WO2016009595A1 - 大入熱溶接用鋼板の製造方法 - Google Patents

大入熱溶接用鋼板の製造方法 Download PDF

Info

Publication number
WO2016009595A1
WO2016009595A1 PCT/JP2015/003142 JP2015003142W WO2016009595A1 WO 2016009595 A1 WO2016009595 A1 WO 2016009595A1 JP 2015003142 W JP2015003142 W JP 2015003142W WO 2016009595 A1 WO2016009595 A1 WO 2016009595A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
toughness
heat input
content
Prior art date
Application number
PCT/JP2015/003142
Other languages
English (en)
French (fr)
Inventor
亮 荒尾
長谷 和邦
遠藤 茂
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201580038443.2A priority Critical patent/CN106574316B/zh
Priority to KR1020167035571A priority patent/KR101971772B1/ko
Priority to JP2016534097A priority patent/JP6048627B2/ja
Publication of WO2016009595A1 publication Critical patent/WO2016009595A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a non-refined high-tensile steel having a yield stress of 460 MPa or more and a thickness of 25 mm or more and 50 mm or less, used for various steel structures in the field of ships, construction, civil engineering, etc.
  • the present invention relates to a method of manufacturing a steel plate for large heat input welding which has excellent joint characteristics even when large heat input welding exceeding 1 cm / cm is performed.
  • TiN is finely dispersed in steel to suppress coarsening of austenite grains of HAZ, or TiN dispersed is used as a ferrite transformation nucleus in HAZ.
  • Technology has been put to practical use.
  • the technique of finely dispersing TiN in steel can not obtain the effect of suppressing the decrease in toughness when the HAZ temperature is equal to or higher than the melting temperature of TiN.
  • the technology of finely dispersing TiN in steel has a problem that the ground structure is embrittled by the solid solution Ti and solid solution N generated with the dissolution of TiN and the toughness is significantly reduced.
  • Patent Document 1 discloses a technique for finely dispersing TiO x (where x: 0.65 to 1.3) with a particle size of 5 ⁇ m or less in steel.
  • the toughness fall of HAZ is suppressed by finely dispersing Ti oxide which does not melt
  • Patent Document 2 discloses B, N and sol.
  • a technique for adjusting the amount of Al is disclosed.
  • Patent Document 3 discloses a technique of adjusting the amount of Ti-B-N so that the toughness of HAZ is in a high toughness region and further adding Ca or Ce to control the morphology of inclusions.
  • Patent Document 4 discloses a technology in which REM is added as a low N-low Ti system in order to form a stable sulfur-oxide in a bond portion of welding.
  • Patent Documents 1 to 4 have difficulty in sufficiently suppressing the grain growth of HAZ austenite in high heat input welding where the heat input exceeds 200 kJ / cm, and prevents the decrease in HAZ toughness. It was difficult.
  • Patent Document 5 discloses that Ca-based nonmetallic inclusions are properly controlled by appropriately controlling the amounts of Ca, O and S in the steel composition. Techniques for finely dispersing in steel are disclosed. According to Patent Document 5, since the Ca-based metal inclusions become transformation nuclei to promote ferrite transformation in HAZ, the toughness of HAZ can be improved even in high heat input welding exceeding 400 kJ / cm.
  • Patent Document 5 is directed to a steel material having a yield strength of 390 MPa class, and is applied to a steel material having a carbon equivalent lower than that of a high strength steel having a yield strength exceeding 460 MPa class.
  • Patent Document 5 when the technique of Patent Document 5 is applied to a high strength steel having a yield strength exceeding the 460 MPa class, the inside of HAZ crystal grains becomes a mixed structure of ferrite and bainite because the carbon equivalent is high. It is difficult to improve joint properties such as toughness. Furthermore, according to the techniques described in the cited documents 1 to 4, as described above, in high heat input welding where the heat input exceeds 200 kJ / cm, joint characteristics such as HAZ toughness are not improved.
  • An object of the present invention is to provide a method of manufacturing a steel plate for large heat input welding having a plate thickness of 25 mm or more and 50 mm or less.
  • the method for producing a steel plate for high heat input welding is, by mass%, C: 0.03% or more and 0.10% or less, Si: 0.01% or more 0.10% or less, Mn: 0.8% to 2.0%, P: 0.020% or less, S: 0.0005% to 0.0050%, Al: 0.005% to 0.100 %, Nb: 0.003% to 0.030%, Ti: 0.005% to 0.050%, Cu: 0.10% to 0.50%, Ni: 0.30% to 2 .00% or less, N: 0.0030% to 0.0100%, B: 0.0003% to 0.0025%, Ca: 0.0005% to 0.0030%, O: 0.0040%
  • ACR defined by the following equation (1) is more than 0 and less than 1, and the following equation (2) Being defined C eq is contained in each component satisfies 0.38 or more 0.43 or less, the steel material and the balance being Fe and unavoidable impurities was heated to 1200
  • the rolled steel material is water cooled at a cooling rate of 5 ° C./sec or more until the surface temperature becomes ( ⁇ t ⁇ 1.5) + 400 ° C. or more and ( ⁇ t ⁇ 1.5) + 620 ° C. or less, and water cooled
  • the steel material is characterized by air cooling.
  • the steel material is, by mass%, at least one selected from V: more than 0% and 0.20% or less, Cr: more than 0% and 0.40% or less and Mo: more than 0% and 0.40% or less You may contain.
  • the steel material is, by mass%, selected from Mg: 0.0005% or more and 0.0050% or less, Zr: 0.0010% or more and 0.0200% or less, and REM: 0.0010% or more and 0.0200% or less It may further contain one or more of the following.
  • large heat input welding having a yield strength of 460 MPa or more and a thickness of 25 mm or more and 50 mm or less having excellent joint characteristics even under high heat input welding where the welding heat input is 200 kJ / cm or more.
  • a method of manufacturing a steel sheet is provided.
  • the steel plate for large heat input welding of the present invention is a non-heat treated high tensile steel plate for large heat input welding which has a plate thickness of 25 mm to 50 mm and a yield strength of 460 MPa or more and a welding heat input of 200 kJ / cm or more. is there.
  • Such a large heat input welding steel is designed specifically in consideration of a reduction in plastic restraint of the base material due to a reduction in thickness of a thick steel plate having a thickness of more than 50 mm in order to secure tensile strength of the joint. There is a need.
  • component design for securing joint strength is performed in a large heat input welding steel, securing of toughness in the coarse grain area of HAZ becomes difficult.
  • the conventional manufacturing method of thick steel plate is applied to a steel for high heat input welding to which the above-mentioned component design for securing joint strength is applied, the base material strength becomes excessive, so the ductility of the base material becomes descend.
  • (C) Self-tempering by heat recovery is effective in suppressing base material strength, and base material strength can be controlled within an appropriate range by performing cooling stop temperature control according to plate thickness in cooling after rolling. Furthermore, by performing the cooling stop temperature control according to the plate thickness, other characteristics other than the base material strength such as ductility and toughness can be compatible.
  • C 0.03% or more and 0.10% or less
  • C is an element that enhances the strength of the steel material, and in order to secure the strength necessary for a structural steel, it is necessary to contain 0.03% or more.
  • the content of C exceeds 0.10%, MA is easily generated in HAZ in the vicinity of the bond portion, so the upper limit is made 0.10% or less.
  • the content of C is 0.05% or more and 0.08% or less.
  • the vicinity of the bond portion means a region where coarsening is most pronounced in the HAZ closest to the melting line.
  • Si 0.01% or more and 0.10% or less Si is an element added as a deoxidizer at the time of melting steel, and addition of 0.01% or more is necessary.
  • the content of Si exceeds 0.10%, the toughness of the base material is reduced.
  • the content of Si exceeds 0.10%, MA is generated in HAZ in the vicinity of the bond portion after high heat input welding, which tends to cause a reduction in toughness. Therefore, the content of Si is in the range of 0.01% to 0.10%.
  • the content of Si is 0.08% or less.
  • Mn 0.8% or more and 2.0% or less Mn is added by 0.8% or more in order to secure the strength of the base material.
  • the content of Mn exceeds 2.0%, the toughness of the HAZ is significantly deteriorated, so the content of Mn is set to 0.8% or more and 2.0% or less.
  • the content of Mn is 1.2% or more and 2.0% or less.
  • P 0.020% or less P promotes the formation of MA in HAZ in the vicinity of the bond portion, and greatly reduces the toughness, so the content is made 0.020% or less.
  • the content of P is 0.010% or less.
  • S 0.0005% or more and 0.0050% or less S is an element necessary for forming MnS or CaS which acts as a nucleation site of ferrite. Therefore, the content of S is set to 0.0005% or more. However, the upper limit of the content of S is set to 0.0050% because excessive content causes a decrease in the toughness of the base material.
  • Al 0.005% or more and 0.100% or less
  • Al is an element added for deoxidation of steel, and needs to be contained 0.005% or more.
  • the content of Al exceeds 0.100%, not only the toughness of the base material but also the toughness of the weld metal is reduced. Therefore, the content of Al is set to 0.005% or more and 0.100% or less.
  • the content of Al is 0.010% or more and 0.100% or less.
  • Nb 0.003% or more and 0.030% or less
  • Nb is an element necessary to secure the strength of the base material and the joint.
  • the content of Nb is less than 0.003%, the improvement effect to the strength is small.
  • the content of Nb exceeds 0.030%, MA is formed in HAZ in the vicinity of the bond portion, so that the toughness is lowered. Therefore, the content of Nb is in the range of 0.003% to 0.030%.
  • the content of Nb is 0.008% to 0.0020%.
  • Ti 0.005 or more and 0.050% or less Ti is an element that contributes to the improvement of the base material toughness by forming TiN in the solidification of molten steel and becoming precipitate in the base material and suppressing the coarsening of austenite grains. , Addition is essential. At the same time, Ti reduces N capable of binding to B and secures solid solution B in the steel, thereby effectively acting to secure the strength of the base material. In addition, TiN becomes a transformation nucleus of ferrite in HAZ and contributes to high toughness of HAZ. In order to obtain such an effect, the content of Ti needs to be 0.005% or more, and preferably 0.015% or more.
  • the content of Ti exceeds 0.050%, the deposited TiN becomes coarse and the above effect can not be obtained. Therefore, the content of Ti is in the range of 0.005% to 0.050%. Preferably, the content of Ti is 0.010% or more and 0.0035% or less.
  • Cu 0.10% or more and 0.50% or less
  • Cu is an element contributing to securing the strength of the base material and the joint.
  • addition is essential in order to contribute to the improvement of the joint strength without being accompanied by significant MA formation.
  • the content of Cu is made 0.10% or more.
  • the content of Cu exceeds 0.50%, the effect of securing the strength of the base material and the joint is saturated. Therefore, the upper limit of the Cu content is 0.50%.
  • the content of Cu is 0.020% or more and 0.040% or less.
  • Ni 0.30% or more and 2.00% or less
  • Ni is an element that improves the toughness of the base material and also increases the strength of the base material.
  • Ni also has the effect of suppressing the occurrence of cracking during continuous casting due to the addition of Cu.
  • the content of Ni is 0.30% or more.
  • the content of Ni exceeds 2.0%, the effect of improving the strength of the base material is saturated. Therefore, the content of Ni is set to 0.30% or more and 2.00% or less.
  • the content of Ni is 0.50% or more and 1.50% or less.
  • N is an element that contributes to the improvement of the base material toughness by forming TiN in the solidification of molten steel and becoming precipitate in the base material and suppressing the austenite grain coarsening. is there.
  • the content of N is made 0.0030% or more.
  • the content of N exceeds 0.0100%, the toughness is deteriorated by the increase of the solid solution N in the region where TiN is dissolved by the welding heat cycle. Therefore, the content of N is set to 0.0030% or more and 0.0100% or less.
  • the content of N is 0.0040% or more and 0.0080% or less.
  • B 0.0003% or more and 0.0025% or less B is an element that reduces the solid solution N by becoming BN in HAZ, and is effective in transforming ferrite by combining with ACR (Atomic concentration ratio) control. As a result, ferrite is formed to improve the toughness of the HAZ.
  • the content of B is made 0.0003% or more.
  • the content of B exceeds 0.0025%, the toughness of the base material steel plate and HAZ decreases. Therefore, the content of B is in the range of 0.0003% to 0.0025%.
  • the content of B is 0.008% to 0.0020%.
  • Ca 0.0005% or more and 0.0030% or less Ca is an element that improves toughness by fixing S as CaS used as a nucleus for producing ferrite, and is an essential element for performing ACR control .
  • the content of Ca is made 0.0005% or more.
  • the content of Ca exceeds 0.0030%, the effect of toughness improvement is saturated. Therefore, the content of Ca is in the range of 0.0005% to 0.0030%.
  • O less than 0.0040%
  • O is an element which indirectly influences the formation of a composite particulate material in which MnS is precipitated on CaS. Therefore, the content of O is less than 0.0040%.
  • the content of O is less than 0.0030%.
  • the composition component of the steel material in addition to satisfying the above composition range, further defines the range of ACR and carbon equivalent C eq defined in the following equations (1) and (2) Meet.
  • ACR (Ca- (0.18 + 130 ⁇ Ca) ⁇ O) / (1.25 ⁇ S) (1)
  • C eq C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (2)
  • each element symbol shows content (mass%) of each element in steel materials.
  • ACR more than 1 and less than 1
  • ACR is a parameter formula showing good toughness of HAZ when high heat input welding of steel of each component range is performed, and is made more than 0 and less than 1.
  • the precipitated MnS reduces the toughness of the base material by elongating in the rolling direction during steel plate production.
  • MnS melts in HAZ, excellent toughness can not be obtained.
  • the ACR is 1 or more, most of the S is fixed by Ca, and it is not possible to obtain composite inclusions that become ferrite formation nuclei. For this reason, the HAZ structure is not miniaturized, and the toughness improvement effect can not be obtained.
  • BN complex precipitates on the finely dispersed MnS and CaS complex sulfide, and it becomes possible to use as a higher performance ferrite formation nucleus, thereby further increasing the HAZ toughness Improvement can be achieved.
  • C eq 0.38 or more and 0.43 or less
  • C eq is a parameter formula that serves as an index for achieving both joint tensile strength and joint toughness when high heat input welding is performed on steel of each component range, 0.38 More than 0.43.
  • V more than 0% and 0.20% or less V is an element which precipitates as VN and contributes to the improvement of the strength and toughness of the base material and also acts as a ferrite formation nucleus.
  • the content of V is preferably 0.005% or more.
  • the upper limit of the content of V is preferably 0.20%.
  • Cr More than 0% and 0.40% or less Cr is an element effective for strengthening the base material.
  • the content of Cr is preferably 0.02% or more.
  • the upper limit of the content of Cr is preferably 0.40%.
  • Mo More than 0% and 0.40% or less Mo, like Cr, is an element effective for strengthening the base material.
  • the content of Mo is preferably 0.02% or more.
  • the upper limit of the content of Mo is preferably 0.40%.
  • the component composition of the steel plate for high heat input welding of the present invention is in addition to the above component composition containing one or more elements selected from V, Cr and Mo in the basic component composition or basic component composition,
  • One or more selected from Mg, Zr and REM can be contained as a selective element in the following range.
  • Mg 0.0005% or more and 0.0050% or less
  • Mg is an element having a toughness improvement effect by the dispersion of the oxide.
  • the content of Mg is preferably made 0.0005% or more.
  • the toughness improvement effect is saturated. For this reason, the content of Mg is preferably in the range of 0.0005% to 0.0050%.
  • Zr 0.0010% or more and 0.0200% or less
  • Zr is an element having an effect of improving toughness by the dispersion of an oxide.
  • the content of Zr is preferably made 0.0005% or more.
  • the toughness improvement effect is saturated. Therefore, the content of Zr is preferably in the range of 0.0005% to 0.0200%.
  • REM 0.0010% to 0.0200% REM, like Mg and Zr, is an element having a toughness improvement effect by the dispersion of oxides.
  • the content of REM is preferably 0.0010% or more.
  • the toughness improvement effect is saturated. Therefore, the content of REM is preferably in the range of 0.0010% to 0.0200%.
  • molten steel of the above composition is melted and produced by a conventional refining method using refining equipment such as a converter, an electric furnace, a vacuum melting furnace and the like.
  • the molten steel is cast by a casting method such as a continuous casting method or an ingot method, whereby a steel material such as a slab is manufactured.
  • a casting method such as a continuous casting method or an ingot method, whereby a steel material such as a slab is manufactured.
  • all the descriptions of the steel plate temperature indicate the temperature of the steel plate surface.
  • the manufactured steel material is heated to a temperature of 1050 ° C. or more and 1200 ° C. or less in a heating furnace.
  • the heating temperature of the steel material is 1050 ° C. or higher in order to completely dissolve Nb carbonitride in the steel material.
  • the heating temperature exceeds 1200 ° C., TiN becomes coarse and the toughness deteriorates.
  • the heated steel material has a thermal range of 850 ° C. or less and an Ar 3 transformation point or more at the end of rolling so that the thickness t after rolling is 25 mm or more and 50 mm or less and the cumulative rolling reduction is 40% or more.
  • the Ar 3 transformation point (° C.) is a temperature calculated by the following equation (3) according to the composition of the steel material.
  • Ar 3 transformation point 900-332C + 6Si-77Mn-20Cu-50Ni-18Cr-68Mo (3)
  • C, Si, Mn, Cu, Ni, Cr, and Mo show content (mass%) of each element, respectively.
  • hot rolling rolling with a cumulative rolling reduction of 40% or more is performed in a temperature range of 850 ° C. or less in order to refine the microstructure of the steel sheet. If the cumulative rolling reduction is less than 40%, the structure becomes coarse and the toughness of the steel sheet is reduced.
  • rolling is performed in a temperature range where the temperature at the end of rolling is equal to or higher than the Ar 3 transformation point. When the temperature at the end of rolling is lower than the Ar 3 transformation point, ferrite is generated during or immediately after rolling, the surface layer structure becomes processed ferrite, and the ductility is significantly reduced.
  • rolling at a cumulative rolling reduction of 40% or more may be included in a temperature range of 850 ° C. or less, and other rolling is not excluded.
  • the steel plate After hot rolling, the steel plate is water-cooled at a cooling rate of 5 ° C / sec or more until the surface temperature becomes (-t ⁇ 1.5) + 400 ° C or more and (-t ⁇ 1.5) + 620 ° C or less Ru.
  • t represents the thickness of the steel plate.
  • the cooling stop temperature is less than ( ⁇ t ⁇ 1.5) + 400 ° C., the self-tempering effect due to recuperation can not be sufficiently obtained, the base metal strength becomes excessive, and the ductility and toughness decrease.
  • the cooling stop temperature is higher than ( ⁇ t ⁇ 1.5) + 620 ° C., the base material has a mixed structure of ferrite or ferrite + bainite, and the base material strength is insufficient.
  • the metallographic structure of the steel plate is made mainly of bainite.
  • the cooling rate at the time of accelerated cooling is less than 5 ° C./sec, sufficient quenching does not occur to give a ferrite-based microstructure, making it difficult to secure a yield strength of 460 MPa or more.
  • the method for producing a steel plate for large heat input welding is, in mass%, C: 0.03% or more and 0.10% or less, Si: 0.01% or more and 0.10% or less, Mn: 0.8% or more and 2.0% or less, P: 0.020% or less, S: 0.0005% or more and 0.0050% or less, Al: 0.005% or more and 0.100% or less, Nb: 0.003 %, 0.030% or less, Ti: 0.005% or more, 0.050% or less, Cu: 0.10% or more, 0.50% or less, Ni: 0.30% or more, 2.00% or less, N: 0 .0030% to 0.0100%, B: 0.0003% to 0.0025%, Ca: 0.0005% to 0.0030%, O: less than 0.0040%, and the following: (1) ACR defined by the equation is greater than 0 and less than 1, and C eq defined by the following equation (2) is 0.38 The steel material containing the above components by satisfying
  • the heated steel material has a thickness t after rolling
  • Water cooling is performed at a cooling rate of 5 ° C./sec or more until the temperature becomes ( ⁇ t ⁇ 1.5) + 400 ° C. or more and ( ⁇ t ⁇ 1.5) + 620 ° C. or less.
  • the present invention in particular, by setting the alloy content of the steel material to the configuration of the above (1), coarsening of austenite grains in a high temperature region is suppressed in the welded steel sheet structure. Then, in the subsequent cooling process, the structure becomes finer due to the intragranular ferrite having the finely dispersed composite inclusions as generation nuclei, and the amount of MA in bainite is further reduced, whereby the toughness of HAZ is improved.
  • the range of C eq to the configuration of the above (1), it is possible to achieve both improvement in tensile strength and toughness of the joint.
  • the present invention by setting the temperature for heating the steel material to the above-described (1), it is possible to prevent the deterioration of toughness accompanying the coarsening of TiN. Moreover, the fall of the toughness by coarsening of a base-material structure
  • tissue can be prevented by making the cumulative rolling-reduction
  • a fractured surface having excellent joint characteristics even under high heat input welding with a welding heat input of 200 kJ / cm or more, a yield strength of 460 MPa or more, and a bond HAZ toughness It is possible to stably manufacture a steel plate for large heat input welding, in which the transition temperature vTrs is ⁇ 40 ° C. or less and the plate thickness is 25 mm or more and 50 mm or less.
  • the steel material is, by mass%, more than V: 0% and 0.20% or less, Cr: more than 0% and 0.40% or less and Mo: more than 0% and 0.40% It further contains one or more selected from the following. According to the structure of said (2), the strength of a base material can be improved, suppressing the fall of the toughness of a base material.
  • the steel material is, in mass%, Mg: 0.0005% or more and 0.0050% or less, Zr: 0.0010% or more and 0.0200% or less, REM : Further contains one or more selected from 0.0010% to 0.0200%. According to the configuration of the above (3), it is possible to obtain the toughness improvement effect by the dispersion of the oxide.
  • No. 1 having the component composition shown in Table 1 using a 150 kg high frequency melting furnace.
  • Steel ingots steel materials
  • each ingot was hot-rolled to produce steel slabs of various thicknesses.
  • a steel plate having a thickness of 25 mm or more and less than 50 mm was produced by rolling and accelerated cooling under various rolling and accelerated cooling conditions.
  • test pieces No. 1A described in JIS Z 2201 are taken from each steel sheet so that the longitudinal direction coincides with the sheet width direction, yield stress YS (MPa), tensile strength TS (MPa) and total elongation El (%) It measured.
  • steel no. 1 to 8 are examples of the present invention.
  • 9 to 23 are comparative examples in which the component composition is out of the range of the present invention.
  • V-notch Charpy impact test piece described in JIS Z 2202 is collected from the position where it becomes 1/4 of the plate thickness of each steel piece, and the Charpy test piece collected about the collected Charpy test piece at a test temperature of -100 ° C to 40 ° C. An impact test was performed. From the results of the Charpy test, the fracture surface transition temperature vTrs (° C.) at which the ductile fracture rate is 50% was determined to evaluate the base material toughness.
  • a test piece of 80 mm wide ⁇ 80 mm long ⁇ 15 mm thick is collected from each thick steel plate, and the collected test piece is heated to 1450 ° C. and then 800 ° C.
  • a simulated thermal cycle of cooling for 250 seconds between -500 ° C. was applied.
  • a 2 mm V-notched Charpy test piece was collected from these heat-treated test pieces, and the Charpy impact test was appropriately performed on the collected Charpy test piece in a test temperature range of ⁇ 100 ° C. to 40 ° C.
  • the fracture transition temperature vTrs (° C.) at which the ductile fracture rate is 50% was determined, and the toughness in the vicinity of the bond portion was evaluated.
  • the conditions of the reproduction heat cycle corresponded to the heat cycle in the vicinity of the bond in the case of electro gas welding with a heat input of 300 kJ / cm, and simulated one pass welding with a plate thickness of 40 mm corresponding to the assumed maximum heat input.
  • Table 2 also shows the test results of the rolling conditions, the accelerated cooling conditions, the tensile properties (YS, TS, El) of the base material evaluated in the above procedure, and the HAZ toughness near the bond portion.
  • steel plate No. 1 to 16 are examples of the present invention. 17-22 are steel No. It is a comparative example which rolled and cooled the steel plate extracted from 1 to 8 on the conditions which become out of the range of the present invention. No. 23 to 44 are steel No. It is the comparative example which rolled and cooled the steel plate extract
  • Steel plate No. which is an Example. 1 to 16 are excellent base materials having a yield stress YS of 460 MPa or more, a tensile strength TS of 570 MPa or more, a total elongation El of 16% or more, and a fracture surface transition temperature vTrs of -50 ° C. or less for evaluation of base material toughness It could be confirmed that it has the characteristics. Moreover, steel plate No. In 1 to 16, it was confirmed that the fracture surface transition temperature vTrs, which is an evaluation of the HAZ toughness near the bond portion, is ⁇ 40 ° C. or less, and excellent toughness can be obtained in the high heat input weld.
  • steel sheet Nos. 17 to 22 which are comparative examples, although the component composition of the steel is included in the present invention, since the manufacturing conditions are out, any one or more of the tensile properties, toughness or elongation of the base material It could be confirmed to be lower than the example. Further, in steel sheet Nos. 23 to 44 which are comparative examples, although the manufacturing conditions are in accordance with the present invention, the component composition of the steel is deviated, so either the HAZ toughness near the bond part or the tensile strength of the joint is particularly either It can be confirmed that either or both have low values with respect to the example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 大入熱溶接下においても靱性等の優れた継手特性を有する、降伏強度が460MPa以上の中厚の非調質高張力鋼板である大入熱溶接用鋼板の製造方法を提供すること。C:0.03~0.1%、Si:0.01~0.1%、Mn:0.8~2%、P:0.02%以下、S:0.0005~0.005%、Al:0.005~0.1%、Nb:0.003~0.03%、Ti:0.005~0.05%、Cu:0.1~0.5%、Ni:0.3~2%、N:0.003~0.01%、B:0.0003~0.0025%、Ca:0.0005~0.003%、O:0.004%未満を含有し、かつ、Ceq:0.38~0.43、ACR:0~1を満たす鋼素材を、1050℃以上1200℃以上に加熱し、圧延終了時の温度がAr変態点温度以上で熱間圧延し、表面温度が(-t×1.5)+400℃以上かつ(-t×1.5)+620℃以下となるまで5℃/sec以上で水冷する。

Description

大入熱溶接用鋼板の製造方法
 本発明は、船舶や建築・土木等の分野における各種鋼構造物に使用される、降伏応力が460MPa以上で板厚が25mm以上50mm以下の非調質高張力鋼に関わり、特に入熱量が200kJ/cmを超える大入熱溶接を施した場合においても優れた継手特性を有する大入熱溶接用鋼板の製造方法に関する。
 船舶や建築・土木等の分野における各種鋼構造物に使用される鋼材は、高強度化や厚肉化が進んでいる。このような鋼材の高強度化や厚肉化に伴い、鋼材が溶接施工される際には、サブマージアーク溶接、エレクトロガス溶接およびエレクトロスラグ溶接などの生産能率に優れた大入熱溶接が適用される機会が増えている。
 船舶や建築・土木等の分野における各種鋼構造物においては、母材の特性に加え、溶接部の強度や靱性等の継手特性にも優れていることが要求される。しかし、大入熱溶接後の溶接熱影響部(以下、「HAZ」とも称する。)は、組織制御などによって製造工程で作りこまれた母材の特性が熱影響によって無効化されるため、靱性が低下することが知られている。これに対して、HAZの靱性低下を抑制するため、種々の大入熱溶接用鋼が提案されている。
 HAZの靱性を向上させる技術としては、例えば、TiNを鋼中に微細分散させることにより、HAZのオーステナイト粒の粗大化を抑制したり、又は分散させたTiNをHAZでのフェライト変態核として利用したりする技術が実用化されている。しかし、TiNを鋼中に微細分散させる技術は、HAZがTiNの溶解する温度以上となる場合には、靱性低下を抑制するための効果を得ることができなかった。さらに、TiNを鋼中に微細分散させる技術は、TiNの溶解に伴い生じる固溶Tiおよび固溶Nにより地組織が脆化し、靱性が著しく低下するという問題があった。
 HAZにおけるTiNの溶解の問題に対して、特許文献1には、鋼中に粒度5μm以下のTiO(但し、x:0.65~1.3)を微細分散させる技術が開示されている。特許文献1では、HAZの高温域でも溶解しないTi酸化物を微細分散させ、Ti酸化物を針状フェライトの生成核とすることで、HAZの靱性低下が抑制される。また、特許文献1のようにTi酸化物を利用する技術では、酸化物を均一に微細分散させることが困難であるため、酸化物を複合化することなどで分散能を改善する検討が行われている。
 また、HAZの靱性を改善する技術として、例えば特許文献2には、HAZの組織を微細化させるBNを積極的に析出させるため、鋼組成のうちB、Nおよびsol.Al量を調整する技術が開示されている。さらに、特許文献3には、HAZの靱性が高靱性領域となるようにTi-B-N量を調整し、更に介在物の形態制御をするためにCaまたはCeを添加する技術が開示されている。さらに、特許文献4には、溶接のボンド部において安定な硫・酸化物を形成させるために、鋼組成を低N-低Ti系として、REMを添加する技術が開示されている。
 しかし、特許文献1~4に記載の技術は、入熱量が200kJ/cmを超える大入熱溶接においては、HAZのオーステナイトの粒成長を十分に抑制することが難しく、HAZの靱性低下を防止するのが困難であった。これに対して、大入熱溶接においてもHAZの靱性を改善する技術として、特許文献5には、鋼組成のCa、OおよびS量を適正に制御することで、Ca系非金属介在物を鋼中に微細分散させる技術が開示されている。特許文献5によれば、Ca系金属介在物が変態核となってHAZでのフェライト変態を促進させるため、400kJ/cmを超える大入熱溶接においてもHAZの靱性を向上させることができる。
特開昭57-51243号公報 特開昭62-170459号公報 特開昭60-204863号公報 特公平4-14180号公報 特許第3546308号公報
 ところで、近年、降伏強度が460MPaクラスを超える高強度鋼に大入熱溶接を適用する機会が増えてきている。特にこのような高強度鋼板のうち、板厚が25mm以上50mm以下の中厚高張力鋼については、高強度化に伴う薄肉化によって鋼材重量を低減できるため、高効率な運搬船用に適用される需要が高まっている。
 しかし、引用文献5に記載の技術は、降伏強度が390MPaクラスの鋼材を対象としており、降伏強度が460MPaクラスを超えるような高強度鋼よりも炭素当量が低い鋼材に適用される。このため、引用文献5の技術を降伏強度が460MPaクラスを超えるような高強度鋼に適用した場合、炭素当量が高いためにHAZの結晶粒内がフェライトとベイナイトの混合組織となることから、HAZの靱性等の継手特性を改善することが困難であった。さらに、引用文献1~4に記載の技術は、上記のように、入熱量が200kJ/cmを超える大入熱溶接においては、HAZ靱性等の継手特性が改善されなかった。
 そこで、本発明は、上記の課題に着目してなされたものであり、溶接入熱が200kJ/cm以上となる大入熱溶接下においても、優れた継手特性を有する、降伏強度が460MPa以上で、板厚が25mm以上50mm以下の大入熱溶接用鋼板の製造方法を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る大入熱溶接用鋼板の製造方法は、質量%で、C:0.03%以上0.10%以下、Si:0.01%以上0.10%以下、Mn:0.8%以上2.0%以下、P:0.020%以下、S:0.0005%以上0.0050%以下、Al:0.005%以上0.100%以下、Nb:0.003%以上0.030%以下、Ti:0.005%以上0.050%以下、Cu:0.10%以上0.50%以下、Ni:0.30%以上2.00%以下、N:0.0030%以上0.0100%以下、B:0.0003%以上0.0025%以下、Ca:0.0005%以上0.0030%以下、O:0.0040%未満を含有し、かつ、下記(1)式で定義されるACRが0超1未満、下記(2)式で定義されるCeqが0.38以上0.43以下を満たして各成分が含有され、残部がFeおよび不可避的不純物からなる鋼素材を、1050℃以上1200℃以上に加熱し、加熱した鋼素材を、圧延後の板厚tが25mm以上50mm以下、累積圧下率が40%以上となるように、850℃以下かつ圧延終了時にAr変態点以上となる温度域で熱間圧延し、熱間圧延した鋼素材を、表面温度が(-t×1.5)+400℃以上かつ(-t×1.5)+620℃以下となるまで、5℃/秒以上の冷却速度で水冷し、水冷し鋼素材を、空冷することを特徴とする。
  ACR=(Ca-(0.18+130×Ca)×O)/(1.25×S)                           ・・・(1)
  Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15                            ・・・(2)
 なお、表面温度の条件式におけるtは熱間圧延後の鋼素材の厚みを示し、(1)式および(2)式において、各元素記号は鋼素材中の各元素の含有量(質量%)を示す。
 鋼素材は、質量%で、V:0%超0.20%以下、Cr:0%超0.40%以下およびMo:0%超0.40%以下のうちから選ばれる1種以上をさらに含有してもよい。
 鋼素材は、質量%で、Mg:0.0005%以上0.0050%以下、Zr:0.0010%以上0.0200%以下、REM:0.0010%以上0.0200%以下のうちから選ばれる1種以上をさらに含有してもよい。
 本発明によれば、溶接入熱が200kJ/cm以上となる大入熱溶接下においても、優れた継手特性を有する、降伏強度が460MPa以上で、板厚が25mm以上50mm以下の大入熱溶接用鋼板の製造方法が提供される。
 本発明の大入熱溶接用鋼板は、板厚が25mm以上50mm以下、降伏強度が460MPa以上であり、さらに溶接入熱が200kJ/cm以上の大入熱溶接用の非調質高張力鋼板である。このような大入熱溶接用鋼は、特に継手の引張強度の確保のために、板厚が50mm超の厚鋼板に対する板厚低減による母材の塑性拘束の減少を考慮した成分設計が行われる必要がある。一方で、大入熱溶接用鋼において継手強度を確保するための成分設計が行われると、HAZの粗粒域における靱性確保が困難となる。さらに、継手強度を確保するための上記成分設計を適用した大入熱溶接用鋼に対して、従来の厚鋼板の製造方法を適用すると、母材強度が過剰となるため、母材の延性が低下する。
 これに対し、本発明者らは種々の検討を重ね、以下の(a)~(c)の知見を得た。
 (a)大入熱溶接熱影響部の靭性向上には、高温領域でのオーステナイト粒の粗大化を抑制し、その後の冷却過程において粒内フェライトを生成させることにより、ベイナイト中の島状マルテンサイト(以下、「MA」とも称する。)量を低減させることが肝要である。さらに、MA量の低減ためには、鋼組成におけるC、SiおよびP含有量の低減が肝要である。
 (b)焼入性の指標である炭素当量(Ceq)が適正な範囲に入るよう成分調整を行うことにより、継手の引張強度と靭性とを両立させる事ができる。
 (c)母材強度の抑制には復熱によるセルフテンパーが有効であり、圧延後の冷却において板厚に応じた冷却停止温度制御を行うことで母材強度を適正な範囲にコントロールできる。さらに、板厚に応じた冷却停止温度制御を行うことで、延性や靱性等の母材強度以外の他の特性も両立させることができる。
 <成分組成>
 [基本成分組成]
 次に、本発明の実施の形態について、詳細に説明する。まず、本発明の鋼材が有すべき基本成分組成について説明する。説明において、化学成分に関する%表示は全て質量%を意味する。
 C:0.03%以上0.10%以下
 Cは、鋼材の強度を高める元素であり、構造用鋼として必要な強度を確保するためには、0.03%以上含有させる必要がある。一方、Cの含有量が0.10%を超えると、ボンド部近傍のHAZでMAが生成し易くなるため、上限は0.10%以下とする。好ましくは、Cの含有量は0.05%以上0.08%以下である。ここで、ボンド部近傍は、溶融線直近のHAZ中で最も粗粒化が著しい領域のことを意味する。
 Si:0.01%以上0.10%以下
 Siは、鋼を溶製する際の脱酸剤として添加される元素であり、0.01%以上の添加が必要である。しかし、Siの含有量が0.10%を超えると、母材の靱性が低下する。さらに、Siの含有量が0.10%を超えると、大入熱溶接後のボンド部近傍のHAZにMAが生成することで、靱性の低下が生じ易くなる。よって、Siの含有量は0.01%以上0.10%以下の範囲とする。好ましくは、Siの含有量は0.08%以下である。
 Mn:0.8%以上2.0%以下
 Mnは、母材の強度を確保するために、0.8%以上添加する。一方、Mnの含有量が2.0%を超えるとHAZの靭性を著しく劣化させるため、Mnの含有量は、0.8%以上2.0%以下とする。好ましくは、Mnの含有量は1.2%以上2.0%以下である。
 P:0.020%以下
 Pは、ボンド部近傍のHAZでのMA生成を促進させ、靭性を大きく低下させるため、0.020%以下の含有量とする。好ましくは、Pの含有量は0.010%以下である。
 S:0.0005%以上0.0050%以下
 Sは、フェライトの核生成サイトとして作用するMnSあるいはCaSを形成するために必要な元素である。このため、Sの含有量は0.0005%以上とする。しかしながら、過度に含有すると母材の靭性の低下を招くため、Sの含有量の上限は0.0050%とする。
 Al:0.005%以上0.100%以下
 Alは、鋼の脱酸のために添加される元素であり、0.005%以上含有させる必要がある。しかし、Alの含有量が0.100%を超えると、母材の靱性のみならず、溶接金属の靱性も低下する。よって、Alの含有量は0.005%以上0.100%以下とする。好ましくは、Alの含有量は0.010%以上0.100%以下である。
 Nb:0.003%以上0.030%以下
 Nbは、母材および継手の強度を確保するために必要な元素である。しかし、Nbの含有量が0.003%未満の場合、強度への向上効果は小さい。一方、Nbの含有量が0.030%を超える場合、ボンド部近傍のHAZにMAが生成するため靱性が低下する。よって、Nbの含有量は0.003%以上0.030%以下の範囲とする。好ましくは、Nbの含有量は0.008%以上0.0020%以下である。
 Ti:0.005以上0.050%以下
 Tiは、溶鋼の凝固時にTiNとなって母材中に析出し、オーステナイト粒の粗大化を抑制することで母材靭性の向上に寄与する元素であり、添加が必須である。また同時に、Tiは、Bと結合しうるNを低減させ、鋼中の固溶Bを確保するため、母材強度を確保する上で有効に作用する。また、TiNは、HAZにおいてはフェライトの変態核となり、HAZの高靱性化に寄与する。斯かる効果を得るためには、Tiの含有量は0.005%以上が必要であり、0.015%以上とすることが好ましい。一方、Tiの含有量が0.050%を超える場合、析出したTiNが粗大化し、上記効果が得られなくなる。よって、Tiの含有量は、0.005%以上0.050%以下の範囲とする。好ましくは、Tiの含有量は0.010%以上0.0035%以下である。
 Cu:0.10%以上0.50%以下
 Cuは、母材および継手の強度確保に寄与する元素である。特に、ボンド部近傍のHAZにおいて、顕著なMA生成を伴うことなく継手強度の向上に寄与するため添加が必須である。斯かる効果を得るために、Cuの含有量は、0.10%以上とする。一方、Cuの含有量が0.50%を越える場合、母材および継手の強度確保の効果は飽和する。このため、Cuの含有量の上限は、0.50%とする。好ましくは、Cuの含有量は0.020%以上0.040%以下である。
 Ni:0.30%以上2.00%以下
 Niは、母材の靭性を向上させるとともに、母材の強度も上昇させる元素である。また、Niは、Cu添加による連続鋳造時の割れの発生を抑制する効果もある。斯かる効果を得るために、Niの含有量は、0.30%以上とする。一方、Niの含有量が2.0%を超える場合、母材の強度向上の効果は飽和する。このため、Niの含有量は、0.30%以上2.00%以下とする。好ましくは、Niの含有量は0.50%以上1.50%以下である。
 N:0.0030%以上0.0100%以下
 Nは、溶鋼の凝固時にTiNとなって母材中に析出し、オーステナイト粒の粗大化を抑制することで母材靱性の向上に寄与する元素である。斯かる効果を得るために、Nの含有量は、0.0030%以上とする。一方、Nの含有量が0.0100%を超える場合、溶接熱サイクルによりTiNが溶解する領域において、固溶Nが増大することで靱性が劣化する。このため、Nの含有量は、0.0030%以上0.0100%以下とする。好ましくは、Nの含有量は0.0040%以上0.0080%以下である。
 B:0.0003%以上0.0025%以下
 Bは、HAZでBNとなることで、固溶Nを低減させる元素であり、ACR(Atomic concentration ratio)制御と組み合わせることで効果的なフェライト変態核となり、フェライトを生成してHAZの靱性を向上させる。これらの効果を得るために、Bの含有量は、0.0003%以上とする。しかし、Bの含有量が0.0025%を超える場合、母材である鋼板およびHAZの靱性の低下が生じる。このため、Bの含有量は0.0003%以上0.0025%以下の範囲とする。好ましくは、Bの含有量は0.008%以上0.0020%以下である。
 Ca:0.0005%以上0.0030%以下
 Caは、フェライトの生成核として利用されるCaSとしてSを固定することで靱性を改善させる元素であり、ACR制御をする上で必須の元素である。斯かる効果を得るために、Caの含有量は、0.0005%以上とする。一方、Caの含有量が0.0030%を超える場合、靱性改善の効果が飽和する。このため、Caの含有量は、0.0005%以上0.0030%以下の範囲とする。
 O:0.0040%未満
 Oは、CaS上にMnSが析出した複合粒化物の生成に間接的に影響を与える元素である。このため、Oの含有量は、0.0040%未満とする。好ましくは、Oの含有量は0.0030%未満である。
 本発明の大入熱溶接用鋼板において、鋼材の組成成分は、上記組成範囲を満たしていることに加え、さらに下記(1)式および(2)式に定義するACRおよび炭素当量Ceqの範囲を満たす。
  ACR=(Ca-(0.18+130×Ca)×O)/(1.25×S)                           ・・・(1)
  Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15                            ・・・(2)
 なお、(1)式および(2)式において、各元素記号は鋼材中の各元素の含有量(質量%)を示す。
 ACR:0超1未満
 ACRは、各成分範囲の鋼を大入熱溶接した際、HAZの靱性の良好性を示すパラメータ式であり、0超1未満とする。Ca、OおよびSの含有量を上記ACRの範囲を満足させるように規定することにより、CaS上にMnSが析出した複合粒化物が生成され、フェライトの生成核となる。この複合粒化物を微細分散させることで変態組織が微細化し、溶接熱影響部の靱性が向上する。ACRが0以下の場合、CaSが晶出せずに、SがMnS単体として析出する。析出したMnSは、鋼板製造時に圧延方向に伸長することで、母材靱性を低下させる。また、HAZにおいてMnSが溶融するため、優れた靱性が得られない。一方、ACRが1以上の場合、ほとんどのSがCaによって固定され、フェライト生成核となる複合介在物を得ることができない。このため、HAZ組織が微細化せず、靱性向上効果を得ることができない。さらに、ACRを0超1未満とすることで、微細分散したMnSおよびCaSの複合硫化物上にBNが複合析出し、より能力の高いフェライト生成核として利用可能となることから、更なるHAZ靭性の向上が達成可能となる。
 Ceq:0.38以上0.43以下
 Ceqは、各成分範囲の鋼を大入熱溶接した際、継手引張強度および継手靱性を両立させるための指標となるパラメータ式であり、0.38以上0.43以下とする。(2)式中の元素の含有量を、上記Ceqの範囲を満足させるように規定することにより、HAZにおいて570MPaを超える継手強度を達成しながら、良好な靱性を確保する事ができる。Ceqが0.38以下の場合、鋼板の焼入性が不足し、HAZの軟化域の硬度が著しく低下するため所望する継手強度を得る事ができない。一方、Ceqが0.43以上の場合、鋼板の焼入性が過剰となり、ボンド部近傍においてフェライト生成が抑制されるとともにMAの生成が促進されるため優れた靱性を得る事が出来ない。なお、(2)式中には、Cr、MoおよびVが含まれるが、本発明の基本成分組成においては、不可避的に混入するような場合を除き、Cr、MoおよびVが含有されていなくてもよい。
 以上が本発明の大入熱溶接用鋼板の基本成分組成である。なお、上記成分以外の残部は、Feおよび不可避的不純物からなる。
 [成分の変形例]
 次に、本発明の大入熱溶接用鋼板の成分組成の変形例について説明する。本発明の大入熱溶接用鋼板は、上記の基本成分組成に加えて、V、CrおよびMoのうちから選ばれる1種以上の元素を下記の範囲かつ上記(2)式を満足する範囲でさらに含有することができる。V、CrおよびMoのうちから選ばれる1種以上を選択的元素として含有することにより、強度向上などの効果を得ることができる。
 V:0%超0.20%以下
 Vは、VNとして析出し、母材の強度・靱性の向上に寄与すると共に、フェライト生成核としても作用する元素である。斯かる効果を得るためには、Vの含有量は、0.005%以上であることが好ましい。しかし、Vの含有量が過剰となる場合、靱性の低下を招き、さらに合金コストの増加を招くため、Vの含有量の上限は0.20%とするのが好ましい。
 Cr:0%超0.40%以下
 Crは、母材の高強度化に有効な元素である。斯かる効果を得るためには、Crの含有量は、0.02%以上とすることが好ましい。しかし、Crの含有量が過剰となる場合、Crは、靱性に悪影響を及ぼし、さらに合金コストの増加を招く。このため、Crの含有量の上限は、0.40%とするのが好ましい。
 Mo:0%超0.40%以下
 Moは、Crと同様に、母材の高強度化に有効な元素である。斯かる効果を得るためには、Moの含有量は、0.02%以上とすることが好ましい。しかし、Moの含有量が過剰となる場合、Moは、靱性に悪影響を及ぼし、さらに合金コストの増加を招く。このため、Moの含有量の上限は、0.40%とするのが好ましい。
 さらに、本発明の大入熱溶接用鋼板の成分組成は、基本成分組成または基本成分組成にV、CrおよびMoのうちから選ばれる1種以上の元素を含有した上記の成分組成に加えて、Mg、ZrおよびREMから選ばれる1種以上を選択的元素として下記の範囲で含有することができる。
 Mg:0.0005%以上0.0050%以下
 Mgは、酸化物の分散による靱性改善効果を有する元素である。斯かる効果を発現させるには、Mgの含有量は0.0005%以上とすることが好ましい。一方、Mgの含有量が0.0050%を超える場合には、靱性改善効果が飽和する。このため、Mgの含有量は、0.0005%以上0.0050%以下の範囲とすることが好ましい。
 Zr:0.0010%以上0.0200%以下
 Zrは、Mgと同様に、酸化物の分散による靱性改善効果を有する元素である。斯かる効果を発現させるには、Zrの含有量は0.0005%以上とすることが好ましい。一方、Zrの含有量が0.0200%を超える場合には、靱性改善効果が飽和する。このため、Zrの含有量は、0.0005%以上0.0200%以下の範囲とすることが好ましい。
 REM:0.0010%以上0.0200%以下
 REMは、MgやZrと同様に、酸化物の分散による靱性改善効果を有する元素である。斯かる効果を発現させるには、REMの含有量は0.0010%以上とすることが好ましい。一方、REMの含有量が0.0200%を超える場合には、靱性改善効果が飽和する。このため、REMの含有量は、0.0010%以上0.0200%以下の範囲とすることが好ましい。
 <大入熱溶接用鋼板の製造方法>
 次に、本発明に係る大入熱溶接用鋼板の製造方法について説明する。本発明に係る大入熱用鋼板の製造方法では、まず、上記組成の溶鋼が、転炉、電気炉、真空溶解炉等の精錬設備を用いた通常の精錬方法で溶製され、溶製された溶鋼が連続鋳造法や造塊法等の鋳造方法で鋳造されることでスラブ等の鋼素材が製造される。なお、以下の製造方法の説明において、鋼板温度の記述は、すべて鋼板表面の温度を示す。
 次いで、製造した鋼素材が、加熱炉にて1050℃以上1200℃以下の温度に加熱される。本発明では、鋼素材中のNb炭窒化物を完全に固溶させるため、鋼素材の加熱温度は1050℃以上とする。一方、加熱温度が1200℃を超えると、TiNが粗大となり靱性が劣化する。
 さらに、加熱した鋼素材が、圧延後の板厚tが25mm以上50mm以下、累積圧下率が40%以上となるように、850℃以下かつ圧延終了時にAr変態点以上となる温度域で熱間圧延され、鋼板となる。Ar変態点(℃)は、鋼素材の組成に応じて下記(3)式で算出される温度である。
  Ar変態点=900-332C+6Si-77Mn-20Cu-50Ni-18Cr-68Mo                 ・・・(3)
 なお、(3)式において、C、Si、Mn、Cu、Ni、CrおよびMoは、各元素の含有量(質量%)をそれぞれ示す。
 熱間圧延では、鋼板のミクロ組織を微細化するために、850℃以下の温度域で累積圧下率40%以上の圧延が行われる。累積圧下率が40%に満たない場合は、組織が粗大化となり、鋼板の靱性が低下する。また、上記の圧延条件に加え、圧延終了時の温度をAr変態点以上となる温度域で圧延が行われる。圧延終了時の温度がAr変態点よりも低い場合、圧延中あるいは圧延直後にフェライトが生成し、表層組織が加工フェライトとなり延性が著しく低下する。なお、熱間圧延では、850℃以下の温度域で累積圧下率40%以上の圧延が含まれればよく、他の圧延が排除されるものではない。
 熱間圧延した後、鋼板は、表面温度が(-t×1.5)+400℃以上かつ(-t×1.5)+620℃以下となるまで、5℃/秒以上の冷却速度で水冷される。ここで、tは鋼板の厚みを示す。冷却停止温度が(-t×1.5)+400℃未満である場合、復熱によるセルフテンパー効果が十分に得られず母材強度が過剰となり、延性及び靱性が低下する。一方、冷却停止温度が(-t×1.5)+620℃よりも高い場合、母材がフェライトもしくはフェライト+ベイナイトの混合組織となってしまい母材強度が不足する。また、本発明の鋼板では、460MPa以上の降伏強度を出すため、鋼板の金属組織はベイナイト主体の組織とする。加速冷却時の冷却速度が5℃/sec未満の場合、充分に焼きが入らずフェライト主体のミクロ組織を呈し、460MPa以上の降伏強度を確保することが困難となる。
 鋼板を水冷した後、鋼板を空冷することで、大入熱溶接用鋼板が製造される。
 <まとめ>
 (1)本発明に係る大入熱溶接用鋼板の製造方法は、質量%で、C:0.03%以上0.10%以下、Si:0.01%以上0.10%以下、Mn:0.8%以上2.0%以下、P:0.020%以下、S:0.0005%以上0.0050%以下、Al:0.005%以上0.100%以下、Nb:0.003%以上0.030%以下、Ti:0.005%以上0.050%以下、Cu:0.10%以上0.50%以下、Ni:0.30%以上2.00%以下、N:0.0030%以上0.0100%以下、B:0.0003%以上0.0025%以下、Ca:0.0005%以上0.0030%以下、O:0.0040%未満を含有し、かつ、下記(1)式で定義されるACRが0超1未満、下記(2)式で定義されるCeqが0.38以上0.43以下を満たして上記成分が含有され、残部がFeおよび不可避的不純物からなる鋼素材を、1050℃以上1200℃以上に加熱し、加熱した鋼素材を、圧延後の板厚tが25mm以上50mm以下、累積圧下率が40%以上となるように、850℃以下かつ圧延終了時にAr変態点以上となる温度域で熱間圧延し、熱間圧延した鋼素材を、表面温度が(-t×1.5)+400℃以上かつ(-t×1.5)+620℃以下となるまで、5℃/sec以上の冷却速度で水冷し、水冷し鋼素材を、空冷する。
  ACR=(Ca-(0.18+130×Ca)×O)/(1.25×S)                           ・・・(1)
  Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15                            ・・・(2)
 なお、表面温度の条件式におけるtは熱間圧延後の鋼素材の厚みを示し、(1)式および(2)式において、各元素記号は鋼素材中の各元素の含有量(質量%)を示す。
 本発明では、特に鋼素材の合金含有量を上記(1)の構成とすることにより、溶接を受けた鋼板組織において高温領域でのオーステナイト粒の粗大化が抑制される。そして、その後の冷却過程において、微細分散させた複合介在物を生成核とする粒内フェライトにより組織が微細化し、さらにベイナイト中のMA量が低減することから、HAZの靱性が向上する。併せて、Ceqの範囲を上記(1)の構成とすることにより、継手の引張強度および靱性の向上を両立させることができる。
 さらに、本発明では、鋼素材を加熱する温度を上記(1)の構成とすることにより、TiNの粗大化に伴う靱性の劣化を防止することができる。また、熱間圧延による累積圧下率および熱間圧延時の温度を上記(1)の構成とすることにより、母材組織の粗大化による靱性の低下を防止することができる。さらに、熱間圧延後の温度を上記(1)の構成とすることにより、表面組織が加工フェライトとなることに伴う延性の低下を防止することができる。さらに、本発明では、冷却停止後の表面温度を上記(1)の構成とすることにより、母材強度を適正な範囲にコントロールすることができ、さらに延性や靱性等の他の特性の向上を両立させることができる。
 したがって、上記(1)の構成によれば、溶接入熱が200kJ/cm以上の大入熱溶接下においても優れた継手特性を有し、降伏強度が460MPa以上、ボンド部HAZ靱性を示す破面遷移温度vTrsが-40℃以下および板厚が25mm以上50mm以下となる大入熱溶接用鋼板を安定的に製造することが可能となる。
 (2)上記(1)の構成において、鋼素材は、質量%で、V:0%超0.20%以下、Cr:0%超0.40%以下およびMo:0%超0.40%以下のうちから選ばれる1種以上をさらに含有する。
 上記(2)の構成によれば、母材の靱性の低下を抑えながらも、母材の強度を向上させることができる。
 (3)上記(1)または(2)の構成において、鋼素材は、質量%で、Mg:0.0005%以上0.0050%以下、Zr:0.0010%以上0.0200%以下、REM:0.0010%以上0.0200%以下のうちから選ばれる1種以上をさらに含有する。
 上記(3)の構成によれば、酸化物の分散による靱性改善効果を得ることができる。
 次に、本発明者らが行った実施例について説明する。
 まず、150kgの高周波溶解炉を用いて、表1に示す成分組成を有するNo.1~23の溶鋼をそれぞれ溶製し、鋳造することで鋼塊(鋼素材)を製造した。次いで、各鋼塊を熱間圧延することで種々の厚さの鋼片を製造した。さらに、得られた鋼片を種々の圧延および加速冷却条件により、圧延および加速冷却することで厚さが25mm以上50mm未満の鋼板を製造した。その後、各鋼板から長手方向が板幅方向と一致するようにJISZ2201に記載の1A号試験片を採取し、降伏応力YS(MPa)、引張強さTS(MPa)および全伸びEl(%)を計測した。なお、表1において、鋼No.1~8は本発明の実施例であり、鋼No.9~23は成分組成が本発明の範囲外となる比較例である。
Figure JPOXMLDOC01-appb-T000001
 また、各鋼片の板厚の1/4となる位置からJISZ2202に記載のVノッチシャルピー衝撃試験片を採取し、採取したシャルピー試験片について試験温度が-100℃~40℃の範囲で適宜シャルピー衝撃試験を行った。シャルピー試験の結果から、延性破面率50%となる破面遷移温度vTrs(℃)を求め、母材靱性を評価した。
 さらに、ボンド部近傍部のHAZ靱性を評価するために、各厚鋼板から幅80mm×長さ80mm×厚さ15mmの試験片を採取し、採取した試験片を1450℃に加熱した後、800℃~500℃の間を250secで冷却する再現熱サイクルを施した。熱処理を施したこれらの試験片から2mmVノッチシャルピー試験片を採取し、採取したシャルピー試験片について試験温度が-100℃~40℃の範囲で適宜シャルピー衝撃試験を行った。シャルピー試験の結果から、延性破面率50%となる破面遷移温度vTrs(℃)を求め、ボンド部近傍部の靱性を評価した。なお、再現熱サイクルの条件は、入熱量300kJ/cmのエレクトロガス溶接の場合のボンド部近傍の熱サイクルに相当し、想定最大入熱にあたる板厚40mmでの1パス溶接を模擬した。
 表2に、圧延条件、加速冷却条件、上記手順にて評価を行った母材の引張特性(YS、TS、El)、およびボンド部近傍HAZ靱性の試験結果を併せて示す。なお、表2において、鋼板No.1~16は本発明の実施例であり、鋼板No.17~22は鋼No.1~8から採取した鋼板を本発明の範囲外となる条件で圧延および冷却した比較例であり、鋼板No.23~44は鋼No.9~30から採取した鋼板を本発明の範囲外となる条件で圧延および冷却した比較例である。
Figure JPOXMLDOC01-appb-T000002
 実施例である鋼板No.1~16は、降伏応力YSが460MPa以上、引張強さTSが570MPa以上、全伸びElが16%以上、母材靱性の評価となる破面遷移温度vTrsが-50℃以下の優れた母材特性を有することが確認できた。また、鋼板No.1~16は、ボンド部近傍HAZ靱性の評価となる破面遷移温度vTrsが-40℃以下となり、大入熱溶接部において優れた靱性が得られることが確認できた。
 一方、比較例である鋼板No.17~22においては、鋼の成分組成が本発明に含まれるものの、製造条件が外れているため、母材の引張特性、靭性もしくは伸びのいずれかもしくは複数が実施例に対して低位となることが確認できた。また、比較例である鋼板No.23~44においては、製造条件が本発明に合致しているものの、鋼の成分組成が外れているため、特にボンド部近傍HAZ靱性もしくは継手の引張強度のいずれかもしくは双方が、実施例に対し、低位の値となることが確認できた。

Claims (3)

  1.  質量%で、
     C:0.03%以上0.10%以下、
     Si:0.01%以上0.10%以下、
     Mn:0.8%以上2.0%以下、
     P:0.020%以下、
     S:0.0005%以上0.0050%以下、
     Al:0.005%以上0.100%以下、
     Nb:0.003%以上0.030%以下、
     Ti:0.005%以上0.050%以下、
     Cu:0.10%以上0.50%以下、
     Ni:0.30%以上2.00%以下、
     N:0.0030%以上0.0100%以下、
     B:0.0003%以上0.0025%以下、
     Ca:0.0005%以上0.0030%以下、
     O:0.0040%未満を含有し、かつ、
     下記(1)式で定義されるACRが0超1未満、下記(2)式で定義されるCeqが0.38以上0.43以下を満たして各成分が含有され、残部がFeおよび不可避的不純物からなる鋼素材を、1050℃以上1200℃以上に加熱し、
     加熱した前記鋼素材を、圧延後の板厚が25mm以上50mm以下、累積圧下率が40%以上となるように、850℃以下かつ圧延終了時にAr変態点以上となる温度域で熱間圧延し、
     熱間圧延した前記鋼素材を、表面温度が(-t×1.5)+400℃以上かつ(-t×1.5)+620℃以下となるまで、5℃/sec以上の冷却速度で水冷し、
     水冷し前記鋼素材を、空冷することを特徴とする大入熱溶接用鋼板の製造方法。
      ACR=(Ca-(0.18+130×Ca)×O)/(1.25×S)                     ・・・(1)
      Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15                     ・・・(2)
     なお、表面温度の条件式におけるtは熱間圧延後の前記鋼素材の厚みを示し、(1)式および(2)式において、各元素記号は前記鋼素材中の各元素の含有量(質量%)を示す。
  2.  前記鋼素材は、質量%で、V:0%超0.20%以下、Cr:0%超0.40%以下およびMo:0%超0.40%以下のうちから選ばれる1種以上をさらに含有することを特徴とする請求項1に記載の大入熱溶接用鋼板の製造方法。
  3.  前記鋼素材は、質量%で、Mg:0.0005%以上0.0050%以下、Zr:0.0010%以上0.0200%以下、REM:0.0010%以上0.0200%以下のうちから選ばれる1種以上をさらに含有することを特徴とする請求項1または2に記載の大入熱溶接用鋼板の製造方法。
PCT/JP2015/003142 2014-07-15 2015-06-23 大入熱溶接用鋼板の製造方法 WO2016009595A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580038443.2A CN106574316B (zh) 2014-07-15 2015-06-23 大线能量焊接用钢板的制造方法
KR1020167035571A KR101971772B1 (ko) 2014-07-15 2015-06-23 대입열 용접용 강판의 제조 방법
JP2016534097A JP6048627B2 (ja) 2014-07-15 2015-06-23 大入熱溶接用鋼板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014144864 2014-07-15
JP2014-144864 2014-07-15

Publications (1)

Publication Number Publication Date
WO2016009595A1 true WO2016009595A1 (ja) 2016-01-21

Family

ID=55078109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003142 WO2016009595A1 (ja) 2014-07-15 2015-06-23 大入熱溶接用鋼板の製造方法

Country Status (4)

Country Link
JP (1) JP6048627B2 (ja)
KR (1) KR101971772B1 (ja)
CN (1) CN106574316B (ja)
WO (1) WO2016009595A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180074415A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 충격인성이 우수한 대입열 용접이음부
WO2018216665A1 (ja) * 2017-05-22 2018-11-29 Jfeスチール株式会社 厚鋼板およびその製造方法
CN109689912A (zh) * 2016-10-27 2019-04-26 杰富意钢铁株式会社 大线能量焊接用钢材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703424B (zh) * 2022-03-31 2023-02-28 张家港荣盛特钢有限公司 大线能量焊接钢板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242853A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 大入熱溶接用鋼材
JP2010111924A (ja) * 2008-11-07 2010-05-20 Jfe Steel Corp 大入熱溶接部靭性に優れた建築用低降伏比鋼板およびその製造方法
JP2011074403A (ja) * 2009-09-16 2011-04-14 Jfe Steel Corp 大入熱溶接用鋼
JP2012162801A (ja) * 2011-01-18 2012-08-30 Jfe Steel Corp テーパプレートの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS546308A (en) 1977-06-16 1979-01-18 Ishikawajima Harima Heavy Ind Pedestal in steel
JPS5751243A (en) 1980-09-12 1982-03-26 Nippon Steel Corp Steel products for welding
JPS60204863A (ja) 1984-03-28 1985-10-16 Kobe Steel Ltd 大入熱溶接構造用鋼
JPS62170459A (ja) 1986-01-22 1987-07-27 Sumitomo Metal Ind Ltd 大入熱溶接用高張力鋼板の製造方法
JPH0414180A (ja) 1990-05-07 1992-01-20 Toshiba Corp 画像形成記憶装置
JP4035990B2 (ja) * 2001-12-13 2008-01-23 Jfeスチール株式会社 超大入熱溶接haz靱性に優れた低降伏比建築構造用厚鋼板およびその製造方法
CN101289728B (zh) * 2007-04-20 2010-05-19 宝山钢铁股份有限公司 低屈强比可大线能量焊接高强高韧性钢板及其制造方法
JP5439887B2 (ja) * 2008-03-31 2014-03-12 Jfeスチール株式会社 高張力鋼およびその製造方法
CN102041459B (zh) * 2009-10-23 2012-09-19 宝山钢铁股份有限公司 可大线能量焊接ht690钢板及其制造方法
CN102719745B (zh) * 2012-06-25 2014-07-23 宝山钢铁股份有限公司 优良抗hic、ssc的高强低温用钢及其制造方法
JP5949682B2 (ja) 2012-07-03 2016-07-13 Jfeスチール株式会社 脆性亀裂伝播停止特性に優れた大入熱溶接用鋼板の製造方法
JP5958428B2 (ja) * 2012-07-30 2016-08-02 Jfeスチール株式会社 大入熱溶接用鋼板の製造方法
CN103320719B (zh) * 2013-06-19 2015-05-20 宝山钢铁股份有限公司 低成本可大热输入焊接高强韧性钢板及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242853A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 大入熱溶接用鋼材
JP2010111924A (ja) * 2008-11-07 2010-05-20 Jfe Steel Corp 大入熱溶接部靭性に優れた建築用低降伏比鋼板およびその製造方法
JP2011074403A (ja) * 2009-09-16 2011-04-14 Jfe Steel Corp 大入熱溶接用鋼
JP2012162801A (ja) * 2011-01-18 2012-08-30 Jfe Steel Corp テーパプレートの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689912A (zh) * 2016-10-27 2019-04-26 杰富意钢铁株式会社 大线能量焊接用钢材
KR20180074415A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 충격인성이 우수한 대입열 용접이음부
WO2018216665A1 (ja) * 2017-05-22 2018-11-29 Jfeスチール株式会社 厚鋼板およびその製造方法
JP6477993B1 (ja) * 2017-05-22 2019-03-06 Jfeスチール株式会社 厚鋼板およびその製造方法
US11299798B2 (en) 2017-05-22 2022-04-12 Jfe Steel Corporation Steel plate and method of producing same

Also Published As

Publication number Publication date
KR101971772B1 (ko) 2019-04-23
CN106574316B (zh) 2019-10-01
KR20170007815A (ko) 2017-01-20
CN106574316A (zh) 2017-04-19
JPWO2016009595A1 (ja) 2017-04-27
JP6048627B2 (ja) 2016-12-21

Similar Documents

Publication Publication Date Title
KR101846759B1 (ko) 강판 및 그 제조 방법
JP5076658B2 (ja) 大入熱溶接用鋼材
WO2010134220A1 (ja) 大入熱溶接用鋼材
JP5796636B2 (ja) 大入熱溶接用鋼材
WO2014199488A1 (ja) 溶接用超高張力鋼板
TWI526545B (zh) 熔接用鋼材
JP6048627B2 (ja) 大入熱溶接用鋼板の製造方法
JP6418418B2 (ja) 大入熱溶接用鋼材
JP3546308B2 (ja) 大入熱溶接用鋼材
JP5849892B2 (ja) 大入熱溶接用鋼材
JP3733898B2 (ja) 大入熱溶接部靱性に優れた厚肉高張力鋼材の製造方法
JP5233364B2 (ja) 大入熱溶接用鋼材
JP5233365B2 (ja) 大入熱溶接用鋼材
JP5526685B2 (ja) 大入熱溶接用鋼
JP2005213534A (ja) 溶接熱影響部靭性に優れた鋼材の製造方法
JP6299676B2 (ja) 高張力鋼板およびその製造方法
JP6226163B2 (ja) 溶接熱影響部の低温靭性に優れる高張力鋼板とその製造方法
JP2002371338A (ja) レーザー溶接部の靭性に優れた鋼
JP2020204091A (ja) 大入熱溶接用高強度鋼板
JP2011074445A (ja) 大入熱溶接熱影響部靱性に優れた非調質厚肉高張力鋼の製造方法。
JP7272471B2 (ja) 鋼板
WO2013128650A1 (ja) 大入熱溶接用鋼材
JP5659949B2 (ja) 溶接熱影響部の靱性に優れた厚鋼板およびその製造方法
JP5857693B2 (ja) 大入熱用鋼板およびその製造方法
JP2013136813A (ja) 高靭性大入熱溶接用鋼およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534097

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167035571

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822674

Country of ref document: EP

Kind code of ref document: A1