WO2010125686A1 - リン酸カルシウム複合体及びその製造方法 - Google Patents

リン酸カルシウム複合体及びその製造方法 Download PDF

Info

Publication number
WO2010125686A1
WO2010125686A1 PCT/JP2009/058529 JP2009058529W WO2010125686A1 WO 2010125686 A1 WO2010125686 A1 WO 2010125686A1 JP 2009058529 W JP2009058529 W JP 2009058529W WO 2010125686 A1 WO2010125686 A1 WO 2010125686A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane coupling
calcium phosphate
substrate
coupling agent
base material
Prior art date
Application number
PCT/JP2009/058529
Other languages
English (en)
French (fr)
Inventor
国彦 小池
康充 小粥
雅美 中川
Original Assignee
岩谷産業株式会社
株式会社ソフセラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岩谷産業株式会社, 株式会社ソフセラ filed Critical 岩谷産業株式会社
Priority to JP2011511246A priority Critical patent/JP5765812B2/ja
Priority to KR1020117028482A priority patent/KR101488064B1/ko
Priority to CN200980158909.7A priority patent/CN102421940B/zh
Priority to EP09844030.8A priority patent/EP2426234A4/en
Priority to PCT/JP2009/058529 priority patent/WO2010125686A1/ja
Priority to US13/266,075 priority patent/US9447502B2/en
Publication of WO2010125686A1 publication Critical patent/WO2010125686A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/122Inorganic polymers, e.g. silanes, polysilazanes, polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention relates to a calcium phosphate complex and a method for producing the same, and more particularly to a calcium phosphate complex in which calcium phosphate is immobilized on a metal surface and a method for producing the same.
  • Calcium phosphate such as hydroxyapatite is widely used in the medical field as a biocompatible material.
  • a composite material in which the surface of a base material is coated with calcium phosphate has high cell adhesion, application as a transdermal device such as a catheter is expected.
  • a technique has been proposed in which calcium phosphate particles are bonded to the surface of a flexible polymer substrate such as cyclofibroin and used in a transdermal device.
  • a technique for fixing hydroxyapatite to the substrate surface for example, a polymer substrate having a specific functional group such as an isocyanate group or an alkoxysilyl group is selected as the polymer substrate, and the polymer group is selected.
  • a method of bonding hydroxyapatite to a material has been proposed (Patent Document 1).
  • a method for forming hydroxyapatite on the polymer surface Patent Document 2.
  • Non-patent Document 1 A method of fixing hydroxyapatite on a metal surface by reaction of a residue and hydroxyapatite has been disclosed (Non-patent Document 1).
  • a first object of the present invention is to provide a means for fixing calcium phosphate on a metal surface by a processing method with little residue without using an acid.
  • the present invention has a second object to provide means for fixing calcium phosphate on a metal surface by a treatment method that does not use a thiol compound.
  • the present invention (1) is a method for producing a calcium phosphate complex formed by binding calcium phosphate to the surface of a substrate, A surface treatment step of bringing the surface treatment agent into contact with the surface of the substrate and then bringing the silane coupling agent into contact with the surface treatment step; After the surface treatment step, a polymerization step for starting polymerization of the silane coupling agent with a polymerization initiator, A bonding step of bonding the calcium phosphate to the silane coupling agent on the surface of the base material after the polymerization step,
  • the substrate is a metal;
  • the surface treatment agent is ozone water.
  • the present invention (2) is the production method of the invention (1), wherein the silane coupling agent is a non-thiol silane coupling agent.
  • This invention (3) is a manufacturing method as described in said invention (1) or (2) characterized by using stainless steel as said base material.
  • the present invention (4) is a calcium phosphate complex obtained by any one of the above inventions (1) to (3).
  • Calcium phosphate complex means a structure in which calcium phosphate is bonded to the surface of a substrate.
  • Ozone water means water in which ozone is dissolved.
  • Surface treatment means a treatment for modifying the surface of a substrate.
  • ozone is used in place of acid when introducing the silane coupling agent to the metal surface.
  • calcium phosphate can be fixed to the metal surface without remaining.
  • ozone water by treating the metal surface with ozone water, a large amount of OH groups are introduced onto the surface of the base material and wettability is improved, so that the silane coupling agent is remarkably compared with the case of treating with ozone gas. Since it becomes easy to introduce, there is also an effect that calcium phosphate can be fixed on the metal surface with strong adhesive strength and high coverage.
  • the organic substance on the surface of the base material can be removed by the ozone water treatment, there is an effect that the silane coupling agent can be easily introduced.
  • the use of stainless steel as the base material has the effect that the introduction of the silane coupling agent onto the metal surface by ozone water treatment is particularly easy.
  • FIG.1 (a) is a figure which shows the result of having measured the base-material surface before ozone water treatment by XPS
  • FIG.1 (b) is the result of having measured the base-material surface after ozone water treatment by XPS.
  • FIG. 2A is a 10,000 times SEM photograph of the composite surface of Example 1
  • FIG. 2B is a 2,000 times SEM photograph of the composite surface of Example 1.
  • FIG. FIG. 3 is a diagram showing the results of IR measurement of the substrate surface after each step
  • FIG. 3 (a) is an untreated substrate
  • FIG. 3 (b) is a substrate after graft polymerization
  • FIG. 3 (c) is a diagram showing the results of measuring the substrate after HAp coating.
  • FIG. 4A is a SEM photograph of 5,000 times the surface of the composite of Example 2
  • FIG. 4B is a SEM photograph of 2,000 times the surface of the composite of Example 2.
  • FIG. 5 is an SEM photograph of 5,000 times the surface of the base material of Comparative Example 1.
  • FIG. 6 is an SEM photograph of 5,000 times the surface of the base material of Comparative Example 2.
  • FIG. 7 is an SEM photograph of 5,000 times the surface of the base material of Comparative Example 3.
  • the calcium phosphate complex in the calcium phosphate complex according to the best mode, calcium phosphate is bonded to the surface of the substrate via a silane coupling agent.
  • the calcium phosphate complex includes a surface treatment step in which a surface treatment agent is brought into contact with the surface of the substrate, and then a surface treatment step is carried out by bringing a silane coupling agent into contact with the surface.
  • a pretreatment step for washing the substrate surface a homopolymer removal step for removing the homopolymer generated in the polymerization step, a washing step for washing the substrate surface after the bonding step, etc. You may have.
  • a homopolymer removal step for removing the homopolymer generated in the polymerization step a washing step for washing the substrate surface after the bonding step, etc.
  • the substrate used in the present invention is a metal.
  • the metal include titanium, titanium oxide, titanium alloy, and stainless steel.
  • stainless steel is particularly preferred.
  • austenitic stainless steel containing molybdenum (Mo) is preferable, and more specifically, SUS316 and SUS317 are preferable.
  • the shape of the substrate used in the present invention is not particularly limited, and various shapes of substrates can be appropriately selected according to the application of the calcium phosphate complex.
  • the shape of the substrate may be a fiber shape, a sheet shape, a tube shape, a porous body, or a more complicated shape. Thus, it is not restricted by the shape of a base material, Even if it uses the base material of a complicated shape, a HAp composite_body
  • the production method according to the present invention can easily bond a base material and calcium phosphate to a base material having various shapes with strong adhesive strength and high coverage.
  • the silane coupling agent that can be used in this best mode has a chemical structure as shown in chemical formula (1).
  • ZX-SiR 3 (1) Said Z should just have a reactive functional group, and specifically, a vinyl group, an epoxy group, an amino group, a (meth) acryloxy group, a mercapto group etc. are mentioned, for example.
  • the R may be any one that can undergo a condensation reaction with an inorganic material (hydroxyapatite sintered body). Specifically, for example, an alkoxy group having 1 to 4 carbon atoms such as a methoxy group or an ethoxy group. And a hydroxyl group and a chlorine atom.
  • X in the chemical formula (1) may be bonded by a polymer chain, may be bonded by a low molecular chain (for example, an alkylene chain having 1 to 12 carbon atoms), or is directly bonded. May be.
  • the alkoxy group has a carbon number within the above-mentioned range, the alcohol produced by the condensation reaction with hydroxyapatite described later has sufficient solubility in water, so the surface is washed with water. It is preferable because the alcohol can be removed only with this.
  • examples of the silane coupling agent include vinyl silane coupling agents such as vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, and vinyltrihydroxysilane; ⁇ - (3,4 Epoxy cyclohexyl) epoxy trisilane coupling agents such as ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ -glycidoxypropyltriethoxysilane; p-styryl Styryl silane coupling agents such as trimethoxysilane; ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, ⁇ -methacryloxypropylto Methacryloxy-based silane coupling agents such as ree
  • silane coupling agents having a polymerizable double bond such as vinyl silane coupling agents, styryl silane coupling agents, methacryloxy silane coupling agents, acryloxy silane coupling agents, and the like. Is preferred.
  • silane coupling agents exemplified above ⁇ -methacryloxypropyltrimethoxysilane and ⁇ -methacryloxypropyltriethoxysilane are more preferable because they are polymerizable monomers.
  • the silane coupling agent used in the surface treatment step described later and the silane coupling agent used in the polymerization step may be the same or different.
  • a thiol-based silane coupling agent having a mercapto group is used, there is a high possibility that a problem of odor will occur due to the silane coupling agent remaining, so a non-thiol-based silane coupling agent having no mercapto group. Is preferably used.
  • the calcium phosphate used in the production method according to the present invention is not particularly limited, but is preferably hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ), more preferably a hydroxyapatite sintered body (also called hydroxyapatite ceramics). preferable.
  • Hydroxyapatite particularly a hydroxyapatite sintered body, is stable as a raw material for a calcium phosphate composite used for medical use because it exists stably in a living body for a long period of time and has high safety. Hydroxyapatite is particularly excellent as a material for transdermal devices because of its high adhesion to cells such as skin.
  • the surface treatment step included in the production method according to the present invention is a step of surface-treating a base material, wherein the surface of the base material is contacted with ozone water and then contacted with a silane coupling agent. That's fine.
  • the pretreatment step may be performed according to the situation such as when the surface of the base material is contaminated. Specifically, ultrasonic cleaning may be performed by immersing the base material in a solvent such as water or alcohol. By this process, organic substances on the surface of the substrate are removed, and in the surface treatment process performed after the process, ozone treatment can be efficiently performed.
  • the present inventors have found that the calcium phosphate and the base material can be very easily combined with each other by an ozone water treatment step in which the base material is surface-treated with ozone water.
  • the surface of the base material can be easily and uniformly infused with ozone water simply by infiltrating the base material with ozone water or by spraying the base material with ozone water. Can be contacted. Therefore, the operation can be performed easily and efficiently.
  • the present inventors have also found that calcium phosphate and a substrate can be bonded with a strong adhesive strength and a high coverage by performing a surface treatment using ozone water.
  • a substrate coated with calcium phosphate is subjected to ultrasonic cleaning, the calcium phosphate may be peeled off. This is due to the weak adhesive strength between the calcium phosphate and the substrate.
  • calcium phosphate was bonded to a substrate surface-treated with ozone water, it was possible to prevent the calcium phosphate from peeling off when ultrasonically cleaned.
  • the calcium phosphate complex is used for medical purposes, it is preferable that the coverage of the substrate surface with calcium phosphate is about 60%.
  • a coverage with 60% or more calcium phosphate can be achieved even on a metal surface.
  • the coverage is a value calculated by processing an image taken with a scanning electron microscope with two-step color tone and comparing the area of the particle portion with the area of the substrate surface.
  • the ozone water used in the surface treatment step is not limited as long as it is water in which ozone is dissolved, and can be manufactured using a conventionally known method and apparatus. For example, you may manufacture by the method of aeration of ozone in water.
  • a conventionally known stirrer, bubble cylinder, pressure injector, Benchery injector, static mixer, or the like may be used as a device for dissolving ozone in water.
  • a conventionally known stirrer, bubble cylinder, pressure injector, Benchery injector, static mixer, or the like may be used as a method for producing ozone water.
  • the method for bringing the surface of the base material into contact with ozone water is not particularly limited, but for example, the base material may be immersed in ozone water. Moreover, you may stir the said ozone water during immersion.
  • the concentration of ozone in the ozone water used in the production method according to the present invention is not particularly limited, but is preferably 1 to 50 ppm, and more preferably 10 to 35 ppm. By setting the concentration of ozone water to 1 to 50 ppm, calcium phosphate can be bonded to the surface of the substrate with extremely strong adhesive strength and high coverage. Further, when the content is 10 to 35 ppm, calcium phosphate can be bonded to the surface of the substrate with stronger adhesive strength and coverage.
  • the temperature of the ozone water is not particularly limited, but is preferably 20 to 60 ° C, more preferably 20 to 40 ° C, and still more preferably room temperature (for example, 25 ° C). Within this range, calcium phosphate can be bonded to the surface of the substrate with extremely strong adhesive strength and high coverage.
  • the time for contacting the surface of the substrate with the ozone water is not particularly limited, but is preferably 1 to 120 minutes, more preferably 5 to 30 minutes, and further preferably 5 to 20 minutes. If it is the said range, a calcium phosphate can be combined with the surface of a base material with very strong adhesive strength and high coverage.
  • the substrate after ozone treatment is immersed in an organic solvent.
  • the treatment temperature is not particularly limited, but for example, 10 to 50 ° C. is preferable, and 15 to 35 ° C. is more preferable.
  • the treatment time is not particularly limited, but for example, 10 seconds to 5 minutes is preferable, and 20 seconds to 1 minute is more preferable.
  • the solvent used here is not particularly limited as long as it is a water-soluble organic solvent, and examples thereof include tetrahydrofuran (THF), methanol, ethanol, acetone, acetonitrile, dimethyl sulfoxide (DMSO) and the like.
  • the silane coupling agent contact step of bringing the silane coupling agent into contact with the substrate surface the above-described silane coupling agent is used.
  • the method of making a silane coupling agent contact is not specifically limited, For example, a base material is immersed in the solution which melt
  • the temperature of the solution is not particularly limited, but is preferably 30 to 100 ° C., more preferably 40 to 80 ° C.
  • nonpolar organic solvents such as hydrocarbon solvents, such as toluene and hexane
  • the amount of the silane coupling agent used is not particularly limited, but is preferably 10 to 500% by weight, more preferably 50 to 400% by weight, based on the weight of the base material. More preferred is 100 to 300% by weight.
  • the contact time for silane coupling is not particularly limited, but is preferably 5 to 120 minutes, and more preferably 10 to 60 minutes.
  • the polymerization step included in the production method according to the present invention may be a step in which the polymerization of the silane coupling agent is started by the polymerization initiator.
  • the addition of the polymerization initiator causes the remaining silane coupling agent not bonded to the substrate surface in the previous surface treatment step to be polymerized and the silane coupling agent bonded on the substrate surface to be polymerized.
  • the graft polymer which has an alkoxy silyl group is formed in the base-material surface, the said alkoxy silyl group and calcium phosphate form a coupling
  • silane coupling agent not only the remaining silane coupling agent not bonded to the substrate surface in the surface treatment step, but also a silane coupling agent may be added.
  • the silane coupling agent to be added may be the same material as that used in the surface treatment step, or may be another material.
  • a compound having a polymerizable double bond and an isocyanate group may be added instead of the silane coupling agent.
  • the polymerization initiator used in this step depends on the type of silane coupling agent to be used, but various known azo- and peroxide-based silane coupling agents have a polymerizable double bond.
  • a polymerization initiator can be used, and examples thereof include an azo polymerization initiator represented by azobisisobutyronitrile (AIBN) and a peroxide polymerization initiator represented by benzoyl peroxide (BPO). It is done.
  • the temperature of the solution is not particularly limited, but is preferably 30 to 100 ° C., more preferably 40 to 80 ° C.
  • a solvent for example, nonpolar organic solvents, such as hydrocarbon solvents, such as toluene and hexane, are used suitably.
  • the amount of the silane coupling agent used is not particularly limited, but is preferably 10 to 500% by weight, more preferably 50 to 400% by weight, based on the weight of the base material. More preferred is 100 to 300% by weight.
  • the amount of the surfactant is preferably 1.0 to 50% by weight, more preferably 10 to 25% by weight, based on the silane coupling agent.
  • a homopolymer removing step of removing a homopolymer generated in the polymerization step of the silane coupling agent adhering to the substrate surface may be included.
  • ultrasonic cleaning may be performed by immersing the base material in a solvent such as water or alcohol. This step is efficient because the homopolymer on the substrate surface is removed and the bonding step performed after the step allows the alkoxysilyl group of the graft polymer bonded to the substrate to react with calcium phosphate.
  • the binding step included in the production method according to the present invention may be a step for binding the calcium phosphate to the surface of the base material after the surface treatment step.
  • the method for binding calcium phosphate to the surface of the substrate after the polymerization step is not particularly limited, and a conventionally known method may be used.
  • Patent Documents 1 and 2 can be referred to.
  • the substrate may be immersed in a liquid in which calcium phosphate is suspended. Further, the liquid may be stirred during the immersion, or may be subjected to ultrasonic treatment.
  • the substrate after immersion, the substrate may be allowed to stand under reduced pressure conditions, preferably under vacuum conditions, or may be further heated under reduced pressure conditions or vacuum conditions.
  • the heating temperature is preferably 50 to 200 ° C, more preferably 80 to 150 ° C.
  • a washing step of washing the calcium phosphate complex obtained by the binding step may be performed.
  • the washing step may be performed according to the intended use of the calcium phosphate complex. What is necessary is just to select suitably according to the grade of the target washing
  • ultrasonic cleaning may be performed. Since the calcium phosphate composite obtained by the production method according to the present invention has an extremely strong adhesive strength between the substrate and calcium phosphate, peeling of calcium phosphate can be satisfactorily suppressed even when ultrasonic cleaning is performed.
  • the ultrasonic cleaning may be performed by a conventionally known method.
  • the method for producing a calcium phosphate complex described above can be used for various purposes. For example, it is beneficial to apply to the manufacture of medical devices such as stents.
  • FIG. 1A shows the result of analyzing the surface of untreated SUS316L by XPS. According to these results, it can be seen that a large number of OH groups are introduced on the surface of SUS316L because an increase in the peak of M—OH bond was observed.
  • a SUS316L substrate having a size of 10 mm ⁇ 10 mm ⁇ thickness 1 mm was subjected to ultrasonic cleaning (50 W) in an ethanol solvent for 2 minutes. Thereafter, the substrate was immersed in room temperature ozone water having a predetermined concentration (ppm) for a predetermined time (min). Ozone water was produced by the same method as described above. After immersion, the substrate was dried, a water droplet was dropped on the surface of the treated substrate, and the contact angle between the substrate and the water droplet was measured. The results under each condition are shown in Table 1 below. The contact angle was calculated from the relationship between the diameter and the amount of dripping, by measuring the diameter of a water droplet that was dropped by dropping 10 ⁇ L of water and allowed to stand for 30 seconds.
  • Example 1 [Ozone water treatment] A SUS316L substrate having a size of 10 mm ⁇ 10 mm ⁇ thickness 0.1 mm was subjected to ultrasonic cleaning (50 W) in an ethanol solvent for 2 minutes. Thereafter, the substrate was immersed in 15 ppm room temperature ozone water for 20 minutes. After dipping, the substrate was dipped in THF (tetrahydrofuran) to remove moisture on the surface during ozone water treatment.
  • THF tetrahydrofuran
  • Silane coupling agent ( ⁇ -methacryloxypropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBE503, hereinafter simply referred to as “KBE”) was bubbled with nitrogen gas into a solution of 3.3 ml and toluene 25 ml at a temperature of 70 ° C. Then, the base material subjected to the treatment was immersed for 30 minutes. Thereafter, 5 ml of toluene in which 33 mg of AIBN was further dissolved was added, and the substrate was immersed in the solution at a temperature of 70 ° C. for 120 minutes while bubbling with nitrogen gas, and graft polymerization was performed.
  • Silane coupling agent ⁇ -methacryloxypropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBE503, hereinafter simply referred to as “KBE”
  • FIG. 1 A scanning electron microscope (SEM) photograph obtained by this treatment is shown in FIG.
  • the scanning electron microscope was measured using JSM-5510 manufactured by JEOL.
  • FIG. 1 The IR measurement was performed with Spectrum 100 (Fourier transform infrared spectroscopic analyzer) manufactured by PerkinElmer. According to these results, a CBE peak derived from KBE and a Si—O—C peak derived from KBE were observed after graft polymerization ⁇ FIG. 3 (b) ⁇ , so that KBE was introduced to the substrate surface. I was able to confirm.
  • the peak of the phosphate ion derived from HAp was observed ⁇ FIG. 3 (c) ⁇ after the HAp coating, it was confirmed that HAp was introduced into the substrate surface.
  • Example 2 The surface treatment of the base material was performed under the same conditions as in Example 1 above, except that SUS304 was used as the treatment base material and the ozone water treatment was performed using 40 ppm ozone water for 60 minutes.
  • SUS304 was used as the treatment base material
  • ozone water treatment was performed using 40 ppm ozone water for 60 minutes.
  • SEM photograph which shows the result of a base-material process is shown in FIG.
  • Example 1 The substrate was surface treated under the same conditions as in Example 1 except that the graft polymerization treatment was not performed. An SEM photograph of the surface of the substrate is shown in FIG.
  • Example 2 The substrate was surface treated under the same conditions as in Example 1 except that the ozone water treatment was not performed. A SEM photograph of the surface of the substrate is shown in FIG.
  • Example 3 The substrate was surface-treated under the same conditions as in Example 1 except that the ozone water treatment and the graft polymerization treatment were not performed. A SEM photograph of the surface of the substrate is shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials For Medical Uses (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

【課題】 酸を用いずに残留物の少ない処理方法により金属表面にリン酸カルシウムを固定する手段の提供。 【解決手段】 基材の表面にリン酸カルシウムが結合してなるリン酸カルシウム複合体の製造方法であって、上記基材の表面に表面処理剤を接触させた後に、シランカップリング剤を接触させて表面処理する表面処理工程と、上記表面処理工程後に、重合開始剤によりシランカップリング剤の重合を開始させる重合工程と、重合工程後の上記基材の表面のシランカップリング剤に上記リン酸カルシウムを結合させる結合工程と、を含み、上記基材が金属であり、上記表面処理剤がオゾン水であることを特徴とする製造方法。

Description

リン酸カルシウム複合体及びその製造方法
 本発明は、リン酸カルシウムの複合体及びその製造方法に関し、より詳細には、金属表面上にリン酸カルシウムが固定されているリン酸カルシウム複合体及びその製造方法に関する。
 ハイドロキシアパタイト等のリン酸カルシウムは、生体親和性材料として医療分野において広く用いられている。特に、基材の表面をリン酸カルシウムで被覆した複合材料は細胞接着性が高いことから、カテーテル等の経皮デバイスとしての応用が期待されている。例えば、シクロフィブロイン等の柔軟な高分子基材の表面に、リン酸カルシウムの微粒子を結合させて、経皮デバイスに用いる技術が提案されている。
 ここで、基材表面にハイドロキシアパタイトを固定する手法としては、例えば、高分子基材としてイソシアネート基又はアルコキシシリル基のような特定の官能基を有する高分子基材を選択し、当該高分子基材にハイドロキシアパタイトを結合させる方法が提案されている(特許文献1)。その他、コロナ放電処理やグラフト処理等により少なくとも表面が親水化された基体を、カルシウム溶液とリン酸溶液とに交互に浸漬させて、基体の少なくとも表面にハイドロキシアパタイトを生成・固定させる工程を含む方法により高分子表面にハイドロキシアパタイトを形成する方法が提案されている(特許文献2)。
 また、金属表面にハイドロキシアパタイトを固定する方法としては、ステンレス表面を硝酸で処理した後に、(3-メルカプトプロピル)トリエトキシシラン等のシランカップリング剤(SCA)により処理し、当該金属表面に導入されたシランカップリング剤に対して、2,2-アゾビス(イソブチロニトリル)(AIBN)を用いてγ-メタクリロキシプロピルトリメトキシシラン(MPTS)をグラフト重合し、当該重合体のトリメトキシシリル残基とハイドロキシアパタイトの反応により、金属表面上にハイドロキシアパタイトを固定する方法が開示されている(非特許文献1)。
特開2004-51952号公報 特開2000-327314号公報
OKADA, M. et al. J Biomed Mater Res Part A 589-596, 2008.
 従来の方法によれば、金属表面を酸で処理しなければならず、当該酸が残留し実際の用途において問題となることがあった。そこで、本発明は、酸を用いずに残留物の少ない処理方法により金属表面にリン酸カルシウムを固定する手段を提供することを第一の目的とする。
 また、非特許文献1の方法によれば、前記の酸処理に起因する問題に加えて、チオール系のシランカップリング剤を用いるため、当該化合物の残留によりチオール特有の臭気が発生するという問題があった。そこで、本発明は、前記の課題に加えて、更に、チオール系の化合物を用いない処理方法により金属表面にリン酸カルシウムを固定する手段を提供することを第二の目的とする。
 本発明(1)は、基材の表面にリン酸カルシウムが結合してなるリン酸カルシウム複合体の製造方法であって、
 上記基材の表面に表面処理剤を接触させた後に、シランカップリング剤を接触させて表面処理する表面処理工程と、
 上記表面処理工程後に、重合開始剤によりシランカップリング剤の重合を開始させる重合工程と、
 重合工程後の上記基材の表面のシランカップリング剤に上記リン酸カルシウムを結合させる結合工程と、を含み、
 上記基材が金属であり、
 上記表面処理剤がオゾン水であることを特徴とする製造方法である。
 本発明(2)は、前記シランカップリング剤が、非チオール系のシランカップリング剤であることを特徴とする、前記発明(1)の製造方法である。
 本発明(3)は、上記基材としてステンレスを用いることを特徴とする、前記発明(1)又は(2)に記載の製造方法である。
 本発明(4)は、前記発明(1)~(3)のいずれか一つの方法により得られるリン酸カルシウム複合体である。
 ここで、本明細書において用いる各種用語の意味を解説する。「リン酸カルシウム複合体」とは、基材の表面にリン酸カルシウムが結合している構造物を意味する。「オゾン水」とは、オゾンが溶解している水を意味する。「表面処理」とは、基材の表面を改質する処理を意味する。
 本発明(1)、(4)によれば、シランカップリング剤を金属表面に導入するに際して酸の代わりにオゾンを用いるため、オゾンは時間が経てば分解し酸素になるので、金属表面上に残留することなく金属表面にリン酸カルシウムを固定できるという効果を奏する。また、金属表面をオゾン水により処理することにより、基材の表面上にOH基が多量に導入されて濡れ性が向上するので、オゾンガスにより処理する場合と比較して顕著にシランカップリング剤を導入し易くなるため、金属表面上に強い接着強度及び高い被覆率でリン酸カルシウムを固定できるという効果も奏する。また、オゾン水処理により基材表面の有機物が除去できるため、シランカップリング剤を導入しやすくなるという効果も奏する。
 本発明(2)によれば、チオール系の化合物を使用しないため、当該化合物が残留することによる臭気の問題が発生しなくなるという効果を奏する。
 本発明(3)によれば、基材としてステンレスを用いることにより、オゾン水処理による金属表面へのシランカップリング剤の導入が特に容易になるという効果を奏する。
図1(a)は、オゾン水処理前の基材表面をXPSにて測定した結果を示す図であり、図1(b)は、オゾン水処理後の基材表面をXPSにて測定した結果を示す図である。 図2(a)は、実施例1の複合体表面の10,000倍のSEM写真であり、図2(b)は、実施例1の複合体表面の2,000倍のSEM写真である。 図3は、各工程後の基材表面をIRにて測定した結果を示す図であり、図3(a)は未処理の基材、図3(b)はグラフト重合後の基材、図3(c)はHAp被覆後の基材を測定した結果を示す図である。 図4(a)は、実施例2の複合体表面の5,000倍のSEM写真であり、図4(b)は、実施例2の複合体表面の2,000倍のSEM写真である。 図5は、比較例1の基材表面の5,000倍のSEM写真である。 図6は、比較例2の基材表面の5,000倍のSEM写真である。 図7は、比較例3の基材表面の5,000倍のSEM写真である。
 本最良形態に係るリン酸カルシウム複合体は、基材の表面にリン酸カルシウムがシランカップリング剤を介して結合している。また、リン酸カルシウム複合体は、上記基材の表面に表面処理剤を接触させた後に、シランカップリング剤を接触させて表面処理する表面処理工程と、上記表面処理工程後に、重合開始剤によりシランカップリング剤の重合を開始させる重合工程と、重合工程後の上記基材の表面のシランカップリング剤に上記リン酸カルシウムを結合させる結合工程と、を含み、上記基材が金属であり、上記表面処理剤がオゾン水であることを特徴とする製造方法により得られる。ここで、前記工程のほかに、基材表面を洗浄する前処理工程や、前記重合工程において生成するホモポリマーを除去するホモポリマー除去工程や、前記結合工程後に基材表面を洗浄する洗浄工程等を有していてもよい。以下、本発明において使用する主な材料について説明した後に、各工程について詳細に説明する。
基材
 本発明において使用される基材は金属である。ここで金属としては、チタン、酸化チタン、チタン合金、ステンレス等が挙げられる。これらの中でも特にステンレスが好適である。またステンレスの中でも、モリブデン(Mo)を含むオーステナイト系のステンレスが好適であり、より具体的には、SUS316、SUS317が好適である。これらのステンレスを用いることにより、より穏和な条件下で効率的にオゾン水処理を行うことができ、強い接着強度及び高い被覆率で基材とリン酸カルシウムとを結合させることができる。
 本発明において使用される基材の形状は特に限定されず、リン酸カルシウム複合体の用途に応じて、様々な形状の基材を適宜選択することができる。基材の形状としては、繊維状、シート状、チューブ状、多孔体であってもよく、より複雑な形状であってもよい。このように基材の形状に制約されず、複雑な形状の基材を用いても、簡便にHAp複合体を製造できる。従来のコロナ放電、プラズマ処理を用いる方法では、複雑な形状の基材を用いるとき、様々な角度からコロナ放電を行なう等の工夫が必要であったが、本発明に係る製造方法によれば、後述のように基材をオゾン水に接触させればよいので、複雑な形状の基材に対しても簡便に表面処理することができる。このように本発明に係る製造方法は、様々な形状の基材に対して簡便に、強い接着強度及び高い被覆率で基材とリン酸カルシウムとを結合させることができる。
シランカップリング剤
 本最良形態において使用できるシランカップリング剤は、化学式(1)に示すような化学構造をしている。
 Z-X-SiR    ・・・(1)
 上記Zは、反応性官能基を有していればよく、具体的には、例えば、ビニル基、エポキシ基、アミノ基、(メタ)アクリロキシ基、メルカプト基等が挙げられる。また、上記Rは、無機材料(ハイドロキシアパタイト焼結体)と縮合反応することができるものであればよく、具体的には、例えば、メトキシ基、エトキシ基等の炭素数1~4のアルコキシ基や、ヒドロキシル基や、塩素原子等が挙げられる。また、上記化学式(1)中のXは、高分子鎖で結合されていてもよく、低分子鎖(例えば、炭素数1~12のアルキレン鎖)で結合されていてもよく、直接結合されていてもよい。尚、前記アルコキシ基は、先述の範囲内の炭素数であることにより、後述のハイドロキシアパタイトとの縮合反応により生成するアルコールが水に対して十分な溶解性を有するので、水により表面を洗浄するだけで当該アルコールが除去できるため好ましい。
 すなわち、上記シランカップリング剤としては、具体的には、例えば、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリヒドロキシシラン等のビニル系シランカップリング剤;β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等のエポキシ系シランカップリング剤;p-スチリルトリメトキシシラン等のスチリル系シランカップリング剤;γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリヒドロキシシラン等のメタクリロキシ系シランカップリング剤;γ-アクリロキシプロピルトリメトキシシラン、γ-アクリロキシプロピルトリヒドロキシシラン等のアクリロキシ系シランカップリング剤;N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-トリエトキシ-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-β-アミノエチル-γ-アミノプロピルトリメトキシシランの塩酸塩、特殊アミノシラン等のアミノ系シランカップリング剤;γ-ウレイドプロピルトリエトキシシラン等のウレイド系シランカップリング剤;γ-クロロプロピルトリメトキシシラン等のクロロプロピル系シランカップリング剤;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のチオール系シランカップリング剤;ビス(トリエトキシプロピル)テトラスルフィド等のスルフィド系シランカップリング剤;γ-イソシアネートプロピルトリエトキシシラン等のイソシアネート系シランカップリング剤等が挙げられる。
これらのシランカップリング剤の中でも、ビニル系シランカップリング剤、スチリル系シランカップリング剤、メタクリロキシ系シランカップリング剤、アクリロキシ系シランカップリング剤等の重合性二重結合を有するシランカップリング剤が好適である。上記例示のシランカップリング剤のうち、重合性モノマーであるという点で、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシランがより好ましい。尚、本発明におけるシランカップリング剤は、後述する表面処理工程において使用するものと、重合工程において使用するものが同一であってもよいし、異なる種のものであってもよい。尚、メルカプト基を有するチオール系シランカップリング剤とすると、当該シランカップリング剤が残留することにより、臭気の問題が発生する可能性が高いため、メルカプト基を有しない非チオール系シランカップリング剤を使用することが好ましい。
リン酸カルシウム
 本発明に係る製造方法で用いるリン酸カルシウムとしては、特に限定されないが、ハイドロキシアパタイト(Ca10(PO(OH))が好ましく、ハイドロキシアパタイト焼結体(ハイドロキシアパタイトセラミックスとも呼ばれる)がより好ましい。ハイドロキシアパタイトは、特にハイドロキシアパタイト焼結体は、生体内において長期間安定に存在し、かつ安全性が高いため、医療用に用いるリン酸カルシウム複合体の原料として優れている。また、ハイドロキシアパタイトは皮膚等の細胞との接着性が高いため、経皮デバイスの材料として特に優れている。
 尚、ハイドロキシアパタイト焼結体を製造する方法としては特に限定されず、従来公知の方法で製造すればよい。ハイドロキシアパタイト焼結体の製造方法、製造したハイドロキシアパタイト焼結体の結晶性の測定に関して、上記特許文献1及び2を参照するとよい。
《表面処理工程》
 本発明に係る製造方法に含まれる表面処理工程は、基材を表面処理する工程であって、上記基材の表面とオゾン水とを接触させた後に、シランカップリング剤を接触させる工程であればよい。尚、表面処理工程前に基材表面を洗浄する前処理工程を行ってもよい。ここで、前処理工程は、基材表面に汚れが生じている場合等の状況に応じて行なえばよい。具体的には、基材を水やアルコール等の溶媒に浸漬して超音波洗浄を行なってもよい。当該工程により、基材表面上の有機物が除去され当該工程後に行われる表面処理工程において、効率的にオゾン処理を行うことが可能となる。
 本発明者らは、オゾン水を用いて基材を表面処理するオゾン水処理工程によりリン酸カルシウムと基材との結合を極めて簡便に行なうことができることを見出した。例えば、基材が複雑な形状を有していても、当該基材をオゾン水に浸潤させたり、当該基材にオゾン水をかけたりするだけで、容易に、基材の表面に満遍なくオゾン水を接触させることができる。よって、簡便かつ高効率に作業を行なうことができる。
 また、本発明者らは、オゾン水を用いて表面処理することで、強い接着強度及び高い被覆率でリン酸カルシウムと基材とを結合させることができることをも見出した。従来、リン酸カルシウムで被覆した基材を超音波洗浄すると、リン酸カルシウムが剥がれる場合があった。これは、リン酸カルシウムと基材との接着強度が弱いことに起因する。しかし、オゾン水で表面処理した基材にリン酸カルシウムを結合させると、超音波洗浄した際にリン酸カルシウムが剥がれることを抑制することができた。また、リン酸カルシウム複合体を、医療用に用いる場合、基材表面のリン酸カルシウムによる被覆率が約60%であることが好ましいとされる。本発明に係る製造方法によれば、金属表面においても60%以上のリン酸カルシウムによる被覆率を達成することができる。尚、ここで被覆率とは、走査型電子顕微鏡により撮影した画像を二段階色調で処理し、粒子部分の面積と基材表面の面積との比較で算出した値である。
 表面処理工程で用いるオゾン水としては、オゾンを溶解した水である限り限定されるものではなく、従来公知の方法、装置を用いて製造することができる。例えば、水中にオゾンを曝気させる方法で製造してもよい。また、オゾンを水に溶解させるための装置としては、従来公知の攪拌器、気泡筒、圧力式インジェクター、ベンチェリー式インジェクター、スタティックミキサー等を用いればよい。オゾン水の製造方法としては、特定非営利活動法人日本オゾン協会編、オゾンハンドブック、杉光英俊著、光琳出版、オゾンの基礎と応用が好適に参照できる。
 また、基材の表面とオゾン水とを接触させる方法としては、特に限定されないが、例えば、オゾン水中に基材を浸漬してもよい。また、浸漬の間、当該オゾン水を攪拌してもよい。本発明に係る製造方法で用いるオゾン水におけるオゾンの濃度としては、特に限定されないが、1~50ppmが好適であり、10~35ppmがより好適である。オゾン水の濃度を1~50ppmとすることで、極めて強い接着強度及び高い被覆率でリン酸カルシウムを基材の表面に結合させることができる。また、10~35ppmとすることでより強い接着強度及び被覆率でリン酸カルシウムを基材の表面に結合させることができる。オゾン水の温度としては、特に限定されないが、20~60℃が好適であり、20~40℃がより好適であり、室温(例えば25℃)が更に好適である。この範囲であれば極めて強い接着強度及び高い被覆率でリン酸カルシウムを基材の表面に結合させることができる。基材の表面とオゾン水とを接触させる時間としては、特に限定されないが、1~120分が好適であり、5~30分がより好適であり、5~20分が更に好適である。当該範囲であれば極めて強い接着強度及び高い被覆率でリン酸カルシウムを基材の表面に結合させることができる。
 基材の表面にオゾン水を接触させた後に、シランカップリング剤を接触させる前に水溶性の有機溶媒中に浸漬してオゾン水処理時の表面の水分を除去する水分除去工程を行ってもよい。当該工程はシランカップリング剤を接触させる工程において疎水性の有機溶媒を使用する場合には特に有益である。具体的には、オゾン処理後の基材を有機溶媒中に浸漬する。ここで、処理温度は特に限定されないが、例えば、10~50℃が好適であり、15~35℃がより好適である。また処理時間は特に限定されないが、例えば、10秒~5分が好適であり、20秒~1分がより好適である。ここで用いる溶媒としては水溶性の有機溶媒であれば特に限定されず、例えば、テトラヒドロフラン(THF)、メタノール、エタノール、アセトン、アセトニトリル、ジメチルスルホキシド(DMSO)等が挙げられる。
 基材表面にシランカップリング剤を接触させるシランカップリング剤接触工程においては、先述のシランカップリング剤を使用する。シランカップリング剤を接触させる方法は、特に限定されないが、例えば、シランカップリング剤を溶媒に溶解した溶液中に基材を浸漬させる。この操作は窒素雰囲気下で行なうことが好ましく、具体的には、窒素ガスを溶液中に注入しながら操作するのが好適である。また、当該溶液の温度(反応温度)としては、特に限定されないが30~100℃が好適であり、40~80℃がより好適である。また、溶媒としては特に限定されないが、例えば、トルエン、ヘキサン等の炭化水素系溶媒等の無極性有機溶媒が好適に使用される。シランカップリング剤の使用量としては、特に限定されないが、基材の重量に対して、10~500重量%であることが好適であり、50~400重量%であることがより好適であり、100~300重量%が更に好適である。尚、シランカップリングの接触時間としては、特に限定されないが、5~120分が好適であり、10~60分がより好適である。
《重合工程》
 本発明に係る製造方法に含まれる重合工程は、重合開始剤によりシランカップリング剤の重合を開始する工程であればよい。本工程において、前記重合開始剤の添加により、先の表面処理工程において基材表面に結合しなかった残りのシランカップリング剤と、基材表面上に結合したシランカップリング剤が重合し、グラフトポリマーを形成する。これにより、アルコキシシリル基を有するグラフトポリマーが基材表面に形成されるため、後述する結合工程において、当該アルコキシシリル基とリン酸カルシウムが結合を形成する。尚、ここでは、表面処理工程において基材表面に結合しなかった残りのシランカップリング剤のみならず、更に、シランカップリング剤を追加してもよい。また、追加するシランカップリング剤は、表面処理工程において使用するものと同じ物質であってもよいし、別の物質であってもよい。また、シランカップリング剤に代えて、重合性二重結合とイソシアネート基を有する化合物を添加してもよい。これにより、イソシアネート基を有するグラフトポリマーが形成されるため、後述する結合工程において当該イソシアネート基とリン酸カルシウムとの間でウレタン結合を形成することも可能である。
 本工程において用いる重合開始剤としては、使用するシランカップリング剤の種類にもよるが、重合性二重結合を有するシランカップリング剤であれば、アゾ系、過酸化物系等の各種公知の重合開始剤を使用することができ、例えば、アゾビスイソブチロニトリル(AIBN)に代表されるアゾ系重合開始剤、過酸化ベンゾイル(BPO)に代表される過酸化物系重合開始剤が挙げられる。
 また、当該溶液の温度(反応温度)としては、特に限定されないが30~100℃が好適であり、40~80℃がより好適である。また、溶媒としては特に限定されないが、例えば、トルエン、ヘキサン等の炭化水素系溶媒等の無極性有機溶媒が好適に使用される。シランカップリング剤の使用量としては、特に限定されないが、基材の重量に対して、10~500重量%であることが好適であり、50~400重量%であることがより好適であり、100~300重量%が更に好適である。またシランカップリング剤を用いる場合、界面活性剤により当該シランカップリング剤のアルコキシシリル基を保護することがより好ましい。界面活性剤によりシランカップリング剤を保護する方法としては、特に限定されないが、これらを混合してもよい。界面活性剤の量としては、シランカップリング剤に対して1.0~50重量%が好適であり、10~25重量%がより好適である。
 重合終了後、基材表面上に付着しているシランカップリング剤の重合工程において生成するホモポリマーを除去するホモポリマー除去工程が含まれていてもよい。具体的には、基材を水やアルコール等の溶媒に浸漬して超音波洗浄を行なってもよい。当該工程により基材表面上のホモポリマーが除去され当該工程後に行われる結合工程において、基材に結合したグラフト重合体のアルコキシシリル基とリン酸カルシウムとを反応させることができるため効率的である。
《結合工程》
 本発明に係る製造方法に含まれる結合工程は、上記表面処理工程後の上記基材の表面に上記リン酸カルシウムを結合させる工程であればよい。重合工程後の基材の表面にリン酸カルシウムを結合させる方法としては、特に限定されず従来公知の方法を用いてもよい。例えば、特許文献1及び2を参照することができる。具体的には、リン酸カルシウムを懸濁させた液体に基材を浸漬させてもよい。また、浸漬の間、当該液体を攪拌してもよいし、超音波処理を行ってもよい。また、浸漬後に、当該基材を減圧条件下、好ましくは真空条件下に静置させてもよく、減圧条件下又は真空条件下において更に加熱してもよい。加熱する温度としては、50~200℃が好適であり、80~150℃がより好適である。
 本発明に係る製造方法では、結合工程によって得られたリン酸カルシウム複合体を洗浄する洗浄工程を行ってもよい。洗浄工程は、リン酸カルシウム複合体の使用用途に応じて行えばよい。
 具体的な洗浄方法としては、目的とする洗浄の程度に応じて適宜選択すればよい。例えば超音波洗浄を行なってもよい。本発明に係る製造方法により得られるリン酸カルシウム複合体は、基材とリン酸カルシウムとの接着強度が極めて強いので、超音波洗浄されてもリン酸カルシウムの剥離を良好に抑制できる。超音波洗浄については、従来公知の方法で行なえばよい。
 以上に説明したリン酸カルシウム複合体の製造方法は、様々な用途で利用できる。例えば、ステント等の医療用デバイスの製造に適用すると有益である。
(オゾン水処理後の基材表面のXPS測定)
 10mm×10mm×厚さ1mmのSUS316L基材に対して、エタノール溶媒中で2分間、超音波洗浄(50W)を施した。その後、基材を15ppmの室温のオゾン水に20分間浸漬した。浸漬後、基材をTHF(テトラヒドロフラン)中に浸漬し、オゾン水処理時の表面の水分を除去した。ここで、使用したオゾン水は、ガス溶解モジュール(ジャパンゴアテック社製、型式:GT-01T)を用いて製造した。具体的には、ガスモジュール内で水道水(流量600ml/min、圧力0.05MPa)とオゾンガス(流量500ml/min、圧力0.03~0.05MPa)とを接触させてオゾン水を製造した。
 当該処理後の基材表面をXPSにて酸素のO1sスペクトルの解析を下記の条件で行なった。
   機種:サーモフィッシャー製シータプローブ
   光源:AlKα
   電圧:15kV
   電流:6.66mA
   スポットサイズ:400μm
(ナロースキャン条件)
   パスエナジー:100eV
   スキャン回数:5回
   ステップ:0.1eV
 基材表面の酸化被膜表面上に、M(Metal)-O結合及び-OH結合が形成されていることが確認できた{図1(b)}。尚、図1(a)は未処理のSUS316Lの表面をXPSにて解析した結果である。これらの結果によれば、M-OH結合のピークが増加している様子が観測されたため、SUS316Lの表面にはOH基が多く導入されていることがわかる。
(オゾン水処理による基材表面の濡れ性の評価)
 10mm×10mm×厚さ1mmのSUS316L基材を、エタノール溶媒中で2分間、超音波洗浄(50W)を行なった。その後、基材を所定の濃度(ppm)の室温のオゾン水に所定時間(分)浸漬した。尚、オゾン水は上記と同じ方法により製造した。浸漬後、基材を乾燥し、処理基材の表面に水滴を垂らし、基材と水滴の接触角を測定した。各々の条件における結果を以下の表1に示した。尚、接触角は、10μLの水を滴下し30秒静置させ広がった水滴の直径を計測し、その直径と滴下量との関係より、算出した。
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 〔オゾン水処理〕
 10mm×10mm×厚さ0.1mmのSUS316L基材を、エタノール溶媒中で2分間、超音波洗浄(50W)を行なった。その後、基材を15ppmの室温のオゾン水に20分間浸漬した。浸漬後、基材をTHF(テトラヒドロフラン)中に浸漬し、オゾン水処理時の表面の水分を除去した。
 〔グラフト重合処理〕
 シランカップリング剤(γ-メタクリロキシプロピルトリエトキシシラン、信越化学工業製、KBE503、以下単に「KBE」とする。)3.3mlとトルエン25mlからなる温度70℃の溶液に、窒素ガスにてバブリングしながら、前記処理を施した基材を30分間浸漬した。その後、更にAIBNを33mg溶解したトルエン5mlを追加して、窒素ガスにてバブリングしながら、温度70℃の当該溶液の中で120分間、基材を浸漬し、グラフト重合を行なった。このように時間差でAIBNを添加することで基材表面と結合を有するKBEモノマーと、溶媒中に遊離中のKBEとのグラフトポリマーを形成することを意図している。当該処理後、基材表面上に付着しているKBEのホモポリマーを除去するため、エタノール溶媒中、室温で2分間、超音波洗浄(50W)を実施し、その後、60分間、室温で減圧乾燥した。
 〔ハイドロキシアパタイト被覆処理〕
 上記処理後、1%のハイドロキシアパタイト(HAp)分散液中(分散媒:エタノール)、35℃で20分間、超音波処理(50W)を行った。ここで、ハイドロキシアパタイトは、特許文献1に記載の方法に従って製造したハイドロキシアパタイト焼結体を用いた。その後、減圧下で110℃にて120分間アニーリング(熱処理)を行った。更に当該処理基材をエタノール中、室温で2分間、超音波洗浄(50W)を行なって、基材表面上に物理的に吸着しているHAp粒子を除去した。その後、室温にて60分間減圧乾燥を行なった。当該処理により得られた走査型電子顕微鏡(SEM)写真を図2に示す。尚、走査型電子顕微鏡は、日本電子社製JSM-5510を用いて測定した。また、未処理の基材と、グラフト重合処理後の基材と、HAp被覆後の基材の表面をIRにより測定した結果を図3に示す。尚、IRの測定は、パーキンエルマー製Spectrum 100(フーリエ変換赤外分光分析装置)により行なった。これらの結果によれば、グラフト重合後にKBE由来のC=Oのピークや、KBE由来のSi-O-Cのピークが観測された{図3(b)}ため、基材表面にKBEが導入されたことを確認できた。また、HAp被覆後にはHAp由来のリン酸イオンのピークが観測された{図3(c)}ため、基材表面にHApが導入されたことが確認された。
(実施例2)
 上記実施例1と、処理基材としてSUS304を用いて、オゾン水処理において、40ppmのオゾン水を用いて、60分間処理したこと以外は同条件で基材の表面処理を行った。基材処理の結果を示すSEM写真を図4に示す。
(比較例1)
 グラフト重合処理を行わなかったことを除いて、上記実施例1と同条件で基材の表面処理を行った。当該基材の表面のSEM写真を図5に示す。
 (比較例2)
 オゾン水処理を行わなかったことを除いて、上記実施例1と同条件で基材の表面処理を行った。当該基材の表面のSEM写真を図6に示す。
 (比較例3)
 オゾン水処理及びグラフト重合処理を行わなかったことを除いて、上記実施例1と同条件で基材の表面処理を行った。当該基材の表面のSEM写真を図7に示す。
 上記比較例1~3の結果より、何れの工程を抜かしても、基材表面にハイドロキシアパタイトを被覆することはできなかった。したがって、オゾン処理及びグラフト重合処理は必要な工程であると考えられる。

Claims (4)

  1.  基材の表面にリン酸カルシウムが結合してなるリン酸カルシウム複合体の製造方法であって、
     上記基材の表面に表面処理剤を接触させた後に、シランカップリング剤を接触させて表面処理する表面処理工程と、
     上記表面処理工程後に、重合開始剤によりシランカップリング剤の重合を開始させる重合工程と、
     重合工程後の上記基材の表面のシランカップリング剤に上記リン酸カルシウムを結合させる結合工程と、を含み、
     上記基材が金属であり、
     上記表面処理剤がオゾン水であることを特徴とする製造方法。
  2.  前記シランカップリング剤が、非チオール系のシランカップリング剤であることを特徴とする、請求項1に記載の製造方法。
  3.  上記基材としてステンレスを用いることを特徴とする、請求項1又は2に記載の製造方法。
  4.  請求項1~3のいずれか一項に記載の方法により得られるリン酸カルシウム複合体。
PCT/JP2009/058529 2009-04-30 2009-04-30 リン酸カルシウム複合体及びその製造方法 WO2010125686A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011511246A JP5765812B2 (ja) 2009-04-30 2009-04-30 リン酸カルシウム複合体及びその製造方法
KR1020117028482A KR101488064B1 (ko) 2009-04-30 2009-04-30 인산칼슘 복합체 및 그의 제조 방법
CN200980158909.7A CN102421940B (zh) 2009-04-30 2009-04-30 磷酸钙复合体及其制造方法
EP09844030.8A EP2426234A4 (en) 2009-04-30 2009-04-30 CALCIUM PHOSPHATE COMPLEX AND PROCESS FOR PRODUCING THE SAME
PCT/JP2009/058529 WO2010125686A1 (ja) 2009-04-30 2009-04-30 リン酸カルシウム複合体及びその製造方法
US13/266,075 US9447502B2 (en) 2009-04-30 2009-04-30 Calcium phosphate complex, and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058529 WO2010125686A1 (ja) 2009-04-30 2009-04-30 リン酸カルシウム複合体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2010125686A1 true WO2010125686A1 (ja) 2010-11-04

Family

ID=43031848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058529 WO2010125686A1 (ja) 2009-04-30 2009-04-30 リン酸カルシウム複合体及びその製造方法

Country Status (6)

Country Link
US (1) US9447502B2 (ja)
EP (1) EP2426234A4 (ja)
JP (1) JP5765812B2 (ja)
KR (1) KR101488064B1 (ja)
CN (1) CN102421940B (ja)
WO (1) WO2010125686A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013862A (ja) * 2011-07-05 2013-01-24 Iwatani Internatl Corp 有機性排水浄化処理用生物ろ過材
JP2015137406A (ja) * 2014-01-23 2015-07-30 岩谷産業株式会社 金属基材の表面処理方法、金属コード及び伝動ベルト
WO2016159265A1 (ja) * 2015-03-31 2016-10-06 国立大学法人東北大学 インプラント用デバイスの製造方法およびインプラント用デバイス
WO2017188285A1 (ja) * 2016-04-25 2017-11-02 医療法人社団Natural Smile 歯科用補綴物及びその部品
JP2020005995A (ja) * 2018-07-10 2020-01-16 帝人ナカシマメディカル株式会社 硬組織インプラント
EP3508225A4 (en) * 2016-08-30 2020-05-06 SofSera Corporation NEW COMPOSITE MATERIAL OF CERAMIC PARTICLES

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090413A (zh) * 2014-06-20 2014-10-08 京东方科技集团股份有限公司 一种显示用基板及其制作方法、显示装置
KR102548707B1 (ko) * 2022-11-17 2023-06-29 주식회사 리켐텍 Li화합물 제조시 발생하는 Ca-P 함유 슬러지와 인산용액을 통해 제조된 수산화아파타이트 입자를 구리금속표면에 피복시킨 고순도 구리-수산화아파타이트 복합체 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191423A (ja) * 1998-12-22 2000-07-11 Yuri Iguchi 抗菌性歯科用セメント
JP2000327314A (ja) 1999-05-11 2000-11-28 Nof Corp ハイドロキシアパタイト複合体の製造方法、その複合体及び生体適合性材料
JP2001192853A (ja) * 1999-10-29 2001-07-17 Matsumoto Shika Univ 合着用金属部材の酸化膜形成方法、及び金属部材の合着方法
JP2004051952A (ja) 2002-05-30 2004-02-19 Japan Science & Technology Corp ハイドロキシアパタイト複合体およびその製造方法、ならびに、それを用いた医療用材料
JP2004307887A (ja) * 2003-04-03 2004-11-04 Nisshin Steel Co Ltd 建築金物の耐食性向上方法
JP2006089778A (ja) * 2004-09-21 2006-04-06 Japan Science & Technology Agency 官能基導入無機化合物およびその製造方法、複合体およびその製造方法、医療用材料
JP2007085930A (ja) * 2005-09-22 2007-04-05 Hitachi High-Technologies Corp 金属製プローブの使用方法及び分析装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486975A (en) * 1987-09-29 1989-03-31 Permelec Electrode Ltd Preparation of calcium phosphate compound coated composite material
JP4104026B2 (ja) * 1996-06-20 2008-06-18 財団法人国際科学振興財団 酸化不働態膜の形成方法並びに接流体部品及び流体供給・排気システム
JP2000290405A (ja) * 1999-04-08 2000-10-17 Shinko Plant Kensetsu Kk 高分子材料の表面処理方法
US6387414B1 (en) 1999-08-05 2002-05-14 Nof Corporation Method for preparing hydroxyapatite composite and biocompatible material
JP4449246B2 (ja) * 2001-04-12 2010-04-14 トヨタ自動車株式会社 無電解めっき材の前処理方法
JP2004017410A (ja) * 2002-06-14 2004-01-22 Nippon Arc Co Ltd ハードコート被覆非晶質ポリオレフィン樹脂の製造方法及び樹脂物品
JP4135459B2 (ja) * 2002-10-10 2008-08-20 トヨタ自動車株式会社 無電解めっき素材の前処理方法及びめっき被覆部材の製造方法
CN100334231C (zh) * 2005-06-24 2007-08-29 东南大学 基于多层胶体晶体的生物分子检测方法
JP5464784B2 (ja) 2005-10-05 2014-04-09 日本曹達株式会社 基材をオゾン水又は過酸化水素水で洗浄する工程を含む、有機薄膜の製造方法
CN100554508C (zh) * 2007-04-25 2009-10-28 上海大学 采用臭氧作为钢铁磷化促进剂的磷化方法
JP5229473B2 (ja) * 2008-06-04 2013-07-03 財団法人ヒューマンサイエンス振興財団 超音波医療装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000191423A (ja) * 1998-12-22 2000-07-11 Yuri Iguchi 抗菌性歯科用セメント
JP2000327314A (ja) 1999-05-11 2000-11-28 Nof Corp ハイドロキシアパタイト複合体の製造方法、その複合体及び生体適合性材料
JP2001192853A (ja) * 1999-10-29 2001-07-17 Matsumoto Shika Univ 合着用金属部材の酸化膜形成方法、及び金属部材の合着方法
JP2004051952A (ja) 2002-05-30 2004-02-19 Japan Science & Technology Corp ハイドロキシアパタイト複合体およびその製造方法、ならびに、それを用いた医療用材料
JP2004307887A (ja) * 2003-04-03 2004-11-04 Nisshin Steel Co Ltd 建築金物の耐食性向上方法
JP2006089778A (ja) * 2004-09-21 2006-04-06 Japan Science & Technology Agency 官能基導入無機化合物およびその製造方法、複合体およびその製造方法、医療用材料
JP2007085930A (ja) * 2005-09-22 2007-04-05 Hitachi High-Technologies Corp 金属製プローブの使用方法及び分析装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Ozone Handbook", NONPROFIT ORGANIZATION JAPAN OZONE ASSOCIATION
OKADA, M. ET AL., J. BIOMED. MATER. RES. PART A, 2008, pages 589 - 596
See also references of EP2426234A4
SUGIMITSU; HIDETOSHI; KORIN: "Fundamentals and Applications of Ozone", PUBLISHING CO., LTD.

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013013862A (ja) * 2011-07-05 2013-01-24 Iwatani Internatl Corp 有機性排水浄化処理用生物ろ過材
JP2015137406A (ja) * 2014-01-23 2015-07-30 岩谷産業株式会社 金属基材の表面処理方法、金属コード及び伝動ベルト
WO2016159265A1 (ja) * 2015-03-31 2016-10-06 国立大学法人東北大学 インプラント用デバイスの製造方法およびインプラント用デバイス
WO2017188285A1 (ja) * 2016-04-25 2017-11-02 医療法人社団Natural Smile 歯科用補綴物及びその部品
CN109069691A (zh) * 2016-04-25 2018-12-21 医疗法人社团耐思美 牙科用假体及其部件
JPWO2017188285A1 (ja) * 2016-04-25 2019-06-13 医療法人Natural Smile 歯科用補綴物及びその部品
JP7141062B2 (ja) 2016-04-25 2022-09-22 医療法人Natural Smile 歯科用補綴物及びその部品
EP3508225A4 (en) * 2016-08-30 2020-05-06 SofSera Corporation NEW COMPOSITE MATERIAL OF CERAMIC PARTICLES
US11504452B2 (en) 2016-08-30 2022-11-22 Sofsera Corporation Ceramic particle composite material
JP2020005995A (ja) * 2018-07-10 2020-01-16 帝人ナカシマメディカル株式会社 硬組織インプラント
JP7333552B2 (ja) 2018-07-10 2023-08-25 帝人ナカシマメディカル株式会社 硬組織インプラント

Also Published As

Publication number Publication date
US9447502B2 (en) 2016-09-20
JP5765812B2 (ja) 2015-08-19
KR20120020140A (ko) 2012-03-07
EP2426234A1 (en) 2012-03-07
CN102421940B (zh) 2015-01-28
US20120114832A1 (en) 2012-05-10
EP2426234A4 (en) 2016-12-28
JPWO2010125686A1 (ja) 2012-10-25
KR101488064B1 (ko) 2015-01-29
CN102421940A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
JP5765812B2 (ja) リン酸カルシウム複合体及びその製造方法
Ratner et al. Physicochemical surface modification of materials used in medicine
JP3496831B2 (ja) 親水性表面を有するシリコーン・エラストマー・スタンプを製造する方法
JP4838709B2 (ja) 基材の製造方法
TW397853B (en) Method of modifying at least a part of the surface of a polymer and its uses
JP2008527117A (ja) ポリマー含有被覆物によってポリマー表面を被覆する方法、およびポリマー被覆ポリマーを含む物品
JP3836444B2 (ja) ハイドロキシアパタイト複合体およびその製造方法、ならびに、それを用いた医療用材料
JPH09508157A (ja) ポリマーの表面処理
JP7084394B2 (ja) 優れた安定性及び耐久性を有する親水性の多機能性超薄コーティング
Babaei et al. Tuning the surface properties of oxygen-rich and nitrogen-rich plasma polymers: functional groups and surface charge
WO2013042831A1 (ko) 폴리도파민 고속 코팅방법
Dubruel et al. Comparative study of silanisation reactions for the biofunctionalisation of Ti-surfaces
JP2015063577A (ja) 医療材料の表面修飾用ポリマー
JP6829857B1 (ja) コンタクトレンズ消毒用過酸化水素の分解触媒およびその製造方法
US11014121B2 (en) Surface functionalisation method
JP4649654B2 (ja) 官能基導入無機化合物および複合体の製造方法
US8580347B2 (en) Method for producing calcium phosphate complex
Ratner et al. CHAPTER I. 2.12 PHYSICOCHEMICAL SURFACE MODIFICATION OF MATERIALS USED IN MEDICINE
KR20120061630A (ko) 전처리를 포함하는 자기 조립 분자막 형성에 의한 금속표면처리방법
JP5317679B2 (ja) ポリアセタール樹脂成型体の接着方法、表面改質ポリアセタール樹脂成型体および複合成型体
CN116113396A (zh) 聚合物涂料
JP4473557B2 (ja) アルコキシシリル基導入方法および導入物、並びに、それを用いた複合体の製造方法、複合体
KR20190103728A (ko) 폴리메틸하이드로실록산 표면 도포 기법을 이용한 폴리디메틸실록산의 표면 개질 방법 및 이로 제조된 폴리디메틸실록산
JP2005319022A (ja) 無機化合物複合体、および、その製造方法、並びに、医療用材料
MXPA98000167A (en) Improved surface treatment for polime

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158909.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844030

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011511246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009844030

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117028482

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13266075

Country of ref document: US