WO2010134323A1 - 溶接用鋼材およびその製造方法 - Google Patents

溶接用鋼材およびその製造方法 Download PDF

Info

Publication number
WO2010134323A1
WO2010134323A1 PCT/JP2010/003344 JP2010003344W WO2010134323A1 WO 2010134323 A1 WO2010134323 A1 WO 2010134323A1 JP 2010003344 W JP2010003344 W JP 2010003344W WO 2010134323 A1 WO2010134323 A1 WO 2010134323A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
less
steel
ctod
welding
Prior art date
Application number
PCT/JP2010/003344
Other languages
English (en)
French (fr)
Inventor
渡部義之
福永和洋
児島明彦
植森龍治
千々岩力雄
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BRPI1007386A priority Critical patent/BRPI1007386A2/pt
Priority to BR122017016259-4A priority patent/BR122017016259B1/pt
Priority to CN2010800046556A priority patent/CN102282281B/zh
Priority to KR1020117016374A priority patent/KR101160790B1/ko
Priority to EP10777561.1A priority patent/EP2385149B1/en
Priority to US13/138,119 priority patent/US8668784B2/en
Priority to JP2010539648A priority patent/JP4700769B2/ja
Priority to CA2749154A priority patent/CA2749154C/en
Publication of WO2010134323A1 publication Critical patent/WO2010134323A1/ja
Priority to US14/075,342 priority patent/US20140065008A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to a welding steel material excellent in CTOD characteristics of a weld heat affected zone (HAZ) in welding from small heat input to medium heat input, and a method for producing the same.
  • the present invention relates to a steel material for welding with excellent CTOD characteristics of the FL part and the IC part where the toughness is most deteriorated in welding from small heat input to medium heat input, and a manufacturing method thereof.
  • the CTOD characteristics of the weld heat affected zone are as follows: FL part [Fusion Line: boundary between WM (welded metal) and HAZ (weld heat affected zone)] and IC part [Intercritical HAZ: HAZ and BM (base material)]
  • FL part Fusion Line: boundary between WM (welded metal) and HAZ (weld heat affected zone)
  • IC part Intercritical HAZ: HAZ and BM (base material)
  • the test results at two positions (notch portions) of [Boundary of] are evaluated. However, so far, only the FL portion, which has been considered to have the lowest CTOD characteristics, has been evaluated.
  • the CTOD characteristic of the FL part is sufficient, the CTOD characteristic of the IC part is also sufficient, so it was not necessary to evaluate the CTOD characteristic of the IC part.
  • a relatively large amount of O is contained.
  • an element that stabilizes austenite and enhances hardenability is added in a certain amount or more.
  • the IC part of the steel material in a harsh environment of about ⁇ 60 ° C. while ensuring the properties required for the structural material for welding (for example, the strength and toughness of the base material and the CTOD value of the FL part). It is difficult to secure the CTOD value of.
  • the present invention provides a CTOD characteristic of the FL part at ⁇ 60 ° C. in welding (for example, multi-layer welding) from small heat input to medium heat input (for example, 1.5 to 6.0 kJ / mm at a plate thickness of 50 mm).
  • the present invention provides a high-strength steel material having excellent CTOD (fracture toughness) characteristics in which the CTOD characteristics of the IC portion are sufficient and a method for producing the same.
  • the present inventors diligently studied a method for improving the CTOD characteristics of both the FL portion and the IC portion of the welded portion where the toughness is most deteriorated by welding from small heat input to medium heat input.
  • the present inventors are most important in reducing non-metallic inclusions, and in particular, reducing O (oxygen in steel). I found it essential. Further, the present inventors have found that since intragranular ferrite (IGF) is reduced by reducing O, it is necessary to reduce alloy elements that deteriorate the CTOD characteristics of the FL portion. Furthermore, the present inventors have found that in order to improve the CTOD characteristics of the IC part, it is effective to reduce the hardness in addition to the reduction of oxygen in the steel. Based on the above findings, the present inventors have completed the present invention.
  • IGF intragranular ferrite
  • the gist of the present invention is as follows.
  • C content [C] is 0.015% or more and 0.045% or less
  • Si content [Si] is 0.05% or more and 0.20% or less Si.
  • Ti content [Ti ] Is 0.005% or more and 0.015% or less of Ti
  • O content [O] is 0.0015% or more and 0.0035% or less of O and N content [N] is 0.002.
  • P content [P] is 0.008% or less
  • S content [S] is 0.005% or less
  • Al content [Al] is 0.004% or less
  • Nb content [Nb] is 0.005% or less
  • Cu content [Cu] is 0.24% or less
  • 0.065% steel composition parameter P CTOD is (1) described later or less
  • the steel composition hardness parameter CeqH of (2) described later is 0.235 % Of steel for welding
  • the steel for welding described in (1) above may be in mass%, and the Cu content [Cu] may be 0.03% or less.
  • CTOD ( ⁇ c) value at ⁇ 60 ° C. in the FL part obtained by the CTOD test of BS5762 method and the CTOD ( ⁇ c) value at ⁇ 60 ° C. in the IC part are both 0.25 mm or more. Also good.
  • a steel slab is produced by continuously casting steel satisfying the steel components described in (1) or (2) above, and the steel slab is heated to a temperature of 950 ° C. or higher and 1100 ° C. or lower, followed by a thermomechanical treatment. A method for manufacturing welding steel.
  • a steel material excellent in HAZ toughness in welding from small heat input to medium heat input can be provided.
  • a steel material excellent in CTOD characteristics (low temperature toughness) of the FL part and the IC part where the toughness is most deteriorated by welding such as multi-layer welding from low heat input to medium heat input can be provided. Therefore, it is possible to provide a steel material having high strength and high toughness for structures used in severe environments such as offshore structures and earthquake resistant buildings.
  • the CTOD of the FL part and the IC part at ⁇ 60 ° C. in welding from low heat input to medium heat input (for example, 1.5 to 6.0 kJ / mm at a plate thickness of 50 mm).
  • medium heat input for example, 1.5 to 6.0 kJ / mm at a plate thickness of 50 mm.
  • O oxygen in steel
  • an oxide-based nonmetallic inclusion represented by Ti oxide is used as a transformation nucleus of intragranular ferrite (IGF). It was necessary to add some amount of O. According to the research of the present inventor, in order to improve the CTOD characteristics of the FL part and the IC part at ⁇ 60 ° C., it is necessary to reduce oxide-based nonmetallic inclusions.
  • FIG. 1 shows the relationship between the CTOD characteristics (T ⁇ c0.1 (FL) ) of the FL equivalent reproduction HAZ and the steel component parameter P CTOD .
  • the steel component parameter P CTOD represented by the formula (1) is used to test a number of molten steels in a laboratory and analyze the CTOD characteristics (T ⁇ c0.1 (FL) ) of the HA equivalent reproduction HAZ and the steel components. This is an empirical formula derived as follows.
  • the CTOD characteristic (T ⁇ c0.1 (FL) ) of ⁇ 110 ° C. or lower is the target level (T ⁇ c0.1 ) as a structural steel material based on the knowledge obtained in many experiments. (FL) ⁇ ⁇ 110 ° C.).
  • a CTOD ( ⁇ c) value of 0.25 mm or more can be secured stably at ⁇ 60 ° C. in the FL notch test of an actual joint of a steel sheet having a thickness of 50 to 100 mm. From FIG. 1, it can be seen that, in the FL equivalent reproduction HAZ, in order to make T ⁇ c0.1 (FL) ⁇ 110 ° C. or less, it is necessary to control the steel component parameter P CTOD to 0.065% or less. In addition, as the CTOD ( ⁇ c) value is larger, the toughness (for example, energy absorption due to plastic strain) is higher.
  • the FL equivalent reproduction HAZ is a part corresponding to the heat input amount of the FL part of the test piece subjected to the FL equivalent reproduction thermal cycle shown below.
  • This FL equivalent thermal cycle treatment (triple cycle) was performed on the test piece having a cross section of 10 mm ⁇ 20 mm under the following conditions.
  • 1st cycle Maximum heating temperature 1400 ° C (between 800 and 500 ° C is cooled in 15 seconds)
  • 2nd cycle Maximum heating temperature of 760 ° C (cooling between 760 and 500 ° C in 22 seconds)
  • 3rd cycle Maximum heating temperature 500 ° C (cooling between 500-300 ° C in 60 seconds) As shown in FIG.
  • the position of the FL notch 7 in the welded portion 2 is the FL portion 5 at the boundary between the HAZ 4 and the WM 3.
  • T ⁇ c0.1 (FL) is the temperature at which the lowest value of the obtained CTOD (.delta.c) values obtained using three test pieces for each test temperature exceeds 0.1 mm (° C.).
  • T ⁇ c0.1 (FL) needs to be ⁇ 110 ° C. or lower as described above.
  • the present inventors have found that reducing the hardness in addition to reducing the oxygen in the steel is effective for improving the CTOD characteristics of the IC part.
  • FIG. 2 shows the relationship between the CTOD characteristics of a test piece subjected to a reproduction thermal cycle equivalent to ICHAZ (Intercritical HAZ), which will be described later, and the hardness of the reproduction HAZ equivalent to ICHAZ.
  • FIG. 3 shows the relationship between the steel component hardness parameter CeqH and the hardness of the reproduced HAZ equivalent to ICHAZ.
  • the HAZ hardness (Vickers test with a load of 10 kgf) is It is necessary to make it Hv176 or less. Therefore, it can be seen from FIG. 3 that the steel component hardness parameter CeqH needs to be controlled to 0.235% or less. In order to further reduce the hardness, the steel component hardness parameter CeqH is preferably 0.225% or less.
  • the steel component hardness parameter CeqH is an empirical formula obtained by multiple regression of the properties of the steel (HAZ hardness) and the components.
  • CeqH [C] + [Si] /4.16+ [Mn] /14.9+ [Cu] /12.9+ [Ni] /105+1.12 [Nb] + [V] /1.82 (2 )
  • [C], [Si], [Mn], [Cu], [Ni], [Nb], and [V] are the contents of C, Si, Mn, Cu, Ni, Nb, and V in the steel. (Mass%). For example, when Cu is not contained, the Cu content is 0%.
  • the limitation range of a steel component and the reason for limitation of a steel component are described.
  • the described% is mass%.
  • the CTOD at ⁇ 60 ° C. in the FL part obtained by the CTOD test of BS5762 method ( ⁇ c) ) Value and the CTOD ( ⁇ c) value at ⁇ 60 ° C. in the IC part can each provide a welding steel material of 0.25 mm or more.
  • C 0.015 to 0.045%
  • the C content [C] exceeds 0.045%, the characteristics of the welded HAZ deteriorate, and the CTOD characteristics at ⁇ 60 ° C. are not sufficient. Therefore, the upper limit of the C content [C] is 0.045%. Therefore, the C content [C] is 0.015% or more and 0.045% or less.
  • Si 0.05-0.20%
  • the Si content [Si] the better.
  • the Al content [Al] is limited as will be described later, a Si content [Si] of 0.05% or more is necessary for deoxidation.
  • the Si content [Si] exceeds 0.20%, the HAZ toughness is impaired, so the upper limit of the Si content [Si] is 0.20%. Accordingly, the Si content [Si] is 0.05% or more and 0.20% or less.
  • the Si content [Si] is preferably 0.15% or less.
  • Mn 1.5 to 2.0% Mn is an inexpensive element that has a large effect of optimizing the microstructure. Moreover, there is little possibility of harming HAZ toughness by addition of Mn. Therefore, the larger the amount of Mn added, the better. However, if the Mn content exceeds 2.0%, the hardness of ICHAZ increases and the toughness deteriorates. Therefore, the upper limit of the Mn content [Mn] is 2.0%. Further, when the Mn content [Mn] is less than 1.5%, the effect of improving the microstructure is small, so the lower limit of the Mn content [Mn] is 1.5%. Therefore, the Mn content [Mn] is 1.5% or more and 2.0% or less. In order to further improve the HAZ toughness, the Mn content [Mn] is preferably 1.55% or more, more preferably 1.6% or more, and most preferably 1.7% or more. It is.
  • Ni 0.10 to 1.50%
  • Ni is an element that does not significantly deteriorate the HAZ toughness, improves the strength and toughness of the base material, and does not increase the hardness of ICHAZ.
  • Ni is an expensive alloy element, and if it is excessively contained in steel, it may cause surface defects. Therefore, the upper limit of the Ni content [Ni] is 1.50%.
  • the Ni content [Ni] is 0.10% or more and 1.50% or less.
  • the Ni content [Ni] is preferably 0.20% or more, and is 0.30% or more. It is more preferable that it is 0.40% or 0.51% or more. In order to prevent surface flaws more reliably, the Ni content [Ni] is preferably 1.20% or less, and more preferably 1.0% or less. In the case where the strength and toughness of the base material can be sufficiently secured by adding other elements, the Ni content [Ni] is most preferably 0.80% or less in order to further secure the economy. As will be described later, when Cu is added, the Ni content [Ni] is preferably 1 ⁇ 2 or more of the Cu content [Cu] in order to suppress Cu cracking of the slab. .
  • P and S are elements that reduce toughness and are contained as inevitable impurities. Therefore, it is necessary to reduce both the P content [P] and the S content [S] in order to ensure the base material toughness and the HAZ toughness.
  • the upper limit of P content [P] and the upper limit of S content [S] are 0.008% and 0.005%, respectively.
  • the P content [P] is preferably limited to 0.005% or less
  • the S content [S] is preferably limited to 0.003% or less.
  • Al 0.004% or less (excluding 0%)
  • the Al content [Al] is preferably as small as possible because it is necessary to generate a Ti oxide. However, since there are restrictions on industrial production, the upper limit of the Al content [Al] is 0.004%.
  • Ti 0.005 to 0.015% Ti produces Ti oxide and refines the microstructure. However, when there is too much Ti content [Ti], Ti will produce
  • Nb 0.005% or less (including 0%) Nb may be contained as an impurity and improves the strength and toughness of the base material, but decreases the HAZ toughness.
  • the range of Nb content [Nb] in which the HAZ toughness is not significantly lowered is 0.005% or less. Therefore, the Nb content [Nb] is limited to 0.005% or less. In order to further improve the HAZ toughness, the content is preferably limited to 0.001% or less (including 0%).
  • the O content [O] is essential to be 0.0015% or more in order to secure the amount of Ti oxide generated as IGF nuclei in the FL part.
  • the O content [O] is limited to a range of 0.0015% to 0.0035%.
  • the O content [O] is preferably 0.0030% or less, and more preferably 0.0028% or less.
  • N 0.002 to 0.006% N is necessary to produce Ti nitride.
  • the N content [N] is less than 0.002%, the effect of generating Ti nitride is small.
  • the N content [N] exceeds 0.006%, surface flaws occur during the production of steel slabs, so the upper limit of the N content [N] is 0.006%. Therefore, the N content [N] is 0.002% or more and 0.006% or less.
  • the N content [N] is preferably 0.005% or less.
  • Cu 0.24% or less (including 0%)
  • Cu is an element that does not significantly deteriorate the HAZ toughness, improves the strength and toughness of the base material, and does not increase the hardness of ICHAZ too much. Therefore, you may add Cu as needed.
  • Cu is a relatively expensive alloy element, and the above-mentioned effect is small as compared with Ni, and increases the risk of Cu cracking of the slab due to addition of too much. Therefore, the Cu content [Cu] is limited to 0.24% or less.
  • the Cu content [Cu] is twice the Ni content [Ni] in order to prevent Cu cracking of the slab. The following is preferable.
  • the Cu content [Cu] is preferably limited to 0.20% or less, and more preferably limited to 0.10% or less. If sufficient strength of the steel material is ensured by elements such as C, Mn, and Ni, it is not always necessary to add Cu. Even when Cu is selectively added for reasons of strength, it is preferable to suppress the Cu content [Cu] as much as possible. Therefore, the Cu content [Cu] is most preferably 0.03% or less.
  • V 0.020% or less (including 0%) V is effective for improving the strength of the base material. Therefore, V may be added as necessary. However, if V exceeding 0.020% is added, the HAZ toughness is greatly reduced. Therefore, the V content [V] is limited to 0.020% or less. In order to sufficiently suppress the decrease in HAZ toughness, it is preferable to limit the V content [V] to 0.010%. If the strength of the steel material is sufficiently ensured by elements such as C, Mn, and Ni, it is not always necessary to add V. Even when V is selectively added for reasons of strength, it is preferable to suppress the V content [V] as much as possible. Therefore, the V content [V] is more preferably 0.005% or less.
  • the welding steel material of the present invention contains or restricts the above components, and the balance contains iron and inevitable impurities.
  • the steel plate of the present invention contains, in addition to the above components, other alloy elements for the purpose of further improving the corrosion resistance and hot workability of the steel plate itself, or as an unavoidable impurity from secondary materials such as scrap. May be.
  • other alloy elements Cr, Mo, B, Ca, Mg, Sb, Sn, As, etc.
  • other alloy elements Cr, Mo, B, Ca, Mg, Sb, Sn, As, etc.
  • the content of each of these elements includes 0%.
  • the Cr content [Cr] is preferably 0.1% or less, more preferably 0.05% or less, and 0.02% or less. Most preferred. Since Mo reduces HAZ toughness, the Mo content [Mo] is preferably 0.05% or less, more preferably 0.03% or less, and 0.01% or less. Most preferred. Since B increases HAZ hardness and decreases HAZ toughness, the B content [B] is preferably 0.0005% or less, more preferably 0.0003% or less, and 0.0002. % Is most preferred.
  • the Ca content [Ca] is preferably less than 0.0003%, and more preferably less than 0.0002%. Since Mg has an effect of suppressing the formation of Ti oxide, the Mg content [Mg] is preferably less than 0.0003%, and more preferably less than 0.0002%.
  • the Sb content [Sb] is preferably 0.005% or less, more preferably 0.003% or less, and most preferably 0.001% or less. preferable.
  • the Sn content [Sn] is preferably 0.005% or less, more preferably 0.003% or less, and most preferably 0.001% or less. preferable.
  • the As content [As] is preferably 0.005% or less, more preferably 0.003% or less, and most preferably 0.001% or less. preferable.
  • REM has an effect of suppressing the formation of Ti oxide, the REM content [REM] is preferably 0.005% or less, more preferably 0.003% or less, 0.001 % Is most preferred.
  • the welding steel material of the present invention contains or restricts the above components as steel components, and the balance consists of iron and unavoidable impurities.
  • the minimum dimension (for example, plate thickness) of the steel material is preferably 6 mm or more. In consideration of the use as a structural material, the minimum dimension (for example, plate thickness) of the steel material may be 100 mm or less.
  • a steel material for welding can be produced by the following production method.
  • steel in which the content of each element and each parameter ( PCTOD and CeqH) are limited as described above is used.
  • a slab is manufactured from the above-mentioned steel (molten steel) by a continuous casting method.
  • the cooling rate (solidification rate) of molten steel is high, and a large amount of fine Ti oxide and Ti nitride can be generated in the slab.
  • the reheating temperature of the slab needs to be 950 ° C. or higher and 1100 ° C. or lower.
  • the Ti nitride becomes coarse, the toughness of the base material deteriorates, and it is difficult to improve the HAZ toughness.
  • the lower limit of the reheating temperature is 950 ° C. Therefore, it is necessary to perform reheating at a temperature of 950 ° C. or higher and 1100 ° C. or lower.
  • a processing heat treatment is performed.
  • the rolling temperature is controlled within a narrow range according to the steel components, and then water cooling is performed as necessary.
  • the austenite grains can be refined and the microstructure can be refined, and the strength and toughness of the steel material can be improved.
  • the thickness (minimum dimension) of the final steel material is controlled to be 6 mm or more by rolling.
  • thermomechanical treatment it is possible to produce a steel material having not only the HAZ toughness during welding but also the toughness of the base material.
  • thermomechanical method is preferably a method combining controlled rolling and accelerated cooling. Note that after producing the steel, even when reheated to purposes Ar 3 following transformation point temperature, such as optimization of the dehydrogenation and strength characteristics of the steel is not impaired.
  • Thick steel plates of various steel components were manufactured through the steps of converter, continuous casting, and thick plate (rolling), and the base material strength tensile test and the weld joint CTOD test were performed on these thick steel plates.
  • the welded joint used for the CTOD test was produced with a welding heat input of 4.5 to 5.0 kJ / mm by the submerged arc welding (SAW) method used as a general test welding.
  • SAW submerged arc welding
  • the FL part 5 of this welded joint is formed using a K groove so that the weld penetration line (FL) 9 is substantially perpendicular to the end surface of the thick steel plate.
  • notch position (FL notch 7 and IC notch 8) is the FL portion (boundary between WM3 and HAZ4) 5 or the IC portion (boundary between HAZ4 and BM1) 6, as shown in FIGS. 4A and 4B.
  • five tests were performed at ⁇ 60 ° C. for each of the FL notch 7 and the IC notch 8.
  • Tables 1 and 2 show the chemical components of the steel, and Tables 3 and 4 show the manufacturing conditions of the thick steel plate (base material), the properties of the base material (BM), and the properties of the welded joint.
  • CR Controlled rolling (rolling at the optimum temperature range to improve the strength and toughness of steel)
  • ACC controlled rolling-accelerated cooling (steel material is water-cooled to 400-600 ° C after controlled rolling and allowed to cool)
  • DQ Quenching and tempering immediately after rolling (Steel material is water cooled to 200 ° C or less immediately after rolling and then tempered)
  • ⁇ c (av) is an average value of CTOD values of five tests
  • ⁇ c (min) is a CTOD value of five tests. Indicates the lowest value.
  • the yield strength (YS) is 432N / mm 2 (MPa) or more, a tensile strength of at 500N / mm 2 (MPa) or more, the base material strength was sufficient.
  • the CTOD value ( ⁇ c) at ⁇ 60 ° C. the minimum CTOD value ⁇ c (min) in the FL notch is 0.43 mm or more, and the minimum CTOD value ⁇ c (min) in the IC notch is 0.60 mm or more. Excellent fracture toughness.
  • the comparative example has the same strength as the example, but the CTOD value is inferior to that of the example, and is not suitable as a steel material used in a severe environment.
  • the CTOD value ( ⁇ c) at ⁇ 60 ° C. has a minimum CTOD value ⁇ c (min) in the FL notch of less than 0.25 mm, and the minimum value of the CTOD value in the IC notch ⁇ c (min) was less than 0.25 mm, and fracture toughness was not sufficient.
  • the minimum CTOD value ⁇ c (min) in the FL notch is 0.25 mm or more, but the minimum CTOD value ⁇ c in the IC notch. Since (min) was less than 0.25 mm, fracture toughness was not sufficient.
  • FIG. 5 shows a summary of the relationship between the steel component hardness parameter CeqH in Tables 1 to 4 and the CTOD ( ⁇ c) value at ⁇ 60 ° C. in the IC part.
  • the CTOD value in the IC notch is suppressed by suppressing the steel component hardness parameter CeqH to 0.235% or less.
  • a steel material having a minimum value ⁇ c (min) of 0.25 mm or more could be produced.
  • the minimum value ⁇ c (min) of the CTOD value is Steel materials of 0.25 mm or more could not be manufactured (for example, Comparative Examples 10, 11, 14, 33, 34, and 37).

Abstract

 この溶接用鋼材は、質量%で、C含有量[C]が、0.015%以上0.045%以下のCと、Si含有量[Si]が、0.05%以上0.20%以下のSiと、Mn含有量[Mn]が、1.5%以上2.0%以下のMnと、Ni含有量[Ni]が、0.10%以上1.50%以下のNiと、Ti含有量[Ti]が、0.005%以上0.015%以下のTiと、O含有量[O]が、0.0015%以上0.0035%以下のOと、N含有量[N]が、0.002%以上0.006%以下のNとを含有し、残部が鉄および不可避的不純物を含む。この溶接用鋼材では、P含有量[P]を0.008%以下、S含有量[S]を0.005%以下、Al含有量[Al]を0.004%以下、Nb含有量[Nb]を0.005%以下、Cu含有量[Cu]を0.24%以下、V含有量[V]を0.020%以下に制限し、鋼成分パラメーターPCTODが0.065%以下、かつ、鋼成分硬さパラメーターCeqHが0.235%以下である。

Description

溶接用鋼材およびその製造方法
 本発明は、小入熱から中入熱までの溶接における溶接熱影響部(HAZ)のCTOD特性が優れた溶接用鋼材およびその製造法に関する。特に、小入熱から中入熱までの溶接において最も靭性が劣化するFL部及びIC部のCTOD特性が極めて優れた溶接用鋼材およびその製造方法に関する。
 本願は、2009年5月19日に、日本に出願された特願2009-121128号と2009年5月19日に、日本に出願された特願2009-121129号とに基づき優先権を主張し、その内容をここに援用する。
 近年、厳しい環境で使用される鋼材が要求されている。例えば、北極圏等の寒冷地域で用いられる海洋構造物や耐震性建築物等の鋼構造物に適した高強度の鋼材として、破壊靱性の指標であるCTOD(Crack Tip Opening Displacement)特性が優れた鋼材が要求されている。特に、鋼材の溶接部は、優れたCTOD特性が必要とされる。
 溶接熱影響部(HAZ)のCTOD特性は、FL部[Fusion Line:WM(溶接金属)とHAZ(溶接熱影響部)との境界]およびIC部[Intercritical HAZ:HAZとBM(母材)との境界]の2箇所の位置(ノッチ部)の試験結果によって評価される。しかしながら、これまでは一番低いCTOD特性が得られると考えられてきたFL部のみが評価されていた。
 -20℃程度の試験温度があまり厳しくない条件では、FL部のCTOD特性が十分であれば、IC部のCTOD特性も、十分であるため、IC部のCTOD特性を評価する必要がなかった。
 しかしながら、-60℃程度の厳しい試験条件では、鋼材のIC部のCTOD値が十分でないケースが多く、IC部のCTOD特性を高める必要があった。
 例えば、小入熱から中入熱までの溶接後に厳しい試験温度(例えば、-60℃)でCTOD特性が良好な溶接継手を開示している技術がある(例えば、特許文献1~2参照)。しかしながら、これらの技術には、IC部のCTOD特性が開示されていない。
 上述した技術では、例えば、FL部の粒内変態フェライト(IGF:Intragranular Ferrite)生成のための変態核としてのTiの酸化物の生成量を十分に確保するために、鋼中に比較的多くのOを含有させている。また、例えば、溶接後の組織を微細化するために、オーステナイトを安定化させ焼入れ性を高める元素を一定量以上添加している。しかしながら、これらの方法では、溶接用構造材料として必要とされる特性(例えば、母材の強度や靭性、FL部のCTOD値)を確保しながら、-60℃程度の厳しい環境における鋼材のIC部のCTOD値も確保することは困難である。
日本国特開2007-002271号公報 日本国特開2008-169429号公報
 そこで、本発明は、小入熱から中入熱まで(例えば、板厚50mmで1.5~6.0kJ/mm)の溶接(例えば、多層溶接)において-60℃のFL部のCTOD特性に加え、IC部のCTOD特性も十分である優れたCTOD(破壊靱性)特性を有する高強度の鋼材およびその製造方法を提供する。
 本発明者らは、小入熱から中入熱までの溶接によって最も靭性が劣化する溶接部のFL部とIC部との両方のCTOD特性を向上させる方法について鋭意研究した。
 その結果、本発明者らは、FL部とIC部との両方のCTOD特性を向上させるためには、非金属介在物の低減が最も重要であり、特に、O(鋼中酸素)の低減が必須であることを見出した。また、本発明者らは、Oの低減により粒内変態フェライト(IGF)が減少するので、FL部のCTOD特性を劣化させる合金元素を低減する必要があることを見出した。さらに、本発明者らは、IC部のCTOD特性を向上させるためには、鋼中酸素の低減に加え、硬さの低減が有効であることを見出した。本発明者らは、上記知見により、本発明を完成した。
 本発明の要旨は、以下のとおりである。
 (1)質量%で、C含有量[C]が、0.015%以上0.045%以下のCと、Si含有量[Si]が、0.05%以上0.20%以下のSiと、Mn含有量[Mn]が、1.5%以上2.0%以下のMnと、Ni含有量[Ni]が、0.10%以上1.50%以下のNiと、Ti含有量[Ti]が、0.005%以上0.015%以下のTiと、O含有量[O]が、0.0015%以上0.0035%以下のOと、N含有量[N]が、0.002%以上0.006%以下のNとを含有し、残部が鉄および不可避的不純物を含み、P含有量[P]を0.008%以下、S含有量[S]を0.005%以下、Al含有量[Al]を0.004%以下、Nb含有量[Nb]を0.005%以下、Cu含有量[Cu]を0.24%以下、V含有量[V]を0.020%以下に制限し、後述の(1)式の鋼成分パラメーターPCTODが0.065%以下、かつ、後述の(2)式の鋼成分硬さパラメーターCeqHが0.235%以下である溶接用鋼材。
 (2)上記(1)に記載の溶接用鋼材は、質量%で、前記Cu含有量[Cu]が、0.03%以下であってもよい。
 (3)BS5762法のCTOD試験によって得られるFL部における-60℃でのCTOD(δc)値とIC部における-60℃でのCTOD(δc)値とが、いずれも0.25mm以上であってもよい。
 (4)上記(1)または(2)に記載の鋼成分を満足する鋼を連続鋳造することによって鋼片を作製し、前記鋼片を950℃以上1100℃以下の温度に加熱後、加工熱処理する溶接用鋼材の製造方法。
 本発明によれば、小入熱から中入熱までの溶接におけるHAZ靭性に優れた鋼材を提供することができる。特に、小入熱から中入熱までの多層溶接等の溶接により最も靭性が劣化するFL部及びIC部のCTOD特性(低温靭性)が優れた鋼材を提供することができる。したがって、海洋構造物、耐震性建築物等の厳しい環境で使用される構造物に対して高強度かつ高靭性の鋼材を提供することができる。
鋼成分パラメーターPCTODとFL相当再現熱サイクル試験でのCTOD特性(Tδc0.1(FL))との関係を示す図である。 ICHAZ相当再現熱サイクル試験でのHAZ硬さとCTOD特性(Tδc0.1(ICHAZ))との関係を示す図である。 鋼成分硬さパラメーターCeqHとICHAZ相当再現熱サイクル試験でのHAZ硬さとの関係を示す図である。 CTOD試験のFLノッチ位置を示す概略図である。 CTOD試験のICノッチ位置を示す概略図である。 鋼成分硬さパラメーターCeqHとIC部における-60℃でのCTOD(δc)値との関係を示す図である。
 以下、本発明を詳細に説明する。
 本発明者らの研究によれば、小入熱から中入熱まで(例えば、板厚50mmで1.5~6.0kJ/mm)の溶接における-60℃でのFL部及びIC部のCTOD特性を十分に向上させるためには、酸化物系の非金属介在物の低減が最も重要であり、O(鋼中酸素)の低減が必須である。
 従来の技術では、優れたFL部のCTOD特性を有する鋼材を得るために、粒内変態フェライト(IGF:Intragranular Ferrite)の変態核としてTi酸化物に代表される酸化物系の非金属介在物を利用しており、ある程度のOを添加する必要があった。本発明者の研究によれば、-60℃のFL部及びIC部のCTOD特性を向上させるためには、酸化物系の非金属介在物の低減が必要である。
 Oの低減によりIGFが減少するため、FL部のCTOD特性を劣化させる合金元素を低減する必要がある。図1に、FL相当再現HAZのCTOD特性(Tδc0.1(FL))と鋼成分パラメーターPCTODとの関係を示す。ここで、(1)式で示される鋼成分パラメーターPCTODは、実験室において多数の溶解鋼を試験し、FL相当再現HAZのCTOD特性(Tδc0.1(FL))と鋼成分とを解析して導出された経験式である。
CTOD=[C]+[V]/3+[Cu]/22+[Ni]/67・・・(1)
ここで、[C]、[V]、[Cu]、[Ni]は、それぞれ、鋼中のC、V、Cu、Niの含有量(質量%)である。例えば、Cuが含有されない場合には、Cu含有量は、0%である。
 図1に示したFL相当再現HAZについて、多数の実験で得られた知見から-110℃以下のCTOD特性(Tδc0.1(FL))が構造物用鋼材としての目標レベル(Tδc0.1(FL)≦-110℃)である。この目標レベルでは、板厚50~100mmの鋼板の実継手のFLノッチ試験において、-60℃で安定して0.25mm以上のCTOD(δc)値を確保することができる。図1から、FL相当再現HAZにおいて、Tδc0.1(FL)を-110℃以下にするためには、鋼成分パラメーターPCTODを0.065%以下に制御する必要があることがわかる。なお、CTOD(δc)値は、大きいほど、靭性(例えば、塑性歪みによるエネルギー吸収)が高い。
 FL相当再現HAZは、以下に示すFL相当再現熱サイクルが施された試験片のFL部の入熱量に対応する部分である。このFL相当再現熱サイクル処理(Triple cycle)が、断面10mm×20mmの試験片に対して以下の条件で施された。
1st cycle:最高加熱温度1400℃(800~500℃間を15secで冷却)
2nd cycle:最高加熱温度760℃(760~500℃間を22secで冷却)
3rd cycle:最高加熱温度500℃(500~300℃間を60secで冷却)
 図4A中に示すように、溶接部2におけるFLノッチ7の位置は、HAZ4とWM3との境界のFL部5である。FLノッチによる以下のCTOD試験では、荷重とこのFL部5の開口変位との関係を測定した。
 この試験片をBS5762法(British Standards)のCTOD試験によって評価し、図1のTδc0.1(FL)が得られている。ここで、Tδc0.1(FL)は、各試験温度で3本の試験片を用いて得られたCTOD(δc)値の最低値が0.1mmを超える温度(℃)である。なお、CTOD試験における板厚の影響を考慮すると、板厚50~100mmの鋼板の実継手のFLノッチ部(FL部)において、-60℃で安定して0.25mm以上のCTOD(δc)値を確保するためには、上述したようにTδc0.1(FL)を-110℃以下にする必要がある。
 さらに、本発明者らは、IC部のCTOD特性の向上には、鋼中酸素の低減に加え、硬さの低減が有効であることを見出した。
 図2に後述するICHAZ(Intercritical HAZ)相当の再現熱サイクルを受けた試験片のCTOD特性とICHAZ相当の再現HAZの硬さとの関係を示す。また、図3に鋼成分硬さパラメーターCeqHとICHAZ相当の再現HAZの硬さとの関係を示す。
 ここで、図2に示したICHAZ相当の再現HAZ(断面10mm×20mm)のTδc0.1(ICHAZ)が-110℃以下であるためには、HAZ硬さ(10kgfの荷重のビッカース試験)をHv176以下にする必要がある。そのため、図3から、鋼成分硬さパラメーターCeqHを0.235%以下に制御する必要があることが分かる。より硬さを低くするためには、鋼成分硬さパラメーターCeqHは、0.225%以下であることが好ましい。
 なお、靭性の試験方法として、BS5762法(British Standards)のCTOD試験を適用した。また、ICHAZ相当再現熱サイクル条件(Triple cycle)は、以下の通りである。
1st cycle:最高加熱温度950℃(800~500℃間を20secで冷却)
2nd cycle:最高加熱温度770℃(770~500℃間を22secで冷却)
3rd cycle:最高加熱温度450℃(450~300℃間を65sec間で冷却)
 図4B中に示すように、溶接部2におけるICノッチ8の位置は、母材1とHAZ4との境界のIC部(ICHAZ部)6である。ICノッチによるCTOD試験では、荷重とこのIC部6の開口変位との関係を測定した。
 ここで、鋼成分硬さパラメーターCeqHは、鋼の特性(HAZ硬さ)と成分との重回帰によって得られた経験式である。
CeqH=[C]+[Si]/4.16+[Mn]/14.9+[Cu]/12.9+[Ni]/105+1.12[Nb]+[V]/1.82・・・(2)
と定義される。なお、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Nb]、[V]は、鋼中のC、Si、Mn、Cu、Ni、Nb、Vの含有量(質量%)である。例えば、Cuが含有されない場合には、Cu含有量は、0%である。
 上述したようにPCTOD及びCeqHを制限しても、鋼中のそれぞれの合金元素の量を適正に調節しなければ、高強度と優れたCTOD特性とを兼ね備えた鋼材を製造できない。
 以下に、鋼成分の限定範囲と鋼成分の限定理由とを述べる。ここで、記載した%は、質量%である。上述の鋼成分パラメーターPCTOD及び鋼成分硬さパラメーターCeqHの制限に加え、以下のように鋼成分を限定することにより、BS5762法のCTOD試験によって得られるFL部における-60℃でのCTOD(δc)値とIC部における-60℃でのCTOD(δc)値とが、いずれも0.25mm以上である溶接用鋼材を得ることができる。
 C:0.015~0.045%
 十分な強度を得るために、0.015%以上のCを含有させる必要がある。しかしながら、0.045%超のC含有量[C]では、溶接HAZの特性が劣化し、-60℃のCTOD特性が十分でない。そのため、C含有量[C]の上限は、0.045%である。したがって、C含有量[C]は、0.015%以上0.045%以下である。
 Si:0.05~0.20%
 良好なHAZ靭性を得るため、Si含有量[Si]は、少ないほど好ましい。しかしながら、後述するようにAl含有量[Al]を制限しているため、脱酸上0.05%以上のSi含有量[Si]が必要である。しかしながら、0.20%超のSi含有量[Si]では、HAZ靭性を害するため、Si含有量[Si]の上限は、0.20%である。したがって、Si含有量[Si]は、0.05%以上0.20%以下である。より良好なHAZ靭性を得るために、Si含有量[Si]は、0.15%以下であることが好ましい。
 Mn:1.5~2.0%
 Mnは、ミクロ組織を適正化する効果が大きい安価な元素である。また、Mnの添加によって、HAZ靭性を害する可能性は少ない。そのため、Mnの添加量は、多いほど好ましい。しかしながら、2.0%超のMn含有量では、ICHAZの硬さが増加し、靭性が劣化する。そのため、Mn含有量[Mn]の上限は、2.0%である。また、Mn含有量[Mn]が1.5%未満では、ミクロ組織を向上する効果が少ないので、Mn含有量[Mn]の下限は、1.5%である。したがって、Mn含有量[Mn]は、1.5%以上2.0%以下である。よりHAZ靭性を改善するためには、Mn含有量[Mn]は、1.55%以上であることが好ましく、1.6%以上であることがより好ましく、最も好ましくは、1.7%以上である。
 Ni:0.10~1.50%
 Niは、HAZ靭性をあまり劣化させず、母材の強度及び靭性を向上させ、ICHAZの硬さをあまり増加させない元素である。しかしながら、Niは、高価な合金元素であり、鋼中に過剰に含まれると表面疵を生じさせることがある。そのため、Ni含有量[Ni]の上限は、1.50%である。一方で、上述のNi添加の効果を十分に享受するためには、少なくとも0.10%のNiを含有する必要がある。したがって、Ni含有量[Ni]は、0.10%以上1.50%以下である。ICHAZの硬さをあまり増加させることなく、母材の強度及び靭性をより向上するために、Ni含有量[Ni]は、0.20%以上であることが好ましく、0.30%以上であることがより好ましく、0.40%又は0.51%以上であることが最も好ましい。また、表面疵をより確実に防止するためには、Ni含有量[Ni]は、1.20%以下であることが好ましく、1.0%以下であることがより好ましい。他元素の添加により母材の強度及び靭性を十分に確保できる場合には、より経済性を確保するために、Ni含有量[Ni]は、0.80%以下であることが最も好ましい。なお、後述するように、Cuを添加する場合には、鋳片のCu割れを抑制するために、Ni含有量[Ni]は、Cu含有量[Cu]の1/2以上であることが好ましい。
 P:0.008%以下(0%を含む)
 S:0.005%以下(0%を含む)
 P及びSは、靭性を低下させ、不可避的不純物として含有される元素である。そのため、P含有量[P]及びS含有量[S]は、母材靭性及びHAZ靭性を確保するためともに低下させる必要がある。しかしながら、工業生産的な制約があるため、P含有量[P]の上限及びS含有量[S]の上限は、それぞれ0.008%及び0.005%である。より良好なHAZ靭性を得るために、P含有量[P]を0.005%以下に制限することが好ましく、S含有量[S]を0.003%以下に制限することが好ましい。
 Al:0.004%以下(0%を含まない)
 Al含有量[Al]は、Ti酸化物を生成させる必要があるため、少ないほど好ましい。しかしながら、工業生産的に制約があるため、Al含有量[Al]の上限は、0.004%である。
 Ti:0.005~0.015%
 Tiは、Ti酸化物を生成させミクロ組織を微細化させる。しかしながら、Ti含有量[Ti]が多すぎると、Tiは、TiCを生成してHAZ靭性を劣化させる。そのため、Ti含有量[Ti]は、0.005%以上0.015%以下が適正な範囲である。よりHAZ靭性を改善するために、Ti含有量[Ti]は、0.013%以下であることが好ましい。
 Nb:0.005%以下(0%を含む)
 Nbは、不純物として含有される場合があり、母材の強度及び靭性を向上させるが、HAZ靭性を低下させる。HAZ靭性が著しく低下しないNb含有量[Nb]の範囲は、0.005%以下である。そのため、Nb含有量[Nb]を0.005%以下に制限する。よりHAZ靭性を改善させるためには、0.001%以下(0%を含む)に制限することが好ましい。
 O:0.0015~0.0035%
 O含有量[O]は、FL部のIGF生成核としてのTiの酸化物の生成量を確保するために、0.0015%以上であることが必須である。しかし、O含有量[O]が多すぎると、酸化物のサイズおよび個数が過大になるためIC部のCTOD特性が劣化する。そのため、O含有量[O]を0.0015%以上0.0035%以下の範囲に制限した。より良好なHAZ靭性を得るために、O含有量[O]は、0.0030%以下であることが好ましく、0.0028%以下であることがより好ましい。
 N:0.002~0.006%
 Nは、Ti窒化物を生成させるために必要である。しかしながら、N含有量[N]が0.002%未満では、Ti窒化物を生成させる効果が少ない。また、N含有量[N]が0.006%超では、鋼片製造時に表面疵が発生するため、N含有量[N]の上限は、0.006%である。したがって、N含有量[N]は、0.002%以上0.006%以下である。より良好なHAZ靭性を得るために、N含有量[N]は、0.005%以下であることが好ましい。
 Cu:0.24%以下(0%を含む)
 Cuは、HAZ靭性をあまり劣化させず、母材の強度及び靭性を向上させ、ICHAZの硬さもあまり増加させない元素である。そのため、必要に応じ、Cuを添加してもよい。しかし、Cuは、比較的高価な合金元素であり、Niに比べると上述の効果が小さく、多過ぎる添加によって鋳片のCu割れが生じる危険性を高める。そのため、Cu含有量[Cu]を0.24%以下に制限する。加えて、鋼中にCuを添加したり、不純物としてCuを含んだりする場合には、鋳片のCu割れを防止するために、Cu含有量[Cu]をNi含有量[Ni]の2倍以下にすることが好ましい。また、Cuのフェライト(αFe)中への固溶限が小さいため、溶接の熱履歴によっては溶接HAZ中にεCuが析出し、低温靭性を低下させる可能性がある。そのため、Cu含有量[Cu]は、0.20%以下に制限することが好ましく、0.10%以下に制限することがより好ましい。CやMn、Ni等の元素により鋼材の強度を十分に確保すれば、Cuを必ずしも添加する必要はない。強度上の理由から選択的にCuを添加する場合であっても、Cu含有量[Cu]を極力少なく抑えることが好ましい。したがって、Cu含有量[Cu]は、0.03%以下であることが最も好ましい。
 V:0.020%以下(0%を含む)
 Vは、母材強度を向上させるために有効である。そのため、必要に応じ、Vを添加してもよい。しかし、0.020%を超えるVを添加すると、HAZ靭性が大きく低下する。そのため、V含有量[V]を、0.020%以下に制限する。HAZ靭性の低下を十分に抑えるためには、V含有量[V]を0.010%に制限することが好ましい。CやMn、Ni等の元素により鋼材の強度を十分に確保すれば、Vを必ずしも添加する必要はない。強度上の理由から選択的にVを添加する場合であっても、V含有量[V]を極力少なく抑えることが好ましい。したがって、V含有量[V]は、0.005%以下であることがより好ましい。
 本発明の溶接用鋼材は、上記成分を含有または制限し、残部が鉄および不可避的不純物を含む。しかしながら、本発明の鋼板には、上記成分の他に、鋼板自体の耐食性及び熱間加工性を一段と改善する目的で、あるいはスクラップ等の副原料からの不可避的不純物として、他の合金元素を含有してもよい。ただし、上記成分(Ni等)の上記効果(母材の靭性の向上等)を十分に発揮させるために、他の各合金元素(Cr、Mo、B、Ca、Mg、Sb、Sn、As、REM)を以下のように制限することが好ましい。これらの各元素の含有量は、0%を含む。
 Crは、HAZ靭性を低下させるため、Cr含有量[Cr]は、0.1%以下であることが好ましく、0.05%以下であることがより好ましく、0.02%以下であることが最も好ましい。
 Moは、HAZ靭性を低下させるため、Mo含有量[Mo]は、0.05%以下であることが好ましく、0.03%以下であることがより好ましく、0.01%以下であることが最も好ましい。
 Bは、HAZ硬さを高め、HAZ靭性を低下させるため、B含有量[B]は、0.0005%以下であることが好ましく、0.0003%以下であることがより好ましく、0.0002%以下であることが最も好ましい。
 Caは、Ti酸化物の生成を抑制する効果があるため、Ca含有量[Ca]は、0.0003%未満であることが好ましく、0.0002%未満であることがより好ましい。
 Mgは、Ti酸化物の生成を抑制する効果があるため、Mg含有量[Mg]は、0.0003%未満であることが好ましく、0.0002%未満であることがより好ましい。
 Sbは、HAZ靭性を損なうため、Sb含有量[Sb]は、0.005%以下であることが好ましく、0.003%以下であることがより好ましく、0.001%以下であることが最も好ましい。
 Snは、HAZ靭性を損なうため、Sn含有量[Sn]は、0.005%以下であることが好ましく、0.003%以下であることがより好ましく、0.001%以下であることが最も好ましい。
 Asは、HAZ靭性を損なうため、As含有量[As]は、0.005%以下であることが好ましく、0.003%以下であることがより好ましく、0.001%以下であることが最も好ましい。
 REMは、Ti酸化物の生成を抑制する効果があるため、REM含有量[REM]は、0.005%以下であることが好ましく、0.003%以下であることがより好ましく、0.001%以下であることが最も好ましい。
 上述したように、本発明の溶接用鋼材は、鋼成分として上記成分を含有または制限し、残部が鉄および不可避的不純物からなる。しかしながら、本発明の溶接用鋼材は、構造材料として使用されるため、鋼材の最小寸法(例えば、板厚)は、6mm以上であることが好ましい。構造材料としての用途を考慮すると、鋼材の最小寸法(例えば、板厚)は、100mm以下であってもよい。
 より確実に本発明のCTOD特性を得るためには、以下の製造方法によって溶接用鋼材を製造することができる。本発明の溶接用鋼材の製造方法では、上記のように各元素の含有量及び各パラメーター(PCTOD及びCeqH)を限定した鋼を使用する。
 本発明の一実施形態における溶接用鋼材の製造方法では、連続鋳造法で上述の鋼(溶鋼)からスラブ(鋳片)を製造する。連続鋳造法では、溶鋼の冷却速度(凝固速度)が速く、スラブ中に微細なTi酸化物とTi窒化物とを多量に生成させることが可能である。
 スラブを圧延する際には、スラブの再加熱温度を950℃以上1100℃以下にする必要がある。1100℃を超える再加熱温度では、Ti窒化物が粗大化して母材の靭性が劣化し、HAZ靭性を改善することが難しい。
 また、950℃未満の再加熱温度では、圧延の負荷が大きく、生産性が阻害される。そのため、再加熱温度の下限は、950℃である。したがって、950℃以上1100℃以下の温度で再加熱を行う必要がある。
 つぎに、再加熱後には、加工熱処理を行う。加工熱処理では、鋼成分に応じた狭い範囲に圧延温度を制御した後、必要に応じて水冷を施す。この加工熱処理により、オーステナイト粒の微細化及びミクロ組織の微細化をおこなうことができ、鋼材の強度及び靭性を改善させることができる。圧延によって、最終的な鋼材(例えば、厚鋼板)の厚み(最小寸法)が6mm以上となるように制御されることが好ましい。
 この加工熱処理によって、溶接時のHAZ靭性だけでなく、母材の靭性が十分な鋼材を製造することができる。
 加工熱処理の方法としては、例えば、制御圧延による方法、制御圧延と加速冷却とを組み合わせる方法(制御圧延-加速冷却)、圧延後直接焼入れし焼戻す方法(圧延直後焼入れ-焼戻し)が挙げられる。この加工熱処理の方法は、制御圧延と加速冷却とを組み合わせる方法であることが好ましい。なお、この鋼材を製造後、脱水素や強度の最適化などの目的でAr変態点以下の温度に再加熱しても、鋼材の特性は、損なわれない。
 以下、実施例及び比較例に基づいて本発明を説明する。
 転炉、連続鋳造、厚板(圧延)の工程を経て、種々の鋼成分の厚鋼板を製造し、これらの厚鋼板について母材強度の引張試験及び溶接継手のCTOD試験を実施した。
 CTOD試験に使用する溶接継手は、一般的な試験溶接として用いられている潜弧溶接(SAW)法によって、4.5~5.0kJ/mmの溶接入熱で作製された。図4A及び4Bに示すように、この溶接継手のFL部5は、溶接溶け込み線(FL)9が厚鋼板の端面に対して略垂直になるようにK開先を用いて形成されている。
 CTOD試験において、t(板厚)×2tの断面サイズの試験片を使用し、この試験片に50%疲労亀裂に対応するノッチを形成した。ノッチ位置(FLノッチ7及びICノッチ8)は、図4A及び4Bに示すように、FL部(WM3とHAZ4との境界)5またはIC部(HAZ4とBM1との境界)6である。CTOD試験では、FLノッチ7とICノッチ8とのそれぞれについて、-60℃で5本の試験(計10回)を実施した。
 表1及び表2に鋼の化学成分を示し、表3及び4に厚鋼板(母材)の製造条件と母材(BM)の特性と溶接継手の特性とを示す。
 また、表3及び4中の熱処理法の記号を以下に示す。
CR:制御圧延(鋼材の強度及び靭性を改善するために最適な温度域での圧延)
ACC:制御圧延-加速冷却(制御圧延後400℃~600℃の温度域まで鋼材を水冷し、放冷)
DQ:圧延直後焼入れ-焼戻し(圧延直後に200℃以下まで鋼材を水冷した後、焼戻し)
 また、表3及び4中の溶接継手のCTOD試験結果において、δc(av)は、5本の試験のCTOD値の平均値を、δc(min)は、5本の試験のうちのCTOD値の最低値を示す。
 実施例1~7及び16~30では、降伏強度(YS)が432N/mm(MPa)以上、引張強度が500N/mm(MPa)以上であり、母材強度が十分であった。また、-60℃のCTOD値(δc)について、FLノッチにおけるCTOD値の最小値δc(min)が0.43mm以上、ICノッチにおけるCTOD値の最小値δc(min)が0.60mm以上であり、破壊靭性に優れていた。
 これに対し、比較例では、実施例と同等の強度を有するが、実施例と比べてCTOD値が劣り、厳しい環境下で使用される鋼材として適切でない。
 比較例8及び31では、鋼中のC含有量が高く、鋼成分パラメーターPCTOD及び鋼成分硬さパラメーターCeqHも高かった。そのため、FLノッチのCTOD値とICノッチのCTOD値の両方が低かった。
 比較例9及び32では、鋼中のMn含有量が高く、鋼成分硬さパラメーターCeqHが高かった。そのため、特にICノッチのCTOD値が低かった。
 比較例10及び33では、鋼中のAl含有量が高かった。そのため、特にFL部の組織制御が不十分であり、FLノッチのCTOD値が低かった。
 比較例11及び34では、鋼中のNb含有量が高かった。そのため、特にICノッチのCTOD値が低かった。
 比較例12及び35では、鋼中のSi含有量が高く、鋼成分硬さパラメーターCeqHが高かった。そのため、特にICノッチのCTOD値が低かった。
 比較例13及び36では、鋼中のV含有量が高く、鋼成分パラメーターPCTOD及び鋼成分硬さパラメーターCeqHも高かった。そのため、FLノッチのCTOD値とICノッチのCTOD値の両方が低かった。
 比較例14では、鋼中のCu含有量が高かった。そのため、熱間圧延時にクラック(Cu割れ)が生じ、鋼材の製造が困難であった。特に、Cu割れを抑制する元素が添加されていなかったため、表3に示すように、溶接継手のCTOD試験を実施できなかった。
 比較例37では、鋼中のO含有量が高かった。そのため、FLノッチのCTOD値とICノッチのCTOD値の両方が低かった。
 比較例15では、鋼成分パラメーターCeqHが高かった。そのため、ICノッチのCTOD値が低かった。
 上述の比較例8~14及び31~37では、-60℃のCTOD値(δc)について、FLノッチにおけるCTOD値の最小値δc(min)が0.25mm未満、ICノッチにおけるCTOD値の最小値δc(min)が0.25mm未満であり、破壊靭性が十分でなかった。また、上述の比較例15では、-60℃のCTOD値(δc)について、FLノッチにおけるCTOD値の最小値δc(min)が0.25mm以上であるが、ICノッチにおけるCTOD値の最小値δc(min)が0.25mm未満であるため、破壊靭性が十分でなかった。
 表1~4中の鋼成分硬さパラメーターCeqHとIC部における-60℃でのCTOD(δc)値との関係を纏めた結果を図5に示す。図5に示すように、鋼中の各成分及び鋼成分パラメーターPCTODが上記条件を満足する場合には、鋼成分硬さパラメーターCeqHを0.235%以下に抑えることによって、ICノッチにおけるCTOD値の最小値δc(min)が0.25mm以上の鋼材を製造することができた。なお、鋼成分硬さパラメーターCeqHが0.235%以下であっても、鋼中の各成分及び鋼成分パラメーターPCTODが上記条件を満足しない場合には、CTOD値の最小値δc(min)が0.25mm以上の鋼材を製造することができなかった(例えば、比較例10、11、14、33、34、37)。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 小入熱から中入熱までの溶接における溶接熱影響部のCTOD特性が優れた溶接用鋼材およびその製造方法を提供することができる。

Claims (4)

  1.  質量%で、
    C含有量[C]が、0.015%以上0.045%以下のCと、
    Si含有量[Si]が、0.05%以上0.20%以下のSiと、
    Mn含有量[Mn]が、1.5%以上2.0%以下のMnと、
    Ni含有量[Ni]が、0.10%以上1.50%以下のNiと、
    Ti含有量[Ti]が、0.005%以上0.015%以下のTiと、
    O含有量[O]が、0.0015%以上0.0035%以下のOと、
    N含有量[N]が、0.002%以上0.006%以下のNと
    を含有し、残部が鉄および不可避的不純物を含み、
    P含有量[P]を0.008%以下、
    S含有量[S]を0.005%以下、
    Al含有量[Al]を0.004%以下、
    Nb含有量[Nb]を0.005%以下、
    Cu含有量[Cu]を0.24%以下、
    V含有量[V]を0.020%以下
    に制限し、
    下記(3)式の鋼成分パラメーターPCTODが0.065%以下、
    かつ、下記(4)式の鋼成分硬さパラメーターCeqHが0.235%以下である
    ことを特徴とする溶接用鋼材。
    ここで、
    CTOD=[C]+[V]/3+[Cu]/22+[Ni]/67・・・(3)
    CeqH=[C]+[Si]/4.16+[Mn]/14.9+[Cu]/12.9+[Ni]/105+1.12[Nb]+[V]/1.82・・・(4)
  2.  質量%で、前記Cu含有量[Cu]が、0.03%以下であるCuを含有することを特徴とする請求項1に記載の溶接用鋼材。
  3.  BS5762法のCTOD試験によって得られるFL部における-60℃でのCTOD(δc)値とIC部における-60℃でのCTOD(δc)値とが、いずれも0.25mm以上であることを特徴とする請求項1または2に記載の溶接用鋼材。
  4.  請求項1または2に記載の鋼成分を満足する鋼を連続鋳造することによって鋼片を作製し、前記鋼片を950℃以上1100℃以下の温度に加熱後、加工熱処理することを特徴とする溶接用鋼材の製造方法。
PCT/JP2010/003344 2009-05-19 2010-05-18 溶接用鋼材およびその製造方法 WO2010134323A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BRPI1007386A BRPI1007386A2 (pt) 2009-05-19 2010-05-18 aço para estrutura soldada e método de produção do mesmo
BR122017016259-4A BR122017016259B1 (pt) 2009-05-19 2010-05-18 aço para estrutura soldada
CN2010800046556A CN102282281B (zh) 2009-05-19 2010-05-18 焊接用钢材及其制造方法
KR1020117016374A KR101160790B1 (ko) 2009-05-19 2010-05-18 용접용 강재 및 그 제조 방법
EP10777561.1A EP2385149B1 (en) 2009-05-19 2010-05-18 Steel material for welding and method for producing same
US13/138,119 US8668784B2 (en) 2009-05-19 2010-05-18 Steel for welded structure and producing method thereof
JP2010539648A JP4700769B2 (ja) 2009-05-19 2010-05-18 溶接用鋼材およびその製造方法
CA2749154A CA2749154C (en) 2009-05-19 2010-05-18 Steel for welded structure and producing method thereof
US14/075,342 US20140065008A1 (en) 2009-05-19 2013-11-08 Steel for welded structure and producing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009121129 2009-05-19
JP2009121128 2009-05-19
JP2009-121129 2009-05-19
JP2009-121128 2009-05-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/138,119 A-371-Of-International US8668784B2 (en) 2009-05-19 2010-05-18 Steel for welded structure and producing method thereof
US14/075,342 Continuation US20140065008A1 (en) 2009-05-19 2013-11-08 Steel for welded structure and producing method thereof

Publications (1)

Publication Number Publication Date
WO2010134323A1 true WO2010134323A1 (ja) 2010-11-25

Family

ID=43126016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003344 WO2010134323A1 (ja) 2009-05-19 2010-05-18 溶接用鋼材およびその製造方法

Country Status (10)

Country Link
US (2) US8668784B2 (ja)
EP (1) EP2385149B1 (ja)
JP (1) JP4700769B2 (ja)
KR (1) KR101160790B1 (ja)
CN (1) CN102282281B (ja)
BR (2) BRPI1007386A2 (ja)
CA (1) CA2749154C (ja)
RU (1) RU2458174C1 (ja)
TW (2) TWI534271B (ja)
WO (1) WO2010134323A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106014A (ja) * 2009-11-20 2011-06-02 Nippon Steel Corp 溶接熱影響部のctod特性が優れた鋼及びその製造法
CN102304670A (zh) * 2011-09-22 2012-01-04 首钢总公司 一种具有-40℃应变时效高韧性钢板及其生产方法
WO2013077022A1 (ja) 2011-11-25 2013-05-30 新日鐵住金株式会社 溶接用鋼材
RU2574148C2 (ru) * 2011-11-25 2016-02-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Сталь для сварки
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218800B1 (en) * 2007-12-07 2012-05-16 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
RU2458174C1 (ru) * 2009-05-19 2012-08-10 Ниппон Стил Корпорейшн Сталь для сварных конструкций и способ ее получения
TWI365915B (en) 2009-05-21 2012-06-11 Nippon Steel Corp Steel for welded structure and producing method thereof
CN103526112B (zh) * 2013-10-18 2015-09-09 武汉钢铁(集团)公司 一种耐腐蚀桥梁管桩用钢及其生产方法
KR102289071B1 (ko) * 2017-05-22 2021-08-11 제이에프이 스틸 가부시키가이샤 후강판 및 그 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278653A (ja) * 1994-04-14 1995-10-24 Nippon Steel Corp 溶接熱影響部の低温靱性が優れた鋼の製造法
JP2000096139A (ja) * 1998-09-25 2000-04-04 Nippon Steel Corp 溶接熱影響部の低温靭性に優れた鋼板
JP2001323336A (ja) * 2000-05-16 2001-11-22 Nippon Steel Corp 溶接熱影響部の低温靭性に優れた高強度鋼板
JP2007002271A (ja) 2005-06-21 2007-01-11 Nippon Steel Corp 溶接熱影響部の破壊靭性に優れた鋼及びその製造方法
JP2008163446A (ja) * 2006-12-06 2008-07-17 Jfe Steel Kk 大入熱溶接用鋼材
JP2008169429A (ja) 2007-01-11 2008-07-24 Nippon Steel Corp 溶接熱影響部のctodが優れた鋼およびその製造方法
JP2009121129A (ja) 2007-11-15 2009-06-04 Daika Sangyo Kk 墜落阻止装置用取付部材
JP2009121128A (ja) 2007-11-14 2009-06-04 Kazunari Furuki 地中掘削用ハンマ及びそれを備えた回転式掘削機

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54131522A (en) 1978-04-03 1979-10-12 Nippon Steel Corp Steel highly resistant against hydrogen induced blister and cracking
JPS6123715A (ja) 1984-07-10 1986-02-01 Nippon Steel Corp 高張力高靭性鋼板の製造法
JPS62240747A (ja) 1986-04-11 1987-10-21 Nippon Steel Corp 冷間加工性及び溶接性にすぐれた加工、析出硬化型高張力鋼材およびその製造方法
JPH01159356A (ja) 1987-12-16 1989-06-22 Nippon Steel Corp 溶接熱影響部靭性の優れた高張力鋼
JPH04103742A (ja) 1990-08-22 1992-04-06 Nippon Steel Corp 溶接用低温高靭性鋼
JP2653594B2 (ja) 1991-12-18 1997-09-17 新日本製鐵株式会社 溶接熱影響部靭性の優れた厚鋼板の製造方法
RU2136775C1 (ru) 1995-01-26 1999-09-10 Ниппон Стил Корпорейшн Высокопрочная свариваемая сталь и ее варианты
JPH093590A (ja) 1995-06-21 1997-01-07 Nippon Steel Corp 酸化物分散強化フェライト系耐熱鋼板及びその製造方法
JPH093597A (ja) 1995-06-21 1997-01-07 Nippon Steel Corp 溶接熱影響部靱性の優れた低温用鋼材およびその製造方法
JP3256118B2 (ja) * 1995-12-06 2002-02-12 新日本製鐵株式会社 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
JP3378433B2 (ja) 1996-04-12 2003-02-17 新日本製鐵株式会社 溶接熱影響部靭性の優れた鋼板の製造方法
JP3408385B2 (ja) * 1996-04-17 2003-05-19 新日本製鐵株式会社 溶接熱影響部靭性の優れた鋼
RU2135622C1 (ru) 1996-12-16 1999-08-27 Ниппон Стил Корпорейшн Сталь, имеющая высокую ударную вязкость в зоне термического воздействия при сварке
JP4041201B2 (ja) 1997-02-28 2008-01-30 新日本製鐵株式会社 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
CA2231985C (en) 1997-03-26 2004-05-25 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
TW366411B (en) 1997-06-20 1999-08-11 Exxon Production Research Co Improved process for liquefaction of natural gas
AU736037B2 (en) 1997-07-28 2001-07-26 Exxonmobil Upstream Research Company Method for producing ultra-high strength, weldable steels with superior toughness
WO1999005334A1 (en) 1997-07-28 1999-02-04 Exxonmobil Upstream Research Company Ultra-high strength, weldable, essentially boron-free steels wit h superior toughness
JP3749616B2 (ja) 1998-03-26 2006-03-01 新日本製鐵株式会社 超大入熱溶接熱影響部の靱性に優れた溶接用高張力鋼
RU2198771C2 (ru) 1998-05-14 2003-02-20 ЭксонМобил Апстрим Ресерч Компани Сверхвысокопрочные криогенные сварные соединения
WO2000061829A1 (fr) 1999-04-08 2000-10-19 Kawasaki Steel Corporation Produit en acier resistant a la corrosion atmospherique
JP4355866B2 (ja) 1999-06-08 2009-11-04 住友金属工業株式会社 溶接熱影響部特性に優れた鋼材およびその製造方法
WO2001027342A1 (fr) * 1999-10-12 2001-04-19 Nippon Steel Corporation Acier pour structure soudee dont la tenacite de zone thermiquement affectee ne depend pas d'un apport de chaleur, et procede de production associe
WO2001062998A1 (fr) 2000-02-28 2001-08-30 Nippon Steel Corporation Tube d'acier facile a former et procede de production de ce dernier
EP1221493B1 (en) * 2000-05-09 2005-01-12 Nippon Steel Corporation THICK STEEL PLATE BEING EXCELLENT IN CTOD CHARACTERISTIC IN WELDING HEAT AFFECTED ZONE AND HAVING YIELD STRENGTH OF 460 Mpa OR MORE
JP3699657B2 (ja) 2000-05-09 2005-09-28 新日本製鐵株式会社 溶接熱影響部のCTOD特性に優れた460MPa以上の降伏強度を有する厚鋼板
JP2002030380A (ja) 2000-07-12 2002-01-31 Nippon Steel Corp 溶接継手靭性の優れた高張力鋼とその製造方法
JP3968011B2 (ja) 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
JP3817216B2 (ja) 2002-11-15 2006-09-06 新日本製鐵株式会社 溶接熱影響部の靭性に優れた鋼材および鋼溶接部材
JP4528089B2 (ja) 2003-10-22 2010-08-18 新日本製鐵株式会社 耐脆性破壊発生特性を有する船体用大入熱突合せ溶接継手
WO2005052205A1 (ja) 2003-11-27 2005-06-09 Sumitomo Metal Industries, Ltd. 溶接部靭性に優れた高張力鋼および海洋構造物
JP4299754B2 (ja) 2004-02-13 2009-07-22 新日本製鐵株式会社 大入熱溶接熱影響部の低温靭性に優れた厚手高強度Ni含有鋼材
JP4660250B2 (ja) 2004-04-07 2011-03-30 新日本製鐵株式会社 大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板
EP2060643B1 (en) 2006-12-20 2012-04-18 Nippon Steel Corporation Steel excelling in toughness at region affected by welding heat
EP2218800B1 (en) 2007-12-07 2012-05-16 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
RU2458174C1 (ru) * 2009-05-19 2012-08-10 Ниппон Стил Корпорейшн Сталь для сварных конструкций и способ ее получения
TWI365915B (en) 2009-05-21 2012-06-11 Nippon Steel Corp Steel for welded structure and producing method thereof
US9403242B2 (en) * 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278653A (ja) * 1994-04-14 1995-10-24 Nippon Steel Corp 溶接熱影響部の低温靱性が優れた鋼の製造法
JP2000096139A (ja) * 1998-09-25 2000-04-04 Nippon Steel Corp 溶接熱影響部の低温靭性に優れた鋼板
JP2001323336A (ja) * 2000-05-16 2001-11-22 Nippon Steel Corp 溶接熱影響部の低温靭性に優れた高強度鋼板
JP2007002271A (ja) 2005-06-21 2007-01-11 Nippon Steel Corp 溶接熱影響部の破壊靭性に優れた鋼及びその製造方法
JP2008163446A (ja) * 2006-12-06 2008-07-17 Jfe Steel Kk 大入熱溶接用鋼材
JP2008169429A (ja) 2007-01-11 2008-07-24 Nippon Steel Corp 溶接熱影響部のctodが優れた鋼およびその製造方法
JP2009121128A (ja) 2007-11-14 2009-06-04 Kazunari Furuki 地中掘削用ハンマ及びそれを備えた回転式掘削機
JP2009121129A (ja) 2007-11-15 2009-06-04 Daika Sangyo Kk 墜落阻止装置用取付部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2385149A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106014A (ja) * 2009-11-20 2011-06-02 Nippon Steel Corp 溶接熱影響部のctod特性が優れた鋼及びその製造法
US9403242B2 (en) 2011-03-24 2016-08-02 Nippon Steel & Sumitomo Metal Corporation Steel for welding
CN102304670A (zh) * 2011-09-22 2012-01-04 首钢总公司 一种具有-40℃应变时效高韧性钢板及其生产方法
WO2013077022A1 (ja) 2011-11-25 2013-05-30 新日鐵住金株式会社 溶接用鋼材
JP5201301B1 (ja) * 2011-11-25 2013-06-05 新日鐵住金株式会社 溶接用鋼材
CN103946410A (zh) * 2011-11-25 2014-07-23 新日铁住金株式会社 焊接用钢材
RU2574148C2 (ru) * 2011-11-25 2016-02-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Сталь для сварки
CN103946410B (zh) * 2011-11-25 2016-05-11 新日铁住金株式会社 焊接用钢材
CN105750760A (zh) * 2011-11-25 2016-07-13 新日铁住金株式会社 焊接用钢材
CN105750760B (zh) * 2011-11-25 2018-06-08 新日铁住金株式会社 焊接用钢材

Also Published As

Publication number Publication date
TW201105806A (en) 2011-02-16
TW201341542A (zh) 2013-10-16
CA2749154A1 (en) 2010-11-25
BRPI1007386A2 (pt) 2016-02-16
JP4700769B2 (ja) 2011-06-15
CN102282281B (zh) 2013-09-18
BR122017016259B1 (pt) 2020-11-10
TWI419983B (zh) 2013-12-21
CA2749154C (en) 2013-11-19
RU2458174C1 (ru) 2012-08-10
KR101160790B1 (ko) 2012-06-27
US20110268601A1 (en) 2011-11-03
EP2385149A1 (en) 2011-11-09
CN102282281A (zh) 2011-12-14
JPWO2010134323A1 (ja) 2012-11-08
US20140065008A1 (en) 2014-03-06
EP2385149B1 (en) 2016-07-06
TWI534271B (zh) 2016-05-21
US8668784B2 (en) 2014-03-11
EP2385149A4 (en) 2012-07-18
KR20110091819A (ko) 2011-08-12

Similar Documents

Publication Publication Date Title
JP4700769B2 (ja) 溶接用鋼材およびその製造方法
JP4705696B2 (ja) 溶接用鋼材およびその製造方法
JP6460292B1 (ja) 高Mn鋼およびその製造方法
JP5079419B2 (ja) 溶接熱影響部の靱性が優れた溶接構造物用鋼とその製造方法および溶接構造物の製造方法
JP4547037B2 (ja) 溶接熱影響部のctod特性が優れた鋼およびその製造方法
JP5659758B2 (ja) 優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法
WO2013044640A1 (zh) 一种低屈强比高韧性钢板及其制造方法
JP6245352B2 (ja) 高張力鋼板およびその製造方法
JP2012172243A (ja) 靭性に優れる高張力鋼板とその製造方法
JP5630321B2 (ja) 靭性に優れる高張力鋼板とその製造方法
WO2014199488A1 (ja) 溶接用超高張力鋼板
KR101937005B1 (ko) 용접 조인트
JP2012188749A (ja) 多パス溶接部の靭性に優れた厚鋼板および多パス溶接継手
JP5811044B2 (ja) 溶接性、溶接熱影響部靭性に優れた厚手高強度鋼板およびその製造方法
JP5126790B2 (ja) 耐疲労亀裂進展特性に優れた鋼材およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004655.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010539648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777561

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010777561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13138119

Country of ref document: US

Ref document number: 2749154

Country of ref document: CA

Ref document number: 2010777561

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117016374

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011129331

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1007386

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1007386

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110715