WO2010123070A1 - 鉛筆芯及びその製造方法 - Google Patents

鉛筆芯及びその製造方法 Download PDF

Info

Publication number
WO2010123070A1
WO2010123070A1 PCT/JP2010/057159 JP2010057159W WO2010123070A1 WO 2010123070 A1 WO2010123070 A1 WO 2010123070A1 JP 2010057159 W JP2010057159 W JP 2010057159W WO 2010123070 A1 WO2010123070 A1 WO 2010123070A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
graphite
pencil
pencil lead
axis
Prior art date
Application number
PCT/JP2010/057159
Other languages
English (en)
French (fr)
Inventor
聡 坂西
勝徳 北澤
Original Assignee
三菱鉛筆株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010051957A external-priority patent/JP4627566B2/ja
Priority claimed from JP2010051958A external-priority patent/JP4627567B2/ja
Priority claimed from JP2010051959A external-priority patent/JP4627568B2/ja
Priority claimed from JP2010051954A external-priority patent/JP4627563B2/ja
Priority claimed from JP2010051955A external-priority patent/JP4627564B2/ja
Priority claimed from JP2010051956A external-priority patent/JP4627565B2/ja
Priority to KR1020117027686A priority Critical patent/KR101247417B1/ko
Priority to US13/265,476 priority patent/US8349063B2/en
Priority to CN2010800282046A priority patent/CN102459481B/zh
Application filed by 三菱鉛筆株式会社 filed Critical 三菱鉛筆株式会社
Priority to AU2010240104A priority patent/AU2010240104B2/en
Priority to EP10767127.3A priority patent/EP2423280B1/en
Publication of WO2010123070A1 publication Critical patent/WO2010123070A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K19/00Non-propelling pencils; Styles; Crayons; Chalks
    • B43K19/02Pencils with graphite; Coloured pencils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B43WRITING OR DRAWING IMPLEMENTS; BUREAU ACCESSORIES
    • B43KIMPLEMENTS FOR WRITING OR DRAWING
    • B43K19/00Non-propelling pencils; Styles; Crayons; Chalks
    • B43K19/16Making non-propelling pencils
    • B43K19/18Making pencil writing-cores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D13/00Pencil-leads; Crayon compositions; Chalk compositions

Definitions

  • the present invention relates to a pencil lead such as a pencil lead for a mechanical pencil and a pencil lead for a wooden shaft, and more specifically, a pencil lead that has a strong strength, a smooth writing feeling, a dark drawn line, and a vivid black. Regarding the method.
  • a part or all of the fine particles having an average particle size of 100 nm or less are obtained.
  • a manufacturing method of a core body for example, refer to Patent Document 2 that is preliminarily adhered to the surface of a plate-like body material to form a particulate-attached plate-like body material, mixed with a core body material, kneaded, and then molded by extrusion.
  • This technique includes the disclosure of Patent Document 1 above. Note that the thickness of the film described in Patent Document 2 is merely a numerical representation of the power for hiding the base, and is not related to the visual color (density) or writing quality.
  • the evaluation item called “writing taste” or “writing feeling” in Patent Document 1 has the following drawbacks. That was because the subjects did not change their mechanical pencils by writing in a short period of time, and evaluated based on the feeling of drawing with the side that had been reduced in the posture at the start of the test. . Since the reduced surface is a worn and smooth surface, it is written on the almost worn and smooth surface from the beginning to the end of drawing.
  • the core rotates every time it is written, so it is always a new part.
  • the pencil lead used for a mechanical pencil or the like of the type written by the pencil lead which has a better smooth writing feeling, high strength, dark drawn lines and vivid black, and its At present, the manufacturing method is eagerly desired.
  • JP 2007-138031 A (Claims, Examples, etc.)
  • JP 2008-115221 A (Claims, Examples, etc.)
  • the present invention has been made in view of the above-mentioned problems and the current state of the prior art, and is intended to solve this problem.
  • the pencil core using nanoparticles is used for normal mechanical pencils, wooden axes, etc.
  • the pencil core is used for a mechanical pencil of the type where the core rotates every time it is written and is always written by a new part, it has a better smooth writing feeling and higher It aims at providing the pencil lead used as the vivid black which has a drawn line density, and its manufacturing method.
  • the present inventors have formed a core of a pencil core with graphite or the like, and then a nanoparticle having a specific particle diameter and sphericity in a specific liquid Is uniformly dispersed, or nanoparticles having a specific particle diameter and specific surface area are uniformly dispersed in a specific liquid, and these are impregnated to produce a pencil lead, which is disclosed in the above-mentioned Patent Document 1 and the like.
  • the present inventors have succeeded in obtaining a pencil lead having a lower drawing density, writing quality, and a low static / dynamic friction coefficient, and a method for producing the pencil lead, and completed the present invention.
  • the present inventors fixed the nanoparticles after contacting the nanoparticles with specific physical properties to the graphite having specific physical properties. Then, after forming a core using the composite graphite, and then impregnating with a liquid having specific physical properties to produce a pencil core, the drawing density exceeding the pencil core disclosed in Patent Document 1 above, The present inventors have succeeded in obtaining a pencil lead having a low writing taste and a low static / dynamic friction coefficient and a method for producing the same, and have completed the present invention.
  • the present inventors have conducted extensive research in view of the above-described conventional problems, and as a result, using graphite having specific physical properties, dispersed nanoparticles with specific physical properties in a plasticizer or solvent with respect to the graphite.
  • a method for producing a pencil lead having a lower drawing density, writing quality, and low static / dynamic friction coefficient than the pencil lead disclosed in the above-mentioned Patent Document 1 by forming a core from the kneaded product after kneading As a result, the present invention has been completed.
  • the present invention resides in the following (1) to (21).
  • a pencil core containing scaly graphite having an a-axis or b-axis and c-axis aspect ratio of 5 or more having an ab surface with a flatness of 2 ⁇ m or less the volume average diameter (mv value) of the graphite is 100
  • a pencil lead characterized in that nanoparticles having an mv value of 0.05 to 2 and a sphericity of 0.1 to 20 nm are in contact with the ab surface of the graphite.
  • the volume average diameter (mv value) of the graphite is 100
  • a pencil lead characterized in that nanoparticles having an mv value of 0.05 to 2 and a specific surface area of 50 to 800 m 2 / g are in contact with the ab surface of the graphite.
  • the volume average diameter (mv value) of the graphite is 100
  • a pencil core characterized in that nanoparticles having an mv value of 0.05 to 2 and a sphericity of 0.1 to 20 nm are adhered to the ab surface of the graphite.
  • the volume average diameter (mv value) of the graphite is 100
  • a pencil lead characterized in that nanoparticles having an mv value of 0.05 to 2 and a specific surface area of 50 to 800 m 2 / g are adhered to the ab surface of the graphite.
  • the nanoparticles are made to have a refractive index (1), (2) and (2), wherein the pencil core is impregnated after being dispersed in a liquid having a viscosity of 1.3 to 1.5 and a viscosity at 25 ° C. of 7 to 200 mm 2 / s. 5)
  • the method for producing a pencil lead according to any one of (9).
  • the flake graphite having an a-axis or b-axis and c-axis aspect ratio of 5 or more having at least an ab surface with a flatness of 2 ⁇ m or less is set to 0.000 with respect to the volume average diameter (mv value) 100 of the graphite.
  • a nanoparticle having an mv value of 05 to 2 and having a sphericity of 0.1 to 20 nm is brought into contact, and the nanoparticle is fixed and composited.
  • a core is formed using the composite graphite, and a refractive index of 1
  • the flake graphite having an a-axis or b-axis and c-axis aspect ratio of 5 or more having at least an ab surface with a flatness of 2 ⁇ m or less is 0.1 to the volume average diameter (mv value) 100 of the graphite.
  • flake graphite having an a-axis or b-axis and c-axis aspect ratio of 5 or more having an ab surface with a flatness of 2 ⁇ m or less, and a volume average diameter (mv value) of 100 for the graphite.
  • a pencil lead having a mv value of 05-2 and having a sphericity of 0.1-20 nm dispersed in a plasticizer or a solvent is kneaded, and then a core is formed from the kneaded product. Production method.
  • flake graphite having an a-b or b-axis and c-axis aspect ratio of 5 or more having at least an ab surface with a flatness of 2 ⁇ m or less, and a volume average diameter (mv value) of 100 of the graphite.
  • a pencil core characterized by forming a core body from a kneaded mixture of nanoparticles having a mv value of 05 to 2 and a specific surface area of 50 to 800 m 2 / g dispersed in a plasticizer or a solvent. Manufacturing method. (16) The method for producing a pencil lead as described in (14) or (15) above, wherein the nanoparticles are carbon nanoparticles.
  • the drawing machine defined in “JIS S 6005: 2007” defined in the present invention is such that the core body is tilted at an angle of 75 degrees and is drawn while rotating.
  • the core rotates every time it is written and is always written by a new part.
  • a pencil lead used for a type of mechanical pencil or the like is provided with a pencil lead that has a better smooth writing feeling and a bright black color having a higher line density and a method for producing the pencil lead. .
  • the pencil lead according to the first embodiment of the present invention is a pencil lead containing scaly graphite having an a-axis with an ab surface having a flatness of 2 ⁇ m or less or an aspect ratio of b-axis and c-axis of 5 or more. Nanoparticles having an mv value of 0.05 to 2 with respect to a volume average diameter (mv value) of 100 of graphite and having a sphericity of 0.1 to 20 nm are in contact with the ab surface of the graphite. It is what.
  • the method for manufacturing a pencil lead according to the first embodiment of the present invention contains scaly graphite having an a-b surface having an ab surface with a flatness of 2 ⁇ m or less and an aspect ratio of 5 or more between the b-axis and the c-axis.
  • the nanoparticles are dispersed in a liquid having a refractive index of 1.3 to 1.5 and a viscosity at 25 ° C. of 7 to 200 mm 2 / s, and then impregnated into the pencil core. It is characterized by this.
  • the term “present invention” includes each of the first to sixth embodiments, and the same configuration as that of the first embodiment is described in the following description of the second embodiment. To that effect, the explanation is omitted.
  • the scaly graphite used in the first embodiment of the present invention needs to have an a-axis having an ab surface with a flatness of 2 ⁇ m or less or an aspect ratio of b-axis and c-axis of 5 or more, preferably, From the viewpoint of writing quality and writing resistance, it is desirable that the aspect ratio of the a-axis or b-axis and c-axis having an ab surface with a flatness of 0.05 to 2 ⁇ m is 5 to 100.
  • the scaly graphite that can be used has the above-mentioned characteristics, and the aspect ratio of the a-axis or the b-axis and the c-axis having an ab surface with at least a flatness of 2 ⁇ m or less is 5 or more.
  • the flake graphite becomes, for example, natural graphite having the above characteristics, artificial graphite, quiche graphite, expanded graphite, expanded graphite, and the like can be selected. It may be used.
  • the scaly graphite in the first embodiment is preferably one having a volume average diameter (mv value) of 4 to 10 ⁇ m from the viewpoint of strength and writing quality.
  • the volume average diameter (mv value) in the present invention is an average diameter weighted by volume from the measurement result in the laser diffraction / scattering method.
  • dry measurement can be performed using a microtrack (manufactured by Nikkiso Co., Ltd., 3100II).
  • nanotrack manufactured by Nikkiso Co., Ltd., UPA-EX150 (internal probe type)] ] Can be used.
  • the core for pencil lead formation is formed using the said scaly graphite.
  • the core for forming the pencil lead can be formed by baking or non-baking the pencil lead blended composition containing the scaly graphite.
  • the core for forming the pencil lead uses a pencil lead blending composition containing scaly graphite having the above characteristics, but components other than the scaly graphite depend on the type of pencil lead, etc. Each component such as an extender, a lubricant, a binder component such as a thermoplastic synthetic resin, and an organic solvent can be appropriately selected and used.
  • the pencil lead when the pencil lead is a calcined pencil lead for a mechanical pencil, it can contain at least carbon black and amorphous carbon in addition to flake graphite, and the non-fired pencil lead contains at least oils and fats and waxes. Furthermore, the fired pencil lead can contain at least an extender and a ceramic binder.
  • Examples of the carbon black that can be used include oil furnace black, gas furnace black, channel black, thermal black, acetylene black, lamp black, and graphitized carbon black obtained by graphitizing these.
  • an extender if it is used for the conventional pencil lead, it will not specifically limit, All can be used.
  • white based materials such as boron nitride, kaolin (kaolinite, halloysite), montmorillonite, talc, mica, calcium carbonate, and other colored materials can be used, and naturally several types of these materials can also be used. Particularly preferred are boron nitride, kaolin, and talc because of their physical properties and shape.
  • Ceramic binder examples include crystalline or amorphous SiO 2 , Si 3 N 4 , Al 2 O 3 , ZrO 2 , MgO, BN, B 2 O 3 , AlN, and the like. More than one species may be used.
  • thermoplastic synthetic resin examples include polyvinyl alcohol, polyvinyl chloride, polychlorinated vinyl chloride, polyamide, polyethylene, polypropylene, polyether ether ketone, and the like.
  • organic solvent those capable of dissolving the thermoplastic synthetic resin are preferable, and specifically, dioctyl phthalate, dibutyl phthalate, tricresyl phosphate, dioctyl adipate, diallyl isophthalate, propylene carbonate, alcohols, ketones, Esters can be used.
  • ⁇ -olefin oligomer In the pencil lead for mechanical pencil, ⁇ -olefin oligomer, fatty acid ester, spindle oil, waxes, boron nitride, talc, silicone oil, silica fine particles, metal soap, etc. can be used as other components.
  • silicone oil, lard, acrylic resin, epoxy resin, celluloid, and other thermoplastic resins can be used as other components.
  • each component used for the above-described blended composition for a pencil lead for example, a mechanical pencil lead for a mechanical pencil, a non-fired pencil lead, and a fired pencil lead (extension material, thermoplastic resin, organic solvent, etc.) ) Is kneaded, molded, dried and fired in a non-oxidizing atmosphere, or non-fired (dried at a low temperature of 50 to 120 ° C.) to form a pencil lead core.
  • the content of the scaly graphite having the above-mentioned characteristics used for forming the pencil lead core is 20 to 80% by mass (hereinafter simply referred to as “%”) with respect to the total amount of the pencil lead composition.
  • the content be 30 to 70%, but the optimum value varies depending on the hardness. If the content of the flaky graphite is less than 20% or exceeds 80%, the balance of hardness, writing quality and strength is lost, which is not preferable.
  • thermoplastic synthetic resin for example, in the manufacture of a baked pencil lead for a mechanical pencil, preferably, from the viewpoint of strength, concentration, and writing quality, (a) Scale pressure graphite 20-80%, (b) 30-60% thermoplastic synthetic resin, (c) 0-30% organic solvent capable of dissolving the thermoplastic synthetic resin is dispersed and mixed with a Henschel mixer, and a pressure kneader , Kneaded with two rolls, molded with an extruder, dried in an electric furnace at 110 to 250 ° C., and then 800 to 1400 in a non-oxidizing atmosphere (nitrogen gas atmosphere, inert gas atmosphere).
  • a non-oxidizing atmosphere nitrogen gas atmosphere, inert gas atmosphere
  • the pencil lead according to the first embodiment of the present invention is a liquid having a refractive index of 1.3 to 1.5 and a viscosity of 7 to 200 mm 2 / s at 25 ° C. in the pencil core formed as described above. After the dispersion, the pencil core is impregnated.
  • the liquid used in the first embodiment of the present invention has a structure in which nanoparticles are impregnated in the pores of the pencil core, and the nanoparticles are brought into contact with the ab surface of the scaly graphite constituting the pencil core, and the concentration In addition to the purpose of increasing the viscosity, it is used to act as a lubricant.
  • the refractive index is 1.3 to 1.5 and the kinematic viscosity at 25 ° C. is 7 Examples of which are up to 200 mm 2 / s.
  • the liquid that can be used is not particularly limited as long as it has the above characteristics, and dimethyl silicone, dimethyl silicone oil, carboxymethyl cellulose (CMC) liquid, trimethylpentaphenyltrisiloxane, liquid paraffin, and fatty acid ester having the above characteristics. Etc., or a mixture of two or more of them. Specific examples include the high call M series manufactured by Kaneda and the KF-96 series manufactured by Shin-Etsu Chemical.
  • the refractive index in the present invention refers to the absolute refractive index, and the kinematic viscosity is a unit [mm 2 / s] based on the viscosity measurement method of JIS K 2283 and JIS Z 8803. For example, it can be directly measured by “Canon Fenceke” or “Ubellode”.
  • the refractive index exceeds or when 1.5 below 1.3 of these liquids, low contribution to reducing reflectance, further, if the viscosity is below 7 mm 2 / s, the liquid to the core body On the other hand, when the viscosity exceeds 200 mm 2 / s, the liquid does not penetrate uniformly into the pores, which is not preferable.
  • the nanoparticles to be used are not particularly limited as long as they are generally classified as nanoparticles, and any of them can be used.
  • diamond nanoparticles, carbon Carbon nanoparticles such as nanotube composite particles and fullerene composite particles, as well as oxide ceramics, nitride ceramics, phosphate ceramics, carbide ceramics, silicate ceramics, and boron of metals such as silicon, titanium, zirconium, aluminum, and cerium Ceramic nanoparticles such as compound ceramics can be used.
  • diamond nanoparticles are preferable from the viewpoint of suppressing hue change, and diamond nanoparticles are particularly preferable from the viewpoint of obtaining economical efficiency and smooth writing property.
  • diamond nanoparticles that can be used include diamond nanoparticles prepared by an explosion method, a static pressure method, an impact compression method, an EACVD method, a gas phase synthesis method, and a liquid phase growth method. Examples include polycrystalline diamond particles, single crystal diamond particles, and cluster diamond.
  • the range of the sphericity of the nanoparticles used is desirably a sphericity of 0.1 to 20 nm, preferably 0.1 to 10 nm, more preferably 0.1 to 5 nm.
  • sphericity is defined in JIS B 1501 as a method for measuring ball balls for ball bearings. The equivalent of things. According to this, the sphericity is measured by measuring the contour of the surface of a steel ball on two or three equator planes that form 90 ° of each steel ball with a roundness measuring machine.
  • Nanoparticles with a sphericity of less than 0.1 nm are not preferred from the standpoints of raw material procurement, cost, handleability, etc.
  • nanoparticles with a sphericity of more than 20 nm are used, the nanoparticles themselves This increases the probability of the shape being unsuitable as a solid lubricant, resulting in steric hindrance and increased friction, which is not preferable.
  • the volume average particle size (mv value) of the nanoparticles used is such that the pores (closed cells) and pores (closed cells) in the pencil core are connected at the time of production, and open pores.
  • the volume average diameter (mv value) of graphite having the above characteristics is 0. It is necessary to have an mv value of .01 to 2, and preferably an mv value of 0.1 to 1.
  • the volume average diameter (mv value) of the nanoparticles used is preferably 4 to 100 nm, more preferably 5 to 40 nm, and particularly preferably 5 to 30 nm.
  • the volume average diameter of nanoparticles such as nanomaterials made of the ceramic material or carbon particles including diamond nanoparticles is less than 0.05 with respect to the volume average diameter (mv value) 100 of graphite having the above characteristics, or the volume average of nanoparticles.
  • the diameter (mv value) is less than 4 nm, monodispersion as particles is difficult and easily aggregated, or the reactivity becomes unstable and becomes unstable, resulting in an adverse effect on the slip of graphite.
  • the volume average diameter (mv value) of graphite of the characteristic graphite exceeds 2 or the volume average diameter (mv value) of the nanoparticles exceeds 100 nm, the structure as a pencil core is collapsed and the strength is reduced. Absent.
  • the diamond nanoparticles contain a small amount of impurities, most of which are sp 3 surface functional groups derived from the diamond structure and are components removed when dispersed in oil. Since other impurities are about 0.2%, the effects of the present invention are not adversely affected.
  • Diamonds with a diamond purity of 99% or more are solid lubricants with a low coefficient of friction, but generally the impurities that are not solid lubricants in solid lubricants exceed 1% and their lubricating properties deteriorate. To start doing.
  • the content of the nanoparticles having these characteristics in the liquid is preferably 0.001 to 5%, more preferably 0.002. It is adjusted to ⁇ 1%, particularly preferably 0.01 to 0.5%.
  • the content is preferably 0.01 to 10%, more preferably 0.02 to 2%, and particularly preferably 0.05 to 0.5%.
  • the pencil core is immersed in a dispersion liquid in which nanoparticles having the above characteristics are dispersed in a liquid having the above characteristics, or under pressure (for example, 0.5 to 5 MPa) and / or Alternatively, by subjecting to immersion treatment or the like under heating (for example, a liquid temperature of 60 to 200 ° C.), the volume average diameter (mv) of the target pencil lead, that is, the pencil lead containing scaly graphite having the above characteristics, is obtained.
  • a pencil lead is obtained in which nanoparticles having an mv value of 0.05 to 2 with respect to 100 and having a sphericity of 0.1 to 20 nm are in contact with the ab surface of the graphite.
  • the obtained pencil lead of the first embodiment contains nanoparticles within the above range, and when produced by the above production method, becomes a pencil lead having suitable wear characteristics and the like, and more preferably JIS S 6005:
  • the polished cross section of the pencil core is observed at 5 ⁇ m ⁇ 5 ⁇ m using an FE-SEM (manufactured by Hitachi High-Tech, S-4700 type, acceleration voltage 5 kV—current value 10 ⁇ A), 1 to 300 nanoparticles are observed. It is preferable that 2 to 100 particles are observed when the above-mentioned “more preferable range” nanoparticles are added, and 5 to 50 particles are observed when the “particularly preferable range” is added.
  • the total coefficient of friction and the number of nanoparticles are the physical properties such as the flatness and aspect ratio of the flaky graphite used, the content thereof, the sphericity of the nanoparticles, the volume average diameter (mv value) and the content thereof. It can be adjusted by suitably combining (impregnation amount) and the kind of oil.
  • the core composition is fired, impregnated with a liquid having a sphericity of 0.1 to 20 nm and containing nanoparticles having a volume average diameter (mv value) in a specific range with respect to graphite having the above characteristics.
  • the porosity of the pencil core When the quality of the structure is normal, a changed property can be obtained. Specifically, since the nanoparticles contained in the liquid having the above characteristics exhibit the effect of a suspension or a bearing, the lubrication of the core is significantly improved as compared with the case where no nanoparticles are added. Thereby, the lubrication of the pencil lead is greatly improved.
  • the smooth drawn line causes irregular reflection, so that the so-called “shine” disappears, resulting in a dark color.
  • the friction between the paper, the flake graphite particles, and the flake graphite particles is reduced, and the erasability is improved.
  • the nanoparticles can be uniformly dispersed without interfering with the orientation of the flake graphite having the above characteristics, the effect as an extender is added, the compressive strength is improved, and the wear of the core is also improved. Since the amount is small, the amount of graphite on the drawn line is also small and the hands are difficult to get dirty.
  • the pencil lead of the first embodiment of the present invention is not limited to the first embodiment, and can be implemented with various modifications within the scope of the technical idea of the present invention.
  • the nanoparticles may be adhered to the ab surface of the graphite particles and filled with a liquid containing nanoparticles having the above characteristics after firing.
  • the preferable content of the nanoparticles is desirably a maximum of 10% in the pencil lead.
  • a pencil lead according to a second embodiment of the present invention is a pencil lead containing scaly graphite having an a-axis or a-b plane with a flatness of 2 ⁇ m or less and an aspect ratio of 5 or more between the b-axis and the c-axis. characterized in that have a volume mean diameter mv value (mv value) 100 relative to 0.05 to 2, a specific surface area of the nanoparticles 50 ⁇ 800m 2 / g, is in contact with the ab plane of graphite It is what.
  • the method for manufacturing a pencil lead according to the second embodiment of the present invention includes a pencil containing scaly graphite having an a-axis or a-b surface with a flatness of 2 ⁇ m or less and an aspect ratio of the a-axis or b-axis to c-axis of 5 or more.
  • the nanoparticles are dispersed in a liquid having a refractive index of 1.3 to 1.5 and a viscosity at 25 ° C. of 7 to 200 mm 2 / s, and then impregnated into the pencil core. It is characterized by.
  • the second embodiment of the present invention has an mv value of 0.05 to 2 with respect to the volume average diameter (mv value) 100 of the scaly graphite used in the first embodiment, and has a sphericity of 0.
  • nanoparticles having a diameter of 1 to 20 nm nanoparticles having an mv value of 0.05 to 2 with respect to a volume average diameter (mv value) of the graphite of 100 and a specific surface area of 50 to 800 m 2 / g are used.
  • the pencil lead in the second embodiment of the present invention has a pencil lead formed in the same manner as in the first embodiment, and has an mv of 0.05 to 2 with respect to the volume average diameter (mv value) 100 of the flake graphite. And having a specific surface area of 50 to 800 m 2 / g into a liquid having a refractive index of 1.3 to 1.5 and a viscosity of 7 to 200 mm 2 / s at 25 ° C. as in the first embodiment. After the dispersion, the pencil core is impregnated.
  • the nanoparticles to be used are generally classified into nanoparticles, and are not particularly limited as long as they have the above physical properties, and any of them can be used, for example, Carbon nanoparticles such as diamond nanoparticles, carbon nanotube composite particles and fullerene composite particles, and oxide ceramics, nitride ceramics, phosphoric oxide ceramics, carbide ceramics of metals such as silicon, titanium, zirconium, aluminum, cerium, Ceramic nanoparticles such as silicate ceramics and boride ceramics can be used.
  • Carbon nanoparticles such as diamond nanoparticles, carbon nanotube composite particles and fullerene composite particles, and oxide ceramics, nitride ceramics, phosphoric oxide ceramics, carbide ceramics of metals such as silicon, titanium, zirconium, aluminum, cerium
  • Ceramic nanoparticles such as silicate ceramics and boride ceramics can be used.
  • diamond nanoparticles are preferable from the viewpoint of suppressing hue change, and diamond nanoparticles are particularly preferable from the viewpoint of obtaining economical efficiency and smooth writing property.
  • diamond nanoparticles that can be used include diamond nanoparticles prepared by an explosion method, a static pressure method, an impact compression method, an EACVD method, a gas phase synthesis method, and a liquid phase growth method. Examples include polycrystalline diamond particles, single crystal diamond particles, and cluster diamond.
  • the specific surface area of the nanoparticles used in the second embodiment is 50 to 800 m 2 / g, preferably 100 to 800 m 2 / g, and more preferably 300 to 700 m 2 / g.
  • the “specific surface area” is defined as the specific surface area of the nanoparticles based on the BET specific surface area determined by the BET flow method. This BET specific surface area can be measured by, for example, a fully automatic BET specific surface area measuring device (HM model-1208) manufactured by Mountec.
  • nanoparticles having a specific surface area of less than 50 m 2 / g nanolubrication at the graphite grain boundaries proposed in the present invention cannot be obtained, which is not preferable from the viewpoint of raw material procurement, cost, handling properties, etc.
  • Use of nanoparticles exceeding 800 m 2 / g is not preferable because the shape of the nanoparticles themselves is unsuitable as a solid lubricant, and the sliding lubrication proposed in the present invention cannot be obtained. .
  • the volume average particle size (mv value) of the nanoparticles used is such that the pores (closed cells) and pores (closed cells) in the pencil core are connected at the time of production, and open pores. From the point of further forming (open cell), in the case of nanoparticles such as nanoparticles made of the ceramic material and carbon nanoparticles containing diamond nanoparticles, the volume average diameter of graphite having the above characteristics is the same as in the first embodiment. It is necessary to have an mv value of 0.01 to 2 with respect to (mv value) 100, and it is desirable to have an mv value of 0.1 to 1.
  • the volume average diameter (mv value) of the nanoparticles used is preferably 4 to 100 nm, more preferably 5 to 40 nm, and particularly preferably 5 to 30 nm, as in the first embodiment.
  • the diamond nanoparticles contain a small amount of impurities, most of which are sp3 surface functional groups derived from the diamond structure, and are components removed when dispersed in oil. Since other impurities are about 0.2%, the effects of the present invention are not adversely affected.
  • Diamonds with a diamond purity of 99% or more are solid lubricants with a low coefficient of friction, but generally the impurities that are not solid lubricants in solid lubricants exceed 1% and their lubricating properties deteriorate. To start doing.
  • the content of the nanoparticles having these characteristics in the liquid is preferably 0.001 to 5%, More preferably, it is adjusted to be 0.002 to 1%, particularly preferably 0.01 to 0.5%.
  • the content of the above-mentioned range of nanoparticles in the obtained pencil lead it varies depending on the size of the pencil lead body, the pore diameter and the pore volume, etc.
  • the content is preferably 0.01 to 10%, more preferably 0.02 to 2%, and particularly preferably 0.05 to 0.5%.
  • the effective pore volume hardly changes and no difference from the pencil lead not added appears.
  • the effective pore volume has to be increased, but this leads to a significant decrease in the strength of the pencil core.
  • the pencil core is immersed in a dispersion liquid in which nanoparticles having the above characteristics are dispersed in a liquid having the above characteristics, or under pressure (for example, 0.5 to 5 MPa) and / or Or, by subjecting to immersion treatment or the like under heating (for example, a liquid temperature of 60 to 200 ° C.), the volume average diameter (mv) of the graphite in the target pencil lead, that is, the pencil lead containing scaly graphite having the above characteristics.
  • a pencil lead having an mv value of 0.05 to 2 with respect to 100 and a specific surface area of 50 to 800 m 2 / g in contact with the ab surface of the graphite is obtained.
  • the resulting pencil lead contains nanoparticles within the above range, and when produced by the above production method, it becomes a pencil lead having suitable wear characteristics and the like, and more preferably, defined in JIS S 6005: 2007.
  • the polished cross section of the pencil core is observed at 5 ⁇ m ⁇ 5 ⁇ m using an FE-SEM (manufactured by Hitachi High-Tech, S-4700 type, acceleration voltage 5 kV—current value 10 ⁇ A), 1 to 300 nanoparticles are observed. It is preferable that 2 to 100 particles are observed when the above-mentioned “more preferable range” nanoparticles are added, and 5 to 50 particles are observed when the “particularly preferable range” is added.
  • the total coefficient of friction and the number of nanoparticles are the physical properties such as the flatness and aspect ratio of the scale-like graphite used, the content thereof, the specific surface area of the nanoparticles, the volume average diameter (mv value) and the content thereof ( The amount can be adjusted by suitably combining the amount of impregnation) and the type of oil.
  • a pencil containing at least scaly graphite having an a-axis having an ab surface with a flatness of 2 ⁇ m or less and an aspect ratio of 5 or more between the b-axis and the c-axis.
  • the nanoparticles were infiltrated into the pores of the porous body composed of the scaly graphite having the above characteristics (the state in which the nanoparticles were in contact with the ab surface of the scaly graphite).
  • the property of the porous structure is changed from the normal property. Specifically, since the nanoparticles contained in the liquid having the above characteristics exhibit the effect of a suspension or a bearing, the lubrication of the core is significantly improved as compared with the case where no nanoparticles are added. Thereby, the lubrication of the pencil lead is greatly improved.
  • the smooth drawn line causes irregular reflection, so that the so-called “shine” disappears, resulting in a dark color.
  • the friction between the paper, the flake graphite particles, and the flake graphite particles is reduced, and the erasability is improved.
  • the nanoparticles can be uniformly dispersed without interfering with the orientation of the flake graphite having the above characteristics, the effect as an extender is added, the compressive strength is improved, and the wear of the core is also improved. Since the amount is small, the amount of graphite on the drawn line is also small and the hands are difficult to get dirty.
  • the pencil lead has a lower drawn line density, writing quality, and static / dynamic friction coefficient than the pencil lead disclosed in Patent Document 1 listed above. Even if the pencil core is used for mechanical pencils of the type where the core rotates every time it is written and is always written by a new part, it has a better smooth writing feeling and even higher strokes. A pencil core having a density of vivid black and a method for producing the same are obtained (this point will be described in more detail in Examples 7 to 12, Reference Example 2, and Comparative Examples 8 to 15 described later).
  • the pencil lead of the second embodiment of the present invention is not limited to the second embodiment, and can be implemented with various modifications within the scope of the technical idea of the present invention.
  • the nanoparticles may be adhered to the ab surface of the graphite particles and filled with a liquid containing nanoparticles having the above characteristics after firing.
  • the preferable content of the nanoparticles is desirably a maximum of 10% in the pencil lead.
  • a pencil lead according to a third embodiment of the present invention is a pencil lead containing scaly graphite having an a-axis or a-b plane with a flatness of 2 ⁇ m or less and an aspect ratio of the b-axis and c-axis of 5 or more. Nanoparticles having an mv value of 0.05 to 2 with respect to a volume average diameter (mv value) of 100 and a sphericity of 0.1 to 20 nm are adhered to the ab surface of the graphite. To do.
  • the method for producing a pencil lead according to the third embodiment of the present invention includes: a graphite having an ab surface having a flatness of 2 ⁇ m or less, or scaly graphite having an aspect ratio of b axis and c axis of 5 or more.
  • a graphite having an ab surface having a flatness of 2 ⁇ m or less or scaly graphite having an aspect ratio of b axis and c axis of 5 or more.
  • the third embodiment of the present invention uses flaky graphite and nanoparticles having the same physical properties as those of the first embodiment.
  • the volume average diameter (mv value) of the graphite is 100 on the ab surface of the flaky graphite.
  • the only difference is that the nanoparticles having an mv value of 0.05 to 2 and having a sphericity of 0.1 to 20 nm are not in contact but are in contact with each other.
  • the use of nanoparticles and the like are the same as in the first embodiment, and the differences from the first embodiment will be described in detail below, and the description of the same configuration and the like will be omitted.
  • the nanoparticles are brought into contact with the flaky graphite having the same characteristics as those in the first embodiment, the nanoparticles are fixed and combined, and then the composite graphite is used to form a pencil core.
  • the core for use is formed.
  • the core for forming a pencil lead according to the third embodiment can be formed by baking or non-baking a pencil lead blend composition containing composite graphite in which the nanoparticles are fixed and combined.
  • the composite graphite in which the nanoparticles are fixed after the nanoparticles having the above characteristics are brought into contact with the scaly graphite is as follows.
  • Examples of a method for preparing composite graphite with nanoparticles fixed include, for example, bringing the nanoparticles into contact with the graphite by electrostatic force (electrostatic adhesion) to form nanoparticle fixed composite graphite, and dispersing by van der Waals force
  • Examples of the method include bonding nanoparticle-fixed composite graphite, or adding nanoparticles while pulverizing graphite, and bonding the nanoparticles as a result of the cohesive force of van der Waals force or the like of graphite.
  • the electrostatic adhesion is a method of bonding by electron transfer between nanoparticles and graphite
  • the dispersion adhesion by the van der Waals force is a method of bonding by intermolecular force resulting from the polarization action of graphite and nanoparticles. It will be. Specifically, it is put into a Henschel mixer in which the above scale-like graphite and the above nanoparticles are rotated at a high speed to form a nanoparticle-fixed composite graphite, or a Henschel in which the above-mentioned nanoparticle aqueous dispersion and the above scale-like graphite are rotated at a high speed.
  • Dispersion such as charging into a mixer and evaporating water by heat generated by friction between particles to form nanoparticle-fixed composite graphite, or adding graphite into an NPA (n-propyl alcohol) dispersion of nanoparticles and drying coating
  • Adhesion electrostatic adhesion such as combining nanoparticles by applying a polycation agent to graphite, mixing graphite and nanoparticles in a vibration ball mill, combining nanoparticles while grinding graphite Can be prepared.
  • nanoparticles having the above characteristics are brought into contact (electrostatic bonding) with the above-mentioned scale-like graphite by electrostatic force to form nanoparticle-fixed composite graphite.
  • the scaly graphite having the above-mentioned characteristics used to form the core for pencil lead is used as nanoparticle-fixed composite graphite before the core is formed, and the content thereof is a composition for pencil lead.
  • the total amount is preferably 20 to 80%, more preferably 30 to 70%, but the optimum value varies depending on the hardness. If the content of the flaky graphite is less than 20% or exceeds 80%, the balance of hardness, writing quality and strength is lost, which is not preferable.
  • the nanoparticles having the above characteristics are used as nanoparticle-fixed composite graphite.
  • the content of the nanoparticles is in the pencil core obtained by the impregnation treatment with respect to the total amount of the composition for pencil core.
  • the content of is preferably adjusted to 0.001 to 5%, more preferably 0.01 to 1%, and particularly preferably 0.02 to 0.5%.
  • the nanoparticle content is less than 0.001%, the effective pore volume hardly changes, and a difference from an unadded pencil lead does not appear.
  • the nanoparticle content exceeds 5%, the effective pore volume increases, but the structure of the pencil core collapses and the strength decreases, which is not preferable.
  • the core for forming the pencil lead uses a pencil lead blending composition containing the composite graphite with nanoparticles fixed with the above characteristics, but other than the composite graphite with nanoparticles fixed.
  • each component such as an extender, a lubricant, a binder component such as a thermoplastic synthetic resin, and an organic solvent can be appropriately selected and used depending on the type of the pencil core.
  • each component (extension material, thermoplastic resin, organic solvent, etc.) used in the above-described blended composition for a pencil lead for example, a fired pencil lead for a mechanical pencil, a non-fired pencil lead, and a fired pencil lead.
  • the third embodiment of the present invention for example, in the manufacture of a baked pencil lead for a mechanical pencil, as in the first embodiment, preferably from the standpoint of strength, concentration, and writing quality, with respect to the total amount of the pencil lead composition.
  • B after the nanoparticles having the above characteristics are brought into contact with the flake graphite having the above characteristics using 0.01 to 5% of the nanoparticles having the above characteristics, After the nanoparticles are fixed and combined, other components (c) 30 to 60% of a thermoplastic synthetic resin and (d) 0 to 30% of an organic solvent capable of dissolving the thermoplastic synthetic resin are added to a Henschel mixer.
  • the pencil lead of the third embodiment of the present invention has a refractive index of 1.3 to 1.5 and a viscosity at 25 ° C. of 7 to 200 mm 2 / s, similar to the first embodiment, on the pencil lead formed above. It is obtained by impregnating with a liquid to be.
  • the pencil core is immersed as it is in the liquid having the above characteristics, or under pressure (for example, 0.5 to 5 MPa) and / or under heating (for example, a liquid temperature of 60 to 200 ° C.).
  • the objective pencil lead that is, the pencil lead containing scaly graphite having the above characteristics, mv of 0.05 to 2 with respect to 100 of the volume average diameter (mv value) of the graphite.
  • a pencil lead is obtained in which nanoparticles having a sphericity of 0.1 to 20 nm are adhered to the ab surface of the graphite.
  • the polished cross section of the pencil core is observed at 5 ⁇ m ⁇ 5 ⁇ m using an FE-SEM (manufactured by Hitachi High-Tech, S-4700 type, acceleration voltage 5 kV—current value 10 ⁇ A), 1 to 300 nanoparticles are observed. It is preferable that 2 to 100 particles are observed when the above-mentioned “more preferable range” nanoparticles are added, and 5 to 50 particles are observed when the “particularly preferable range” is added.
  • the total coefficient of friction and the number of nanoparticles are the physical properties such as flatness and aspect ratio of the scale-like graphite used, its content, and the sphericity, volume average diameter (mv value) and content of the nanoparticles. It can be adjusted by suitably combining (impregnation amount) and the kind of oil.
  • the volume of the graphite is changed to flake graphite having an a-axis having an ab surface having a flatness of 2 ⁇ m or less and an aspect ratio of 5 or more between the b-axis and the c-axis.
  • the nanoparticles After contact with nanoparticles having an mv value of 0.05 to 2 with respect to an average diameter (mv value) of 100 and a sphericity of 0.1 to 20 nm, the nanoparticles are fixed and combined, and then the composite graphite A porous body composed of scaly graphite having the above-mentioned characteristics by forming a core using a pencil-core compound composition containing the above and then impregnating the pencil-core core with the liquid having the above characteristics
  • the state of the porous structure of the pencil core in a state in which the nanoparticles are infiltrated into the pores is different from the normal one. Will be obtained.
  • the lubrication of the core is significantly improved as compared with the case where the nanoparticles are not added.
  • the lubrication of the pencil lead is greatly improved.
  • the smooth drawn line causes irregular reflection, so that the so-called “shine” disappears, resulting in a dark color.
  • the friction between the paper, the flake graphite particles, and the flake graphite particles is reduced, and the erasability is improved.
  • the nanoparticles can be uniformly dispersed without interfering with the orientation of the flake graphite having the above characteristics, the effect as an extender is added, the compressive strength is improved, and the wear of the core is also improved. Since the amount is small, the amount of graphite on the drawn line is also small and the hands are difficult to get dirty. Furthermore, in 3rd Embodiment of this invention, it becomes a pencil lead with a low drawing density, writing quality, and a static / dynamic friction coefficient more than the pencil lead disclosed by patent document 1 mentioned above with the said effect.
  • the pencil lead of the third embodiment of the present invention is not limited to the third embodiment, and can be implemented with various modifications within the scope of the technical idea of the present invention.
  • the core obtained in the third embodiment that is, the pencil core obtained by baking or non-baking the blended composition for pencil core containing at least the composite scaly graphite to which the nanoparticles having the above characteristics are fixed. After forming, a liquid containing a nanoparticle having the above characteristics may be filled.
  • the preferable content of the nanoparticles is desirably a maximum of 10% in the pencil lead.
  • the pencil lead according to the fourth embodiment of the present invention is a pencil lead containing scaly graphite having an a-axis or a-b plane with a flatness of 2 ⁇ m or less and an aspect ratio of the b-axis and c-axis of 5 or more. Nanoparticles having an mv value of 0.05 to 2 with respect to a volume average diameter (mv value) of 100 and a specific surface area of 50 to 800 m 2 / g are adhered to the ab surface of the graphite. It is what.
  • the method for producing a pencil lead according to the fourth embodiment of the present invention provides a graphite flake having an a-axis having an ab surface having a flatness of 2 ⁇ m or less and an aspect ratio of the b-axis and c-axis being 5 or more.
  • nanoparticles having an mv value of 0.05 to 2 with respect to a volume average diameter (mv value) of 100 and a specific surface area of 50 to 800 m 2 / g the nanoparticles were fixed and combined,
  • the composite graphite is used to form a core and impregnated with a liquid having a refractive index of 1.3 to 1.5 and a viscosity at 25 ° C. of 7 to 200 mm 2 / s.
  • the fourth embodiment of the present invention has an mv value of 0.05 to 2 with respect to the volume average diameter (mv value) 100 of the scaly graphite used in the third embodiment, and a sphericity of 0.
  • nanoparticles having a diameter of 1 to 20 nm nanoparticles having an mv value of 0.05 to 2 with respect to a volume average diameter (mv value) of 100 of the graphite and a specific surface area of 50 to 800 m 2 / g are used. It differs from the third embodiment only in that it is used and adhered to the ab surface of the graphite.
  • the nanoparticles also use the nanoparticles of the second embodiment. Therefore, the points different from the first embodiment and the third embodiment will be described in detail below, and the description of the same configuration and manufacturing method as those of the respective embodiments will be omitted.
  • the pencil core is immersed in a liquid having the same characteristics as those in the first to third embodiments, or under pressure (for example, 0.5 to 5 MPa) and / or By subjecting to immersion treatment or the like under heating (for example, a liquid temperature of 60 to 200 ° C.), the volume average diameter (mv value) of the graphite in the target pencil lead, that is, the pencil lead containing scaly graphite having the above characteristics. )
  • a pencil core is obtained in which nanoparticles having an mv value of 0.05 to 2 with respect to 100 and a specific surface area of 50 to 800 m 2 / g are bonded to the ab surface of the graphite.
  • the polished cross section of the pencil core is observed at 5 ⁇ m ⁇ 5 ⁇ m using an FE-SEM (manufactured by Hitachi High-Tech, S-4700 type, acceleration voltage 5 kV—current value 10 ⁇ A), 1 to 300 nanoparticles are observed. It is preferable that 2 to 100 particles are observed when the above-mentioned “more preferable range” nanoparticles are added, and 5 to 50 particles are observed when the “particularly preferable range” is added.
  • the total coefficient of friction and the number of nanoparticles are the physical properties such as flatness and aspect ratio of the scale-like graphite used, its content, and the sphericity, volume average diameter (mv value) and content of the nanoparticles. It can be adjusted by suitably combining (impregnation amount) and the kind of oil.
  • the scale-like graphite having an a-axis having an ab surface with a flatness of 2 ⁇ m or less or an aspect ratio of the b-axis and the c-axis of 5 or more is used.
  • the nanoparticles After contacting nanoparticles having an mv value of 0.05 to 2 with respect to an average diameter (mv value) of 100 and a specific surface area of 50 to 800 m 2 / g, the nanoparticles are fixed and combined, and then the composite A porous body composed of scaly graphite having the above characteristics by forming a core body using a pencil core compounding composition containing graphite and then impregnating the pencil core core body with a liquid having the above characteristics.
  • the properties of the porous structure of the pencil core are different from the normal ones when the nanoparticles are infiltrated into the pores of the body (the nanoparticles are adhered to the ab surface of the flaky graphite). Will be obtained. Specifically, since the nanoparticles having the above characteristics serve as a suspension or a bearing, the lubrication of the core is significantly improved as compared with the case where the nanoparticles are not added. Thereby, the lubrication of the pencil lead is greatly improved. In addition, when the nanoparticles enter the core body, the smooth drawn line causes irregular reflection, so that the so-called “shine” disappears, resulting in a dark color.
  • the pencil lead has a lower drawn line density, writing quality, and static / dynamic friction coefficient than the pencil lead disclosed in Patent Document 1 listed above.
  • the pencil lead of the fourth embodiment of the present invention is not limited to the fourth embodiment, and can be implemented with various modifications within the scope of the technical idea of the present invention.
  • the core obtained in the fourth embodiment that is, the pencil core obtained by baking or non-baking the blended composition for pencil core containing at least the composite scaly graphite to which the above-mentioned nanoparticles are fixed.
  • a liquid containing a nanoparticle having the above characteristics may be filled.
  • the preferable content of the nanoparticles is desirably a maximum of 10% in the pencil lead.
  • the fifth and sixth embodiments of the present invention are manufacturing methods for obtaining a pencil lead that can exhibit the same effects as the pencil lead of the first to fourth embodiments.
  • flake graphite having an a-axis or b-axis and c-axis aspect ratio of 5 or more having an ab surface with a flatness of 2 ⁇ m or less, and a volume average diameter (mv value) of the graphite
  • a core having a mv value of 0.05 to 2 with respect to 100 and having a sphericity of 0.1 to 20 nm dispersed in a plasticizer or a solvent is kneaded, and then a core is formed from the kneaded product. It is a feature.
  • the fifth embodiment of the present invention uses the flaky graphite and nanoparticles used in the first embodiment, and the production method thereof is different.
  • This embodiment is the same as that of the first embodiment, and in the following, points different from the first embodiment will be described in detail, and the description of the same configuration and the like will be omitted.
  • those used for producing a pencil lead can be used, for example, dioctyl phthalate, dibutyl phthalate, tricresyl phosphate, dioctyl adipate, diallyl isophthalate, propylene.
  • examples thereof include at least one of carbonate, dioctyl adipate, diisononyl adipate, trioctyl trimellitic acid, tricresyl phosphate, tributyl acetylcitrate, and the like.
  • the solvent used is preferably a solvent capable of dissolving the plasticizer, specifically, alcohols, ketones, esters, ethers, aromatic hydrocarbons, At least one of aliphatic hydrocarbons and siloxanes can be used.
  • the scaly graphite having the above characteristics and the nanoparticle having the above characteristics are mixed with a plasticizer, a solvent, or a plasticizer and a solvent, and then kneaded, and then a pencil lead compounding composition is obtained.
  • a core can be formed by baking or non-baking the product.
  • a dispersion method for example, an apparatus capable of uniformly dispersing the solvent and the powder, such as a Henschel mixer, a ball mill, a bead mill, a homogenizer, a nanomizer, and a hibismix, can be used.
  • the content of the scaly graphite having the above-mentioned characteristics used to form the pencil lead core is preferably 20 to 80%, more preferably 30%, based on the total amount of the pencil lead composition. It is desirable to set it to ⁇ 70%, but the optimum value varies depending on the hardness. If the content of the flaky graphite is less than 20% or exceeds 80%, the balance of hardness, writing quality and strength is lost, which is not preferable.
  • the content of the nanoparticles having the above characteristics is preferably such that the content of the nanoparticles in the pencil core obtained by the impregnation treatment is 0.001 to 5% with respect to the total amount of the composition for pencil core.
  • the nanoparticle content is less than 0.001%, the effective pore volume hardly changes, and a difference from an unadded pencil lead does not appear. On the other hand, if the nanoparticle content exceeds 5%, the effective pore volume increases, but the structure of the pencil core collapses and the strength decreases, which is not preferable.
  • the content of the plasticizer is preferably 5 to 50% with respect to the total amount of the blended composition for a pencil core to be kneaded from the viewpoints of moldability, nanoparticle dispersibility, and final core quality. More preferably, 10 to 30% is desirable.
  • the content of the solvent is preferably relative to the total amount of the composition for the pencil lead to be kneaded from the viewpoints of moldability, nanoparticle dispersibility, final core quality, and plasticizer content. Is preferably 1 to 30%, more preferably 10 to 20%.
  • the pencil core is obtained by kneading scaly graphite having the above characteristics and nanoparticles having the above characteristics dispersed in a plasticizer or a solvent, or a plasticizer and a solvent,
  • the components other than the nanoparticles, scaly graphite, plasticizer, and solvent are appropriately selected and used for each component such as a constitution material and a lubricant depending on the type of pencil core. be able to.
  • the pencil lead when the pencil lead is a mechanical pencil lead for mechanical pencils, it can contain at least carbon black and amorphous carbon in the same manner as in the first embodiment in addition to the flake graphite, Oils and fats and waxes can be contained at least, and the fired pencil lead can contain at least an extender and a ceramic binder.
  • each component (Each component, such as a constitution material) used for the blend composition for pencil lead used as the above-mentioned kneaded material, for example, the pencil lead for mechanical pencils, the non-fired pencil lead, and the fired pencil lead. ) Is kneaded, molded, dried and fired in a non-oxidizing atmosphere, or non-fired (dried at a low temperature of 50 to 120 ° C.) to form a pencil core.
  • each component such as a constitution material used for the blend composition for pencil lead used as the above-mentioned kneaded material, for example, the pencil lead for mechanical pencils, the non-fired pencil lead, and the fired pencil lead.
  • Scalar graphite with characteristics of 20 to 80%, (b) 0.01 to 5% of nanoparticles with the above characteristics, (c) plasticizer of 5 to 50%, solvent of 0 to 30%, (d) thermoplastic synthetic resin of 30 to 60% was dispersed and mixed with a Henschel mixer, kneaded with a pressure kneader and two rolls, molded with an extruder, dried in an electric furnace at 110 to 250 ° C., and then in a non-oxidizing atmosphere ( A core for forming a pencil lead can be formed by baking at 800 to 1400 ° C. for 20 to 40 hours in a nitrogen gas atmosphere or an inert gas atmosphere.
  • a pencil lead is obtained by the above-mentioned manufacturing method.
  • the flaky graphite and scale are formed by the nanoparticles. It is desirable to impregnate the gap formed between the graphites with a liquid having a refractive index of 1.3 to 1.5 and a viscosity of 7 to 200 mm 2 / s at 25 ° C. as in the first embodiment.
  • the liquid used in the fifth embodiment of the present invention is used to act as a lubricant with the purpose of increasing the concentration, and has a refractive index of 1.3 from the viewpoint of easy penetration into the pores and light reflectance. And a kinematic viscosity at 25 ° C. of 7 to 200 mm 2 / s is used.
  • a pencil core is immersed in a liquid having the above characteristics as it is, or under pressure (for example, 0.5 to 5 MPa) and / or under heating (for example, a liquid temperature of 60 to 200 ° C.). ), A more preferable pencil lead can be obtained.
  • the pencil lead obtained by the manufacturing method of the fifth embodiment (including the sixth embodiment described later) of the present invention is a pencil lead having suitable wear characteristics and the like, more preferably JIS S 6005. :
  • the total coefficient of friction and the number of nanoparticles are the physical properties such as the flatness and aspect ratio of the flaky graphite used, the content thereof, the sphericity of the nanoparticles, the volume average diameter (mv value) and the content thereof. It can be adjusted by suitably combining (impregnation amount) and the kind of oil.
  • the flake graphite having an a-axis or b-axis and c-axis aspect ratio of 5 or more having an ab surface with a flatness of 2 ⁇ m or less
  • the kneading a graphite having a volume average diameter (mv value) of 100 to mv value of 0.05 to 2 and having nanoparticles having a sphericity of 0.1 to 20 nm dispersed in a plasticizer or solvent
  • the kneading Preferably, a pencil core is formed from an object, and preferably, after the core is formed, a gap formed between the flaky graphite and the flaky graphite by the nanoparticles is 25 at a refractive index of 1.3 to 1.5.
  • nanoparticles are infiltrated into the pores of the porous body composed of the flake graphite having the above characteristics (the flake graphite and the flakes).
  • the property of the porous structure of the pencil lead is changed from the usual property. Specifically, since the nanoparticles having the above characteristics serve as a suspension or a bearing, the lubrication of the core is significantly improved as compared with the case where the nanoparticles are not added. Thereby, the lubrication of the pencil lead is greatly improved.
  • the smooth drawn line causes irregular reflection, so that the so-called “shine” disappears, resulting in a dark color.
  • the friction between the paper, the flake graphite particles, and the flake graphite particles is reduced, and the erasability is improved.
  • the nanoparticles can be adhered without interfering with the orientation of the flake graphite having the above characteristics, the constitution effect is added, the compressive strength is improved, and the wear amount of the core is small. The amount of graphite on the drawn line is small and the hands are difficult to get dirty.
  • a pencil having a low drawn line density, writing quality, and a static / dynamic friction coefficient exceeding the pencil lead disclosed in Patent Document 1 mentioned above together with the above-described effects. Even if it is a pencil lead used for mechanical pencils of the type that the core rotates every time it is written and is always written by a new part, even better smooth writing A pencil core that has a sensation and has a higher drawing density and a bright black color and a method for producing the same are obtained (this will be described in more detail in Examples 25 to 31 and Comparative Examples 31 to 37 described later). Describe).
  • the method of manufacturing the pencil lead according to the fifth embodiment of the present invention is not limited to the fifth embodiment, and can be implemented with various modifications within the scope of the technical idea of the present invention.
  • the pencil core obtained in the fifth embodiment it may be further filled with a liquid having the above characteristics containing nanoparticles having the above characteristics.
  • the nanoparticles in the pencil core and the nanoparticles in the liquid are completely independent, the same or different nanoparticles may be used with different contents.
  • the preferable content of the nanoparticles is desirably a maximum of 10% in the pencil lead.
  • the sixth embodiment of the present invention is a manufacturing method for obtaining a pencil lead that can exhibit the same functions and effects as those of the first to fourth embodiments, and has at least an ab surface with a flatness of 2 ⁇ m or less.
  • Scaly graphite having an a-axis or b-axis and c-axis aspect ratio of 5 or more, a volume average diameter (mv value) of 100 to an mv value of 0.05 to 2, and a specific surface area of A core body is formed from the kneaded product after kneading 50-800 m 2 / g nanoparticles dispersed in a plasticizer or a solvent.
  • 6th Embodiment of this invention is 0 with respect to the volume average diameter (mv value) 100 of the scale-like graphite which used the nanoparticle used by the said 5th Embodiment in 2nd Embodiment (and 4th Embodiment).
  • mv value volume average diameter 100 of the scale-like graphite which used the nanoparticle used by the said 5th Embodiment in 2nd Embodiment (and 4th Embodiment).
  • nanoparticles having an mv value of .05 to 2 and a specific surface area of 50 to 800 m 2 / g are used, and are different from the fifth embodiment below. Will be described in detail, and the description of the same configuration will be omitted.
  • mv value volume average diameter of the graphite
  • the nanoparticle generates the flaky graphite between the flaky graphite.
  • a liquid having a refractive index of 1.3 to 1.5 and a viscosity at 25 ° C. of 7 to 200 mm 2 / s the pores of the porous body composed of the scale-like graphite having the above characteristics can be obtained.
  • the lubrication of the core is significantly improved as compared with the case where the nanoparticles are not added.
  • the lubrication of the pencil lead is greatly improved.
  • the smooth drawn line causes irregular reflection, so that the so-called “shine” disappears, resulting in a dark color.
  • the friction between the paper, the flake graphite particles, and the flake graphite particles is reduced, and the erasability is improved.
  • the nanoparticles can be uniformly dispersed without interfering with the orientation of the flake graphite having the above characteristics, the effect as an extender is added, the compressive strength is improved, and the wear of the core is also improved. Since the amount is small, the amount of graphite on the drawn line is also small and the hands are difficult to get dirty. Furthermore, in 6th Embodiment of this invention, it becomes a pencil lead with a low drawn line density, a writing quality, and a static / dynamic friction coefficient more than the pencil lead disclosed by patent document 1 mentioned above with the said effect further.
  • the method for manufacturing a pencil lead according to the sixth embodiment of the present invention is not limited to the sixth embodiment, and can be implemented with various modifications within the scope of the technical idea of the present invention.
  • the pencil core obtained in the sixth embodiment it may be further filled with a liquid having the above characteristics containing nanoparticles having the above characteristics.
  • the nanoparticles in the pencil core and the nanoparticles in the liquid are completely independent, the same or different nanoparticles may be used with different contents.
  • the preferable content of the nanoparticles is desirably a maximum of 10% in the pencil lead.
  • Example 1 Scale-like natural graphite A (ab surface with flatness 0.2 ⁇ m, mv value 8 ⁇ m, c-axis thickness 1 ⁇ m, aspect ratio 8) 40 parts by weight Polyvinyl chloride 40 parts by weight Sodium stearate 1 part by weight Dioctyl phthalate 19 parts by weight Above The material was mixed and dispersed with a Henschel mixer, kneaded with a pressure kneader and a roll, and after molding, the dioctyl phthalate was dried and baked at 1000 ° C. for 10 hours in a nitrogen gas atmosphere.
  • a fired pencil core having a length of 60 mm was produced.
  • the fired pencil core is impregnated under pressure at 1 MPa (impregnation time 180 minutes, The same applies hereinafter) to obtain a nanodiamond-containing fired pencil lead.
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Nanoparticle A Diamond nanoparticle (sphericity 3 nm, mv value 10 nm, manufactured by Sumitomo Materials) The nanoparticle A had an mv value of 0.125 with respect to the volume average diameter (mv value) 100 of the scaly natural graphite A.
  • Example 2 Liquid B: CMC-Na 1 wt% distilled water (7 mm 2 / s, refractive index 1.345)
  • Nanoparticle A Diamond nanoparticle (sphericity 3 nm, mv value 10 nm, manufactured by Sumitomo Materials)
  • the liquid pencil B obtained by dispersing the nanoparticles A (0.1% by mass) described above was impregnated under pressure at 1 MPa with the fired pencil core obtained in Example 1 to obtain a nanodiamond-containing fired pencil core.
  • Example 3 Liquid C: trimethylpentaphenyltrisiloxane (kinematic viscosity 175 mm 2 / s, refractive index 1.580, manufactured by Toray Industries, Inc.) Nanoparticle A: Diamond nanoparticle (sphericity 3 nm, mv value 10 nm, manufactured by Sumitomo Materials) The liquid pencil C in which the nanoparticles A (0.1% by mass) described above were dispersed was pressure impregnated with the fired pencil core obtained in Example 1 at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Example 4 Liquid D: Dimethyl silicone: KF-96L-5cs (kinematic viscosity 5 mm 2 / s, refractive index 1.396, manufactured by Shin-Etsu Chemical Co., Ltd.) Nanoparticle A: Diamond nanoparticle (sphericity 3 nm, mv value 10 nm, manufactured by Sumitomo Materials)
  • the liquid D in which the nanoparticles A (0.1% by mass) described above were dispersed was pressure impregnated with the fired pencil core obtained in Example 1 at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Example 5 Liquid E: Dimethyl silicone: KF-96-500cs (kinematic viscosity 500mm 2 / s, refractive index 1.403, manufactured by Shin-Etsu Chemical Co., Ltd.) Nanoparticle A: Diamond nanoparticle (sphericity 3 nm, mv value 10 nm, manufactured by Sumitomo Materials)
  • the fired pencil core obtained in Example 1 was pressure impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Example 6 Scale-like natural graphite A (ab surface with flatness 0.2 ⁇ m, mv value 8 ⁇ m, c-axis thickness 1 ⁇ m, aspect ratio 8) 70 parts by weight Kaolinite clay 5 parts by weight Halloysite clay 15 parts by weight Water 30 parts by weight Mix and disperse with a Henschel mixer, and heat-knead well with two rolls until the water content is about 18 parts by mass. After the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C.
  • Liquid F Miyoshi adjustment lard (manufactured by Miyoshi Oil & Fats Co., Ltd.)
  • Nanoparticle A Diamond nanoparticle (sphericity 3 nm, mv value 10 nm, manufactured by Sumiishi Materials)
  • the nanoparticles had an mv value of 0.125.
  • a baked pencil core having a diameter of 0.565 mm and a length of 60 mm was manufactured by firing at 1000 ° C. for 10 hours in a nitrogen gas atmosphere. Next, the fired pencil core was pressure impregnated at 1 MPa in the liquid A used in Example 1 to obtain a nanodiamond-containing fired pencil core.
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Nanoparticle B Diamond nanoparticle (sphericity 25 nm, mv value 50 nm, manufactured by Sumitomo Materials)
  • the fired pencil core obtained in Example 1 is pressure impregnated at 1 MPa (impregnation time 180 minutes). And a nano-diamond-containing fired pencil lead was obtained.
  • Example 3 Scale-like natural graphite A of Example 1 (ab surface with a flatness of 0.2 ⁇ m, mv value of 8 ⁇ m, c-axis thickness of 1 ⁇ m, aspect ratio of 8) is the same amount of flaky natural graphite B (ab surface with a flatness of 3 ⁇ m)
  • a nanodiamond-containing fired pencil lead was obtained in the same manner as in Example 1 except that the mv value was 10 ⁇ m, the c-axis thickness was 1 ⁇ m, and the aspect ratio was 10).
  • Example 5 The pencil core obtained in Example 1 above was impregnated under pressure in the same manner as in Example 1 above in the liquid A used in Example 1 containing no nanoparticles A, thereby obtaining a nanodiamond-containing fired pencil core.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid F (Miyoshi adjustment lard) used in Example 6 and oil-immersed to obtain a wood spindle pencil lead having a diameter of 2.05 mm.
  • liquid F Miyoshi adjustment lard
  • Example 7 (Comparative Example 7) The pencil core obtained in Example 6 was immersed in the liquid F (Miyoshi adjustment lard) used in Example 6 that does not contain nanoparticles A in the same manner as in Example 6 above, and the wood axis of the diameter 2.05 mm. I got a pencil lead.
  • liquid F Miyoshi adjustment lard
  • the pencil lead for each mechanical pencil of Examples 1 to 5 and the wood spindle pencil core of Example 6 that fall within the scope of the present invention are comparative examples 1 to 5 that are outside the scope of the present invention.
  • Comparative Example 1 is a case where nanoparticles outside the scope of the present invention based on Example 11 of JP-A-2007-138031 are used.
  • Examples 3 and 4 are cases where scaly graphite that is outside the scope of the present invention is used, and Comparative Example 5 is a case where no nanoparticles are used. It turned out that it was not obtained.
  • Comparative Example 6 is a wood-axis pencil lead that conforms to Example 11 of Japanese Patent Application Laid-Open No. 2007-138031.
  • Comparative Example 7 is a wood-axis pencil lead that does not use nanoparticles, and these wood-axis pencil leads. It was found that the target pencil lead could not be obtained with the lead.
  • Example 7 Scale-like natural graphite A (ab surface with flatness 0.2 ⁇ m, mv value 8 ⁇ m, c-axis thickness 1 ⁇ m, aspect ratio 8) 40 parts by weight Polyvinyl chloride 40 parts by weight Sodium stearate 1 part by weight Dioctyl phthalate 19 parts by weight Above The material was mixed and dispersed with a Henschel mixer, kneaded with a pressure kneader and a roll, and after molding, the dioctyl phthalate was dried and baked at 1000 ° C. for 10 hours in a nitrogen gas atmosphere.
  • a fired pencil core having a length of 60 mm was produced.
  • the fired pencil core is impregnated under pressure at 1 MPa (impregnation time 180 minutes, The same applies hereinafter) to obtain a nanodiamond-containing fired pencil lead.
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Nanoparticle A Diamond nanoparticle (specific surface area 450 m 2 / g, mv value 10 nm, manufactured by Sumitomo Materials) The nanoparticle A had an mv value of 0.125 with respect to the volume average diameter (mv value) 100 of the scaly natural graphite A.
  • Liquid B CMC-Na 1 wt% distilled water (7 mm 2 / s, refractive index 1.345)
  • Nanoparticle A Diamond nanoparticle (specific surface area 450 m 2 / g, mv value 10 nm, manufactured by Sumitomo Materials)
  • the liquid pencil B obtained by dispersing the nanoparticles A (0.1% by mass) described above was impregnated with 1 MPa of the fired pencil core obtained in Example 7 to obtain a nanodiamond-containing fired pencil core.
  • Example 9 Liquid C: trimethylpentaphenyltrisiloxane (kinematic viscosity 175 mm 2 / s, refractive index 1.580, manufactured by Toray Industries, Inc.) Nanoparticle A: Diamond nanoparticle (specific surface area 450 m 2 / g, mv value 10 nm, manufactured by Sumitomo Materials) The liquid pencil C in which the nanoparticles A (0.1% by mass) described above were dispersed was pressure impregnated with the fired pencil core obtained in Example 7 at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid D Dimethyl silicone: KF-96L-5cs (kinematic viscosity 5 mm 2 / s, refractive index 1.396, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Nanoparticle A Diamond nanoparticle (specific surface area 450 m 2 / g, mv value 10 nm, manufactured by Sumitomo Materials)
  • the liquid D in which the nanoparticles A (0.1% by mass) described above were dispersed was pressure impregnated with the fired pencil core obtained in Example 7 at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Example 11 Liquid E: Dimethyl silicone: KF-96-500cs (kinematic viscosity 500mm 2 / s, refractive index 1.403, manufactured by Shin-Etsu Chemical Co., Ltd.) Nanoparticle A: Diamond nanoparticle (specific surface area 450 m 2 / g, mv value 10 nm, manufactured by Sumitomo Materials)
  • the baking pencil lead body obtained in the said Example 7 was press-impregnated at 1 Mpa, and the nano diamond containing baking pencil lead was obtained.
  • Example 12 Scale natural graphite A (ab surface with flatness 0.2 ⁇ m, mv value 8 ⁇ m, c-axis thickness 1 ⁇ m, aspect ratio 8) 70 parts by weight Kaolinite clay 15 parts by weight Halloysite clay 15 parts by weight Water 30 parts by weight Mix and disperse with a Henschel mixer and knead with two rolls until the water content is about 18 parts by mass. After the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour.
  • Liquid F Miyoshi adjustment lard (manufactured by Miyoshi Oil & Fats Co., Ltd.)
  • Nanoparticle A Diamond nanoparticle (specific surface area 450 m 2 / g, mv value 10 nm, manufactured by Sumiishi Materials Co., Ltd.)
  • the nanoparticles had an mv value of 0.125.
  • a fired pencil core having a diameter of 0.565 mm and a length of 60 mm was manufactured by firing at 1000 ° C. for 10 hours in a nitrogen gas atmosphere.
  • the fired pencil core was pressure impregnated at 1 MPa into the liquid A used in Example 7 to obtain a nanodiamond-containing fired pencil core.
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Nanoparticle B Diamond nanoparticle (single crystal diamond: specific surface area 18.54 m 2 / g, mv value 100 nm, manufactured by Sumitomo Materials)
  • the fired pencil core obtained in Example 7 is pressure impregnated at 1 MPa (impregnation time 180 minutes). And a nanodiamond-containing fired pencil lead was obtained.
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Nanoparticle C Diamond nanoparticle (cluster diamond: specific surface area 848 m 2 / g, mv value 20 nm, manufactured by Sumitomo Materials)
  • the fired pencil core obtained in Example 7 is pressure impregnated at 1 MPa (impregnation time 180 minutes). And a nanodiamond-containing fired pencil lead was obtained.
  • Example 13 The pencil core obtained in Example 7 was impregnated under pressure in the same manner as in Example 7 in the liquid A used in Example 7 not containing nanoparticles A to obtain a nanodiamond-containing fired pencil core.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid F (Miyoshi adjustment lard) used in Example 12, and was immersed in oil, and the wood-axis pencil lead of diameter 2.05mm was obtained.
  • liquid F Miyoshi adjustment lard
  • Example 15 The pencil core obtained in Example 12 was dipped in the liquid F (Miyoshi adjustment lard) used in Example 12 that does not contain nanoparticles A in the same manner as in Example 12 above, and the wood shaft with a diameter of 2.05 mm. I got a pencil lead.
  • F Miyoshi adjustment lard
  • the pencil pencils for mechanical pencils of Examples 7 to 11 and the wood spindle pencil core of Example 12 that fall within the scope of the present invention are comparative examples 8 to 8 that fall outside the scope of the present invention. 13 and the pencil lead for each mechanical pencil of Reference Example 2 and Comparative Examples 14 and 15, which have excellent bending strength and compressive strength, have sufficient color developability and drawing density, and wear. It was found that there was little erasability, good initial slip, good writing feeling (writing taste), and less soiling. On the other hand, when the comparative examples are viewed individually, the comparative example 8 is based on Example 11 of Japanese Patent Application Laid-Open No.
  • Comparative Examples 11 and 12 are cases where scaly graphite outside the scope of the present invention is used
  • Comparative Example 13 is a case where no nanoparticles are used. It was found that the pencil lead for pencils did not give the desired pencil lead.
  • Comparative Example 14 is a wood-axis pencil lead that conforms to Example 11 of Japanese Patent Application Laid-Open No. 2007-138031.
  • Comparative Example 15 is a wood-axis pencil lead that does not use nanoparticles, and these wood-axis pencil leads. It was found that the target pencil lead could not be obtained with the lead.
  • Example 13 Scale-like natural graphite A (ab surface of flatness 0.2 ⁇ m, mv value 8 ⁇ m, c-axis thickness 1 ⁇ m, aspect ratio 8) 40 parts by mass Nanoparticle A: Diamond nanoparticle (sphericity 10 nm, mv value 50 nm, dwelling) 0.4 parts by weight Polyvinyl chloride 40 parts by weight Sodium stearate 1 part by weight Dioctyl phthalate 19 parts by weight Henschel mixer in which the above flake graphite and the above nanoparticles A are rotated at a high speed (2000 rpm, the same applies hereinafter) After the production of flaky graphite with diamond nanoparticles attached (20 minutes to attach, the same applies hereinafter), the remaining materials are put into a Henschel mixer, mixed and dispersed, and kneaded with a pressure kneader and rolls
  • dioctyl phthalate is dried and 100% in a nitrogen gas atmosphere. ° C., by baking treatment at 10 hours to prepare a diameter 0.565Mm, baked pencil lead of length 60 mm. Subsequently, the above-mentioned fired pencil core was impregnated with pressure at 1 MPa in the liquid A described below (liquid temperature 100 ° C., the same applies hereinafter) to obtain a nanodiamond-containing fired pencil lead. .
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the nanoparticle A had an mv value of 0.125 with respect to the volume average diameter (mv value) 100 of the scaly natural graphite A.
  • Example 14 Liquid B: CMC-Na-1 wt% distilled water (7 mm 2 / s, refractive index 1.345)
  • the fired pencil lead obtained in Example 13 was impregnated under pressure at 1 MPa to obtain a nanodiamond-containing fired pencil lead.
  • Example 15 Liquid C: trimethylpentaphenyltrisiloxane (kinematic viscosity 175 mm 2 / s, refractive index 1.580, manufactured by Toray Industries, Inc.)
  • the fired pencil core obtained in Example 13 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid D Dimethyl silicone: KF-96L-5cs (kinematic viscosity 5 mm 2 / s, refractive index 1.396, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the fired pencil lead obtained in Example 13 was impregnated under pressure at 1 MPa to obtain a nanodiamond-containing fired pencil lead.
  • Liquid E Dimethyl silicone: KF-96-500cs (kinematic viscosity 500mm 2 / s, refractive index 1.403, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the fired pencil core obtained in Example 13 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Nanoparticle A Diamond nanoparticle (sphericity 10 nm, mv value 50 nm, dwelling) 0.4 parts by weight Kaolinite clay 15 parts by weight Halloysite clay 15 parts by weight Water 30 parts by weight The above materials are mixed and dispersed with a Henschel mixer, and the two rolls are sufficient until the water content is about 18 parts by weight. Heat kneading.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid F described below and immersed in oil to obtain a wood spindle pencil lead having a diameter of 2.05 mm.
  • Liquid F Miyoshi adjustment lard (manufactured by Miyoshi Oil & Fats Co., Ltd.)
  • the nanoparticles had an mv value of 0.125.
  • Nanoparticle A in Example 13 Diamond nanoparticles (sphericity 10 nm, mv value 50 nm, manufactured by Sumiishi Materials Co., Ltd.)
  • the same amount of nanoparticles B Diamond nanoparticles (sphericity 25 nm, mv value 50 nm, A nanodiamond-containing fired pencil lead was obtained in the same manner as in Example 13 except that the product was replaced with Sumiishi Materials Co., Ltd.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid F (Miyoshi adjustment lard) used in Example 18, and was immersed in oil, and the wood-axis pencil lead of diameter 2.05mm was obtained.
  • liquid F Miyoshi adjustment lard
  • Example 22 A pencil core obtained by the same formulation as in Example 18 except that it does not contain nanoparticles A is immersed in liquid F (Miyoshi adjustment lard) used in Example 18 in the same manner as in Example 18 above. A 2.05 mm wood axis pencil lead was obtained.
  • liquid F Miyoshi adjustment lard
  • the pencil lead for each mechanical pencil of Examples 13 to 17 and the wood-axis pencil lead of Example 18 within the scope of the present invention are comparative examples 16 to 16 that are outside the scope of the present invention.
  • 20 pencil pencils for mechanical pencils and wood spindle pencil cores of Comparative Examples 21 and 22 they have excellent bending strength and compressive strength, have sufficient color developability and line density, and have little wear and erase. It was found that the results were good, initial slip, good writing feeling (writing taste), and difficult to get dirty.
  • Comparative Example 16 is based on Example 11 of JP-A-2007-138031, and Comparative Example 17 is a nanoparticle that falls outside the scope of the present invention.
  • Comparative Examples 18 and 19 are cases where scaly graphite that falls outside the scope of the present invention is used, and Comparative Example 20 is obtained without adhering nanoparticles A during the blending of Example 13 above. It was found that the pencil lead of the present invention cannot be obtained with these pencil leads.
  • Comparative Example 21 is a wood-axis pencil lead that conforms to Example 11 of Japanese Patent Application Laid-Open No. 2007-138031, and Comparative Example 22 is a wood-axis pencil lead that does not use nanoparticles. It was found that the target pencil lead could not be obtained with the lead.
  • Example 19 Scale-like natural graphite A (ab surface with a flatness of 0.2 ⁇ m, mv value 8 ⁇ m, c-axis thickness 1 ⁇ m, aspect ratio 8) 40 parts by mass Nanoparticle A: Diamond nanoparticle (specific surface area 208 m 2 / g, mv value 50 nm) 0.4 parts by weight Polyvinyl chloride 40 parts by weight Sodium stearate 1 part by weight Dioctyl phthalate 19 parts by weight The scaly graphite and the nanoparticles A were rotated at a high speed (2000 rpm, the same applies hereinafter).
  • the remaining materials are put into a Henschel mixer, mixed and dispersed, and kneaded with a pressure kneader and roll. After molding, the dioctyl phthalate is dried and 1 in an N2 atmosphere. 00 ° C., followed by firing treatment at 10 hours to prepare a diameter 0.565Mm, baked pencil lead of length 60 mm.
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the nanoparticle A had an mv value of 0.125 with respect to the volume average diameter (mv value) 100 of the scaly natural graphite A.
  • Example 20 Liquid B: CMC-Na-1 wt% distilled water (7 mm 2 / s, refractive index 1.345)
  • the fired pencil lead obtained in Example 19 was impregnated under pressure at 1 MPa to obtain a nanodiamond-containing fired pencil lead.
  • Example 21 Liquid C: trimethylpentaphenyltrisiloxane (kinematic viscosity 175 mm 2 / s, refractive index 1.580, manufactured by Toray Industries, Inc.)
  • the fired pencil core obtained in Example 19 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid D Dimethyl silicone: KF-96L-5cs (kinematic viscosity 5 mm 2 / s, refractive index 1.396, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the fired pencil core obtained in Example 19 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid E Dimethyl silicone: KF-96-500cs (kinematic viscosity 500mm 2 / s, refractive index 1.403, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the fired pencil lead obtained in Example 19 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil lead.
  • Nanoparticle A Diamond nanoparticle (specific surface area 208 m 2 / g, mv value 50 nm) 0.4 parts by weight Kaolinite clay 15 parts by weight Halloysite clay 15 parts by weight Water 30 parts by weight The above materials are mixed and dispersed with a Henschel mixer, and the water is about 18 parts by weight with two rolls. Knead until fully heated.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid F described below and immersed in oil to obtain a wood spindle pencil lead having a diameter of 2.05 mm.
  • Liquid F Miyoshi adjustment lard (manufactured by Miyoshi Oil & Fats Co., Ltd.)
  • the nanoparticles had an mv value of 0.125.
  • Nanoparticle A of Example 19 Diamond nanoparticle (specific surface area 208 m 2 / g, mv value 50 nm, manufactured by Sumiishi Materials Co., Ltd.)
  • the same amount of nanoparticle B Diamond nanoparticle (specific surface area 18.54 m 2 / g, mv value 100 nm, manufactured by Sumiishi Materials Co., Ltd.) was used in the same manner as in Example 19 to obtain a nanodiamond-containing fired pencil lead.
  • Nanoparticle A of Example 19 Diamond nanoparticle (specific surface area 208 m 2 / g, mv value 50 nm, manufactured by Sumiishi Materials Co., Ltd.)
  • the same amount of nanoparticle B Diamond nanoparticle (cluster diamond, specific surface area 820 m 2 / G, mv value 20 nm)
  • a nanodiamond-containing fired pencil lead was obtained in the same manner as in Example 19 except that it was changed.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid F (Miyoshi adjustment lard) used in Example 6 and oil-immersed to obtain a wood spindle pencil lead having a diameter of 2.05 mm.
  • liquid F Miyoshi adjustment lard
  • Example 30 A pencil core obtained by the same formulation as in Example 24 except that it does not contain nanoparticles A is immersed in the liquid F (Miyoshi adjustment lard) used in Example 24 in the same manner as in Example 24 above, and the diameter A 2.05 mm wood axis pencil lead was obtained.
  • liquid F Miyoshi adjustment lard
  • Comparative Example 29 is a wood-axis pencil lead that conforms to Example 11 of Japanese Patent Application Laid-Open No. 2007-138031.
  • Comparative Example 30 is a wood-axis pencil lead that does not use nanoparticles, and these wood-axis pencil leads. It was found that the target pencil lead could not be obtained with the lead.
  • Nanoparticle A Diamond nanoparticle (sphericity 10 nm, mv value 50 nm, dwelling) 0.4 parts by weight Polyvinyl chloride 40 parts by weight Sodium stearate 1 part by weight Dioctyl phthalate 19 parts by weight First, nanoparticles and dioctyl phthalate are dispersed in a bead mill for 180 minutes, and the other materials described above are Henschel mixers.
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the nanoparticle A had an mv value of 0.125 with respect to the volume average diameter (mv value) 100 of the scaly natural graphite A.
  • Example 26 Liquid B: CMC-Na 1 wt% distilled water (7 mm 2 / s, refractive index 1.345)
  • the fired pencil core obtained in Example 25 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Example 27 Liquid C: trimethylpentaphenyltrisiloxane (kinematic viscosity 175 mm 2 / s, refractive index 1.580, manufactured by Toray Industries, Inc.)
  • the fired pencil core obtained in Example 25 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid D Dimethyl silicone: KF-96L-5cs (kinematic viscosity 5 mm 2 / s, refractive index 1.396, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the fired pencil core obtained in Example 25 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid E Dimethyl silicone: KF-96-500cs (kinematic viscosity 500mm 2 / s, refractive index 1.403, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the fired pencil core obtained in Example 25 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Example 30 In the liquid F described below, the fired pencil core obtained in Example 25 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid F Nanoparticle B (sphericity 1 nm, mv value 5 nm, manufactured by Sumiishi Materials) dispersed in liquid A by 0.1 part by mass
  • Nanoparticle A Diamond nanoparticle (sphericity 10 nm, mv value 50 nm, dwelling) 0.4 parts by weight Kaolinite clay 15 parts by weight Halloysite clay 15 parts by weight Water 30 parts by weight First, nanoparticles and water are dispersed in a bead mill for 180 minutes, and the other materials are mixed and dispersed in a Henschel mixer. Then, the mixture is sufficiently heated and kneaded with two rolls until the water content is about 18 parts by mass.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid G described below and immersed in oil to obtain a wood spindle pencil lead having a diameter of 2.05 mm.
  • Liquid G Miyoshi adjustment lard (manufactured by Miyoshi Oil & Fats Co., Ltd.)
  • the nanoparticles had an mv value of 0.125.
  • Nanoparticle A of Example 25 Diamond nanoparticles (sphericity 10 nm, mv value 50 nm, manufactured by Sumiishi Materials Co., Ltd.)
  • the same amount of nanoparticles B Diamond nanoparticles (sphericity 25 nm, mv value 50 nm, A nanodiamond-containing baked pencil lead was obtained in the same manner as in Example 25 except that it was replaced with Sumiishi Materials Co., Ltd.
  • Example 35 The pencil core obtained without dispersing nanoparticles during the production of Example 25 was impregnated under pressure in the same manner as in Example 25 in the liquid A used in Example 25 that did not contain nanoparticles A. A contained fired pencil lead was obtained.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid G (Miyoshi adjustment lard) used in Example 7, and was immersed in oil, and the wood-axis pencil lead of diameter 2.05mm was obtained.
  • liquid G Miyoshi adjustment lard
  • Example 37 Except for not containing nanoparticles A, the pencil core obtained by the same formulation as in Example 31 was immersed in the liquid G (Miyoshi adjustment lard) used in Example 7 in the same manner as in Example 31 above. A wood spindle pencil lead with a diameter of 2.05 mm was obtained.
  • Comparative Examples 33 and 34 are the cases where scaly graphite that falls outside the scope of the present invention is used, and Comparative Example 35 is a pencil lead obtained without dispersing nanoparticles during the blending of Example 25 above. It was found that a pencil lead that strongly exhibits the lubricating action of the present invention cannot be obtained with these pencil leads.
  • Comparative Example 36 is a wood-axis pencil lead that conforms to Example 11 of Japanese Patent Laid-Open No. 2007-138031.
  • Comparative Example 37 is a wood-axis pencil lead that does not use nanoparticles, and these wood-axis pencil leads. It was found that the target pencil lead could not be obtained with the lead.
  • Example 32 Scale-like natural graphite A (ab surface with a flatness of 0.2 ⁇ m, mv value 8 ⁇ m, c-axis thickness 1 ⁇ m, aspect ratio 8) 40 parts by mass Nanoparticle A: Diamond nanoparticle (specific surface area 208 m 2 / g, mv value 50 nm) 0.4 parts by weight Polyvinyl chloride 40 parts by weight Sodium stearate 1 part by weight Dioctyl phthalate 19 parts by weight First, nanoparticles and dioctyl phthalate are dispersed in a bead mill for 180 minutes, and the other materials described above are dispersed.
  • Liquid A dimethyl silicone oil KF96-30CS (kinematic viscosity 30 mm 2 / s, refractive index 1.401, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the nanoparticle A had an mv value of 0.125 with respect to the volume average diameter (mv value) 100 of the scaly natural graphite A.
  • Example 33 Liquid B: CMC-Na-1 wt% distilled water (7 mm 2 / s, refractive index 1.345)
  • the fired pencil core obtained in Example 32 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Example 34 Liquid C: trimethylpentaphenyltrisiloxane (kinematic viscosity 175 mm 2 / s, refractive index 1.580, manufactured by Toray Industries, Inc.)
  • the fired pencil core obtained in Example 32 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid D Dimethyl silicone: KF-96L-5cs (kinematic viscosity 5 mm 2 / s, refractive index 1.396, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the fired pencil core obtained in Example 32 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid E Dimethyl silicone: KF-96-500cs (kinematic viscosity 500mm 2 / s, refractive index 1.403, manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the fired pencil core obtained in Example 32 was pressure-impregnated at 1 MPa to obtain a nanodiamond-containing fired pencil core.
  • Liquid F A liquid A in which 0.1 part by mass of nanoparticles B (sphericity 1 nm, mv value 5 nm, manufactured by Sumiishi Materials) is dispersed.
  • Nanoparticle A Diamond nanoparticle (specific surface area 208 m 2 / g, mv value 50 nm) 0.4 parts by weight Kaolinite clay 15 parts by weight Halloysite clay 15 parts by weight Water 30 parts by weight First, the nanoparticles and water are dispersed in a beer mill for 180 minutes, and the other materials described above are used in a Henschel mixer. Mix and disperse and heat-knead with two rolls until the water content is about 18 parts by mass.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid G described below and immersed in oil to obtain a wood spindle pencil lead having a diameter of 2.05 mm.
  • Liquid G Miyoshi adjustment lard (manufactured by Miyoshi Oil & Fats Co., Ltd.)
  • the nanoparticles had an mv value of 0.125.
  • Nanoparticle A of Example 32 Diamond nanoparticle (specific surface area 208 m 2 / g, mv value 50 nm, manufactured by Sumiishi Materials Co., Ltd.)
  • the same amount of nanoparticle B Diamond nanoparticle (specific surface area 18.54 m 2 / g, mv value 100 nm, manufactured by Sumiishi Materials Co., Ltd.) was used in the same manner as in Example 32 to obtain a nanodiamond-containing fired pencil lead.
  • Nanoparticle A of Example 32 Diamond nanoparticle (specific surface area 208 m 2 / g, mv value 50 nm, manufactured by Sumiishi Materials Co., Ltd.)
  • the same amount of nanoparticles C Cluster diamond nanoparticle (specific surface area 848 m 2 / g) , Mv value 20 nm, manufactured by Sumiishi Materials Co., Ltd.) was used to obtain a nanodiamond-containing fired pencil lead in the same manner as in Example 32.
  • Example 43 The pencil core obtained without containing nanoparticles A during the blending of Example 32 above was impregnated under pressure in the same manner as in Example 1 above, in the liquid A used in Example 32 not containing nanoparticles A, A nanodiamond-free baked pencil lead was obtained.
  • the resulting kneaded product was extruded into a linear body using an extrusion die, it was heat-treated in air at 120 ° C. for 20 hours to remove residual moisture, and in a nitrogen atmosphere to 1,200 ° C. for 10 hours. Firing was performed at 1,200 ° C. for 1 hour. Subsequently, it was immersed in the liquid G (Miyoshi adjustment lard) used in Example 38, and was immersed in oil, and the wood-axis pencil lead of diameter 2.05mm was obtained.
  • liquid G Miyoshi adjustment lard
  • Example 45 A pencil core obtained by the same formulation as in Example 38 except that it does not contain nanoparticles A is immersed in the liquid G (Miyoshi adjustment lard) used in Example 7 in the same manner as in Example 7 above. A 2.05 mm wood-axis pencil lead was obtained.
  • each pencil lead for mechanical pencils of Examples 32 to 37 within the scope of the present invention and the wood spindle pencil core of Example 38 are within the scope of the present invention.
  • it has excellent bending strength and compressive strength, has sufficient color development and drawing density, and has little wear and erase. It was found that the results were good, initial slip, good writing feeling (writing taste), and difficult to get dirty.
  • the comparative example 38 is based on the actual example 11 of Japanese Patent Application Laid-Open No.
  • Comparative Example 43 was obtained without dispersing nanoparticles during the blending of Example 32 above. It was found that pencil leads were manufactured, and it was found that these pencil leads could not provide a pencil lead that strongly exerted the lubricating action intended by the present invention. Comparative Example 44 is a wood-axis pencil lead that conforms to Example 11 of Japanese Patent Application Laid-Open No. 2007-138031, and Comparative Example 45 is a wood-axis pencil lead that does not use nanoparticles. It was found that the target pencil lead could not be obtained with the lead.
  • the pencil lead for mechanical pencils In addition to the pencil lead for mechanical pencils, the pencil lead for wooden axes, etc., it is a pencil lead used for mechanical pencils that are always written by a new part, with the core rotating every time you write. Even if it exists, the manufacturing method of the pencil lead which becomes a bright black which has a further smooth writing feeling and has a still higher line density is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

 強度が強く、滑らかな筆記感を有し、描線が濃く鮮やかな黒色となるシャープペンシル用鉛筆芯、木軸用鉛筆芯などに好適な鉛筆芯を提供するために、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子、または、上記黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が200~600m/gのナノ粒子が、該黒鉛のab面と接触している構造、または、該黒鉛のab面と接着している構造とする。

Description

鉛筆芯及びその製造方法
 本発明は、シャープペンシル用鉛筆芯、木軸用鉛筆芯などの鉛筆芯に関し、更に詳しくは、強度が強く、滑らかな筆記感を有し、描線が濃く鮮やかな黒色となる鉛筆芯及びその製造方法に関する。
 一般に、鉛筆芯において、要求される重要特性としては、筆記感が良好で描線の発色性が良く、機械的強度が強いことである。
 本願出願人は、鉛筆芯などの固形描画材中の油含浸可能な有効細孔容積や表面積を大きくし、圧縮強度を更に向上させると共に、書き味が滑らかで、十分な発色性及び描線濃度を有し、しかも、摩耗量が少なく、消去性が良く、描線を手でこすっても汚れにくい固形描画材及びその製造方法を提供するために、ナノ材料(ナノ粒子)を少なくとも含有する固形描画材用配合組成物を焼成処理又は非焼成処理してなる固形描画材芯体を形成し、該固形描画材芯体の気孔内に潤滑剤を充填してなることを特徴とする固形描画材を提案している(例えば、特許文献1参照)。
 また、微粒子を高濃度に含有する厚い皮膜を筆記により形成できる押出成形芯体である鉛筆芯を製造する方法を提供することを目的として、平均粒径100nm以下の微粒子の一部又は全部を、予め板状体質材表面に付着させて微粒子付着板状体質材としてから芯体材料と混合し、混練した後、押出成形により成形する芯体の製造方法(例えば、特許文献2参照)も知られており、この技術は上記特許文献1の開示内容を含むものである。なお、この特許文献2に記載の皮膜の厚さは、単に下地を隠蔽する力を数値によって表現したにすぎず、見た目の色目(濃度)や書き味とは関連ないものである。
 ところで、上記特許文献1における「書き味」あるいは「筆記感」と称している評価項目については、以下のような欠点が存在している。それは、被験者が、短い時間での筆記によって、あまりシャープペンシルの持ち替えなどを行わず、試験開始時の体勢のまま片減りした面によって描いた時の感覚を元に評価を行っていたことである。片減りした面は、摩耗した平滑な面であるため、描き始めから描き終わりまで、ほぼ摩耗した平滑な面での筆記ということとなる。
 このため、最近、発売され好評を博している本願出願人による製品〔シャープペンシル、商品名「クルトガ」、三菱鉛筆社製、WO2007/142135(特許第4240417号)〕に適用した場合、具体的には、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルに試験すべき芯体を適用して試験を行った場合、これまでのような筆記感が再現されないという問題点が生じることが判った。
 すなわち、上記特許文献1等に記載される技術により、単純にナノ粒子を混合し、固形描画材を形成しても、より優れた描線濃度、実筆記における書き味及びその代表的な指標となる静・動摩擦係数の好適な評価等を得ることはできないものであった。単純にナノ粒子を混合した固形描画材において、静・動摩擦係数を測定する場合、上記した「書き味」あるいは「筆記感」と称している評価項目について、芯体の製造方法、構成等によっては、必ずしも再現しない、という課題が発見されたのである。
 以上のように、ナノ材料(ナノ粒子)を用いた鉛筆芯において、従来のシャープペンシル用、木軸用などに使用する場合の他に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、高い強度を有すると共に、描線が濃く鮮やかな黒色となる鉛筆芯及びその製造方法が切望されているのが現状である。
特開2007-138031号公報(特許請求の範囲、実施例等) 特開2008-115211号公報(特許請求の範囲、実施例等)
 本発明は、上記従来技術の課題及び現状等に鑑み、これを解消しようとするものであり、ナノ粒子を用いた鉛筆芯において、通常のシャープペンシル用、木軸用などに使用する場合の他に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法を提供することを目的とする。
 本発明者らは、上記従来の課題等に鑑み、鋭意研究を行った結果、黒鉛等により鉛筆芯の芯体を形成後、特定の液体に、特定の粒子径と真球度を持つナノ粒子を均一に分散させ、または、特定の液体に、特定の粒子径と比表面積を持つナノ粒子を均一に分散させ、これらを含浸させて鉛筆芯を製造すると、上述の特許文献1等に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯及びその製造方法を得ることに成功し、本発明を完成するに至ったのである。
 また、本発明者らは、上記従来の課題等に鑑み、鋭意研究を行った結果、特定物性の鱗片状黒鉛に、該黒鉛に対して特定物性のナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成後、特定物性の液体に含浸させて鉛筆芯を製造すると、上述の特許文献1等に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯及びその製造方法を得ることに成功し、本発明を完成するに至ったのである。
 更に、本発明者らは、上記従来の課題等に鑑み、鋭意研究を行った結果、特定物性の鱗片状黒鉛を用いて、該黒鉛に対して特定物性のナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から芯体を形成することにより、上述の特許文献1等に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯の製造方法を得ることに成功し、本発明を完成するに至ったのである。
 すなわち、本発明は、次の(1)~(21)に存する。
(1) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子が、該黒鉛のab面と接触していることを特徴とする鉛筆芯。
(2) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子が、該黒鉛のab面と接触していることを特徴とする鉛筆芯。
(3) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子が、該黒鉛のab面と接着していることを特徴とする鉛筆芯。
(4) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子が、該黒鉛のab面と接着していることを特徴とする鉛筆芯。
(5) 前記鉛筆芯に用いるナノ粒子がカーボンナノ粒子であることを特徴とする上記(1)~(4)の何れか一つに記載の鉛筆芯。
(6) 前記カーボンナノ粒子がダイヤモンドであることを特徴とする上記(5)に記載の鉛筆芯。
(7) 前記ナノ粒子の体積平均径(mv値)が4~100nmであることを特徴とする上記(1)~(6)の何れか一つに記載の鉛筆芯。
(8) JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数が0.191~0.218であることを特徴とする上記(1)~(7)の何れか一つに記載の鉛筆芯。
(9) 鉛筆芯の研磨断面をFE-SEM(加速電圧5kV)を用いて5μm×5μmを観察したとき、該ナノ粒子が1~300個観察されることを特徴とする上記(1)~(8)の何れか一つに記載の鉛筆芯。
(10) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯の芯体を形成後、ナノ粒子を、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体に分散させた後、該鉛筆芯体に含浸させることを特徴とする上記(1)、(2)及び(5)~(9)の何れか一つに記載の鉛筆芯の製造方法。
(11) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることを特徴とする上記(3)及び(5)~(9)の何れか一つに記載の鉛筆芯の製造方法。
(12) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることを特徴とする上記(4)~(9)の何れか一つに記載の鉛筆芯の製造方法。
(13) 前記黒鉛に前記ナノ粒子を静電力によって接触させることを特徴とする上記(11)又は(12)に記載の鉛筆芯の製造方法。
(14) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛と、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から芯体を形成することを特徴とする鉛筆芯の製造方法。
(15) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛と、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から芯体を形成することを特徴とする鉛筆芯の製造方法。
(16) 前記ナノ粒子がカーボンナノ粒子であることを特徴とする上記(14)又は(15)に記載の鉛筆芯の製造方法。
(17) 前記カーボンナノ粒子がダイヤモンドであることを特徴とする上記(16)に記載の鉛筆芯の製造方法。
(18) 前記ナノ粒子の体積平均径(mv値)が4~100nmであることを特徴とする上記(14)~(17)の何れか一つに記載の鉛筆芯の製造方法。
(19) JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数が0.191~0.218であることを特徴とする上記(14)~(18)の何れか一つに記載の鉛筆芯の製造方法。
(20) 芯体形成後、前記ナノ粒子によって鱗片状黒鉛と鱗片状黒鉛の間に生じた隙間に、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることを特徴とする上記(14)~(19)の何れか一つに記載の鉛筆芯の製造方法。
(21) 鉛筆芯の研磨断面をFE-SEM(加速電圧5kV)を用いて5μm×5μmを観察したとき、該ナノ粒子が1~300個観察されることを特徴とする上記(14)~(20)の何れか一つに記載の鉛筆芯の製造方法。
 なお、本発明で規定する「JIS S 6005:2007」に規定されている画線機は、芯体を75度の角度に傾け、自転させながら描画させるものであり、前記した筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルの筆記時、描画時の態様に近いものである。そこで、JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値を筆記荷重で割った値(n=10)を、本願発明において、「動摩擦係数」、筆記初期の摩擦力を筆記荷重で割った値を「静摩擦係数」と称して評価項目とした。
 本発明によれば、ナノ粒子を用いた鉛筆芯において、通常のシャープペンシル用、木軸用などに使用する場合の他に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法が提供される。
鱗片状天然黒鉛の平面度等を測定するための電子顕微鏡(SEM)画像に基づく説明図である。
 以下に、本発明の実施形態、具体的には、第1実施形態~第6実施形態を各実施形態ごとに詳しく説明する。
〔第1実施形態〕
 本発明の第1実施形態となる鉛筆芯は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子が、該黒鉛のab面と接触していることを特徴とするものである。
 また、本発明の第1実施形態となる鉛筆芯の製造方法は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯の芯体を形成後、ナノ粒子を、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体に分散させた後、該鉛筆芯体に含浸させることを特徴とするものである。
 なお、「本発明」というときは、第1実施形態~第6実施形態の各実施形態を含むものであり、また、第1実施形態と同様の構成は、第2実施形態以下の説明中においてその旨を示して、その説明を省略する。
 本発明の第1実施形態において用いる鱗片状黒鉛は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上であることが必要であり、好ましくは、書き味、筆記抵抗の点から、少なくとも平面度が0.05~2μmのab面を持つa軸またはb軸とc軸のアスペクト比が5~100であるものが望ましい。
 用いる鱗片状黒鉛の平面度が2μmを越えものや、その鱗片状黒鉛のab面を持つa軸またはb軸とc軸のアスペクト比が5未満のものでは、潤滑に不利な条件となる結果、摩擦が大きくなり、好ましくない。
 本発明の第1実施形態において、用いることができる鱗片状黒鉛としては、上記特性である、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上となる鱗片状黒鉛あれば、特に限定されず、例えば、上記特性を有する天然黒鉛、人造黒鉛、キッシュ黒鉛、膨張黒鉛、膨張化黒鉛などから選択することができ、これらは各単独又は2種以上を用いてもよいものである。
 また、第1実施形態における鱗片状黒鉛は、強度と書き味の点から、体積平均径(mv値)が4~10μmであるものが望ましい。
 なお、本発明(第1実施形態~第6実施形態、後述する実施例等を含む)における体積平均径(mv値)は、レーザー回折・散乱法における測定結果から体積で重みづけされた平均径をいい、例えば、鱗片状黒鉛では、マイクロトラック(日機装社製、3100II)を用いて乾式測定することができ、後述するナノ粒子では、ナノトラック〔日機装社製、UPA-EX150(内部プローブ型)〕を用いて測定することができる。
 本発明の第1実施形態では、上記鱗片状黒鉛を用いて鉛筆芯形成用の芯体を形成する。この鉛筆芯形成用の芯体は、上記鱗片状黒鉛を含有した鉛筆芯配合組成物を焼成処理又は非焼成処理することにより形成することができる。
 第1実施形態において、鉛筆芯形成用の芯体は、上記特性の鱗片状黒鉛を含有した鉛筆芯配合組成物を用いるものであるが、該鱗片状黒鉛以外の成分は鉛筆芯種等により、体質材、潤滑剤、熱可塑性合成樹脂などのバインダー成分、有機溶剤などの各成分を適宜選択して用いることができる。
 例えば、鉛筆芯がシャープペンシル用焼成鉛筆芯では、鱗片状黒鉛以外に、カーボンブラックとアモルファス炭素を少なくとも含有せしめることができ、また、非焼成鉛筆芯では、油脂とワックス類とを少なくとも含有することができ、更に、焼成鉛筆芯では、体質材とセラミック結合材とを少なくとも含有することができる。
 用いことができるカーボンブラックとしては、例えば、オイルファーネスブラック、ガスファーネスブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、ランプブラック、及びこれらを黒鉛化した黒鉛化カーボンブラックなどが挙げられる。
 また、体質材としては、従来の鉛筆芯に使用されているものであれば、特に限定されるものではなく、いずれも使用することができる。例えば、窒化ホウ素、カオリン(カオリナイト、ハロイサイト)、モンモリロナイト、タルク、マイカ、炭酸カルシウム等の白色系体質材や有色系の体質材も使用することができ、当然これら数種類の混合物も使用できる。特に、好ましくは、その物性、形状から窒化ホウ素、カオリン、タルクが挙げられる。
 セラミック結合材としては、結晶質又は非晶質のSiO、Si、Al、ZrO、MgO、BN、B、AlNなどが挙げられ、これらは各単独又は2種以上を用いてもよいものである。
 熱可塑性合成樹脂としては、例えば、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩素化塩化ビニル、ポリアミド、ポリエチレン、ポリプロピレン、ポリエーテルエーテルケトンなどを挙げられる。
 有機溶剤としては、上記熱可塑性合成樹脂を溶解し得るものが好ましく、具体的には、ジオクチルフタレート、ジブチルフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジアリルイソフタレート、プロピレンカーボネート、アルコール類、ケトン類、エステル類などを用いることができる。
 また、シャープペンシル用焼成鉛筆芯では、その他の成分として、α-オレフィンオリゴマー、脂肪酸エステル、スピンドル油、ワックス類、窒化ホウ素、タルク、シリコーンオイル、シリカ微粒子、金属石鹸等を用いることができ、非焼成鉛筆芯又は焼成鉛筆芯では、その他の成分として、シリコーンオイル、ラード、アクリル樹脂、エポキシ樹脂、セルロイド及びその他の熱可塑性樹脂等を用いることができる。
 本発明の第1実施形態では、上述の鉛筆芯用配合組成物、例えば、シャープペンシル用焼成鉛筆芯、非焼成鉛筆芯、焼成鉛筆芯に用いる各成分(体質材、熱可塑性樹脂、有機溶剤など)を混練、成型、乾燥及び非酸化性雰囲気下で焼成処理、または、非焼成処理(50~120℃で低温乾燥)してなる鉛筆芯用芯体を形成することができる。
 この鉛筆芯用芯体を形成するために用いる上記特性の鱗片状黒鉛の含有量は、鉛筆芯用配合組成物全量に対して、20~80質量%(以下、単に「%」という)とすることが好ましく、更に好ましくは、30~70%とすることが望ましいが、硬度によって最適値は異なる。
 この鱗片状黒鉛の含有量が、20%未満であったり、80%を超えたりすると、硬度、書き味、強度のバランスが崩れる結果となり、好ましくない。
 本発明の第1実施形態において、例えば、シャープペンシル用焼成鉛筆芯の製造では、好ましくは、強度、濃度、書き味の点から、鉛筆芯配合組成物全量に対して、(a)上記特性の鱗片状黒鉛20~80%、(b)熱可塑性合成樹脂30~60%、(c)該熱可塑性合成樹脂を溶解し得る有機溶剤0~30%を、ヘンシェルミキサーで分散混合し、加圧ニーダー、二本ロールで混練し、押出成形機により成形した後、電気炉で110~250℃で乾燥し、次いで、非酸化性雰囲気下(窒素ガス雰囲気下、不活性ガス雰囲気下)で800~1400℃、20~40時間で焼成することにより鉛筆芯形成用の芯体を形成することができる。
 本発明の第1実施形態の鉛筆芯は、上記で形成した鉛筆芯体に、ナノ粒子を、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体に分散させた後、該鉛筆芯体に含浸させることにより得られる。
 本発明の第1実施形態に用いる液体は、ナノ粒子を鉛筆芯体の気孔内に含浸せしめ、鉛筆芯体を構成する鱗片状黒鉛のab面にナノ粒子を接触せしめる構造とするため、および濃度を高める目的と共に、潤滑剤として作用させるために用いるものであり、気孔への浸透しやすさと光の反射率の点から、屈折率1.3~1.5で、25℃における動粘度が7~200mm/sとなるものが挙げられる。
 用いることができる液体としては、上記特性の液体であれば、特に限定されず、上記特性を有するジメチルシリコーン、ジメチルシリコーンオイル、カルボキシメチルセルロース(CMC)液、トリメチルペンタフェニルトリシロキサン、流動パラフィン、脂肪酸エステル等の各単独又は2種以上の混合物が挙げられる。具体的には、市販されている、カネダ社製のハイコールMシリーズ、信越化学社製のKF-96シリーズなどが挙げられる。
 なお、本発明(後述する実施例等を含む)における屈折率は、絶対屈折率をいい、また、動粘度はJIS K 2283およびJIS Z 8803の粘度測定法に基づいた単位〔mm/s〕の値をいい、例えば、「キャノンフェンスケ」、「ウベローデ」によって直接測定することができる。
 これらの液体の屈折率が1.3を下回る場合や1.5を超える場合には、反射率低減に対する寄与が低く、更に、粘度が7mm/sを下回る場合には、芯体内に液体を保持できず、経時的に流出するものとなり、一方、粘度が200mm/sを超える場合は、液体が細孔内へ均一に浸透しないものとなり、好ましくない。
 本発明の第1実施形態において、用いるナノ粒子としては、一般的にナノ粒子に分類されているものであれば、特に限定されず、いずれも使用することができ、例えば、ダイヤモンドナノ粒子、カーボンナノチューブの複合粒子およびフラーレンの複合粒子などのカーボンナノ粒子、並びに、ケイ素、チタン、ジルコニウム、アルミニウム、セリウム等の金属の酸化物セラミック、窒化物セラミック、燐酸化物セラミック、炭化物セラミック、珪酸化物セラミックおよびホウ化物セラミックなどのセラミックナノ粒子などを用いることができる。
 鉛筆芯を製造する場合には、色相変化抑制の観点からカーボンナノ粒子が好ましく、より好ましくは経済性、滑らかな筆記性が得られる点からダイヤモンドナノ粒子が特に好ましい。
 用いることができるダイヤモンドナノ粒子としては、例えば、爆発法、静圧法、衝撃圧縮法、EACVD法、気相合成法及び液相成長法で作製したダイヤモンドナノ粒子が挙げられ、形態としては、例えば、多結晶ダイヤモンド粒子、単結晶ダイヤモンド粒子およびクラスターダイヤモンドなどが挙げられる。
 具体的には、ナノ炭素研究所社製の商品名「ナノアマンドB」、東名ダイヤモンド工業社製のMDシリーズ、住石マテリアルズ社製のSCMナノダイヤ、SCMファインダイヤ、ナノテックシステムズ社製CD(Cluster Diamond)、CDS(Cluster Diamond Slurry)、GCD(Graphite Cluster Diamond)、GCDS(graphite Cluster Diamond slurry)、JETRO社製人口ダイヤモンド等を用いることができる。
 用いるナノ粒子の真球度の範囲としては、真球度0.1~20nm、好ましくは、0.1~10nm、更に好ましくは、0.1~5nmとなるものが望ましい。なお、本発明(第1実施形態~第6実施形態、後述する実施例等を含む)において、「真球度」とは、JIS B 1501に玉軸受用鋼球の測定方法として規定されているものと同等のものをいう。これによると真球度は、測定する鋼球1個を真円度測定機で互いに90°をなす2または3赤道平面上の鋼球表面の輪郭を測定し、それぞれの最小外接円から鋼球表面までの半径方向の距離の最大値として求めるとあるが、本発明の第1実施形態のナノ粒子は微小過ぎるためこの方法では計れないためJISに準拠した測定を行うこととした。SEMまたはTEM画面上で観察される粒子10個の1赤道平面についてのみ、最小外接円から粒子表面までの半径方向の距離の最大の値として真円度を画像処理によって測定し、真球度の値とした。
 この真球度が0.1nmを下回るナノ粒子では、原料の調達性、コスト、取り扱い性等の点から好ましくなく、一方、真球度が20nmを超えるようなナノ粒子を用いると、ナノ粒子自体の形状が固体潤滑剤として不適当な形状である確率が大きくなり、立体障害を生じて摩擦が大きくなる結果となり、好ましくない。
 本発明の第1実施形態において、用いるナノ粒子の体積平均粒径(mv値)は、製造時に鉛筆芯中の細孔(クローズドセル)と細孔(クローズドセル)をつなぎ、開放系の細孔(オープンセル)を更に形成せしめる点から、上記セラミック材料からなるナノ粒子、ダイヤモンドナノ粒子を含むカーボンナノ粒子などのナノ粒子では、上記特性の黒鉛の体積平均径(mv値)100に対して0.01~2のmv値を持つことが必要であり、好ましくは、0.1~1のmv値を持つことが望ましい。
 用いるナノ粒子の体積平均径(mv値)は、好ましくは、4~100nm、更に好ましくは、5~40nm、特に好ましくは、5~30nmとすることが望ましい。
 上記セラミック材料からなるナノ材料やダイヤモンドナノ粒子を含むカーボン粒子等のナノ粒子の体積平均径が上記特性の黒鉛の体積平均径(mv値)100に対して0.05未満又はナノ粒子の体積平均径(mv値)4nm未満であると、粒子としての単分散が困難で凝集しやすかったり、反応性が高く不安定になったりし、結果として黒鉛の滑りに逆作用する結果となり、一方、上記特性の黒鉛の体積平均径(mv値)100に対して2超過又はナノ粒子の体積平均径(mv値)が100nmを越えると、鉛筆芯としての構造が崩れて強度が低下してしまい、好ましくない。
 なお、上記ダイヤモンドナノ粒子には、微量の不純物が含まれるがその殆どがダイヤモンド構造に由来するsp表面官能基であり、オイルに分散させる際に取り除かれる成分である。それ以外の不純物は0.2%程度であるので、本発明の効果に悪影響を及ぼすものではない。また、「ダイヤモンドの純度99%以上」となるダイヤモンドは、摩擦係数が低い固体潤滑剤であるが、一般的に固体潤滑剤中の固体潤滑剤ではない不純物は1%を越えると潤滑特性が低下し始めるためである。
 これらの特性を有するナノ粒子の液体中への含有量としては、含浸処理により得られる鉛筆芯中にナノ粒子の含有量が、好ましくは、0.001~5%、更に好ましくは、0.002~1%、特に好ましくは、0.01~0.5%となるように調整されるものである。
 得られる鉛筆芯中に上記範囲のナノ粒子を含有量とするためには、鉛筆芯体の大きさ、細孔径と細孔容積などにより変動するが、含浸処理せしめる液体全量中に、ナノ粒子が好ましくは、0.01~10%、更に好ましくは、0.02~2%、特に好ましくは、0.05~0.5%とすることが望ましい。
 この鉛筆芯中におけるナノ粒子の含有量が0.001%未満であると、有効細孔容積が殆ど変化しなく、また、未添加の鉛筆芯との差が現れなくなる。一方、ナノ粒子の含有量が5%を超える芯とするためには有効細孔容積を大きくしなければならないが、それでは鉛筆芯の強度が著しく低下してしまう。また、含浸する分散液中のナノ粒子濃度を高める必要もあるが、それでは芯体内のナノ粒子配合分布量にバラツキが生じてしまい、好ましくない。
 本発明の第1実施形態では、上記特性のナノ粒子を、上記特性の液体に分散せしめた分散液体に、鉛筆芯体をそのまま浸漬、または、加圧下(例えば、0.5~5MPa)及び/又は加温下(例えば、液温60~200℃)で浸漬処理等することにより、目的の鉛筆芯、すなわち、上記特性の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち真球度0.1~20nmのナノ粒子が、該黒鉛のab面と接触してなる鉛筆芯が得られるものとなる。
 得られる第1実施形態の鉛筆芯は、上記範囲でナノ粒子を含有し、上記製造法により製造すると、好適な摩耗特性等を有する鉛筆芯となるものであり、更に好ましくは、JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数(動摩擦係数)が0.191~0.218となるものが望ましく、これにより、更に、芯体が回転する形態のシャープ芯においても、更に、滑らかな筆記が感じられる芯体を得ることができる。
 また、鉛筆芯の研磨断面をFE-SEM(日立ハイテク社製、S-4700型、加速電圧5kV-電流値10μA)を用いて5μm×5μmを観察したとき、ナノ粒子が1~300個観察されることが好ましく、上記の「更に好ましい範囲」のナノ粒子の添加では2~100個観察され、「特に好ましい範囲」の添加では5~50個観察されるものとなる。
 これらの全摩擦係数、ナノ粒子の個数は、用いる鱗片状黒鉛の平面度、アスペクト比等の物性、その含有量、並びに、ナノ粒子の真球度、体積平均径(mv値)及びその含有量(含浸量)、更に、オイルの種類などを好適に組み合わせることにより、調整することができる。
 このように構成される本発明の第1実施形態では、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を少なくとも含有せしめた鉛筆芯配合組成物を焼成処理後、真球度0.1~20nmを持ち、上記特性の黒鉛に対して特定範囲となる体積平均径(mv値)のナノ粒子を含有せしめた液体を含浸することにより、上記特性の鱗片状黒鉛からなる構成される多孔質体の孔に、ナノ粒子を浸入させた状態(鱗片状黒鉛のab面にナノ粒子が接触している状態)として、鉛筆芯の多孔質構造の性質を、通常のものとは、変化した性質が得られることとなる。具体的には、上記特性の液体中に含有されたナノ粒子がサスペンションまたはベアリングの効果を発揮するので、ナノ粒子を添加しないときより、芯の潤滑が大幅に良くなる。これにより、鉛筆芯の潤滑が大幅に向上する。また、芯体中にナノ粒子が入ることにより、平滑な描線が乱反射を起こすので、いわゆる「テカリ」が無くなり、結果として濃い色となる。しかも、上記特性の鱗片状黒鉛自身の作用により、紙と鱗片状黒鉛粒子、鱗片状黒鉛粒子同士の摩擦が小さくなり、消去性も向上することとなる。更に、上記特性の鱗片状黒鉛の配向を邪魔せずにナノ粒子を均一に分散することができるので、体質材としての効果もプラスされ、圧縮強度も向上することとなり、また、芯体の摩耗量が少ないので、描線に乗っている黒鉛量も少なく手が汚れにくいものとなる。
 更に、本発明の第1実施形態では、更に、上記作用効果と共に、上記で挙げた特許文献1に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯となるものであり、特に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法が得られるものとなる(この点に関しては、後述する実施例1~6、参考例1及び比較例1~7で更に詳述する)。
 本発明の第1実施形態の鉛筆芯は、上記第1実施形態に限定されるものではなく、本発明の技術思想の範囲内で、種々変更して実施することができる。例えば、上記第1実施形態で得た芯体、すなわち、上記特性の鱗片状黒鉛を少なくとも含有する鉛筆芯用配合組成物を焼成処理又は非焼成処理してなる鉛筆芯体を形成する前、例えば、黒鉛粒子のab面にナノ粒子を付着させておいて、焼成後に上記特性のナノ粒子を含有する液体を充填してなるものであってもよいものである。この場合、鉛筆芯体中のナノ粒子と液体中のナノ粒子とは完全に独立するものとなるので、同一又は異なるナノ粒子を異なる含有量で用いてもよいものである。この場合のナノ粒子の好ましい含有量は、鉛筆芯中に最大10%となるものが望ましい。
〔第2実施形態〕
 本発明の第2実施形態の鉛筆芯は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子が、該黒鉛のab面と接触していることを特徴とするものである。
 また、本発明の第2実施形態の鉛筆芯の製造方法は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯の芯体を形成後、ナノ粒子を、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体に分散させた後、該鉛筆芯体に含浸させることを特徴とするものである。
 本発明の第2実施形態は、上記第1実施形態で用いた、上記鱗片状黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmとなるナノ粒子に代えて、当該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gとなるナノ粒子を用いた点でのみ、異なるものであり、当該ナノ粒子(後述)以外の鱗片状黒鉛の使用、該鱗片状黒鉛を用いて鉛筆芯形成用の芯体の形成等は上記第1実施形態と同様であり、以下に、上記第1実施形態と相違する点について詳述し、同様の構成、製法などはその説明を省略する。
 本発明の第2実施形態における鉛筆芯は、上述の第1実施形態と同様に形成した鉛筆芯体に、鱗片状黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を、第1実施形態と同様の屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体に分散させた後、該鉛筆芯体に含浸させることにより得られる。
 第2実施形態において、用いるナノ粒子としては、一般的にナノ粒子に分類されているものであり、上記物性を有するものであれば、特に限定されず、いずれも使用することができ、例えば、ダイヤモンドナノ粒子、カーボンナノチューブの複合粒子およびフラーレンの複合粒子などのカーボンナノ粒子、並びに、ケイ素、チタン、ジルコニウム、アルミニウム、セリウム等の金属の酸化物セラミック、窒化物セラミック、燐酸化物セラミック、炭化物セラミック、珪酸化物セラミックおよびホウ化物セラミックなどのセラミックナノ粒子などを用いることができる。
 鉛筆芯を製造する場合には、色相変化抑制の観点からカーボンナノ粒子が好ましく、より好ましくは経済性、滑らかな筆記性が得られる点からダイヤモンドナノ粒子が特に好ましい。
 用いることができるダイヤモンドナノ粒子としては、例えば、爆発法、静圧法、衝撃圧縮法、EACVD法、気相合成法及び液相成長法で作製したダイヤモンドナノ粒子が挙げられ、形態としては、例えば、多結晶ダイヤモンド粒子、単結晶ダイヤモンド粒子およびクラスターダイヤモンドなどが挙げられる。
 具体的には、ナノ炭素研究所社製の商品名「ナノアマンドB」、東名ダイヤモンド工業社製のMDシリーズ、住石マテリアルズ社製のSCMナノダイヤ、SCMファインダイヤ、ナノテックシステムズ社製CD(Cluster Diamond)、CDS(Cluster Diamond Slurry)、GCD(Graphite Cluster Diamond)、GCDS(graphite Cluster Diamond slurry)、JETRO社製人口ダイヤモンド等を用いることができる。
 第2実施形態で用いるナノ粒子の比表面積の範囲としては、50~800m/g、好ましくは、100~800m/g、更に好ましくは、300~700m/gとなるものが望ましい。なお、本発明(後述する実施例等を含む)において、「比表面積」とは、BET流動法により求められるBET比表面積をナノ粒子の比表面積とした。このBET比表面積は、例えば、マウンテック社製の全自動BET比表面積測定装置(HM model-1208)により測定することができる。
 この比表面積が50m/gを下回るナノ粒子では、本発明で提案する黒鉛粒界でのナノ潤滑は得られず、原料の調達性、コスト、取り扱い性等の点からも好ましくなく、一方、800m/gを超えるようなナノ粒子を用いると、ナノ粒子自体の形状が固体潤滑剤として不適当な形状である確率が大きくなり、本発明で提案する滑り潤滑が得られないため、好ましくない。
 本発明の第2実施形態において、用いるナノ粒子の体積平均粒径(mv値)は、製造時に鉛筆芯中の細孔(クローズドセル)と細孔(クローズドセル)をつなぎ、開放系の細孔(オープンセル)を更に形成せしめる点から、上記セラミック材料からなるナノ粒子、ダイヤモンドナノ粒子を含むカーボンナノ粒子などのナノ粒子では、上記第1実施形態と同様に、上記特性の黒鉛の体積平均径(mv値)100に対して0.01~2のmv値を持つことが必要であり、好ましくは、0.1~1のmv値を持つことが望ましい。
 用いるナノ粒子の体積平均径(mv値)は、上記第1実施形態と同様に、好ましくは、4~100nm、更に好ましくは、5~40nm、特に好ましくは、5~30nmとすることが望ましい。
 なお、上記ダイヤモンドナノ粒子には、微量の不純物が含まれるがその殆どがダイヤモンド構造に由来するsp3表面官能基であり、オイルに分散させる際に取り除かれる成分である。それ以外の不純物は0.2%程度であるので、本発明の効果に悪影響を及ぼすものではない。また、「ダイヤモンドの純度99%以上」となるダイヤモンドは、摩擦係数が低い固体潤滑剤であるが、一般的に固体潤滑剤中の固体潤滑剤ではない不純物は1%を越えると潤滑特性が低下し始めるためである。
 これらの特性を有するナノ粒子の液体中への含有量としては、第1実施形態と同様に含浸処理により得られる鉛筆芯中にナノ粒子の含有量が、好ましくは、0.001~5%、更に好ましくは、0.002~1%、特に好ましくは、0.01~0.5%となるように調整されるものである。
 得られる鉛筆芯中に上記範囲のナノ粒子を含有量とするためには、鉛筆芯体の大きさ、細孔径と細孔容積などにより変動するが、含浸処理せしめる液体全量中に、ナノ粒子が好ましくは、0.01~10%、更に好ましくは、0.02~2%、特に好ましくは、0.05~0.5%とすることが望ましい。
 この鉛筆芯中におけるナノ粒子の含有量が0.001%未満であると、有効細孔容積が殆ど変化しなく、また、未添加の鉛筆芯との差が現れなくなる。一方、ナノ粒子の含有量が5%を超える芯とするためには有効細孔容積を大きくしなければならないが、それでは鉛筆芯の強度が著しく低下してしまう。また含浸する分散液中のナノ粒子濃度を高める必要もあるが、それでは芯体内のナノ粒子配合分布量にバラツキが生じてしまい、好ましくない。
 本発明の第2実施形態では、上記特性のナノ粒子を、上記特性の液体に分散せしめた分散液体に、鉛筆芯体をそのまま浸漬、または、加圧下(例えば、0.5~5MPa)及び/又は加温下(例えば、液温60~200℃)で浸漬処理等することにより、目的の鉛筆芯、すなわち、上記特性の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子が、該黒鉛のab面と接触してなる鉛筆芯が得られるものとなる。
 得られる鉛筆芯は、上記範囲でナノ粒子を含有し、上記製造法により製造すると、好適な摩耗特性等を有する鉛筆芯となるものであり、更に好ましくは、JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数(動摩擦係数)が0.191~0.218となるものが望ましく、これにより、更に、芯体が回転する形態のシャープ芯においても、更に、滑らかな筆記が感じられる芯体を得ることができる。
 また、鉛筆芯の研磨断面をFE-SEM(日立ハイテク社製、S-4700型、加速電圧5kV-電流値10μA)を用いて5μm×5μmを観察したとき、ナノ粒子が1~300個観察されることが好ましく、上記の「更に好ましい範囲」のナノ粒子の添加では2~100個観察され、「特に好ましい範囲」の添加では5~50個観察されるものとなる。
 これらの全摩擦係数、ナノ粒子の個数は、用いる鱗片状黒鉛の平面度、アスペクト比等の物性、その含有量、ならびに、ナノ粒子の比表面積、体積平均径(mv値)及びその含有量(含浸量)、更に、オイルの種類などを好適に組み合わせることにより、調整することができる。
 このように構成される本発明の第2実施形態では、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を少なくとも含有せしめた鉛筆芯配合組成物を焼成処理後、比表面積が50~800m/gを持ち、上記特性の黒鉛に対して特定範囲となる体積平均径(mv値)のナノ粒子を含有せしめた液体を含浸することにより、上記特性の鱗片状黒鉛からなる構成される多孔質体の孔に、ナノ粒子を浸入させた状態(鱗片状黒鉛のab面にナノ粒子が接触している状態)として、鉛筆芯の多孔質構造の性質を、通常のものとは、変化した性質が得られることとなる。具体的には、上記特性の液体中に含有されたナノ粒子がサスペンションまたはベアリングの効果を発揮するので、ナノ粒子を添加しないときより、芯の潤滑が大幅に良くなる。これにより、鉛筆芯の潤滑が大幅に向上する。また、芯体中にナノ粒子が入ることにより、平滑な描線が乱反射を起こすので、いわゆる「テカリ」が無くなり、結果として濃い色となる。しかも、上記特性の鱗片状黒鉛自身の作用により、紙と鱗片状黒鉛粒子、鱗片状黒鉛粒子同士の摩擦が小さくなり、消去性も向上することとなる。更に、上記特性の鱗片状黒鉛の配向を邪魔せずにナノ粒子を均一に分散することができるので、体質材としての効果もプラスされ、圧縮強度も向上することとなり、また、芯体の摩耗量が少ないので、描線に乗っている黒鉛量も少なく手が汚れにくいものとなる。
 更に、本発明では、更に、上記作用効果と共に、上記で挙げた特許文献1に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯となるものであり、特に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法が得られるものとなる(この点に関しては、後述する実施例7~12、参考例2及び比較例8~15で更に詳述する)。
 本発明の第2実施形態の鉛筆芯は、上記第2実施形態に限定されるものではなく、本発明の技術思想の範囲内で、種々変更して実施することができる。例えば、上記第2実施形態で得た芯体、すなわち、上記特性の鱗片状黒鉛を少なくとも含有する鉛筆芯用配合組成物を焼成処理又は非焼成処理してなる鉛筆芯体を形成する前、例えば、黒鉛粒子のab面にナノ粒子を付着させておいて、焼成後に上記特性のナノ粒子を含有する液体を充填してなるものであってもよいものである。この場合、鉛筆芯体中のナノ粒子と液体中のナノ粒子とは完全に独立するものとなるので、同一又は異なるナノ粒子を異なる含有量で用いてもよいものである。この場合のナノ粒子の好ましい含有量は、鉛筆芯中に最大10%となるものが望ましい。
〔第3実施形態〕
 本発明の第3実施形態の鉛筆芯は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子が、該黒鉛のab面と接着していることを特徴とするものである。
 また、本発明の第3実施形態の鉛筆芯の製造方法は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることを特徴とするものである。
 本発明の第3実施形態は、上記第1実施形態と同物性の鱗片状黒鉛、ナノ粒子を用いるものであるが、鱗片状黒鉛のab面に、当該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子が接触でなく、接着している点でのみ、異なるものであり、これ以外の鱗片状黒鉛、ナノ粒子の使用等は上記第1実施形態と同様であり、以下に、上記第1実施形態と相違する点について詳述し、同様の構成などはその説明を省略する。
 本発明の第3実施形態では、第1実施形態と同様となる特性の鱗片状黒鉛に、ナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて鉛筆芯形成用の芯体を形成するものである。
 この第3実施形態の鉛筆芯形成用の芯体は、上記ナノ粒子を固定させて複合した複合黒鉛を含有した鉛筆芯配合組成物を焼成処理又は非焼成処理することにより形成することができる。
 本発明の第3実施形態において、鉛筆芯形成用の芯体を形成する前に、該鱗片状黒鉛に、上記特性のナノ粒子を接触後、該ナノ粒子を固定させた複合黒鉛とするのは、結果として芯全体へ分散させるためである。
 ナノ粒子を固定させた複合黒鉛とする方法等としては、例えば、前記黒鉛に前記ナノ粒子を静電力によって接触(静電接着)させてナノ粒子固定複合黒鉛とすること、ファンデルワールス力により分散接着させて、ナノ粒子固定複合黒鉛とすること、または、黒鉛を粉砕しながらナノ粒子を入れ、黒鉛のファンデルワールス力等による凝集力により、結果としてナノ粒子を接着する方法などが挙げられる。
 上記静電接着は、ナノ粒子と黒鉛との電子受け渡しで結合させる方法であり、また、上記ファンデルワールス力による分散接着は、黒鉛とナノ粒子の分極作用に起因する分子間力によって結合させる方法となるものである。
 具体的には、上記鱗片状黒鉛と上記ナノ粒子を高速回転させたヘンシェルミキサーに投入してナノ粒子固定複合黒鉛としたり、上記ナノ粒子の水分散液と上記鱗片状黒鉛を高速回転させたヘンシェルミキサーに投入して粒子間摩擦力による発熱で水を蒸発させてナノ粒子固定複合黒鉛としたり、ナノ粒子のNPA(n-プロピルアルコール)分散液中に黒鉛を投入して乾燥コーティングするなどの分散接着を行ったり、黒鉛にポリカチオン剤を塗布してナノ粒子を複合する等の静電接着を行ったり、振動ボールミルに黒鉛とナノ粒子を混合し、黒鉛を粉砕しながらナノ粒子を複合したりすることにより調製することができる。
 好ましくは、接着力と潤滑効果の点から、上記特性の鱗片状黒鉛に、前記特性のナノ粒子を静電力によって接触(静電接着)させてナノ粒子固定複合黒鉛となるものが望ましい。
 この鉛筆芯用芯体を形成するために用いる上記特性の鱗片状黒鉛は、芯体形成前に、ナノ粒子固定複合黒鉛として用いるものであるが、その含有量としては、鉛筆芯用配合組成物全量に対して、20~80%とすることが好ましく、更に好ましくは、30~70%とすることが望ましいが、硬度によって最適値は異なる。
 この鱗片状黒鉛の含有量が、20%未満であったり、80%を超えたりすると、硬度、書き味、強度のバランスが崩れる結果となり、好ましくない。
 また、上記特性を有するナノ粒子は、ナノ粒子固定複合黒鉛として用いるものであるが、その含有量としては、鉛筆芯用配合組成物全量に対して、含浸処理により得られる鉛筆芯中にナノ粒子の含有量が、好ましくは、0.001~5%、更に好ましくは、0.01~1%、特に好ましくは、0.02~0.5%となるように調整されるものである。
 このナノ粒子の含有量が0.001%未満であると、有効細孔容積が殆ど変化しなく、また、未添加の鉛筆芯との差が現れなくとなる。一方、ナノ粒子の含有量が5%を超えると、有効細孔容積は大きくなるが、鉛筆芯の構造が崩れて強度が低下してしまい、好ましくない。
 本発明の第3実施形態において、鉛筆芯形成用の芯体は、上記特性のナノ粒子固定の複合黒鉛を含有した鉛筆芯配合組成物を用いるものであるが、該ナノ粒子固定の複合黒鉛以外の成分は上述の第1実施形態と同様に鉛筆芯種等により、体質材、潤滑剤、熱可塑性合成樹脂などのバインダー成分、有機溶剤などの各成分を適宜選択して用いることができる。
 本発明の第3実施形態では、上述の鉛筆芯用配合組成物、例えば、シャープペンシル用焼成鉛筆芯、非焼成鉛筆芯、焼成鉛筆芯に用いる各成分(体質材、熱可塑性樹脂、有機溶剤など)を混練、成型、乾燥及び非酸化性雰囲気下で焼成処理、または、非焼成処理(50~120℃で低温乾燥)してなる鉛筆芯用芯体を形成することができる。
 本発明の第3実施形態において、例えば、シャープペンシル用焼成鉛筆芯の製造では、第1実施形態と同様に、好ましくは、強度、濃度、書き味の点から、鉛筆芯配合組成物全量に対して、(a)上記特性の鱗片状黒鉛20~80%、(b)上記特性のナノ粒子0.01~5%を用いて上記特性の鱗片状黒鉛に、上記特性のナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その他の成分である(c)熱可塑性合成樹脂30~60%、(d)該熱可塑性合成樹脂を溶解し得る有機溶剤0~30%を、ヘンシェルミキサーで分散混合し、加圧ニーダー、二本ロールで混練し、押出成形機により成形した後、電気炉で110~250℃で乾燥し、次いで、非酸化性雰囲気下(窒素ガス雰囲気下、不活性ガス雰囲気下)で800~1400℃、20~40時間で焼成することにより鉛筆芯形成用の芯体を形成することができる。
 本発明の第3実施形態の鉛筆芯は、上記で形成した鉛筆芯体に、第1実施形態と同様に、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることにより得られる。
 本発明の第3実施形態では、上記特性の液体に、鉛筆芯体をそのまま浸漬、または、加圧下(例えば、0.5~5MPa)及び/又は加温下(例えば、液温60~200℃)で浸漬処理等することにより、目的の鉛筆芯、すなわち、上記特性の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち真球度0.1~20nmのナノ粒子が、該黒鉛のab面と接着してなる鉛筆芯が得られるものとなる。
 得られる鉛筆芯は、上記製造法により製造すると、好適な摩耗特性等を有する鉛筆芯となるものであり、更に好ましくは、JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、動摩擦係数が0.191~0.218となるものが望ましく、これにより、更に、芯体が回転する形態のシャープ芯においても、更に、滑らかな筆記が感じられる芯体を得ることができる。
 また、鉛筆芯の研磨断面をFE-SEM(日立ハイテク社製、S-4700型、加速電圧5kV-電流値10μA)を用いて5μm×5μmを観察したとき、ナノ粒子が1~300個観察されることが好ましく、上記の「更に好ましい範囲」のナノ粒子の添加では2~100個観察され、「特に好ましい範囲」の添加では5~50個観察されるものとなる。
 これらの全摩擦係数、ナノ粒子の個数は、用いる鱗片状黒鉛の平面度、アスペクト比等の物性、その含有量、ならびに、ナノ粒子の真球度、体積平均径(mv値)及びその含有量(含浸量)、更に、オイルの種類などを好適に組み合わせることにより、調整することができる。
 このように構成される本発明の第3実施形態では、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を含有してなる鉛筆芯配合組成物を用いて芯体を形成後、該鉛筆芯用芯体に上記特性の液体を含浸せしめることにより、上記特性の鱗片状黒鉛からなる構成される多孔質体の孔に、ナノ粒子を浸入させた状態(鱗片状黒鉛のab面にナノ粒子が接着している状態)として、鉛筆芯の多孔質構造の性質を、通常のものとは、変化した性質が得られることとなる。具体的には、上記特性のナノ粒子がサスペンションまたはベアリングの役割を果たすので、ナノ粒子を添加しないときより、芯の潤滑が大幅に良くなる。これにより、鉛筆芯の潤滑が大幅に向上する。また、芯体中にナノ粒子が入ることにより、平滑な描線が乱反射を起こすので、いわゆる「テカリ」が無くなり、結果として濃い色となる。しかも、上記特性の鱗片状黒鉛自身の作用により、紙と鱗片状黒鉛粒子、鱗片状黒鉛粒子同士の摩擦が小さくなり、消去性も向上することとなる。更に、上記特性の鱗片状黒鉛の配向を邪魔せずにナノ粒子を均一に分散することができるので、体質材としての効果もプラスされ、圧縮強度も向上することとなり、また、芯体の摩耗量が少ないので、描線に乗っている黒鉛量も少なく手が汚れにくいものとなる。
 更に、本発明の第3実施形態では、更に、上記作用効果と共に、上記で挙げた特許文献1に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯となるものであり、特に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法が得られるものとなる(この点に関しては、後述する実施例13~18及び比較例16~22で更に詳述する)。
 本発明の第3実施形態の鉛筆芯は、上記第3実施形態に限定されるものではなく、本発明の技術思想の範囲内で、種々変更して実施することができる。例えば、上記第3実施形態で得た芯体、すなわち、上記特性のナノ粒子を固定した複合鱗片状黒鉛を少なくとも含有する鉛筆芯用配合組成物を焼成処理又は非焼成処理してなる鉛筆芯体を形成した後、上記特性のナノ粒子を含有する液体を充填してなるものであってもよいものである。この場合、鉛筆芯体中のナノ粒子と液体中のナノ粒子とは完全に独立するものとなるので、同一又は異なるナノ粒子を異なる含有量で用いてもよいものである。この場合のナノ粒子の好ましい含有量は、鉛筆芯中に最大10%となるものが望ましい。
〔第4実施形態〕
 本発明の第4実施形態の鉛筆芯は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子が、該黒鉛のab面と接着していることを特徴とするものである。
 また、本発明の第4実施形態の鉛筆芯の製造方法は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることを特徴とするものである。
 本発明の第4実施形態は、上記第3実施形態で用いた、上記鱗片状黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmとなるナノ粒子に代えて、当該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gとなるナノ粒子を用いて当該黒鉛のab面と接着している点でのみ、第3実施形態と異なるものである。また、当該ナノ粒子もまた、上記第2実施形態のナノ粒子を用いるものである。従って、以下に、上記第1実施形態及び第3実施形態と相違する点について詳述し、当該各実施形態と同様の構成、製法などはその説明を省略する。
 本発明の第4実施形態では、上記第1実施形態~第3実施形態と同様の特性の液体に、鉛筆芯体をそのまま浸漬、または、加圧下(例えば、0.5~5MPa)及び/又は加温下(例えば、液温60~200℃)で浸漬処理等することにより、目的の鉛筆芯、すなわち、上記特性の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち比表面積が50~800m/gのナノ粒子が、該黒鉛のab面と接着してなる鉛筆芯が得られるものとなる。
 得られる鉛筆芯は、上記製造法により製造すると、好適な摩耗特性等を有する鉛筆芯となるものであり、更に好ましくは、JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、動摩擦係数が0.191~0.218となるものが望ましく、これにより、更に、芯体が回転する形態のシャープ芯においても、更に、滑らかな筆記が感じられる芯体を得ることができる。
 また、鉛筆芯の研磨断面をFE-SEM(日立ハイテク社製、S-4700型、加速電圧5kV-電流値10μA)を用いて5μm×5μmを観察したとき、ナノ粒子が1~300個観察されることが好ましく、上記の「更に好ましい範囲」のナノ粒子の添加では2~100個観察され、「特に好ましい範囲」の添加では5~50個観察されるものとなる。
 これらの全摩擦係数、ナノ粒子の個数は、用いる鱗片状黒鉛の平面度、アスペクト比等の物性、その含有量、ならびに、ナノ粒子の真球度、体積平均径(mv値)及びその含有量(含浸量)、更に、オイルの種類などを好適に組み合わせることにより、調整することができる。
 このように構成される本発明の第4実施形態では、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を含有してなる鉛筆芯配合組成物を用いて芯体を形成後、該鉛筆芯用芯体に上記特性の液体を含浸せしめることにより、上記特性の鱗片状黒鉛からなる構成される多孔質体の孔に、ナノ粒子を浸入させた状態(鱗片状黒鉛のab面にナノ粒子が接着している状態)として、鉛筆芯の多孔質構造の性質を、通常のものとは、変化した性質が得られることとなる。具体的には、上記特性のナノ粒子がサスペンションまたはベアリングの役割を果たすので、ナノ粒子を添加しないときより、芯の潤滑が大幅に良くなる。これにより、鉛筆芯の潤滑が大幅に向上する。また、芯体中にナノ粒子が入ることにより、平滑な描線が乱反射を起こすので、いわゆる「テカリ」が無くなり、結果として濃い色となる。しかも、上記特性の鱗片状黒鉛自身の作用により、紙と鱗片状黒鉛粒子、鱗片状黒鉛粒子同士の摩擦が小さくなり、消去性も向上することとなる。更に、上記特性の鱗片状黒鉛の配向を邪魔せずにナノ粒子を均一に分散することができるので、体質材としての効果もプラスされ、圧縮強度も向上することとなり、また、芯体の摩耗量が少ないので、描線に乗っている黒鉛量も少なく手が汚れにくいものとなる。
 更に、本発明では、更に、上記作用効果と共に、上記で挙げた特許文献1に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯となるものであり、特に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法が得られるものとなる(この点に関しては、後述する実施例19~24及び比較例23~30で更に詳述する)。
 本発明の第4実施形態の鉛筆芯は、上記第4実施形態に限定されるものではなく、本発明の技術思想の範囲内で、種々変更して実施することができる。例えば、上記第4実施形態で得た芯体、すなわち、上記特性のナノ粒子を固定した複合鱗片状黒鉛を少なくとも含有する鉛筆芯用配合組成物を焼成処理又は非焼成処理してなる鉛筆芯体を形成した後、上記特性のナノ粒子を含有する液体を充填してなるものであってもよいものである。この場合、鉛筆芯体中のナノ粒子と液体中のナノ粒子とは完全に独立するものとなるので、同一又は異なるナノ粒子を異なる含有量で用いてもよいものである。この場合のナノ粒子の好ましい含有量は、鉛筆芯中に最大10%となるものが望ましい。
〔第5実施形態〕
 本発明の第5実施形態及び第6実施形態は、上記第1実施形態~第4実施形態の鉛筆芯と同様の作用効果を発揮できる鉛筆芯を得るための製造方法である。
 本発明の第5実施形態は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛と、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から芯体を形成することを特徴とするものである。
 本発明の第5実施形態は、上記第1実施形態で用いた、鱗片状黒鉛、ナノ粒子を用いるものであり、その製造方法が異なるものであり、用いる鱗片状黒鉛の使用、ナノ粒子は第1実施形態と同様であり、以下に、上記第1実施形態と相違する点について詳述し、同様の構成などはその説明を省略する。
 本発明の第5実施形態において、用いる可塑剤としては、鉛筆芯の製造に用いられるものを用いることができ、例えば、ジオクチルフタレート、ジブチルフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジアリルイソフタレート、プロピレンカーボネート、ジオクチルアジペート、ジイソノニルアジペート、トリメリット酸トリオクチル、リン酸トリクレシル、アセチルクエン酸トリブチルなどの少なくとも1種が挙げられる。
 また、本発明の第5実施形態において、用いる溶剤としては、上記可塑剤を溶解し得るものが好ましく、具体的には、アルコール類、ケトン類、エステル類、エーテル類、芳香族系炭化水素、脂肪族系炭化水素、シロキサン類などの少なくとも1種を用いることができる。
 本発明の第5実施形態では、上記特性の鱗片状黒鉛と、上記特性のナノ粒子を可塑剤または溶剤、或いは可塑剤及び溶剤に分散したものを混練後、該混練物となる鉛筆芯配合組成物を焼成処理又は非焼成処理することにより芯体を形成することができる。
 分散方法としては、例えば、ヘンシェルミキサーやボールミル、ビーズミル、ホモジナイザー、ナノマイザー、ハイビスミックスなど、溶媒と粉体を均一に分散できる装置を使用することが出来る。
 この鉛筆芯用芯体を形成するために用いる上記特性の鱗片状黒鉛の含有量としては、鉛筆芯用配合組成物全量に対して、20~80%とすることが好ましく、更に好ましくは、30~70%とすることが望ましいが、硬度によって最適値は異なる。
 この鱗片状黒鉛の含有量が、20%未満であったり、80%を超えたりすると、硬度、書き味、強度のバランスが崩れる結果となり、好ましくない。
 また、上記特性を有するナノ粒子の含有量としては、鉛筆芯用配合組成物全量に対して、含浸処理により得られる鉛筆芯中にナノ粒子の含有量が、好ましくは、0.001~5%、更に好ましくは、0.01~1%、特に好ましくは、0.02~0.5%となるように調整されるものである。
 このナノ粒子の含有量が0.001%未満であると、有効細孔容積が殆ど変化しなく、また、未添加の鉛筆芯との差が現れなくとなる。一方、ナノ粒子の含有量が5%を超えると、有効細孔容積は大きくなるが、鉛筆芯の構造が崩れて強度が低下してしまい、好ましくない。
 上記可塑剤の含有量としては、成形性やナノ粒子の分散性、最終的な芯の品質の点から、混練物となる鉛筆芯用配合組成物全量に対して、好ましくは、5~50%、更に好ましくは、10~30%が望ましい。
 また、上記溶剤の含有量としては、成形性やナノ粒子の分散性、最終的な芯の品質、可塑剤配合量の点から、混練物となる鉛筆芯用配合組成物全量に対して、好ましくは、1~30%、更に好ましくは、10~20%が望ましい。
 本発明の第5実施形態において、鉛筆芯体は、上記特性の鱗片状黒鉛と、上記特性のナノ粒子を可塑剤または溶剤、或いは可塑剤及び溶剤に分散したものを混練後、該混練物となる鉛筆芯配合組成物を用いるものであるが、該ナノ粒子、鱗片状黒鉛、可塑剤、溶剤以外の成分は鉛筆芯種等により、体質材、潤滑剤などの各成分を適宜選択して用いることができる。
 例えば、鉛筆芯がシャープペンシル用焼成鉛筆芯では、鱗片状黒鉛以外に、上述の第1実施形態と同様に、カーボンブラックとアモルファス炭素を少なくとも含有せしめることができ、また、非焼成鉛筆芯では、油脂とワックス類とを少なくとも含有することができ、更に、焼成鉛筆芯では、体質材とセラミック結合材とを少なくとも含有することができる。
 本発明の第5実施形態では、上述の混練物となる鉛筆芯用配合組成物、例えば、シャープペンシル用焼成鉛筆芯、非焼成鉛筆芯、焼成鉛筆芯に用いる各成分(体質材などの各成分)を混練、成型、乾燥及び非酸化性雰囲気下で焼成処理、または、非焼成処理(50~120℃で低温乾燥)してなる鉛筆芯体を形成することができる。
 また、本発明の第5実施形態において、例えば、シャープペンシル用焼成鉛筆芯の製造では、好ましくは、強度、濃度、書き味の点から、鉛筆芯配合組成物全量に対して、(a)上記特性の鱗片状黒鉛20~80%、(b)上記特性のナノ粒子0.01~5%、(c)可塑剤5~50%、溶剤0~30%、(d)熱可塑性合成樹脂30~60%、を、ヘンシェルミキサーで分散混合し、加圧ニーダー、二本ロールで混練し、押出成形機により成形した後、電気炉で110~250℃で乾燥し、次いで、非酸化性雰囲気下(窒素ガス雰囲気下、不活性ガス雰囲気下)で800~1400℃、20~40時間で焼成することにより鉛筆芯形成用の芯体を形成することができる。
 本発明の第5実施形態では、上記製法により鉛筆芯が得られるものであるが、好ましくは、濃度と書き味および消去性能の点から、芯体形成後、上記ナノ粒子によって鱗片状黒鉛と鱗片状黒鉛の間に生じた隙間に、上述の第1実施形態と同様の屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることが望ましい。
 本発明の第5実施形態に用いる液体は、濃度を高める目的と共に潤滑剤として作用させるために用いるものであり、細孔への浸透しやすさと光の反射率の点から、屈折率1.3~1.5で、25℃における動粘度が7~200mm/sとなるものが用いられる。
 本発明の第5実施形態では、上記特性の液体に、鉛筆芯体をそのまま浸漬、または、加圧下(例えば、0.5~5MPa)及び/又は加温下(例えば、液温60~200℃)で浸漬処理等することにより、更に好ましい鉛筆芯が得られるものとなる。
 本発明の第5実施形態(及び後述する第6実施形態を含む)の製造方法で得られる鉛筆芯は、好適な磨耗特性等を有する鉛筆芯となるものであり、更に好ましくは、JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数(動摩擦係数)が0.191~0.218となるものが望ましく、これにより、更に、芯体が回転する形態のシャープ芯においても、更に、滑らかな筆記が感じられる芯体を得ることができる。
 また、鉛筆芯の研磨断面をFE-SEM(日立ハイテク社製、S-4700型、加速電圧5kV-電流値10μA)を用いて5μm×5μmを観察したとき、ナノ粒子が1~300個観察されることが好ましく、上記の「更に好ましい範囲」のナノ粒子の添加では2~100個観察され、「特に好ましい範囲」の添加では5~50個観察されるものとなる(後述する第6実施形態も同様)。
 これらの全摩擦係数、ナノ粒子の個数は、用いる鱗片状黒鉛の平面度、アスペクト比等の物性、その含有量、並びに、ナノ粒子の真球度、体積平均径(mv値)及びその含有量(含浸量)、更に、オイルの種類などを好適に組み合わせることにより、調整することができる。
 このように構成される本発明の第5実施形態の製造方法では、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛と、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から鉛筆芯体を形成することにより、好ましくは、上記芯体形成後、前記ナノ粒子によって鱗片状黒鉛と鱗片状黒鉛の間に生じた隙間に、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることにより、上記特性の鱗片状黒鉛からなる構成される多孔質体の孔に、ナノ粒子を浸入させた状態(鱗片状黒鉛と鱗片状黒鉛の間にナノ粒子が接触した状態)として、鉛筆芯の多孔質構造の性質を、通常のものとは、変化した性質が得られることとなる。具体的には、上記特性のナノ粒子がサスペンションまたはベアリングの役割を果たすので、ナノ粒子を添加しないときより、芯の潤滑が大幅に良くなる。これにより、鉛筆芯の潤滑が大幅に向上する。また、芯体中にナノ粒子が入ることにより、平滑な描線が乱反射を起こすので、いわゆる「テカリ」が無くなり、結果として濃い色となる。しかも、上記特性の鱗片状黒鉛自身の作用により、紙と鱗片状黒鉛粒子、鱗片状黒鉛粒子同士の摩擦が小さくなり、消去性も向上することとなる。更に、上記特性の鱗片状黒鉛の配向を邪魔せずにナノ粒子を接着することができるので、体質効果もプラスされ、圧縮強度も向上することとなり、また、芯体の摩耗量が少ないので、描線に乗っている黒鉛量も少なく手が汚れにくいものとなる。
 更に、本発明の第5実施形態の製造方法では、更に、上記作用効果と共に、上記で挙げた特許文献1に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯となるものであり、特に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法が得られるものとなる(この点に関しては、後述する実施例25~31及び比較例31~37で更に詳述する)。
 本発明の第5実施形態の鉛筆芯の製造方法は、上記第5実施形態に限定されるものではなく、本発明の技術思想の範囲内で、種々変更して実施することができる。例えば、上記第5実施形態で得た鉛筆芯体を形成した後、更に、上記特性のナノ粒子を含有する上記特性の液体を充填してなるものであってもよいものである。この場合、鉛筆芯体中のナノ粒子と液体中のナノ粒子とは完全に独立するものとなるので、同一又は異なるナノ粒子を異なる含有量で用いてもよいものである。この場合のナノ粒子の好ましい含有量は、鉛筆芯中に最大10%となるものが望ましい。
〔第6実施形態〕
 本発明の第6実施形態は、上記第1実施形態~第4実施形態の鉛筆芯と同様の作用効果を発揮できる鉛筆芯を得るための製造方法であり、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛と、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から芯体を形成することを特徴とするものである。
 本発明の第6実施形態は、上記第5実施形態で用いたナノ粒子を第2実施形態(及び第4実施形態)で用いた鱗片状黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を用いる点で上記第5実施形態と相違するものであり、以下に、上記第5実施形態と相違する点について詳述し、同様の構成などはその説明を省略する。
 本発明の第6実施形態の製造方法では、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛と、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を接触後、上述の第5実施形態と同様に、上記特性のナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から鉛筆芯体を形成することにより、好ましくは、上記芯体形成後、前記ナノ粒子によって鱗片状黒鉛と鱗片状黒鉛の間に生じた隙間に、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることにより、上記特性の鱗片状黒鉛からなる構成される多孔質体の孔に、ナノ粒子を浸入させた状態(鱗片状黒鉛と鱗片状黒鉛の間にナノ粒子が接触した状態)として、鉛筆芯の多孔質構造の性質を、通常のものとは、変化した性質が得られることとなる。具体的には、上記特性のナノ粒子がサスペンションまたはベアリングの役割を果たすので、ナノ粒子を添加しないときより、芯の潤滑が大幅に良くなる。これにより、鉛筆芯の潤滑が大幅に向上する。また、芯体中にナノ粒子が入ることにより、平滑な描線が乱反射を起こすので、いわゆる「テカリ」が無くなり、結果として濃い色となる。しかも、上記特性の鱗片状黒鉛自身の作用により、紙と鱗片状黒鉛粒子、鱗片状黒鉛粒子同士の摩擦が小さくなり、消去性も向上することとなる。更に、上記特性の鱗片状黒鉛の配向を邪魔せずにナノ粒子を均一に分散することができるので、体質材としての効果もプラスされ、圧縮強度も向上することとなり、また、芯体の摩耗量が少ないので、描線に乗っている黒鉛量も少なく手が汚れにくいものとなる。
 更に、本発明の第6実施形態では、更に、上記作用効果と共に、上記で挙げた特許文献1に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯となるものであり、特に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法が得られるものとなる(この点に関しては、後述する実施例32~38及び比較例38~45で更に詳述する)。
 本発明の第6実施形態の鉛筆芯の製造方法は、上記第6実施形態に限定されるものではなく、本発明の技術思想の範囲内で、種々変更して実施することができる。例えば、上記第6実施形態で得た鉛筆芯体を形成した後、更に、上記特性のナノ粒子を含有する上記特性の液体を充填してなるものであってもよいものである。この場合、鉛筆芯体中のナノ粒子と液体中のナノ粒子とは完全に独立するものとなるので、同一又は異なるナノ粒子を異なる含有量で用いてもよいものである。この場合のナノ粒子の好ましい含有量は、鉛筆芯中に最大10%となるものが望ましい。
 次に、実施例、参考例及び比較例により本発明を各実施形態(第1実施形態~第6実施形態)ごとに、更に詳細に説明するが、本発明は下記実施例等に限定されるものではない。
(用いる鱗片状天然黒鉛、ナノ粒子の物性の測定方法)
 実施例、参考例及び比較例で用いる鱗片状天然黒鉛の平面度、アスペクト比等の物性、ナノ粒子の真球度、比表面積は、下記測定方法により測定した。
(平面度の測定方法)
 a-b面が直角となってSEMで観察されている図1のような粒子に接し、且つ粒子長軸端部同士を結ぶ線分に平行な線の最大値を測定する。(n=10)
 アスペクト比は、図1からc軸長を測定し、a-b面は観察画像から計測し、その比により算出した。
(真球度の測定方法)
 SEMまたはTEM画面上で観察される粒子10個の最小外接円から粒子表面までの半径方向の距離の最大の値として求めた。
(比表面積の測定方法)
 BET流動法により求められるBET比表面積をナノ粒子の比表面積とし、マウンテック社製の全自動BET比表面積測定装置(HM-model-1208)により測定した。
〔実施例1~6、参考例1及び比較例1~7、第1実施形態〕
(実施例1)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            40質量部
 ポリ塩化ビニル                 40質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              19質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥し、窒素ガス雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
 次いで、下記に記載のナノ粒子A(0.1質量%)を分散した液体A(液温100℃、以下同様)中に、上記焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分、以下同様)し、ナノダイヤ含有焼成鉛筆芯を得た。
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 ナノ粒子A:ダイヤモンドナノ粒子(真球度3nm、mv値10nm、住友マテリアルズ社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子Aは0.125のmv値であった。
(実施例2)
 液体B:CMC-Na1wt%蒸留水(7mm/s、屈折率1.345)
 ナノ粒子A:ダイヤモンドナノ粒子(真球度3nm、mv値10nm、住友マテリアルズ社製)
 上記に記載のナノ粒子A(0.1質量%)を分散した液体B中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例3)
 液体C:トリメチルペンタフェニルトリシロキサン(動粘度175mm/s、屈折率1.580、東レ社製)
 ナノ粒子A:ダイヤモンドナノ粒子(真球度3nm、mv値10nm、住友マテリアルズ社製)
 上記に記載のナノ粒子A(0.1質量%)を分散した液体C中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例4)
 液体D:ジメチルシリコーン:KF-96L-5cs(動粘度5mm/s、屈折率1.396、信越化学社製)
 ナノ粒子A:ダイヤモンドナノ粒子(真球度3nm、mv値10nm、住友マテリアルズ社製)
 上記に記載のナノ粒子A(0.1質量%)を分散した液体D中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例5)
 液体E:ジメチルシリコーン:KF-96-500cs(動粘度500mm/s、屈折率1.403、信越化学社製)
 ナノ粒子A:ダイヤモンドナノ粒子(真球度3nm、mv値10nm、住友マテリアルズ社製)
 上記に記載のナノ粒子A(0.1質量%)を分散した液体E中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例6)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            70質量部
 カオリナイト粘土                 5質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、下記記載のナノ粒子A(0.1質量%)を分散した下記記載の液体F中に浸漬して油浸させて直径2.05mmの木軸鉛筆芯を得た。
 液体F:ミヨシ調整ラード(ミヨシ油脂社製)
 ナノ粒子A:ダイヤモンドナノ粒子(真球度3nm、mv値10nm、住石マテリアルズ社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子は0.125のmv値であった。
(参考例、ナノ粒子Aを材料に混合分散)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            40質量部
 ダイヤモンドナノ粒子(真球度3nm、mv値10nm、住友マテリアルズ社製)                    0.1質量部
 ポリ塩化ビニル                 40質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              19質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥後、窒素ガス雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
 次いで、上記実施例1で用いた液体A中に、上記焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(比較例1、特開2007-138031号公報の実施例11準拠)
 平面度3μm、mv値10μm、c軸の厚み1μm、アスペクト比10の鱗片状天然黒鉛                  49質量部
 ダイヤモンドナノ粒子(単結晶ダイヤ、真球度1.5nm、mv値5nm)                         1質量部
 ポリ塩化ビニル                 50質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              20質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、二本ロールで混練し線状体に押出成形した後、残留する可塑剤を除去すべく空気中で熱処理して固化(乾燥)した後に、窒素ガス雰囲気中にて1000℃で焼成し、最後にα-オレフィンオリゴマー(ライオン社製、リポループ20)中に浸漬して油漬させて、直径が0.570mmのシャープペンシル用芯HBを得た。
(比較例2)
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 ナノ粒子B:ダイヤモンドナノ粒子(真球度25nm、mv値50nm、住友マテリアルズ社製)
 上記に記載のナノ粒子B(0.1質量%)を分散した液体B(液温100℃)中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分)し、ナノダイヤ含有焼成鉛筆芯を得た。
(比較例3)
 上記実施例1の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛B(平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10)に代えた以外は、実施例1と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例4)
 上記実施例1の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛C(平面度0.2μmのab面、mv値3μm、c軸の厚み1μm、アスペクト比3)に代えた以外は、実施例1と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例5)
 上記実施例1で得た鉛筆芯体を、ナノ粒子Aを含有しない実施例1で用いた液体A中に、上記実施例1と同様に加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(比較例6、特開2007-138031号公報の実施例11準拠)
 平面度3μm、mv値10μm、c軸の厚み1μm、アスペクト比10の鱗片状天然黒鉛                  69質量部
 ダイヤモンドナノ粒子(単結晶ダイヤ、真球度1.5nm、mv値5nm)                         1質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、実施例6で用いた液体F(ミヨシ調整ラード)中に浸漬して油浸させて、直径2.05mmの木軸鉛筆芯を得た。
(比較例7)
 上記実施例6で得た鉛筆芯体を、ナノ粒子Aを含有しない実施例6で用いた液体F(ミヨシ調整ラード)中に上記実施例6と同様に浸漬し、直径2.05mmの木軸鉛筆芯を得た。
 上記実施例1~6、参考例及び比較例1~7で得られた各焼成鉛筆芯(シャープペンシル用鉛筆芯、木軸鉛筆芯)について、下記各方法により、曲げ強度、圧縮強度(N)、磨耗量(mm)、濃度、消去率(%)、摩擦係数(静、動)、ナノ粒子個数、官能評価による筆記感、汚れ難さ、初期滑りの評価を行った。
 これらの結果を下記表1に示す。
(曲げ強度の測定方法)
 実施例1~5、参考例及び比較例1~6のシャープペンシル用鉛筆芯では、JIS S 6005:2007に規定されている曲げ強さ試験で曲げ強度を測定した。(n=100)、また、実施例6及び比較例6、7の木軸鉛筆芯では、JIS S 6006:2007に規定されている曲げ強さ試験で曲げ強度を測定した(n=100)。
(圧縮強度の測定方法)
 芯を平面上に横置き固定し、テンシロン(ORIENTEC RTC-1150A)で横幅2mm、縦幅5mmの圧縮治具で上から圧縮試験して破壊強度を測定した(n=100)。
 なお、この評価項目である圧縮強度は、シャープペンシル用鉛筆芯のチャックで潰れにくいことを示す指標であるため、実施例6及び比較例6、7の木軸鉛筆芯では測定せず、評価を「-」とした。
(摩耗試験の試験方法)
 筆記角度75°、荷重300gf、筆記距離5m筆記した際の芯の摩耗長さを測定した(n=10)。
(濃度の測定方法)
 摩耗試験で筆記した描線を濃度計(sakura DENSITO METER PDA65)で測定した値である(n=10×4ヵ所)。
(消去率の測定方法)
 摩耗試験で筆記した描線を消しゴム(EP-105E)で5往復させた後の描線消去率を求めた(n=10)。
(摩擦係数の測定方法)
 JIS S 6005:2007、JIS S 6006:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値を筆記荷重で割った値(n=10)を「動摩擦係数」とし、摩擦の最大値を筆記荷重で割った値を「静摩擦係数」とした。
(ナノ粒子個数の測定方法)
 得られた各鉛筆芯の研磨断面をFE-SEM(日立ハイテク社製、S-4700型、加速電圧5kV-電流値10μA)を用いて5μm×5μmを観察したときのナノ粒子の個数を測定した。
〔筆記感、手の汚れにくさ(汚れ難さ)、初期滑りの評価方法〕
 10人の被験者が400字詰め原稿用紙を1枚「三菱鉛筆」と繰り返し筆記し、当社既存品
(三菱鉛筆社製、「SHU」0.5mm-HB)と比較して下記各項目の相対評価を行った。
 筆記感は、滑らかに感じるか否かで比較し下記評価基準で評価した。
 汚れ難さは、400字筆記した後の手の汚れを比較し下記評価基準で評価した。
 初期滑りは、1画1画がスムーズに滑りだすかどうかを比較し下記評価基準で評価した。
 評価基準(平均値):
  ◎:非常に良い
  ○:既存品より良い
  △:既存品と同等
  ×:既存品より悪い
Figure JPOXMLDOC01-appb-T000001
(第1実施形態における実施例、参考例及び比較例の考察)
 上記表1の結果から明らかなように、本発明範囲となる実施例1~5の各シャープペンシル用鉛筆芯、実施例6の木軸鉛筆芯は、本発明の範囲外となる比較例1~5及び参考例1の各シャープペンシル用鉛筆芯、比較例6及び7の木軸鉛筆芯に較べて、曲げ強度、圧縮強度に優れると共に、十分な発色性及び描線濃度を有し、しかも、摩耗が少なく、消去性が良く、初期滑り、筆記感(書き味)が良く、汚れ難い結果となることが判明した。
 これに対して、比較例を個別的にみると、比較例1は、特開2007-138031号公報の実施例11に準拠する本発明の範囲外となるナノ粒子を用いた場合であり、比較例3及び4は、本発明の範囲外となる鱗片状黒鉛を用いた場合であり、比較例5はナノ粒子を用いない場合であり、これらの各シャープペンシル用鉛筆芯では目的の鉛筆芯が得られないことが判った。また、比較例6は、特開2007-138031号公報の実施例11に準拠する木軸鉛筆芯であり、比較例7は、ナノ粒子を用いない木軸鉛筆芯であり、これらの木軸鉛筆芯では目的の鉛筆芯が得られないことが判った。
〔実施例7~12、参考例2及び比較例8~15、第2実施形態〕
(実施例7)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            40質量部
 ポリ塩化ビニル                 40質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              19質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥し、窒素ガス雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
 次いで、下記に記載のナノ粒子A(0.1質量%)を分散した液体A(液温100℃、以下同様)中に、上記焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分、以下同様)し、ナノダイヤ含有焼成鉛筆芯を得た。
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積450m/g、mv値10nm、住友マテリアルズ社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子Aは0.125のmv値であった。
(実施例8)
 液体B:CMC-Na1wt%蒸留水(7mm/s、屈折率1.345)
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積450m/g、mv値10nm、住友マテリアルズ社製)
 上記に記載のナノ粒子A(0.1質量%)を分散した液体B中に、上記実施例7で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例9)
 液体C:トリメチルペンタフェニルトリシロキサン(動粘度175mm/s、屈折率1.580、東レ社製)
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積450m/g、mv値10nm、住友マテリアルズ社製)
 上記に記載のナノ粒子A(0.1質量%)を分散した液体C中に、上記実施例7で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例10)
 液体D:ジメチルシリコーン:KF-96L-5cs(動粘度5mm/s、屈折率1.396、信越化学社製)
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積450m/g、mv値10nm、住友マテリアルズ社製)
 上記に記載のナノ粒子A(0.1質量%)を分散した液体D中に、上記実施例7で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例11)
 液体E: ジメチルシリコーン:KF-96-500cs(動粘度500mm/s、屈折率1.403、信越化学社製)
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積450m/g、mv値10nm、住友マテリアルズ社製)
 上記に記載のナノ粒子A(0.1質量%)を分散した液体E中に、上記実施例7で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例12)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            70質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、下記記載のナノ粒子A(0.1質量%)を分散した下記記載の液体F中に浸漬して油浸させて直径2.05mmの木軸鉛筆芯を得た。
 液体F:ミヨシ調整ラード(ミヨシ油脂社製)
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積450m/g、mv値10nm、住石マテリアルズ社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子は0.125のmv値であった。
(参考例2、ナノ粒子Aを材料に混合分散)
  鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)           40質量部
 ダイヤモンドナノ粒子(比表面積450m/g、mv値10nm、住友マテリアルズ社製)                0.1質量部
 ポリ塩化ビニル                 40質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              19質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥後、窒素ガス雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
 次いで、上記実施例7で用いた液体A中に、上記焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(比較例8、特開2007-138031号公報の実施例11準拠)
 平面度3μm、mv値10μm、c軸の厚み1μm、アスペクト比10の鱗片状天然黒鉛                  49質量部
 ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m/g、mv値5nm)                     1質量部
 ポリ塩化ビニル                 50質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              20質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、二本ロールで混練し線状体に押出成形した後、残留する可塑剤を除去すべく空気中で熱処理して固化(乾燥)した後に、窒素ガス雰囲気中にて1000℃で焼成し、最後にα-オレフィンオリゴマー(ライオン社製、リポループ20)中に浸漬して油漬させて、直径が0.570mmのシャープペンシル用芯HBを得た。
(比較例9)
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 ナノ粒子B:ダイヤモンドナノ粒子(単結晶ダイヤ:比表面積18.54m/g、mv値100nm、住友マテリアルズ社製)
 上記に記載のナノ粒子B(0.1質量%)を分散した液体B(液温100℃)中に、上記実施例7で得た焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分)し、ナノダイヤ含有焼成鉛筆芯を得た。
(比較例10)
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 ナノ粒子C:ダイヤモンドナノ粒子(クラスターダイヤ:比表面積848m/g、mv値20nm、住友マテリアルズ社製)
 上記に記載のナノ粒子B(0.1質量%)を分散した液体B(液温100℃)中に、上記実施例7で得た焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分)し、ナノダイヤ含有焼成鉛筆芯を得た。
(比較例11)
 上記実施例7の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛B(平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10)に代えた以外は、実施例7と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例12)
 上記実施例7の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛C(平面度0.2μmのab面、mv値3μm、c軸の厚み1μm、アスペクト比3)に代えた以外は、実施例7と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例13)
 上記実施例7で得た鉛筆芯体を、ナノ粒子Aを含有しない実施例7で用いた液体A中に、上記実施例7と同様に加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(比較例14、特開2007-138031号公報の実施例11準拠)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            69質量部
 ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m/g、mv値5nm)                     1質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、実施例12で用いた液体F(ミヨシ調整ラード)中に浸漬して油浸させて、直径2.05mmの木軸鉛筆芯を得た。
(比較例15)
 上記実施例12で得た鉛筆芯体を、ナノ粒子Aを含有しない実施例12で用いた液体F(ミヨシ調整ラード)中に上記実施例12と同様に浸漬し、直径2.05mmの木軸鉛筆芯を得た。
 上記実施例7~12、参考例2及び比較例8~15で得られた各焼成鉛筆芯(シャープペンシル用鉛筆芯、木軸鉛筆芯)について、上述の各評価方法により、曲げ強度、圧縮強度(N)、摩耗量(mm)、濃度、消去率(%)、摩擦係数(静、動)、ナノ粒子個数、官能評価による筆記感、汚れ難さ、初期滑りの評価を行った。
 これらの結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
(第2実施形態における実施例、参考例及び比較例の考察)
 上記表2の結果から明らかなように、本発明範囲となる実施例7~11の各シャープペンシル用鉛筆芯、実施例12の木軸鉛筆芯は、本発明の範囲外となる比較例8~13及び参考例2の各シャープペンシル用鉛筆芯、比較例14及び15の木軸鉛筆芯に較べて、曲げ強度、圧縮強度に優れると共に、十分な発色性及び描線濃度を有し、しかも、摩耗が少なく、消去性が良く、初期滑り、筆記感(書き味)が良く、汚れ難い結果となることが判明した。
 これに対して、比較例を個別的にみると、比較例8は、特開2007-138031号公報の実施例11に準拠するものであり、比較例9及び10は本発明の範囲外となるナノ粒子を用いた場合であり、比較例11及び12は、本発明の範囲外となる鱗片状黒鉛を用いた場合であり、比較例13はナノ粒子を用いない場合であり、これらの各シャープペンシル用鉛筆芯では目的の鉛筆芯が得られないことが判った。また、比較例14は、特開2007-138031号公報の実施例11に準拠する木軸鉛筆芯であり、比較例15は、ナノ粒子を用いない木軸鉛筆芯であり、これらの木軸鉛筆芯では目的の鉛筆芯が得られないことが判った。
〔実施例13~18及び比較例16~22、第3実施形態〕
(実施例13)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            40質量部
 ナノ粒子A:ダイヤモンドナノ粒子(真球度10nm、mv値50nm、住石マテリアルズ社製)             0.4質量部
 ポリ塩化ビニル                 40質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              19質量部
 上記鱗片状黒鉛と上記ナノ粒子Aを高速回転(2000rpm、以下同様)させたヘンシェルミキサーに投入し、ダイヤモンドナノ粒子付着の鱗片状黒鉛を製造後(付着せしめる時間20分、以下同様)、残りの材料をヘンシェルミキサーに投入して、混合分散し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥し、窒素ガス雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
 次いで、下記に記載の液体A(液温100℃、以下同様)中に、上記焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分、以下同様)し、ナノダイヤ含有焼成鉛筆芯を得た。
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子Aは0.125のmv値であった。
(実施例14)
 液体B:CMC-Na-1wt%蒸留水(7mm/s、屈折率1.345)
 上記に記載の液体B中に、上記実施例13で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例15)
 液体C:トリメチルペンタフェニルトリシロキサン(動粘度175mm/s、屈折率1.580、東レ社製)
 上記に記載の液体C中に、上記実施例13で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例16)
 液体D:ジメチルシリコーン:KF-96L-5cs(動粘度5mm/s、屈折率1.396、信越化学社製)
 上記に記載の液体D中に、上記実施例13で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例17)
 液体E: ジメチルシリコーン:KF-96-500cs(動粘度500mm/s、屈折率1.403、信越化学社製)
 上記に記載の液体E中に、上記実施例13で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例18)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            70質量部
 ナノ粒子A:ダイヤモンドナノ粒子(真球度10nm、mv値50nm、住石マテリアルズ社製)             0.4質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、下記記載の液体F中に浸漬して油浸させて直径2.05mmの木軸鉛筆芯を得た。
 液体F:ミヨシ調整ラード(ミヨシ油脂社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子は0.125のmv値であった。
(比較例16、特開2007-138031号公報の実施例11準拠)
 平面度3μm、mv値10μm、c軸の厚み1μm、アスペクト比10の鱗片状天然黒鉛                  49質量部
 ダイヤモンドナノ粒子(単結晶ダイヤ、真球度1.5nm、mv値5nm)                         1質量部
 ポリ塩化ビニル                 50質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              20質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、二本ロールで混練し線状体に押出成形した後、残留する可塑剤を除去すべく空気中で熱処理して固化(乾燥)した後に、窒素ガス雰囲気中にて1000℃で焼成し、最後にα-オレフィンオリゴマー(ライオン社製、リポループ20)中に浸漬して油漬させて、直径が0.570mmのシャープペンシル用芯HBを得た。
(比較例17)
 上記実施例13のナノ粒子A:ダイヤモンドナノ粒子(真球度10nm、mv値50nm、住石マテリアルズ社製)を同量のナノ粒子B:ダイヤモンドナノ粒子(真球度25nm、mv値50nm、住石マテリアルズ社製)に代えた以外は、実施例13と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例18)
 上記実施例13の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛B(平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10)に代えた以外は、実施例13と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例19)
 上記実施例13の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛C(平面度0.2μmのab面、mv値3μm、c軸の厚み1μm、アスペクト比3)に代えた以外は、実施例13と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例20)
 ナノ粒子Aを含まない以外、上記実施例13と同様の配合で得た鉛筆芯体を、実施例13で用いた液体A中に、上記実施例13と同様に加圧含浸し、ナノダイヤ非含有焼成鉛筆芯を得た。
(比較例21、特開2007-138031号公報の実施例11準拠)
 平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10の天然鱗状黒鉛               69質量部
 ダイヤモンドナノ粒子(単結晶ダイヤ、真球度1.5nm、mv値5nm)                         1質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、実施例18で用いた液体F(ミヨシ調整ラード)中に浸漬して油浸させて、直径2.05mmの木軸鉛筆芯を得た。
(比較例22)
 ナノ粒子Aを含まない以外、上記実施例18と同様の配合で得た鉛筆芯体を、実施例18で用いた液体F(ミヨシ調整ラード)中に上記実施例18と同様に浸漬し、直径2.05mmの木軸鉛筆芯を得た。
 上記実施例13~18及び比較例16~22で得られた各焼成鉛筆芯(シャープペンシル用鉛筆芯、木軸鉛筆芯)について、上述の各評価方法により、曲げ強度、圧縮強度(N)、摩耗量(mm)、濃度、消去率(%)、摩擦係数(静、動)、ナノ粒子個数、官能評価による筆記感、汚れ難さ、初期滑りの評価を行った。
 これらの結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
(第3実施形態における実施例及び比較例の考察)
 上記表3の結果から明らかなように、本発明範囲となる実施例13~17の各シャープペンシル用鉛筆芯、実施例18の木軸鉛筆芯は、本発明の範囲外となる比較例16~20の各シャープペンシル用鉛筆芯、比較例21及び22の木軸鉛筆芯に較べて、曲げ強度、圧縮強度に優れると共に、十分な発色性及び描線濃度を有し、しかも、摩耗が少なく、消去性が良く、初期滑り、筆記感(書き味)が良く、汚れ難い結果となることが判明した。
 これに対して、比較例を個別的にみると、比較例16は、特開2007-138031号公報の実施例11に準拠するものであり、比較例17は本発明の範囲外となるナノ粒子を用いた場合であり、比較例18及び19は、本発明の範囲外となる鱗片状黒鉛を用いた場合であり、比較例20は上記実施例13の配合時にナノ粒子Aを接着しないで得た鉛筆芯を製造した場合であり、これらの鉛筆芯では本発明の目的の鉛筆芯が得られないことが判った。また、比較例21は、特開2007-138031号公報の実施例11に準拠する木軸鉛筆芯であり、比較例22は、ナノ粒子を用いない木軸鉛筆芯であり、これらの木軸鉛筆芯では目的の鉛筆芯が得られないことが判った。
〔実施例19~24及び比較例23~30、第4実施形態〕
(実施例19)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            40質量部
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積208m/g、mv値50nm、住石マテリアルズ社製)          0.4質量部
 ポリ塩化ビニル                 40質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              19質量部
 上記鱗片状黒鉛と上記ナノ粒子Aを高速回転(2000rpm、以下同様)させたヘンシェルミキサーに投入し、ダイヤモンドナノ粒子付着の鱗片状黒鉛を製造後(付着せしめる時間20分、以下同様)、残りの材料をヘンシェルミキサーに投入して、混合分散し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥し、N2雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
 次いで、下記に記載の液体A(液温100℃、以下同様)中に、上記焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分、以下同様)し、ナノダイヤ含有焼成鉛筆芯を得た。
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子Aは0.125のmv値であった。
(実施例20)
 液体B:CMC-Na-1wt%蒸留水(7mm/s、屈折率1.345)
 上記に記載の液体B中に、上記実施例19で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例21)
 液体C:トリメチルペンタフェニルトリシロキサン(動粘度175mm/s、屈折率1.580、東レ社製)
 上記に記載の液体C中に、上記実施例19で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例22)
 液体D:ジメチルシリコーン:KF-96L-5cs(動粘度5mm/s、屈折率1.396、信越化学社製)
 上記に記載の液体D中に、上記実施例19で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例23)
 液体E: ジメチルシリコーン:KF-96-500cs(動粘度500mm/s、屈折率1.403、信越化学社製)
 上記に記載の液体E中に、上記実施例19で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例24)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            70質量部
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積208m/g、mv値50nm、住石マテリアルズ社製)          0.4質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、下記記載の液体F中に浸漬して油浸させて直径2.05mmの木軸鉛筆芯を得た。
 液体F:ミヨシ調整ラード(ミヨシ油脂社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子は0.125のmv値であった。
(比較例23、特開2007-138031号公報の実施例11準拠)
 平面度3μm、mv値10μm、c軸の厚み1μm、アスペクト比10の鱗片状天然黒鉛                  49質量部
 ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m/g、mv値5nm)                     1質量部
 ポリ塩化ビニル                 50質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              20質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、二本ロールで混練し線状体に押出成形した後、残留する可塑剤を除去すべく空気中で熱処理して固化(乾燥)した後に、窒素ガス雰囲気中にて1000℃で焼成し、最後にα-オレフィンオリゴマー(ライオン社製、リポループ20)中に浸漬して油漬させて、直径が0.570mmのシャープペンシル用芯HBを得た。
(比較例24)
 上記実施例19のナノ粒子A:ダイヤモンドナノ粒子(比表面積208m/g、mv値50nm、住石マテリアルズ社製)を同量のナノ粒子B:ダイヤモンドナノ粒子(比表面積18.54m/g、mv値100nm、住石マテリアルズ社製)に代えた以外は、実施例19と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例25)
 上記実施例19のナノ粒子A:ダイヤモンドナノ粒子(比表面積208m/g、mv値50nm、住石マテリアルズ社製)を同量のナノ粒子B:ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m/g、mv値20nm)に代えた以外は、実施例19と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例26)
 上記実施例19の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛B(平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10)に代えた以外は、実施例19と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例27)
 上記実施例19の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛C(平面度0.2μmのab面、mv値3μm、c軸の厚み1μm、アスペクト比3)に代えた以外は、実施例19と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例28)
 ナノ粒子Aを含まない以外、上記実施例19と同様の配合で得た鉛筆芯体を、実施例19で用いた液体A中に、上記実施例19と同様に加圧含浸し、ナノダイヤ非含有焼成鉛筆芯を得た。
(比較例29、特開2007-138031号公報の実施例11準拠)
 平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10の天然鱗状黒鉛               69質量部
 ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m/g、mv値5nm)                     1質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、実施例6で用いた液体F(ミヨシ調整ラード)中に浸漬して油浸させて、直径2.05mmの木軸鉛筆芯を得た。
(比較例30)
 ナノ粒子Aを含まない以外、上記実施例24と同様の配合で得た鉛筆芯体を、実施例24で用いた液体F(ミヨシ調整ラード)中に上記実施例24と同様に浸漬し、直径2.05mmの木軸鉛筆芯を得た。
 上記実施例19~24及び比較例23~30で得られた各焼成鉛筆芯(シャープペンシル用鉛筆芯、木軸鉛筆芯)について、上述の各評価方法により、曲げ強度、圧縮強度(N)、摩耗量(mm)、濃度、消去率(%)、摩擦係数(静、動)、ナノ粒子個数、官能評価による筆記感、汚れ難さ、初期滑りの評価を行った。
 これらの結果を下記表4に示す。
Figure JPOXMLDOC01-appb-T000004
(第4実施形態における実施例及び比較例の考察)
 上記表4の結果から明らかなように、本発明範囲となる実施例19~23の各シャープペンシル用鉛筆芯、実施例24の木軸鉛筆芯は、本発明の範囲外となる比較例23~28の各シャープペンシル用鉛筆芯、比較例29及び30の木軸鉛筆芯に較べて、曲げ強度、圧縮強度に優れると共に、十分な発色性及び描線濃度を有し、しかも、摩耗が少なく、消去性が良く、初期滑り、筆記感(書き味)が良く、汚れ難い結果となることが判明した。
 これに対して、比較例を個別的にみると、比較例23は、特開2007-138031号公報の実施例11に準拠するものであり、比較例24及び25は本発明の範囲外となるナノ粒子を用いた場合であり、比較例26及び27は、本発明の範囲外となる鱗片状黒鉛を用いた場合であり、比較例28は上記実施例1の配合時にナノ粒子Aを接着しないで得た鉛筆芯を製造した場合であり、これらの鉛筆芯では本発明の目的の鉛筆芯が得られないことが判った。また、比較例29は、特開2007-138031号公報の実施例11に準拠する木軸鉛筆芯であり、比較例30は、ナノ粒子を用いない木軸鉛筆芯であり、これらの木軸鉛筆芯では目的の鉛筆芯が得られないことが判った。
〔実施例25~31及び比較例31~37、第5実施形態〕
(実施例25)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            40質量部
 ナノ粒子A:ダイヤモンドナノ粒子(真球度10nm、mv値50nm、住石マテリアルズ社製)             0.4質量部
 ポリ塩化ビニル                 40質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              19質量部
 まず、ナノ粒子とジオクチルフタレートをビーズミルで180分間分散させ、他の上記材料をヘンシェルミキサーで混合分散(混合分散時間20分、以下同様)し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥後、窒素ガス雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
 次いで、下記に記載の液体A(液温100℃、以下同様)中に、上記焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分、以下同様)し、ナノダイヤ含有焼成鉛筆芯を得た。
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子Aは0.125のmv値であった。
(実施例26)
 液体B:CMC-Na1wt%蒸留水(7mm/s、屈折率1.345)
 上記に記載の液体B中に、上記実施例25で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例27)
 液体C:トリメチルペンタフェニルトリシロキサン(動粘度175mm/s、屈折率1.580、東レ社製)
 上記に記載の液体C中に、上記実施例25で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例28)
 液体D:ジメチルシリコーン:KF-96L-5cs(動粘度5mm/s、屈折率1.396、信越化学社製)
 上記に記載の液体D中に、上記実施例25で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例29)
 液体E: ジメチルシリコーン:KF-96-500cs(動粘度500mm/s、屈折率1.403、信越化学社製)
 上記に記載の液体E中に、上記実施例25で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例30)
 下記に記載の液体F中に、上記実施例25で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
 液体F:液体Aにナノ粒子B(真球度1nm、mv値5nm、住石マテリアルズ製)を0.1質量部分散したもの
(実施例31)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            70質量部
 ナノ粒子A:ダイヤモンドナノ粒子(真球度10nm、mv値50nm、住石マテリアルズ社製)             0.4質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 まず、ナノ粒子と水をビーズミルで180分間分散させ、他の上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、下記記載の液体G中に浸漬して油浸させて直径2.05mmの木軸鉛筆芯を得た。
 液体G:ミヨシ調整ラード(ミヨシ油脂社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子は0.125のmv値であった。
(比較例31、特開2007-138031号公報の実施例11準拠)
 平面度3μm、mv値10μm、c軸の厚み1μm、アスペクト比10の鱗片状天然黒鉛                  49質量部
 ダイヤモンドナノ粒子(単結晶ダイヤ、真球度1.5nm、mv値5nm)                         1質量部
 ポリ塩化ビニル                 50質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              20質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、二本ロールで混練し線状体に押出成形した後、残留する可塑剤を除去すべく空気中で熱処理して固化(乾燥)した後に、窒素ガス雰囲気中にて1000℃で焼成し、最後にα-オレフィンオリゴマー(ライオン社製、リポループ20)中に浸漬して油漬させて、直径が0.570mmのシャープペンシル用芯HBを得た。
(比較例32)
 上記実施例25のナノ粒子A:ダイヤモンドナノ粒子(真球度10nm、mv値50nm、住石マテリアルズ社製)を同量のナノ粒子B:ダイヤモンドナノ粒子(真球度25nm、mv値50nm、住石マテリアルズ社製)に代えた以外は、実施例25と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例33)
 上記実施例25の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛B(平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10)に代えた以外は、実施例25と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例34)
 上記実施例25の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛C(平面度0.2μmのab面、mv値3μm、c軸の厚み1μm、アスペクト比3)に代えた以外は、実施例25と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例35)
 上記実施例25製造時にナノ粒子を分散しないで得た鉛筆芯体を、ナノ粒子Aを含有しない実施例25で用いた液体A中に、上記実施例25と同様に加圧含浸し、ナノダイヤ非含有焼成鉛筆芯を得た。
(比較例36、特開2007-138031号公報の実施例11準拠)
 平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10の天然鱗状黒鉛               69質量部
 ダイヤモンドナノ粒子(単結晶ダイヤ、真球度1.5nm、mv値5nm)                         1質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、実施例7で用いた液体G(ミヨシ調整ラード)中に浸漬して油浸させて、直径2.05mmの木軸鉛筆芯を得た。
(比較例37)
 ナノ粒子Aを含まない以外は、上記実施例31と同様の配合で得た鉛筆芯体を、実施例7で用いた液体G(ミヨシ調整ラード)中に上記実施例31と同様に浸漬し、直径2.05mmの木軸鉛筆芯を得た。
 上記実施例25~31及び比較例31~37で得られた各焼成鉛筆芯(シャープペンシル用鉛筆芯、木軸鉛筆芯)について、上述の各評価方法により、曲げ強度、圧縮強度(N)、摩耗量(mm)、濃度、消去率(%)、摩擦係数(静、動)、ナノ粒子個数、官能評価による筆記感、汚れ難さ、初期滑りの評価を行った。
 これらの結果を下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
(第5実施形態における実施例及び比較例の考察)
 上記表5の結果から明らかなように、本発明範囲となる実施例25~30の各シャープペンシル用鉛筆芯、実施例31の木軸鉛筆芯は、本発明の範囲外となる比較例31~35の各シャープペンシル用鉛筆芯、比較例36及び37の木軸鉛筆芯に較べて、曲げ強度、圧縮強度に優れると共に、十分な発色性及び描線濃度を有し、しかも、摩耗が少なく、消去性が良く、初期滑り、筆記感(書き味)が良く、汚れ難い結果となることが判明した。
 これに対して、比較例を個別的にみると、比較例31は特開2007-138031号公報の実勢例11に準拠するものであり、比較例32は本発明の範囲外となるナノ粒子を用いた場合であり、比較例33および34は本発明の範囲外となる鱗片状黒鉛を用いた場合であり、比較例35は上記実施例25の配合時にナノ粒子を分散させないで得た鉛筆芯を製造した場合であり、これらの鉛筆芯では本発明の目的とする潤滑作用を強く発揮する鉛筆芯が得られないことが判った。また、比較例36は、特開2007-138031号公報の実施例11に準拠する木軸鉛筆芯であり、比較例37は、ナノ粒子を用いない木軸鉛筆芯であり、これらの木軸鉛筆芯では目的の鉛筆芯が得られないことが判った。
〔実施例32~38及び比較例38~45、第6実施形態〕
(実施例32)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            40質量部
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積208m/g、mv値50nm、住石マテリアルズ社製)          0.4質量部
 ポリ塩化ビニル                 40質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              19質量部
 まず、ナノ粒子とジオクチルフタレートをビーズミルで180分間分散させ、他の上記材料をヘンシェルミキサーで混合分散(混合分散時間20分、以下同様)し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥後、窒素ガス雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
次いで、下記に記載の液体A(液温100℃、以下同様)中に、上記焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分、以下同様)し、ナノダイヤ含有焼成鉛筆芯を得た。
 液体A:ジメチルシリコーンオイルKF96-30CS(動粘度30mm/s、屈折率1.401、信越化学社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子Aは0.125のmv値であった。
(実施例33)
 液体B:CMC-Na-1wt%蒸留水(7mm/s、屈折率1.345)
 上記に記載の液体B中に、上記実施例32で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例34)
 液体C:トリメチルペンタフェニルトリシロキサン(動粘度175mm/s、屈折率1.580、東レ社製)
 上記に記載の液体C中に、上記実施例32で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例35)
 液体D:ジメチルシリコーン:KF-96L-5cs(動粘度5mm/s、屈折率1.396、信越化学社製)
 上記に記載の液体D中に、上記実施例32で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例36)
 液体E: ジメチルシリコーン:KF-96-500cs(動粘度500mm/s、屈折率1.403、信越化学社製)
 上記に記載の液体E中に、上記実施例32で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
(実施例37)
 下記に記載の液体F中に、上記実施例32で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
 液体F: 液体Aにナノ粒子B(真球度1nm、mv値5nm、住石マテリアルズ製)を0.1質量部分散したもの。
(実施例38)
 鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)            70質量部
 ナノ粒子A:ダイヤモンドナノ粒子(比表面積208m/g、mv値50nm、住石マテリアルズ社製)          0.4質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 まず、ナノ粒子と水をビールミルで180分間分散させ、他の上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、下記記載の液体G中に浸漬して油浸させて直径2.05mmの木軸鉛筆芯を得た。
 液体G:ミヨシ調整ラード(ミヨシ油脂社製)
 なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子は0.125のmv値であった。
(比較例38、特開2007-138031号公報の実施例11準拠)
 平面度3μm、mv値10μm、c軸の厚み1μm、アスペクト比10の鱗片状天然黒鉛                  49質量部
 ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m/g、mv値5nm)                     1質量部
 ポリ塩化ビニル                 50質量部
 ステアリン酸ナトリウム              1質量部
 ジオクチルフタレート              20質量部
 上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、二本ロールで混練し線状体に押出成形した後、残留する可塑剤を除去すべく空気中で熱処理して固化(乾燥)した後に、窒素ガス雰囲気中にて1000℃で焼成し、最後にα-オレフィンオリゴマー(ライオン社製、リポループ20)中に浸漬して油漬させて、直径が0.570mmのシャープペンシル用芯HBを得た。
(比較例39)
 上記実施例32のナノ粒子A:ダイヤモンドナノ粒子(比表面積208m/g、mv値50nm、住石マテリアルズ社製)を同量のナノ粒子B:ダイヤモンドナノ粒子(比表面積18.54m/g、mv値100nm、住石マテリアルズ社製)に代えた以外は、実施例32と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例40)
 上記実施例32のナノ粒子A:ダイヤモンドナノ粒子(比表面積208m/g、mv値50nm、住石マテリアルズ社製)を同量のナノ粒子C:クラスターダイヤモンドナノ粒子(比表面積848m/g、mv値20nm、住石マテリアルズ社製)に代えた以外は、実施例32と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例41)
 上記実施例32の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛B(平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10)に代えた以外は、実施例32と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例42)
 上記実施例32の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛C(平面度0.2μmのab面、mv値3μm、c軸の厚み1μm、アスペクト比3)に代えた以外は、実施例32と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
(比較例43)
 上記実施例32の配合時にナノ粒子Aを含有させないで得た鉛筆芯体を、ナノ粒子Aを含有しない実施例32で用いた液体A中に、上記実施例1と同様に加圧含浸し、ナノダイヤ非含有焼成鉛筆芯を得た。
(比較例44、特開2007-138031号公報の実施例11準拠)
 平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10の天然鱗状黒鉛               69質量部
 ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m/g、mv値5nm)                     1質量部
 カオリナイト粘土                15質量部
 ハロイサイト粘土                15質量部
 水                       30質量部
 上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
 次いで、実施例38で用いた液体G(ミヨシ調整ラード)中に浸漬して油浸させて、直径2.05mmの木軸鉛筆芯を得た。
(比較例45)
 ナノ粒子Aを含まない以外、上記実施例38と同様の配合で得た鉛筆芯体を、実施例7で用いた液体G(ミヨシ調整ラード)中に上記実施例7と同様に浸漬し、直径2.05mmの木軸鉛筆芯を得た。
 上記実施例32~38及び比較例38~45で得られた各焼成鉛筆芯(シャープペンシル用鉛筆芯、木軸鉛筆芯)について、上述の各評価方法により、曲げ強度、圧縮強度(N)、摩耗量(mm)、濃度、消去率(%)、摩擦係数(静、動)、ナノ粒子個数、官能評価による筆記感、汚れ難さ、初期滑りの評価を行った。
 これらの結果を下記表6に示す。
Figure JPOXMLDOC01-appb-T000006
(第6実施形態における実施例及び比較例の考察)
 上記表6の結果から明らかなように、本発明範囲となる実施例32~37の各シャープペンシル用鉛筆芯、実施例38の木軸鉛筆芯は、本発明の範囲外となる比較例38~43の各シャープペンシル用鉛筆芯、比較例44及び45の木軸鉛筆芯に較べて、曲げ強度、圧縮強度に優れると共に、十分な発色性及び描線濃度を有し、しかも、摩耗が少なく、消去性が良く、初期滑り、筆記感(書き味)が良く、汚れ難い結果となることが判明した。
 これに対して、比較例を個別的にみると、比較例38は特開2007-138031号公報の実勢例11に準拠するものであり、比較例39及び40は本発明の範囲外となるナノ粒子を用いた場合であり、比較例41及び42は本発明の範囲外となる鱗片状黒鉛を用いた場合であり、比較例43は上記実施例32の配合時にナノ粒子を分散させないで得た鉛筆芯を製造した場合であり、これらの鉛筆芯では本発明の目的とする潤滑作用を強く発揮する鉛筆芯が得られないことが判った。また、比較例44は、特開2007-138031号公報の実施例11に準拠する木軸鉛筆芯であり、比較例45は、ナノ粒子を用いない木軸鉛筆芯であり、これらの木軸鉛筆芯では目的の鉛筆芯が得られないことが判った。
 シャープペンシル用鉛筆芯、木軸用鉛筆芯などに使用する場合の他に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯の製造方法が得られる。

Claims (21)

  1.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子が、該黒鉛のab面と接触していることを特徴とする鉛筆芯。
  2.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子が、該黒鉛のab面と接触していることを特徴とする鉛筆芯。
  3.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子が、該黒鉛のab面と接着していることを特徴とする鉛筆芯。
  4.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子が、該黒鉛のab面と接着していることを特徴とする鉛筆芯。
  5.  前記鉛筆芯に用いるナノ粒子がカーボンナノ粒子であることを特徴とする請求項1~4の何れか一つに記載の鉛筆芯。
  6.  前記カーボンナノ粒子がダイヤモンドであることを特徴とする請求項5に記載の鉛筆芯。
  7.  前記ナノ粒子の体積平均径(mv値)が4~100nmであることを特徴とする請求項1~6の何れか一つに記載の鉛筆芯。
  8.  JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数が0.191~0.218であることを特徴とする請求項1~7の何れか一つに記載の鉛筆芯。
  9.  鉛筆芯の研磨断面をFE-SEM(加速電圧5kV)を用いて5μm×5μmを観察したとき、該ナノ粒子が1~300個観察されることを特徴とする請求項1~8の何れか一つに記載の鉛筆芯。
  10.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯の芯体を形成後、ナノ粒子を、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体に分散させた後、該鉛筆芯体に含浸させることを特徴とする請求項1、2及び5~9の何れか一つに記載の鉛筆芯の製造方法。
  11.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることを特徴とする請求項3及び5~9の何れか一つに記載の鉛筆芯の製造方法。
  12.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることを特徴とする請求項4~9の何れか一つに記載の鉛筆芯の製造方法。
  13.  前記黒鉛に前記ナノ粒子を静電力によって接触させることを特徴とする請求項11又は12に記載の鉛筆芯の製造方法。
  14.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛と、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、真球度0.1~20nmのナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から芯体を形成することを特徴とする鉛筆芯の製造方法。
  15.  少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛と、該黒鉛の体積平均径(mv値)100に対して0.05~2のmv値を持ち、比表面積が50~800m/gのナノ粒子を可塑剤または溶剤に分散したものを混練後、該混練物から芯体を形成することを特徴とする鉛筆芯の製造方法。
  16.  前記ナノ粒子がカーボンナノ粒子であることを特徴とする請求項14又は15に記載の鉛筆芯の製造方法。
  17.  前記カーボンナノ粒子がダイヤモンドであることを特徴とする請求項16に記載の鉛筆芯の製造方法。
  18.  前記ナノ粒子の体積平均径(mv値)が4~100nmであることを特徴とする請求項14~17の何れか一つに記載の鉛筆芯の製造方法。
  19.  JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数が0.191~0.218であることを特徴とする請求項14~18の何れか一つに記載の鉛筆芯の製造方法。
  20.  芯体形成後、前記ナノ粒子によって鱗片状黒鉛と鱗片状黒鉛の間に生じた隙間に、屈折率1.3~1.5で25℃における粘度が7~200mm/sとなる液体を含浸させることを特徴とする請求項14~19の何れか一つに記載の鉛筆芯の製造方法。
  21.  鉛筆芯の研磨断面をFE-SEM(加速電圧5kV)を用いて5μm×5μmを観察したとき、該ナノ粒子が1~300個観察されることを特徴とする請求項14~20の何れか一つに記載の鉛筆芯の製造方法。
PCT/JP2010/057159 2009-04-24 2010-04-22 鉛筆芯及びその製造方法 WO2010123070A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10767127.3A EP2423280B1 (en) 2009-04-24 2010-04-22 Pencil lead and method for producing same
AU2010240104A AU2010240104B2 (en) 2009-04-24 2010-04-22 Pencil lead and production process for the same
KR1020117027686A KR101247417B1 (ko) 2009-04-24 2010-04-22 연필심 및 그 제조 방법
CN2010800282046A CN102459481B (zh) 2009-04-24 2010-04-22 铅笔芯及其制造方法
US13/265,476 US8349063B2 (en) 2009-04-24 2010-04-22 Pencil lead and production process for the same

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP2009106113 2009-04-24
JP2009-106117 2009-04-24
JP2009106114 2009-04-24
JP2009106112 2009-04-24
JP2009106115 2009-04-24
JP2009-106116 2009-04-24
JP2009106117 2009-04-24
JP2009-106115 2009-04-24
JP2009-106113 2009-04-24
JP2009106116 2009-04-24
JP2009-106112 2009-04-24
JP2009-106114 2009-04-24
JP2010051957A JP4627566B2 (ja) 2009-04-24 2010-03-09 鉛筆芯及びその製造方法
JP2010-051957 2010-03-09
JP2010-051956 2010-03-09
JP2010051956A JP4627565B2 (ja) 2009-04-24 2010-03-09 鉛筆芯及びその製造方法
JP2010051955A JP4627564B2 (ja) 2009-04-24 2010-03-09 鉛筆芯及びその製造方法
JP2010051954A JP4627563B2 (ja) 2009-04-24 2010-03-09 鉛筆芯及びその製造方法
JP2010-051959 2010-03-09
JP2010051959A JP4627568B2 (ja) 2009-04-24 2010-03-09 鉛筆芯の製造方法
JP2010-051958 2010-03-09
JP2010-051955 2010-03-09
JP2010-051954 2010-03-09
JP2010051958A JP4627567B2 (ja) 2009-04-24 2010-03-09 鉛筆芯の製造方法

Publications (1)

Publication Number Publication Date
WO2010123070A1 true WO2010123070A1 (ja) 2010-10-28

Family

ID=45442447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057159 WO2010123070A1 (ja) 2009-04-24 2010-04-22 鉛筆芯及びその製造方法

Country Status (6)

Country Link
US (1) US8349063B2 (ja)
EP (1) EP2423280B1 (ja)
KR (1) KR101247417B1 (ja)
CN (1) CN102459481B (ja)
AU (1) AU2010240104B2 (ja)
WO (1) WO2010123070A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230164676A (ko) 2021-03-31 2023-12-04 펜텔 가부시기가이샤 소성 연필심

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014013200A1 (de) * 2014-09-06 2016-03-10 Staedtler Mars Gmbh & Co. Kg Mine für ein Schreib-, Zeichen- und/oder Malgerät.
FR3030364B1 (fr) 2014-12-17 2017-01-13 Conte Mine de crayon a papier
CN105153818A (zh) * 2015-09-11 2015-12-16 蚌埠市神龙笔业有限公司 用秸秆制造的铅笔芯
JP6594766B2 (ja) * 2015-12-18 2019-10-23 三菱鉛筆株式会社 鉛筆芯
FR3065006B1 (fr) 2017-04-10 2019-06-21 Societe Bic Mine de crayon a papier
CN109385147B (zh) * 2018-11-07 2021-09-03 哈尔滨隆之道科技有限公司 亚光铅笔芯及其制备方法
KR20230084299A (ko) * 2020-10-14 2023-06-12 미쓰비시 엔피쯔 가부시키가이샤 연필심
KR102638829B1 (ko) 2023-10-04 2024-02-21 김덕종 슬러지를 이용한 연필심의 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665947U (ja) * 1979-10-26 1981-06-02
JPH06293874A (ja) * 1993-04-08 1994-10-21 Nippon Kokuen Kogyo Kk 鉛筆芯の製造方法
JPH0718213A (ja) * 1993-06-30 1995-01-20 Pentel Kk 鉛筆芯の製造方法
JPH11256091A (ja) * 1998-03-06 1999-09-21 Mitsubishi Pencil Co Ltd 焼成鉛筆芯
JP2004331690A (ja) * 2003-04-30 2004-11-25 Pentel Corp 焼成鉛筆芯
JP2007138031A (ja) 2005-11-18 2007-06-07 Mitsubishi Pencil Co Ltd 固形描画材及びその製造方法
JP2008115211A (ja) * 2006-11-01 2008-05-22 Pentel Corp 芯体の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873798A (ja) * 1994-09-05 1996-03-19 Mitsubishi Pencil Co Ltd 鉛筆芯およびその製造方法
JP3585571B2 (ja) * 1995-05-30 2004-11-04 三菱鉛筆株式会社 焼成鉛筆芯の製造方法
US7654763B2 (en) 2006-06-05 2010-02-02 Mitsubishi Pencil Co., Ltd. Mechanical pencil
CN101338097B (zh) * 2008-08-15 2011-03-16 中国第一铅笔股份有限公司 特种铅笔芯
JP5590786B2 (ja) * 2008-11-12 2014-09-17 三菱鉛筆株式会社 焼成鉛筆芯及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665947U (ja) * 1979-10-26 1981-06-02
JPH06293874A (ja) * 1993-04-08 1994-10-21 Nippon Kokuen Kogyo Kk 鉛筆芯の製造方法
JPH0718213A (ja) * 1993-06-30 1995-01-20 Pentel Kk 鉛筆芯の製造方法
JPH11256091A (ja) * 1998-03-06 1999-09-21 Mitsubishi Pencil Co Ltd 焼成鉛筆芯
JP2004331690A (ja) * 2003-04-30 2004-11-25 Pentel Corp 焼成鉛筆芯
JP2007138031A (ja) 2005-11-18 2007-06-07 Mitsubishi Pencil Co Ltd 固形描画材及びその製造方法
JP2008115211A (ja) * 2006-11-01 2008-05-22 Pentel Corp 芯体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2423280A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230164676A (ko) 2021-03-31 2023-12-04 펜텔 가부시기가이샤 소성 연필심
DE112022001946T5 (de) 2021-03-31 2024-01-18 Pentel Kabushiki Kaisha Gebrannte Bleistiftmine

Also Published As

Publication number Publication date
EP2423280A4 (en) 2013-06-19
CN102459481B (zh) 2013-05-15
EP2423280A1 (en) 2012-02-29
KR101247417B1 (ko) 2013-03-25
AU2010240104A1 (en) 2011-12-15
KR20120023000A (ko) 2012-03-12
AU2010240104B2 (en) 2013-09-12
US8349063B2 (en) 2013-01-08
US20120037035A1 (en) 2012-02-16
EP2423280B1 (en) 2016-11-02
CN102459481A (zh) 2012-05-16

Similar Documents

Publication Publication Date Title
WO2010123070A1 (ja) 鉛筆芯及びその製造方法
JP4919652B2 (ja) 固形描画材及びその製造方法
JP5219341B2 (ja) 鉛筆芯及びその製造方法
JP2012172065A (ja) 鉛筆芯及びその製造方法
JP5590786B2 (ja) 焼成鉛筆芯及びその製造方法
JP4627563B2 (ja) 鉛筆芯及びその製造方法
JP5846722B2 (ja) 鉛筆芯
JP4627567B2 (ja) 鉛筆芯の製造方法
JP5138317B2 (ja) 多層芯体及びその製造方法
JP5421599B2 (ja) 固形描画材及びその製造方法
JP4627565B2 (ja) 鉛筆芯及びその製造方法
JP4627566B2 (ja) 鉛筆芯及びその製造方法
JP4627564B2 (ja) 鉛筆芯及びその製造方法
JP4627568B2 (ja) 鉛筆芯の製造方法
JP2013245267A (ja) 鉛筆芯
JP5855466B2 (ja) 鉛筆芯及びその製造方法
JP6207709B2 (ja) 鉛筆芯
JP2009029906A (ja) 固形描画材
JPH0834951A (ja) 焼成鉛筆芯
JP3073127B2 (ja) 鉛筆芯及びその製造方法
JP6167696B2 (ja) 焼成鉛筆芯
JP2004256593A (ja) 鉛筆またはシャープペンシル用芯
JP2004262984A (ja) 鉛筆芯
JPH0931391A (ja) 鉛筆芯
JPH0931392A (ja) 鉛筆芯

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080028204.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13265476

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117027686

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010767127

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010767127

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010240104

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010240104

Country of ref document: AU

Date of ref document: 20100422

Kind code of ref document: A