JP4627566B2 - 鉛筆芯及びその製造方法 - Google Patents
鉛筆芯及びその製造方法 Download PDFInfo
- Publication number
- JP4627566B2 JP4627566B2 JP2010051957A JP2010051957A JP4627566B2 JP 4627566 B2 JP4627566 B2 JP 4627566B2 JP 2010051957 A JP2010051957 A JP 2010051957A JP 2010051957 A JP2010051957 A JP 2010051957A JP 4627566 B2 JP4627566 B2 JP 4627566B2
- Authority
- JP
- Japan
- Prior art keywords
- nanoparticles
- pencil lead
- graphite
- pencil
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Inks, Pencil-Leads, Or Crayons (AREA)
Description
本願出願人は、鉛筆芯などの固形描画材中の油含浸可能な有効細孔容積や表面積を大きくし、圧縮強度を更に向上させると共に、書き味が滑らかで、十分な発色性及び描線濃度を有し、しかも、磨耗量が少なく、消去性が良く、描線を手でこすっても汚れにくい固形描画材及びその製造方法を提供するために、ナノ材料(ナノ粒子)を少なくとも含有する固形描画材用配合組成物を焼成処理又は非焼成処理してなる固形描画材芯体を形成し、該固形描画材芯体の気孔内に潤滑剤を充填してなることを特徴とする固形描画材を提案している(例えば、特許文献1参照)。
すなわち、上記特許文献1等に記載される技術により、単純にナノ粒子を混合し、固形描画材を形成しても、より優れた描線濃度、実筆記における書き味及びその代表的な指標となる静・動摩擦係数の好適な評価等を得ることはできないものであった。単純にナノ粒子を混合した固形描画材において、静・動摩擦係数を測定する場合、上記した「書き味」あるいは「筆記感」と称している評価項目について、芯体の製造方法、構成等によっては、必ずしも再現しない、という課題が発見されたのである。
(1) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05〜2のmv値を持ち、比表面積が50〜800m2/gのナノ粒子が、該黒鉛のab面と接着していることを特徴とする鉛筆芯。
(2) 前記鉛筆芯に用いるナノ粒子がカーボンナノ粒子であることを特徴とする上記(1)に記載の鉛筆芯。
(3) 前記カーボンナノ粒子がダイヤモンドであることを特徴とする上記(2)に記載の鉛筆芯。
(4) 前記ナノ粒子の体積平均径(mv値)が4〜100nmであることを特徴とする上記(1)〜(3)の何れか一つに記載の鉛筆芯。
(6) JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数(動摩擦係数)が0.191〜0.218であることを特徴とする上記(1)〜(5)の何れか一つに記載の鉛筆芯。
(7) 鉛筆芯の研磨断面をFE−SEM(加速電圧5kV)を用いて5μm×5μmを観察したとき、該ナノ粒子が1〜300個観察されることを特徴とする上記(1)〜(6)の何れか一つに記載の鉛筆芯。
(8) 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の燐片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05〜2のmv値を持ち、比表面積が50〜800m2/gのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3〜1.5で25℃における粘度が7〜200mm2/sとなる液体を含浸させることを特徴とする鉛筆芯の製造方法。
(9) 前記黒鉛に前記ナノ粒子を静電力によって接触させることを特徴とする上記(8)に記載の鉛筆芯の製造方法。
なお、本発明で規定する「JIS S 6005:2007」に規定されている画線機は、芯体を75度の角度に傾け、自転させながら描画させるものであり、前記した筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルの筆記時、描画時の態様に近いものである。そこで、JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値を筆記荷重で割った値(n=10)を、本願発明において、「動摩擦係数」、筆記初期の摩擦力を筆記荷重で割った値を「静摩擦係数」と称して評価項目とした。
本発明の鉛筆芯は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05〜2のmv値を持ち、比表面積が50〜800m2/gのナノ粒子が、該黒鉛のab面と接着していることを特徴とするものである。
また、本発明の鉛筆芯の製造方法は、少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の燐片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05〜2のmv値を持ち、比表面積が50〜800m2/gのナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3〜1.5で25℃における粘度が7〜200mm2/sとなる液体を含浸させることを特徴とするものである。
以下において、「本発明」というときには、上記鉛筆芯及びその製造方法の両方を含むものである。
用いる鱗片状黒鉛の平面度が2μmを越えものや、その鱗片状黒鉛のab面を持つa軸またはb軸とc軸のアスペクト比が5未満のものでは、潤滑に不利な条件となる結果、摩擦が大きくなり、好ましくない。
また、本発明における鱗片状黒鉛は、強度と書き味の点から、体積平均径(mv値)が4〜10μmであるものが望ましい。
なお、本発明(後述する実施例等を含む)における体積平均径(mv値)は、レーザー回折・散乱法における測定結果から体積で重みづけされた平均径をいい、例えば、鱗片状黒鉛では、マイクロトラック(日機装社製、3100II)を用いて乾式測定することができ、後述するナノ粒子では、ナノトラック〔日機装社製、UPA−EX150(内部プローブ型)〕を用いて測定で測定することができる。
用いることができるダイヤモンドナノ粒子としては、例えば、爆発法、静圧法、衝撃圧縮法、EACVD法、気相合成法及び液相成長法で作製したダイヤモンドナノ粒子が挙げられ、形態としては、例えば、多結晶ダイヤモンド粒子、単結晶ダイヤモンド粒子およびクラスターダイヤモンドなどが挙げられる。
具体的には、ナノ炭素研究所社製の商品名「ナノアマンドB」、東名ダイヤモンド工業社製のMDシリーズ、住石マテリアルズ社製のSCMナノダイヤ、SCMファインダイヤ、ナノテックシステムズ社製CD(Cluster Diamond)、CDS(Cluster Diamond Slurry)、GCD(Graphite Cluster Diamond)、GCDS(graphite Cluster Diamond slurry)、JETRO社製人口ダイヤモンド等を用いることができる。
この比表面積が50m2/gを下回るナノ粒子では、本発明で提案するナノ潤滑が得られず、原料の調達性、コスト、取り扱い性等の点からも好ましくなく、一方、800m2/gを超えるようなナノ粒子を用いると、ナノ粒子自体の形状が固体潤滑剤として不適当な形状である確率が大きくなり、本発明で提案する滑り潤滑が得られないため、好ましくない。
用いるナノ粒子の体積平均径(mv値)は、好ましくは、4〜100nm、更に好ましくは、5〜40nm、特に好ましくは、5〜30nmとすることが望ましい。
上記セラミック材料からなるナノ材料やダイヤモンドナノ粒子を含むカーボン粒子等のナノ粒子の体積平均径が上記特性の黒鉛の体積平均径(mv値)100に対して0.05未満又はナノ粒子の体積平均径(mv値)4nm未満であると、粒子としての単分散が困難で凝集しやすかったり、反応性が高く不安定になったりし、結果として黒鉛の滑りに逆作用する結果となり、一方、上記特性の黒鉛の体積平均径(mv値)100に対して2超過未満又はナノ粒子の体積平均径(mv値)が100nmを越えると、鉛筆芯としての構造が崩れて強度が低下してしまい、好ましくない。
なお、上記ダイヤモンドナノ粒子には、微量の不純物が含まれるがその殆どがダイヤモンド構造に由来するsp3表面官能基や結晶内インピュリティ成分が殆どである。それ以外の不純物は0.2%程度であるので、本発明の効果に悪影響を及ぼすものではない。また、「ダイヤモンドの純度99%以上」となるダイヤモンドは、摩擦係数が低い固体潤滑剤であるが、一般的に固体潤滑剤中の固体潤滑剤ではない不純物は1%を越えると潤滑特性が低下し始めるためである。
本発明において、鉛筆芯形成用の芯体を形成する前に、該鱗片状黒鉛に、上記特性のナノ粒子を接触後、該ナノ粒子を固定させた複合黒鉛とするのは、結果として芯全体へ分散させるためである。
ナノ粒子を固定させた複合黒鉛とする方法等としては、例えば、前記黒鉛に前記ナノ粒子を静電力によって接触(静電接着)させてナノ粒子固定複合黒鉛とすること、ファンデルワールス力により分散接着させて、ナノ粒子固定複合黒鉛とすること、または、黒鉛を粉砕しながらナノ粒子を入れ、黒鉛のファンデルワールス力等による凝集力により、結果としてナノ粒子を接着する方法などが挙げられる。
上記静電接着は、ナノ粒子と黒鉛との電子受け渡しで結合させる方法であり、また、上記ファンデルワールス力による分散接着は、黒鉛とナノ粒子の分極作用に起因する分子間力によって結合させる方法となるものである。
具体的には、上記鱗片状黒鉛と上記ナノ粒子を高速回転させたヘンシェルミキサーに投入してナノ粒子固定複合黒鉛としたり、上記ナノ粒子の水分散液と上記鱗片状黒鉛を高速回転させたヘンシェルミキサーに投入して粒子間摩擦力による発熱で水を蒸発させてナノ粒子固定複合黒鉛としたり、ナノ粒子のNPA(n−プロピルアルコール、←ご確認下さい)分散液中に黒鉛を投入して乾燥コーティングするなどの分散接着を行ったり、黒鉛にポリカチオン剤を塗布してナノ粒子を複合する等の静電接着を行ったり、振動ボールミルに黒鉛とナノ粒子を混合し、黒鉛を粉砕しながらナノ粒子を複合したりすることにより調製することができる。
好ましくは、接着力と潤滑効果の点から、上記特性の鱗片状黒鉛に、前記特性のナノ粒子を静電力によって接触(静電接着)させてナノ粒子固定複合黒鉛となるものが望ましい。
この鱗片状黒鉛の含有量が、20%未満であったり、80%を超えたりすると、硬度、書き味、強度のバランスが崩れる結果となり、好ましくない。
このナノ粒子の含有量が0.001%未満であると、有効細孔容積が殆ど変化しなく、また、未添加の鉛筆芯との差が現れなくとなる。一方、ナノ粒子の含有量が5%を超えると、有効細孔容積は大きくなるが、鉛筆芯の構造が崩れて強度が低下してしまい、好ましくない。
例えば、鉛筆芯がシャープペンシル用焼成鉛筆芯では、鱗片状黒鉛以外に、カーボンブラックとアモルファス炭素を少なくとも含有せしめることができ、また、非焼成鉛筆芯では、油脂とワックス類とを少なくとも含有することができ、更に、焼成鉛筆芯では、体質材とセラミック結合材とを少なくとも含有することができる。
また、体質材としては、従来の鉛筆芯に使用されているものであれば、特に限定されるものではなく、いずれも使用することができる。例えば、窒化ホウ素、カオリン(カオリナイト、ハロイサイト)、モンモリロナイト、タルク、マイカ、炭酸カルシウム等の白色系体質材や有色系の体質材も使用することができ、当然これら数種類の混合物も使用できる。特に、好ましくは、その物性、形状から窒化ホウ素、カオリン、タルクが挙げられる。
熱可塑性合成樹脂としては、例えば、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩素化塩化ビニル、ポリアミド、ポリエチレン、ポリプロピレン、ポリエーテルエーテルケトンなどを挙げられる。
有機溶剤としては、上記熱可塑性合成樹脂を溶解し得るものが好ましく、具体的には、ジオクチルフタレート、ジブチルフタレート、トリクレジルホスフェート、ジオクチルアジペート、ジアリルイソフタレート、プロピレンカーボネート、アルコール類、ケトン類、エステル類などを用いることができる。
本発明に用いる液体は、濃度を高める目的と共に、潤滑剤として作用させるために用いるものであり、気孔への浸透しやすさと光の反射率の点から、屈折率1.3〜1.5で、25℃における動粘度が7〜200mm2/sとなるものが用いられる。
用いることができる液体としては、上記特性の液体であれば、特に限定されず、上記特性を有するジメチルシリコーン、ジメチルシリコーンオイル、カルボキシメチルセルロース(CMC)液、トリメチルペンタフェニルトリシロキサン、流動パラフィン、脂肪酸エステル等の各単独又は2種以上の混合物が挙げられる。具体的には、市販されている、カネダ社製のハイコールMシリーズ、信越化学社製のKF−96シリーズなどが挙げられる。
なお、本発明(後述する実施例等を含む)における屈折率は、絶対屈折率をいい、また、動粘度はJIS K 2283およびJIS Z 8803の粘度測定法に基づいた単位[mm2/s]の値をいい、例えば、「キャノンフェンスケ」、「ウベローデ」によって直接測定することができる。
また、鉛筆芯の研磨断面をFE−SEM(日立ハイテク社製、S−4700型、加速電圧5kV−電流値10μA)を用いて5μm×5μmを観察したとき、ナノ粒子が1〜300個観察されることが好ましく、上記の「更に好ましい範囲」のナノ粒子の添加では2〜100個観察され、「特に好ましい範囲」の添加では5〜50個観察されるものとなる。
これらの全摩擦係数、ナノ粒子の個数は、用いる鱗片状黒鉛の平面度、アスペクト比等の物性、その含有量、ならびに、ナノ粒子の真球度、体積平均径(mv値)及びその含有量(含浸量)、
更に、オイルの種類などを好適に組み合わせることにより、調整することができる。
更に、本発明では、更に、上記作用効果と共に、上記で挙げた特許文献1に開示された鉛筆芯を上回る、描線濃度、書き味、静・動摩擦係数の低い鉛筆芯となるものであり、特に、筆記の度に芯体が回転して、常に新しい部分によって筆記されるタイプのシャープペンシルなどに使用される鉛筆芯であっても、更に、より良い滑らかな筆記感を有し、更に高い描線濃度を有する鮮やかな黒色となる鉛筆芯及びその製造方法が得られるものとなる(この点に関しては、後述する実施例及び比較例で更に詳述する)。
用いる鱗片状天然黒鉛の平面度等の物性、アスペクト比、ナノ粒子の比表面積は、下記測定方法により測定した。
(平面度の測定方法)
a−b面が直角となってSEMで観察されている図1のような粒子に接し、且つ粒子長軸端部同士を結ぶ線分に平行な線の最大値を測定する。(n=10)
アスペクト比は、図1からc軸長を測定し、a−b面は観察画像から計測し、その比により算出した。
(比表面積の測定方法)
BET流動法により求められるBET比表面積をナノ粒子の比表面積とした。具体的には、マウンテック社製の全自動BET比表面積測定装置(HM model−1208)により測定した。
鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8) 40質量部
ナノ粒子A:ダイヤモンドナノ粒子(比表面積208m2/g、mv値50nm、住石マテリアルズ社製) 0.4質量部
ポリ塩化ビニル 40質量部
ステアリン酸ナトリウム 1質量部
ジオクチルフタレート 19質量部
上記鱗片状黒鉛と上記ナノ粒子Aを高速回転(2000rpm、以下同様)させたヘンシェルミキサーに投入し、ダイヤモンドナノ粒子付着の鱗片状黒鉛を製造後(付着せしめる時間20分、以下同様)、残りの材料をヘンシェルミキサーに投入して、混合分散し、加圧ニーダー、ロールで混練し、成形後、ジオクチルフタレートを乾燥し、N2雰囲気中にて1000℃、10時間で焼成処理することによって、直径0.565mm、長さ60mmの焼成鉛筆芯体を製造した。
次いで、下記に記載の液体A(液温100℃、以下同様)中に、上記焼成鉛筆芯体を1MPaで加圧含浸(含浸時間180分、以下同様)し、ナノダイヤ含有焼成鉛筆芯を得た。
液体A:ジメチルシリコーンオイルKF96−30CS(動粘度30mm2/s、屈折率1.401、信越化学社製)
なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子Aは0.125のmv値であった。
液体B:CMC−Na−1wt%蒸留水(7mm2/s、屈折率1.345)
上記に記載の液体B中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
液体C:トリメチルペンタフェニルトリシロキサン(動粘度175mm2/s、屈折率1.580、東レ社製)
上記に記載の液体C中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
液体D:ジメチルシリコーン:KF−96L−5cs(動粘度5mm2/s、屈折率1.396、信越化学社製)
上記に記載の液体D中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
液体E: ジメチルシリコーン:KF−96−500cs(動粘度500mm2/s、屈折率1.403、信越化学社製)
上記に記載の液体E中に、上記実施例1で得た焼成鉛筆芯体を1MPaで加圧含浸し、ナノダイヤ含有焼成鉛筆芯を得た。
鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8) 70質量部
ナノ粒子A:ダイヤモンドナノ粒子(比表面積208m2/g、mv値50nm、住石マテリアルズ社製) 0.4質量部
カオリナイト粘土 15質量部
ハロイサイト粘土 15質量部
水 30質量部
上記鱗片状天然黒鉛と上記ナノ粒子Aを実施例1と同様にして、ダイヤモンドナノ粒子付着の鱗片状黒鉛を製造後、残りの材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
次いで、下記記載の液体F中に浸漬して油浸させて直径2.05mmの木軸鉛筆芯を得た。
液体F:ミヨシ調整ラード(ミヨシ油脂社製)
なお、上記鱗片状天然黒鉛Aの体積平均径(mv値)100に対して、上記ナノ粒子は0.125のmv値であった。
平面度3μm、mv値10μm、c軸の厚み1μm、アスペクト比10の鱗片状天然黒鉛 49質量部
ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m2/g、mv値5nm)
1質量部
ポリ塩化ビニル 50質量部
ステアリン酸ナトリウム 1質量部
ジオクチルフタレート 20質量部
上記材料をヘンシェルミキサーで混合分散し、加圧ニーダー、二本ロールで混練し線状体に押出成形した後、残留する可塑剤を除去すべく空気中で熱処理して固化(乾燥)した後に、窒素ガス雰囲気中にて1000℃で焼成し、最後にα−オレフィンオリゴマー(ライオン社製、リポループ20)中に浸漬して油漬させて、直径が0.570mmのシャープペンシル用芯HBを得た。
上記実施例1のナノ粒子A:ダイヤモンドナノ粒子(比表面積208m2/g、mv値50nm、住石マテリアルズ社製)を同量のナノ粒子B:ダイヤモンドナノ粒子(比表面積18.54m2/g、mv値100nm、住石マテリアルズ社製)に代えた以外は、実施例1と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
上記実施例1のナノ粒子A:ダイヤモンドナノ粒子(比表面積208m2/g、mv値50nm、住石マテリアルズ社製)を同量のナノ粒子B:ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m2/g、mv値20nm)に代えた以外は、実施例1と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
上記実施例1の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛B(平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10)に代えた以外は、実施例1と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
上記実施例1の鱗片状天然黒鉛A(平面度0.2μmのab面、mv値8μm、c軸の厚み1μm、アスペクト比8)を同量の鱗片状天然黒鉛C(平面度0.2μmのab面、mv値3μm、c軸の厚み1μm、アスペクト比3)に代えた以外は、実施例1と同様にしてナノダイヤ含有焼成鉛筆芯を得た。
ナノ粒子Aを含まない以外、上記実施例1と同様の配合で得た鉛筆芯体を、実施例1で用いた液体A中に、上記実施例1と同様に加圧含浸し、ナノダイヤ非含有焼成鉛筆芯を得た。
平面度3μmのab面、mv値10μm、c軸の厚み1μm、アスペクト比10の天然鱗状黒鉛 69質量部
ダイヤモンドナノ粒子(クラスターダイヤ、比表面積820m2/g、mv値5nm)
1質量部
カオリナイト粘土 15質量部
ハロイサイト粘土 15質量部
水 30質量部
上記材料をヘンシェルミキサーで混合分散し、2本ロールで水分を18質量部程度になるまで充分加熱混練する。得られた混練物を押出用ダイスを用いて線状体に押出成形した後、空気中120℃にて20時間熱処理して残留水分を除去し、窒素雰囲気中で1,200℃まで10時間、1,200℃にて1時間焼成した。
次いで、実施例6で用いた液体F(ミヨシ調整ラード)中に浸漬して油浸させて、直径2.05mmの木軸鉛筆芯を得た。
ナノ粒子Aを含まない以外、上記実施例6と同様の配合で得た鉛筆芯体を、実施例6で用いた液体F(ミヨシ調整ラード)中に上記実施例6と同様に浸漬し、直径2.05mmの木軸鉛筆芯を得た。
これらの結果を下記表1に示す。
実施例1〜5及び比較例1〜6のシャープペンシル用鉛筆芯では、JIS S 6005:2007に規定されている曲げ強さ試験で曲げ強度を測定した(n=100)。また、実施例6及び比較例7、8の木軸鉛筆芯では、JIS S 6006:2007に規定されている曲げ強さ試験で曲げ強度を測定した(n=100)。
芯を平面上に横置き固定し、テンシロン(ORIENTEC RTC−1150A)で横幅2mm、縦幅5mmの圧縮治具で上から圧縮試験して破壊強度を測定した(n=100)。
なお、この評価項目である圧縮強度は、シャープペンシル用鉛筆芯のチャックで潰れにくいことを示す指標であるため、実施例6及び比較例7、8の木軸鉛筆芯では測定せず、評価を「−」とした。
筆記角度75°、荷重300gf、筆記距離5m筆記した際の芯の磨耗長さを測定した(n=10)。
(濃度の測定方法)
磨耗試験で筆記した描線を濃度計(sakura DENSI TOMETER PDA65)で測定した値である(n=10×4ヵ所)。
(消去率の測定方法)
磨耗試験で筆記した描線を消しゴム(EP−105E)で5往復させた後の描線消去率を求めた(n=10)。
JIS S 6005:2007、JIS S 6006:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値を筆記荷重で割った値(n=10)を「動摩擦係数」とし、摩擦の最大値を筆記荷重で割った値を「静摩擦係数」とした。
(ナノ粒子個数の測定方法)
得られた各鉛筆芯の研磨断面をFE−SEM(日立ハイテク社製、S−4700型、加速電圧5kV−電流値10μA)を用いて5μm×5μmを観察したときのナノ粒子の個数を測定した。
10人の被験者が400字詰め原稿用紙を1枚「三菱鉛筆」と繰り返し筆記し、当社既存品
(三菱鉛筆社製、「SHU」0.5mm−HB)と比較して下記各項目の相対評価を行った。
筆記感は、滑らかに感じるか否かで比較し下記評価基準で評価した。
汚れ難さは、400字筆記した後の手の汚れを比較し下記評価基準で評価した。
初期滑りは、1画1画がスムーズに滑りだすかどうかを比較し下記評価基準で評価した。
評価基準(平均値):
◎:非常に良い
○:既存品より良い
△:既存品と同等
×:既存品より悪い
これに対して、比較例を個別的にみると、比較例1は、特開2007−138031号公報の実施例11に準拠するものであり、比較例2及び3は本発明の範囲外となるナノ粒子を用いた場合であり、比較例4及び5は、本発明の範囲外となる鱗片状黒鉛を用いた場合であり、比較例6は上記実施例1の配合時にナノ粒子Aを接着しないで得た鉛筆芯を製造した場合であり、これらの鉛筆芯では本発明の目的の鉛筆芯が得られないことが判った。また、比較例7は、特開2007−138031号公報の実施例11に準拠する木軸鉛筆芯であり、比較例8は、ナノ粒子を用いない木軸鉛筆芯であり、これらの木軸鉛筆芯では目的の鉛筆芯が得られないことが判った。
Claims (9)
- 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の鱗片状黒鉛を含有する鉛筆芯において、該黒鉛の体積平均径(mv値)100に対して0.05〜2のmv値を持ち、比表面積が50〜800m2/gのカーボンナノ粒子及びセラミックナノ粒子から選ばれるナノ粒子が、該黒鉛のab面と接着していることを特徴とする鉛筆芯。
- 前記鉛筆芯に用いるナノ粒子がカーボンナノ粒子であることを特徴とする請求項1に記載の鉛筆芯。
- 前記カーボンナノ粒子がダイヤモンドであることを特徴とする請求項2に記載の鉛筆芯。
- 前記ナノ粒子の体積平均径(mv値)が4〜100nmであることを特徴とする請求項1〜3の何れか一つに記載の鉛筆芯。
- 前記ナノ粒子によって鱗片状黒鉛と鱗片状黒鉛の間に生じた隙間に、屈折率1.3〜1.5で25℃における粘度が7〜200mm2/sとなる液が含浸されていることを特徴とする請求項1〜4の何れか一つに記載の鉛筆芯。
- JIS S 6005:2007に規定されている画線機を用いた画線方法における画線中の全摩擦力の平均値(n=10)を筆記荷重で割った、全摩擦係数が0.191〜0.218であることを特徴とする請求項1〜5の何れか一つに記載の鉛筆芯。
- 鉛筆芯の研磨断面をFE−SEM(加速電圧5kV)を用いて5μm×5μmを観察したとき、該ナノ粒子が1〜300個観察されることを特徴とする請求項1〜6の何れか一つに記載の鉛筆芯。
- 少なくとも平面度が2μm以下のab面を持つa軸またはb軸とc軸のアスペクト比が5以上の燐片状黒鉛に、該黒鉛の体積平均径(mv値)100に対して0.05〜2のmv値を持ち、比表面積が50〜800m2/gのカーボンナノ粒子及びセラミックナノ粒子から選ばれるナノ粒子を接触後、該ナノ粒子を固定させて複合した後、その複合黒鉛を用いて芯体を形成し、屈折率1.3〜1.5で25℃における粘度が7〜200mm2/sとなる液体を含浸させることを特徴とする鉛筆芯の製造方法。
- 前記黒鉛に前記ナノ粒子を静電力によって接触させることを特徴とする請求項8に記載の鉛筆芯の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010051957A JP4627566B2 (ja) | 2009-04-24 | 2010-03-09 | 鉛筆芯及びその製造方法 |
AU2010240104A AU2010240104B2 (en) | 2009-04-24 | 2010-04-22 | Pencil lead and production process for the same |
US13/265,476 US8349063B2 (en) | 2009-04-24 | 2010-04-22 | Pencil lead and production process for the same |
KR1020117027686A KR101247417B1 (ko) | 2009-04-24 | 2010-04-22 | 연필심 및 그 제조 방법 |
PCT/JP2010/057159 WO2010123070A1 (ja) | 2009-04-24 | 2010-04-22 | 鉛筆芯及びその製造方法 |
EP10767127.3A EP2423280B1 (en) | 2009-04-24 | 2010-04-22 | Pencil lead and method for producing same |
CN2010800282046A CN102459481B (zh) | 2009-04-24 | 2010-04-22 | 铅笔芯及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009106115 | 2009-04-24 | ||
JP2010051957A JP4627566B2 (ja) | 2009-04-24 | 2010-03-09 | 鉛筆芯及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010270304A JP2010270304A (ja) | 2010-12-02 |
JP4627566B2 true JP4627566B2 (ja) | 2011-02-09 |
Family
ID=43418581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010051957A Active JP4627566B2 (ja) | 2009-04-24 | 2010-03-09 | 鉛筆芯及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4627566B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7570947B2 (ja) | 2021-03-04 | 2024-10-22 | 株式会社大林組 | 仮設覆工床版、仮設覆工床版の取付け構造、及び仮設覆工床版の取付け方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293874A (ja) * | 1993-04-08 | 1994-10-21 | Nippon Kokuen Kogyo Kk | 鉛筆芯の製造方法 |
JPH0718213A (ja) * | 1993-06-30 | 1995-01-20 | Pentel Kk | 鉛筆芯の製造方法 |
JPH0834951A (ja) * | 1994-07-22 | 1996-02-06 | Mitsubishi Pencil Co Ltd | 焼成鉛筆芯 |
JP2007138031A (ja) * | 2005-11-18 | 2007-06-07 | Mitsubishi Pencil Co Ltd | 固形描画材及びその製造方法 |
-
2010
- 2010-03-09 JP JP2010051957A patent/JP4627566B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06293874A (ja) * | 1993-04-08 | 1994-10-21 | Nippon Kokuen Kogyo Kk | 鉛筆芯の製造方法 |
JPH0718213A (ja) * | 1993-06-30 | 1995-01-20 | Pentel Kk | 鉛筆芯の製造方法 |
JPH0834951A (ja) * | 1994-07-22 | 1996-02-06 | Mitsubishi Pencil Co Ltd | 焼成鉛筆芯 |
JP2007138031A (ja) * | 2005-11-18 | 2007-06-07 | Mitsubishi Pencil Co Ltd | 固形描画材及びその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7570947B2 (ja) | 2021-03-04 | 2024-10-22 | 株式会社大林組 | 仮設覆工床版、仮設覆工床版の取付け構造、及び仮設覆工床版の取付け方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2010270304A (ja) | 2010-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010123070A1 (ja) | 鉛筆芯及びその製造方法 | |
JP4919652B2 (ja) | 固形描画材及びその製造方法 | |
JP5219341B2 (ja) | 鉛筆芯及びその製造方法 | |
JP4627563B2 (ja) | 鉛筆芯及びその製造方法 | |
JP2012172065A (ja) | 鉛筆芯及びその製造方法 | |
JP5590786B2 (ja) | 焼成鉛筆芯及びその製造方法 | |
JP5846722B2 (ja) | 鉛筆芯 | |
JP4627567B2 (ja) | 鉛筆芯の製造方法 | |
JP4627566B2 (ja) | 鉛筆芯及びその製造方法 | |
JP5138317B2 (ja) | 多層芯体及びその製造方法 | |
JP5421599B2 (ja) | 固形描画材及びその製造方法 | |
JP4627565B2 (ja) | 鉛筆芯及びその製造方法 | |
JP4627564B2 (ja) | 鉛筆芯及びその製造方法 | |
JP4627568B2 (ja) | 鉛筆芯の製造方法 | |
JP2013245267A (ja) | 鉛筆芯 | |
JP5855466B2 (ja) | 鉛筆芯及びその製造方法 | |
JP6207709B2 (ja) | 鉛筆芯 | |
JP3373302B2 (ja) | 焼成鉛筆芯 | |
JP6167696B2 (ja) | 焼成鉛筆芯 | |
JP3073127B2 (ja) | 鉛筆芯及びその製造方法 | |
JP6347099B2 (ja) | シャープペンシル | |
JP2004256593A (ja) | 鉛筆またはシャープペンシル用芯 | |
JPH0931391A (ja) | 鉛筆芯 | |
JPH0931392A (ja) | 鉛筆芯 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101018 |
|
TRDD | Decision of grant or rejection written | ||
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20101018 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101102 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131119 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4627566 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |