に脂肪酸アミド系添加剤を含む剥離処理層を有する剥離フィルム(B)の剥離処理層上に、供給して厚み設定する成形工程と、成形後または成形と同時に前記剥離フィルム(B)と非接触な前記未硬化シリコーンゲル原料表面の少なくとも一部を空気接触させて加熱硬化させる加熱工程と、前記加熱硬化工程で得られた硬化シリコーンゲルを前記剥離フィルム(B)とともに冷却する冷却工程と、前記加熱工程で空気接触させて加熱硬化した面に剥離フィルム(A)を貼付する剥離フィルム貼付工程からなることを特徴とする請求項9に記載の光学用透明粘着積層体の製造方法。
  13.  未硬化の液状の付加反応型シリコーンゲル原料を、少なくとも片面に脂肪酸アミド系添加剤を含む剥離処理層を有する剥離フィルム(B)の剥離処理層上に、供給して厚み設定する成形工程と、成形後または成形と同時に前記剥離フィルム(B)と非接触な前記未硬化シリコーンゲル原料表面の少なくとも一部を空気接触させて加熱硬化させる加熱工程と、前記加熱硬化工程で得られた硬化シリコーンゲルを前記剥離フィルム(B)とともに冷却する冷却工程と、前記加熱工程で空気接触させて硬化して形成された粘着面(a)を前記剥離フィルム(B)の裏面に接触させて剥離フィルム(B)とともに巻き取る巻取り工程からなることを特徴とする請求項10に記載の光学用透明粘着積層体の製造方法。
  14.  前記加熱工程では、前記未硬化シリコーンゲル原料が剥離フィルム(A)または空気と接触する側の加熱温度と剥離フィルム(B)と接触する側の加熱温度が異なることを特徴とする請求項11~13のいずれか1項に記載の光学用透明粘着積層体の製造方法。
  15.  前記冷却工程では、前記硬化シリコーンゲルが剥離フィルム(A)または空気と接触する側と、剥離フィルム(B)と接触する側との冷却速度勾配が異なることを特徴とする請求項11~13のいずれか1項に記載の光学用透明粘着積層体の製造方法。
PCT/JP2010/058277 2009-05-18 2010-05-17 光学用透明粘着体、光学用透明粘着積層体及びその製造方法 WO2010134485A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011514398A JP4923165B2 (ja) 2009-05-18 2010-05-17 光学用透明粘着体、光学用透明粘着積層体及びその製造方法
US13/203,923 US20110318577A1 (en) 2009-05-18 2010-05-17 Optical transparent pressure-sensitive adhesive body, optical transparent pressure-sensitive adhesive laminate, and method for producing the same
EP10777718A EP2433993A4 (en) 2009-05-18 2010-05-17 OPTICALLY TRANSPARENT AND PRESSURE-SENSITIVE ADHESIVE MATERIAL, OPTICALLY TRANSPARENT AND PRESSURE-RESISTANT ADHESIVE LAMINATE, AND METHOD FOR THE PRODUCTION THEREOF
CN201080020984.XA CN102421864B (zh) 2009-05-18 2010-05-17 光学用透明粘合体、光学用透明粘合层叠体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-119540 2009-05-18
JP2009119540 2009-05-18

Publications (1)

Publication Number Publication Date
WO2010134485A1 true WO2010134485A1 (ja) 2010-11-25

Family

ID=43126165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058277 WO2010134485A1 (ja) 2009-05-18 2010-05-17 光学用透明粘着体、光学用透明粘着積層体及びその製造方法

Country Status (6)

Country Link
US (1) US20110318577A1 (ja)
EP (1) EP2433993A4 (ja)
JP (1) JP4923165B2 (ja)
KR (1) KR101654535B1 (ja)
CN (1) CN102421864B (ja)
WO (1) WO2010134485A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035792A1 (ja) * 2011-09-09 2013-03-14 株式会社タイカ 光学用透明粘着シートの製造方法、光学用透明粘着シート及びそれを用いた表示装置
US20130142982A1 (en) * 2011-12-06 2013-06-06 Nitto Denko Corporation Double-sided pressure-sensitive adhesive sheet
JP2013227372A (ja) * 2012-04-24 2013-11-07 Nitto Denko Corp 粘着テープ
JP2014072229A (ja) * 2012-09-27 2014-04-21 Lintec Corp シート貼付装置およびシート貼付方法
JP2018069449A (ja) * 2016-10-24 2018-05-10 信越化学工業株式会社 未加硫シリコーンゴム積層体
WO2019044189A1 (ja) * 2017-08-31 2019-03-07 信越ポリマー株式会社 防湿性自己接着シリコーンゴムシートおよび自己接着シリコーンゴムシート封入体
JP2020111679A (ja) * 2019-01-11 2020-07-27 株式会社巴川製紙所 両面粘着シート
JP2021535850A (ja) * 2018-09-10 2021-12-23 ダウ シリコーンズ コーポレーション 光学シリコーンアセンブリの製造方法、及びそれによって製造された光学シリコーンアセンブリ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014072351A (ja) * 2012-09-28 2014-04-21 Nitto Denko Corp 蛍光体層貼着キット、光半導体素子−蛍光体層貼着体および光半導体装置
KR20140063302A (ko) * 2012-11-16 2014-05-27 삼성디스플레이 주식회사 캐리어 기판 제거 장치, 표시장치 제조 시스템, 및 표시장치 제조 방법
DE102013017627B4 (de) * 2013-10-23 2020-03-12 e.solutions GmbH Polarisierender Mehrschichtenfilm und Verfahren zur Herstellung einer den Film umfassenden Vorrichtung
CN111709921B (zh) * 2020-06-02 2022-11-15 Oppo(重庆)智能科技有限公司 检测方法、检测装置、电子装置及计算机可读存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121521A (ja) * 1997-07-02 1999-01-26 Sekisui Chem Co Ltd 両面粘着テープ
JP2003176462A (ja) 2001-10-03 2003-06-24 Dow Corning Toray Silicone Co Ltd 架橋シリコーン系接着性シートおよびその製造方法
JP2004292493A (ja) * 2003-03-25 2004-10-21 Shin Etsu Polymer Co Ltd 両面粘着材
JP2006130672A (ja) * 2004-11-02 2006-05-25 Nitto Denko Corp 表面保護フィルム又はシート
JP2006290960A (ja) 2005-04-07 2006-10-26 Geltec Co Ltd 光透過性粘着シート及びそれを用いた画像表示装置
JP2006316181A (ja) * 2005-05-13 2006-11-24 Nitto Denko Corp 光学部材用粘着剤層およびその製造方法、粘着剤付光学部材、ならびに画像表示装置
JP2007039510A (ja) * 2005-08-01 2007-02-15 Lintec Corp 貼着部材および光学部品の貼着方法
JP2007297782A (ja) 2006-04-28 2007-11-15 Yuzo Sakamoto 落石防護用アンカー
WO2009063847A1 (ja) * 2007-11-16 2009-05-22 Taica Coporation 光学用透明粘着体、光学用透明粘着積層体及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019447A1 (en) * 1991-05-03 1992-11-12 Myun Ho Kim Adhesively coated, differential release tape for applying adhesive to a substrate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121521A (ja) * 1997-07-02 1999-01-26 Sekisui Chem Co Ltd 両面粘着テープ
JP2003176462A (ja) 2001-10-03 2003-06-24 Dow Corning Toray Silicone Co Ltd 架橋シリコーン系接着性シートおよびその製造方法
JP2004292493A (ja) * 2003-03-25 2004-10-21 Shin Etsu Polymer Co Ltd 両面粘着材
JP2006130672A (ja) * 2004-11-02 2006-05-25 Nitto Denko Corp 表面保護フィルム又はシート
JP2006290960A (ja) 2005-04-07 2006-10-26 Geltec Co Ltd 光透過性粘着シート及びそれを用いた画像表示装置
JP2006316181A (ja) * 2005-05-13 2006-11-24 Nitto Denko Corp 光学部材用粘着剤層およびその製造方法、粘着剤付光学部材、ならびに画像表示装置
JP2007039510A (ja) * 2005-08-01 2007-02-15 Lintec Corp 貼着部材および光学部品の貼着方法
JP2007297782A (ja) 2006-04-28 2007-11-15 Yuzo Sakamoto 落石防護用アンカー
WO2009063847A1 (ja) * 2007-11-16 2009-05-22 Taica Coporation 光学用透明粘着体、光学用透明粘着積層体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2433993A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035792A1 (ja) * 2011-09-09 2013-03-14 株式会社タイカ 光学用透明粘着シートの製造方法、光学用透明粘着シート及びそれを用いた表示装置
JPWO2013035792A1 (ja) * 2011-09-09 2015-03-23 株式会社タイカ 光学用透明粘着シートの製造方法、光学用透明粘着シート及びそれを用いた表示装置
US20130142982A1 (en) * 2011-12-06 2013-06-06 Nitto Denko Corporation Double-sided pressure-sensitive adhesive sheet
JP2013227372A (ja) * 2012-04-24 2013-11-07 Nitto Denko Corp 粘着テープ
JP2014072229A (ja) * 2012-09-27 2014-04-21 Lintec Corp シート貼付装置およびシート貼付方法
JP2018069449A (ja) * 2016-10-24 2018-05-10 信越化学工業株式会社 未加硫シリコーンゴム積層体
WO2019044189A1 (ja) * 2017-08-31 2019-03-07 信越ポリマー株式会社 防湿性自己接着シリコーンゴムシートおよび自己接着シリコーンゴムシート封入体
JPWO2019044189A1 (ja) * 2017-08-31 2020-03-26 信越ポリマー株式会社 防湿性自己接着シリコーンゴムシートおよび自己接着シリコーンゴムシート封入体
JP2021535850A (ja) * 2018-09-10 2021-12-23 ダウ シリコーンズ コーポレーション 光学シリコーンアセンブリの製造方法、及びそれによって製造された光学シリコーンアセンブリ
JP7401522B2 (ja) 2018-09-10 2023-12-19 ダウ シリコーンズ コーポレーション 光学シリコーンアセンブリの製造方法、及びそれによって製造された光学シリコーンアセンブリ
JP2020111679A (ja) * 2019-01-11 2020-07-27 株式会社巴川製紙所 両面粘着シート
JP7264645B2 (ja) 2019-01-11 2023-04-25 株式会社巴川製紙所 両面粘着シート

Also Published As

Publication number Publication date
KR101654535B1 (ko) 2016-09-06
CN102421864B (zh) 2015-04-08
CN102421864A (zh) 2012-04-18
EP2433993A4 (en) 2012-12-05
EP2433993A1 (en) 2012-03-28
JPWO2010134485A1 (ja) 2012-11-12
US20110318577A1 (en) 2011-12-29
JP4923165B2 (ja) 2012-04-25
KR20120014252A (ko) 2012-02-16

Similar Documents

Publication Publication Date Title
JP4923165B2 (ja) 光学用透明粘着体、光学用透明粘着積層体及びその製造方法
JP4500888B2 (ja) 光学用透明粘着体、光学用透明粘着積層体及びその製造方法
JP5107540B2 (ja) 光学部材
TWI613091B (zh) 表面保護膜及貼有此之光學組件
JP5322968B2 (ja) 粘着剤組成物、粘着フィルム、粘着剤組成物の製造方法及び粘着フィルムの製造方法
JP5607565B2 (ja) 粘着剤、及び粘着シート
TW200303911A (en) Double-sided pressure-sensitive adhesive sheet and method for sticking and fixing touch panel to display device
JP5855465B2 (ja) 表面保護フィルム、及びそれが貼着された光学部品、工業製品
JP2009227826A (ja) 両面粘着テープおよび画像表示モジュール
KR20080084347A (ko) 편광판용 폴리에스테르 필름
JP2015199878A (ja) 両面粘着フィルム及びそれを用いた情報表示画面用の保護部材
JP6646083B2 (ja) 粘着シート
JP2011063701A (ja) 粘着剤組成物の製造方法、粘着フィルムの製造方法、粘着剤用原料組成物及び粘着フィルム
KR101707581B1 (ko) 무 기재 흑색 양면 차광 테이프 및 그 제조 방법
KR102041228B1 (ko) 양면 점착 시트
JP7040872B2 (ja) シリコーン吸着フィルム
TW201732004A (zh) 黏著帶
KR100830938B1 (ko) 편광판용 폴리에스테르 이형필름의 제조방법 및 그로부터제조된 편광판용 폴리에스테르 이형필름
JP2017115077A (ja) 両面粘着フィルムの積層構造体
JP2013001816A (ja) 基材レス両面粘着シート
JP2016188265A (ja) 離型フィルム
JP2007023057A (ja) 架橋剤併用型自己粘着性フィルム
JP2020041058A (ja) 両面粘着シートおよび剥離シート付き両面粘着シート
KR102539098B1 (ko) Pol 필름 또는 oca 필름 라미네이팅용 기능성 시트
JP2017160444A (ja) 被着体密着フィルム、及びそれが貼着された光学部品、工業製品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020984.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514398

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010777718

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13203923

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117026659

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE