WO2010134435A1 - 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子 - Google Patents

強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子 Download PDF

Info

Publication number
WO2010134435A1
WO2010134435A1 PCT/JP2010/057833 JP2010057833W WO2010134435A1 WO 2010134435 A1 WO2010134435 A1 WO 2010134435A1 JP 2010057833 W JP2010057833 W JP 2010057833W WO 2010134435 A1 WO2010134435 A1 WO 2010134435A1
Authority
WO
WIPO (PCT)
Prior art keywords
tunnel junction
ferromagnetic
tmr
mgo
feal
Prior art date
Application number
PCT/JP2010/057833
Other languages
English (en)
French (fr)
Inventor
猪俣 浩一郎
ウェンホン ワン
裕章 介川
Original Assignee
独立行政法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人物質・材料研究機構 filed Critical 独立行政法人物質・材料研究機構
Priority to JP2011514378A priority Critical patent/JP5527669B2/ja
Priority to EP10777669.2A priority patent/EP2434556B1/en
Priority to US13/321,956 priority patent/US8866243B2/en
Publication of WO2010134435A1 publication Critical patent/WO2010134435A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Definitions

  • the present invention relates to a ferromagnetic tunnel junction having a structure in which a tunnel barrier layer is sandwiched between two ferromagnetic layers, in particular, a ferromagnetic material having a spin valve type in which one magnetization of the ferromagnetic layer is fixed by an antiferromagnetic layer.
  • the present invention relates to a tunnel junction body and a magnetoresistive effect element using the same.
  • GMR giant magnetoresistive
  • MTJ ferromagnetic tunnel junction
  • MRAM non-volatile random access magnetic memory
  • GMR The principle of GMR is mainly spin-dependent scattering at the interface between the ferromagnetic layer and the nonmagnetic layer, but there is also contribution of spin-dependent scattering (bulk scattering) in the ferromagnetic material. Therefore, in general, in the case of a multilayer film, CPP-GMR, which is expected to contribute to bulk scattering, is larger than CIP-GMR.
  • CPP-GMR which is expected to contribute to bulk scattering
  • CIP-GMR As such a GMR element, a spin valve type in which an antiferromagnetic layer is brought close to one of the ferromagnetic layers to fix the spin of the ferromagnetic layer is practically used.
  • the MTJ element has a so-called tunnel magnetoresistance (TMR) effect in which the magnitudes of tunnel currents in the direction perpendicular to the film surface differ from each other by controlling the magnetizations of the two ferromagnetic layers in parallel or antiparallel to each other by an external magnetic field. Obtained at room temperature.
  • TMR tunnel magnetoresistance
  • the TMR at the tunnel junction depends on the spin polarizability P at the interface between the ferromagnet and the insulator to be used.
  • the spin polarizabilities of the two ferromagnets are P 1 and P 2 , respectively, generally, the Juliere equation (1 ) Is known to be given.
  • TMR 2P 1 P 2 / (1-P 1 P 2 ) (1)
  • the spin polarizability P of the ferromagnetic material takes a value of 0 ⁇ P ⁇ 1.
  • a spin valve type in which an antiferromagnetic layer is brought close to one of the ferromagnetic layers and the spin of the ferromagnetic layer is fixed is practically used.
  • Full-Heusler alloy has a disordered structure.
  • B2 and A2 body-centered cubic lattice
  • L2 requires heating in order to obtain a 1 and B2 structure, although depending on the composition in order to obtain a B2 structure usually either the substrate is heated to 200 ° C. or higher, or at room temperature at 300 ° C. or higher after the film formation It is necessary to heat-treat at the temperature. Further, in order to obtain the L2 1 structure, a higher temperature is required.
  • amorphous Al oxide films AlOx
  • (001) -oriented MgO films have been conventionally used.
  • AlOx amorphous Al oxide films
  • 001 -oriented MgO films
  • an Al metal film is formed by sputtering or the like and then oxidized by a method such as plasma oxidation, and its structure is amorphous (Non-Patent Document 1).
  • an AlOx barrier since the interface roughness between the ferromagnetic layer and the barrier layer is generally large and the variation of the TMR value is large and it is difficult to obtain a large TMR, an MgO barrier is often used in recent years.
  • MgO barrier For the MgO barrier, an MgO target is directly sputtered, or an MgO shot is deposited using an electron beam.
  • MgO target is directly sputtered, or an MgO shot is deposited using an electron beam.
  • electron beam evaporation is used.
  • Co-based half-metal full-Heusler alloys used for MTJ elements as magnetic layers include Co 2 MnSi, Co 2 MnGe, Co 2 Cr 0.6 Fe 0.4 Al and Co 2 FeAl 0.5 Si 0. There are 5 etc.
  • the MTJ element using Co 2 FeAl 0.5 Si 0.5 has the highest TMR at room temperature, and MgO produced by electron beam evaporation is used for the barrier.
  • the room temperature TMR of the valve-type MTJ element is 220% (Non-patent Document 2).
  • a method using a coherent tunnel effect is known.
  • This is an epitaxial tunnel junction in which an MgO barrier is used, its crystal is (001) -oriented, and upper and lower ferromagnetic layers through the barrier are also (001) -oriented.
  • a coherent tunnel effect in which ⁇ 1 band electrons having a large tunnel transmittance mainly contribute to the tunnel occurs.
  • ferromagnetic materials for which TMR is greatly enhanced by the coherent tunnel effect include Fe, Co and Fe—Co alloys, and CoFeB alloys having a bcc crystal structure.
  • Non-Patent Document 4 Co-based full-Heusler alloy such as Co 2 MnSi
  • Non-Patent Document 5 Co-based full Heusler alloy
  • a Co-based full Heusler alloy is used as a ferromagnetic layer material, generally, there is a large lattice misfit with MgO.
  • MTJ elements are currently in practical use in hard disk read heads and non-volatile random access magnetic memories (MRAM).
  • MRAM non-volatile random access magnetic memories
  • MTJ elements are arranged in a matrix, and a magnetic field is applied by supplying a current to a separately provided wiring, thereby controlling two ferromagnetic layers constituting each MTJ element in parallel and antiparallel to each other. , 0 is recorded. Reading is performed using the TMR effect.
  • spin injection magnetization reversal in which the magnetization of an MTJ element is reversed by injection of a spin-polarized current, has become important, and reduction of the critical current density necessary for magnetization reversal has become an issue. .
  • the critical current density decreases as the tunnel spin polarizability of the MTJ element increases, and it is desirable to use an MTJ element having a large TMR. Further, since the critical current density is proportional to the damping constant ⁇ of the ferromagnetic material, a ferromagnetic material having a small ⁇ value is desirable. That is, an MTJ element that uses a ferromagnetic material having a small ⁇ for the electrode and provides a large TMR is suitable for MRAM. On the other hand, as a future spintronic device, a technique for spin injection into a semiconductor through a barrier is gaining importance in the field of spin MOSFETs and spin transistors.
  • Co-based full Heusler alloys are known to have a smaller ⁇ than ordinary Fe—Co alloys (Non-Patent Document 6), and therefore, Co-based full Heusler alloys that produce large TMR at room temperature for spintronic devices. Development is desired. Among them, Co 2 FeAl has the smallest ⁇ (Non-patent Document 6), so it is desirable to use it, but since this alloy is not a half metal (Non-Patent Document 7), a large TMR could not be expected.
  • an object of the present invention is to achieve a large TMR, particularly a TMR exceeding 100% at room temperature, using Co 2 FeAl having the smallest ⁇ , although it is not a half metal.
  • the ferromagnetic tunnel junction of the invention 1 is characterized by using a MgO barrier and using a Co 2 FeAl full-Heusler alloy in any of the ferromagnetic layers.
  • Invention 2 is characterized in that, in the ferromagnetic tunnel junction of Invention 1, Co 2 FeAl has a B2 structure in particular.
  • Invention 3 is characterized in that in the ferromagnetic tunnel junction of Invention 1 or 2, one of the ferromagnetic layers is formed on a Cr buffer layer.
  • the magnetoresistive element of the invention 4 is characterized in that the ferromagnetic tunnel junction is the ferromagnetic tunnel junction of any of the inventions 1 to 3.
  • Co 2 FeAl exhibits a very large TMR in combination with an MgO barrier.
  • Co 2 FeAl is not a half metal as described above, and in the case of A2, B2, and L2 1 structures, the spin polarizabilities are about 0.5, 0.6, and 0.8, respectively.
  • TMR was not expected.
  • the present inventors have already produced a tunnel junction using an amorphous AlOx barrier and Co 2 FeAl, and have already reported that the maximum TMR is only 75% at low temperature and only about 55% at room temperature ( Patent Document 1, Non-Patent Document 8).
  • an MTJ element using a Co 2 FeAl and MgO barrier has not been produced.
  • the present tunnel junction can be manufactured using only a sputtering apparatus, and a conventional sputtering apparatus can be used, and can be applied to HDD read heads and MRAM.
  • the HDD comprises a recording and reading magnetic head, a recording medium, and the like, but the tunnel junction of the present invention can be used for a reading magnetic head.
  • the MRAM has a structure in which tunnel junctions stacked on a MOSFET are arranged in a matrix. The tunnel junction of the present invention can be used for this tunnel junction.
  • the tunnel junction of the present invention using Co 2 FeAl and MgO barrier requires a spin resonance tunnel device composed of a ferromagnetic double tunnel junction expected in the future, and efficient spin injection into the semiconductor. It can be used in many spintronic devices such as a ferromagnetic tunnel element used in a spin logic device such as a spin MOSFET.
  • perpendicular magnetization can be realized by using a thin film of Co 2 FeAl film and Pt film or a CoPt film or FePt film, and a ferromagnetic tunnel junction using MgO as a barrier can be realized by using such a laminated film.
  • a ferromagnetic tunnel junction having perpendicular magnetization and expressing a huge TMR can be manufactured.
  • Such a tunnel junction element can be used for a gigabit-class large-capacity MRAM.
  • the Co 2 FeAl thin film of the present invention produced using the sputtering MgO (001) substrate to a Cr as the buffer is a diagram showing an X-ray diffraction image of when a heat treatment at 480 ° C..
  • (A) is a ⁇ -2 ⁇ diffraction image
  • (b) is an in-plane (222) scan.
  • TMR tunnel magnetoresistance
  • the inset shows the TMR curves for heat treatment temperatures of 300 ° C and 450 ° C. It is a figure which shows the temperature change of TMR of the tunnel junction body of this invention.
  • the present inventors have found that a very large TMR can be obtained by using a magnetron sputtering apparatus and using MgO as a barrier and a Co 2 FeAl full-Heusler alloy as a ferromagnetic layer. Based on this knowledge, the present invention has been completed.
  • the structure of Co 2 FeAl can provide a large TMR with any of A2, B2, and L21 1 , but B2 is preferable because the largest TMR can be obtained.
  • any substrate can be used as long as it can produce a (001) -oriented epitaxial tunnel junction.
  • nonmagnetic spinels such as MgO and MgAl 2 O 4 , and single crystals such as Si and GaAs are preferably used.
  • thermally oxidized Si can be used as the substrate.
  • a buffer layer is formed on these substrates as necessary.
  • a layer having good lattice matching with Co 2 FeAl is desirable, and MgO, MgAl 2 O 4 , Cr, Ag, TiN, or the like can be used.
  • Cr is preferable because it can easily form a B2 structure of Co 2 FeAl and can easily form a flat Co 2 FeAl film having high (001) orientation and good crystallinity. Since Ag alone is difficult to obtain a flat film on the substrate, when Ag is used, it is preferable to form Cr first and then form Ag on the film, because a flat film can be formed.
  • an MgO target is sputtered on the deposition conditions under which Ar gas pressure, sputtering power, etc. are controlled, or (001) -oriented MgO film is used by electron beam evaporation. Is grown, an epitaxial tunnel junction having a (001) -oriented Co 2 FeAl film thereon can be produced.
  • a lower magnetic layer, a barrier layer, and an upper magnetic layer are sequentially formed as follows.
  • a buffer layer for reducing the roughness of the lower magnetic layer and promoting epitaxial growth is prepared.
  • Cr, MgO or the like is desirable.
  • a full Heusler alloy Co 2 FeAl (hereinafter also referred to as CFA) thin film to be a lower magnetic layer is formed thereon at room temperature.
  • CFA Heusler alloy Co 2 FeAl
  • L2 1 structure is obtained at 600 ° C. or higher.
  • the thickness of the lower magnetic layer may be a ferromagnetic layer that is epitaxially grown and has low roughness, and is preferably about 10 to 80 nm, for example. Since L2 1 structure surface roughness becomes larger than the heat treatment temperature obtained, to obtain a huge TMR is less than B2 structure of the surface roughness is desired.
  • heat treatment is not performed or when heat treatment is performed at 300 ° C. or lower, an A2 structure or a structure in which B2 and A2 coexist is obtained depending on the substrate. In this case, although the TMR is smaller than that of the B2 structure, a TMR of 100% or more can be obtained at room temperature, and the heat treatment temperature can be lowered, so that the A2 structure is also effective depending on the application.
  • an MgO layer is formed as a barrier layer on the lower magnetic layer.
  • an MgO target can be sputtered, or an MgO shot can be deposited by electron beam evaporation.
  • the film thickness of the barrier layer the minimum film thickness may be obtained by obtaining crystalline epitaxially grown MgO, and the maximum film thickness is determined by the required junction resistance. Usually, for example, about 0.5 to 4 nm is preferable.
  • the tunnel barrier layer is formed on the tunnel barrier layer to obtain a (001) -oriented thin film as the upper magnetic layer.
  • an (001) -oriented epitaxial tunnel junction can be produced as a whole.
  • the film thickness of the upper magnetic layer is a film thickness set by a ferromagnetic tunnel junction that has been proposed so far, which consists of a spin valve type in which one magnetization of the ferromagnetic layer is fixed by an antiferromagnetic layer For example, about 3 to 20 nm is preferable.
  • a normal thin film forming method such as a vapor deposition method, an MBE method, or a laser ablation method can be used in addition to the sputtering method. Examples of the present invention will be described below.
  • a Cr (40) / Co 2 FeAl (30) laminated film was produced using a Cr film as a buffer layer on an MgO (001) substrate.
  • the numbers in parentheses are the respective film thicknesses (unit: nm). (The same applies hereinafter).
  • heat treatment was performed at a temperature of 480 ° C. for 1 hour. X-ray diffraction revealed that the CFA in this state has a B2 structure.
  • an MgO target was sputtered to form an MgO barrier having a thickness of 1.8 nm.
  • CoFe (2) / IrMn (12) / Ru (7) laminated film was produced at room temperature to produce a spin valve type tunnel junction.
  • IrMn is an antiferromagnetic material and plays a role of fixing (pinning) the spin of the upper CoFe ferromagnetic layer.
  • Ru is a protective film and also serves as a mask in microfabrication.
  • the laminated film was finely processed to a size of 10 ⁇ m ⁇ 10 ⁇ m using photolithography and ion milling.
  • the entire laminated film was heat-treated at various temperatures (T a ) while applying a magnetic field of 5 kOe, thereby imparting unidirectional anisotropy to the upper magnetic CoFe layer.
  • Table 1 shows the measurement results of characteristics such as temperature change of the magnetic resistance by applying an external magnetic field to the joined body.
  • FIG. 1 shows a ⁇ -2 ⁇ X-ray diffraction image (a) when an MgO (001) substrate / Cr (40) / CFA (30) laminated film corresponding to the lower electrode of the tunnel junction is heat-treated at 480 ° C. for 1 hour. And (222) ⁇ scan image (b) in the film plane.
  • (a) only (002) and (004) diffraction lines corresponding to the B2 structure of CFA are observed in addition to MgO (002) and Cr (002) diffraction lines, and in (b) (222) From this, it can be seen that CFA is epitaxially grown with a B2 structure.
  • FIG. 2 shows the dependency of TMR on the heat treatment temperature (T a ) in the magnetic field at room temperature of the tunnel junction.
  • T a 300 ° C.
  • This value exceeds the maximum value of 220% obtained so far in MTJ using a Co-based Heusler alloy.
  • A is the result at room temperature and
  • b is the result at 10K, and the magnetizations of the upper and lower magnetic layers are shown with respect to each other in parallel (P) and antiparallel (AP).
  • P parallel
  • AP antiparallel
  • FIG. 6 shows the bias voltage dependence of TMR at room temperature.
  • MgO buffer was used instead of Cr buffer
  • a ferromagnetic tunnel junction made of IrMn (10) / Ru (7) was fabricated and TMR characteristics were evaluated. As a result, a maximum TMR of 150% was obtained at room temperature, although it was smaller than when the Cr buffer layer was used.
  • An MgO film having a thickness of 10 nm is formed on an oxidized Si substrate, and then using the same method as in Example 1, CFA (30) / MgO (1.8) / CoFe (5) / IrMn (12) / Ru A ferromagnetic tunnel junction comprising (7) was produced.
  • TMR TMR
  • the reason why such a large TMR was obtained even when using a thermally oxidized Si substrate that is not a single crystal substrate seems to be that the MgO film was (001) oriented and the coherent tunnel effect worked more effectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Nanotechnology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Thin Magnetic Films (AREA)

Abstract

 本強磁性トンネル接合体は、MgOバリアを用い、強磁性層のいずれかにCoFeAlフルホイスラー合金を用いることを特徴とする手段を採用した。また、強磁性トンネル接合対において、CoFeAlが特にB2構造からなり、さらに前記強磁性層の一つがCrバッファー層の上に形成されていることを特徴とし、そして、磁気抵抗効果素子は、その強磁性トンネル接合体が上記のいずれかの強磁性トンネル接合体であることを特徴とする手段を採用した。これにより、ハーフメタルではないものの、αの最も小さいCoFeAlを用いて大きなTMR、特に室温で100%を超えるようなTMRを達成することができる。

Description

強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
 本発明は、トンネルバリア層を二つの強磁性層で挟んだ構造からなる強磁性トンネル接合体、特に前記強磁性層の一方の磁化が反強磁性層によって固着されたスピンバルブ型からなる強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子に関する。
 近年、強磁性層/非磁性金属層の多層膜からなる巨大磁気抵抗(GMR)効果素子、および強磁性層/絶縁体層/強磁性層からなる強磁性トンネル接合(MTJ)素子が新しい磁界センサーや不揮発性ランダムアクセス磁気メモリ(MRAM)素子として注目されている。GMRには膜面内に電流を流すタイプのCIP-GMRと、膜面垂直方向に電流を流すタイプのCPP-GMRが知られている。GMRの原理は主として強磁性層と非磁性層との界面におけるスピン依存散乱にあるが、強磁性体中でのスピン依存散乱(バルク散乱)の寄与もある。そのため一般に多層膜の場合、バルク散乱の寄与が期待されるCPP-GMRの方がCIP-GMRより大きい。このようなGMR素子は、強磁性層の一方に反強磁性層を近接させてその強磁性層のスピンを固着させるスピンバルブ型が実用に用いられる。
 一方、MTJ素子では外部磁場によって二つの強磁性層の磁化を互いに平行あるいは反平行に制御することにより、膜面垂直方向のトンネル電流の大きさが互いに異なる、いわゆるトンネル磁気抵抗(TMR)効果が室温で得られる。このトンネル接合におけるTMRは用いる強磁性体と絶縁体との界面におけるスピン分極率Pに依存し、二つの強磁性体のスピン分極率をそれぞれP、Pとすると、一般にJulliereの式(1)で与えられることが知られている。
       TMR=2P/(1-P)      (1)
ここで強磁性体のスピン分極率Pは0<P≦1の値をとる。MTJ素子においても、強磁性層の一方に反強磁性層を近接させ、その強磁性層のスピンを固着させるスピンバルブ型が実用に用いられる。
 (1)式からわかるようにスピン分極率P=1の強磁性体を用いると無限に大きなTMRが期待される。P=1の磁性体はハーフメタルと呼ばれ、これまでバンド計算によって、Fe、CrO、(La-Sr)MnO、ThMnO7、SrFeMoOなどの酸化物、NiMnSbなどのハーフホイスラー合金、CoMnGe、CoMnSi、CoCrAlなどのXYZ型の組成を有し、L2構造をもつフルホイスラーがハーフメタルとして知られている。中でもX=CoからなるCo基フルホイスラー合金はキュリー点が高いことから、応用上最も期待されている。フルホイスラー合金はL2規則構造のほかにB2およびA2(体心立方格子)構造の不規則構造を有する。一般にB2はL2同様ハーフメタルになるが、A2ではハーフメタル性が破壊されることが知られている。L2およびB2構造を得るために加熱が必要であり、B2構造を得るためには組成にも依存するが通常、基板を200℃以上に加熱するか、あるいは室温で成膜後300℃以上の温度で熱処理することが必要である。また、L2構造を得るためにはそれよりも高い温度を必要とする。
 MTJ素子に使用されるバリア材料としては従来、アモルファス構造のAl酸化膜(AlOx)および(001)面配向したMgO膜が用いられている。前者の場合、Al金属をスパッタ法などで成膜し、その後プラズマ酸化などの方法で酸化して作製され、その構造はアモルファスであることがよく知られている(非特許文献1)。AlOxバリアの場合、強磁性層とバリア層との界面ラフネスが一般に大きくTMR値のバラツキが大きいこと、また、大きなTMRを得にくいことから、近年はMgOバリアが多く用いられる。MgOバリアはMgOターゲットを直接スパッタするか、あるいは電子ビームを用いてMgOショットを蒸着する方法などが用いられている。しかし、フルホイスラー合金を用いたMTJの場合、一般に、スパッタ法では高品質のMgOバリアが得られず、電子ビーム蒸着法が用いられている。
 従来、磁性層としてMTJ素子に用いられたCo基ハーフメタルフルホイスラー合金には、CoMnSi、CoMnGe、CoCr0.6Fe0.4AlおよびCoFeAl0.5Si0.5などがある。このうち室温で最大のTMRが得られているのはCoFeAl0.5Si0.5を用いたMTJ素子であり、バリアには電子ビーム蒸着法で作製されたMgOが使用され、そのスピンバルブ型MTJ素子の室温TMRは220%である(非特許文献2)。
 ハーフメタルを用いる以外に大きなTMRを得るもう一つの方法として、コヒーレントトンネル効果を利用する方法が知られている。これはMgOバリアを用い、その結晶を(001)配向させ、バリアを介した上下の強磁性層も(001)配向したエピタキシャルトンネル接合である。このような場合、トンネル透過率の大きいΔバンド電子が主としてトンネルに寄与するコヒーレントトンネル効果が生じる。この場合、強磁性層のフェルミ準位において、Δバンドが一方のスピンバンド(たとえば多数スピンバンド)に存在し、他方のスピンバンド(たとえば少数スピンバンド)には存在しないとき、コヒーレントトンネル効果によってTMRが大きくエンハンスすることが知られている(非特許文献3)。これまで、コヒーレントトンネル効果によってTMRが大きくエンハンスすることが報告された強磁性体として、bcc結晶構造のFe、CoおよびFe-Co合金、およびCoFeB合金がある。
 コヒーレントトンネル効果はCo基フルホイスラー合金、たとえばCoMnSiに対しても有効であることが理論的に指摘されており(非特許文献4)、実際、CoMnSiを用いたMTJ素子において、それが観測されている(非特許文献5)。しかし、Co基フルホイスラー合金を強磁性層材料に用いた場合、一般にMgOとの格子ミスフィットが大きく、そのため、特にスパッタ法を用いてMgOバリアを作製した場合、MgOバリア内および強磁性層とMgO層との界面において多くの転位などの欠陥が生じ高品質のトンネルバリアが得られず、そのようなMgOバリア上のCo基フルホイスラー合金の構造は界面において不規則構造になりやすい。このような場合、界面での不規則構造の生成により格子の周期性が破れ、膜面垂直方向のトンネル電子の運動量が保存されないため、理論で指摘されているようなコヒーレントトンネル効果によるTMRのエンハンスは観測されない。すなわち、全てのCo基フルホイスラー合金において、コヒーレントトンネル効果によるTMRのエンハンスが観測されるわけではない。
 MTJ素子は現在、ハードデイスク用読出しヘッドや不揮発性ランダムアクセス磁気メモリ(MRAM)に実用化されている。MRAMではMTJ素子をマトリックス状に配置し、別に設けた配線に電流を流して磁界を印加することで、各MTJ素子を構成する二つの強磁性層を互いに平行、反平行に制御することにより1、0を記録させる。読み出しはTMR効果を利用して行う。また、最近、MTJ素子の磁化をスピン偏極電流の注入によって反転させる、いわゆるスピン注入磁化反転が重要になってきており、磁化反転のために必要な臨界電流密度の低減が課題となっている。この臨界電流密度はMTJ素子のトンネルスピン分極率が大きいほど小さく、TMRの大きいMTJ素子を用いることが望ましい。また、臨界電流密度は強磁性体のダンピング定数αに比例するため、α値の小さい強磁性体が望ましい。すなわち、αの小さい強磁性体を電極に用い、大きなTMRをもたらすMTJ素子がMRAM用として適している。一方、将来のスピントロニクスデバイスとして、バリアを介して半導体へスピン注入する技術がスピンMOSFETやスピントランジスタの分野で重要性を増している。これらの分野では半導体に高効率でスピンを注入する必要があり、そのためには大きなスピン偏極電流と、スピン注入磁化反転のための小さな臨界電流密度をもたらす強磁性体が熱望されている。
 Co基フルホイスラー合金は通常のFe-Co合金などに比べαが小さいことが知られており(非特許文献6)、従ってスピントロニクスデバイスに対して、室温で大きなTMRをもたらすCo基フルホイスラー合金の開発が望まれている。中でもCoFeAlはαが最も小さい(非特許文献6)ためそれを用いることが望ましいが、この合金はハーフメタルでないため(非特許文献7)、大きなTMRが期待できなかった。
特許第4061590号公報
J. S. Moodera et al., Phys. Rev. Lett. 74, 3273 (1995). N. Tezuka et al., Jpn. J. Appl. Phys. 46, L454 (2007) W. H. Butler et al., Phys. Rev. B 63, 054416 (2001). Miura et al., J. Phys.: Condens. Matter 19, 365228 (2007). Y. Sakuraba et al., Appl. Phys. Lett. 88, 192508 (2006). 水上成美ほか,まぐね Vol. 4, No.5, 229 (2009) K. Inomata et al., J. Phys.D:Appl. Phys, 39, 816 (2006). S. Ishida et al., Mater. Trans. 45, 1065 (2004). C. Tiusan et al., J. Phys.: Condens. Matter 18, 941 (2006).
 本発明は、このような実情に鑑み、ハーフメタルではないものの、αの最も小さいCoFeAlを用いて大きなTMR、特に室温で100%を超えるようなTMRを達成することを課題とした。
 発明1の強磁性トンネル接合体は、MgOバリアを用い、強磁性層のいずれかにCoFeAlフルホイスラー合金を用いることを特徴とする。
 発明2は、発明1の強磁性トンネル接合体において、CoFeAlが特にB2構造からなることを特徴とする。
 発明3は、発明1または2の強磁性トンネル接合体において、前記強磁性層の一つがCrバッファー層の上に形成されていることを特徴とする。
 発明4の磁気抵抗効果素子は、その強磁性トンネル接合体が発明1~3のいずれかの強磁性トンネル接合体であることを特徴とする。
 本発明者らは種々のCo基フルホイスラー合金材料を用いたMTJ素子の研究を行っている過程で、MgOバリアとの組み合わせにおいてCoFeAlが非常に大きなTMRを発現することを見出した。従来、CoFeAlは上述のようにハーフメタルではなく、A2、B2、およびL2構造の場合、そのスピン分極率はそれぞれ0.5、0.6および0.8程度であり、従って、巨大なTMRは期待できないと考えられていた。実際、本発明者らはアモルファスAlOxバリアとCoFeAlを用いたトンネル接合体を作製し、その最大TMRは低温で75%、室温で55%程度しか得られないことをすでに報告している(特許文献1、非特許文献8)。しかし、CoFeAlとMgOバリアを用いたMTJ素子は作製されていなかった。
 今回、CoFeAlとMgOバリアを用いたトンネル接合体を作製したところ、驚くことに、室温で300%を超えるような巨大なTMRを見出し、これを利用して本発明に至ったものである。このような巨大なTMRが得られた原因は今のところ不明であり今後詳細な研究を必要とするが、CoFeAlがCo基フルホイスラー合金の中では格子定数が0.573nmと大きい方の材料であり、そのためCrやMgOとの格子ミスフィットが小さく、バッファー層およびバリアとの界面での格子整合性のよい、高品質のエピタキシャルトンネル接合が得られたため、コヒーレントトンネル効果が有効に働いたと考えられる。
 本発明では、MgOバリア層を電子ビーム蒸着だけでなく、スパッタ法で形成しても巨大TMRが得られる。これは従来、Co基ホイスラー合金を用いて得られなかった新しい発見である。したがって、本トンネル接合体はスパッタ装置のみを用いて作製でき、従来のスパッタ装置を使用することが可能であり、HDD用読出しヘッドやMRAMに応用できる。HDDは記録用および読出し用磁気ヘッドおよび記録媒体などからなるが、本発明のトンネル接合体は読出し用磁気ヘッドに用いることができる。MRAMはMOSFET上にスタックしたトンネル接合体をマトリックス状に配置した構造からなるが、このトンネル接合体に本発明のトンネル接合体を用いることができる。
 また、CoFeAlとMgOバリアを用いた本発明のトンネル接合体は、将来期待される強磁性2重トンネル接合体からなるスピン共鳴トンネル素子、半導体への効率的なスピン注入が必要とされるスピンMOSFETなどのスピンロジックデバイスに用いられる強磁性トンネル素子など、多くのスピントロニクスデバイスに利用することができる。また、薄いCoFeAl膜とPt膜あるいはCoPt膜やFePt膜との積層膜を用いれば垂直磁化を実現することができ、そのような積層膜を用いてMgOをバリアとする強磁性トンネル接合を作製することで、垂直磁化をもち、かつ巨大なTMRを発現する強磁性トンネル接合体を作製できる。このようなトンネル接合素子はギガビット級の大容量MRAMに利用することができる。
本発明のCoFeAl薄膜を、CrをバッファーとするMgO(001)基板上にスパッタ法を用いて作製し、480℃で熱処理したときのX線回折像を示す図である。(a)はθ-2θ回折像、(b)は膜面内(222)スキャンである。 本発明のトンネル接合体のトンネル磁気抵抗(TMR)の磁場中熱処理温度依存性を示す図である。挿図は熱処理温度300℃および450℃の場合のTMR曲線を示す。 本発明のトンネル接合体のTMRの温度変化を示す図である。 本発明のトンネル接合体の室温におけるTMRのバイアス電圧依存性を示す図である。 本発明のトンネル接合体の室温(a)および10K(b)における微分コンダクタンスのバイアス電圧依存性を示す図である。 本発明のトンネル接合体の室温(a)および10K(b)における抵抗のバイアス電圧依存性を示す図である。 本発明の、CoFeAl薄膜を上下電極に用いたトンネル接合体の室温における微分コンダクタンスのバイアス電圧依存性を示す図である。
 本発明者らはマグネトロンスパッタ装置を用いて、バリアとしてMgOを、強磁性層としてCoFeAlフルホイスラー合金を用いると、非常に大きなTMRが得られることを見出した。この知見を基に、本発明を完成した。
 CoFeAlの構造はA2、B2、L2のいずれでも大きなTMRが得られるが、B2の場合最も大きなTMRが得られるので好ましい。
 用いる基板としては、(001)配向したエピタキシャルトンネル接合を作製できるものであれば良く、例えばMgO、MgAlのような非磁性スピネル、Si、GaAsなどの単結晶を用いるのが好適である。また、基板として熱酸化Siを用いることもできる。これらの基板の上に必要に応じて、バッファー層を形成する。バッファー層としては、CoFeAlとの格子整合のよいものが望ましく、MgO、MgAl、Cr、Ag、TiNなどを用いることができる。中でもCrの場合、CoFeAlのB2構造ができやすく、また、(001)配向性が高く結晶性の良い平坦なCoFeAl膜ができ易いため好ましい。Agは単独では上記基板上に平坦な膜を得にくいので、Agを用いる場合には、まずCrを成膜し、その上にAgを成膜するとより平坦な膜ができるので好ましい。熱酸化Si基板を用いる場合には、その上にArガス圧やスパッタパワーなどを制御した成膜条件でMgOターゲットをスパッタするか、または電子ビーム蒸着法を用いて、(001)配向したMgO膜を成長させておくことで、その上にCoFeAl膜が(001)配向したエピタキシャルトンネル接合を作製できる。
 下部磁性層と、バリア層と上部磁性層を以下のようにして順次作製する。以下、反強磁性得層を上部に設けたトップピンの場合を示す。
 まず、下部磁性層のラフネスを小さくし、エピタキシャル成長を促進するためのバッファー層を作製する。バッファー層としてはCr,MgOなどが望ましい。次にこの上に下部磁性層となるフルホイスラー合金CoFeAl(以下、CFAとも称する)薄膜を室温で作製する。その後、400~650℃程度の温度でその場熱処理することでB2あるいはL2構造のCFA膜を得ることができる。この場合、およそ600℃以下ではB2が、600℃以上の温度でL2構造が得られる。下部磁性層の膜厚は、エピタキシャル成長し、かつラフネスの小さい強磁性層であればよく、例えば10~80nm程度が好ましい。
 L2構造が得られる熱処理温度では表面ラフネスがより大きくなるので、巨大なTMRを得るためには表面ラフネスのより小さいB2構造が望ましい。熱処理しない場合、あるいは300℃以下で熱処理した場合、基板に依存してA2構造あるいはB2とA2が共存した構造が得られる。この場合TMRはB2構造の場合より小さいものの室温で100%以上のTMRが得られ、熱処理温度が低くて済むので応用によってはA2構造も有効である。
 次に、この下部磁性層上に、バリア層としてMgO層を形成する。形成法としては、MgOターゲットをスパッタするか、あるいはMgOショットを電子ビーム蒸着することができる。バリア層の膜厚としては、最小の膜厚は結晶性のエピタキシャル成長したMgOが得られればよく、最大膜厚は必要とされる接合抵抗によって決定される。通常、例えば0.5~4nm程度が好ましい。
 次に、このトンネルバリア層の上に、CFAあるいはCoFe合金およびCoFeB合金などを成膜することで、(001)配向した薄膜が上部磁性層として得られる。このようにすれば、全体として(001)配向したエピタキシャルトンネル接合を作製できる。上部磁性層の膜厚は、強磁性層の一方の磁化が反強磁性層によって固着されたスピンバルブ型からなるこれまでに提案されてきた強磁性トンネル接合体で設定された膜厚であればよく、例えば3~20nm程度が好ましい。
 成膜法としてはスパッタ法のほか、蒸着法、MBE法、レーザアブレーション法など通常の薄膜作製法を用いることができる。
 以下、本発明の実施例について説明する。
 直流マグネトロンスパッタ装置を用いて、MgO(001)基板上にバッファー層としてCr膜を用い、Cr(40)/CoFeAl(30)積層膜を作製した。括弧内の数字はそれぞれの膜厚(単位:nm)である。(以下同様)。その後CoFeAl(CFA)膜の結晶性をよくするため480℃の温度で1時間熱処理した。X線回折からこの状態のCFAはB2構造であることが判明した。引き続きMgOターゲットをスパッタし、1.8nmの膜厚のMgOバリアを形成した。さらに引き続きCoFe(2)/IrMn(12)/Ru(7)積層膜を室温で作製し、スピンバルブ型トンネル接合体を作製した。IrMnは反強磁性体であり上部CoFe強磁性層のスピンを固着(ピン)する役割をしている。Ruは保護膜であるとともに微細加工におけるマスクの役割もしている。
 その後、上記積層膜をフォトリソグラフィとイオンミリングを用いて10μm×10μmのサイズに微細加工した。次に5kOeの磁場を印加しながら種々の温度(Ta)で積層膜全体を熱処理し、上部磁性CoFe層に一方向性の異方性を付与した。この接合体について外部磁場を印加し、磁気抵抗の温度変化等の特性測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図1は上記トンネル接合体の下部電極に相当する、MgO(001)基板/Cr(40)/CFA(30)積層膜を480℃で1時間熱処理したときのθ-2θX線回折像(a)、および膜面内の(222)φスキャン像(b)である。
 (a)ではMgO(002)およびCr(002)回折線に加え、CFAのB2構造に相当する(002)および(004)回折線のみが観測されており、また、(b)では(222)の4回対称像が見られることから、CFAはB2構造をもってエピタキシャル成長していることがわかる。また、回折線の半値幅が小さく、非常にシャープな回折像が得られていることから、B2の(002)配向度が非常に高いことがわかる。尚、L2に相当する膜面内の(111)φスキャンを調べた結果、回折像は観測されなかった。従って、作製したCoFeAl膜はB2構造である。
 次に、上記トンネル接合体の室温におけるTMRの磁場中熱処理温度(T)依存性を図2に示す。T=300℃で既に100%を超える大きなTMRが得られ、熱処理温度とともにTMRは急増し、T=450℃では330%という巨大な値が得られた。この値はCo基ホイスラー合金を用いたMTJにおいてこれまで得られた最高値220%を上回っている。挿図はT=300℃および450℃における室温でのTMR曲線を示したものである。いずれも上部強磁性層の磁化が反強磁性IrMnによって固着された、非対称のスピンバルブ型曲線を示している。図3はTa=450℃におけるTMRの温度変化である。10Kにおいて701%の巨大TMRが得られている。
 このような巨大なTMRが得られた原因を探るため、微分コンダクタンスdI/dVのバイアス電圧依存性を測定した。Ta=450℃に対する結果を図4(a)、(b)に示す。(a)が室温、(b)が10Kにおける結果であり、それぞれ上部および下部磁性層の磁化が互いに平行(P)および反平行(AP)に対して示している。Pに対するdI/dVは室温および低温においていずれも、+0.4Vおよび-0.3V近傍で明瞭な極小を示している。このような極小は強磁性層の電子構造に基づくものであり、コヒーレントトンネルが生じる場合によく見られる現象である(非特許文献9)。従って、得られた巨大TMRはコヒーレントトンネル効果によるものであると判断できる。図5はTa=450℃に対する抵抗のバイアス電圧依存性である。(a)が室温、(b)が10Kにおける結果であり、それぞれ上部および下部磁性層の磁化が互いに平行(P)および反平行(AP)に対して示している。平行状態の抵抗においても+0.4Vおよび-0.3V近傍で極小が観測されている。このような抵抗極小は従来のトンネル接合体で観測されたことはなく、初めてのことである。従って、本発明の強磁性トンネル接合体は従来と異なる特徴を備えていると言える。
 図6は室温におけるTMRのバイアス電圧依存性である。TMRが半減するバイアス電圧Vは平均して0.62Vとかなり大きく、従来のCo基フルホイスラー合金を用いた場合の約0.3Vの2倍強である。従って、本発明のトンネル接合体は実用性が高いと言える。
 Crバッファーの代わりにMgOバッファーを用いたこと以外は実施例1と同様の方法を用いて、MgO(001)基板/MgO(10)/CFA(30)/MgO(2)/CoFe(2)/IrMn(10)/Ru(7)からなる強磁性トンネル接合体を作製し、TMR特性を評価した。その結果、Crバッファー層を用いた場合より小さいものの、室温で最大150%のTMRが得られた。
 実施例1と同様の方法を用いて、下部および上部磁性層ともにCFAを用いたCr(40)/CFA(30)/MgO(1.8)/CFA(5)/CoFe(3)/IrMn(12)/Ru(7)からなる強磁性トンネル接合体を作製した。この場合、Ta=400℃とした。TMRを測定した結果、室温で188%、10Kで310%の大きなTMRが得られた。実施例1よりTMRが小さい理由は今のところ明らかでないが、MgOバリア上の上部CFAの(100)配向度が実施例1ほど十分でない、上部CFAとMgOとの界面構造が理想的になっていないなどが考えられ、そのためコヒーレントトンネル効果が実施例1における寄与に相当するほどでなかったためと思われる。実際、図7に示すように、微分コンダクタンスdI/dVのバイアス依存性は片側(負側)にのみ極小を示し、明らかに図4と異なり、上部CFA層とMgOバリア層間でコヒーレントトンネルが生じていないが、(001)配向性や上記界面構造を改善することで、上部層にCoFeを用いた場合よりさらに大きなTMRが期待される。
 実施例1と同様の方法を用いて、下部磁性層としてCoFeAl0.25Si0.75合金を用いてCr(40)/CoFeAl0.25Si0.75(30)/MgO(1.8)/CFA(5)/CoFe(3)/IrMn(12)/Ru(7)からなる強磁性トンネル接合体を作製した。この場合、Ta=400℃とした。TMRを測定した結果、実施例3と同等のTMR、すなわち室温で140%の大きなTMRが得られた。
 酸化Si基板上にMgO膜を10nm成膜し、その上に実施例1と同様の方法を用いて、CFA(30)/MgO(1.8)/CoFe(5)/IrMn(12)/Ru(7)からなる強磁性トンネル接合体を作製した。TMRを測定した結果、Ta=300℃で110%、Ta=450℃で180%のTMRが室温で得られた。このような大きなTMRが単結晶基板ではない熱酸化Si基板を用いても得られたのは、MgO膜が(001)配向し、コヒーレントトンネル効果がより有効に働いたためと思われる。

Claims (4)

  1.  トンネルバリア層が二つの強磁性層で挟まれ、前記強磁性層の一方の層の磁化が反強磁性層によって固着されたスピンバルブ型からなる強磁性トンネル接合体であって、前記トンネルバリア層がMgO、二つの強磁性層のいずれかがCoFeAlホイスラー合金であることを特徴とする強磁性トンネル接合体。
  2.  前記CoFeAlがB2構造からなることを特徴とする請求項1記載の強磁性トンネル接合。
  3.  前記CoFeAl層の一つがCrからなるバッファー層の上に形成されていることを特徴とする請求項1または2記載の強磁性トンネル接合体。
  4.  強磁性トンネル接合体を用いた磁気抵抗効果素子であって、前記強磁性トンネル接合体が請求項1~3のいずれかに記載の強磁性トンネル接合体であることを特徴とする磁気抵抗効果素子。
PCT/JP2010/057833 2009-05-22 2010-05-07 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子 WO2010134435A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011514378A JP5527669B2 (ja) 2009-05-22 2010-05-07 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
EP10777669.2A EP2434556B1 (en) 2009-05-22 2010-05-07 Ferromagnetic tunnel junction structure and magnetoresistive element using same
US13/321,956 US8866243B2 (en) 2009-05-22 2010-05-07 Ferromagnetic tunnel junction structure and magnetoresistive element using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-123922 2009-05-22
JP2009123922 2009-05-22

Publications (1)

Publication Number Publication Date
WO2010134435A1 true WO2010134435A1 (ja) 2010-11-25

Family

ID=43126119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057833 WO2010134435A1 (ja) 2009-05-22 2010-05-07 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子

Country Status (4)

Country Link
US (1) US8866243B2 (ja)
EP (1) EP2434556B1 (ja)
JP (1) JP5527669B2 (ja)
WO (1) WO2010134435A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134229A (ja) * 2010-12-20 2012-07-12 Akita Prefecture 強磁性積層構造及びその製造方法
JP2013175615A (ja) * 2012-02-27 2013-09-05 National Institute For Materials Science 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
WO2017135251A1 (ja) * 2016-02-02 2017-08-10 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
WO2019049740A1 (ja) 2017-09-11 2019-03-14 国立研究開発法人物質・材料研究機構 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013095336A1 (en) * 2011-12-19 2013-06-27 Intel Corporation Spin transfer torque memory (sttm) device with half-metal and method to write and read the device
US8611053B2 (en) * 2012-03-08 2013-12-17 HGST Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with multilayer reference layer including a Heusler alloy
US9721596B2 (en) 2015-02-27 2017-08-01 Seagate Technology Llc Data reader with resonant tunneling
WO2016209227A1 (en) 2015-06-24 2016-12-29 Intel Corporation A spin logic device with high spin injection efficiency from a matched spin transfer layer
CN105609630A (zh) * 2016-02-01 2016-05-25 唐山市众基钢结构有限公司 一种铁磁-反铁磁薄膜异质结构、制备方法及磁存储设备
US10964886B2 (en) * 2016-09-27 2021-03-30 Intel Corporation Spin transfer torque memory devices having heusler magnetic tunnel junctions
JP2018056389A (ja) * 2016-09-29 2018-04-05 Tdk株式会社 磁気抵抗効果素子
US11162894B2 (en) 2019-01-10 2021-11-02 Magtera, Inc. Coherent terahertz magnon laser and coherent terahertz communication system
US10790635B2 (en) * 2019-01-10 2020-09-29 Magtera, Inc. Technique of high-speed magnetic recording based on manipulating pinning layer in magnetic tunnel junction-based memory by using terahertz magnon laser
US10804671B1 (en) * 2019-01-10 2020-10-13 Magtera, Inc. Terahertz magnon generator comprising plurality of single terahertz magnon lasers
US10892602B1 (en) 2019-01-10 2021-01-12 Magtera, Inc. Tunable multilayer terahertz magnon generator

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316700A (ja) 1993-03-11 1994-11-15 Kao Corp 漂白剤組成物及び漂白洗浄剤組成物
JPH08500013A (ja) 1992-08-07 1996-01-09 ノボ ノルディスク アクティーゼルスカブ リパーゼの安定化水性溶液
JPH10313859A (ja) 1997-05-19 1998-12-02 Kao Corp 耐熱性アルカリセルラ−ゼ、それを生産する微生物及びその製造方法
WO1998056927A2 (en) 1997-06-12 1998-12-17 Novo Nordisk Biotech, Inc. Nucleic acids encoding polypeptide having protease activity
JPH1143690A (ja) 1997-07-28 1999-02-16 Kao Corp 自動食器洗浄機用洗浄剤組成物
WO1999018218A1 (fr) 1997-10-07 1999-04-15 Kao Corporation Protease alcaline
JPH11507680A (ja) 1995-06-13 1999-07-06 ノボ ノルディスク アクティーゼルスカブ 酵素安定剤としての4−置換フェニルボロン酸
JP2000506933A (ja) 1996-09-24 2000-06-06 ザ、プロクター、エンド、ギャンブル、カンパニー タンパク質分解酵素、ペプチドアルデヒドおよびホウ酸源を含有した液体洗剤
JP2002218989A (ja) 2000-11-22 2002-08-06 Kao Corp アルカリプロテアーゼ
JP2002306176A (ja) 2001-04-12 2002-10-22 Kao Corp アルカリプロテアーゼ
JP2003125783A (ja) 2001-10-26 2003-05-07 Kao Corp アルカリプロテアーゼ
JP2003313592A (ja) 2002-04-18 2003-11-06 Kao Corp 粉末洗浄剤組成物
JP2004000122A (ja) 2002-03-22 2004-01-08 Kao Corp アルカリプロテアーゼ
JP3492935B2 (ja) 1999-04-02 2004-02-03 花王株式会社 プラスミドベクター
JP2004057195A (ja) 2002-06-06 2004-02-26 Kao Corp 変異アルカリプロテアーゼ
JP2004221526A (ja) * 2002-12-26 2004-08-05 Japan Science & Technology Agency 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2004305175A (ja) 2003-04-10 2004-11-04 Kao Corp アルカリプロテアーゼ
JP2004305176A (ja) 2003-04-10 2004-11-04 Kao Corp アルカリプロテアーゼ
JP2007184082A (ja) * 2005-12-29 2007-07-19 Tdk Corp 磁気ヘッド
WO2007126071A1 (ja) * 2006-04-27 2007-11-08 Japan Science And Technology Agency 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2008159697A (ja) * 2006-12-21 2008-07-10 Tdk Corp 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2009239122A (ja) * 2008-03-27 2009-10-15 Toshiba Corp 磁気抵抗効果素子及びスピンmos電界効果トランジスタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663857B1 (ko) 2002-12-13 2007-01-02 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 스핀 주입 디바이스 및 이를 사용한 자기 장치, 그리고이들에 사용되는 자성 박막
US7515741B2 (en) 2005-01-07 2009-04-07 Motorola, Inc. Adaptive fingerprint matching method and apparatus
JP2008028362A (ja) * 2006-06-22 2008-02-07 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP4580966B2 (ja) * 2007-08-24 2010-11-17 株式会社東芝 ホイスラー合金を有する積層体、この積層体を用いたスピンmos電界効果トランジスタ及びトンネル磁気抵抗効果素子
JP4703660B2 (ja) * 2008-01-11 2011-06-15 株式会社東芝 スピンmos電界効果トランジスタ

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08500013A (ja) 1992-08-07 1996-01-09 ノボ ノルディスク アクティーゼルスカブ リパーゼの安定化水性溶液
JPH06316700A (ja) 1993-03-11 1994-11-15 Kao Corp 漂白剤組成物及び漂白洗浄剤組成物
JPH11507680A (ja) 1995-06-13 1999-07-06 ノボ ノルディスク アクティーゼルスカブ 酵素安定剤としての4−置換フェニルボロン酸
JP2000506933A (ja) 1996-09-24 2000-06-06 ザ、プロクター、エンド、ギャンブル、カンパニー タンパク質分解酵素、ペプチドアルデヒドおよびホウ酸源を含有した液体洗剤
JPH10313859A (ja) 1997-05-19 1998-12-02 Kao Corp 耐熱性アルカリセルラ−ゼ、それを生産する微生物及びその製造方法
WO1998056927A2 (en) 1997-06-12 1998-12-17 Novo Nordisk Biotech, Inc. Nucleic acids encoding polypeptide having protease activity
JPH1143690A (ja) 1997-07-28 1999-02-16 Kao Corp 自動食器洗浄機用洗浄剤組成物
WO1999018218A1 (fr) 1997-10-07 1999-04-15 Kao Corporation Protease alcaline
JP3492935B2 (ja) 1999-04-02 2004-02-03 花王株式会社 プラスミドベクター
JP2002218989A (ja) 2000-11-22 2002-08-06 Kao Corp アルカリプロテアーゼ
JP2002306176A (ja) 2001-04-12 2002-10-22 Kao Corp アルカリプロテアーゼ
JP2003125783A (ja) 2001-10-26 2003-05-07 Kao Corp アルカリプロテアーゼ
JP2004000122A (ja) 2002-03-22 2004-01-08 Kao Corp アルカリプロテアーゼ
JP2003313592A (ja) 2002-04-18 2003-11-06 Kao Corp 粉末洗浄剤組成物
JP2004057195A (ja) 2002-06-06 2004-02-26 Kao Corp 変異アルカリプロテアーゼ
JP2004221526A (ja) * 2002-12-26 2004-08-05 Japan Science & Technology Agency 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2004305175A (ja) 2003-04-10 2004-11-04 Kao Corp アルカリプロテアーゼ
JP2004305176A (ja) 2003-04-10 2004-11-04 Kao Corp アルカリプロテアーゼ
JP2007184082A (ja) * 2005-12-29 2007-07-19 Tdk Corp 磁気ヘッド
WO2007126071A1 (ja) * 2006-04-27 2007-11-08 Japan Science And Technology Agency 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2008159697A (ja) * 2006-12-21 2008-07-10 Tdk Corp 磁気抵抗効果素子、薄膜磁気ヘッド、ヘッドジンバルアセンブリ、ヘッドアームアセンブリおよび磁気ディスク装置
JP2009239122A (ja) * 2008-03-27 2009-10-15 Toshiba Corp 磁気抵抗効果素子及びスピンmos電界効果トランジスタ

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
COSMETICS & TOILETRIES MAGAZINE, vol. ILL, 1996, pages 79 - 88
S.OKAMURA ET AL.: "Large tunnel magnetoresistance at room temperature with a CosFeAl full-Heusler alloy electrode", APPLIED PHYSICS LETTERS, vol. 86, 2 June 2005 (2005-06-02), pages 232503, XP012065815 *
SAEKI ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 279, 2000, pages 313 - 319
SCIENCE, vol. 227, 1985, pages 1435
See also references of EP2434556A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134229A (ja) * 2010-12-20 2012-07-12 Akita Prefecture 強磁性積層構造及びその製造方法
JP2013175615A (ja) * 2012-02-27 2013-09-05 National Institute For Materials Science 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
WO2017135251A1 (ja) * 2016-02-02 2017-08-10 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
JPWO2017135251A1 (ja) * 2016-02-02 2018-11-29 国立研究開発法人物質・材料研究機構 強磁性トンネル接合体、これを用いた磁気抵抗効果素子及びスピントロニクスデバイス並びに強磁性トンネル接合体の製造方法
WO2019049740A1 (ja) 2017-09-11 2019-03-14 国立研究開発法人物質・材料研究機構 垂直磁化膜の前駆体構造、垂直磁化膜構造、およびその製造方法、これらを用いた垂直磁化型トンネル磁気抵抗接合膜およびその製造方法、ならびにこれらを用いた垂直磁化型トンネル磁気抵抗接合素子
US11374168B2 (en) 2017-09-11 2022-06-28 National Institute For Materials Science Precursor structure of perpendicularly magnetized film, perpendicularly magnetized film structure and method for manufacturing the same, perpendicular magnetization-type magnetic tunnel junction film in which said structure is used and method for manufacturing the same, and perpendicular magnetization-type magnetic tunnel junction element in which said structure or magnetic tunnel junction film is used

Also Published As

Publication number Publication date
JPWO2010134435A1 (ja) 2012-11-08
EP2434556B1 (en) 2016-11-23
JP5527669B2 (ja) 2014-06-18
EP2434556A1 (en) 2012-03-28
EP2434556A4 (en) 2015-11-11
US8866243B2 (en) 2014-10-21
US20120112299A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5527669B2 (ja) 強磁性トンネル接合体およびそれを用いた磁気抵抗効果素子
JP5586028B2 (ja) 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子並びにスピントロニクスデバイス
JP5988019B2 (ja) 強磁性トンネル接合体とそれを用いた磁気抵抗効果素子及びスピントロニクスデバイス
CN108292703B (zh) 自旋流磁化反转元件、磁阻效应元件及磁存储器
Yuasa et al. Materials for spin-transfer-torque magnetoresistive random-access memory
JP5735661B2 (ja) 磁気素子およびその製造方法
US7357995B2 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
US8852760B2 (en) Free layer with high thermal stability for magnetic device applications by insertion of a boron dusting layer
KR101981449B1 (ko) 스핀-토크 자기 저항 메모리 소자 및 그 제조 방법
US8300356B2 (en) CoFe/Ni Multilayer film with perpendicular anistropy for microwave assisted magnetic recording
JP5534766B2 (ja) スピントロニック素子のスピンバルブ構造およびその形成方法、ボトム型スピンバルブ構造、ならびにマイクロ波アシスト磁気記録用スピントロニック素子
JP4582488B2 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
US10937951B2 (en) Magnetoresistance effect element
US20060012926A1 (en) Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
WO2018159015A1 (ja) 磁気抵抗効果素子及び磁気メモリ
JP4061590B2 (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
JP2005228998A (ja) 磁性薄膜及びそれを用いた磁気抵抗効果素子並びに磁気デバイス
Arora et al. Spin torque switching in nanopillars with antiferromagnetic reference layer
WO2011062005A1 (ja) 強磁性トンネル接合素子
Du et al. Polycrystalline CPP-GMR Pseudospin Valves Using $\langle {001}\rangle $ Textured Co 2 Fe (Ga 0.5 Ge 0.5) Layer Grown on a Conductive (Mg 0.5 Ti 0.5) O Buffer Layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777669

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011514378

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010777669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010777669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13321956

Country of ref document: US