WO2010122697A1 - リソグラフィ用ペリクルおよびその製造方法 - Google Patents

リソグラフィ用ペリクルおよびその製造方法 Download PDF

Info

Publication number
WO2010122697A1
WO2010122697A1 PCT/JP2010/000605 JP2010000605W WO2010122697A1 WO 2010122697 A1 WO2010122697 A1 WO 2010122697A1 JP 2010000605 W JP2010000605 W JP 2010000605W WO 2010122697 A1 WO2010122697 A1 WO 2010122697A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle
film
manufacturing
lithography
single crystal
Prior art date
Application number
PCT/JP2010/000605
Other languages
English (en)
French (fr)
Inventor
秋山昌次
久保田芳宏
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US13/264,552 priority Critical patent/US8518612B2/en
Priority to KR1020117019106A priority patent/KR101717615B1/ko
Priority to CN2010800175364A priority patent/CN102405440A/zh
Priority to EP10766760.2A priority patent/EP2423747B1/en
Publication of WO2010122697A1 publication Critical patent/WO2010122697A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a pellicle for lithography and a method of manufacturing the same, and more specifically, provided as a pellicle film a silicon single crystal film which is a material having high permeability to extreme ultraviolet light (EUV light) and being chemically stable.
  • the present invention relates to a pellicle for lithography and a method of manufacturing the same.
  • the exposure technology using an excimer laser is no longer able to cope with the patterning of the further miniaturized line width of 32 nm or less scheduled for the next generation, and light with a shorter wavelength compared with the excimer laser.
  • An EUV exposure technology using Extreme Ultra Violet (EUV) light with a dominant wavelength of 13.5 nm is expected.
  • the unsolved technical problems of pellicles used for EUV exposure are (1) development of a material having high transparency to EUV light and being chemically stable, (2) in the case of an ultra thin film Keeping the permeable membrane (pellicle membrane) inevitably under tension without loosening, (3) enabling use under vacuum after attaching to a photo mask under normal pressure And so on.
  • the above-mentioned problem (1) is particularly serious, and the material development of a chemically stable transmission film which has a high EUV light transmittance and does not change with time due to oxidation etc. It is the fact that the eyes are not standing.
  • Materials used in conventional pellicle films do not have transparency in the wavelength band of EUV light, and in addition to not transmitting EUV light, they are decomposed or degraded by light irradiation, Have the problem of Although a material exhibiting complete transparency in the wavelength band of EUV light is not known at present, silicon is noted as a material with relatively high transparency, and is also introduced in the literature.
  • the silicon used for the pellicle for EUV exposure reported in the above-mentioned Document 1 is a silicon film deposited by a method such as sputtering, and it inevitably becomes an amorphous film, and thus the EUV wavelength
  • the absorptivity (absorptivity coefficient) of the light of the band is increased.
  • the silicon used for the pellicle for EUV exposure reported in the above-mentioned Document 2 is a film deposited by the CVD method or the like, and also in this case, the silicon film is an amorphous film or It becomes a polycrystalline film, and the absorptivity (absorption coefficient) of light in the EUV wavelength band becomes high.
  • the temperature at the time of applying the silicon film is room temperature or A degree slightly higher than room temperature is desirable.
  • strong stress is already introduced into the silicon film of the conventional method as described above in the deposition process (sputtering process, CVD process, etc.).
  • these silicon films are not single crystal silicon films, the amorphous portions and grain boundaries contained in the films cause the absorptivity (absorption coefficient) of EUV light to be high and the transmittance to decrease. It will Furthermore, the film is chemically unstable and easily oxidized, so that the transmittance for EUV light decreases with time, and the film can not withstand practical use.
  • the present invention has been made in view of the above problems, and the object of the present invention is to use a silicon single crystal film which is a material having high transparency to extreme ultraviolet light (EUV light) and being chemically stable.
  • a pellicle for lithography provided as a film and a method of manufacturing the same.
  • a pellicle for lithography comprises a support member having an outer frame portion and a porous portion in an inner region of the outer frame portion, and a pellicle of single crystal silicon supported by the porous portion. It is equipped with a membrane.
  • the pellicle for lithography preferably comprises an anti-oxidation film that covers the surface of the pellicle film.
  • the frame portion of the support member be provided with a filter that transmits gas.
  • the support member may be made of silicon crystal.
  • a method of manufacturing a pellicle for lithography comprises: a support member having an outer frame portion and a porous portion in an inner region of the outer frame portion; and a pellicle film of single crystal silicon supported by the porous portion.
  • a method of manufacturing a pellicle for a patient which partially removes the handle substrate of an SOI substrate in which a single crystal silicon layer is provided on the surface of the handle substrate via an insulating layer, and the outer frame portion and the porous portion And a supporting member forming step of forming
  • the partial removal of the handle substrate can be performed by dry etching using a silicon DRIE (Silicon Deep Reactive Ion Etching) method.
  • the method of manufacturing the pellicle for lithography may be configured to include a step of removing the insulating layer portion exposed to the porous portion after the step of forming the support member.
  • the method for manufacturing the pellicle for lithography may be configured to include a step of grinding the back surface of the handle substrate to thin the handle substrate to 400 ⁇ m or less prior to the support member forming step.
  • the method for manufacturing the pellicle for lithography may be configured to include a step of providing a reinforcing substrate on the surface provided with the single crystal silicon layer prior to the step of forming the support member.
  • the method for manufacturing the pellicle for lithography may be configured to include a step of forming a protective film on the surface on which the single crystal silicon layer is provided prior to the step of forming the support member.
  • the protective film formation step is preferably performed by depositing any one of a silicon oxide film (SiO x ), a silicon nitride film (SiN x ), and a silicon oxynitride film (SiO x N y ).
  • the method of manufacturing the pellicle for lithography may be configured to include a step of forming an anti-oxidation film on the surface on which the single crystal silicon layer is provided prior to the step of forming the support member.
  • the method of manufacturing the pellicle for lithography may further include the step of forming an anti-oxidation film on the portion of the single crystal silicon layer exposed to the porous portion after the step of forming the support member.
  • the deposition of the anti-oxidation coating is performed by ion beam assisted deposition or assisted gas cluster ion beam (GCIB) deposition.
  • GCIB assisted gas cluster ion beam
  • the method of manufacturing the pellicle for lithography may be configured to include a step of providing a filter that allows gas to pass through the outer frame portion.
  • the pellicle for lithography of the present invention comprises the support member having the outer frame portion and the porous portion in the inner region of the outer frame portion, and the pellicle film of single crystal silicon supported by the porous portion. It is possible to provide a pellicle for lithography provided with a silicon single crystal film, which is a highly stable and chemically stable material for extreme ultraviolet light (EUV light), as a pellicle film.
  • EUV light extreme ultraviolet light
  • the outer frame portion is partially removed by partially removing the handle substrate of the SOI substrate in which the single crystal silicon layer is provided on the surface of the handle substrate through the insulating layer.
  • the porous portion are formed to form a support member, and the single crystal silicon layer supported by the porous portion is used as a pellicle film, so high transparency to extreme ultraviolet light (EUV light) can be obtained.
  • EUV light extreme ultraviolet light
  • FIG. 1 is a bottom view illustrating the structure of a pellicle for lithography of the present invention.
  • FIG. 2B is a cross-sectional view taken along the line AA shown in FIG. 2A. It is an optical microscope photograph which expands and shows the said mesh structure part of the pellicle for lithography of this invention.
  • 4A to 4G are views for explaining a first example of the method for manufacturing a pellicle for lithography of the present invention.
  • 5A to 5J are views for explaining a second example of the method for manufacturing a pellicle for lithography of the present invention.
  • the silicon film for pellicle for EUV exposure that has been reported conventionally is formed by the sputtering method or the CVD method. In this case, the film becomes amorphous or polycrystal, and the absorptivity (absorption coefficient) of light in the EUV wavelength range increases. Therefore, the inventors of the present invention have made the present invention by repeating studies using a single crystal silicon film as a pellet film.
  • FIG. 1 is a diagram showing the absorption coefficient of a single crystal silicon film for light of a wavelength near 13.5 nm in comparison with the absorption coefficient of an amorphous silicon film.
  • the single crystal silicon film has an absorption coefficient of about 40% as compared to the absorption coefficient of the amorphous silicon film, and has high transparency to light in the EUV wavelength band, It has excellent properties as a pellicle membrane.
  • the absorption coefficient shown in FIG. 1 see, for example, Edward D. Palik, ed., “Handbook of Optical Constants of Solids,” Academic Press, Orlando (1985) (Document 3).
  • the present inventors use an SOI substrate provided with a single crystal silicon layer as an SOI layer to realize a pellicle for lithography provided with a single crystal silicon film as a pellicle film, and use the single crystal silicon layer as a pellicle film.
  • investigations were made on a method of forming the supporting member of the pellicle film by processing the base substrate (handle substrate) of the SOI substrate.
  • the pellicle obtained by such a method not only has the advantage of high transparency to light in the EUV wavelength range, but also forms the pellicle film after separately forming the pellicle film and the supporting frame as in the prior art. There is also an advantage of eliminating the need for the effort of stretching on a frame.
  • FIGS. 2A and 2B are views showing the structure of the pellicle for lithography of the present invention, wherein FIG. 2A is a bottom view and FIG. 2B is a cross-sectional view along AA shown in FIG. 2A.
  • the pellicle for lithography of the present invention is provided with a pellicle film 10 of single crystal silicon, and the pellicle film 10 comprises an outer frame portion 20a and a porous portion 20b in the inner region of the outer frame portion 20a. It is supported by a support member 20 having a (mesh structure).
  • anti-oxidation films 30a and 30b are formed which cover the portion where the single crystal silicon film is exposed to the outside.
  • the portion indicated by reference numeral 40 in the drawing is the portion which was the insulator layer (BOX layer) of the SOI substrate.
  • the ones indicated by reference numerals 50a and 50b in the figure are filters provided in the frame portion 20a of the support member 20, and it is possible to adjust the internal pressure at the time of using the pellicle by allowing the gas to permeate through the filters. It is a thing.
  • FIG. 3 is an enlarged optical photomicrograph showing the mesh structure of the pellicle for lithography of the present invention.
  • the portion indicated by “M” is the mesh structure portion of the support member
  • the portion indicated by “P” is the pellicle film portion of single crystal silicon which is bored from the hole portion of the mesh structure portion.
  • a large number of substantially hexagonal hole portions having a diameter of about 200 ⁇ m are formed in the inner region of the outer frame portion of the support member, and the distance between the hole portions is approximately 20 ⁇ m.
  • a pellicle film portion of single crystal silicon can be observed from these holes, and light at the time of exposure is irradiated from the portion to a photomask (reticle).
  • the handle substrate of the SOI substrate is described as a silicon substrate, but may be another substrate (for example, a glass substrate or a quartz substrate).
  • an SOI substrate for producing a pellicle having the above-described configuration for example, an SOI substrate produced by bonding single crystal silicon wafers crystal-grown by a CZ method via an oxide film can be used.
  • Such an SOI substrate can be obtained, for example, by the following procedure.
  • a uniform ion-implanted layer is formed to a depth (average ion-implantation depth L) and surface activation is further performed by plasma treatment or the like.
  • the first single crystal silicon substrate subjected to surface activation and the second single crystal silicon substrate are adhered in close contact with each other, and the above-described ion implantation layer is utilized to form a first single crystal silicon substrate. Mechanically peel off the silicon layer.
  • an SOI substrate having a silicon layer (SOI layer) on a second single crystal silicon substrate can be obtained.
  • the porous portion (mesh structure) is provided in the inner region of the outer frame portion of the support member included in the pellicle for lithography of the present invention is that the thickness of the single crystal silicon pellicle film of the pellicle for EUV is several tens nm to several hundreds nm This is because it is extremely difficult to support such a thin pellicle membrane in a stable and mechanical strength secured state only by the pellicle frame (outer frame portion).
  • a method is employed in which a mesh structure is made of metal and a pellicle film of amorphous silicon is bonded to the mesh structure using an organic substance as an adhesive.
  • an organic substance as an adhesive.
  • it is difficult to cause the entire surface of the pellicle film to adhere to the mesh structure uniformly and with high accuracy.
  • stress adjustment of the pellicle membrane is extremely difficult.
  • the method of processing the handle substrate of the SOI substrate as a support member is selected. That is, the handle substrate is ground and polished from the back surface to a desired thickness, and the handle substrate is partially removed to form holes to form a mesh structure.
  • dry etching by a silicon DRIE (Silicon Deep Reactive Ion Etching) method widely used in MEMS and the like can be used.
  • the etching is stopped at the insulator layer (BOX layer) such as a silicon oxide film (or the etching rate becomes extremely slow), and therefore, it is used as a pellicle film.
  • the single crystal silicon layer (SOI layer) is not etched. Further, since the pellicle film of single crystal silicon is firmly bonded to the support member, sufficient mechanical strength can be secured. Furthermore, since no adhesive is used, contamination due to the remaining organic matter is also avoided.
  • a film made of an inorganic material such as SiON, SiC, Y 2 O 3 , YN, or at least one of these materials can be obtained by forming a film on the surface of the single crystal silicon layer.
  • the formation of the antioxidation film can also be performed by a method such as a CVD method, a sputtering method, or an electron beam evaporation method, but according to the ion beam aided evaporation method or the assisted gas / cluster ion beam (GCIB) evaporation method Since a dense film having a high density close to the theoretical density can be formed, and high oxidation resistance can be obtained even if the antioxidant film is made thin, the high transmittance is not impaired. Regarding this point, for example, L. Dong et al. Journal of Applied physics, vol. 84, No. 9, pp. 5261-5269, 1998 (Document 4), “Kyber ion beam basics and applications” edited by Yamada Kou See Chapter 4 Nikkan Kogyo (Document 5).
  • the internal pressure adjustment is required, but the mechanism of such pressure adjustment is required to be capable of preventing the entry of foreign matter at the time of gas inflow and outflow.
  • a filter such as ULPA or a metal filter that can capture extremely fine foreign matter is preferable.
  • it is important that such a filter has an area such that the pellicle membrane does not expand and contract or break due to the uneven pressure difference.
  • FIGS. 4A to 4G are views for explaining a first example of a method of manufacturing a pellicle for lithography of the present invention.
  • an SOI substrate is prepared (FIG. 4A).
  • an SOI layer 20 of single crystal silicon is provided on a handle substrate 20 via a BOX layer 40 of a silicon oxide film.
  • the thickness is about 700 ⁇ m, so the handle substrate side may be thinned by grinding, polishing or the like to a desired thickness (for example, 400 ⁇ m or less). This is because if the height of the support member is higher than necessary, a burden will be imposed on the subsequent etching step. In addition, if the handle substrate side is made thinner in advance, the time required for the etching process can also be shortened.
  • an antioxidation film 30a is formed on the SOI layer 20 of single crystal silicon (FIG. 4B).
  • a protective film 60 for protecting the SOI layer 10 may be provided on the surface where the SOI layer 20 is provided (here, on the anti-oxidation film 30a) as required (FIG. 4C).
  • a protective film for example, a silicon oxide film (SiO x ), a silicon nitride film (SiN x ), and a silicon oxynitride film (SiO x N y ) can be exemplified.
  • an etching mask 70 for forming a mesh structure is formed on the handle substrate (rear surface) (FIG. 4D), and dry etching is performed so that the area not covered by the etching mask 70 becomes a porous portion. Form.
  • the etching mask 70 and the protective film 60 provided on the side of the SOI layer are removed, and the BOX layer 40 which is an insulating layer in a portion exposed by the porous portion is removed to obtain a pellicle film of single crystal silicon.
  • a pellicle FOG. 4F
  • an anti-oxidation film 30 b may be provided.
  • the outer frame portion 20a of the holding member is provided with filters 50a, 50b that allow gas to pass therethrough.
  • FIG. 5A to 5J are views for explaining a second example of the method for manufacturing a pellicle for lithography of the present invention.
  • the difference from the first example described above is that the reinforcing substrate 80 is provided on the surface of the SOI substrate on which the single crystal silicon layer is provided prior to the step of forming the support member in order to supplement the mechanical strength of the SOI substrate. (FIG. 5D) in the point provided.
  • Example 1 On a silicon substrate (handle substrate) with a diameter of 200 mm and a thickness of 725 ⁇ m, a 300 nm-thick SOI layer of silicon single crystal (Nearly Perfect Crystal: NPC) with extremely low density of crystal defects such as COP is 500 nm-thick silicon An SOI substrate attached via a thermal oxide film was used.
  • the handle substrate of this SOI substrate is thinned to 300 ⁇ m by grinding and polishing, and then an etching mask is patterned on the handle substrate side by lithography, a mesh structure is formed by DRIE, and finally it is exposed to holes by HF treatment.
  • the silicon thermal oxide film (BOX layer) was removed to complete the pellicle. In this pellicle, no breakage of the single crystal silicon pellicle film was observed.
  • Example 2 As in Example 1, on a silicon substrate (handle substrate) having a diameter of 200 mm and a thickness of 725 ⁇ m, a 300 nm-thick SOI layer of silicon single crystal (Nearly Perfect Crystal: NPC) with extremely low density of crystal defects such as COP is provided. An SOI substrate attached via a silicon thermal oxide film with a thickness of 500 nm was used. After bonding this SOI substrate to a reinforcing substrate made of Tempax glass, the handle substrate is thinned to 100 ⁇ m by grinding and polishing, and then an etching mask is patterned on the handle substrate side by lithography to form a mesh structure by DRIE.
  • NPC Nearly Perfect Crystal
  • the silicon thermal oxide film (BOX layer) exposed in the holes was removed by HF treatment, and the reinforcing substrate was peeled off to complete the pellicle. In this pellicle, no breakage of the single crystal silicon pellicle film was observed.
  • Comparative Example 1 On a silicon substrate (handle substrate) with a diameter of 200 mm and a thickness of 725 ⁇ m, a 100 nm-thick SOI layer of silicon single crystal (Nearly Perfect Crystal: NPC) with extremely low density of crystal defects such as COP is 500 nm-thick silicon A pellicle was completed in the same manner as in Example 2 except that the SOI substrate attached via the thermal oxide film was used. In this pellicle, since the thickness of the single crystal silicon layer of the SOI substrate used was as thin as 100 nm, breakage was observed in part of the pellicle film.
  • NPC Nearly Perfect Crystal
  • Example 3 As in Comparative Example 1, on a silicon substrate (handle substrate) having a diameter of 200 mm and a thickness of 725 ⁇ m, a 100 nm-thick SOI layer of a silicon single crystal (Nearly Perfect Crystal: NPC) with extremely low density of crystal defects such as COP. An SOI substrate attached via a silicon thermal oxide film with a thickness of 500 nm was used. On the SOI layer of this SOI substrate, an oxide film to be a protective film was deposited 3 ⁇ m by PECVD method, and then this protective film was bonded to a reinforcing substrate made of Tempax glass.
  • a silicon substrate handle substrate having a diameter of 200 mm and a thickness of 725 ⁇ m
  • NPC Nearly Perfect Crystal: NPC
  • An SOI substrate attached via a silicon thermal oxide film with a thickness of 500 nm was used.
  • an oxide film to be a protective film was deposited 3 ⁇ m by PECVD method, and then this protective film was bonded to
  • a pellicle for lithography provided with a silicon single crystal film, which is a highly stable and chemically stable material for extreme ultraviolet light (EUV light), as a pellicle film and its manufacture A method is provided.
  • EUV light extreme ultraviolet light

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 本発明のリソグラフィ用ペリクルは、単結晶シリコンのペリクル膜(10)を備えており、当該ペリクル膜(10)は、外枠部(20a)と該外枠部(20a)の内側領域の多孔部(メッシュ構造)(20b)を有する支持部材(20)により支持されている。また、ペリクル膜10の表面の酸化を防止するために、単結晶シリコン膜が外部に露出される部分を被覆する酸化防止膜(30a、30b)が形成されている。支持部材(20)はSOI基板のハンドル基板を加工することにより得られ、単結晶シリコンのペリクル膜(10)はSOI基板のSOI層から得られる。ペリクル膜(10)は支持部材(20)と強固に結合しているから、十分な機械的強度を確保することができる。

Description

リソグラフィ用ペリクルおよびその製造方法
 本発明はリソグラフィ用ペリクルおよびその製造方法に関し、より詳細には、極端紫外光(EUV光)に対する高い透過性を有し且つ化学的に安定な材料であるシリコン単結晶膜をペリクル膜として備えたリソグラフィ用ペリクルおよびその製造方法に関する。
 半導体デバイスの高集積化および微細化は年々加速してきており、現在では線幅が45nm程度のパターニングも実用化されつつある。このような微細なパターニングに対しては、従来のエキシマ露光技術の改良により、即ちArF液浸露光技術や二重露光技術などの手法によっても対応可能であるとされている。
 しかし、次世代に予定されている更に微細化した線幅32nm以下のパターニングには、最早、エキシマレーザを用いた露光技術では対応が難しいとされ、エキシマレーザに比較してより短波長な光である主波長13.5nmの極端紫外(EUV: Extreme Ultra Violet)光を使用するEUV露光技術が本命視されている。
 このEUV露光技術の実用化のためには、光源、レジスト、および、フォトマスク上への異物の付着を防止するための防塵用ペリクルなどの各要素技術における技術的課題の解決が不可欠である。これらの要素技術のうち、光源とレジストについては、現状において既にかなりの進展がみられている。一方、半導体デバイス等の製造歩留まりを左右する防塵用ペリクルについては、現状においても種々の未解決な課題が残されており、EUV露光技術の実用化の大きな障害となっている。
 EUV露光に用いられるペリクルが抱える未解決の技術的課題は、具体的には、(1)EUV光に対する高い透過性を有し且つ化学的に安定な材料の開発、(2)超薄膜とならざるを得ない透過膜(ペリクル膜)を緩みなく一定の張力の下で保持する構成とすること、(3)常圧下でフォトマスクに貼り付けを行なった後に真空下での使用を可能にすること、などである。これらの未解決な課題の中でも、特に上記(1)の問題は深刻であり、EUV光の透過率が高くしかも酸化などによる経時変化のない化学的に安定な透過膜の材料開発には、未だ目処が立っていないのが実情である。
 従来のペリクル膜に用いられてきた材料(主として有機材料)は、EUV光の波長帯では透明性を有しておらず、EUV光を透過しないことに加え、光照射によって分解したり劣化したりするという問題がある。EUV光の波長帯において完全な透明性を示す材料は現在のところ知られていないが、比較的透明性が高い材料としてシリコンが注目されており、文献等でも紹介されている。
 例えば、Shroff et al. “EUV pellicle Development for Mask Defect Control,” Emerging Lithographic Technologies X, Proc of SPIE  Vol.6151 615104-1(2006)(文献1)やLivinson et al.,United States Patent US6,623,893 B1, “PELLICLE FOR USE IN EUV LITHOGRAPHIY AND METHOD OF MAKING SUCH A PELLICLE”(文献2)を参照されたい。
 しかし、上記文献1で報告されているEUV露光用ペリクルに用いられているシリコンはスパッタリング等の方法で堆積されたシリコン膜であり、必然的に非晶質の膜となってしまうためにEUV波長帯の光の吸収率(吸収係数)が高くなってしまう。
 また、上記文献2で報告されているEUV露光用ペリクルに用いられているシリコンはCVD法などで堆積された膜であることが前提となっており、この場合もシリコン膜は非晶質膜もしくは多結晶膜となり、EUV波長帯の光の吸収率(吸収係数)が高くなってしまう。
 加えて、ペリクル膜としてフレームに貼られた状態のシリコン膜には多少の引っ張り応力が加わっていることが望ましいが、応力が加わり過ぎると破損につながるため、シリコン膜を貼る際の温度は室温もしくは室温よりも若干高い程度が望ましい。ところが、上述したような従来方法のシリコン膜には、その堆積過程(スパッタリング工程やCVD工程など)で既に強い応力が導入されてしまう。
 また、これらのシリコン膜は単結晶シリコン膜ではないため、膜中に含まれる非晶質部分や粒界が起因となってEUV光の吸収率(吸収係数)を高くし、透過率を低下させてしまう。さらに、化学的にも不安定で容易に酸化され易いため、時間とともにEUV光に対する透過率が低下してしまい、実用には耐えられない膜であった。
 本発明は上述の問題に鑑みてなされたもので、その目的とするところは、極端紫外光(EUV光)に対する高い透過性を有し且つ化学的に安定な材料であるシリコン単結晶膜をペリクル膜として備えたリソグラフィ用ペリクルおよびその製造方法を提供することにある。
 上述の課題を解決するために、本発明に係るリソグラフィ用ペリクルは、外枠部と該外枠部の内側領域の多孔部を有する支持部材と、前記多孔部により支持された単結晶シリコンのペリクル膜とを備えている。
 上記リソグラフィ用ペリクルは、前記ペリクル膜の表面を被覆する酸化防止膜を備えていることが好ましい。このような酸化防止膜は、例えば、SiO(x=2を含む)、Si(x:y=3:4を含む)、SiON、SiC、Y、YN、Mo、Ru、Rhの群のうちの少なくとも1種の材料からなる。
 上記リソグラフィ用ペリクルは、前記支持部材の枠部に気体を透過するフィルタが設けられていることが好ましい。また、前記支持部材はシリコン結晶からなるものとすることができる。
 本発明に係るリソグラフィ用ペリクルの製造方法は、外枠部と該外枠部の内側領域の多孔部を有する支持部材と、前記多孔部により支持された単結晶シリコンのペリクル膜とを備えたリソグラフィ用ペリクルの製造方法であって、ハンドル基板の表面上に絶縁層を介して単結晶シリコン層が設けられているSOI基板の前記ハンドル基板を部分的に除去して前記外枠部と前記多孔部とを形成する支持部材形成工程を備えている。
 前記ハンドル基板の部分的除去は、シリコンDRIE(Silicon Deep Reactive Ion Etching)法によりドライエッチングして実行することができる。
 上記リソグラフィ用ペリクルの製造方法は、前記支持部材形成工程の後に、前記多孔部に露出された絶縁層部分を除去する工程を備えている構成とすることもできる。
 また、上記リソグラフィ用ペリクルの製造方法は、前記支持部材形成工程に先立ち、前記ハンドル基板の裏面から研磨して該ハンドル基板を400μm以下に薄板化する工程を備えている構成とすることもできる。
 また、上記リソグラフィ用ペリクルの製造方法は、前記支持部材形成工程に先立ち、前記単結晶シリコン層が設けられている面に補強基板を設ける工程を備えている構成とすることもできる。
 また、上記リソグラフィ用ペリクルの製造方法は、前記支持部材形成工程に先立ち、前記単結晶シリコン層が設けられている面に保護膜を形成する工程を備えている構成とすることもできる。
 前記保護膜形成工程は、酸化珪素膜(SiO)、窒化珪素膜(SiN)、酸窒化珪素膜(SiO)の何れかの膜を堆積することにより実行されることが好ましい。
 上記リソグラフィ用ペリクルの製造方法は、前記支持部材形成工程に先立ち、前記単結晶シリコン層が設けられている面に酸化防止膜を形成する工程を備えている構成とすることもできる。
 また、上記リソグラフィ用ペリクルの製造方法は、前記支持部材形成工程の後に、前記多孔部に露出された単結晶シリコン層部分に酸化防止膜を形成する工程を備えている構成とすることもできる。
 前記酸化防止膜の形成は、SiO(x=2を含む)、Si(x:y=3:4を含む)、SiON、SiC、Y、YN、Mo、Ru、Rhの群のうちの少なくとも1種の材料からなる膜を堆積することにより実行されることが好ましい。
 また、前記酸化膜防止膜の堆積はイオンビーム援用蒸着法または援用ガス・クラスター・イオンビーム(GCIB)蒸着法により実行されることが好ましい。
 さらに、上記リソグラフィ用ペリクルの製造方法は、前記外枠部に気体を透過するフィルタを設ける工程を備えている構成とすることもできる。
 本発明のリソグラフィ用ペリクルは、外枠部と該外枠部の内側領域の多孔部を有する支持部材と、前記多孔部により支持された単結晶シリコンのペリクル膜とを備えている構成としたので、極端紫外光(EUV光)に対する高い透過性を有し且つ化学的に安定な材料であるシリコン単結晶膜をペリクル膜として備えたリソグラフィ用ペリクルを提供することが可能となる。
 また、本発明のリソグラフィ用ペリクルの製造方法は、ハンドル基板の表面上に絶縁層を介して単結晶シリコン層が設けられているSOI基板の前記ハンドル基板を部分的に除去して前記外枠部と前記多孔部とを形成して支持部材を形成し、前記多孔部により支持された前記単結晶シリコン層をペリクル膜として利用することとしたので、極端紫外光(EUV光)に対する高い透過性を有し且つ化学的に安定な材料であるシリコン単結晶膜をペリクル膜として備えたリソグラフィ用ペリクルの製造方法を提供することが可能となる。
13.5nm近傍の波長の光に対する単結晶シリコン膜の吸収係数を、非晶質シリコン膜の吸収係数と比較して示した図である。 本発明のリソグラフィ用ペリクルの構造を例示して示す下面図である。 図2A中に示したA-Aに沿う断面図である。 本発明のリソグラフィ用ペリクルの上記メッシュ構造部を拡大して示す光学顕微鏡写真である。 図4A乃至Gは本発明のリソグラフィ用ペリクルの製造方法の第1例を説明するための図である。 図5A乃至Jは本発明のリソグラフィ用ペリクルの製造方法の第2例を説明するための図である。
 以下に、図面を参照して、本発明に係るリソグラフィ用ペリクルおよびその製造方法について説明する。
 上述したとおり、シリコンはEUV光の波長帯において比較的透明性が高い材料ではあるものの、従来報告されているEUV露光用ペリクル用のシリコン膜はスパッタリング法やCVD法により形成されたものであるために非晶質や多結晶の膜となってしまい、EUV波長帯の光の吸収率(吸収係数)が高くなってしまう等の問題がある。そこで、本発明者らは、単結晶シリコン膜をぺリクル膜として用いる検討を重ねて本発明をなすに至った。
 図1は、13.5nm近傍の波長の光に対する単結晶シリコン膜の吸収係数を、非晶質シリコン膜の吸収係数と比較して示した図である。この図に示されているように、単結晶シリコン膜は、その吸収係数が非晶質シリコン膜の吸収係数に比較して約4割程度であり、EUV波長帯の光に対する透過性が高く、ペリクル膜としての優れた特性を有している。なお、図1に示した吸収係数については、例えば、Edward D. Palik, ed., “Handbook of Optical Constants of Solids,” Academic Press, Orlando (1985)(文献3)を参照されたい。
 本発明者らは、単結晶シリコン膜をペリクル膜として備えたリソグラフィ用ペリクルを実現するために、単結晶シリコン層をSOI層として備えるSOI基板を用いることとし、当該単結晶シリコン層をペリクル膜とするとともに、上記SOI基板の下地基板(ハンドル基板)を加工してペリクル膜の支持部材を形成する手法について検討を重ねた。このような手法により得られるペリクルには、EUV波長帯の光に対する透過性が高いという利点のみならず、従来のもののようにペリクル膜とこれを支えるフレームとを別々に形成した後にぺリクル膜をフレームに張設するという手間を不要とするという利点もある。
 図2Aおよび図2Bは、本発明のリソグラフィ用ペリクルの構造を例示して示す図で、図2Aは下面図、図2Bは図2A中に示したA-Aに沿う断面図である。これらの図に示すとおり、本発明のリソグラフィ用ペリクルは、単結晶シリコンのペリクル膜10を備えており、当該ペリクル膜10は、外枠部20aと該外枠部20aの内側領域の多孔部20b(メッシュ構造)を有する支持部材20により支持されている。
 この例では、ペリクル膜10の表面の酸化を防止するために、単結晶シリコン膜が外部に露出される部分を被覆する酸化防止膜30a、30bが形成されている。なお、図中に符号40で示したものは、SOI基板の絶縁体層(BOX層)であった部分である。また、図中に符号50a、50bで示したものは、支持部材20の枠部20aに設けられたフィルタで、当該フィルタを気体が透過することでペリクル使用時の内部圧力の調節を可能とするものである。
 図3は、本発明のリソグラフィ用ペリクルの上記メッシュ構造部を拡大して示す光学顕微鏡写真である。図中「M」で示した部分は支持部材のメッシュ構造部であり、「P」で示した部分はメッシュ構造部の孔部から覗く単結晶シリコンのペリクル膜部分である。この例では、支持部材の外枠部の内側領域には直径が約200μmの略6角形状の孔部が多数形成されており、孔部と孔部との間隔は概ね20μmである。これらの孔部からは単結晶シリコンのペリクル膜部分を観察することができ、露光時の光は当該部分からフォトマスク(レチクル)へと照射されることとなる。
 以降の説明においては、SOI基板のハンドル基板はシリコン基板であるものとして説明するが、他の基板(例えば、ガラス基板や石英基板)であってもよい。
 上述の構成を有するペリクルを作製するためのSOI基板としては、例えば、CZ法で結晶育成された単結晶シリコンウエーハ同士を酸化膜を介して張り合わせて作製されたSOI基板を用いることができる。
 このようなSOI基板は、例えば、以下のような手順で得ることができる。先ず、第1の単結晶シリコン基板の表面(貼り合せ面)に熱酸化などの方法によって予め酸化膜を形成しておき、この単結晶シリコン基板の表面に水素イオンを注入して表面近傍の所定の深さ(平均イオン注入深さL)に均一なイオン注入層を形成し、さらにプラズマ処理等により表面活性化を図る。次に、表面活性化を施した第1の単結晶シリコン基板と第2の単結晶シリコン基板とを密着させて貼り合わせ、上述のイオン注入層を利用して、第1の単結晶シリコン基板からシリコン層を機械的に剥離する。このような手順により、第2の単結晶シリコン基板上にシリコン層(SOI層)を有するSOI基板が得られる。
 本発明のリソグラフィ用ペリクルが備える支持部材の外枠部の内側領域に多孔部(メッシュ構造)を設ける理由は、EUV用ペリクルの単結晶シリコンのペリクル膜の厚みは数十nm~数百nm程度と薄くせざるを得ず、かかる薄いペリクル膜をペリクルフレーム(外枠部)のみで安定的且つ機械的強度を担保した状態で担持することは極めて困難だからである。
 上述した文献1では、メッシュ構造を金属で作製し、非晶質シリコンのペリクル膜を有機物を接着剤として利用して上記メッシュ構造に接着する方法が採用されている。しかし、このような方法では、ペリクル膜の全面を均一且つ高精度でメッシュ構造に密着させることは困難である。また、ペリクルを真空下で使用する際に発生する接着剤起因の有機物汚染も懸念される。さらに、ペリクル膜の応力調整は極めて難しい。
 このような問題点に鑑みて、本発明ではSOI基板のハンドル基板を支持部材として加工するという手法を選択することとしている。つまり、ハンドル基板を所望の厚みとなるまで裏面から研削・研磨等し、さらにハンドル基板を部分的に除去して孔部を形成してメッシュ構造とする。このようなハンドル基板の部分的除去には、例えば、MEMS等で広く用いられているシリコンDRIE(Silicon Deep Reactive Ion Etching)法によるドライエッチングを利用することができる。
 このようなドライエッチングを施した場合には、シリコン酸化膜などの絶縁体層(BOX層)でエッチングが停止する(若しくはエッチング速度が極端に遅くなる)ため、ペリクル膜として利用されることとなる単結晶シリコン層(SOI層)がエッチングされてしまうことがない。また、単結晶シリコンのペリクル膜は支持部材と強固に結合しているから、十分な機械的強度も確保することができる。さらに、接着剤を用いることがないために有機物等の残存による汚染も回避される。
 なお、図2Aおよび図2Bに示した態様のように酸化防止膜を形成すると、高出力の光源を用いて露光する際に求められる高い耐酸化性を得ることができる。このような酸化防止膜は、例えば、Mo,Ru,Rhなどの耐酸化性の金属、或いは、SiO(x=2を含む)、Si(x:y=3:4を含む)、SiON、SiC、Y、YNなどの無機物、または、これらの群のうちの少なくとも1種の材料からなる膜を、単結晶シリコン層の表面に形成することで得ることができる。
 なお、酸化防止膜の形成は、CVD法、スパッタリング法、電子ビーム蒸着法などの手法によっても可能であるが、イオンビーム援用蒸着法や援用ガス・クラスター・イオンビーム(GCIB)蒸着法によれば、理論密度に近い高密度の緻密な膜を形成することができ、酸化防止膜を薄くしたとしても高い耐酸化性が得られるため、高い透過率を損なうことがない。この点については、例えば、L. Dong et al. Journal of Applied physics, vol.84, No.9, pp.5261-5269, 1998(文献4)や、山田公編著「クラスターイオンビーム 基礎と応用」第四章 日刊工業(文献5)などを参照されたい。
 また、通常ペリクルは真空下で使用されるため、内部の圧力調整が必要となるが、かかる圧力調整の機構には気体の流出入時における異物の混入を防止し得るものであることが求められる。このような機構としては、極めて微細な異物をも捕獲し得るULPAの様なフィルタや金属フィルタが好適である。また、かかるフィルタは、ペリクル膜が不均一な圧力差によって伸縮したり破損することがない程度の面積のものとすることが重要である。
 図4A乃至Gは、本発明のリソグラフィ用ペリクルの製造方法の第1例を説明するための図である。先ず、SOI基板を準備する(図4A)。このSOI基板は、ハンドル基板20の上に、シリコン酸化膜のBOX層40を介して単結晶シリコンのSOI層20が設けられている。
 通常、8インチ(200mm)基板の場合、その厚さは700μm程度あるので、所望の厚さ(例えば、400μm以下)まで研削・研磨等でハンドル基板側を薄くしておいてもよい。これは、支持部材の高さが必要以上に高いと後のエッチング工程において負担が掛かるためである。また、ハンドル基板側を予め薄くしておくと、エッチング工程に要する時間を短縮することもできる。
 次に、必要に応じて、単結晶シリコンのSOI層20の上に酸化防止膜30aを形成する(図4B)。また、必要に応じて、SOI層20が設けられている面(ここでは酸化防止膜30aの上)に、SOI層10を保護するための保護膜60を設けても良い(図4C)。このような保護膜としては、例えば、酸化珪素膜(SiO)、窒化珪素膜(SiN)、酸窒化珪素膜(SiO)を例示することができる。
 次いで、ハンドル基板(裏面)にメッシュ構造を形成するためのエッチングマスク70を形成し(図4D)、このエッチングマスク70により被覆されていない領域が多孔部となるようにドライエッチングしてメッシュ構造を形成する。
 そして、エッチングマスク70およびSOI層側に設けた保護膜60を除去するとともに多孔部により露出されている部分の絶縁層であるBOX層40を除去して、単結晶シリコンのペリクル膜を有するリソグラフィ用ペリクルを得る(図4F)。なお、多孔部により露出されることとなった部分のSOI層10の酸化を防止するために、酸化防止膜30bを設けてもよい。また、図4Gに示したように、保持部材の外枠部20aには、気体を透過するフィルタ50a,50bが設けられる。
 図5A乃至Jは、本発明のリソグラフィ用ペリクルの製造方法の第2例を説明するための図である。上述した第1例との相違点は、SOI基板の機械的強度を補うために、支持部材の形成工程に先立ち、SOI基板の単結晶シリコン層が設けられている面に補強基板80を設ける工程(図5D)を備えている点にある。
 これは、ハンドル基板を薄くする場合(例えば200μm以下)にはSOI基板が自立できずに反ってしまうため、機械的強度を補うことでかかる不都合を回避するためである。なお、補強基板80は、暫定的に機械的強度を付与ものであり、最終的には取り除かれるものである(図5G)ので、その材質には特別な制限はない。
 以下に、本発明をより具体的に説明するための実施例について説明する。
 [実施例1]
 直径200mm、厚み725μmのシリコン基板(ハンドル基板)の上に、COP等の結晶欠陥が極めて低密度のシリコン単結晶(Nearly Perfect Crystal: NPC)の厚み300nmのSOI層が、500nmの膜厚のシリコン熱酸化膜を介して貼り付けられているSOI基板を用いた。このSOI基板のハンドル基板を研削および研磨により300μmまで薄化した後、リソグラフィによりハンドル基板側にエッチングマスクをパターニングし、メッシュ構造をDRIEによって作り込み、最後にHF処理して孔部に露出されているシリコン熱酸化膜(BOX層)を除去してペリクルを完成させた。このペリクルでは、単結晶シリコンのペリクル膜の破損は観察されなかった。
 [実施例2]
 実施例1と同様に、直径200mm、厚み725μmのシリコン基板(ハンドル基板)の上に、COP等の結晶欠陥が極めて低密度のシリコン単結晶(Nearly Perfect Crystal: NPC)の厚み300nmのSOI層が、500nmの膜厚のシリコン熱酸化膜を介して貼り付けられているSOI基板を用いた。このSOI基板をテンパックスガラス製の補強基板に貼り合わせた後、ハンドル基板を研削・研磨で100μmまで薄化した後、リソグラフィによりハンドル基板側にエッチングマスクをパターニングし、メッシュ構造をDRIEによって作り込み、最後にHF処理して孔部に露出されているシリコン熱酸化膜(BOX層)を除去するとともに補強基板を剥離してペリクルを完成させた。このペリクルでは、単結晶シリコンのペリクル膜の破損は観察されなかった。
 [比較例1]
 直径200mm、厚み725μmのシリコン基板(ハンドル基板)の上に、COP等の結晶欠陥が極めて低密度のシリコン単結晶(Nearly Perfect Crystal: NPC)の厚み100nmのSOI層が、500nmの膜厚のシリコン熱酸化膜を介して貼り付けられているSOI基板を用いた以外は、上述の実施例2と同様の手順によりペリクルを完成させた。このペリクルでは、用いたSOI基板の単結晶シリコン層の厚みが100nmと薄いため、ペリクル膜の一部に破損が観察された。
 [実施例3]
 比較例1と同様に、直径200mm、厚み725μmのシリコン基板(ハンドル基板)の上に、COP等の結晶欠陥が極めて低密度のシリコン単結晶(Nearly Perfect Crystal: NPC)の厚み100nmのSOI層が、500nmの膜厚のシリコン熱酸化膜を介して貼り付けられているSOI基板を用いた。このSOI基板のSOI層の上に、保護膜となる酸化膜をPECVD法で3μm堆積させた後、この保護膜をテンパックスガラス製の補強基板に貼り合わせた。
 続いて、ハンドル基板を研削及び研磨により100μmまで薄化した後、リソグラフィによりハンドル基板側にエッチングマスクをパターニングし、メッシュ構造をDRIEによって作り込み、最後にHF処理して孔部に露出されているシリコン熱酸化膜(BOX層)を除去するとともに補強基板を剥離し、さらに保護膜をHF処理により除去してペリクルを完成させた。このペリクルでは、単結晶シリコンのペリクル膜の破損は観察されなかった。このようにして得られたペリクルのメッシュ構造部を拡大して示す光学顕微鏡写真が図3である。この写真のように、単結晶シリコンのペリクル膜には撓みもなく、良質のペリクル膜が得られている。
 上述したように、本発明によれば、極端紫外光(EUV光)に対する高い透過性を有し且つ化学的に安定な材料であるシリコン単結晶膜をペリクル膜として備えたリソグラフィ用ペリクルおよびその製造方法が提供される。

Claims (18)

  1.  外枠部と該外枠部の内側領域の多孔部を有する支持部材と、前記多孔部により支持された単結晶シリコンのペリクル膜とを備えているリソグラフィ用ペリクル。
  2.  前記ペリクル膜の表面を被覆する酸化防止膜を備えている請求項1に記載のリソグラフィ用ペリクル。
  3.  前記酸化防止膜は、SiO(x=2を含む)、Si(x:y=3:4を含む)、SiON、SiC、Y、YN、Mo、Ru、Rhの群のうちの少なくとも1種の材料からなる請求項1又は2に記載のリソグラフィ用ペリクル。
  4.  前記支持部材の枠部に気体を透過するフィルタが設けられている請求項1又は2に記載のリソグラフィ用ペリクル。
  5.  前記支持部材はシリコン結晶からなる請求項1又は2に記載のリソグラフィ用ペリクル。
  6.  外枠部と該外枠部の内側領域の多孔部を有する支持部材と、前記多孔部により支持された単結晶シリコンのペリクル膜とを備えたリソグラフィ用ペリクルの製造方法であって、
     ハンドル基板の表面上に絶縁層を介して単結晶シリコン層が設けられているSOI基板の前記ハンドル基板を部分的に除去して前記外枠部と前記多孔部とを形成する支持部材形成工程を備えているリソグラフィ用ペリクルの製造方法。
  7.  前記ハンドル基板の部分的除去を、シリコンDRIE(Silicon Deep Reactive Ion Etching)法によりドライエッチングして実行する請求項6に記載のリソグラフィ用ペリクルの製造方法。
  8.  前記支持部材形成工程の後に、前記多孔部に露出された絶縁層部分を除去する工程を備えている請求項6又は7に記載のリソグラフィ用ペリクルの製造方法。
  9.  前記支持部材形成工程に先立ち、前記ハンドル基板の裏面から研磨して該ハンドル基板を400μm以下に薄板化する工程を備えている請求項6又は7に記載のリソグラフィ用ペリクルの製造方法。
  10.  前記支持部材形成工程に先立ち、前記単結晶シリコン層が設けられている面に補強基板を設ける工程を備えている請求項6又は7に記載のリソグラフィ用ペリクルの製造方法。
  11.  前記支持部材形成工程に先立ち、前記単結晶シリコン層が設けられている面に保護膜を形成する工程を備えている請求項6又は7に記載のリソグラフィ用ペリクルの製造方法。
  12.  前記保護膜形成工程は、酸化珪素膜(SiO)、窒化珪素膜(SiN)、酸窒化珪素膜(SiO)の何れかの膜を堆積することにより実行される請求項11に記載のリソグラフィ用ペリクルの製造方法。
  13.  前記支持部材形成工程に先立ち、前記単結晶シリコン層が設けられている面に酸化防止膜を形成する工程を備えている請求項6又は7に記載のリソグラフィ用ペリクルの製造方法。
  14.  前記酸化防止膜の形成は、SiO(x=2を含む)、Si(x:y=3:4を含む)、SiON、SiC、Y、YN、Mo、Ru、Rhの群のうちの少なくとも1種の材料からなる膜を堆積することにより実行される請求項13に記載のリソグラフィ用ペリクルの製造方法。
  15.  前記支持部材形成工程の後に、前記多孔部に露出された単結晶シリコン層部分に酸化防止膜を形成する工程を備えている請求項6又は7に記載のリソグラフィ用ペリクルの製造方法。
  16.  前記酸化防止膜の形成は、SiO(x=2を含む)、Si(x:y=3:4を含む)、SiON、SiC、Y、YN、Mo、Ru、Rhの群のうちの少なくとも1種の材料からなる膜を堆積することにより実行される請求項15に記載のリソグラフィ用ペリクルの製造方法。
  17.  前記酸化膜防止膜の堆積はイオンビーム援用蒸着法または援用ガス・クラスター・イオンビーム(GCIB)蒸着法により実行される請求項14又は16に記載のリソグラフィ用ペリクルの製造方法。
  18.  前記外枠部に気体を透過するフィルタを設ける工程を備えている請求項6又は7に記載のリソグラフィ用ペリクルの製造方法。
PCT/JP2010/000605 2009-04-22 2010-02-02 リソグラフィ用ペリクルおよびその製造方法 WO2010122697A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/264,552 US8518612B2 (en) 2009-04-22 2010-02-02 Pellicle for lithography and manufacturing method thereof
KR1020117019106A KR101717615B1 (ko) 2009-04-22 2010-02-02 리소그래피용 펠리클 및 그 제조방법
CN2010800175364A CN102405440A (zh) 2009-04-22 2010-02-02 光刻用防尘薄膜组件及其制造方法
EP10766760.2A EP2423747B1 (en) 2009-04-22 2010-02-02 Pellicle for lithography and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-103628 2009-04-22
JP2009103628A JP5394808B2 (ja) 2009-04-22 2009-04-22 リソグラフィ用ペリクルおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2010122697A1 true WO2010122697A1 (ja) 2010-10-28

Family

ID=43010827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000605 WO2010122697A1 (ja) 2009-04-22 2010-02-02 リソグラフィ用ペリクルおよびその製造方法

Country Status (7)

Country Link
US (1) US8518612B2 (ja)
EP (1) EP2423747B1 (ja)
JP (1) JP5394808B2 (ja)
KR (1) KR101717615B1 (ja)
CN (1) CN102405440A (ja)
TW (1) TWI428690B (ja)
WO (1) WO2010122697A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591136A (zh) * 2011-01-17 2012-07-18 信越化学工业株式会社 Euv用防尘薄膜及防尘薄膜组件,以及该膜的制造方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101572269B1 (ko) * 2009-09-14 2015-12-04 에스케이하이닉스 주식회사 극자외선 마스크를 보호하는 펠리클 제조 방법
JP5552095B2 (ja) * 2011-06-21 2014-07-16 信越化学工業株式会社 Euv用レチクル
JP5867046B2 (ja) * 2011-12-12 2016-02-24 富士通株式会社 極紫外露光マスク用防塵装置及び極紫外露光装置
JP5748347B2 (ja) * 2012-02-09 2015-07-15 信越化学工業株式会社 Euv用ペリクル
US9599912B2 (en) * 2012-05-21 2017-03-21 Asml Netherlands B.V. Lithographic apparatus
JP5711703B2 (ja) * 2012-09-03 2015-05-07 信越化学工業株式会社 Euv用ペリクル
JP6084681B2 (ja) 2013-03-15 2017-02-22 旭化成株式会社 ペリクル膜及びペリクル
WO2014188710A1 (ja) 2013-05-24 2014-11-27 三井化学株式会社 ペリクル、及びこれらを含むeuv露光装置
JP2015018228A (ja) * 2013-06-10 2015-01-29 旭化成イーマテリアルズ株式会社 ペリクル膜及びペリクル
US9057957B2 (en) 2013-06-13 2015-06-16 International Business Machines Corporation Extreme ultraviolet (EUV) radiation pellicle formation method
US9182686B2 (en) 2013-06-13 2015-11-10 Globalfoundries U.S. 2 Llc Extreme ultraviolet radiation (EUV) pellicle formation apparatus
JP6326056B2 (ja) * 2013-09-30 2018-05-16 三井化学株式会社 ペリクル膜、それを用いたペリクル、露光原版および露光装置、ならびに半導体装置の製造方法
TWI658321B (zh) * 2013-12-05 2019-05-01 荷蘭商Asml荷蘭公司 用於製造一表膜的裝置與方法,以及一表膜
JP6261004B2 (ja) 2014-01-20 2018-01-17 信越化学工業株式会社 Euv用ペリクルとこれを用いたeuv用アセンブリーおよびその組立方法
JP6486388B2 (ja) * 2014-01-27 2019-03-20 ラクセル コーポレーション モノリシックメッシュ支持型euv膜
US9360749B2 (en) 2014-04-24 2016-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Pellicle structure and method for forming the same
EP3118683A4 (en) 2014-05-02 2017-11-01 Mitsui Chemicals, Inc. Pellicle frame, pellicle and manufacturing method thereof, exposure original plate and manufacturing method thereof, exposure device, and semiconductor device manufacturing method
JP6279722B2 (ja) 2014-05-19 2018-02-14 三井化学株式会社 ペリクル膜、ペリクル、露光原版、露光装置及び半導体装置の製造方法
KR102233579B1 (ko) * 2014-08-12 2021-03-30 삼성전자주식회사 극자외선 리소그래피용 펠리클
TWI556055B (zh) * 2014-08-12 2016-11-01 Micro Lithography Inc A mask protective film module and manufacturing method thereof
US9709884B2 (en) 2014-11-26 2017-07-18 Taiwan Semiconductor Manufacturing Company, Ltd. EUV mask and manufacturing method by using the same
US10031411B2 (en) 2014-11-26 2018-07-24 Taiwan Semiconductor Manufacturing Company, Ltd. Pellicle for EUV mask and fabrication thereof
GB2534404A (en) 2015-01-23 2016-07-27 Cnm Tech Gmbh Pellicle
EP3079013B1 (en) 2015-03-30 2018-01-24 Shin-Etsu Chemical Co., Ltd. Pellicle
JP6473652B2 (ja) * 2015-04-27 2019-02-20 三井化学株式会社 ペリクルのデマウント方法
US10036951B2 (en) * 2015-05-29 2018-07-31 Taiwan Semiconductor Manufacturing Company, Ltd. Pellicle assembly and fabrication methods thereof
NL2017093A (en) 2015-07-17 2017-01-19 Asml Netherlands Bv A method for manufacturing a membrane assembly
KR102345543B1 (ko) * 2015-08-03 2021-12-30 삼성전자주식회사 펠리클 및 이를 포함하는 포토마스크 조립체
WO2017036944A1 (en) * 2015-09-02 2017-03-09 Asml Netherlands B.V. A method for manufacturing a membrane assembly
US9950349B2 (en) 2015-09-15 2018-04-24 Internationa Business Machines Corporation Drying an extreme ultraviolet (EUV) pellicle
US9915867B2 (en) 2015-09-24 2018-03-13 International Business Machines Corporation Mechanical isolation control for an extreme ultraviolet (EUV) pellicle
US10852633B2 (en) 2015-11-03 2020-12-01 Asml Netherlands B.V. Method for manufacturing a membrane assembly
WO2017102379A1 (en) * 2015-12-14 2017-06-22 Asml Netherlands B.V. A membrane for euv lithography
US9759997B2 (en) * 2015-12-17 2017-09-12 Taiwan Semiconductor Manufacturing Company, Ltd. Pellicle assembly and method for advanced lithography
JP6478283B2 (ja) * 2015-12-24 2019-03-06 信越化学工業株式会社 Euv露光用ペリクル
JP7009380B2 (ja) * 2016-04-25 2022-01-25 エーエスエムエル ネザーランズ ビー.ブイ. Euvリソグラフィ用のメンブレン
CN107885029B (zh) * 2016-09-29 2021-01-22 台湾积体电路制造股份有限公司 薄膜组件的制造方法
JP6518801B2 (ja) 2017-03-10 2019-05-22 エスアンドエス テック カンパニー リミテッド 極紫外線リソグラフィ用ペリクル及びその製造方法
EP3404486B1 (en) * 2017-05-15 2021-07-14 IMEC vzw A method for forming a pellicle
CN111373324A (zh) * 2017-11-06 2020-07-03 Asml荷兰有限公司 用于降低应力的金属硅氮化物
KR101900720B1 (ko) 2017-11-10 2018-09-20 주식회사 에스앤에스텍 극자외선 리소그래피용 펠리클 및 그의 제조방법
KR102574161B1 (ko) 2018-02-06 2023-09-06 삼성전자주식회사 펠리클 및 이를 포함하는 레티클
KR20200059061A (ko) 2018-11-20 2020-05-28 삼성전자주식회사 극자외선 리소그래피용 펠리클 및 그 제조방법
JP2020098227A (ja) 2018-12-17 2020-06-25 信越化学工業株式会社 フォトリソグラフィ用ペリクル膜及びこれを備えたペリクル
JP7319059B2 (ja) * 2019-02-25 2023-08-01 エア・ウォーター株式会社 ペリクル中間体の製造方法およびペリクルの製造方法
KR102705080B1 (ko) * 2021-04-14 2024-09-11 한국전자기술연구원 극자외선 노광용 펠리클
KR102691826B1 (ko) * 2021-07-27 2024-08-05 (주)휴넷플러스 요철 구조가 형성된 펠리클의 제조방법
WO2023008532A1 (ja) 2021-07-30 2023-02-02 信越化学工業株式会社 ペリクル膜、ペリクル、ペリクル付き露光原版、露光方法、半導体の製造方法及び液晶表示板の製造方法
KR20230058781A (ko) 2021-10-25 2023-05-03 한국전자기술연구원 나노 다공성 그래핀층을 포함하는 극자외선 노광용 펠리클 및 그의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028334A (ja) * 1999-06-18 2001-01-30 Internatl Business Mach Corp <Ibm> X線用マスクのペリクルの構造およびその製造
US6623893B1 (en) 2001-01-26 2003-09-23 Advanced Micro Devices, Inc. Pellicle for use in EUV lithography and a method of making such a pellicle
JP2004524524A (ja) * 2001-01-26 2004-08-12 カール ツァイス エスエムテー アーゲー 狭周波数帯分光フィルタおよびその用途
JP2005043895A (ja) * 2003-07-25 2005-02-17 Asml Netherlands Bv フィルタ・ウィンドウ、リソグラフ投影装置、フィルタ・ウィンドウの製造方法、デバイスの製造方法、及びそれらによって製造されたデバイス
JP2006279036A (ja) * 2005-03-29 2006-10-12 Asml Netherlands Bv 多層スペクトル純度フィルタ、このようなスペクトル純度フィルタを備えたリソグラフィ装置、デバイス製造方法及びそれによって製造されたデバイス
WO2008060465A1 (en) * 2006-11-10 2008-05-22 Advanced Micro Devices, Inc. Euv pellicle with increased euv light transmittance
JP2008268956A (ja) * 2007-04-19 2008-11-06 Asml Netherlands Bv ペリクル、リソグラフィ装置、およびデバイス製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666555B2 (en) * 2006-12-29 2010-02-23 Intel Corporation Pellicle, methods of fabrication and methods of use for extreme ultraviolet lithography
EP2051139B1 (en) * 2007-10-18 2010-11-24 Shin-Etsu Chemical Co., Ltd. Pellicle and method for manufacturing the same
JP4934099B2 (ja) * 2008-05-22 2012-05-16 信越化学工業株式会社 ペリクルおよびペリクルの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028334A (ja) * 1999-06-18 2001-01-30 Internatl Business Mach Corp <Ibm> X線用マスクのペリクルの構造およびその製造
US6623893B1 (en) 2001-01-26 2003-09-23 Advanced Micro Devices, Inc. Pellicle for use in EUV lithography and a method of making such a pellicle
JP2004524524A (ja) * 2001-01-26 2004-08-12 カール ツァイス エスエムテー アーゲー 狭周波数帯分光フィルタおよびその用途
JP2005043895A (ja) * 2003-07-25 2005-02-17 Asml Netherlands Bv フィルタ・ウィンドウ、リソグラフ投影装置、フィルタ・ウィンドウの製造方法、デバイスの製造方法、及びそれらによって製造されたデバイス
JP2006279036A (ja) * 2005-03-29 2006-10-12 Asml Netherlands Bv 多層スペクトル純度フィルタ、このようなスペクトル純度フィルタを備えたリソグラフィ装置、デバイス製造方法及びそれによって製造されたデバイス
WO2008060465A1 (en) * 2006-11-10 2008-05-22 Advanced Micro Devices, Inc. Euv pellicle with increased euv light transmittance
JP2008268956A (ja) * 2007-04-19 2008-11-06 Asml Netherlands Bv ペリクル、リソグラフィ装置、およびデバイス製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Handbook of Optical Constants of Solids", 1985, ACADEMIC PRESS
ISAO YAMADA: "Cluster Ion Beam - Basic and Applications", NIKKAN KOGYO SHIMBUN LTD.
L. DONG ET AL., JOURNAL OF APPLIED PHYSICS, vol. 84, no. 9, 1998, pages 5261 - 5269
See also references of EP2423747A4
SHROFF ET AL.: "EUV pellicle Development for Mask Defect Control", EMERGING LITHOGRAPHIC TECHNOLOGIES X, PROC OF SPIE, vol. 6151, 2006, pages 615104 - 1

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102591136A (zh) * 2011-01-17 2012-07-18 信越化学工业株式会社 Euv用防尘薄膜及防尘薄膜组件,以及该膜的制造方法
EP2477072A1 (en) * 2011-01-17 2012-07-18 Shin-Etsu Chemical Co., Ltd. A pellicle film and a pellicle for EUV application, and a method for manufacturing the film
JP2012151158A (ja) * 2011-01-17 2012-08-09 Shin Etsu Chem Co Ltd Euv用ペリクル膜及びペリクル、並びに該膜の製造方法

Also Published As

Publication number Publication date
EP2423747B1 (en) 2021-06-16
EP2423747A1 (en) 2012-02-29
CN102405440A (zh) 2012-04-04
KR20120013931A (ko) 2012-02-15
JP2010256434A (ja) 2010-11-11
EP2423747A4 (en) 2014-06-25
US20120045714A1 (en) 2012-02-23
TW201039051A (en) 2010-11-01
US8518612B2 (en) 2013-08-27
JP5394808B2 (ja) 2014-01-22
TWI428690B (zh) 2014-03-01
KR101717615B1 (ko) 2017-03-17

Similar Documents

Publication Publication Date Title
WO2010122697A1 (ja) リソグラフィ用ペリクルおよびその製造方法
JP4861963B2 (ja) ペリクルおよびペリクルの製造方法
US7901846B2 (en) Pellicle and method for manufacturing the same
TWI388924B (zh) 防護薄膜組件及其製造方法
TWI398723B (zh) 防護薄膜組件及其製造方法
KR101900720B1 (ko) 극자외선 리소그래피용 펠리클 및 그의 제조방법
KR101981950B1 (ko) 극자외선 리소그래피용 펠리클
EP2477072A1 (en) A pellicle film and a pellicle for EUV application, and a method for manufacturing the film
KR20190053766A (ko) 극자외선 리소그래피용 펠리클 및 그의 제조방법
KR101860987B1 (ko) 감광성 유리를 이용한 euv 리소그래피용 펠리클 제조방법
WO2024057500A1 (ja) Euv透過膜及びその使用方法、並びに露光方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017536.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117019106

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010766760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13264552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE