WO2014199488A1 - 溶接用超高張力鋼板 - Google Patents

溶接用超高張力鋼板 Download PDF

Info

Publication number
WO2014199488A1
WO2014199488A1 PCT/JP2013/066349 JP2013066349W WO2014199488A1 WO 2014199488 A1 WO2014199488 A1 WO 2014199488A1 JP 2013066349 W JP2013066349 W JP 2013066349W WO 2014199488 A1 WO2014199488 A1 WO 2014199488A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
toughness
affected zone
strength
Prior art date
Application number
PCT/JP2013/066349
Other languages
English (en)
French (fr)
Inventor
渡部 義之
原 卓也
政昭 藤岡
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201380028579.6A priority Critical patent/CN104364405B/zh
Priority to JP2013544892A priority patent/JP5445723B1/ja
Priority to PCT/JP2013/066349 priority patent/WO2014199488A1/ja
Priority to KR1020147033089A priority patent/KR101679498B1/ko
Priority to EP13886145.5A priority patent/EP2843073B1/en
Publication of WO2014199488A1 publication Critical patent/WO2014199488A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/22Controlling or regulating processes or operations for cooling cast stock or mould
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to an ultra-high strength steel sheet having excellent weldability and weld heat affected zone toughness for large welded structures that require high safety such as offshore structures.
  • weldability and weld heat-affected zone toughness of steel sheets tend to be disadvantageous as they become thicker and higher in strength. This is because, in order to ensure strength, a large amount of an alloy element that impairs the toughness of the weld heat-affected zone must be added.
  • heat affected zone of the represent curability and welding cold cracking susceptibility
  • P CM carbon equivalent Ceq and weld cracking susceptibility composition
  • a work heat treatment that is, TMCP (Thermo-Mechanical Control Process) or B (boron).
  • TMCP Thermo-Mechanical Control Process
  • B boron
  • TMCP controls the entire steel manufacturing process from heating to rolling to cooling.
  • a water cooling process called accelerated cooling or controlled cooling is effective for increasing the strength after rolling.
  • cooling is a physical phenomenon of heat transfer, a sufficient cooling rate cannot be obtained even with water cooling at the center of the plate thickness of the thick material, and it has been difficult to secure a thick and high strength with low components.
  • B (boron) used in high-strength tempered steel is known to significantly increase the hardenability of steel even in a very small amount on the order of ppm by segregating in the solid solution state at the prior austenite grain boundaries. It is effective for conversion. However, this also significantly increases the curability of the weld heat affected zone.
  • the welding heat input during construction is limited to a relatively low level, and its curability is further enhanced.
  • the curability of the weld heat-affected zone has a high correlation with the weld cold crack sensitivity and the weld heat-affected zone toughness, and there has been a problem in unconditionally utilizing B (boron).
  • B boron
  • the effect is exhibited only when B (boron) exists in a solid solution state. Therefore, it is indispensable to control the precipitation of boron compounds and process control.
  • knowledge in the tempering treatment cannot be applied as it is.
  • manufacturing by tempering treatment that is, quenching-tempering treatment, is disadvantageous in comparison with TMCP in terms of heat treatment period and cost.
  • Patent Document 1 An invention relating to a Cu precipitation steel containing a relatively large amount of Cu of 0.8% or more is disclosed. However, if a large amount of Cu is added alone, there is a problem that Cu cracks are generated during heating or hot rolling, which makes it difficult to manufacture.
  • an object of the present invention is to provide an ultra-high-strength steel sheet having excellent weldability and weld heat affected zone toughness for large-sized welded structures that require high safety such as offshore structures. It is.
  • the main targets are the plate thickness of 50 to 100 mm, tensile strength of 600 to 700 MPa, yield strength of 500 to 690 MPa, and characteristics with a minimum CTOD value of 0.25 mm or more for the crack tip opening displacement of the weld heat affected zone.
  • This is a steel plate for offshore structures that requires crack-tip opening displacement (CTOD) characteristics at the crack tip opening of the part. Note that the minimum CTOD value is preferably higher in order to ensure sufficient safety against destruction.
  • the use is not particularly limited, and the toughness evaluation of the weld heat affected zone is considered to be a more rigorous evaluation method for CTOD characteristics compared to Charpy impact characteristics, and is mainly intended for steel plates for offshore structures. . Therefore, it goes without saying that the present invention can be widely applied to steel plates for welded structures such as ships, steel frames, bridges, and various tanks.
  • the gist of the present invention is as follows.
  • the steel sheet according to the first aspect of the present invention has a chemical composition of mass%, C: 0.015% to 0.045%, Mn: 1.80% to 2.20%, Cu: 0 40% to 0.70%, Ni: 0.80% to 1.80%, Nb: 0.005% to 0.015%, Mo: 0.05% to 0.25%, Ti: 0.005 % -0.015%, B: 0.0004% -0.0020%, N: 0.0020% -0.0060%, O: 0.0015% -0.0035%, Si: 0% -0.
  • the FB is calculated, and if the term ([Ti] ⁇ 2 ⁇ ([O] ⁇ 0.89 ⁇ [Al])) is 0 or less in the above equation 3, the equation (3)
  • Bp represented by the following formula 5 may be 0.09% or more and 0.30% or less.
  • Bp (884 ⁇ [C] ⁇ (1-0.3 ⁇ [C] 2 ) +294) ⁇ FB (5 formulas)
  • the chemical composition may be further limited to Si: 0.15% or less by mass%.
  • the chemical composition may further be limited to Mg: less than 0.0003% by mass%.
  • the steel sheet according to any one of the above (1) to (4) has a thickness of 50 mm to 100 mm, a tensile strength of 600 MPa to 700 MPa, and a yield strength of 500 MPa to 690 MPa. It may be.
  • An object of the present invention is to provide a super high strength steel excellent in weldability and weld heat-affected zone toughness for large welded structures that require high safety such as offshore structures.
  • the main target is a steel sheet having a tensile strength of 600 to 700 MPa, a yield strength of 500 to 690 MPa, and a minimum CTOD value of 0.25 mm or more of the crack tip opening displacement of the weld heat affected zone.
  • C 0.015% to 0.045%
  • C In the present invention utilizing the high hardenability of B, C must be kept relatively low in order to suppress excessive curability of the weld heat affected zone. However, if the amount of C is too low, the amount of alloy elements must be increased to compensate for the strength (tensile strength), resulting in loss of economic efficiency. While keeping the alloy cost low, yield strength of 500 to 560 MPa class steel (strength grade as a steel grade, not in the range of actual yield strength) is obtained with the thick material which is the target of the present invention. Therefore, in the present invention, it is limited to 0.015% or more. From the economical viewpoint, the lower limit may be 0.018%, 0.020%, 0.023%, or 0.025%.
  • the upper limit may be 0.042%, 0.040%, 0.037%, or 0.035%.
  • Si 0% to 0.40% or less Si is inevitably contained in the steel, and particularly helps to generate hard and brittle MA (Martensite-Austenite) -constituent (hereinafter abbreviated as MA) in the weld heat affected zone, Degradation of weld heat affected zone toughness. For this reason, Si is so preferable that it is low. In the present invention in which the C content is limited to a relatively low range, if it is contained up to 0.40%, the amount of MA produced is small and acceptable from the viewpoint of weld heat affected zone toughness.
  • MA Martensite-Austenite
  • the lower limit is preferable in consideration of various welding conditions as steel for welded structures, and the upper limit is 0.30%, 0.25%, 0.20%, 0.15%, or 0.005%. It may be 10% or less. There is no need to define the lower limit of Si, and the lower limit is 0%. In order to improve the base metal toughness of the steel sheet or for deoxidation, Si may be contained, and the lower limit may be set to 0.01%, 0.02%, or 0.03% as necessary.
  • Mn 1.80% to 2.20%
  • Mn is a relatively inexpensive element, but has a large strength improvement effect, and has a relatively small adverse effect on the toughness of the base material and the weld heat affected zone.
  • it is important to generate intragranular ferrite with Ti oxide as the nucleus in the weld heat affected zone. Plays an important role. That is, MnS is precipitated in the Ti oxide, and a Mn dilute region is formed in the vicinity thereof, and the transformation temperature is higher than that of the matrix to promote and promote the ferrite transformation.
  • Mn is limited to 1.80% or more in the present invention.
  • This lower limit is not critical in terms of metallurgy and technology, and is limited to clarify the component characteristics within the range in which the excellent characteristics intended by the present invention are expressed. In order to improve characteristics, the lower limit may be 1.85% or 1.90%.
  • Mn is an inexpensive element and we want to use it as much as possible. However, if the amount of Mn is too large, center segregation and microsegregation of the continuous cast slab are promoted, and a local embrittlement region is formed, which increases the possibility of impairing the toughness of the base metal or the weld heat affected zone. % Or less.
  • the upper limit may be 2.15% or 2.10%.
  • P and S are contained as unavoidable impurities, and it is better to reduce both the base material toughness and the HAZ toughness, but there are also restrictions on industrial production.
  • the upper limit was set to 0.008% and 0.005%.
  • the upper limit of P is 0.006%, 0.005% or 0.004%
  • the upper limit of S is 0.004%, 0.003% or 0.002%, respectively.
  • P and S are inevitable impurities, and it is not necessary to define the lower limit of P and S. If necessary, the lower limit of P and S may be 0%.
  • Cu 0.40% to 0.70% While Cu improves the strength of the base material, Cu is a useful element because the degree of deterioration of the toughness of the base material and the weld heat affected zone is relatively small. In the ultra high strength steel targeted by the present invention, addition of 0.40% or more is preferable. In order to improve the strength of the base material, the lower limit may be 0.45%, 0.50%, or 0.55%. When Cu exceeds 0.70%, a precipitation hardening phenomenon is exhibited, and the material of the steel material, particularly the strength, changes greatly discontinuously. For this reason, in the present invention, the intensity change is limited to 0.70% or less as a continuous and easily controlled range. By limiting the amount of Cu to 0.7% or less, there is an effect that there is almost no risk of Cu crack generation during hot rolling in combination with the amount of Ni described later. If necessary, the upper limit may be limited to 0.65%, 0.60%, or 0.55%.
  • Ni 0.80% to 1.80% [Ni] / [Cu]> 2.0...
  • Ni is known as a toughening element, has little toughness deterioration in the weld heat affected zone, and has the effect of improving the strength and toughness of the base material. is there. Therefore, Ni is an extremely useful element in the ultra high strength steel as in the present invention.
  • strength compensation by an alloy element is essential, and it is necessary to contain at least 0.80% or more of Ni.
  • the lower limit may be 0.90%, 1.00%, 1.05%, or 1.10%.
  • Ni is also an expensive alloy, and the content is preferably kept to a minimum that provides necessary properties such as strength and toughness.
  • a maximum of 1.80% is necessary, and this is the upper limit, but it goes without saying that it is not a characteristic or metallurgical upper limit.
  • the upper limit may be limited to 1.75%, 1.70%, 1.65%, 1.60%, 1.55% or 1.50%.
  • Ni contains more than 2.0 of the Cu amount. [Ni] / [Cu]> 2.0.
  • Nb 0.005% to 0.015%
  • Nb is an element useful for expanding the austenite non-recrystallization temperature range in the rolling process to a high temperature range and enjoying a controlled rolling effect effective for refinement of the structure.
  • Refinement of the structure is an effective means for improving both strength and toughness. In order to surely enjoy this effect, it is necessary to contain at least 0.005%. If necessary, the lower limit may be 0.006%, 0.007%, or 0.008%.
  • Nb which exhibits a very useful effect for such a base material, is also harmful to its toughness, such as increasing the curability in the weld heat affected zone and promoting the formation of MA. For this reason, the upper limit must be suppressed to 0.015%. In order to improve the toughness of the weld heat affected zone, the upper limit may be 0.013%, 0.011%, or 0.010%.
  • Mo 0.05% to 0.25% Mo is extremely effective from the viewpoint of improving the strength of the base material, and is an indispensable element in the thick high-strength steel sheet as in the present invention.
  • a further effect of improving hardenability is exhibited by containing both at the same time.
  • the lower limit may be 0.07%, 0.09%, 0.11%, or 0.13%.
  • the upper limit may be 0.23%, 0.21%, 0.19%, or 0.17%.
  • the present invention is an Al-less Ti-deoxidized steel.
  • Ti oxide is generated, and in the heat affected zone, it is used as a nucleus to generate intragranular ferrite, and the microstructure is refined, so at least Ti: 0.005% contained is required.
  • the lower limit may be 0.006% or 0.007%.
  • the upper limit is .015%.
  • the stoichiometric relationship with N means N excess (Ti deficiency) [N] ⁇ [Ti] /3.4 ⁇ 0 Limited to%. Exactly, the consumption of Ti by deoxidation should be taken into account, but it has been experimentally confirmed that there is no substantial influence while avoiding complexity.
  • the upper limit of Ti may be 0.013%, 0.012%, 0.011%, or 0.010%.
  • Formula 3 B is one of the important elements in the present invention. The effect of improving the hardenability of B is extremely large, and the use of B makes it possible to greatly suppress alloy elements.
  • the content of B must be at least 0.0004%. If necessary, the lower limit may be 0.0005%, 0.0006%, or 0.0007%. However, it is not sufficient to merely specify the B content. This is because in order to utilize the hardenability of B, it is necessary to exist in a solid solution state.
  • FB [B] ⁇ 0.77 ⁇ ([N] ⁇ 0.29 ⁇ ([Ti] ⁇ 2 ⁇ ([O] ⁇ 0.89 ⁇ [Al]))) ⁇ 0.0003%.
  • the upper limit is 0.0020% in the range that the inventors have experimentally confirmed as a range that does not adversely affect the properties of the steel because the effect is saturated even if contained more than necessary. It does not have a meaningful meaning.
  • the upper limit may be limited to 0.0018%, 0.0016%, 0.0015%, or 0.0014%.
  • B effective B
  • the FB may be 0.0004% or more or 0.0005%.
  • the upper limit of FB [B] ⁇ 0.77 ⁇ ([N] ⁇ 0.29 ⁇ ([Ti] ⁇ 2 ⁇ ([O] ⁇ 0.89 ⁇ [Al]))) is not particularly limited. It is naturally limited from the limited range of elements.
  • the above three formulas if the term ([N] ⁇ 0.29 ⁇ ([Ti] ⁇ 2 ⁇ ([O] ⁇ 0.89 ⁇ [Al])) is 0 or less, the above three formulas
  • the above three equations are equations for obtaining the amount of solute B in steel (effective B amount; FB) obtained by stoichiometric ratio in consideration of the strength of bonding force between each element. .
  • the upper limit of the FB need not be specified, but may be 0.0010%.
  • the B parameter Bp defined in Equation 5 is preferably set to 0.09% to 0.30% as a parameter for avoiding the HAZ hardness increase due to B.
  • Bp (884 ⁇ [C] ⁇ (1-0.3 ⁇ [C] 2 ) +294)
  • ⁇ FB (5 formulas)
  • Bp is an experience derived from analysis in molten steel experiments in many laboratories. It is a formula and is parameterized by (maximum hardness expected by the amount of C) ⁇ (contribution of FB). As the FB increases, the HAZ hardness is likely to increase, and the CTOD characteristic as in this time is greatly affected.
  • the weld penetration line (FL) may cause a significant increase in hardness.
  • the upper limit of Bp may be 0.27% or 0.25%.
  • Bp is necessarily 0.09% or more. Therefore, Bp is less than 0.09% because the welded steel material according to the present embodiment is an aim. Therefore, Bp may be set to 0.09% or more.
  • the lower limit of Bp may be 0.12% or 0.15%.
  • N 0.0020% to 0.0060%
  • N is inevitably contained in steelmaking, and reducing it more than necessary is not preferable for industrial production because of high steelmaking load. Rather, N forms a nitride by adding Ti, and the nitride is stable at a high temperature. Therefore, during heating prior to hot rolling of a steel material or a welding heat-affected zone slightly away from the weld melting line. Since it has the effect of pinning growth coarsening of austenite grains, it is preferable to contain 0.0020% or more. However, if it is too much, the possibility of forming a nitride by combining with B as described above is increased, and the hardenability improving effect of B is reduced.
  • the upper limit is naturally restricted from the above-described absolute amounts of B and Ti and the stoichiometric relationship, but in addition to that, if over 0.0060%, surface flaws occur during the manufacture of steel slabs, the upper limit is set to 0.0060. %. Preferably it is 0.0055% or less, More preferably, it is 0.005% or less.
  • O 0.0015% to 0.0035%
  • O is essential to be 0.0015% or more from the productivity of Ti oxide as intragranular ferrite formation nuclei in the weld heat affected zone.
  • the amount of O is too large, the size and number of oxides become excessive, and the possibility of acting as a starting point for brittle fracture increases. As a result, the toughness is deteriorated, so the upper limit is 0.0035%. It is necessary to limit to.
  • the content be 0.0030% or less, more preferably 0.0028% or less or 0.0025% or less.
  • Al 0% to 0.004%
  • the upper limit is intentionally limited, if the content exceeds 0.004%, the composition of the oxide changes and the possibility of not functioning as a nucleus of intragranular ferrite increases. , 0.004% or less. If necessary, the upper limit may be set to 0.003% or 0.002%. There is no need to particularly define the lower limit of the Al amount, and the lower limit is 0%. However, Al may be mixed in the steel refining process, and the lower limit may be 0.0001% or 0.0003%.
  • the steel material according to this embodiment is made of iron (Fe) and impurities in addition to the above components.
  • impurities are components that are inevitably mixed due to various factors in the production process, such as ore or scrap, when industrially producing steel materials, and have an adverse effect on the present invention. It means what is allowed in the range.
  • the steel plate according to this embodiment may further contain one or more of Cr, V, Ca, Mg, and REM in addition to the above components. There is no particular need to specify the lower limit of these components, and the lower limit is 0%. Further, even if these alloy elements are intentionally added or mixed as impurities, if the content is within the scope of claims, the steel material is interpreted as being within the scope of claims of the present invention.
  • Cr 0% to 0.30% Cr is 0.30% or less in order to reduce the CTOD characteristics of the weld heat affected zone.
  • the upper limit may be 0.20%, 0.15%, 0.10%, or 0.05%.
  • the lower limit is 0%. However, it may be mixed as an impurity, and the lower limit may be 0.001%.
  • V 0% to 0.06%
  • V is an element effective for improving the strength of the base material.
  • the upper limit is set to 0.06% or less as a range that does not significantly impair the CTOD characteristics.
  • the upper limit may be 0.04%, 0.02%, or 0.01%.
  • the lower limit is 0%. In some cases, it may be mixed as an impurity, and the lower limit thereof may be 0.001%.
  • Mg 0% to 0.0050% Mg can be contained as needed.
  • Mg a fine Mg-containing oxide is generated, which is effective in reducing the ⁇ particle size.
  • the upper limit is made 0.0050%.
  • the upper limit may be limited to 0.0030%, 0.0020%, 0.0010%, or 0.0003%.
  • the lower limit is 0%.
  • the welded steel material according to the present embodiment may contain the following alloy elements for the purpose of further improving the strength, toughness, etc. of the steel material itself, or as impurities from secondary materials such as scrap. Good.
  • Ca may be mixed as an impurity
  • the upper limit may be limited to 0.0010%, 0.0005%, or 0.0003%.
  • REM Radar Metal
  • the upper limit may be limited to 0.0010%, 0.0005%, or 0.0003%.
  • REM is a general term for 17 elements including Y and Sc in addition to 15 elements of lanthanoid. Since Sb impairs the toughness of HAZ, the upper limit of the Sb content may be 0.03%.
  • the upper limit of the Sb content may be 0.01%, 0.005%, 0.003%, or 0.001%. Since As and Sn impair the toughness of HAZ, the upper limit of the content of As and Sn may be 0.02%. If necessary, the upper limit of the contents of As and Sn may be 0.005%, 0.003%, or 0.001%. In addition, it is not necessary to prescribe
  • P CM weld crack sensitivity index
  • P CM [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B]... 4 formulas
  • each element is the mass% contained in steel.
  • the number of oxides having an equivalent circle diameter of 2 ⁇ m or more is 20 pieces / mm 2 or less, and the transformation nucleus has a circle equivalent diameter of 0.05 to 0.5 ⁇ m in Ti. It has been found important to have 1.0 ⁇ 10 3 to 1.0 ⁇ 10 5 oxides / mm 2 of oxide. When the number of oxides having a circle-equivalent diameter of 2 ⁇ m or more exceeds 20 / mm 2 , this oxide becomes a starting point for occurrence of destruction, and the CTOD characteristics deteriorate.
  • the steel of the present invention is industrially preferably produced by a continuous casting method.
  • the reason for this is that the solidification cooling rate of the molten steel is fast, and a large amount of fine Ti oxide and Ti nitride can be generated in the slab.
  • it is desirable that the average cooling rate of the center portion of the slab from the vicinity of the freezing point to 800 ° C. is 5 ° C./min or more.
  • the number of oxides with an equivalent circle diameter of 2 ⁇ m or more is 20 / mm 2 or less, and Ti oxide with an equivalent circle diameter of 0.05 to 0.5 ⁇ m is 1.0 ⁇ 10 6. This is to obtain 3 to 1.0 ⁇ 10 5 pieces / mm 2 .
  • the average cooling rate may be 50 ° C./min or less.
  • the average cooling rate at the center of the slab can be obtained by measuring the cooling rate of the slab surface and calculating heat transfer.
  • the average cooling rate can also be obtained by measuring the casting temperature, the amount of cooling water, etc., and calculating heat transfer.
  • the reheating temperature is preferably 1000 to 1100 ° C. This is because if the reheating temperature exceeds 1100 ° C., the Ti nitride becomes coarse, and the toughness deterioration of the base metal and the effect of improving the HAZ toughness cannot be expected. Further, at a reheating temperature of less than 1000 ° C., the rolling reaction force increases, the rolling load increases, and the productivity is hindered.
  • TM After reheating, production with TMCP is essential.
  • rolling is performed at a cumulative reduction amount of 30% or more at a temperature of 950 ° C. or higher.
  • Rolling in a high temperature range is to finely refine coarse austenite as it is heated.
  • the cumulative reduction amount is 30% or more, the characteristics are good if the subsequent rolling-cooling conditions are in an appropriate range. It is confirmed that it is stable.
  • the reason why rolling is completed at a temperature of 700 to 750 ° C. with the cumulative total reduction amount being 60% or more is to impart reduction in the austenite non-recrystallized region to such an extent that the structure can be refined even at the center of the plate thickness. is there.
  • the center of the plate thickness is unavoidably relatively low in the austenite non-recrystallized region, but it is good in combination with the relatively low heating temperature limited to the present invention and the appropriate reduction in the high temperature region. It becomes possible to refine the structure to such an extent that a sufficient strength and toughness balance can be secured. Under rolling conditions that deviate from these limited ranges, it has been experimentally confirmed that the toughness at the center of the sheet thickness is particularly inferior.
  • the cooling after rolling needs to start water cooling within 80 seconds after the end of rolling to cool to 280 ° C. or lower.
  • it is preferable to start water cooling immediately after rolling in a large-scale actual production facility, it is inevitable that a certain amount of conveyance time is required from the end of the rolling mill to the cooling facility. Even in such a case, it is not preferable in terms of strength that ferrite precipitates during cooling until cooling after rolling, and also because of precipitation due to cooling, the ferrite is likely to be coarse. For this reason, it is necessary to start water cooling within 80 seconds after the end of rolling. Preferably, it is within 60 seconds. Water cooling requires cooling to 280 ° C.
  • a method for producing a super high strength steel for welding excellent in weldability and weld heat-affected zone toughness is obtained by, for example, treating a steel slab or slab having the steel component described in (1) above at a temperature of 1000 to 1100 ° C. After heating, the cumulative reduction amount at a temperature of 950 ° C. or higher is 30% or more, the cumulative reduction amount at a temperature of 720 to 950 ° C. is 40% or more, the cumulative total reduction amount is 60% or more, and the temperature is 700 to 750 ° C.
  • the rolling is finished at, and water cooling is started within 80 seconds after the completion of rolling, cooling to 280 ° C. or lower, and then tempering in a temperature range of 400 to 550 ° C.
  • Thick steel plates with various steel components were manufactured in the converter, continuous casting, and thick plate processes, and the base metal characteristics and the toughness of the heat affected zone were evaluated.
  • Welding is a submerged arc welding method that is generally used as test welding.
  • the welding heat input is 4.5 kJ / mm with a labyrinth groove so that the weld penetration line (FL) is vertical.
  • Multi-layered For the toughness evaluation of the weld heat affected zone, a CTOD test based on API (American Petroleum Institute) standard RP 2Z and BS (British Standards) standard 7448 was performed.
  • the notch position was a weld melting line called CGHAZ (Coarse grain HAZ), and six tests were conducted at a test temperature of ⁇ 10 ° C., respectively.
  • CGHAZ Coarse grain HAZ
  • Tables 1-1 to 1-4 show the chemical composition of the steel.
  • Tables 2-1 to 2-4 show the manufacturing conditions, the number of oxides in the steel, the base metal characteristics, and the weld heat affected zone toughness (CTOD characteristics). Indicates.
  • the steel plates manufactured according to the present invention (invention steels: steel components No. 1 to 15, 29 to 51 and invention examples No.
  • A1 to L2 have a yield strength (YS) of 526 to 611 MPa, 516 to 594 MPa at steel plate 1/2 thickness position, tensile strength (TS) 616 to 680 MPa at steel plate 1/4 thickness position, 604 to 656 MPa at steel plate 1/2 thickness position, base metal toughness transition to fracture surface ( vTrs)
  • YS yield strength
  • TS tensile strength
  • TS base metal toughness transition to fracture surface
  • the steel plates of comparative examples deviating from the limitation range of the present invention have low base metal strength, The material toughness is inferior or the weld heat affected zone toughness is inferior. That is, in Comparative Examples a to c, Comparative Examples eo and Comparative Examples q to v, the steel components were outside the scope of the present invention, and the mechanical properties were not satisfied. In particular, steel component No. Since Comparative Example f according to No. 21 did not satisfy Ni / Cu> 2.0, cracks were generated during hot rolling, making manufacture difficult.
  • Comparative Example FB or P CM value is outside the range present invention d, w, x is, FB ⁇ 0.0003%, or P CM value is 0.18% or more, Since 0.23% or less is not satisfied, the base material strength is low or high, the base material toughness is inferior, or the weld heat affected zone toughness is inferior.

Abstract

 この鋼板は、化学組成が、質量%で、C:0.015%~0.045%、Mn:1.80%~2.20%、Cu:0.40%~0.70%、Ni:0.80%~1.80%、Nb:0.005%~0.015%、Mo:0.05%~0.25%、Ti:0.005%~0.015%、B:0.0004%~0.0020%、N:0.0020%~0.0060%、O:0.0015%~0.0035%、であり、板厚方向断面の板厚中心部において、円相当径が2μm以上の酸化物粒子が20個/mm以下、かつ円相当径が0.05~0.5μmのTi酸化物が1.0×10~1.0×10個/mmである。

Description

溶接用超高張力鋼板
 本発明は、海洋構造物等の高い安全性を要求される大型溶接構造物用として溶接性、溶接熱影響部靭性に優れる超高張力鋼板に関するものである。
 近年、世界的に旺盛なエネルギー需要に呼応して、石油・天然ガス等海洋資源開発が活発化している。それとともに、掘削、生産の効率化や開発環境の苛酷化などにより、海洋構造物の大型化が指向され、鋼材に対しては厚手化、高強度化が求められてきている。加えて、洋上に設置される海洋構造物は破壊に対する高い安全性も求められ、鋼板に対し優れた溶接性、溶接熱影響部靭性が要求される。
 一般に、鋼板の溶接性、溶接熱影響部靭性は、厚手、高強度になるほど不利になる傾向にある。強度確保上、溶接熱影響部の靭性を損なうような合金元素を多量に添加せざるを得ないためである。溶接性というのは広い意味を持つが、狭義には溶接熱影響部の硬化性や溶接冷間割れ感受性を表し、各種の炭素当量Ceqや溶接割れ感受性組成PCMなど成分パラメータで表されることが多い。高合金成分ほどこれら指標は高くなり、溶接熱影響部の硬化性や溶接冷間割れ感受性が高まり、一般に溶接性が劣るとされる。溶接熱影響部靭性は、これら溶接性の指標の大小と必ずしも完全に一致するものではないが、高い相関があることが広く知られている。
 上述してきたように、通常、鋼板の厚手化および/または高強度化は、溶接性、溶接熱影響部靭性を高める方向性とは相反し、これら相反する鋼板特性を両立させる成分設計、製造技術が課題となっていた。
 溶接性を損ねず、換言すれば化学成分を必要以上に高めることなく鋼板の厚手化および/または高強度化を達成する手段として、加工熱処理、すなわちTMCP(Thermo-Mechanical Control Process)やB(ボロン)添加鋼の調質処理(焼入-焼戻処理)があることは、当業者であれば、ここであえて技術開示するまでもなく広く知られているものである。しかし、それら手段によっても十分ではないこともまた事実である。
 TMCPは、加熱-圧延-冷却に至る鋼材製造プロセス全般を制御するもので、厚手材においては圧延後、加速冷却あるいは制御冷却とも呼ばれる水冷プロセスが高強度化に有効である。しかし、冷却は伝熱という物理現象のため、厚手材の板厚中心部は水冷によっても十分な冷却速度が得られず、厚手かつ高強度を低成分で確保することは困難であった。
 一方、高強度調質鋼で用いられるB(ボロン)は、旧オーステナイト粒界に固溶状態で偏析することでppmオーダーの極微量でも鋼の焼入性を著しく高めることが知られ、高強度化に有効である。しかし、このことは同時に溶接熱影響部の硬化性を著しく高めることにもなる。とりわけ高い安全性(溶接熱影響部の高い破壊靭性)が求められる海洋構造物では、建造時の溶接入熱が比較的低く制限されており、その硬化性は一段と高まる。溶接熱影響部の硬化性は、前述したように溶接冷間割れ感受性や溶接熱影響部靭性とも高い相関を有し、B(ボロン)を無条件に活用することには問題があった。また、B(ボロン)の高い焼入性を活用する場合、その効果はB(ボロン)が固溶状態で存在して初めて発揮するため、ボロン化合物の析出を制御する成分、プロセス制御が不可欠であり、TMCPとの組み合わせでは、調質処理での知見がそのまま適用できないケースがあった。だからといって調質処理、すなわち焼入-焼戻処理で製造することは、熱処理の工期やコストの面でTMCPとの比較上不利である。さらに近年では、環境負荷、省エネルギーの観点からも、非調質すなわちTMCP化が社会的要請となりつつあるのが実情である。
 このような中で、後述する本願発明の主たる目標と同等の板厚、降伏強さを有する溶接継手部のき裂先端開口変位CTOD特性に優れる海洋構造物用鋼としては、例えば特許文献1に0.8%以上の比較的多いCuを含有するCu析出型鋼にかかる発明が開示されている。しかし、Cuは単独で多く添加すると、加熱時又は熱間圧延時にCuクラックが発生し、製造困難になるという問題がある。
日本国特開2011-1625号公報
 本発明は、上記実情に鑑み、海洋構造物等の高い安全性を要求される大型溶接構造物用として溶接性、溶接熱影響部靭性に優れる超高張力鋼板を提供することを目的とするものである。
 主たる目標は、板厚50~100mm、引張強さ600~700MPa、降伏強さ500~690MPa、溶接熱影響部のき裂先端開口変位の最低CTOD値0.25mm以上の特性で、用途は溶接継手部のき裂先端開口変位CTOD(Crack-Tip Opening Displacement)特性が要求される海洋構造物用鋼板である。なお、最低CTOD値は破壊に対する十分な安全性を確保するためには高い方が好ましい。用途は特に限定するものではなく、溶接熱影響部靭性評価としては、シャルピー衝撃特性と比較し、CTOD特性の方がより厳しい評価法と考え、海洋構造物用鋼板を主たる目標としたものである。したがって、本発明は、船舶、鉄骨、橋梁、各種のタンクなど広く溶接構造物用鋼板として適用できることはいうまでもない。
 背景技術で指摘した各種の問題点、課題を解決するため、TMCP前提で、B(ボロン)を有効に活用する方法を鋭意探索、検討し、溶接性を損ねず、溶接熱影響部靭性を向上させる最良の手段を知見した。主なポイントは、(a)固溶B(ボロン)確保のためのB-N-Ti量バランスを適正化、(b)(固溶)Bによる溶接熱影響部の硬化性を緩和するための極低C化、(c)強度と溶接性、溶接熱影響部靭性確保のためのPCM適正化、(d)溶接熱影響部靭性確保のためのAlレスTi脱酸化、(e)粗大酸化物抑制のためのAlレス下での低O(酸素)化などである。これらポイントは、独立事象ではなく互いに密接な関係があるため同時に達成することは容易ではなく、本発明者らの系統的で緻密な実験により初めて実現でき、本発明を完成した。
 本発明の要旨は以下のとおりである。
 (1)本発明の第一の態様に係る鋼板は、化学組成が、質量%で、C:0.015%~0.045%、Mn:1.80%~2.20%、Cu:0.40%~0.70%、Ni:0.80%~1.80%、Nb:0.005%~0.015%、Mo:0.05%~0.25%、Ti:0.005%~0.015%、B:0.0004%~0.0020%、N:0.0020%~0.0060%、O:0.0015%~0.0035%、Si:0%~0.40%、P:0.008%以下、S:0.005%以下、Al:0%~0.004%、Cr:0%~0.30%、V:0%~0.06%、Mg:0%~0.0050%、残部:鉄および不純物であり、下記1式で表される値が2.0超であり、下記2式で表される値が0%以上であり、下記3式で表されるFBが0.0003%以上であり、下記4式で表される溶接割れ感受性指数であるPCM値が0.18%以上、0.23%以下であり、板厚方向断面の板厚中心部において、円相当径が2μm以上の酸化物粒子が20個/mm以下、かつ円相当径が0.05~0.5μmのTi酸化物が1.0×10~1.0×10個/mmである。
[Ni]/[Cu]…1式
[N]-[Ti]/3.4…2式
FB=[B]-0.77×([N]-0.29×([Ti]-2×([O]-0.89×[Al])))…3式
CM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]…4式
 ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[Ti]、[B]、[N]、[O]、[Al]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、B、N、O、Alの質量%で表した含有量を意味する。
 ただし、前記3式において、([O]-0.89×[Al])の項が0以下であれば、前記3式における([O]-0.89×[Al])の項を0にして前記FBを算出し、また、前記3式において、([Ti]-2×([O]-0.89×[Al]))の項が0以下であれば、前記3式における([Ti]-2×([O]-0.89×[Al]))の項を0にして前記FBを算出し、更に、前記3式において、([N]-0.29×([Ti]-2×([O]-0.89×[Al])))の項が0以下であれば、前記3式における([N]-0.29×([Ti]-2×([O]-0.89×[Al])))の項を0にして前記FBを算出し、更にまた、FB≦0のときはFB=0とする。
 (2)上記(1)に記載の鋼板は、更に、下記5式で表されるBpが0.09%以上0.30%以下であってもよい。
Bp=(884×[C]×(1-0.3×[C])+294)×FB…5式
 (3)上記(1)または(2)に記載の鋼板は、更に、前記化学組成が、質量%で、Si:0.15%以下に制限してもよい。
 (4)上記(1)~(3)のいずれか1項に記載の鋼板は、更に、前記化学組成が、質量%で、Mg:0.0003%未満に制限してもよい。
 (5)上記(1)~(4)のいずれか1項に記載の鋼板は、板厚が、50mm以上100mm以下、引張強さが、600MPa以上700MPa以下、降伏強さが、500MPa以上690MPa以下、であってもよい。
 本発明によれば、溶接性、溶接熱影響部靭性に優れた超高張力鋼を安価に提供することができ、海洋構造物などの溶接構造物の大型化と同時に、安全性を一段と高めることができる。
 以下に本発明を詳細に説明する。
 本発明は、海洋構造物等の高い安全性を要求される大型溶接構造物用として溶接性、溶接熱影響部靭性に優れる超高張力鋼を提供することを目的とし、板厚50~100mm、引張強さ600~700MPa、降伏強さ500~690MPa、溶接熱影響部のき裂先端開口変位の最低CTOD値0.25mm以上の特性を有する鋼板を主たる目標とするものである。
 まず、本発明の超高張力鋼の鋼成分の限定範囲と理由を述べる。ここで記載した%は質量%を意味する。
 C:0.015%~0.045%
 Bの高い焼入性を活用する本発明では、溶接熱影響部の過剰な硬化性を抑えるため、Cは比較的低く抑える必要がある。しかし、C量が低過ぎると強度(引張強さ)の補償のため合金元素量を増やさざるを得ず、経済性を失する。合金コストを抑えつつ、本発明の目標である厚手材で降伏強さ500~560MPa級鋼(鋼種としての強度グレードであって、実際の降伏強さの範囲でない)としての強度を安定して得るために本発明では0.015%以上に限定する。経済性の観点から、その下限を0.018%、0.020%、0.023%又は0.025%としてもよい。一方、0.045%超では、B効果と相俟って溶接熱影響部の硬化性が過剰となって溶接熱影響部靭性を劣化させるため、0.045%を上限とする。溶接熱影響部の硬化性を低減させるため、その上限を0.042%、0.040%、0.037%又は0.035%としてもよい。
 Si:0%~0.40%以下
 Siは、鋼中に不可避的に含有され、特に溶接熱影響部で硬くて脆いMA(Martensite-Austenite)-constituent(以下MAと略記)生成を助長し、溶接熱影響部靭性を劣化させる。このため、Siは低いほど好ましい。C量を比較的低い範囲に限定する本発明においては、0.40%までの含有であればMA生成量が少なく、溶接熱影響部靭性の観点から許容できる。しかし、溶接構造物用鋼としての多様な溶接条件を勘案すると少ない方が好ましいことは言うまでもなく、その上限を0.30%、0.25%、0.20%、0.15%又は0.10%以下としてもよい。Siの下限を規定する必要はなく、その下限は0%である。鋼板の母材靭性の向上のため又は脱酸のために、Siを含有してもよく、必要に応じて、その下限を0.01%、0.02%又は0.03%としてもよい。
 Mn:1.80%~2.20%
 Mnは比較的安価な元素であるが、強度向上効果が大きく、母材および溶接熱影響部の靭性への悪影響も比較的小さい。AlレスTi脱酸とする本発明では、溶接熱影響部靭性を向上させるため、溶接熱影響部においてTi酸化物などを核とした粒内フェライト生成が重要になるが、その際、Mnも重要な役割を果たしている。それは、Ti酸化物にMnSが析出し、その近傍にMnの希薄域が形成され、マトリックスより変態温度が高くなってフェライト変態を助長・促進するというものである。母材の強度、靭性、溶接熱影響部靭性、さらには合金コストなどを総合的に勘案し、本発明でMnは1.80%以上に限定する。この下限には冶金上、技術上の臨界的な意味合いはなく、本発明が目的とする優れた特性が発現される範囲内で、成分的な特徴を明確にするために限定したものである。特性改善のため、その下限を1.85%又は1.90%としてもよい。Mnは安価な元素でもあり極力活用したいところである。しかし、Mn量が多すぎると連続鋳造スラブの中心偏析やミクロ偏析が助長され、局所的な脆化域が形成され母材あるいは溶接熱影響部の靭性を損ねる可能性が高まるため、2.20%以下に制限する。母材又は溶接熱影響部の靭性改善のため、その上限を2.15%又は2.10%としてもよい。
 P:0.008%以下、S:0.005%以下
 P、Sは、不可避的不純物として含有され、母材靭性、HAZ靭性からともに少ない方が良いが、工業生産的な制約もあり、それぞれ0.008%、0.005%を上限とした。より良好なHAZ靭性を得るために、それぞれPの上限を0.006%、0.005%又は0.004%に、Sの上限を0.004%、0.003%又は0.002%としてもよい。P、Sは不可避的不純物であり、P、Sの下限を規定する必要はない。必要があれば、P、Sの下限を0%としても差し支えない。
 Cu:0.40%~0.70%
 Cuは、母材の強度を向上させる一方で、母材および溶接熱影響部の靭性の劣化程度は比較的小さいため、有用な元素である。本発明が目標とする超高張力鋼においては、0.40%以上の添加が好ましい。母材の強度の向上のため、その下限を0.45%、0.50%又は0.55%としてもよい。Cuは、0.70%を超えると析出硬化現象を示すようになり、鋼材の材質、特に強度が不連続的に大きく変化してしまう。このため、本発明では、強度変化が連続的で制御しやすい範囲として0.70%以下に限定する。Cu量を0.7%以下に限定することで、後述するNi量とも相俟って熱間圧延時のCuクラック発生の危険性がほとんどなくなると言う効果も有する。必要に応じて、その上限を0.65%、0.60%又は0.55%に制限してもよい。
 Ni:0.80%~1.80%
 [Ni]/[Cu]>2.0・・・・ 1式
 Niは、高靭化元素として知られ、溶接熱影響部の靭性の劣化が少なく、母材の強度、靭性を向上させる効果がある。したがって、Niは、本発明のような超高張力鋼において、極めて有用な元素である。特に本発明のような極低炭素の化学成分では、合金元素による強度補償が必須であり、少なくとも0.80%以上のNiを含有させる必要がある。溶接熱影響部の靭性の向上のため、その下限を0.90%、1.00%、1.05%又1.10%としてもよい。一方、Niは高価な合金でもあり、含有量は強度、靭性等必要な特性が得られる最小限に抑えることが好ましい。本発明の目標とする強度および最大板厚(100mm)を考慮した場合、最大1.80%まで必要であり、これを上限とするが、特性あるいは冶金的な上限ではないことは言うまでもない。必要に応じて、その上限を、1.75%、1.70%、1.65%、1.60%、1.55%又は1.50%に制限してもよい。なお、前述したようにやや多いCuを含有する本発明鋼においては、鋳片のCu割れを抑制するため、NiはCu量の2.0超を含有させることが有効であり、請求項1において、[Ni]/[Cu]>2.0に限定する。
 Nb:0.005%~0.015%
 Nbは、圧延工程でのオーステナイト未再結晶温度域を高温域に広げ、組織の微細化に有効な制御圧延効果を享受する上で有用な元素である。組織の微細化は、強度、靭性をともに向上させる有効な手段である。この効果を確実に享受する上で、少なくとも0.005%の含有が必要である。必要に応じて、その下限を0.006%、0.007%又は0.008%としてもよい。このような母材には極めて有用な効果を発現するNbも、溶接熱影響部では硬化性を増大させ、MA生成を助長するなどその靭性には有害である。このため、上限は0.015%に抑えなければならない。溶接熱影響部の靭性改善のため、その上限を0.013%、0.011%又は0.010%としてもよい。
 Mo:0.05%~0.25%
 Moは、母材の強度向上の観点からはきわめて有効で、本発明のような厚手高強度鋼板においては、不可欠の元素である。特に、Bを活用する本発明においては、両者を同時に含有することでより一層の焼入性向上効果を発現する。このようなMoの優れた効果を享受するためには、少なくとも0.05%の含有が必要である。この焼入性向上効果を確実に発揮させるため、その下限を0.07%、0.09%、0.11%又は0.13%としてもよい。しかし、効果が大きいゆえに、多過ぎる添加は硬化性を著しく高め、MA生成も顕著に助長するため、0.25%以下に制限する必要がある。MA生成抑制のため、その上限を0.23%、0.21%、0.19%又は0.17%としてもよい。
 Ti:0.005%~0.015%
 [N]-[Ti]/3.4≧0%・・・・ 2式
 本発明は、AlレスのTi脱酸鋼である。鋼の脱酸上の必要性と、Ti酸化物を生成させ、溶接熱影響部においてそれを核として粒内フェライトを生成させ、ミクロ組織を微細化させため、少なくともTi:0.005%の含有が必要である。溶接熱影響部の靭性改善のため、その下限を0.006%又は0.007%としてもよい。しかし、含有量が多くなり化学量論的にNに対して過剰になると、窒化物形成後の過剰なTiはTiCを生成し、溶接熱影響部の靭性を劣化させる可能性が高まるため、0.015%を上限とする。また、それと同時にTiC生成を極力防止する観点から、請求項1において、Nとの化学量論的関係として、N過剰(Ti不足)を意味する[N]-[Ti]/3.4≧0%に限定する。なお、正確には脱酸によるTiの消費も考慮すべきであるが、煩雑さを避けるとともに、実質的に大きな影響がないことを実験的に確認している。2式を0%以上とするために、Tiの上限を0.013%、0.012%、0.011%又は0.010%としてもよい。
 B:0.0004%~0.0020%
 FB=[B]-0.77×([N]-0.29×([Ti]-2×([O]-0.89×[Al])))≧0.0003%・・・・ 3式
 Bは、本発明において重要となる元素の一つである。Bの焼入性向上効果はきわめて大きく、Bを活用することで合金元素を大幅に抑えることが可能となる。このためのBの含有量は、少なくとも0.0004%は必要である。必要に応じて、その下限を0.0005%、0.0006%又は0.0007%としてもよい。しかし、単にB含有量だけを規定するだけでは不十分である。Bの焼入性を活用するためには、固溶状態で存在させる必要があるからである。Bは、窒化物を形成しやすく、Nとの化学量論的バランスも重要となる。ただし、窒化物形成能はBよりTiの方がより高いため、それも勘案し、請求項1において、FB=[B]-0.77×([N]-0.29×([Ti]-2×([O]-0.89×[Al])))≧0.0003%に限定した。上限については、必要以上に含有させても効果が飽和するため、発明者らが鋼の特性に悪影響をおよぼさない範囲として実験的に確認した範囲で0.0020%としたが、必ずしも臨界的意味合いを有するものではない。必要に応じて、その上限を0.0018%、0.0016%、0.0015%又は0.0014%に制限してもよい。
 鋼中に固溶状態で存在するB(有効B)を確保するために、上記3式に定義される有効B量を示すパラメータである上記FBを0.0003%以上必要なことを見出した。Bをより有効に活用するために、上記FBを0.0004%以上又は0.0005%としてもよい。
 FB=[B]-0.77×([N]-0.29×([Ti]-2×([O]-0.89×[Al])))の上限は特に限定しないが、各元素の限定範囲から自ずと限定されるものである。
 ただし、上記3式において、([O]-0.89×[Al])の項が0以下であれば、上記3式における([O]-0.89×[Al])の項を0にして上記FBを算出する。
 また、上記3式において、([Ti]-2×([O]-0.89×[Al]))の項が0以下であれば、上記3式における([Ti]-2×([O]-0.89×[Al]))の項を0にして上記FBを算出する。
 更に、上記3式において、([N]-0.29×([Ti]-2×([O]-0.89×[Al])))の項が0以下であれば、上記3式における([N]-0.29×([Ti]-2×([O]-0.89×[Al])))の項を0にして上記FBを算出する。
 更にまた、FB≦0のときはFB=0とする。
 なお、上記3式は、それぞれの元素間の結合力の強さを考慮した上で、化学量論比により得られた鋼中の固溶B量(有効B量;FB)を求める式である。上記FBの上限を特に規定する必要はないが、0.0010%としても差し支えない。
 更に検討したところ、BによるHAZ硬さ上昇を回避するパラメータとして5式に定義されるBパラメータBpを0.09%~0.30%とした方が好ましいことを見出した。
 Bp=(884×[C]×(1-0.3×[C])+294)×FB・・・・ 5式
 なお、Bpは、多数の実験室における溶鋼実験での解析から導出した経験式であり、(C量によって予想される最高硬さ)×(FBの寄与)でパラメータ化したものである。FBが多いほど、HAZ硬さが高くなりやすく、特に今回のようなCTOD特性に大きく影響する。Bpが0.30%を超えると溶接溶け込み線(FL)部で著しい硬さの上昇を引き起こす場合があり、CTOD特性の目標値である0.25mm以上を満足するためには、0.30%以下に制限した方が望ましいことを見出した。必要に応じて、Bpの上限を0.27%又は0.25%としてもよい。実施形態に係る溶接鋼材においてFBが0.0003%以上であればBpは必ず0.09%以上となることから、Bpが0.09%未満となるのは本実施形態に係る溶接鋼材の狙いとする固溶Bの効果が得られない領域であるため、Bpを0.09%以上としてよい。必要に応じて、Bpの下限を0.12%又は0.15%としてもよい。
 N:0.0020%~0.0060%
 Nは、製鋼上不可避的に含有するもので、必要以上に低減することは製鋼負荷が高く、工業生産上好ましくない。むしろNは、Tiを添加することで窒化物を形成し、しかもその窒化物は高温で安定であるため、鋼材の熱間圧延に先立つ加熱時あるいは溶接溶融線から若干離れた溶接熱影響部のオーステナイト粒の成長粗大化をピン止めする効果を有するため、0.0020%以上含有することが好ましい。しかし、多すぎると、上述したようにBと結合して窒化物を形成する可能性が高まり、Bの焼入性向上効果を減殺することになる。上述したB、Tiの絶対量と化学量論的関係から、自ずと上限は制約されるが、それ以外にも0.0060%超では鋼片製造時に表面疵が発生するため、上限を0.0060%とした。好ましくは0.0055%以下、さらに好ましくは0.005%以下である。
 O:0.0015%~0.0035%
 Oは、溶接熱影響部での粒内フェライト生成核としてのTi酸化物の生成性から0.0015%以上が必須である。しかし、Oが多すぎると酸化物のサイズおよび個数が過大となって、むしろ脆性破壊の発生起点として作用する可能性が高まり、結果として靭性を劣化させることになるため、上限は0.0035%に制限する必要がある。より良好で、安定した溶接熱影響部靭性を得るためには、0.0030%以下、より好ましくは0.0028%以下又は0.0025%以下とすることが望ましい。
 Al:0%~0.004%
 AlレスTi脱酸の本発明においては、不可避的不純物の一つである。請求項1において、あえて上限を限定するのは、不可避といえども含有量が0.004%を超えると、酸化物の組成が変化し、粒内フェライトの核として機能しなくなる可能性が高まるため、0.004%以下に限定する。必要に応じて、その上限を0.003%又は0.002%としてもよい。Al量の下限を特に規定する必要はなく、その下限は0%である。しかしながら、鋼の精錬過程の中でAlが混入する場合があり、その下限を0.0001%又は0.0003%としても差し支えない。
 本実施形態に係る鋼材は、上記の成分のほか、残部が鉄(Fe)と不純物とからなるものである。ここで、不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって不可避的に混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る鋼板は、上記の成分の外に、Cr、V、Ca、MgおよびREMのうちの1種または2種以上をさらに含有してもよい。これらの成分の下限を特に規定する必要はなく、その下限は0%である。また、これらの合金元素が意図的に添加されたとしても、または不純物としての混入であっても、その含有量が請求範囲内にあれば、その鋼材は本発明の請求範囲内と解釈する。
 Cr:0%~0.30%
 Crは、溶接熱影響部のCTOD特性を低下させるため、0.30%以下とする。このCTOD特性の改善のため、その上限を0.20%、0.15%、0.10%又は0.05%としてもよい。Cr量の下限を特に規定する必要はなく、その下限は0%である。しかしながら、不純物として混入する場合もあり、その下限を0.001%としても差し支えない。
 V:0%~0.06%
 Vは、母材強度の向上に有効な元素である。しかし、0.06%を超えるとCTOD特性を害することになるので、CTOD特性を大きく害しない範囲として、上限を0.06%以下とする。よりすぐれたCTOD特性を確保するためには、その上限を0.04%、0.02%又は0.01%としてもよい。Vの含有量の下限を規定する必要はなく、その下限は0%である。不純物として混入する場合もあり、その下限を0.001%としても差し支えない。
 Mg:0%~0.0050%
 Mgは、必要に応じて含有させることができる。Mgを含有させると、微細なMg含有酸化物が生成されるので、γ粒径の微細化に効果がある。しかしながら、Mgの含有量が0.0050%を超えると、酸化物が多くなりすぎて延性低下をもたらすことがあるので、その上限は0.0050%とする。その上限を0.0030%、0.0020%、0.0010%又は0.0003%に制限してもよい。Mgの含有量の下限を規定する必要はなく、その下限は0%である。
 本実施形態に係る溶接鋼材には、上記成分の他に、鋼材自体の強度、靭性等を一段と改善する目的で、あるいはスクラップ等の副原料からの不純物として、以下の合金元素を含有してもよい。
 Caが不純物として混入する場合もあるため、その上限を0.0010%、0.0005%又は0.0003%に制限してもよい。
 REM(Rare Earth Metal)が不純物として混入する場合もあるため、その上限を0.0010%、0.0005%又は0.0003%に制限してもよい。ここで、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称である。
 SbはHAZの靭性を損なうため、Sbの含有量の上限を0.03%としてもよい。HAZ靭性を向上させるため、Sbの含有量の上限を、0.01%、0.005%、0.003%又は0.001%としてもよい。
 AsおよびSnはHAZの靭性を損なうため、AsおよびSnの含有量の上限を0.02%としてもよい。必要に応じて、AsおよびSnの含有量の上限を、0.005%、0.003%又は0.001%としてもよい。なお、Ca、REM、Sb、As、Snの下限を特に規定する必要はなく、その下限は0%である。
 また、強度及び靭性の向上のため、Pb、Zr、Zn及びWを、それぞれ0.1%以下、0.01%又は0.005%以下としてもよい。これらの下限を特に決める必要はなく、0%である。
 Coは、Niの中に不純物として含まれる場合がある。CoはHAZ靭性を損なうため、Coの含有量の上限を、0.05%又は0.002%としてもよい。その下限を特に決める必要はなく、その下限は0%である。
 個々の元素を上記のように限定した上で、さらに総量規制とも言うべき下記4式のPCMを適正範囲に限定する必要がある。なお、下記4式は溶接割れ感受性指数(PCM)として公知の式である。各元素がすべて限定範囲であっても、すべて下限または上限の場合には、焼入性が不足または過剰となって、前者の場合は厚手で高強度化が達成できず、後者の場合は溶接熱影響部の硬化性、MA生成が過剰となって、靭性確保ができないためである。本発明が目標とする板厚で強度を安定して確保し、かつ溶接熱影響部靭性も安定して確保するためには、PCMを0.18~0.23%とする必要がある。
 PCM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]・・・ 4式
ここで、各元素は鋼中に含有される質量%である。
 さらに、CTOD特性を満足させるには、円相当径で2μm以上の酸化物の個数を20個/mm以下でかつ、変態核として鋼中に円相当径で0.05~0.5μmのTi酸化物を1.0×10~1.0×10個/mm有することが重要であることが分かった。円相当径2μm以上の酸化物個数が20個/mmを超えると、この酸化物が破壊発生起点となり、CTOD特性が劣化する。また、円相当径0.05~0.5μmのTi酸化物が1.0×10個/mm未満では、粒内変態フェライトの生成核としてのTi酸化物個数が不十分となり、1.0×10個/mmを超えると、Ti酸化物が破壊発生起点となって、いずれの場合もCTOD特性が劣化する。
 以上のように鋼の成分を限定した上で、厚手高強度鋼板を安定して工業生産するためには、製造方法も限定する必要がある。
 次いで、溶接用超高張力鋼の製造方法について一例を説明する。
 本発明鋼は工業的には連続鋳造法で製造することが好ましい。その理由は、溶鋼の凝固冷却速度が速く、スラブ中に微細なTi酸化物とTi窒化物を多量に生成することが可能なためである。本実施形態に係る溶接鋼材の製造方法では、凝固点近傍から800℃までの鋳片の中心部の平均冷却速度を5℃/min以上とすることが望ましい。その理由としては、鋼中に、円相当径で2μm以上の酸化物の個数を20個/mm以下でかつ円相当径で0.05~0.5μmのTi酸化物を1.0×10~1.0×10個/mm得るためである。鋳片の冷却速度が5℃/min未満の場合、微細な酸化物が得られにくく粗大な酸化物が増加する。一方、平均冷却速度を50℃/min超にしても微細なTi酸化物の数は大きく増加せず、むしろ製造コストが上昇するため、平均冷却速度を50℃/min以下としてもよい。
 なお、鋳片の中心部の平均冷却速度は、鋳片表面の冷却速度を測定し、伝熱計算により求めることができる。また、平均冷却速度は、鋳造温度や冷却水量などを測定し、伝熱計算により求めることもできる。
 スラブの圧延に際し、その再加熱温度は1000~1100℃とした方が好ましい。再加熱温度が1100℃を超えるとTi窒化物が粗大化して母材の靭性劣化やHAZ靭性改善効果が期待できないためである。また、1000℃未満の再加熱温度では、圧延反力が大きくなって圧延負荷が高まり、生産性を阻害するためである。
 再加熱後は、TMCPでの製造が必須である。まず、950℃以上の温度での累積圧下量が30%以上の圧延をおこなう。高温域での圧延は、加熱したままの粗大なオーステナイトを整細粒化するためで、累積圧下量は多いほど好ましいが、鋳片厚およびその後の圧延条件により制約を受ける。高温状態の圧延組織は実際には把握すべくもないが、本発明者らの工場およびラボ実験では累積圧下量は30%以上であれば、その後の圧延-冷却条件が適正範囲であれば特性が安定することを確認している。
 次いで、720~950℃の温度で累積圧下量が40%以上で、累積総圧下量が60%以上として700~750℃の温度で圧延を終了させる。これらの温度域は、概ねオーステナイトの未再結晶温度域である。しかし、厚手材では板厚方向に温度分布を有し、板厚中心部近傍は温度が高いため、未再結晶温度域圧延が不十分となる場合がある。そのため、本発明は、二段階に温度、累積圧下量を限定するものである。720~950℃の温度で累積圧下量が40%以上の圧延は、表裏面表層から概ね板厚1/4までの最低限必要なオーステナイト未再結晶圧延量である。さらに、累積総圧下量を60%以上として700~750℃の温度で圧延を終了するのは、板厚中心部でも組織微細化ができる程度にオーステナイト未再結晶域での圧下を付与するためである。板厚中心部は、相対的にオーステナイト未再結晶域での圧下量が少ないのはやむを得ないが、本発明に限定する比較的低い加熱温度、高温域での適正圧下と相俟って、良好な強度、靭性バランスを確保し得る程度に組織を微細化することが可能となる。これら限定範囲を逸脱する圧延条件では、特に、板厚中心部靭性が劣ることを実験的に確認している。
 さらに、圧延後の冷却は、圧延終了後80秒以内に水冷を開始して280℃以下まで冷却する必要がある。圧延後は速やかに水冷を開始することが好ましいが、大型の実生産設備においては、圧延機端から冷却設備まである程度の搬送時間を要することは避けられない。その場合でも、圧延後冷却までの放冷間にフェライトが析出することは強度上も、また放冷での析出のためそのフェライトは、粗大である可能性が高く靭性上も好ましくない。このため、圧延終了後80秒以内に水冷を開始する必要がある。好ましくは60秒以内である。水冷は、伝熱律速となる板厚中心部でも完全に変態が完了するまで冷却する必要があるため、280℃以下までの冷却が必要である。なお、本発明が目標とする厚手材の板厚中心部でも加速冷却効果を享受するため、概ね1.2m/m/分以上の水量密度で冷却することが好ましい。
 冷却後は、さらに400~550℃の温度範囲で焼戻ししなければならない。焼戻処理をおこなうことで、母材の強度、靭性バランスが改善するだけでなく、高精度に安定して制御できる。さらに、冷却時の不均一性も緩和され、鋼材内の残留応力解消にも効果を有し、それらに起因した切断時の形状変化も抑制される。400℃未満での焼戻しではそれらの効果が小さく、550℃を超える焼戻しでは、強度低下が大きく、本発明が目標とする高強度の確保が困難である。
 なお、上述した温度はいずれも鋼材表面温度である。
 以上より、溶接性、溶接熱影響部靭性に優れた溶接用超高張力鋼の製造方法は、例えば上記(1)に記載の鋼成分を有する鋼片または鋳片を、1000~1100℃の温度に加熱後、950℃以上の温度での累積圧下量が30%以上、720~950℃の温度で累積圧下量が40%以上で、累積総圧下量が60%以上として700~750℃の温度で圧延を終了し、圧延終了後80秒以内に水冷を開始して280℃以下まで冷却し、その後さらに400~550℃の温度範囲で焼戻しする。
 以下、発明例及び比較例に基づいて本発明を説明する。
 転炉、連続鋳造、厚板工程で種々の鋼成分の厚鋼板を製造し、母材特性ならびに溶接熱影響部の靭性を評価した。
 溶接は、一般的に試験溶接として用いられている潜弧溶接(サブマージアーク溶接)法で、溶接溶け込み線(FL)が垂直になるようにレ型開先で溶接入熱は4.5kJ/mmの多層盛りとした。溶接熱影響部の靭性評価は、API(American Petroleum Institute)規格RP 2Z及びBS(British Standards)規格7448に準拠したCTOD試験をおこなった。ノッチ位置はCGHAZ(Coarse grain HAZ)とよばれる溶接溶融線で、試験温度-10℃でそれぞれ6本の試験を実施した。
 表1-1~表1-4に鋼の化学成分を示し、表2-1~表2-4に製造条件、鋼中の酸化物個数および母材特性、溶接熱影響部靭性(CTOD特性)を示す。本発明で製造した鋼板(本発明鋼:鋼成分No.1~15、29~51及び本発明例No.A1~L2)は、降伏強さ(YS)が鋼板1/4厚位置で526~611MPa、鋼板1/2厚位置で516~594MPa、引張強さ(TS)が鋼板1/4厚位置で616~680MPa、鋼板1/2厚位置で604~656MPa、母材靭性が破面遷移(vTrs)試験結果の鋼板1/4厚位置で-48~-81℃、鋼板1/2厚位置で-40~-68℃、-10℃の最低CTOD値が0.29~0.94mmの良好な破壊靭性を示した。また、本発明鋼のPCM値、CTOD値より、良好な溶接性を示していた。
 これに対し、本発明の限定範囲を逸脱する比較例の鋼板(比較鋼:鋼成分No.16~28、52~62及び比較例No.a~x)は、母材強度が低かったり、母材靭性が劣っていたり、あるいは溶接熱影響部靭性が劣っている。
 即ち、比較例a~c、比較例e~o、比較例q~vは鋼成分が本発明範囲外で、上記機械的性質が満足されるものではなかった。特に、鋼成分No.21による比較例fは、Ni/Cu>2.0を満足していないため、熱間圧延時にクラックが生じ、製造が困難となった。更に、鋼成分は本発明範囲内で、FBあるいはPCM値が本発明範囲外である比較例d、w、xは、FB≧0.0003%、あるいはPCM値が0.18%以上、0.23%以下を満足していないため、母材強度が低かったり、高かったり、母材靭性が劣っていたり、あるいは溶接熱影響部靭性が劣っている。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明によれば、溶接性、溶接熱影響部靭性に優れた超高張力鋼を安価に提供することができ、海洋構造物などの溶接構造物の大型化と同時に、安全性を一段と高めることができる。

Claims (5)

  1.  化学組成が、質量%で、
     C:0.015%~0.045%、
     Mn:1.80%~2.20%、
     Cu:0.40%~0.70%、
     Ni:0.80%~1.80%、
     Nb:0.005%~0.015%、
     Mo:0.05%~0.25%、
     Ti:0.005%~0.015%、
     B:0.0004%~0.0020%、
     N:0.0020%~0.0060%、
     O:0.0015%~0.0035%、
     Si:0%~0.40%、
     P:0.008%以下、
     S:0.005%以下、
     Al:0%~0.004%、
     Cr:0%~0.30%、
     V:0%~0.06%、
     Mg:0%~0.0050%、
     残部:鉄および不純物
    であり、
     下記1式で表される値が2.0超であり、
     下記2式で表される値が0%以上であり、
     下記3式で表されるFBが0.0003%以上であり、
     下記4式で表される溶接割れ感受性指数であるPCM値が0.18%以上、0.23%以下であり、
     板厚方向断面の板厚中心部において、円相当径が2μm以上の酸化物粒子が20個/mm以下、かつ円相当径が0.05~0.5μmのTi酸化物が1.0×10~1.0×10個/mmである
    ことを特徴とする鋼板。
    [Ni]/[Cu]…1式
    [N]-[Ti]/3.4…2式
    FB=[B]-0.77×([N]-0.29×([Ti]-2×([O]-0.89×[Al])))…3式
    CM=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B]…4式
     ここで、[C]、[Si]、[Mn]、[Cu]、[Ni]、[Cr]、[Mo]、[V]、[Ti]、[B]、[N]、[O]、[Al]は、それぞれC、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、B、N、O、Alの質量%で表した含有量を意味する。
     ただし、前記3式において、([O]-0.89×[Al])の項が0以下であれば、前記3式における([O]-0.89×[Al])の項を0にして前記FBを算出し、
     また、前記3式において、([Ti]-2×([O]-0.89×[Al]))の項が0以下であれば、前記3式における([Ti]-2×([O]-0.89×[Al]))の項を0にして前記FBを算出し、
     更に、前記3式において、([N]-0.29×([Ti]-2×([O]-0.89×[Al])))の項が0以下であれば、前記3式における([N]-0.29×([Ti]-2×([O]-0.89×[Al])))の項を0にして前記FBを算出し、
     更にまた、FB≦0のときはFB=0とする。
  2.  更に、下記5式で表されるBpが0.09%以上0.30%以下であることを特徴とする請求項1に記載の鋼板。
    Bp=(884×[C]×(1-0.3×[C])+294)×FB…5式
  3.  更に、前記化学組成が、質量%で、
     Si:0.15%以下
    に制限することを特徴とする請求項1または2に記載の鋼板。
  4.  更に、前記化学組成が、質量%で、
     Mg:0.0003%未満
    に制限することを特徴とする請求項1~3のいずれか1項に記載の鋼板。
  5.  板厚が、50mm以上100mm以下、
     引張強さが、600MPa以上700MPa以下、
     降伏強さが、500MPa以上690MPa以下、
    であることを特徴とする請求項1~4のいずれか1項に記載の鋼板。
PCT/JP2013/066349 2013-06-13 2013-06-13 溶接用超高張力鋼板 WO2014199488A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380028579.6A CN104364405B (zh) 2013-06-13 2013-06-13 焊接用超高张力钢板
JP2013544892A JP5445723B1 (ja) 2013-06-13 2013-06-13 溶接用超高張力鋼板
PCT/JP2013/066349 WO2014199488A1 (ja) 2013-06-13 2013-06-13 溶接用超高張力鋼板
KR1020147033089A KR101679498B1 (ko) 2013-06-13 2013-06-13 용접용 초고장력 강판
EP13886145.5A EP2843073B1 (en) 2013-06-13 2013-06-13 Ultrahigh-tensile-strength steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/066349 WO2014199488A1 (ja) 2013-06-13 2013-06-13 溶接用超高張力鋼板

Publications (1)

Publication Number Publication Date
WO2014199488A1 true WO2014199488A1 (ja) 2014-12-18

Family

ID=50614404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/066349 WO2014199488A1 (ja) 2013-06-13 2013-06-13 溶接用超高張力鋼板

Country Status (5)

Country Link
EP (1) EP2843073B1 (ja)
JP (1) JP5445723B1 (ja)
KR (1) KR101679498B1 (ja)
CN (1) CN104364405B (ja)
WO (1) WO2014199488A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014543A (ja) * 2015-06-29 2017-01-19 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
WO2017183720A1 (ja) * 2016-04-21 2017-10-26 新日鐵住金株式会社 厚鋼板
JP2018024908A (ja) * 2016-08-09 2018-02-15 新日鐵住金株式会社 鋼板および鋼板の製造方法
JP2018024907A (ja) * 2016-08-09 2018-02-15 新日鐵住金株式会社 鋼板およびその鋼板の製造方法
JP2021507989A (ja) * 2017-12-22 2021-02-25 ポスコPosco 低温での耐破壊特性に優れた極地環境用高強度鋼材及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102357082B1 (ko) 2019-12-20 2022-02-03 주식회사 포스코 용접 열영향부 인성이 우수한 고강도 강판 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100037A (ja) * 2002-07-17 2004-04-02 Sumitomo Metal Ind Ltd 増厚加工を施して用いる建築用鋼材
JP2006124759A (ja) * 2004-10-27 2006-05-18 Kobe Steel Ltd 大入熱溶接継手靭性に優れた厚鋼板
JP2011001625A (ja) 2009-06-22 2011-01-06 Sumitomo Metal Ind Ltd 耐食性および溶接部靭性に優れた高張力鋼および海洋構造物
WO2013077022A1 (ja) * 2011-11-25 2013-05-30 新日鐵住金株式会社 溶接用鋼材

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660250B2 (ja) * 2004-04-07 2011-03-30 新日本製鐵株式会社 大入熱溶接による溶接熱影響部の低温靭性に優れた厚手高強度鋼板
JP4901262B2 (ja) * 2006-03-29 2012-03-21 新日本製鐵株式会社 大入熱溶接熱影響部の靭性に優れた厚鋼板
CN101165202A (zh) * 2006-10-19 2008-04-23 鞍钢股份有限公司 具有高焊接热影响区韧性的高强钢及其制造方法
JP5741379B2 (ja) * 2011-10-28 2015-07-01 新日鐵住金株式会社 靭性に優れた高張力鋼板およびその製造方法
JP5741378B2 (ja) * 2011-10-28 2015-07-01 新日鐵住金株式会社 靭性に優れた高張力鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100037A (ja) * 2002-07-17 2004-04-02 Sumitomo Metal Ind Ltd 増厚加工を施して用いる建築用鋼材
JP2006124759A (ja) * 2004-10-27 2006-05-18 Kobe Steel Ltd 大入熱溶接継手靭性に優れた厚鋼板
JP2011001625A (ja) 2009-06-22 2011-01-06 Sumitomo Metal Ind Ltd 耐食性および溶接部靭性に優れた高張力鋼および海洋構造物
WO2013077022A1 (ja) * 2011-11-25 2013-05-30 新日鐵住金株式会社 溶接用鋼材

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014543A (ja) * 2015-06-29 2017-01-19 新日鐵住金株式会社 油井用ステンレス鋼及び油井用ステンレス鋼管
WO2017183720A1 (ja) * 2016-04-21 2017-10-26 新日鐵住金株式会社 厚鋼板
CN109072383A (zh) * 2016-04-21 2018-12-21 新日铁住金株式会社 厚钢板
CN109072383B (zh) * 2016-04-21 2021-02-09 日本制铁株式会社 厚钢板
JP2018024908A (ja) * 2016-08-09 2018-02-15 新日鐵住金株式会社 鋼板および鋼板の製造方法
JP2018024907A (ja) * 2016-08-09 2018-02-15 新日鐵住金株式会社 鋼板およびその鋼板の製造方法
JP2021507989A (ja) * 2017-12-22 2021-02-25 ポスコPosco 低温での耐破壊特性に優れた極地環境用高強度鋼材及びその製造方法
JP7045459B2 (ja) 2017-12-22 2022-03-31 ポスコ 低温での耐破壊特性に優れた極地環境用高強度鋼材及びその製造方法

Also Published As

Publication number Publication date
EP2843073B1 (en) 2017-08-02
EP2843073A4 (en) 2016-01-06
CN104364405A (zh) 2015-02-18
EP2843073A1 (en) 2015-03-04
KR20150020181A (ko) 2015-02-25
JPWO2014199488A1 (ja) 2017-02-23
KR101679498B1 (ko) 2016-11-24
CN104364405B (zh) 2016-12-07
JP5445723B1 (ja) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5950045B2 (ja) 鋼板およびその製造方法
JP5846311B2 (ja) 溶接熱影響部ctod特性に優れた厚肉高張力鋼およびその製造方法
JP5076658B2 (ja) 大入熱溶接用鋼材
JP5217385B2 (ja) 高靭性ラインパイプ用鋼板およびその製造方法
WO2018199145A1 (ja) 高Mn鋼およびその製造方法
JP5445723B1 (ja) 溶接用超高張力鋼板
JP6245352B2 (ja) 高張力鋼板およびその製造方法
US20190352749A1 (en) Steel material for high heat input welding
JP2007051321A (ja) 溶接性及びガス切断性に優れた溶接構造用490MPa級厚手高張力耐火鋼及びその製造方法
KR101930181B1 (ko) 대입열 용접용 강재
JP2009235548A (ja) 超大入熱溶接熱影響部靭性に優れた低降伏比高張力厚鋼板およびその製造方法
JP4341395B2 (ja) 大入熱溶接用高張力鋼と溶接金属
WO2016009595A1 (ja) 大入熱溶接用鋼板の製造方法
JP5515954B2 (ja) 耐溶接割れ性と溶接熱影響部靭性に優れた低降伏比高張力厚鋼板
JP2007138203A (ja) 溶接性に優れた高張力厚鋼板およびその製造方法
JPWO2019050010A1 (ja) 鋼板およびその製造方法
WO2015151521A1 (ja) 溶接継手
JP6226163B2 (ja) 溶接熱影響部の低温靭性に優れる高張力鋼板とその製造方法
JP6299676B2 (ja) 高張力鋼板およびその製造方法
JP2007224404A (ja) 強度および低温靭性の優れた高張力鋼板および高張力鋼板の製造方法
JP4505435B2 (ja) 大入熱溶接熱影響部の靭性に優れた厚鋼板
JP6642118B2 (ja) 耐サワー鋼板
JP5811044B2 (ja) 溶接性、溶接熱影響部靭性に優れた厚手高強度鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013544892

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013886145

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013886145

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147033089

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13886145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE