WO2010131686A1 - スコロダイト型鉄砒素化合物粒子および製造方法並びに砒素含有固形物 - Google Patents

スコロダイト型鉄砒素化合物粒子および製造方法並びに砒素含有固形物 Download PDF

Info

Publication number
WO2010131686A1
WO2010131686A1 PCT/JP2010/058064 JP2010058064W WO2010131686A1 WO 2010131686 A1 WO2010131686 A1 WO 2010131686A1 JP 2010058064 W JP2010058064 W JP 2010058064W WO 2010131686 A1 WO2010131686 A1 WO 2010131686A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
arsenic
scorodite
arsenic compound
type iron
Prior art date
Application number
PCT/JP2010/058064
Other languages
English (en)
French (fr)
Inventor
井上 健一
晴啓 大谷
善弘 本間
Original Assignee
Dowaメタルマイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaメタルマイン株式会社 filed Critical Dowaメタルマイン株式会社
Priority to US13/266,141 priority Critical patent/US8388927B2/en
Priority to EP10774943A priority patent/EP2431331A1/en
Priority to AU2010248410A priority patent/AU2010248410A1/en
Priority to CA 2758394 priority patent/CA2758394A1/en
Priority to CN2010800209924A priority patent/CN102421708A/zh
Publication of WO2010131686A1 publication Critical patent/WO2010131686A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/04Obtaining arsenic
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates to scorodite-type iron arsenic compound particles treated so that arsenic is hardly eluted, a method for producing the same, and an arsenic-containing solid material containing the scorodite-type iron arsenic compound particles.
  • the arsenic compound recovered as a precipitate is stored or discarded, but it is important that the compound has little arsenic elution.
  • Scorodite FeAsO 4 .2H 2 O
  • Patent Document 2 The present applicant has succeeded in developing a wet process for synthesizing a scorodite-type iron arsenic compound having good crystallinity with good filterability.
  • This iron arsenic compound contains arsenic at a very high quality of about 30% by mass, and the arsenic is immobilized in the compound and is not easily eluted.
  • JP 54-106590 A Japanese Patent No. 4185541 JP 2008-222525 A JP 2008-150658 A JP 2008-150659 A
  • an aggregate (powder) of scorodite crystal particles having an average particle diameter of about 1 to 50 ⁇ m can be obtained. These particles have good crystallinity, and when the aggregate of the obtained scorodite-type iron arsenic compound particles is thoroughly washed, the elution amount of arsenic in the elution test according to Ministry of the Environment Notification No. 13 is the standard (elution concentration 0) .3 mg / L or less).
  • the scorodite-type iron arsenic compound is stable in an environment where the pH is about 4 to 6, but the stability is impaired in the pH range outside the range, and the elution amount of arsenic increases.
  • Patent Document 3 discloses a technique for obtaining an arsenic-containing solid material in which a scorodite-type iron arsenic compound and an iron oxide compound are physically mixed.
  • This method has an advantage that the amount of arsenic elution can be easily reduced by mixing the scorodite type iron arsenic compound with the iron oxide compound.
  • the method is simple because of physical mixing, but the scorodite-type iron arsenic compound and the iron oxide compound may be non-uniformly mixed. Depending on the external environment, there is a risk of non-uniformity during storage, in which case the arsenic elution amount reduction effect tends to be insufficient.
  • the present invention uses scorodite-type iron arsenic compound particles with good filterability as a standard in the dissolution test (initial pH 5.8 to 6.3) in accordance with the laws of Japan (Japan) (Ministry of the Environment Notification No. 13).
  • An object of the present invention is to provide a clear and excellent arsenic elution preventing effect even in an environment around pH 3 and pH 7.
  • scorodite-type iron arsenic compound particles having an iron-rich layer with a Fe / As molar ratio of 1.24 or more in the particle surface layer portion.
  • An arsenic-containing solid material comprising an aggregate of the surface-treated scorodite-type iron arsenic compound particles, or an arsenic-containing solid material comprising a mixture of the surface-treated scorodite-type iron arsenic compound particles and the solid material not containing arsenic is arsenic. Excellent anti-elution effect, suitable for disposal, deposition or storage.
  • the “scorodite type iron arsenic compound” is a compound in which an X-ray diffraction pattern corresponding to a crystal of scorodite (FeAsO 4 .2H 2 O) is observed.
  • the arsenic elution amount in the elution test according to Ministry of the Environment Notification No. 13 is suppressed to 0.3 mg / L or less at least in a washed state. It has the immobilization ability.
  • the particles of the scorodite-type iron arsenic compound with good crystallinity have a polyhedral form having a ridge.
  • the average particle size of the powder composed of the particles is, for example, 10 to 50 ⁇ m. The average particle diameter can be determined by a laser diffraction particle size distribution measuring device.
  • the scorodite-type iron arsenide compound particles of the present invention have an iron-rich layer on the surface of the scorodite-type iron arsenide compound particles having such good crystallinity, and thereby, excellent arsenic elution in a wider pH range. Demonstrate resistance (arsenic resistance).
  • a treatment and B treatment are disclosed in the present invention.
  • [B treatment] A method of forming an iron-rich layer on the surface of the scorodite-type iron arsenic compound particles by bringing the surface of the particles into contact with an aqueous solution containing iron ions.
  • the iron-rich layer is preferably formed in an iron ion-containing aqueous solution in a state where the liquid has an interface with the oxygen-containing gas.
  • an iron (III) sulfate aqueous solution or an iron (II) sulfate aqueous solution can be suitably employed.
  • the B treatment is a step of subjecting the particles of “scorodite type iron arsenic compound having good crystallinity” to a surface treatment.
  • the present invention it is possible to obtain scorodite-type iron arsenic compound particles that have a higher arsenic elution prevention effect than before.
  • the slurry containing the iron arsenic compound particles has good filterability and is suitable for industrial production.
  • the arsenic-containing solid material comprising an aggregate of the iron arsenic compound particles of the present invention, or the arsenic-containing solid material obtained by mixing the iron arsenic compound particles and a substance not containing arsenic is considered to have a pH fluctuation range considered in an actual deposition environment. In this case, the effect of preventing arsenic elution is maintained well, and it is extremely effective for the construction of an arsenic treatment process.
  • Process drawing which showed an example of the arsenic processing process which manufactures the scorodite type iron arsenic compound particle
  • Process drawing which showed an example of the arsenic processing process which manufactures the scorodite type iron arsenic compound particle
  • 4 is an SEM photograph of scorodite-type iron arsenic compound particles obtained in Example 11.
  • FIG. 3 is an SEM photograph of scorodite-type iron arsenic compound particles obtained in Comparative Example 1.
  • FIG. 3 is an SEM photograph of scorodite-type iron arsenic compound crystal particles (particles serving as a base before forming an iron-rich layer on a surface layer portion) obtained in Comparative Example 2.
  • FIG. 2 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 1.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 2.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 3.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 4.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 4.
  • FIG. 6 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 5.
  • FIG. 6 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 6.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 7.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 8.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 9.
  • FIG. 9 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 9.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 10.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 11.
  • FIG. 4 is an SEM photograph of scorodite-type iron arsenic compound crystal particles having an iron-rich layer on the surface obtained in Example 11.
  • the inventors have found that when the Fe / As molar ratio of the surface layer portion of the scorodite-type iron arsenic compound particles having good crystallinity is 1.24 or more, the aggregate (powder) of the particles is And exhibiting a high arsenic elution preventing effect stably to such an extent that almost no arsenic elution is observed in the elution test according to Ministry of the Environment Notification No. 13, and a pH fluctuation range (pH 3) assumed in an actual deposition environment In 7), it was found that elution of arsenic can be suppressed.
  • Scorodite (FeAsO 4 .2H 2 O) has a stoichiometric Fe / As molar ratio of 1, but according to the analysis of the actually synthesized scorodite crystal, the Fe / As molar ratio of the crystal is 1. It fluctuates somewhat around 0, and the Fe / As molar ratio may be about 1.2. However, the average composition of such particles as a whole does not necessarily match the Fe / As molar ratio of the particle surface layer. According to the investigation by the inventors, even in an example in which the Fe / As molar ratio in the average composition of the whole particle fluctuated as high as 1.20, for example, the Fe / As molar ratio of the particle surface layer portion was below 1.24.
  • Such particles of the scorodite-type iron arsenic compound having an iron-rich layer on the surface can be obtained, for example, through a process A or B process described later.
  • the Fe / As molar ratio of the surface layer portion can be determined by ESCA (X-ray photoelectron spectroscopy).
  • the scorodite-type iron arsenic compound particles of the present invention which have improved arsenic-resistant elution performance by having an iron-rich layer on the surface, are physically or chemically iron oxide compounds (iron oxide or iron oxyhydroxide) on the surface. It is thought that it is adsorbed. Iron oxide (Fe 2 O 3 ) was detected on the surface of the surface-treated scorodite-type iron arsenic compound particles obtained in Examples described later. According to the study by the inventors, when an iron-rich layer is formed on the particle surface so that the Fe / As molar ratio obtained by ESCA (X-ray photoelectron spectroscopy) is 1.24 or more, excellent arsenic Elution suppression effect is obtained.
  • ESCA X-ray photoelectron spectroscopy
  • the average Fe / As molar ratio in the surface layer part at least up to 5 nm in depth from the outermost surface of the particles is 1.24 or more.
  • the critical value of Fe / As molar ratio of 1.24 is significant. The reason why the scorodite-type iron arsenic compound particles having such an iron-rich layer on the surface are excellent in arsenic elution suppression performance has not been sufficiently elucidated at present.
  • the arsenic-resistant elution performance tends to be stabilized at a better level.
  • the Fe / As molar ratio of the iron-rich layer is 10.0 or more, it has been confirmed that the arsenic elution resistance is extremely excellent in the entire pH range of 3 to 7 (see Examples 1 and 7 described later). That is, the lower the As concentration of the particle surface layer portion is, the more advantageous it is in obtaining stable arsenic-resistant elution performance.
  • Fe / As molar ratio is 1.24 or more
  • Fe / As molar ratio is 1.24 or more
  • FIG. 1 and FIG. 2 show an example of an arsenic treatment process in which the scorodite-type iron arsenic compound of the present invention is produced using A treatment and B treatment, respectively, and is used for disposal, deposition or storage.
  • the scorodite-type iron arsenic compound can be obtained by using the technique disclosed in Patent Document 2 or the like, but any means capable of synthesizing scorodite-type iron arsenic compound particles having good crystallinity and good filterability. Various methods can be employed.
  • the A treatment further synthesizes scorodite-type iron arsenic compound particles having an iron-rich layer on the surface thereof at a stage before the end of the reaction in the synthesis process (FIG. 1).
  • the surface is subjected to “surface treatment” by bringing the particles into contact with an aqueous solution containing iron ions, and a scorodite type iron arsenic compound having an iron-rich layer on the surface.
  • Particles are obtained (FIG. 2).
  • the aggregate (powder) of particles obtained by these methods has high arsenic quality and remarkably suppressed arsenic elution, and is suitable for disposal, deposition, and storage. Below, each process is demonstrated.
  • the steps of “preparation of arsenic-containing solution” and “synthesis of scorodite iron arsenic compound” are examples, and the step of preparing a scorodite-type iron arsenic compound having good crystallinity and good filterability. If there are, various processes can be adopted.
  • An arsenic-containing solution (a solution in which arsenic is dissolved) is prepared as a raw material solution for synthesizing a scorodite-type iron arsenic compound.
  • the arsenic-containing solution can be prepared using a technique for leaching arsenic from an arsenic-containing substance generated in a smelting process or the like.
  • the method for example, the method disclosed by the present applicant in Patent Documents 4 and 5 can be suitably employed.
  • oxygen gas is added to a slurry in which the sulfide is suspended in water and stirring is performed. Then, the arsenic leaching reaction is allowed to proceed, and after the reaction, the slurry is solid-liquid separated and the subsequent solution is recovered to obtain an arsenic-containing solution.
  • the oxygen partial pressure in the gas phase portion in contact with the slurry liquid surface is set to 0.6 MPa or less. It can also be implemented in open systems that are open to the atmosphere.
  • an arsenic-containing sulfide may be mixed with water whose alkali hydroxide concentration is limited to 0 to 1 mol / L to form a slurry.
  • the arsenic leaching reaction is desirably performed at 60 ° C. or higher, and can be performed in an open tank system as long as it is 100 ° C. or lower. It is desirable that the oxidation-reduction potential (ORP, Ag / AgCl electrode) of the slurry after the reaction is 200 mV or more.
  • an oxidizing agent such as oxygen gas is added to the slurry in which the copper arsenic compound-containing substance is suspended in water and stirred, and in the presence of simple sulfur or
  • An arsenic-containing solution is obtained by allowing the arsenic leaching reaction to proceed in the presence of S 2 ⁇ ions, and after the reaction, the slurry is subjected to solid-liquid separation and the subsequent liquid is recovered.
  • Elemental sulfur referred to as elemental sulfur
  • zinc sulfide (ZnS) can be used as the S 2 -ion supply material.
  • Such an arsenic leaching reaction is accompanied by copper sulfide.
  • the supply amount of sulfur is desirably 1 equivalent or more with respect to the amount of copper in the copper arsenic compound-containing material.
  • the arsenic-containing solution thus obtained is usually mainly composed of trivalent arsenic.
  • a technique of adding an oxidizing agent such as MnO 2 or PbO 2 together with a mineral acid (for example, sulfuric acid) can be suitably employed.
  • a pentavalent arsenic-containing solution can also be obtained by a process of oxidizing and leaching arsenic from an arsenic-containing substance using a strong alkaline solution, replacing with calcium, washing, and redissolving with sulfuric acid.
  • the process of leaching arsenic into water as described above is more suitable when processing a large amount industrially.
  • the reaction temperature is desirably 60 to 100 ° C, more preferably 80 to 100 ° C.
  • the reaction can proceed under atmospheric pressure.
  • the slurry containing the iron arsenic compound crystals synthesized in this manner is called “iron arsenic reaction slurry”. This iron arsenic reaction slurry contains scorodite type iron arsenic compound particles having good crystallinity as a solid component, and has good filterability.
  • a processing a method of promoting oxidation at the stage before the completion of the reaction and synthesizing scorodite-type iron arsenic compound particles having an iron-rich layer on the surface directly in the reaction vessel is called “A treatment”.
  • a treatment a method of promoting oxidation at the stage before the completion of the reaction and synthesizing scorodite-type iron arsenic compound particles having an iron-rich layer on the surface directly in the reaction vessel.
  • the following synthesis methods can be employed. First, as described above, the precipitation reaction of the scorodite-type iron arsenic compound crystal proceeds at a pH of 2 or lower while supplying an oxygen-containing gas to an aqueous solution containing pentavalent arsenic ions and divalent iron ions.
  • a oxidizing agent for treatment A an oxidizing agent (referred to as “A oxidizing agent for treatment A”) is further added to the liquid, and its high oxidizing power. The reaction is terminated in a state where is maintained.
  • the oxidizing agent for treatment A include hydrogen peroxide water, ozone, manganese dioxide, and potassium permanganate. Further, an oxygen-containing gas may be added in an amount that can form an iron-rich layer. These may be used in combination.
  • the timing for adding the oxidizing agent for treatment A is after the crystals of the scorodite-type iron arsenic compound are sufficiently formed. If the oxidizing agent for treatment A is added from the beginning, the oxidizing power is too strong and it becomes difficult to produce a scorodite type iron arsenic compound with good crystallinity.
  • the iron arsenic reaction slurry thus subjected to the A treatment contains a scorodite-type iron arsenic compound having an iron-rich layer having a Fe / As molar ratio of 1.24 or more (eg, 1.24 to 1.50) on the surface. Crystal particles are present.
  • the average particle size of the solid content (powder composed of scorodite-type iron arsenic compound particles having an Fe-rich layer) recovered by washing and solid-liquid separation of this slurry is, for example, 10 to 50 ⁇ m.
  • the average particle diameter can be determined by a laser diffraction particle size distribution measuring device. Such particles are suitable for disposal, deposition or storage. Thorough cleaning is desirable before disposal, deposition or storage.
  • the washed scorodite-type iron arsenic compound particles of the present invention obtained through the treatment A have an iron-rich layer having an Fe / As molar ratio of 1.24 or more (eg, 1.24 to 1.50) on the surface layer portion. Have.
  • the solid content (powder) recovered by washing and solid-liquid separation of the iron arsenic reaction slurry obtained by the synthesis method described above is composed of particles of a scorodite-type iron arsenic compound with good crystallinity.
  • the average particle diameter is, for example, 10 to 50 ⁇ m. Even if it has not undergone the treatment A, in many cases, these particles pass the standard in the dissolution test based on Ministry of the Environment Notification No.13. However, the arsenic-resistant elution performance at pH 3 or around pH 7 is not sufficient. Therefore, it is subjected to B treatment (surface treatment) as follows to form an iron-rich layer on the particle surface.
  • the surface treatment is performed by bringing the scorodite-type iron arsenic compound particles having good crystallinity into contact with iron ions in an aqueous solution.
  • this reaction is sometimes referred to as “contact reaction”.
  • the iron ion may be trivalent or divalent.
  • the iron ion source for example, iron (III) sulfate or iron (II) sulfate is suitable.
  • the contact reaction can proceed by mixing an aggregate of scorodite-type iron arsenic compound particles (solid content after washing) with an iron ion-containing aqueous solution and stirring the solution. For example, the following conditions may be maintained during the contact.
  • the pH is 2-9, preferably 2.5-8.
  • the temperature is 0 to 95 ° C., preferably 15 to 85 ° C., more preferably 30 to 60 ° C.
  • the iron ion concentration is set to 0.01 to 30% by mass.
  • the optimum time can be found when the contact time (the time of stirring under the above conditions (1) to (3)) is in the range of 1 to 300 minutes.
  • the scorodite-type iron arsenic compound particles of the present invention obtained by the B treatment have an iron-rich layer having a Fe / As molar ratio of 1.24 or more (for example, 1.24 to 15.00) on the surface layer portion thereof. .
  • the scorodite-type iron arsenic compound particles and the aqueous solution may be brought into contact in an iron ion-containing aqueous solution in which the liquid has an interface with the oxygen-containing gas.
  • the oxygen-containing gas air or oxygen gas can be used.
  • an iron-rich layer can be formed by stirring the liquid under the atmosphere.
  • the pH adjuster it is preferable to use a weak alkaline substance such as sodium hydrogen carbonate or a strong alkali such as caustic soda.
  • the liquid after the contact reaction is separated into solid and liquid to recover the solid content. Further washing can be performed as necessary.
  • the average particle diameter of the aggregate of the scorodite-type iron arsenic compound particles of the present invention is for example, it is 10 to 50 ⁇ m.
  • the average particle diameter can be determined by a laser diffraction particle size distribution measuring device. Such particles can be directly discarded, deposited or stored. Moreover, you may discard as a mixture with the other solid substance which does not contain arsenic. In the case of obtaining a dried product, for example, it may be dried in the atmosphere of about 40 to 105 ° C. and then crushed as necessary.
  • the X-ray diffraction pattern of the obtained dry solid was measured.
  • this dry solid was a scorodite-type iron arsenic compound (the same applies in the following examples).
  • the surface of the above dry solid (scorodite type iron arsenic compound powder) was analyzed by ESCA (X-ray photoelectron spectroscopic analysis; manufactured by ULVAC-PHI Co., Ltd., PHI 5800 ESCA System), and the Fe / As molar ratio of the surface layer portion. Asked.
  • the measurement conditions were a monochrome Al anode source as an X-ray source, 150 W, an analysis area of 800 ⁇ m ⁇ , and a take-off angle of 45 °.
  • the quantitative value of this measurement is calculated from the abundance ratio of Fe atoms and As atoms from the spectrum peak, and the detection lower limit is 0.1 at.%. Under this condition, information from the particle surface of the sample powder to a depth of several nm can be obtained.
  • the particle size distribution of the above scorodite type iron arsenic compound powder was measured by a laser diffraction type particle size distribution measuring device (HORIBA, LA-300), and the average particle size was obtained by arithmetic mean.
  • the particles constituting the powder were observed by SEM, and the particles exhibiting a polyhedral shape having ridges were evaluated as ⁇ (crystallinity: good), and the others were evaluated as x (crystallinity: poor).
  • An SEM photograph of the powder particles obtained in this example is illustrated in FIG.
  • the dried solid was subjected to a dissolution test.
  • the test method was a method based on Ministry of the Environment Notification No. 13 and a method using a solution of each pH.
  • a method in which the filtrate is analyzed after solid-liquid separation after shaking for a period of time.
  • the arsenic elution amount by this test is required to be 0.3 mg / L or less.
  • Table 1 the composition (mass analysis result) of the entire scorodite-type iron arsenic compound powder is also shown for reference (the same applies to the following examples).
  • the scorodite-type iron arsenic compound powder obtained in this example did not have good crystallinity (see FIG. 4), and the Fe / As molar ratio of the particle surface layer portion was as low as 1.18.
  • the arsenic-resistant elution performance of this powder was remarkably inferior to those of the examples described later.
  • the concentration of arsenic (pentavalent) in the reaction vessel was 50.0 g / L
  • the concentration of iron (divalent) was 55.9 g / L
  • the Fe / As molar ratio in the liquid was about 1.5. It is.
  • a two-stage disk turbine and four baffle plates were set and stirred. During this stirring, oxygen gas having a purity of 99% was blown into the liquid at a rate of 3.0 L / min. While continuing the stirring, the liquid temperature was maintained at 95 ° C., and oxygen blowing was continued for 7 hours to advance the precipitation reaction (iron arsenic reaction).
  • FIG. 5 illustrates an SEM photograph of the powder particles obtained in this example. It can be seen that the scorodite-type iron arsenic compound particles obtained in this example exhibit a polyhedral form having ridges, and are particles having good crystallinity. In the dissolution test compliant with Ministry of the Environment Notification No. 13, good results were obtained, and the arsenic resistance performance was significantly improved compared to that of Comparative Example 1 (comprising particles having poor crystallinity) (Table 1). . However, the Fe / As molar ratio of the surface layer portion was as low as 1.20, and the arsenic-resistant elution performance at pH 3 and pH 7 was insufficient.
  • Example 1 Using the dry solid (powder) of the scorodite-type iron arsenic compound obtained by the same method as in Comparative Example 2, the scorodite-type iron arsenic compound particles were subjected to B treatment (surface treatment) by the following procedure. After putting 3 L (liter) of water into the reaction vessel, the temperature of the water was raised to 40 ° C. while stirring, and 38.9 g of iron (III) sulfate n hydrate (Fe content 70%) was dissolved in water. Further, a few drops of dilute sulfuric acid was added to adjust the pH to 2.0. The iron ion concentration of this solution is 2.5 g / L.
  • the slurry after the contact reaction was subjected to solid-liquid separation with a suction filter, and the solid content was recovered.
  • This solid content (wet cake) was repulped with pure water and washed to separate the solid and liquid three times, and the solid content after washing was collected to obtain an aggregate of surface-treated scorodite-type iron arsenic compound particles. This was dried at 60 ° C. for 180 minutes to obtain a dry solid.
  • the slurry after the contact reaction was subjected to solid-liquid separation with a suction filter, and the solid content was recovered.
  • This solid content (wet cake) was repulped with pure water and subjected to solid-liquid separation three times, and the solid content after washing was recovered. This was dried at 60 ° C. for 180 minutes to obtain a powder composed of surface-treated scorodite-type iron arsenic compound particles.
  • the obtained scorodite-type iron arsenic compound powder (surface-treated) was subjected to surface analysis by ESCA, particle size distribution measurement, SEM observation of particles and dissolution test in the same manner as in Comparative Example 1.
  • FIG. 6 illustrates an SEM photograph of the powder particles obtained in this example.
  • the Fe / As molar ratio of the surface layer portion of the scorodite-type iron arsenic compound particles obtained in this example is as high as 13.79, and good results were obtained in the dissolution test in accordance with Ministry of the Environment Notification No. 13, and at pH 3 and pH 7.
  • the arsenic-resistant elution performance was significantly improved.
  • Example 2 The experiment was performed under the same conditions as in Example 1 except that the amount of iron (III) sulfate n hydrate (Fe content 70%) was changed to 8.0 g.
  • FIG. 7 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite-type iron arsenic compound particles obtained in this example had a surface layer portion with a high Fe / As molar ratio of 9.74, and exhibited excellent arsenic resistance to elution as in Example 1.
  • Example 3 The experiment was performed under the same conditions as in Example 1 except that the amount of iron (III) sulfate n hydrate (Fe content 70%) was changed to 1.56 g.
  • FIG. 8 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite-type iron arsenic compound particles obtained in this example had an Fe / As molar ratio of 2.12 in the surface layer portion, and exhibited excellent arsenic resistance.
  • Example 4 The experiment was performed under the same conditions as in Example 1 except that the amount of iron (III) sulfate n hydrate (Fe content 70%) was changed to 0.52 g.
  • FIG. 9 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite-type iron arsenic compound particles obtained in this example had an Fe / As molar ratio of 1.46 in the surface layer portion, and exhibited excellent arsenic resistance.
  • Example 5 The same experiment as in Example 1 was performed except that the liquid temperature during the contact reaction was changed from 40 ° C to 80 ° C.
  • FIG. 10 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite type iron arsenic compound particles obtained in this example had an Fe / As molar ratio of the surface layer of 6.23 and exhibited excellent arsenic resistance.
  • Example 6 The experiment was performed under the same conditions as in Example 1 except that the liquid temperature during the contact reaction was changed from 40 ° C to 95 ° C.
  • FIG. 11 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite-type iron arsenic compound particles obtained in this example had an Fe / As molar ratio of 3.27 in the surface layer portion, and exhibited excellent arsenic resistance.
  • Example 7 The experiment was performed under the same conditions as in Example 1 except that the pH was adjusted to 7 with sodium bicarbonate.
  • FIG. 12 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite-type iron arsenic compound particles obtained in this example had an Fe / As molar ratio of the surface layer of 11.33, and exhibited excellent arsenic resistance.
  • Example 8 The experiment was performed under the same conditions as in Example 1 except that iron (II) sulfate was used instead of iron (III) sulfate and sodium hydroxide was used instead of sodium hydrogen carbonate.
  • the iron ion concentration and pH in the liquid were also the same as in Example 1.
  • FIG. 13 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite-type iron arsenic compound particles obtained in this example had an Fe / As molar ratio of 2.36 in the surface layer portion, and exhibited excellent arsenic resistance.
  • Example 9 As described below, the synthesis of scorodite-type iron arsenic compound particles having an iron-rich layer in the surface layer portion by the treatment A was attempted.
  • the iron arsenic reaction was allowed to proceed under the same conditions as in Comparative Example 2.
  • a powder (dry solid) composed of scorodite-type iron arsenic compound particles was obtained as the same procedure as Comparative Example 2.
  • FIG. 14 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite-type iron arsenic compound particles obtained in this example have a Fe / As molar ratio of 1.35 in the surface layer portion, and can be used for disposal, deposition or storage without undergoing B treatment (surface treatment). Arsenic elution performance with good level was exhibited.
  • FIG. 15 illustrates an SEM photograph of the powder particles obtained in this example.
  • the scorodite-type iron arsenic compound particles obtained in this example had a Fe / As molar ratio of 1.30 in the surface layer portion, and exhibited good arsenic resistance.
  • the scorodite-type iron arsenic compound particles obtained in this example had an Fe / As molar ratio of 1.24 in the surface layer portion, and exhibited good arsenic resistance.

Abstract

【課題】濾過性が良いスコロダイト型鉄砒素化合物において、我が国の法令(環境省告示13号)に準拠した溶出試験(初期pH5.8~6.3)で基準をクリアし、かつ、pH3付近およびpH7付近の環境でも優れた砒素の溶出防止効果が得られるものを提供する。 【解決手段】粒子表層部にFe/Asモル比が1.24以上の鉄リッチ層を持つスコロダイト型鉄砒素化合物粒子。このような粒子は、5価の砒素イオンと2価の鉄イオンを含む水溶液に酸素含有ガスを供給しながらpH2以下にてスコロダイト型鉄砒素化合物結晶を析出させる反応過程において、反応終了前に更に酸化剤を液中に加えることにより得ることができる(A処理)。また、結晶性の良いスコロダイト型鉄砒素化合物粒子をpHが2~9に調整された0~90℃の鉄イオン含有水溶液と接触させる方法によっても得ることができる(B処理)。

Description

スコロダイト型鉄砒素化合物粒子および製造方法並びに砒素含有固形物
 本発明は、砒素が溶出しにくいように処理されたスコロダイト型鉄砒素化合物の粒子、およびその製造方法、並びに前記スコロダイト型鉄砒素化合物粒子を含有する砒素含有固形物に関する。
 非鉄製錬においては、各種製錬中間物が発生し、また様々な形態の製錬原料となり得るものが存在する。これらの製錬中間物や製錬原料には有価金属が含まれているが、一方で砒素などの環境上好ましくない元素が含まれている。砒素の処理法としては、溶液中の砒素を、亜砒酸と鉄、カルシウムなどと組み合わせて砒素化合物中に固定する手法が提唱されている。
 沈殿物として回収された砒素化合物は保管または廃棄されるが、その化合物は砒素の溶出が少ないものであることが重要である。砒素の溶出が少ない砒素化合物としてスコロダイト(FeAsO4・2H2O)が知られている。ところが、スコロダイト結晶を濾過性が良好な嵩の低い形態で生成させることは容易ではなく、工業的にスコロダイト結晶を合成する砒素処理のプロセスは実現が難しいとされていた。
 本出願人は、結晶性の良好なスコロダイト型鉄砒素化合物を濾過性の良い状態で合成する湿式プロセスの開発に成功した(特許文献2)。この鉄砒素化合物には砒素が30質量%程度と非常に高品位で含まれ、その砒素は化合物中に固定化され溶出しにくい。
 上記の湿式プロセスを利用すると、廃棄や保管に適した結晶性鉄砒素化合物を工業的に生産することが可能である。ただし、工業的な実施に際しては、鉄砒素化合物の合成過程や洗浄過程でのハンドリングによる誤操作も考慮に入れる必要がある。例えば、鉄砒砒素反応の時間が短くなった場合や、洗浄水の使用量が少なすぎたり洗浄方法が不完全であったりした場合には、鉄砒素化合物に付着して存在する砒素の量が通常より増大することが考えられる。また、廃棄、堆積または保管されている鉄砒素化合物の環境がアルカリ側に振れた場合には、スコロダイト結晶からの砒素の溶出量が増加することも懸念される。
 このような現状に鑑み、本出願人は、上記のような結晶性の良いスコロダイト型鉄砒素化合物と、鉄酸化化合物(酸化鉄やオキシ水酸化鉄)とが共存している砒素含有固形物を提案した(特許文献3)。これにより、我が国の法令(環境省告示13号)に準拠した溶出試験で安定した砒素の溶出防止効果が得られ、また、廃棄、堆積または保管環境でpHが変動した場合でも砒素の溶出を低く抑えることができる。
特開昭54-106590号公報 特許第4185541号公報 特開2008-222525号公報 特開2008-150658号公報 特開2008-150659号公報
 特許文献2に開示した湿式プロセスによると、平均粒子径が1~50μm程度のスコロダイト結晶粒子の集合物(粉末)を得ることができる。この粒子は結晶性が良好であり、得られたスコロダイト型鉄砒素化合物粒子の集合物は、十分に洗浄すると、環境省告示13号に準拠した溶出試験における砒素の溶出量が基準(溶出濃度0.3mg/L以下)を満たすものとなる。しかし発明者らの調査によれば、スコロダイト型鉄砒素化合物はpHが4~6程度の環境下において安定であるが、それを外れるpH域では安定性が損なわれ、砒素の溶出量が増加する傾向を呈することが確認された。実際の堆積現場においてpH管理を十分に行わない場合には、pHが3程度に低下する場合や7程度に上昇する場合が想定される。したがって、現実の堆積環境を考慮した場合、例えばpH3前後、またはpH7前後において、既存のスコロダイト型鉄砒素化合物は砒素の溶出を抑える効果が必ずしも十分ではなく、廃棄のために堆積する場合には排水処理等の措置が望まれる。
 一方、特許文献3には、スコロダイト型鉄砒素化合物と鉄酸化化合物とが物理的に混合された砒素含有固形物を得る手法が開示されている。この手法は、スコロダイト型鉄砒素化合物を鉄酸化化合物と混合することにより、砒素溶出量低減が実現しやすいというメリットがある。しかしながら、単に物理的な混合のため、手法は簡便ではあるが、スコロダイト型鉄砒素化合物と鉄酸化化合物の混合が不均一となるおそれがあり、また両者が均一に混合できたとしても、雨等の外部環境によって、貯蔵時に不均一になるおそれがあり、その場合には砒素の溶出量低減効果が不十分となりやすい。
 本発明は、濾過性が良いスコロダイト型鉄砒素化合物の粒子自体において、我が国(日本国)の法令(環境省告示13号)に準拠した溶出試験(初期pH5.8~6.3)で基準をクリアし、かつ、pH3付近およびpH7付近の環境でも優れた砒素の溶出防止効果が得られるものを提供することを目的とする。
 発明者らは詳細な検討の結果、特許文献3のようにスコロダイト型鉄砒素化合物と鉄酸化化合物とを物理的に混合することによって砒素の溶出抑制性能を向上させるのではなく、スコロダイト型鉄砒素化合物自体の砒素溶出抑制性能を高めることによって上記目的を実現した。すなわち発明者らは、粒子表層部のFe/Asモル比が1.24以上であるスコロダイト型鉄砒素化合物粒子において砒素溶出抑制性能が向上し、より広いpH域で優れた砒素溶出抑制性能が得られることを知見した。
 すなわち上記目的は、粒子表層部にFe/Asモル比が1.24以上の鉄リッチ層を持つスコロダイト型鉄砒素化合物粒子によって達成される。
 上記の表面処理スコロダイト型鉄砒素化合物粒子の集合物からなる砒素含有固形物、あるいは上記の表面処理スコロダイト型鉄砒素化合物粒子と砒素を含有しない固体物質との混合物からなる砒素含有固形物は、砒素の溶出防止効果に優れ、廃棄、堆積または保管に適する。
 ここで、「スコロダイト型鉄砒素化合物」はスコロダイト(FeAsO4・2H2O)の結晶に対応するX線回折パターンが観測される化合物であるが、本発明で対象とするスコロダイト型鉄砒素化合物(鉄リッチ層を形成させるためのベースとなるもの)は、少なくとも洗浄された状態で環境省告示13号に準拠した溶出試験での砒素溶出量が0.3mg/L以下に抑制されるような砒素の固定化能力を持つものである。このような砒素の固定化能力を持つものは、非晶質状態の鉄砒素化合物の含有量が極めて少ないものであることから、本明細書ではこれを「結晶性の良いスコロダイト型鉄砒素化合物」と呼んでいる。この結晶性の良いスコロダイト型鉄砒素化合物の粒子は、稜を有する多面体形態を呈するものである。当該粒子で構成される粉末の平均粒子径は例えば10~50μmである。平均粒子径はレーザー回折式粒度分布測定装置により求めることができる。本発明のスコロダイト型鉄砒素化合物粒子は、このような結晶性の良いスコロダイト型鉄砒素化合物粒子の表面に鉄リッチ層を有するものであり、これによって、さらに幅広いpH域での優れた砒素の溶出抵抗(耐砒素溶出性能)を発揮する。このような砒素の溶出抵抗に優れたスコロダイト型鉄砒素化合物粒子の製造方法として、本発明では以下の2態様(A処理およびB処理)を開示する。
〔A処理〕
 5価の砒素イオンと2価の鉄イオンを含む水溶液に酸素含有ガスを供給しながらpH2以下にてスコロダイト型鉄砒素化合物結晶を析出させる反応過程において、反応終了前のまだ液中に未反応の砒素イオンと鉄イオンが存在している時点で、更に酸化剤を前記の酸素含有ガスより酸化力の強い酸化剤を液中に加えることにより、既に析出しているスコロダイト型鉄砒素化合物粒子の表面にFe/Asモル比が1.24以上の鉄リッチ層を形成させること手法。
〔B処理〕
 スコロダイト型鉄砒素化合物粒子の表面を、鉄イオン含有水溶液と接触させることによって、当該粒子の表面に鉄リッチ層を形成させる手法。
 特に、上記鉄リッチ層の形成を、液が酸素含有ガスと界面を有する状態の鉄イオン含有水溶液中において行うことが好ましい。前記鉄イオン含有水溶液としては硫酸鉄(III)水溶液または硫酸鉄(II)水溶液が好適に採用できる。
 B処理は「結晶性の良いスコロダイト型鉄砒素化合物」の粒子に表面処理を施す工程である。
 本発明によれば、従来よりも砒素の溶出防止効果を高めたスコロダイト型鉄砒素化合物の粒子を得ることが可能になった。この鉄砒素化合物粒子を含むスラリーは濾過性が良好であり、工業的生産に適している。本発明の鉄砒素化合物粒子の集合物からなる砒素含有固形物、あるいは当該鉄砒素化合物粒子と砒素を含有しない物質を混合してなる砒素含有固形物は、現実の堆積環境において考えられるpH変動域において砒素の溶出防止効果が良好に維持され、砒素処理プロセスの構築に極めて有効である。
A処理により本発明のスコロダイト型鉄砒素化合物粒子を製造し、廃棄、堆積または保管に供する砒素処理プロセスの一例を示した工程図。 B処理により本発明のスコロダイト型鉄砒素化合物粒子を製造し、廃棄、堆積または保管に供する砒素処理プロセスの一例を示した工程図。 実施例11で得られたスコロダイト型鉄砒素化合物粒子のSEM写真。 比較例1で得られたスコロダイト型鉄砒素化合物粒子のSEM写真。 比較例2で得られたスコロダイト型鉄砒素化合物結晶粒子(表層部に鉄リッチ層を形成させる前のベースとなる粒子)のSEM写真。 実施例1で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例2で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例3で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例4で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例5で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例6で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例7で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例8で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例9で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例10で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。 実施例11で得られた表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物結晶粒子のSEM写真。
 発明者らは種々検討の結果、結晶性の良好なスコロダイト型鉄砒素化合物の粒子の表層部のFe/Asモル比が1.24以上となっているとき、その粒子の集合物(粉末)は、環境省告示13号に準拠した溶出試験でほとんど砒素の溶出が認められない程度に安定して高い砒素の溶出防止効果を発揮すること、および現実の堆積環境において想定されるpH変動域(pH3~7)で砒素の溶出が抑止できることを見出した。
 スコロダイト(FeAsO4・2H2O)は化学量論的にFe/Asモル比が1であるが、実際に合成されたスコロダイト結晶の分析によれば、当該結晶のFe/Asモル比は1.0前後で多少変動し、Fe/Asモル比が1.2程度となることもある。しかし、このような粒子全体の平均組成は粒子表層部のFe/Asモル比と必ずしも一致するわけではない。発明者らの調査によれば、粒子全体の平均組成におけるFe/Asモル比が例えば1.20と高めに振れた例でも、粒子表層部のFe/Asモル比は1.24を下回っており、環境省告示13号に準拠した溶出試験で環境標準をクリアしているものの、現実の堆積環境において想定されるpH変動域(pH3~7)で砒素の溶出を必ずしも安定して抑止できるとは限らないことが確認された。ところが、粒子の表層部のFe/Asモル比が1.24以上になっているものは、環境省告示13号に準拠したpH範囲のみならず、現実の堆積環境において想定されるpH変動域でも優れた砒素の溶出抑制性能を呈するのである。
 このような表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物の粒子は、例えば後述のA処理やB処理のプロセスを経ることによって得ることができる。ここで、表層部のFe/Asモル比は、ESCA(X線光電子分光分析)により求めることができる。
 表面に鉄リッチ層を有することにより耐砒素溶出性能が改善された本発明のスコロダイト型鉄砒素化合物粒子は、その表面に鉄酸化化合物(酸化鉄やオキシ水酸化鉄)が物理的または化学的に吸着しているものと考えられる。後述の実施例で得られた表面処理スコロダイト型鉄砒素化合物粒子の表面には酸化鉄(Fe23)が検出された。発明者らの検討によれば、ESCA(X線光電子分光分析)により求まるFe/Asモル比が1.24以上となるように、粒子表面に鉄リッチ層が形成されているとき、優れた砒素溶出抑止効果が得られる。ESCAの分析特性を考慮すると、少なくとも粒子最表面からの深さが5nmまでの表層部における平均Fe/Asモル比が1.24以上であると言うことができる。特にpH3程度の低pH域での砒素の溶出抵抗に関してはFe/Asモル比1.24という臨界値が大きな意味を持つ。このような鉄リッチ層を表面に持つスコロダイト型鉄砒素化合物粒子が砒素の溶出抑制性能に優れる理由については現時点で十分解明されていない。
 発明者らの検討によれば、鉄リッチ層のFe/Asモル比が高くなると、耐砒素溶出性能が一層良好なレベルで安定する傾向が見られた。例えば鉄リッチ層のFe/Asモル比が10.0以上のものではpH3~7の全域で極めて優れた耐砒素溶出性能を示すことが確認されている(後述実施例1、7参照)。すなわち粒子表層部のAs濃度がFe濃度に比べて低いほど、安定した耐砒素溶出性能を得る上で有利となる。粒子表層部のAs濃度が、Fe濃度との対比において検出できない程度に小さい場合は、鉄リッチ層のFe/Asモル比の値は実質的に無限大となる。本発明において「Fe/Asモル比が1.24以上」とは、Fe/Asモル比が1.24から無限大となる範囲を意味する。
 図1および図2に、それぞれA処理およびB処理を用いて本発明のスコロダイト型鉄砒素化合物を製造し、廃棄、堆積または保管に供する砒素処理プロセスの一例を示す。スコロダイト型鉄砒素化合物は、特許文献2などで開示した手法を用いて得ることができるが、結晶性が良好で、かつ、濾過性が良好であるスコロダイト型鉄砒素化合物粒子を合成できる手段であれば種々の方法が採用できる。A処理は、この合成過程における反応終了前の段階で酸化を更に促進させ、表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物粒子を合成するものである(図1)。B処理は、結晶性の良いスコロダイト型鉄砒素化合物粒子を得た後、その粒子を鉄イオン含有水溶液と接触させることによって「表面処理」を施し、表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物粒子を得るものである(図2)。これらの方法で得られた粒子の集合物(粉末)は、砒素品位が高くかつ砒素の溶出が顕著に抑制されるので、廃棄、堆積、保管に適する。
 以下に、各工程について説明する。ここで、「砒素含有溶液の作成」と「スコロダイト鉄砒素化合物の合成」の工程は例示であり、結晶性が良好で、かつ、濾過性が良好であるスコロダイト型鉄砒素化合物が用意できる工程であれば種々の工程が採用可能である。
《砒素含有溶液の作成》
 スコロダイト型鉄砒素化合物を合成するための原料液として、砒素含有溶液(砒素が溶解している液)を用意する。砒素含有溶液は製錬工程などで発生する砒素含有物質から砒素を浸出させる手法を利用して作成することができる。その方法として、例えば本出願人が特許文献4、5などに開示した手法が好適に採用できる。例えば、As23やCuSの組成式で表される硫化物を主体とした砒素含有物質を使用する場合には、その硫化物が水中に懸濁しているスラリーに酸素ガスを添加するとともに撹拌しながら砒素の浸出反応を進行させ、反応後、スラリーを固液分離して后液を回収することによって砒素含有溶液が得られる。浸出反応を進行させる際には、スラリー液面に接する気相部における酸素分圧を0.6MPa以下とする。大気開放のオープン系でも実施可能である。前記浸出反応に供するスラリーを構成する水は、水酸化アルカリを添加していない水が使用できるが、水酸化アルカリが多少存在していても砒素の高い浸出率を実現する上で差し支えない。具体的には、水酸化アルカリ濃度が0~1mol/Lに制限された水に砒素含有硫化物を混合してスラリーとすればよい。砒素の浸出反応は60℃以上で行うことが望ましく、100℃以下であればオープンタンク系でも実施できる。反応後のスラリーの酸化還元電位(ORP、Ag/AgCl電極)が200mV以上となるようにすることが望ましい。
 また、砒素含有物質が硫化物ではなく銅砒素化合物である場合は、銅砒素化合物含有物質が水中に懸濁しているスラリーに酸素ガス等の酸化剤を添加して撹拌し、単体硫黄存在下またはS2-イオン存在下で砒素の浸出反応を進行させ、反応後、スラリーを固液分離して后液を回収することによって砒素含有溶液が得られる。S2-イオン供給物質としては元素性の硫黄(エレメンタル・サルファーという)や硫化亜鉛(ZnS)を使用することができる。このような砒素の浸出反応は銅の硫化を伴うものである。硫黄の供給量は、銅砒素化合物含有物質中の銅の量に対して1当量以上とすることが望ましい。
 このようにして得られた砒素含有溶液は通常、3価の砒素を主体とするものである。スコロダイト型鉄砒素化合物の合成に使うためには、これを5価の砒素に変える必要がある。そのためには例えばMnO2やPbO2などの酸化剤を鉱酸(例えば硫酸)とともに添加する手法が好適に採用できる。なお、強アルカリ性の液を用いて砒素含有物質から砒素を酸化浸出させ、カルシウム置換を行い、洗浄し、硫酸で再溶解するプロセスによっても5価の砒素含有溶液を得ることができる。しかし、工業的に大量に処理する場合には上記のように砒素を水中に浸出させるプロセスの方が適している。
《スコロダイト型鉄砒素化合物の合成》
 5価の砒素含有溶液からスコロダイト結晶を主体とする鉄砒素化合物を合成する方法としては例えば本出願人が特許文献2に開示した手法が好適に採用できる。すなわち、5価の砒素イオンと2価の鉄イオンを含む水溶液に酸化剤を添加して液を撹拌しながらpH2以下において鉄砒素化合物の沈殿析出反応(本明細書ではこれを「鉄砒素反応」と呼ぶ)を進行させる。酸化剤としては酸素含有ガスが好適に採用される。例えば、空気、純酸素ガスなどが挙げられる。酸素含有ガスは、反応進行中、継続的に供給することが望ましい。その供給形態としては液中に吹き込む方法、反応容器の気相部に連続的に導入する方法などがある。反応温度は60~100℃とすることが望ましく、80~100℃の範囲がより好ましい。大気圧下で反応を進行させることができる。後述のB処理に供する場合は、反応終了まで酸化剤として酸素含有ガスを供給し、液のpHが0~1.2の範囲で結晶の析出を終了させることが好ましい。このようにして合成した鉄砒素化合物の結晶を含むスラリーを「鉄砒素反応スラリー」と呼ぶ。この鉄砒素反応スラリーは結晶性が良好なスコロダイト型鉄砒素化合物の粒子を固体成分として含有しており、濾過性が良好である。
《A処理》
 上記の合成過程において反応終了前の段階で酸化を促進させ、反応容器中で直接、表面に鉄リッチ層を有するスコロダイト型鉄砒素化合物粒子を合成する手法を「A処理」と呼ぶ。具体的には以下のような合成方法が採用できる。
 まず、上記のように5価の砒素イオンと2価の鉄イオンを含む水溶液に酸素含有ガスを供給しながらpH2以下にてスコロダイト型鉄砒素化合物結晶の析出反応を進行させる。そして、反応終了前に、まだ液中に未反応の砒素イオンと鉄イオンが存在している時点で、更に酸化剤(「A処理用酸化剤」という)を液中に加え、その高い酸化力が維持されている状態で反応を終了させる。
 酸素含有ガスの供給は反応終了まで継続することが望ましい。A処理用酸化剤としては、過酸化水素水、オゾン、二酸化マンガン、過マンガン酸カリウム等が挙げられる。また酸素含有ガスを鉄リッチ層の形成が可能な量だけ添加しても構わない。これらを複合して用いても構わない。A処理用酸化剤を加えるタイミングは、スコロダイト型鉄砒素化合物の結晶が十分に生成した後とする。もし初めからA処理用酸化剤を添加すれば、酸化力が強すぎて結晶性の良いスコロダイト型鉄砒素化合物の生成が困難となる。既にスコロダイト型鉄砒素化合物結晶が存在している状態でA処理用酸化剤を添加することによって、その結晶粒子の表面に鉄リッチ層が形成される。ただし、液中にまだ多量の砒素イオンが残留している時点でA処理用酸化剤を添加すると、スコロダイト型結晶として固定化される砒素の回収率が低下し、効率的ではない。種々検討の結果、通常は反応開始後、例えば2時間以上経過した後にA処理用酸化剤を添加すると良好な結果が得られやすい。その後、少なくとも5分以上、好ましくは30~120分の反応時間を確保したのち、反応を終了させる。
 このようにしてA処理を終えた鉄砒素反応スラリーには、表面にFe/Asモル比が1.24以上(例えば1.24~1.50)の鉄リッチ層を持つスコロダイト型鉄砒素化合物の結晶粒子が存在している。このスラリーを洗浄、固液分離して回収された固形分(Feリッチ層を有するスコロダイト型鉄砒素化合物粒子で構成される粉末)の平均粒子径は例えば10~50μmである。平均粒子径はレーザー回折式粒度分布測定装置により求めることができる。このような粒子は廃棄、堆積または保管に適するものである。廃棄、堆積または保管に供する前には十分に洗浄することが望ましい。
 A処理を経て得られた洗浄後の本発明のスコロダイト型鉄砒素化合物粒子は、その表層部にFe/Asモル比が1.24以上(例えば1.24~1.50)の鉄リッチ層を有している。
《B処理》
 上述の合成方法によって得られた鉄砒素反応スラリーを洗浄、固液分離することによって回収された固形分(粉末)は、結晶性の良いスコロダイト型鉄砒素化合物の粒子で構成されている。その平均粒子径は例えば10~50μmである。A処理を経ていなくても、この粒子は多くの場合、環境省告示13号に準拠した溶出試験での基準をクリアするものである。しかし、pH3あるいはpH7付近での耐砒素溶出性能は十分ではない。そこで、以下のようにB処理(表面処理)に供し、粒子表面に鉄リッチ層を形成させる。
 表面処理は、上記の結晶性の良いスコロダイト型鉄砒素化合物の粒子を水溶液中で鉄イオンと接触させることによって行う。以下、この反応を「接触反応」ということがある。鉄イオンは3価、2価いずれでもよい。鉄イオン源としては例えば硫酸鉄(III)、あるいは硫酸鉄(II)が好適である。スコロダイト型鉄砒素化合物粒子の集合物(洗浄後の固形分)を鉄イオン含有水溶液と混合し、液を撹拌することで接触反応を進行させることができる。接触させている間、例えば以下の条件が維持されるようにすればよい。
(1)pHを2~9、好ましくは2.5~8とする。
(2)温度を0~95℃、好ましくは15~85℃、さらに好ましくは30~60℃とする。
(3)鉄イオン濃度を0.01~30質量%とする。
 接触時間(上記(1)~(3)の条件下で撹拌している時間)は1~300分の範囲で最適時間を見出すことができる。
 B処理によって得られた本発明のスコロダイト型鉄砒素化合物粒子は、その表層部にFe/Asモル比が1.24以上(例えば1.24~15.00)の鉄リッチ層を有している。
 上記A処理後またはB処理後のスコロダイト型鉄砒素化合物粒子を分析したところ、A処理、B処理いずれも施していないスコロダイト型鉄砒素化合物粒子には観測されなかったFe23の存在が確認された。このことから、粒子表面の鉄リッチ層には3価の鉄酸化物が吸着しているものと推察される。2価の鉄イオン含有水溶液を用いる場合は、液中に酸化剤を導入することが望ましい。また3価の鉄イオン含有水溶液を用いる場合でも、2価への還元を防止する上で酸化剤の導入は有効である。種々検討の結果、液が酸素含有ガスと界面を有する状態の鉄イオン含有水溶液中において、スコロダイト型鉄砒素化合物粒子と水溶液とを接触させればよい。酸素含有ガスは大気や酸素ガスなどが利用できる。これまでの実験によれば、大気開放下で液を撹拌すれば、鉄リッチ層の形成が可能である。酸素含有ガスを液中に吹き込む手法を採用しても構わない。pH調整剤としては炭酸水素ナトリウム等の弱アルカリ物質や、苛性ソーダ等の強アルカリを使用することが好ましい。接触反応を終えた液を固液分離して固形分を回収する。必要に応じてさらに洗浄を行うことができる。なお、A処理を経た粒子に対して、さらにB処理を施しても構わない。
 以上のようにしてA処理あるいはB処理を経て得られた本発明のスコロダイト型鉄砒素化合物粒子の集合物(Feリッチ層を有するスコロダイト型鉄砒素化合物粒子で構成される粉末)の平均粒子径は例えば10~50μmである。平均粒子径はレーザー回折式粒度分布測定装置により求めることができる。このような粒子はそのまま廃棄、堆積または保管に供することができる。また、砒素を含有しない他の固形物との混合物として廃棄処理しても構わない。乾燥品を得る場合は、例えば40~105℃程度の大気中で乾燥させた後、必要に応じて解砕処理を施せばよい。
《比較例1》
 容量5L(リットル)のチタン製密閉容器(反応槽)にAs濃度50.0g/L、Fe濃度55.90g/L(Fe/As比=1.5)の水溶液3.5Lを入れ、容器内の雰囲気を不活性ガス雰囲気として、1段の平パドルを800rpmにして撹拌しながら昇温させた。容器内の温度が100℃以上になった時点で一旦不活性ガスを脱気し、引き続き、最終的な設定温度175℃まで昇温させた。
 最終的な設定温度175℃に達したときに容器内に純度99%以上の酸素ガスを吹き込んで、容器内の酸素分圧を0.2MPa、全圧を1.0MPaとし、当該温度および圧力を保持して5時間反応させた。5時間経過後、容器への加温を停止して、約1時間で100℃以下まで冷却し、その後、容器を大気に開放して、容器内の溶液を取り出した。この溶液の温度が70℃になった後、目開き3ミクロンのPTFEからなるメンブランフィルタを用いて、加圧濾過器によって0.4MPaに加圧して固液分離を行い、固形分を得た。この固形分を60℃で18時間乾燥させた。
 得られた乾燥固形物についてX線回折パターンを測定した。測定は、リガクRINT-2500を用いて、Cu-Kα、管電圧40kV、管電流300mA、走査速度0.01°/sec、走査角度2θ=5°から85°、シンチレーションカウンター使用の条件で行った。その結果、この乾燥固形物はスコロダイト型鉄砒素化合物であることが確認された(以下の各例において同じ)。
 上記の乾燥固形物(スコロダイト型鉄砒素化合物粉末)について、ESCA(X線光電子分光分析;アルバック・ファイ株式会社製、PHI 5800 ESCA System使用)により表面を分析し、表層部のFe/Asモル比を求めた。測定条件は、X線源としてモノクロAl陽極線源を用い、150Wとし、分析エリア800μmφ、取り出し角45°とした。本測定の定量値は、スペクトルピークからFe原子とAs原子の存在比を算出したものであり、検出下限は0.1at.%である。この条件により、試料粉末の粒子表面から数nm深さまでの情報が得られる。
 上記のスコロダイト型鉄砒素化合物粉末について、レーザー回折式粒度分布測定装置(HORIBA、LA-300)により粒度分布を測定し、算術平均による平均粒子径を求めた。また、SEMにより当該粉末を構成する粒子を観察し、粒子が稜を有する多面体形態を呈するものを○評価(結晶性;良好)、それ以外を×評価(結晶性;不良)とした。本例によって得られた粉末粒子のSEM写真を図4に例示する。
 上記の乾燥固形物を溶出試験に供した。試験方法は以下に示すように環境省告示13号に準拠した方法、および各pHの液を用いた方法とした。
〔環境省告示13号準拠の溶出試験〕
 蒸留水を用いたpH=5.8~6.3の水を用意し、スコロダイト型鉄砒素化合物粉末と水を1対10の質量割合で混合してスラリーとし、このスラリーを振とう機で6時間振とうさせた後、固液分離して、濾液を分析する方法。
 この試験による砒素溶出量が0.3mg/L以下であることが要求される。
〔各pHの液を用いた溶出試験〕
 乾燥固形物スコロダイト型鉄砒素化合物粉末と蒸留水を1対10の質量割合で混合してスラリーとし、このスラリーをpH=3、またはpH=7に維持しながら振とう機で6時間振とうさせた後、それぞれ固液分離して、濾液を分析する方法。
 この試験による砒素溶出量が0.5mg/L以下であれば、堆積現場の実環境において優れた耐砒素溶出性能を呈すると評価される。
 これらの結果を表1に示す。表1中には参考のためにスコロダイト型鉄砒素化合物粉末全体の組成(質量分析結果)を併記する(以下の各例において同じ)。
 本例で得られたスコロダイト型鉄砒素化合物粉末は結晶性が良好でなく(図4参照)、粒子表層部のFe/Asモル比も1.18と低かった。この粉末の耐砒素溶出性能は、後述各例のものと比べ著しく劣っていた。
《比較例2》
 試薬の砒素含有溶液(和光純薬工業株式会社製、H3AsO4含有量62%)を用いてスコロダイト型鉄砒素化合物の合成を行った。砒素含有溶液5Lを反応容器に入れ、撹拌しながら砒素含有溶液の温度を80℃まで昇温させた。80℃に昇温後、濃硫酸(和光純薬工業株式会社製、H2SO4含有量98%)を用いてpHを1.15に調整し、その後95℃まで昇温させ、試薬の硫酸鉄(II)七水和物(和光純薬工業社製、FeSO4・7H2O)を添加した。この時の反応容器中の砒素(5価)の濃度は50.0g/L、鉄(2価)の濃度は55.9g/Lであり、液中のFe/Asモル比は約1.5である。この鉄砒素含有液を5分間保持した後、2段のディスクタービン、邪魔板4枚をセットして撹拌した。この撹拌時には大気開放下において純度99%の酸素ガスを液中に3.0L/分で吹込んだ。撹拌を継続しながら、液温を95℃に保持し、酸素吹き込みを7時間継続することによって析出反応(鉄砒素反応)を進行させた。その後、スラリーの温度が70℃に低下したのち、吸引濾過器を用いて固液分離し、固形分を回収した。この固形分(ウエットケーキ)を純水でリパルプしてパルプ濃度200g/Lとし、2段のディスクタービン、邪魔板4枚をセットした状態で撹拌することにより20分のリパルプ洗浄を3回行い、その後、吸引濾過を行い、固形分を回収した。この固形分を60℃で18時間乾燥させ、スコロダイト型鉄砒素化合物で構成される粉末を得た。
 得られたスコロダイト型鉄砒素化合物粉末について比較例1と同様の手法でESCAによる表面分析、粒度分布測定、粒子のSEM観察および溶出試験を行った。図5に本例によって得られた粉末粒子のSEM写真を例示する。
 本例で得られたスコロダイト型鉄砒素化合物粒子は稜を有する多面体形態を呈するものであり、結晶性の良い粒子であることがわかる。環境省告示13号準拠の溶出試験では良好な結果が得られ、比較例1のもの(結晶性が良好でない粒子からなるもの)と比べ耐砒素溶出性能は格段に向上している(表1)。しかし、表層部のFe/Asモル比は1.20と低く、pH3、pH7での耐砒素溶出性能が不十分であった。
《実施例1》
 比較例2と同じ手法で得たスコロダイト型鉄砒素化合物の乾燥固形物(粉末)を用いて、以下の手順でスコロダイト型鉄砒素化合物粒子にB処理(表面処理)を施した。
 水3L(リットル)を反応容器に入れた後、撹拌しながら水の温度を40℃まで昇温させ、硫酸鉄(III)n水和物(Fe含有量70%)38.9gを水中に溶解させ、さらに希硫酸を数滴添加して、pHを2.0とした。この液の鉄イオン濃度は2.5g/Lである。得られた鉄イオン含有水溶液を大気開放下で20分間保持後、上記スコロダイト型鉄砒素化合物の乾燥固形物を561.8g添加し、5分間保持した後、炭酸水素ナトリウムを溶液pHが4になるように10分間かけて添加した。pH調整完了後、温度を40℃に維持し、撹拌を継続させた状態で1時間保持することにより、スコロダイト型鉄砒素化合物粉末の粒子の表面と当該鉄イオン含有水溶液を接触させた(接触反応)。接触反応終了時点の液pHは約3.5であった。
 接触反応後のスラリーを吸引濾過器により固液分離し、固形分を回収した。この固形分(ウエットケーキ)を純水でリパルプして固液分離する洗浄を3回行い、洗浄後の固形分を回収して表面処理スコロダイト型鉄砒素化合物粒子の集合物を得た。これを60℃で180分間乾燥させて乾燥固形物を得た。
 接触反応後のスラリーを吸引濾過器により固液分離し、固形分を回収した。この固形分(ウエットケーキ)を純水でリパルプして固液分離する洗浄を3回行い、洗浄後の固形分を回収した。これを60℃で180分間乾燥させ、表面処理されたスコロダイト型鉄砒素化合物粒子で構成される粉末を得た。
 得られたスコロダイト型鉄砒素化合物の粉末(表面処理されたもの)について比較例1と同様の手法でESCAによる表面分析、粒度分布測定、粒子のSEM観察および溶出試験を行った。図6に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子の表層部のFe/Asモル比は13.79と高く、環境省告示13号準拠の溶出試験で良好な結果が得られ、かつpH3およびpH7での耐砒素溶出性能も顕著に改善された。
《実施例2》
 硫酸鉄(III)n水和物(Fe含有量70%)の添加量を8.0gに変更した以外は実施例1と同様の条件で実験を行った。図7に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が9.74と高く、実施例1と同様、優れた耐砒素溶出性能を呈した。
《実施例3》
 硫酸鉄(III)n水和物(Fe含有量70%)の添加量を1.56gに変更した以外は実施例1と同様の条件で実験を行った。図8に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が2.12であり、優れた耐砒素溶出性能を呈した。
《実施例4》
 硫酸鉄(III)n水和物(Fe含有量70%)の添加量を0.52gに変更した以外は実施例1と同様の条件で実験を行った。図9に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が1.46であり、優れた耐砒素溶出性能を呈した。
《実施例5》
 接触反応時の液温を40℃から80℃に変更した以外は実施例1と同様の実験を行った。図10に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が6.23であり、優れた耐砒素溶出性能を呈した。
《実施例6》
 接触反応時の液温を40℃から95℃に変更した以外は実施例1と同様の条件で実験を行った。図11に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が3.27であり、優れた耐砒素溶出性能を呈した。
《実施例7》
 炭酸水素ナトリウムによりpHを7に調整したこと以外は実施例1と同様の条件で実験を行った。図12に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が11.33であり、優れた耐砒素溶出性能を呈した。
《実施例8》
 硫酸鉄(III)に代えて硫酸鉄(II)を使用し、炭酸水素ナトリウムに代えて水酸化ナトリウムを使用したことを除き、実施例1と同様の条件で実験を行った。液中の鉄イオン濃度およびpHも実施例1と同じとした。図13に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が2.36であり、優れた耐砒素溶出性能を呈した。
《実施例9》
 以下のようにして、A処理により表層部に鉄リッチ層を持つスコロダイト型鉄砒素化合物粒子の合成を試みた。
 比較例2と同様の条件で鉄砒素反応を進行させた。ただし、比較例2では酸素吹き込みを7時間継続して反応を終了させたが、本例では酸素吹き込みを7時間継続した時点で、A処理用酸化剤として過酸化水素水(35%)155.6g(H22/Fe=0.4)を添加し、その後60分間保持して反応を終了させた。液温、撹拌、酸素の吹き込みは反応終了まで引き続き同条件を維持した。反応終了後は比較例2と同じ手順として、スコロダイト型鉄砒素化合物粒子で構成される粉末(乾燥固形物)を得た。
 図14に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が1.35であり、このままB処理(表面処理)を経ずに廃棄、堆積または保管に供することが可能なレベルの良好な耐砒素溶出性能を呈した。
《実施例10》
 過酸化水素水の添加量を77.8g(H22/Fe=0.2)としたこと以外は実施例9と同様の条件で実験を行った。図15に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が1.30であり、良好な耐砒素溶出性能を呈した。
《実施例11》
 過酸化水素水の添加量を38.9g(H22/Fe=0.1)としたこと以外は実施例9と同様の条件で実験を行った。図3、図15に本例によって得られた粉末粒子のSEM写真を例示する。本例で得られたスコロダイト型鉄砒素化合物粒子は表層部のFe/Asモル比が1.24であり、良好な耐砒素溶出性能を呈した。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、結晶性の良いスコロダイト形鉄砒素化合物の粒子表層部にFe/Asモル比が1.24以上の鉄リッチ層を形成させたとき、環境省告示13号に準拠した溶出試験(初期pH5.8~6.3)で基準をクリアし、かつ、pH3付近およびpH7付近の環境でも優れた砒素の溶出防止効果が得られることが確認された。特にpH3付近で安定して優れた耐砒素溶出性能を得るためには、鉄リッチ層のFe/Asモル比を1.24以上に厳密にコントロールすることが必要である(比較例2と実施例11の対比を参照)。

Claims (8)

  1.  粒子表層部にFe/Asモル比が1.24以上の鉄リッチ層を持つスコロダイト型鉄砒素化合物粒子。
  2.  請求項1に記載のスコロダイト型鉄砒素化合物粒子の集合物からなる砒素含有固形物。
  3.  請求項1に記載のスコロダイト型鉄砒素化合物粒子と、砒素を含有しない固体物質との混合物からなる砒素含有固形物。
  4.  5価の砒素イオンと2価の鉄イオンを含む水溶液に酸素含有ガスを供給しながらpH2以下にてスコロダイト型鉄砒素化合物結晶を析出させる反応過程において、反応終了前のまだ液中に未反応の砒素イオンと鉄イオンが存在している時点で、更に酸化剤を液中に加えることにより、既に析出しているスコロダイト型鉄砒素化合物粒子の表面にFe/Asモル比が1.24以上の鉄リッチ層を形成させることを特徴とする請求項1に記載のスコロダイト型鉄砒素化合物粒子の製造方法。
  5.  前記の更に加える酸化剤が過酸化水素水、オゾン、二酸化マンガン、過マンガン酸カリウム、酸素含有ガスの1種以上である請求項4に記載のスコロダイト型鉄砒素化合物粒子の製造方法。
  6.  スコロダイト型鉄砒素化合物粒子の表面を、鉄イオン含有水溶液と接触させることによって、当該粒子の表面にFe/Asモル比が1.24以上の鉄リッチ層を形成させる請求項1に記載のスコロダイト型鉄砒素化合物粒子の製造方法。
  7.  上記鉄リッチ層の形成を、液が酸素含有ガスと界面を有する状態の鉄イオン含有水溶液中において行う請求項6に記載のスコロダイト型鉄砒素化合物粒子の製造方法。
  8.  前記鉄イオン含有水溶液は硫酸鉄(III)水溶液または硫酸鉄(II)水溶液である請求項6または7に記載のスコロダイト型鉄砒素化合物粒子の製造方法。
PCT/JP2010/058064 2009-05-13 2010-05-12 スコロダイト型鉄砒素化合物粒子および製造方法並びに砒素含有固形物 WO2010131686A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/266,141 US8388927B2 (en) 2009-05-13 2010-05-12 Scorodite-type iron-arsenic compound particles, production method thereof, and arsenic-containing solid
EP10774943A EP2431331A1 (en) 2009-05-13 2010-05-12 Scorodite-type iron-arsenic compound particles, production method, and arsenic-containing solid
AU2010248410A AU2010248410A1 (en) 2009-05-13 2010-05-12 Scorodite-type iron-arsenic compound particles, production method, and arsenic-containing solid
CA 2758394 CA2758394A1 (en) 2009-05-13 2010-05-12 Scorodite-type iron-arsenic compound particles, production method thereof, and arsenic-containing solid
CN2010800209924A CN102421708A (zh) 2009-05-13 2010-05-12 臭葱石型铁砷化合物粒子及制造方法以及含砷固态物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009117088 2009-05-13
JP2009-117088 2009-05-13

Publications (1)

Publication Number Publication Date
WO2010131686A1 true WO2010131686A1 (ja) 2010-11-18

Family

ID=43085059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058064 WO2010131686A1 (ja) 2009-05-13 2010-05-12 スコロダイト型鉄砒素化合物粒子および製造方法並びに砒素含有固形物

Country Status (8)

Country Link
US (1) US8388927B2 (ja)
EP (1) EP2431331A1 (ja)
JP (1) JP2010285340A (ja)
KR (1) KR20120022907A (ja)
CN (1) CN102421708A (ja)
AU (1) AU2010248410A1 (ja)
CA (1) CA2758394A1 (ja)
WO (1) WO2010131686A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102519B2 (ja) * 2007-03-15 2012-12-19 Dowaメタルマイン株式会社 砒素含有固形物およびその製法
JP2011184266A (ja) * 2010-03-10 2011-09-22 Dowa Metals & Mining Co Ltd ヒ酸鉄粒子の処理方法
JP6102590B2 (ja) * 2013-07-10 2017-03-29 住友金属鉱山株式会社 スコロダイトの製造方法
AR100110A1 (es) 2014-01-31 2016-09-14 Goldcorp Inc Proceso para la separación y recuperación de sulfuros de metales de una mena o concentrado de sulfuros mixtos
CN106082352B (zh) * 2016-06-03 2018-07-20 中南大学 一种FeAsO4/Fe2O3复合材料及其制备方法和应用
CN106830091B (zh) * 2016-12-21 2018-06-19 中南大学 一种从含砷溶液中沉淀得到高浸出稳定性臭葱石的方法
CN108164030A (zh) * 2017-12-27 2018-06-15 中国科学院过程工程研究所 一种含砷溶液中砷的固定化方法
CN108946819B (zh) * 2018-07-10 2020-11-10 中南大学 臭葱石的稳定化方法
US11220437B2 (en) * 2018-12-24 2022-01-11 Ecometales Limited Procedure for obtaining scorodite with a high arsenic content from acidic solutions with high content of sulfuric acid
WO2020237361A1 (en) * 2019-05-28 2020-12-03 The Royal Institution For The Advancement Of Learning / Mcgill University Method for producing scorodite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114833A1 (ja) * 2007-03-15 2008-09-25 Dowa Metals & Mining Co., Ltd. 砒素含有固形物およびその製法
JP2009018978A (ja) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd 砒素の処理方法
JP2009018291A (ja) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd 種晶を添加する砒素の処理方法
JP2009050769A (ja) * 2007-08-24 2009-03-12 Dowa Metals & Mining Co Ltd 砒素含有溶液の処理方法
JP2009084124A (ja) * 2007-10-02 2009-04-23 Dowa Metals & Mining Co Ltd 鉄砒素化合物の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106590A (en) 1978-02-09 1979-08-21 Hitachi Chem Co Ltd Manufacturing of sliced veneer decorative sheet laminated with thermoplastic film
JPH04185541A (ja) 1990-11-21 1992-07-02 Hitachi Ltd 過負荷低減システム
JP5114049B2 (ja) 2006-12-15 2013-01-09 Dowaメタルマイン株式会社 銅砒素化合物からの砒素液の製法
JP5114048B2 (ja) 2006-12-15 2013-01-09 Dowaメタルマイン株式会社 砒素液の製法
JP5107637B2 (ja) * 2007-08-24 2012-12-26 Dowaメタルマイン株式会社 砒酸鉄粉末
FI122349B (fi) * 2009-02-23 2011-12-15 Outotec Oyj Menetelmä arseenin poistamiseksi skorodiittina

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114833A1 (ja) * 2007-03-15 2008-09-25 Dowa Metals & Mining Co., Ltd. 砒素含有固形物およびその製法
JP2009018978A (ja) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd 砒素の処理方法
JP2009018291A (ja) * 2007-07-13 2009-01-29 Dowa Metals & Mining Co Ltd 種晶を添加する砒素の処理方法
JP2009050769A (ja) * 2007-08-24 2009-03-12 Dowa Metals & Mining Co Ltd 砒素含有溶液の処理方法
JP2009084124A (ja) * 2007-10-02 2009-04-23 Dowa Metals & Mining Co Ltd 鉄砒素化合物の製造方法

Also Published As

Publication number Publication date
CN102421708A (zh) 2012-04-18
AU2010248410A1 (en) 2011-11-03
US20120045382A1 (en) 2012-02-23
EP2431331A1 (en) 2012-03-21
JP2010285340A (ja) 2010-12-24
KR20120022907A (ko) 2012-03-12
CA2758394A1 (en) 2010-11-18
US8388927B2 (en) 2013-03-05

Similar Documents

Publication Publication Date Title
WO2010131686A1 (ja) スコロダイト型鉄砒素化合物粒子および製造方法並びに砒素含有固形物
JP4185541B2 (ja) 結晶性の良い鉄砒素化合物の製法
JP3999805B1 (ja) 砒素含有溶液の処理方法
JP5102519B2 (ja) 砒素含有固形物およびその製法
JP4960686B2 (ja) 砒素含有液の処理方法
JP4846677B2 (ja) 砒素含有溶液の処理方法
KR102521570B1 (ko) 리튬 이온 흡착제 및 이를 사용한 리튬 이온의 회수 방법
JP4971933B2 (ja) 鉄砒素化合物の製造方法
JP5156224B2 (ja) 鉄砒素化合物の製法
JP4149488B2 (ja) 砒酸鉄粉末
JP4087433B2 (ja) 砒素含有溶液の処理方法
JP4615561B2 (ja) 砒素含有溶液の処理方法
JP2008260683A (ja) 砒酸鉄粉末
JP5070525B2 (ja) タリウム含有鉄・砒素化合物およびその製法並びに砒素・タリウム含有水溶液の処理方法
EP2042472A1 (en) Iron arsenate powder
JP2010284581A (ja) 砒酸溶液からのCuイオンの除去方法
JP2011195367A (ja) ヒ酸鉄化合物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020992.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774943

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2758394

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 7457/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13266141

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2010248410

Country of ref document: AU

Date of ref document: 20100512

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117026793

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010774943

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE