WO2010134353A1 - 溶接用鋼材およびその製造方法 - Google Patents

溶接用鋼材およびその製造方法 Download PDF

Info

Publication number
WO2010134353A1
WO2010134353A1 PCT/JP2010/003435 JP2010003435W WO2010134353A1 WO 2010134353 A1 WO2010134353 A1 WO 2010134353A1 JP 2010003435 W JP2010003435 W JP 2010003435W WO 2010134353 A1 WO2010134353 A1 WO 2010134353A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
steel
ctod
welding
Prior art date
Application number
PCT/JP2010/003435
Other languages
English (en)
French (fr)
Inventor
渡部義之
福永和洋
児島明彦
植森龍治
千々岩力雄
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43126042&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010134353(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to RU2011146832/02A priority Critical patent/RU2470085C9/ru
Priority to KR1020117009636A priority patent/KR101160028B1/ko
Priority to CN2010800030774A priority patent/CN102197154A/zh
Priority to EP20100777589 priority patent/EP2400041B1/en
Priority to CA2757223A priority patent/CA2757223C/en
Priority to BRPI1014830-2A priority patent/BRPI1014830B1/pt
Priority to US13/138,790 priority patent/US8920713B2/en
Priority to JP2010536248A priority patent/JP4705696B2/ja
Publication of WO2010134353A1 publication Critical patent/WO2010134353A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a welding steel material excellent in CTOD characteristics of a weld heat affected zone (HAZ) in welding from small heat input to medium heat input, and a method for producing the same.
  • the present invention relates to a steel material for welding with excellent CTOD characteristics of the FL part and the IC part where the toughness is most deteriorated in welding from small heat input to medium heat input, and a manufacturing method thereof.
  • the present application includes Japanese Patent Application No. 2009-124614 filed in Japan on May 22, 2009, Japanese Patent Application No. 2009-123428 filed in Japan on May 21, 2009, and August 21, 2009. The priority is claimed on the basis of Japanese Patent Application No. 2009-192387 filed in Japan, the contents of which are incorporated herein by reference.
  • the CTOD characteristics of the weld heat affected zone are as follows: FL part [Fusion Line: boundary between WM (welded metal) and HAZ (weld heat affected zone)] and IC part [Intercritical HAZ: HAZ and BM (base material)]
  • FL part Fusion Line: boundary between WM (welded metal) and HAZ (weld heat affected zone)
  • IC part Intercritical HAZ: HAZ and BM (base material)
  • the test results at two positions (notch portions) of [Boundary of] are evaluated. However, so far, only the FL portion, which has been considered to have the lowest CTOD characteristics, has been evaluated.
  • the CTOD characteristic of the FL part is sufficient, the CTOD characteristic of the IC part is also sufficient, so it was not necessary to evaluate the CTOD characteristic of the IC part.
  • a relatively large amount of O is contained.
  • an element that stabilizes austenite and enhances hardenability is added in a certain amount or more.
  • the IC part of the steel material in a harsh environment of about ⁇ 60 ° C. while ensuring the properties required for the structural material for welding (for example, the strength and toughness of the base material and the CTOD value of the FL part). It is difficult to secure the CTOD value of.
  • the present invention provides a CTOD characteristic of the FL part at ⁇ 60 ° C. in welding (for example, multi-layer welding) from small heat input to medium heat input (for example, 1.5 to 6.0 kJ / mm at a plate thickness of 50 mm).
  • the present invention provides a high-strength steel material having excellent CTOD (fracture toughness) characteristics in which the CTOD characteristics of the IC portion are sufficient and a method for producing the same.
  • the present inventors diligently studied a method for improving the CTOD characteristics of both the FL portion and the IC portion of the welded portion where the toughness is most deteriorated by welding from small heat input to medium heat input.
  • the present inventors are most important in reducing non-metallic inclusions, and in particular, reducing O (oxygen in steel). I found it essential. Further, the present inventors have found that since intragranular ferrite (IGF) is reduced by reducing O, it is necessary to reduce alloy elements that deteriorate the CTOD characteristics of the FL portion. Furthermore, the present inventors have found that in order to improve the CTOD characteristics of the IC part, it is effective to reduce the hardness in addition to the reduction of oxygen in the steel. Based on the above findings, the present inventors have completed the present invention.
  • IGF intragranular ferrite
  • the gist of the present invention is as follows.
  • the welding steel material according to one embodiment of the present invention has a mass%, a C content [C] of 0.010% to 0.065%, and a Si content [Si] of 0. 0.05% or more and 0.20% or less of Si, Mn content [Mn] of 1.52% or more and 2.70% or less of Mn, and Ni content [Ni] of 0.10% or more and 1.
  • a method for producing a welding steel according to one aspect of the present invention comprises producing the welding steel according to (1) or (2) above by continuous casting and heating to a temperature of 950 to 1100 ° C. Heat treatment.
  • a steel material excellent in HAZ toughness in welding from small heat input to medium heat input can be provided.
  • a steel material excellent in CTOD characteristics (low temperature toughness) of the FL part and the IC part where the toughness is most deteriorated by welding such as multi-layer welding from low heat input to medium heat input can be provided. Therefore, it is possible to provide a steel material having high strength and high toughness for structures used in severe environments such as offshore structures and earthquake resistant buildings.
  • the CTOD of the FL part and the IC part at ⁇ 60 ° C. in welding from low heat input to medium heat input (for example, 1.5 to 6.0 kJ / mm at a plate thickness of 50 mm).
  • medium heat input for example, 1.5 to 6.0 kJ / mm at a plate thickness of 50 mm.
  • O oxygen in steel
  • an oxide-based nonmetallic inclusion represented by Ti oxide is used as a transformation nucleus of intragranular ferrite (IGF). It was necessary to add some amount of O. According to the research of the present inventor, in order to improve the CTOD characteristics of the FL part and the IC part at ⁇ 60 ° C., it is necessary to reduce oxide-based nonmetallic inclusions.
  • FIG. 1 shows the relationship between the CTOD characteristics (T ⁇ c0.1 (FL) ) of the FL equivalent reproduction HAZ and the steel component parameter P CTOD .
  • the steel component parameter P CTOD represented by the formula (1) is used to test a number of molten steels in a laboratory and analyze the CTOD characteristics (T ⁇ c0.1 (FL) ) of the HA equivalent reproduction HAZ and the steel components. This is an empirical formula derived as follows.
  • the CTOD characteristic (T ⁇ c0.1 (FL) ) of ⁇ 110 ° C. or lower is the target level (T ⁇ c0.1 ) as a structural steel material based on the knowledge obtained in many experiments. (FL) ⁇ ⁇ 110 ° C.).
  • a CTOD ( ⁇ c) value of 0.25 mm or more can be secured stably at ⁇ 60 ° C. in the FL notch test of an actual joint of a steel sheet having a thickness of 50 to 100 mm. From FIG. 1, it can be seen that, in the FL equivalent reproduction HAZ, in order to make T ⁇ c0.1 (FL) ⁇ 110 ° C. or less, it is necessary to control the steel component parameter P CTOD to 0.065% or less. In addition, as the CTOD ( ⁇ c) value is larger, the toughness (for example, energy absorption due to plastic strain) is higher.
  • the FL equivalent reproduction HAZ is a part corresponding to the heat input amount of the FL part of the test piece subjected to the FL equivalent reproduction thermal cycle shown below.
  • This FL equivalent thermal cycle treatment (triple cycle) was performed on the test piece having a cross section of 10 mm ⁇ 20 mm under the following conditions.
  • 1st cycle Maximum heating temperature 1400 ° C (between 800 and 500 ° C is cooled in 22 seconds)
  • 2nd cycle Maximum heating temperature of 760 ° C (cooling between 760 and 500 ° C in 22 seconds)
  • 3rd cycle Maximum heating temperature 500 ° C (cooling between 500-300 ° C in 60 seconds) As shown in FIG.
  • the position of the FL notch 7 in the welded portion 2 is the FL portion 5 at the boundary between the HAZ 4 and the WM 3.
  • T ⁇ c0.1 (FL) is the temperature at which the lowest value of the obtained CTOD (.delta.c) values obtained using three test pieces for each test temperature exceeds 0.1 mm (° C.).
  • T ⁇ c0.1 (FL) needs to be ⁇ 110 ° C. or lower as described above.
  • the present inventors have found that reducing the hardness in addition to reducing the oxygen in the steel is effective for improving the CTOD characteristics of the IC part.
  • FIG. 2 shows the relationship between the CTOD characteristics of a test piece subjected to a reproduction thermal cycle equivalent to ICHAZ (Intercritical HAZ), which will be described later, and the hardness of the reproduction HAZ equivalent to ICHAZ.
  • FIG. 3 shows the relationship between the steel component hardness parameter CeqH and the hardness of the reproduced HAZ equivalent to ICHAZ.
  • the HAZ hardness (Vickers test with a load of 10 kgf) is It is necessary to make it Hv176 or less. Therefore, it can be seen from FIG. 3 that the steel component hardness parameter CeqH needs to be controlled to 0.235% or less. In order to further reduce the hardness, the steel component hardness parameter CeqH is preferably 0.225% or less.
  • the steel component hardness parameter CeqH is an empirical formula obtained by multiple regression of the characteristics (hardness) of steel and the components.
  • CeqH [C] + [Si] /4.16+ [Mn] /14.9+ [Cu] /12.9+ [Ni] /105+1.12 [Nb] + [V] /1.82 (2 ) Is defined.
  • [C], [Si], [Mn], [Cu], [Ni], [Nb], and [V] are the contents of C, Si, Mn, Cu, Ni, Nb, and V in the steel. (Mass%). For example, when Cu is not contained, the Cu content is 0%.
  • C 0.010 to 0.065%
  • the C content [C] exceeds 0.065%, the properties of the welded HAZ deteriorate and the CTOD properties at ⁇ 60 ° C. are not sufficient. Therefore, the upper limit of the C content [C] is 0.065%. Therefore, the C content [C] is 0.015% or more and 0.065% or less.
  • Si 0.05-0.20%
  • the Si content [Si] the better.
  • the Al content [Al] is limited as will be described later, a Si content [Si] of 0.05% or more is necessary for deoxidation.
  • the Si content [Si] exceeds 0.20%, the HAZ toughness is impaired, so the upper limit of the Si content [Si] is 0.20%. Accordingly, the Si content [Si] is 0.05% or more and 0.20% or less.
  • the Si content [Si] is preferably 0.15% or less or 0.13% or less.
  • Mn 1.52 to 2.70%
  • Mn is an inexpensive element that has a large effect of optimizing the microstructure. Moreover, there is little possibility of harming HAZ toughness by addition of Mn. From these points, it is preferable that the amount of Mn added is large. However, if the Mn content exceeds 2.70%, the hardness of ICAZ increases and the toughness deteriorates. Therefore, the upper limit of the Mn content [Mn] is 2.70%. Further, when the Mn content [Mn] is less than 1.52%, the effect of improving the microstructure is small, so the lower limit of the Mn content [Mn] is 1.52%. Therefore, the Mn content [Mn] is 1.52% or more and 2.70% or less. In order to further improve the HAZ toughness, the Mn content [Mn] is preferably 1.55% or 1.6% or more, and more preferably 1.7% or more.
  • Ni 0.10 to 1.50%
  • Ni is an element that does not significantly deteriorate the HAZ toughness, improves the strength and toughness of the base material, and does not increase the hardness of ICHAZ.
  • Ni is an expensive alloy element, and if it is excessively contained in steel, it may cause surface defects. Therefore, the upper limit of the Ni content [Ni] is 1.50%.
  • the Ni content [Ni] is 0.10% or more and 1.50% or less.
  • the Ni content [Ni] is preferably 0.20% or more, and is 0.30% or more. It is more preferable. Furthermore, in order to provide weather resistance to the steel material, the Ni content [Ni] is preferably 0.40% or more, and more preferably 0.50% or more. In order to prevent surface flaws more reliably, the Ni content [Ni] is preferably 1.20% or less, and more preferably 1.0% or less. In the case where the strength and toughness of the base material can be sufficiently secured by adding other elements, the Ni content [Ni] is most preferably 0.80% or less in order to further secure the economy. As will be described later, when Cu is added as necessary, the Ni content [Ni] is 1 ⁇ 2 or more of the Cu content [Cu] in order to suppress Cu cracking of the slab. It is preferable.
  • Mn Mn
  • Ni Ni
  • P and S are elements that reduce toughness and are contained as inevitable impurities. Therefore, it is necessary to reduce both the P content [P] and the S content [S] in order to ensure the base material toughness and the HAZ toughness.
  • the upper limit of P content [P] and the upper limit of S content [S] are 0.008% and 0.005%, respectively.
  • the P content [P] is preferably limited to 0.005% or less
  • the S content [S] is preferably limited to 0.003% or less.
  • Al 0.004% or less (excluding 0%)
  • the Al content [Al] is preferably as small as possible because it is necessary to generate a Ti oxide. However, since there are restrictions on industrial production, the upper limit of the Al content [Al] is 0.004%.
  • Ti 0.005 to 0.015% Ti produces Ti oxide and refines the microstructure. However, when there is too much Ti content [Ti], Ti will produce
  • Nb 0.010% or less (including 0%) Nb may be contained as an impurity and improves the strength and toughness of the base material, but decreases the HAZ toughness.
  • the range of Nb content [Nb] in which the HAZ toughness is not significantly lowered is 0.010% or less. Therefore, the Nb content [Nb] is limited to 0.010% or less. In order to further improve the HAZ toughness, the content is preferably limited to 0.002% or less (including 0%).
  • the O content [O] is essential to be 0.0010% or more in order to secure the amount of Ti oxide generated as IGF nuclei in the FL part.
  • the O content [O] is limited to a range of 0.0015% to 0.0045%.
  • the O content [O] is preferably 0.0030% or less, and more preferably 0.0028% or less.
  • N 0.002 to 0.006% N is necessary to produce Ti nitride.
  • the N content [N] is less than 0.002%, the effect of generating Ti nitride is small.
  • the N content [N] exceeds 0.006%, surface flaws occur during the production of steel slabs, so the upper limit of the N content [N] is 0.006%. Therefore, the N content [N] is 0.002% or more and 0.006% or less.
  • the N content [N] is preferably 0.005% or less.
  • Mg 0.0003 to 0.003%
  • Mg is an important alloying element of the present invention, and is added mainly as a deoxidizer or a sulfide-forming element.
  • Mg content [Mg] is added so as to be 0.003% or less, coarse oxides or sulfides are not generated, and a preferable base material and HAZ toughness can be obtained. Further, in order to sufficiently expect the formation of oxides necessary as pinning particles, addition of 0.0003% or more is necessary. Therefore, the range of Mg content [Mg] is set to 0.0003 to 0.003%.
  • Ca 0.0003 to 0.003% Ca suppresses the generation of elongated MnS by generating sulfides, and improves the properties in the thickness direction of the steel material, particularly the lamellar resistance. Furthermore, Ca is an important element of the present invention because it has the same effect as Mg. In order to sufficiently obtain the above effects, 0.0003% or more must be added. Further, when the Ca content [Ca] is limited to 0.003% or less, the number of coarse oxides of Ca is suppressed, and the number of ultrafine oxides or sulfides can be sufficiently obtained.
  • Mg and Ca are added simultaneously, but both are powerful deoxidizing elements.
  • the total content of Mg and Ca is 0.0030% or less, the formation of coarse inclusions can be more effectively suppressed, and sufficient toughness can be obtained with a margin.
  • Cu 0.50% or less (including 0%) Cu is an element that does not significantly deteriorate the HAZ toughness, improves the strength and toughness of the base material, and does not increase the hardness of ICHAZ too much. If sufficient strength of the steel material is ensured by elements such as C, Mn, and Ni, it is not always necessary to add Cu. Cu may be added in response to a request for strength or the like. However, Cu is a relatively expensive alloy element, and the above-mentioned effect is small as compared with Ni, and increases the risk of Cu cracking of the slab due to addition of too much. Therefore, the Cu content [Cu] is limited to 0.50% or less. You may restrict
  • the Cu content [Cu] is twice the Ni content [Ni] in order to prevent Cu cracking of the slab.
  • the following is preferable.
  • the solid solubility limit of Cu in ferrite ( ⁇ Fe) is small, ⁇ Cu may be precipitated in the weld HAZ depending on the thermal history of welding, which may lower the low temperature toughness. If the Cu content [Cu] is 0.03% or less, the low-temperature toughness of the product can be ensured more reliably. In particular, when using a welding method with a large amount of heat, the low temperature toughness can be ensured more reliably if the Cu content [Cu] is 0.01% or less.
  • V 0.020% or less (including 0%) V is effective for improving the strength of the base material. Therefore, V may be added as necessary. However, if V exceeding 0.020% is added, the HAZ toughness is greatly reduced. Therefore, the V content [V] is limited to 0.020% or less. In order to sufficiently suppress the decrease in HAZ toughness, it is preferable to limit the V content [V] to 0.010%. If the strength of the steel material is sufficiently ensured by elements such as C, Mn, and Ni, it is not always necessary to add V. Even when V is selectively added for reasons of strength, it is preferable to suppress the V content [V] as much as possible. Therefore, the V content [V] is more preferably 0.005% or less.
  • the welding steel material of the present invention contains or restricts the above components, and the balance contains iron and inevitable impurities.
  • the steel plate of the present invention contains, in addition to the above components, other alloy elements for the purpose of further improving the corrosion resistance and hot workability of the steel plate itself, or as an unavoidable impurity from secondary materials such as scrap. May be.
  • other alloy elements Cr, Mo, B, Ca, Mg, Sb, Sn, As, etc.
  • other alloy elements Cr, Mo, B, Ca, Mg, Sb, Sn, As, etc.
  • the content of each of these elements includes 0%.
  • the Cr content [Cr] is preferably 0.1% or less, more preferably 0.05% or less, and most preferably 0.02% or less. preferable.
  • Mo decreases HAZ toughness
  • the Mo content [Mo] is preferably 0.05% or less, more preferably 0.03% or less, and most preferably 0.01% or less. preferable.
  • B increases HAZ hardness and decreases HAZ toughness
  • the B content [B] is preferably 0.0005% or less, more preferably 0.0003% or less, and 0.0002% Most preferably:
  • the Sb content [Sb] is preferably 0.005% or less, more preferably 0.003% or less, and most preferably 0.001% or less.
  • the Sn content [Sn] is preferably 0.005% or less, more preferably 0.003% or less, and most preferably 0.001% or less.
  • the As content [As] is preferably 0.005% or less, more preferably 0.003% or less, and most preferably 0.001% or less.
  • REM has an effect of suppressing the formation of Ti oxide, the REM content [REM] is preferably 0.005% or less, more preferably 0.003% or less, and 0.001% Most preferably:
  • the welding steel material of the present invention contains or restricts the above components as steel components, and the balance consists of iron and unavoidable impurities.
  • the minimum dimension (for example, plate thickness) of the steel material is preferably 6 mm or more. In consideration of the use as a structural material, the minimum dimension (for example, plate thickness) of the steel material may be 100 mm or less.
  • a slab is manufactured from the above-mentioned steel (molten steel) by a continuous casting method.
  • the cooling rate (solidification rate) of molten steel is high, and a large amount of fine Ti oxide and Ti nitride can be generated in the slab.
  • the reheating temperature of the slab needs to be 950 ° C. or higher and 1100 ° C. or lower.
  • the Ti nitride becomes coarse, the toughness of the base material deteriorates, and it is difficult to improve the HAZ toughness.
  • the lower limit of the reheating temperature is 950 ° C. Therefore, it is necessary to perform rolling at a temperature of 950 ° C. or higher and 1100 ° C. or lower.
  • a processing heat treatment is performed.
  • the rolling temperature is controlled within a narrow range according to the steel components, and then water cooling is performed as necessary.
  • the austenite grains can be refined and the microstructure can be refined, and the strength and toughness of the steel material can be improved.
  • the thickness (minimum dimension) of the final steel material is controlled to be 6 mm or more by rolling.
  • thermomechanical treatment it is possible to produce a steel material having not only the HAZ toughness during welding but also the toughness of the base material.
  • thermomechanical method is preferably a method combining controlled rolling and accelerated cooling. Note that after producing the steel, even when reheated to purposes Ar 3 following transformation point temperature, such as the dehydrogenation and strength optimization, characteristics of the steel material is not impaired.
  • Thick steel plates of various steel components were manufactured through the steps of converter, continuous casting, and thick plate (rolling), and the base material strength tensile test and the weld joint CTOD test were performed on these thick steel plates.
  • the welded joint used for the CTOD test was produced with a welding heat input of 4.5 to 5.0 kJ / mm by the submerged arc welding (SAW) method used as a general test welding.
  • SAW submerged arc welding
  • the FL part 5 of this welded joint is formed using a K groove so that the weld penetration line (FL) 9 is substantially perpendicular to the end surface of the thick steel plate.
  • notch position (FL notch 7 and IC notch 8) is the FL portion (boundary between WM3 and HAZ4) 5 or the IC portion (boundary between HAZ4 and BM1) 6, as shown in FIGS. 4A and 4B.
  • five tests were performed at ⁇ 60 ° C. for each of the FL notch 7 and the IC notch 8.
  • Tables 1 and 2 show the chemical components of the steel, and Tables 3 and 4 show the manufacturing conditions of the thick steel plate (base material), the properties of the base material (BM), and the properties of the welded joint.
  • CR Controlled rolling (rolling at the optimum temperature range to improve the strength and toughness of steel)
  • ACC controlled rolling-accelerated cooling (steel material is water-cooled to 400-600 ° C after controlled rolling and allowed to cool)
  • DQ Quenching and tempering immediately after rolling (Steel material is water cooled to 200 ° C or less immediately after rolling and then tempered)
  • ⁇ c (av) is an average value of CTOD values of five tests
  • ⁇ c (min) is a CTOD value of five tests. Indicates the lowest value.
  • the yield strength (YS) was 430 N / mm 2 (MPa) or more, the tensile strength was 502 N / mm 2 (MPa) or more, and the base material strength was sufficient.
  • the CTOD value ( ⁇ c) at ⁇ 60 ° C. the minimum CTOD value ⁇ c (min) of the FL notch is 0.42 mm or more, and the minimum CTOD value ⁇ c (min) of the IC notch is 0.60 mm or more. Excellent fracture toughness.
  • the comparative example has the same strength as the example, but the CTOD value is inferior to that of the example, and is not suitable as a steel material used in a severe environment.
  • the comparative steel 10 has a high Al amount
  • the comparative steel 11 has no addition of Mg and Ca
  • the comparative steel 12 has a high Si amount
  • the comparative steel 13 has an excessive amount of Mg + Ca and an excessive amount of Nb. Since the comparative steel 14 is high and the amount of Ca is excessive and the amount of V is excessive, PCTOD and CeqH are high, so both have low CTOD values.
  • the CTOD value of the IC notch is a low value. Since the comparative steel 32 has a high Al content, the PCTD and CeqH values are appropriate, but the structure control in the vicinity of the FL is insufficient and the CTOD value of the FL notch is low. Since the comparative steel 33 has an excessive amount of Mg + Ca and high PCTOD and CeqH values, both FL and IC notches have low CTOD values. Since the comparative steel 34 has an excessive amount of Si, no addition of Mg and Ca, and a high CeqH value, both the FL and IC notches have low CTOD values. Since the comparative steel 35 has an excessive amount of V and the comparative steel 22 has an excessive amount of Nb, the CeqH is high, and the CT notch value of the IC notch is particularly low.
  • the CTOD value ( ⁇ c) at ⁇ 60 ° C. has a minimum CTOD value ⁇ c (min) at the FL notch of less than 0.43 mm, and the minimum value of the CTOD value at the IC notch ⁇ c (min) was less than 0.60 mm, and fracture toughness was not sufficient.
  • FIG. 5 shows a summary of the relationship between the steel component hardness parameter CeqH in Tables 1 to 4 and the CTOD ( ⁇ c) value at ⁇ 60 ° C. in the IC part. As shown in FIG.
  • the CTOD value in the IC notch is suppressed by suppressing the steel component hardness parameter CeqH to 0.235% or less.
  • a steel material having a minimum value ⁇ c (min) of 0.25 mm or more could be produced.
  • the minimum value ⁇ c (min) of the CTOD value is A steel material of 0.25 mm or more could not be manufactured (for example, Comparative Examples 8 and 37).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 この溶接用鋼材は、[C]が、0.010%以上0.065%以下、[Si]が、0.05%以上0.20%以下、[Mn]が、1.52%以上2.70%以下、[Ni]が、0.10%以上1.50%以下、[Ti]が、0.005%以上0.015%以下、[O]が、0.0010%以上0.0045%以下、[N]が、0.002%以上0.006%以下、[Mg]が、0.0003%以上0.003%以下、[Ca]が、0.0003%以上0.003%以下、の要素を含有し、残部が鉄および不可避的不純物を含み、PCTODが、0.065%以下、かつ、鋼成分硬さパラメーターCeqHが0.235%以下である。

Description

溶接用鋼材およびその製造方法
 本発明は、小入熱から中入熱までの溶接における溶接熱影響部(HAZ)のCTOD特性が優れた溶接用鋼材およびその製造法に関する。特に、小入熱から中入熱までの溶接において最も靭性が劣化するFL部及びIC部のCTOD特性が極めて優れた溶接用鋼材およびその製造方法に関する。
 本願は、2009年5月22日に、日本に出願された特願2009-124614号、2009年5月21日に、日本に出願された特願2009-123428号、および、2009年8月21日に、日本に出願された特願2009-192387号に基づき優先権を主張し、その内容をここに援用する。
 近年、厳しい環境で使用される鋼材が要求されている。例えば、北極圏等の寒冷地域で用いられる海洋構造物や耐震性建築物等の鋼構造物に適した高強度の鋼材として、破壊靱性の指標であるCTOD(Crack Tip Opening Displacement)特性が優れた鋼材が要求されている。特に、鋼材の溶接部は、優れたCTOD特性が必要とされる。
 溶接熱影響部(HAZ)のCTOD特性は、FL部[Fusion Line:WM(溶接金属)とHAZ(溶接熱影響部)との境界]およびIC部[Intercritical HAZ:HAZとBM(母材)との境界]の2箇所の位置(ノッチ部)の試験結果によって評価される。しかしながら、これまでは一番低いCTOD特性が得られると考えられてきたFL部のみが評価されていた。
 -20℃程度の試験温度があまり厳しくない条件では、FL部のCTOD特性が十分であれば、IC部のCTOD特性も、十分であるため、IC部のCTOD特性を評価する必要がなかった。
 しかしながら、-60℃程度の厳しい試験条件では、鋼材のIC部のCTOD値が十分でないケースが多く、IC部のCTOD特性を高める必要があった。
 例えば、小入熱から中入熱までの溶接後に厳しい試験温度(例えば、-60℃)でCTOD特性が良好な溶接継手を開示している技術がある(例えば、特許文献2参照)。しかしながら、これらの技術には、IC部のCTOD特性が開示されていない。
 また、例えば、大入熱溶接後のシャルピー吸収エネルギーが良好な溶接継手を開示している技術がある(例えば、特許文献3~6参照)。しかしながら、これらの技術には、構造材料として重要な指標であるCTOD特性(脆性亀裂の発生特性)が開示されていないか、より高い温度条件(例えば-10℃)についてしか試験されていない。
 上述した技術では、例えば、FL部の粒内変態フェライト(IGF:Intragranular Ferrite)生成のための変態核としてのTiの酸化物の生成量を十分に確保するために、鋼中に比較的多くのOを含有させている。また、例えば、溶接後の組織を微細化するために、オーステナイトを安定化させ焼入れ性を高める元素を一定量以上添加している。しかしながら、これらの方法では、溶接用構造材料として必要とされる特性(例えば、母材の強度や靭性、FL部のCTOD値)を確保しながら、-60℃程度の厳しい環境における鋼材のIC部のCTOD値も確保することは困難である。
特開2007-002271号公報 特開2008-169429号公報 特開2002-030380号公報 特開平5-171341号公報 特開2004-162150号公報 特開平11-279684号公報
 そこで、本発明は、小入熱から中入熱まで(例えば、板厚50mmで1.5~6.0kJ/mm)の溶接(例えば、多層溶接)において-60℃のFL部のCTOD特性に加え、IC部のCTOD特性も十分である優れたCTOD(破壊靱性)特性を有する高強度の鋼材およびその製造方法を提供する。
 本発明者らは、小入熱から中入熱までの溶接によって最も靭性が劣化する溶接部のFL部とIC部との両方のCTOD特性を向上させる方法について鋭意研究した。
 その結果、本発明者らは、FL部とIC部との両方のCTOD特性を向上させるためには、非金属介在物の低減が最も重要であり、特に、O(鋼中酸素)の低減が必須であることを見出した。また、本発明者らは、Oの低減により粒内変態フェライト(IGF)が減少するので、FL部のCTOD特性を劣化させる合金元素を低減する必要があることを見出した。さらに、本発明者らは、IC部のCTOD特性を向上させるためには、鋼中酸素の低減に加え、硬さの低減が有効であることを見出した。本発明者らは、上記知見により、本発明を完成した。
 本発明の要旨は、以下のとおりである。
 (1) 本発明の一態様にかかる溶接用鋼材は、質量%で、C含有量[C]が、0.010%以上0.065%以下のCと、Si含有量[Si]が、0.05%以上0.20%以下のSiと、Mn含有量[Mn]が、1.52%以上2.70%以下のMnと、Ni含有量[Ni]が、0.10%以上1.50%以下のNiと、Ti含有量[Ti]が、0.005%以上0.015%以下のTiと、O含有量[O]が、0.0010%以上0.0045%以下のOと、N含有量[N]が、0.002%以上0.006%以下のNと、Mg含有量[Mg]が、0.0003%以上0.003%以下のMgと、Ca含有量[Ca]が、0.0003%以上0.003%以下のCaと、を含有し、残部が鉄および不可避的不純物を含み、P含有量[P]を0.008%以下、S含有量[S]を0.005%以下、Al含有量[Al]を0.004%以下、Nb含有量[Nb]を0.010%以下、Cu含有量[Cu]を0.50%以下、V含有量[V]を0.020%以下に制限し、鋼成分パラメーターPCTODが、PCTOD=[C]+[V]/3+[Cu]/22+[Ni]/67・・・(1)と定義され、鋼成分硬さパラメーターCeqHが、CeqH=[C]+[Si]/4.16+[Mn]/14.9+[Cu]/12.9+[Ni]/105+1.12[Nb]+[V]/1.82・・・(2)と定義されるとき、前記PCTODが0.065%以下、かつ、前記CeqHが0.235%以下である。
 (2) 上記(1)に記載の溶接用鋼材において、Cu含有量[Cu]を0.03~0.24%、Ni含有量[Ni]を0.10~0.49%、にさらに制限してもよい。
 (3) 上記(1)または(2)に記載の溶接用鋼材において、MgとCaの合計含有量を0.0030%以下にさらに制限してもよい。
 (4) 本発明の一態様にかかる溶接用鋼の製造方法は、上記(1)または(2)に記載の溶接用鋼材を連続鋳造により製造し、950~1100℃の温度に加熱して加工熱処理する。
 本発明によれば、小入熱から中入熱までの溶接におけるHAZ靭性に優れた鋼材を提供することができる。特に、小入熱から中入熱までの多層溶接等の溶接により最も靭性が劣化するFL部及びIC部のCTOD特性(低温靭性)が優れた鋼材を提供することができる。したがって、海洋構造物、耐震性建築物等の厳しい環境で使用される構造物に対して高強度かつ高靭性の鋼材を提供することができる。
鋼成分パラメーターPCTODとFL相当再現熱サイクル試験でのCTOD特性(Tδc0.1(FL))との関係を示す図である。 ICHAZ相当再現熱サイクル試験でのHAZ硬さとCTOD特性(Tδc0.1(ICHAZ))との関係を示す図である。 CeqHとICHAZ相当再現熱サイクル試験でのHAZ硬さとの関係を示す図である。 CTOD試験のFLノッチ位置を示す概略図である。 CTOD試験のICノッチ位置を示す概略図である。 鋼成分硬さパラメーターCeqHとIC部における-60℃でのCTOD(δc)値との関係を示す図である。
 以下、本発明を詳細に説明する。
 本発明者らの研究によれば、小入熱から中入熱まで(例えば、板厚50mmで1.5~6.0kJ/mm)の溶接における-60℃でのFL部及びIC部のCTOD特性を十分に向上させるためには、酸化物系の非金属介在物の低減が最も重要であり、O(鋼中酸素)の低減が必須である。
 従来の技術では、優れたFL部のCTOD特性を有する鋼材を得るために、粒内変態フェライト(IGF:Intragranular Ferrite)の変態核としてTi酸化物に代表される酸化物系の非金属介在物を利用しており、ある程度のOを添加する必要があった。本発明者の研究によれば、-60℃のFL部及びIC部のCTOD特性を向上させるためには、酸化物系の非金属介在物の低減が必要である。
 Oの低減によりIGFが減少するため、FL部のCTOD特性を劣化させる合金元素を低減する必要がある。図1に、FL相当再現HAZのCTOD特性(Tδc0.1(FL))と鋼成分パラメーターPCTODとの関係を示す。ここで、(1)式で示される鋼成分パラメーターPCTODは、実験室において多数の溶解鋼を試験し、FL相当再現HAZのCTOD特性(Tδc0.1(FL))と鋼成分とを解析して導出された経験式である。
 PCTOD=[C]+[V]/3+[Cu]/22+[Ni]/67・・・(1)
ここで、[C]、[V]、[Cu]、[Ni]は、それぞれ、鋼中のC、V、Cu、Niの含有量(質量%)である。例えば、Cuが含有されない場合には、Cu含有量は、0%である。
 図1に示したFL相当再現HAZについて、多数の実験で得られた知見から-110℃以下のCTOD特性(Tδc0.1(FL))が構造物用鋼材としての目標レベル(Tδc0.1(FL)≦-110℃)である。この目標レベルでは、板厚50~100mmの鋼板の実継手のFLノッチ試験において、-60℃で安定して0.25mm以上のCTOD(δc)値を確保することができる。図1から、FL相当再現HAZにおいて、Tδc0.1(FL)を-110℃以下にするためには、鋼成分パラメーターPCTODを0.065%以下に制御する必要があることがわかる。なお、CTOD(δc)値は、大きいほど、靭性(例えば、塑性歪みによるエネルギー吸収)が高い。
 FL相当再現HAZは、以下に示すFL相当再現熱サイクルが施された試験片のFL部の入熱量に対応する部分である。このFL相当再現熱サイクル処理(Triple cycle)が、断面10mm×20mmの試験片に対して以下の条件で施された。
1st cycle:最高加熱温度1400℃(800~500℃間を22secで冷却)
2nd cycle:最高加熱温度760℃(760~500℃間を22secで冷却)
3rd cycle:最高加熱温度500℃(500~300℃間を60secで冷却)
 図4A中に示すように、溶接部2におけるFLノッチ7の位置は、HAZ4とWM3との境界のFL部5である。FLノッチによる以下のCTOD試験では、荷重とこのFL部5の開口変位との関係を測定した。
 この試験片をBS5762法(British Standards)のCTOD試験によって評価し、図1のTδc0.1(FL)が得られている。ここで、Tδc0.1(FL)は、各試験温度で3本の試験片を用いて得られたCTOD(δc)値の最低値が0.1mmを超える温度(℃)である。なお、CTOD試験における板厚の影響を考慮すると、板厚50~100mmの鋼板の実継手のFLノッチ部(FL部)において、-60℃で安定して0.25mm以上のCTOD(δc)値を確保するためには、上述したようにTδc0.1(FL)を-110℃以下にする必要がある。
 さらに、本発明者らは、IC部のCTOD特性の向上には、鋼中酸素の低減に加え、硬さの低減が有効であることを見出した。
 図2に後述するICHAZ(Intercritical HAZ)相当の再現熱サイクルを受けた試験片のCTOD特性とICHAZ相当の再現HAZの硬さとの関係を示す。また、図3に鋼成分硬さパラメーターCeqHとICHAZ相当の再現HAZの硬さとの関係を示す。
 ここで、図2に示したICHAZ相当の再現HAZ(断面10mm×20mm)のTδc0.1(ICHAZ)が-110℃以下であるためには、HAZ硬さ(10kgfの荷重のビッカース試験)をHv176以下にする必要がある。そのため、図3から、鋼成分硬さパラメーターCeqHを0.235%以下に制御する必要があることが分かる。より硬さを低くするためには、鋼成分硬さパラメーターCeqHは、0.225%以下であることが好ましい。
 なお、靭性の試験方法として、BS5762法(British Standards)のCTOD試験を適用した。また、ICHAZ相当再現熱サイクル条件(Triple cycle)は、以下の通りである。
1st cycle:最高加熱温度950℃(800~500℃間を20secで冷却)
2nd cycle:最高加熱温度770℃(770~500℃間を22secで冷却)
3rd cycle:最高加熱温度450℃(450~300℃間を65secで冷却)
 図4B中に示すように、溶接部2におけるICノッチ8の位置は、母材1とHAZ4との境界のIC部(ICHAZ部)6である。ICノッチによるCTOD試験では、荷重とこのIC部6の開口変位との関係を測定した。
 ここで、鋼成分硬さパラメーターCeqHは、鋼の特性(硬さ)と成分との重回帰によって得られた経験式である。
CeqH=[C]+[Si]/4.16+[Mn]/14.9+[Cu]/12.9+[Ni]/105+1.12[Nb]+[V]/1.82・・・(2)
と定義される。なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Nb]、[V]は、鋼中のC、Si、Mn、Cu、Ni、Nb、Vの含有量(質量%)である。例えば、Cuが含有されない場合には、Cu含有量は、0%である。
 上述したようにPCTOD及びCeqHを制限しても、鋼中のそれぞれの合金元素の量を適正に調節しなければ、高強度と優れたCTOD特性とを兼ね備えた鋼材を製造できない。
 以下に、鋼成分の限定範囲と鋼成分の限定理由とを述べる。ここで、記載した%は、質量%である。
 C:0.010~0.065%
 十分な強度を得るために、0.010%以上のCを含有させる必要がある。しかしながら、0.065%超のC含有量[C]では、溶接HAZの特性が劣化し、-60℃のCTOD特性が十分でない。そのため、C含有量[C]の上限は、0.065%である。したがって、C含有量[C]は、0.015%以上0.065%以下である。
 Si:0.05~0.20%
 良好なHAZ靭性を得るため、Si含有量[Si]は、少ないほど好ましい。しかしながら、後述するようにAl含有量[Al]を制限しているため、脱酸上0.05%以上のSi含有量[Si]が必要である。しかしながら、0.20%超のSi含有量[Si]では、HAZ靭性を害するため、Si含有量[Si]の上限は、0.20%である。したがって、Si含有量[Si]は、0.05%以上0.20%以下である。より良好なHAZ靭性を得るために、Si含有量[Si]は、0.15%以下または0.13%以下であることが好ましい。
 Mn:1.52~2.70%
 Mnは、ミクロ組織を適正化する効果が大きい安価な元素である。また、Mnの添加によって、HAZ靭性を害する可能性は少ない。これらの点からは、Mnの添加量が多いのが好ましい。しかしながら、2.70%超のMn含有量では、ICHAZの硬さが増加し、靭性が劣化する。そのため、Mn含有量[Mn]の上限は、2.70%である。また、Mn含有量[Mn]が1.52%未満では、ミクロ組織を向上する効果が少ないので、Mn含有量[Mn]の下限は、1.52%である。したがって、Mn含有量[Mn]は、1.52%以上2.70%以下である。よりHAZ靭性を改善するためには、Mn含有量[Mn]は、1.55%又は1.6%以上であることが好ましく、より好ましくは、1.7%以上である。
 Ni:0.10~1.50%
 Niは、HAZ靭性をあまり劣化させず、母材の強度及び靭性を向上させ、ICHAZの硬さをあまり増加させない元素である。しかしながら、Niは、高価な合金元素であり、鋼中に過剰に含まれると表面瑕を生じさせることがある。そのため、Ni含有量[Ni]の上限は、1.50%である。一方で、上述のNi添加の効果を十分に享受するためには、少なくとも0.10%のNiを含有する必要がある。したがって、Ni含有量[Ni]は、0.10%以上1.50%以下である。ICHAZの硬さをあまり増加させることなく、母材の強度及び靭性をより向上するために、Ni含有量[Ni]は、0.20%以上であることが好ましく、0.30%以上であることがより好ましい。さらに、鋼材に耐候性を付与するためには、Ni含有量[Ni]は、0.40%以上であることが好ましく、0.50%以上であることがさらに好ましい。また、表面疵をより確実に防止するためには、Ni含有量[Ni]は、1.20%以下であることが好ましく、1.0%以下であることがより好ましい。他元素の添加により母材の強度及び靭性を十分に確保できる場合には、より経済性を確保するために、Ni含有量[Ni]は、0.80%以下であることが最も好ましい。なお、後述するように、Cuを必要に応じ添加する場合には、鋳片のCu割れを抑制するために、Ni含有量[Ni]は、Cu含有量[Cu]の1/2以上であることが好ましい。
 また、ICHAZ靭性を確実に確保した上で母材の強度・靭性を確保するためには、Mn含有量[Mn]とNi含有量[Ni]の合計量を調整することがさらに好ましい。より確実にICHAZ靭性を確保するには、Mnが1.52~2.0%の場合は、Niを0.5~1.50%に制限することが好ましい。同様に、Mnが2.0~2.7%の場合は、Niを0.10~0.50%に制限することが好ましい。
 P:0.008%以下(0%を含む)
 S:0.005%以下(0%を含む)
 P及びSは、靭性を低下させ、不可避的不純物として含有される元素である。そのため、P含有量[P]及びS含有量[S]は、母材靭性及びHAZ靭性を確保するためともに低下させる必要がある。しかしながら、工業生産的な制約があるため、P含有量[P]の上限及びS含有量[S]の上限は、それぞれ0.008%及び0.005%である。より良好なHAZ靭性を得るために、P含有量[P]を0.005%以下に制限することが好ましく、S含有量[S]を0.003%以下に制限することが好ましい。
 Al:0.004%以下(0%を含まない)
 Al含有量[Al]は、Ti酸化物を生成させる必要があるため、少ないほど好ましい。しかしながら、工業生産的に制約があるため、Al含有量[Al]の上限は、0.004%である。
 Ti:0.005~0.015%
 Tiは、Ti酸化物を生成させミクロ組織を微細化させる。しかしながら、Ti含有量[Ti]が多すぎると、Tiは、TiCを生成してHAZ靭性を劣化させる。そのため、Ti含有量[Ti]は、0.005%以上0.015%以下が適正な範囲である。よりHAZ靭性を改善するために、Ti含有量[Ti]は、0.013%以下であることが好ましい。
 Nb:0.010%以下(0%を含む)
 Nbは、不純物として含有される場合があり、母材の強度及び靭性を向上させるが、HAZ靭性を低下させる。HAZ靭性が著しく低下しないNb含有量[Nb]の範囲は、0.010%以下である。そのため、Nb含有量[Nb]を0.010%以下に制限する。よりHAZ靭性を改善させるためには、0.002%以下(0%を含む)に制限することが好ましい。
 O:0.0010~0.0045%
 O含有量[O]は、FL部のIGF生成核としてのTiの酸化物の生成量を確保するために、0.0010%以上であることが必須である。しかし、O含有量[O]が多すぎると、酸化物のサイズおよび個数が過大になるためIC部のCTOD特性が劣化する。そのため、O含有量[O]を0.0015%以上0.0045%以下の範囲に制限した。より良好なHAZ靭性を得るために、O含有量[O]は、0.0030%以下であることが好ましく、0.0028%以下であることがより好ましい。
 N:0.002~0.006%
 Nは、Ti窒化物を生成させるために必要である。しかしながら、N含有量[N]が0.002%未満では、Ti窒化物を生成させる効果が少ない。また、N含有量[N]が0.006%超では、鋼片製造時に表面疵が発生するため、N含有量[N]の上限は、0.006%である。したがって、N含有量[N]は、0.002%以上0.006%以下である。より良好なHAZ靭性を得るために、N含有量[N]は、0.005%以下であることが好ましい。
 Mg:0.0003~0.003%
 Mgは本発明の重要な合金元素であり、主に脱酸剤あるいは硫化物生成元素として添加される。Mg含有量[Mg]が0.003%以下になるように添加されると、粗大な酸化物あるいは硫化物が生成せず、好ましい母材およびHAZ靭性が得られる。また、ピニング粒子として必要な酸化物の生成を十分に期待するため、0.0003%以上の添加が必要である。従って、Mg含有量[Mg]の範囲を0.0003~0.003%とする。
 Ca:0.0003~0.003%
 Caは硫化物を生成することにより伸長MnSの生成を抑制し、鋼材の板厚方向の特性、特に耐ラメラテア性を改善する。さらに、CaはMgと同様な効果を有していることから、本発明の重要な元素である。上記の効果を十分に得るため、0.0003%以上の添加が必要である。また、Ca含有量[Ca]を0.003%以下に制限すると、Caの粗大酸化物個数が抑制され、超微細な酸化物あるいは硫化物の個数が十分に得られる。
 以上のMgとCaは同時に添加されるが、いずれも強力な脱酸元素である。MgとCaの合計含有量を0.0030%以下にした場合、粗大な介在物の生成をより効果的に抑制でき、余裕をもって十分な靭性を得られる。
 Cu:0.50%以下(0%を含む)
 Cuは、HAZ靭性をあまり劣化させず、母材の強度及び靭性を向上させ、ICHAZの硬さもあまり増加させない元素である。CやMn、Ni等の元素により鋼材の強度を十分に確保すれば、Cuを必ずしも添加する必要はない。強度等の要請に応じ、Cuを添加してもよい。しかし、Cuは、比較的高価な合金元素であり、Niに比べると上述の効果が小さく、多過ぎる添加によって鋳片のCu割れが生じる危険性を高める。そのため、Cu含有量[Cu]を0.50%以下に制限する。必要に応じて、0.24%以下又は0.10%以下に制限してもよい。加えて、鋼中にCuを添加したり、不純物としてCuを含んだりする場合には、鋳片のCu割れを防止するために、Cu含有量[Cu]をNi含有量[Ni]の2倍以下にすることが好ましい。また、Cuのフェライト(αFe)中への固溶限が小さいため、溶接の熱履歴によっては溶接HAZ中にεCuが析出し、低温靭性を低下させる可能性がある。Cu含有量[Cu]を0.03%以下にすれば、製品の低温靭性をより確実に担保できる。特に大熱量の溶接方法を用いる場合等は、Cu含有量[Cu]を0.01%以下にすれば、さらに確実に低温靭性が確保できる。
 V:0.020%以下(0%を含む)
 Vは、母材強度を向上させるために有効である。そのため、必要に応じ、Vを添加してもよい。しかし、0.020%を超えるVを添加すると、HAZ靭性が大きく低下する。そのため、V含有量[V]を、0.020%以下に制限する。HAZ靭性の低下を十分に抑えるためには、V含有量[V]を0.010%に制限することが好ましい。CやMn、Ni等の元素により鋼材の強度を十分に確保すれば、Vを必ずしも添加する必要はない。強度上の理由から選択的にVを添加する場合であっても、V含有量[V]を極力少なく抑えることが好ましい。したがって、V含有量[V]は、0.005%以下であることがより好ましい。
 本発明の溶接用鋼材は、上記成分を含有または制限し、残部が鉄および不可避的不純物を含む。しかしながら、本発明の鋼板には、上記成分の他に、鋼板自体の耐食性及び熱間加工性を一段と改善する目的で、あるいはスクラップ等の副原料からの不可避的不純物として、他の合金元素を含有してもよい。ただし、上記成分(Ni等)の上記効果(母材の靭性の向上等)を十分に発揮させるために、他の各合金元素(Cr、Mo、B、Ca、Mg、Sb、Sn、As、REM)を以下のように制限することが好ましい。これらの各元素の含有量は、0%を含む。
 CrはHAZ靭性を低下させるため、Cr含有量[Cr]は、0.1%以下であることが好ましく、0.05%以下であることがより好ましく、0.02%以下であることが最も好ましい。
 MoはHAZ靭性を低下させるため、Mo含有量[Mo]は、0.05%以下であることが好ましく、0.03%以下であることがより好ましく、0.01%以下であることが最も好ましい。
 BはHAZ硬さを高め、HAZ靭性を低下させるため、B含有量[B]は、0.0005%以下であることが好ましく、0.0003%以下であることがより好ましく、0.0002%以下であることが最も好ましい。
 SbはHAZ靭性を損なうため、Sb含有量[Sb]は、0.005%以下であることが好ましく、0.003%以下であることがより好ましく、0.001%以下であることが最も好ましい。
 SnはHAZ靭性を損なうため、Sn含有量[Sn]は、0.005%以下であることが好ましく、0.003%以下であることがより好ましく、0.001%以下であることが最も好ましい。
 AsはHAZ靭性を損なうため、As含有量[As]は、0.005%以下であることが好ましく、0.003%以下であることがより好ましく、0.001%以下であることが最も好ましい。
 REMはTi酸化物の生成を抑制する効果があるため、REM含有量[REM]は、0.005%以下であることが好ましく、0.003%以下であることがより好ましく、0.001%以下であることが最も好ましい。
 上述したように、本発明の溶接用鋼材は、鋼成分として上記成分を含有または制限し、残部が鉄および不可避的不純物からなる。しかしながら、本発明の溶接用鋼材は、構造材料として使用されるため、鋼材の最小寸法(例えば、板厚)は、6mm以上であることが好ましい。構造材料としての用途を考慮すると、鋼材の最小寸法(例えば、板厚)は、100mm以下であってもよい。
 本発明の溶接用鋼材鋼の製造方法では、上記のように各元素の含有量及び各パラメーター(PCTOD及びCeqH)を限定した鋼を使用する。
 本発明の溶接用鋼材の製造方法では、連続鋳造法で上述の鋼(溶鋼)からスラブ(鋳片)を製造する。連続鋳造法では、溶鋼の冷却速度(凝固速度)が速く、スラブ中に微細なTi酸化物とTi窒化物とを多量に生成することが可能である。
 スラブを圧延する際には、スラブの再加熱温度を950℃以上1100℃以下にする必要がある。1100℃を超える再加熱温度では、Ti窒化物が粗大化して母材の靭性が劣化し、HAZ靭性を改善することが難しい。
 また、950℃未満の再加熱温度では、圧延の負荷が大きく、生産性が阻害される。そのため、再加熱温度の下限は、950℃である。したがって、950℃以上1100℃以下の温度で圧延を行う必要がある。
 つぎに、再加熱後には、加工熱処理を行う。加工熱処理では、鋼成分に応じた狭い範囲に圧延温度を制御した後、必要に応じて水冷を施す。この加工熱処理により、オーステナイト粒の微細化及びミクロ組織の微細化をおこなうことができ、鋼材の強度及び靭性を改善させることができる。圧延によって、最終的な鋼材(例えば、厚鋼板)の厚み(最小寸法)が6mm以上となるように制御されることが好ましい。
 この加工熱処理によって、溶接時のHAZ靭性だけでなく、母材の靭性が十分な鋼材を製造することができる。
 加工熱処理の方法としては、例えば、制御圧延による方法、制御圧延と加速冷却とを組み合わせる方法(制御圧延-加速冷却)、圧延後直接焼入れし焼戻す方法(圧延直後焼入れ-焼戻し)が挙げられる。この加工熱処理の方法は、制御圧延と加速冷却とを組み合わせる方法であることが好ましい。なお、この鋼材を製造後、脱水素や強度最適化などの目的でAr変態点以下の温度に再加熱しても、鋼材の特性は、損なわれない。
 以下、実施例及び比較例に基づいて本発明を説明する。
 転炉、連続鋳造、厚板(圧延)の工程を経て、種々の鋼成分の厚鋼板を製造し、これらの厚鋼板について母材強度の引張試験及び溶接継手のCTOD試験を実施した。
 CTOD試験に使用する溶接継手は、一般的な試験溶接として用いられている潜弧溶接(SAW)法によって、4.5~5.0kJ/mmの溶接入熱で作製された。図4A及び4Bに示すように、この溶接継手のFL部5は、溶接溶け込み線(FL)9が厚鋼板の端面に対して略垂直になるようにK開先を用いて形成されている。
 CTOD試験において、t(板厚)×2tの断面サイズの試験片を使用し、この試験片に50%疲労亀裂に対応するノッチを形成した。ノッチ位置(FLノッチ7及びICノッチ8)は、図4A及び4Bに示すように、FL部(WM3とHAZ4との境界)5またはIC部(HAZ4とBM1との境界)6である。CTOD試験では、FLノッチ7とICノッチ8とのそれぞれについて、-60℃で5本の試験(計10回)を実施した。
 表1及び表2に鋼の化学成分を示し、表3及び4に厚鋼板(母材)の製造条件と母材(BM)の特性と溶接継手の特性とを示す。
 また、表3及び4中の熱処理法の記号を以下に示す。
CR:制御圧延(鋼材の強度及び靭性を改善するために最適な温度域での圧延)
ACC:制御圧延-加速冷却(制御圧延後400℃~600℃の温度域まで鋼材を水冷し、放冷)
DQ:圧延直後焼入れ-焼戻し(圧延直後に200℃以下の温度まで鋼材を水冷した後、焼戻し)
 また、表3及び4中の溶接継手のCTOD試験結果において、δc(av)は、5本の試験のCTOD値の平均値を、δc(min)は、5本の試験のうちのCTOD値の最低値を示す。
 実施例1~7及び15~29では、降伏強度(YS)が430N/mm(MPa)以上、引張強度が502N/mm(MPa)以上であり、母材強度が十分であった。また、-60℃のCTOD値(δc)について、FLノッチにおけるCTOD値の最小値δc(min)が0.42mm以上、ICノッチにおけるCTOD値の最小値δc(min)が0.60mm以上であり、破壊靭性に優れていた。
 これに対し、比較例では、実施例と同等の強度を有するが、実施例と比べてCTOD値が劣り、厳しい環境下で使用される鋼材として適切でない。
 比較例8及び30では、鋼中のC含有量が高く、鋼成分パラメーターPCTOD及び鋼成分硬さパラメーターCeqHも高かった。そのため、FLノッチのCTOD値とICノッチのCTOD値の両方が低かった。
 比較例9,12~14,及び30,31,34,35では、鋼成分硬さパラメーターCeqHが高かった。そのため、特にICノッチのCTOD値が低かった。
 比較例10及び32では、鋼中のAl含有量が高かった。そのため、特にFL部の組織制御が不十分であり、FLノッチのCTOD値が低かった。
 比較例13及び36では、鋼中のNb含有量が高かった。そのため、特にICノッチのCTOD値が低かった。
 比較例12及び34では、鋼中のSi含有量が高く、鋼成分硬さパラメーターCeqHが高かった。そのため、特にICノッチのCTOD値が低かった。
 比較例14及び35では、鋼中のV含有量が高く、鋼成分パラメーターPCTOD及び鋼成分硬さパラメーターCeqHも高かった。そのため、FLノッチのCTOD値とICノッチのCTOD値の両方が低かった。
 比較鋼10はAl量が高いため、比較鋼11はMg、Caが無添加のため、比較鋼12はSi量が高いため、比較鋼13はMg+Ca量が過剰かつNb量も過剰なためCeqHも高いため、比較鋼14はCaが過剰かつV量が過剰なためPCTODおよびCeqHが高いために、いずれもCTOD値が低い値となっている。
 比較鋼31は、Mn量が過剰でCeqH値が高いため、ICノッチのCTOD値が低い値となっている。
 比較鋼32はAl量が高いため、PCTODおよびCeqH値は適正であるが、FL近傍の組織制御が不十分となってFLノッチのCTOD値が低い。
 比較鋼33はMg+Ca量が過剰、かつPCTODおよびCeqH値も高いため、FL、ICノッチともCTOD値が低い値である。
 比較鋼34はSi量が過剰で、Mg、Caも無添加であり、CeqH値も高いため、FL、ICノッチともCTOD値が低い値である。
 比較鋼35はV量が過剰なため、比較鋼22はNb量が過剰なため、CeqHが高くなり、特にICノッチのCTOD値が低い値となっている。
 上述の比較例8~14及び30~38では、-60℃のCTOD値(δc)について、FLノッチにおけるCTOD値の最小値δc(min)が0.43mm未満、ICノッチにおけるCTOD値の最小値δc(min)が0.60mm未満であり、破壊靭性が十分でなかった。
 表1~表4中の鋼成分硬さパラメーターCeqHとIC部における-60℃でのCTOD(δc)値との関係を纏めた結果を図5に示す。図5に示すように、鋼中の各成分及び鋼成分パラメーターPCTODが上記条件を満足する場合には、鋼成分硬さパラメーターCeqHを0.235%以下に抑えることによって、ICノッチにおけるCTOD値の最小値δc(min)が0.25mm以上の鋼材を製造することができた。なお、鋼成分硬さパラメーターCeqHが0.235%以下であっても、鋼中の各成分及び鋼成分パラメーターPCTODが上記条件を満足しない場合には、CTOD値の最小値δc(min)が0.25mm以上の鋼材を製造することができなかった(例えば、比較例8及び37)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明によると、小入熱から中入熱までの溶接における溶接熱影響部のCTOD特性が優れた溶接用鋼材およびその製造方法を提供することができる。

Claims (4)

  1.  質量%で、
     C含有量[C]が、0.010%以上0.065%以下のCと、
     Si含有量[Si]が、0.05%以上0.20%以下のSiと、
     Mn含有量[Mn]が、1.52%以上2.70%以下のMnと、
     Ni含有量[Ni]が、0.10%以上1.50%以下のNiと、
     Ti含有量[Ti]が、0.005%以上0.015%以下のTiと、
     O含有量[O]が、0.0010%以上0.0045%以下のOと、
     N含有量[N]が、0.002%以上0.006%以下のNと、
     Mg含有量[Mg]が、0.0003%以上0.003%以下のMgと、
     Ca含有量[Ca]が、0.0003%以上0.003%以下のCaと、
     を含有し、残部が鉄および不可避的不純物を含み、
     P含有量[P]を0.008%以下、
     S含有量[S]を0.005%以下、
     Al含有量[Al]を0.004%以下、
     Nb含有量[Nb]を0.010%以下、
     Cu含有量[Cu]を0.50%以下、
     V含有量[V]を0.020%以下
     に制限し、
     鋼成分パラメーターPCTODが、
     PCTOD=[C]+[V]/3+[Cu]/22+[Ni]/67・・・(1)
     と定義され、
     鋼成分硬さパラメーターCeqHが、
     CeqH=[C]+[Si]/4.16+[Mn]/14.9+[Cu]/12.9+[Ni]/105+1.12[Nb]+[V]/1.82・・・(2)
     と定義されるとき、
     前記PCTODが0.065%以下、かつ、前記CeqHが0.235%以下であることを特徴とする溶接用鋼材。
  2.  請求項1に記載の溶接用鋼材であって、
     Cu含有量[Cu]を0.03以下
     にさらに制限することを特徴とする溶接用鋼材。
  3.  MgとCaの合計含有量を0.0030%以下にさらに制限することを特徴とする請求項1または2に記載の溶接用鋼材。
  4.  請求項1または2に記載の成分のスラブを連続鋳造により製造し、
     950~1100℃の温度に加熱して加工熱処理する、
     ことを特徴とする溶接用鋼の製造方法。
PCT/JP2010/003435 2009-05-21 2010-05-21 溶接用鋼材およびその製造方法 WO2010134353A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2011146832/02A RU2470085C9 (ru) 2009-05-21 2010-05-21 Сталь для сварной конструкции и способ ее получения
KR1020117009636A KR101160028B1 (ko) 2009-05-21 2010-05-21 용접용 강재 및 그 제조 방법
CN2010800030774A CN102197154A (zh) 2009-05-21 2010-05-21 焊接用钢材及其制造方法
EP20100777589 EP2400041B1 (en) 2009-05-21 2010-05-21 Steel material for welding and method for producing same
CA2757223A CA2757223C (en) 2009-05-21 2010-05-21 Steel for welded structure and producing method thereof
BRPI1014830-2A BRPI1014830B1 (pt) 2009-05-21 2010-05-21 Aço para estrutura soldada
US13/138,790 US8920713B2 (en) 2009-05-21 2010-05-21 Steel for welded structure and producing method thereof
JP2010536248A JP4705696B2 (ja) 2009-05-21 2010-05-21 溶接用鋼材およびその製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-123428 2009-05-21
JP2009123428 2009-05-21
JP2009-124614 2009-05-22
JP2009124614 2009-05-22
JP2009192387 2009-08-21
JP2009-192387 2009-08-21

Publications (1)

Publication Number Publication Date
WO2010134353A1 true WO2010134353A1 (ja) 2010-11-25

Family

ID=43126042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003435 WO2010134353A1 (ja) 2009-05-21 2010-05-21 溶接用鋼材およびその製造方法

Country Status (10)

Country Link
US (1) US8920713B2 (ja)
EP (1) EP2400041B1 (ja)
JP (1) JP4705696B2 (ja)
KR (1) KR101160028B1 (ja)
CN (1) CN102197154A (ja)
BR (1) BRPI1014830B1 (ja)
CA (1) CA2757223C (ja)
RU (1) RU2470085C9 (ja)
TW (1) TWI365915B (ja)
WO (1) WO2010134353A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013256699A (ja) * 2012-06-13 2013-12-26 Nippon Steel & Sumitomo Metal Corp 溶接性、溶接熱影響部靭性に優れた厚手高強度鋼板およびその製造方法
EP2784168A4 (en) * 2011-11-25 2015-11-11 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL FOR WELDING
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
KR101488633B1 (ko) * 2012-12-13 2015-01-30 신닛테츠스미킨 카부시키카이샤 용접용 강재
EP3447162B1 (en) * 2016-04-21 2020-12-30 Nippon Steel Corporation Thick steel plate
KR101899694B1 (ko) * 2016-12-23 2018-09-17 주식회사 포스코 저온 충격인성 및 ctod 특성이 우수한 후강판 및 그 제조방법
CN108103398B (zh) * 2017-12-07 2021-06-25 新疆八一钢铁股份有限公司 一种460Mpa级高强度高耐候钢板的生产方法
CN112647020A (zh) * 2020-12-11 2021-04-13 贵州电网有限责任公司 一种耐候钢铁塔及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278653A (ja) * 1994-04-14 1995-10-24 Nippon Steel Corp 溶接熱影響部の低温靱性が優れた鋼の製造法
JP2000096139A (ja) * 1998-09-25 2000-04-04 Nippon Steel Corp 溶接熱影響部の低温靭性に優れた鋼板
JP2001323336A (ja) * 2000-05-16 2001-11-22 Nippon Steel Corp 溶接熱影響部の低温靭性に優れた高強度鋼板
JP2008163446A (ja) * 2006-12-06 2008-07-17 Jfe Steel Kk 大入熱溶接用鋼材

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653594B2 (ja) 1991-12-18 1997-09-17 新日本製鐵株式会社 溶接熱影響部靭性の優れた厚鋼板の製造方法
RU2136775C1 (ru) * 1995-01-26 1999-09-10 Ниппон Стил Корпорейшн Высокопрочная свариваемая сталь и ее варианты
JPH093597A (ja) 1995-06-21 1997-01-07 Nippon Steel Corp 溶接熱影響部靱性の優れた低温用鋼材およびその製造方法
JPH093590A (ja) 1995-06-21 1997-01-07 Nippon Steel Corp 酸化物分散強化フェライト系耐熱鋼板及びその製造方法
JP3256118B2 (ja) 1995-12-06 2002-02-12 新日本製鐵株式会社 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
JP3378433B2 (ja) * 1996-04-12 2003-02-17 新日本製鐵株式会社 溶接熱影響部靭性の優れた鋼板の製造方法
JP3408385B2 (ja) 1996-04-17 2003-05-19 新日本製鐵株式会社 溶接熱影響部靭性の優れた鋼
RU2135622C1 (ru) * 1996-12-16 1999-08-27 Ниппон Стил Корпорейшн Сталь, имеющая высокую ударную вязкость в зоне термического воздействия при сварке
JP4041201B2 (ja) 1997-02-28 2008-01-30 新日本製鐵株式会社 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
CA2231985C (en) 1997-03-26 2004-05-25 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
DZ2535A1 (fr) 1997-06-20 2003-01-08 Exxon Production Research Co Procédé perfectionné pour la liquéfaction de gaz naturel.
CN1087357C (zh) 1997-07-28 2002-07-10 埃克森美孚上游研究公司 具有良好韧性的超高强度、可焊接、基本无硼的钢
US6248191B1 (en) 1997-07-28 2001-06-19 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
JP3749616B2 (ja) 1998-03-26 2006-03-01 新日本製鐵株式会社 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
RU2198771C2 (ru) 1998-05-14 2003-02-20 ЭксонМобил Апстрим Ресерч Компани Сверхвысокопрочные криогенные сварные соединения
JP4355866B2 (ja) 1999-06-08 2009-11-04 住友金属工業株式会社 溶接熱影響部特性に優れた鋼材およびその製造方法
KR100430067B1 (ko) 1999-10-12 2004-05-03 신닛뽄세이테쯔 카부시키카이샤 Haz 인성의 입열 의존성이 없는 용접 구조물용 강과 그 제조방법
JP3699657B2 (ja) 2000-05-09 2005-09-28 新日本製鐵株式会社 溶接熱影響部のCTOD特性に優れた460MPa以上の降伏強度を有する厚鋼板
EP1221493B1 (en) 2000-05-09 2005-01-12 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE
JP2002030380A (ja) 2000-07-12 2002-01-31 Nippon Steel Corp 溶接継手靭性の優れた高張力鋼とその製造方法
JP3968011B2 (ja) 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
JP3817216B2 (ja) 2002-11-15 2006-09-06 新日本製鐵株式会社 溶接熱影響部の靭性に優れた鋼材および鋼溶接部材
JP4299754B2 (ja) * 2004-02-13 2009-07-22 新日本製鐵株式会社 大入熱溶接熱影響部の低温靭性に優れた厚手高強度Ni含有鋼材
JP4660250B2 (ja) * 2004-04-07 2011-03-30 新日本製鐵株式会社 大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板
JP4303703B2 (ja) 2005-06-21 2009-07-29 新日本製鐵株式会社 溶接熱影響部の破壊靭性に優れた鋼及びその製造方法
CN100594250C (zh) * 2006-12-20 2010-03-17 新日本制铁株式会社 焊接热影响区的韧性优良的钢
JP4751341B2 (ja) 2007-01-11 2011-08-17 新日本製鐵株式会社 溶接熱影響部のctodが優れた鋼およびその製造方法
WO2009072663A1 (ja) 2007-12-07 2009-06-11 Nippon Steel Corporation 溶接熱影響部のctod特性が優れた鋼およびその製造方法
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278653A (ja) * 1994-04-14 1995-10-24 Nippon Steel Corp 溶接熱影響部の低温靱性が優れた鋼の製造法
JP2000096139A (ja) * 1998-09-25 2000-04-04 Nippon Steel Corp 溶接熱影響部の低温靭性に優れた鋼板
JP2001323336A (ja) * 2000-05-16 2001-11-22 Nippon Steel Corp 溶接熱影響部の低温靭性に優れた高強度鋼板
JP2008163446A (ja) * 2006-12-06 2008-07-17 Jfe Steel Kk 大入熱溶接用鋼材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2400041A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding
EP2784168A4 (en) * 2011-11-25 2015-11-11 Nippon Steel & Sumitomo Metal Corp STEEL MATERIAL FOR WELDING
JP2013256699A (ja) * 2012-06-13 2013-12-26 Nippon Steel & Sumitomo Metal Corp 溶接性、溶接熱影響部靭性に優れた厚手高強度鋼板およびその製造方法

Also Published As

Publication number Publication date
CA2757223C (en) 2013-03-05
JPWO2010134353A1 (ja) 2012-11-08
RU2470085C1 (ru) 2012-12-20
RU2470085C9 (ru) 2013-09-20
CN102197154A (zh) 2011-09-21
BRPI1014830A2 (pt) 2016-09-27
TW201100561A (en) 2011-01-01
US20120027637A1 (en) 2012-02-02
EP2400041A1 (en) 2011-12-28
KR20110060959A (ko) 2011-06-08
US8920713B2 (en) 2014-12-30
EP2400041B1 (en) 2015-05-20
CA2757223A1 (en) 2010-11-25
EP2400041A4 (en) 2012-10-17
KR101160028B1 (ko) 2012-06-25
BRPI1014830B1 (pt) 2022-09-27
TWI365915B (en) 2012-06-11
JP4705696B2 (ja) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4705696B2 (ja) 溶接用鋼材およびその製造方法
JP4700769B2 (ja) 溶接用鋼材およびその製造方法
JP5079419B2 (ja) 溶接熱影響部の靱性が優れた溶接構造物用鋼とその製造方法および溶接構造物の製造方法
JPWO2018199145A1 (ja) 高Mn鋼およびその製造方法
WO2013051231A1 (ja) 溶接熱影響部の低温靭性に優れた高張力鋼板およびその製造方法
JPWO2009072663A1 (ja) 溶接熱影響部のctod特性が優れた鋼およびその製造方法
JP6245352B2 (ja) 高張力鋼板およびその製造方法
JP2011202214A (ja) 多層溶接部の低温靭性に優れた厚肉高張力鋼板およびその製造方法
JP2012172243A (ja) 靭性に優れる高張力鋼板とその製造方法
JP2012172242A (ja) 靭性に優れる高張力鋼板とその製造方法
KR101937005B1 (ko) 용접 조인트
JP2012188749A (ja) 多パス溶接部の靭性に優れた厚鋼板および多パス溶接継手
WO2011043287A1 (ja) 強度、延性の良好なラインパイプ用鋼およびその製造方法
JP2009161824A (ja) 高降伏強度・高靭性厚鋼板の製造方法
JP5126790B2 (ja) 耐疲労亀裂進展特性に優れた鋼材およびその製造方法
JP5811044B2 (ja) 溶接性、溶接熱影響部靭性に優れた厚手高強度鋼板およびその製造方法
JP2001355037A (ja) 破壊靱性に優れた高強度鋼材
KR20150049660A (ko) 고강도 강판 제조 방법 및 이를 이용한 고강도 강관

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003077.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010536248

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117009636

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010777589

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13138790

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2757223

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011146832

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014830

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014830

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110928