WO2024057500A1 - Euv透過膜及びその使用方法、並びに露光方法 - Google Patents

Euv透過膜及びその使用方法、並びに露光方法 Download PDF

Info

Publication number
WO2024057500A1
WO2024057500A1 PCT/JP2022/034607 JP2022034607W WO2024057500A1 WO 2024057500 A1 WO2024057500 A1 WO 2024057500A1 JP 2022034607 W JP2022034607 W JP 2022034607W WO 2024057500 A1 WO2024057500 A1 WO 2024057500A1
Authority
WO
WIPO (PCT)
Prior art keywords
euv
layer
film
protective layer
main
Prior art date
Application number
PCT/JP2022/034607
Other languages
English (en)
French (fr)
Inventor
尚紀 強力
昴 谷村
俊克 柏屋
弘基 茶園
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to PCT/JP2022/034607 priority Critical patent/WO2024057500A1/ja
Priority to EP22936051.6A priority patent/EP4365676A1/en
Priority to KR1020237014967A priority patent/KR20240038642A/ko
Priority to TW112113430A priority patent/TW202414068A/zh
Priority to US18/483,609 priority patent/US20240094620A1/en
Publication of WO2024057500A1 publication Critical patent/WO2024057500A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70983Optical system protection, e.g. pellicles or removable covers for protection of mask

Definitions

  • the present invention relates to an EUV transmitting film, a method for using the same, and an exposure method.
  • Patent Document 1 Japanese Patent No. 68588157 discloses a core layer comprising a material substantially transparent to EUV radiation, such as (poly)Si, and a cap layer comprising a material absorbing IR radiation. A pellicle membrane is disclosed.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2020-982257 discloses a pellicle film stretched over one end surface of a pellicle frame, which includes a main layer of single crystal Si and graphene on one or both sides of the main layer.
  • a pellicle membrane having the following is disclosed. It is said that since the main layer contains graphene, the pellicle film is not damaged during pellicle production and can exhibit sufficient mechanical strength.
  • the above-mentioned core material with high EUV transmittance used in the pellicle film forms a natural oxide film of several nanometers on its surface in the atmosphere, and this oxide film absorbs EUV, thereby reducing the EUV transmission of the pellicle film. rate will drop.
  • Be in particular, is a material with high EUV transmittance, but it is said that a 2-3 nm natural oxide film is formed on its surface, and the transmittance loss due to this oxide film is as large as 6-9%.
  • treatment may be performed using gases other than air such as fluorine and chlorine, as well as acids and alkaline solutions, so a side reaction film is formed on the surface of the core material, which causes EUV It is also possible that the transmittance is reduced. Therefore, it is desirable to form a protective layer on the surface of the core material to suppress the formation of these films.
  • a reaction-inhibiting protective layer on the surface of the core material such as Si or Be can prevent a significant decrease in the EUV transmittance of the pellicle membrane
  • a protective layer also has a lower EUV transmittance than the pure core material. This leads to a decrease in the EUV transmittance of the pellicle membrane as a whole.
  • Ru can be used as a protective layer for the Be core material, but when considering a pellicle film with a three-layer structure (Ru/Be/Ru) in which Ru is provided on the front and back surfaces of the Be core material to a thickness of 1 to 2 nm, Ru The protective layer causes a loss in EUV transmittance of about 3 to 6%, and the performance as a pellicle membrane is greatly reduced.
  • Other protective layers include nitrides such as Si 3 N 4 and Be 3 N 2 , but similar to the above, a reduction in EUV transmittance is a problem. That is, an EUV-transmissive membrane is desired that can suppress or eliminate EUV absorption by the protective layer, which is a factor in reducing EUV transmittance in conventional pellicle membranes.
  • the present inventors have recently discovered that by covering the main layer with high EUV transmittance with a temporary protective layer that is removable by EUV exposure, it is possible to eliminate EUV absorption by the protective layer, which was a factor in reducing EUV transmittance.
  • the inventors have found that it is possible to provide an EUV-transmissive film that can exhibit high EUV transmittance during exposure.
  • an object of the present invention is to provide an EUV transmitting film that can eliminate EUV absorption by a protective layer, which is a cause of a decrease in EUV transmittance, and thereby exhibit high EUV transmittance during exposure. It is in.
  • An EUV-transmissive membrane equipped with [Aspect 2] The EUV transmission membrane according to aspect 1, wherein both sides of the main layer are covered with the protective layer.
  • Aspect 3 The EUV transmission film according to aspect 1 or 2, wherein the main layer contains Be, Si, Y, or Zr as a main component.
  • a method of using an EUV transparent membrane including: [Aspect 7] A step of installing the EUV transmission film according to any one of aspects 1 to 5 into an EUV exposure apparatus, irradiating the EUV-transmissive film with EUV, thereby removing the protective layer and exposing the main layer; A step of transmitting EUV through the exposed main layer by EUV irradiation and subjecting the photosensitive substrate in the EUV exposure apparatus to pattern exposure; including exposure methods.
  • FIG. 1 is a schematic cross-sectional view showing one form of an EUV-transmissive membrane according to the present invention.
  • 1 is a process flowchart showing the first half of the manufacturing procedure of EUV permeable membranes in Examples 1 to 3.
  • 1 is a process flowchart showing the latter half of the procedure for producing EUV permeable membranes in Examples 1 to 3.
  • FIG. 1 shows a schematic cross-sectional view of an EUV transparent membrane 10 according to one embodiment of the present invention.
  • the EUV transmission membrane 10 includes a main layer 12 and a protective layer 14 covering at least one side of the main layer 12.
  • the main layer 12 has an EUV transmittance of 85% or more at a wavelength of 13.5 nm, and is composed of a single layer or a composite layer of two or more layers.
  • the protective layer 14 contains at least one selected from the group consisting of amorphous carbon, Cu, Al, and organic resist as a main component.
  • a core material with high EUV transmittance may form a natural oxide film of several nanometers on its surface in the atmosphere.
  • a process using gases other than air such as fluorine or chlorine, or acids or alkaline solutions may be performed, so a side reaction film may occur on the surface of the core material. Formation of such a film reduces the EUV transmittance of the pellicle film. Therefore, it is desirable to form a protective layer on the surface of the core material to suppress the formation of these films.
  • attaching a reaction-inhibiting protective layer to the surface of the core material leads to a decrease in the EUV transmittance of the pellicle membrane as a whole.
  • the mechanism by which the EUV transmitting film of the present invention can prevent the EUV transmittance from decreasing due to the protective layer while preventing the formation of natural oxide films and the like is as follows.
  • the EUV transmitting film of the present invention includes a main layer with high EUV transmittance and a protective layer covering at least one side of the main layer, and this protective layer is a temporary protective layer that can be removed by EUV exposure.
  • the above-mentioned natural oxide film and side reaction film are formed between the time it is produced and the film is mounted on an EUV exposure device and subjected to the exposure process, but the EUV transmitting film of the present invention
  • the exposure process is generally performed in a hydrogen atmosphere, and the atmosphere contains many hydrogen radicals generated by EUV. Therefore, by configuring the protective layer with a material that can be removed by hydrogen radicals, the protective film of the EUV transmitting film is removed within the exposure device, and a film consisting only of pure core material (main layer) can be obtained. It can exhibit high transmittance.
  • the EUV transmitting film of the present invention prevents the formation of a natural oxide film etc. by the temporary protective layer, and also prevents a decrease in EUV transmittance due to the protective layer by removing the temporary protective layer during the exposure process. be able to. As a result, it becomes possible to exhibit high EUV transmittance during exposure.
  • the main layer 12 has an EUV transmittance of 85% or more at a wavelength of 13.5 nm, preferably 92% or more, more preferably 94% or more, and still more preferably 96% or more.
  • the protective layer 14 of the EUV transmitting film 10 is removed and the main layer 12 remains. Therefore, the higher the EUV transmittance of the main layer 12, the more desirable it is, and its upper limit is not particularly limited and is ideally 100%, but is typically 99% or less, more typically 98% or less. It is.
  • the main layer 12 may be a single layer or a composite layer of two or more layers.
  • the main layer 12 preferably contains Be, Si, Y, or Zr as a main component.
  • the "main component" in the main layer 12 means a component that occupies 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more of the main layer 12.
  • the main layer 12 (particularly a single layer or at least one layer constituting a composite layer) may be made of only Be, Si, Y, or Zr.
  • Such a main layer 12 contributes to achieving high EUV transmittance while ensuring the basic functions as a pellicle film (particle adhesion prevention function, etc.).
  • the thickness of the main layer 12 is preferably 10 to 70 nm, more preferably 15 to 50 nm, and still more preferably 20 to 35 nm.
  • the main layer 12 may be a composite layer of two or more layers.
  • a protective layer of amorphous carbon is directly provided on a main layer that is a metallic beryllium layer, the amorphous carbon and metallic beryllium may react to form beryllium carbide. Therefore, for example, the main layer 12 has a composite layer structure such as metal beryllium layer/beryllium nitride layer (or beryllium nitride layer/metal beryllium layer/beryllium nitride layer), and a protective layer of amorphous carbon is provided on the beryllium nitride layer.
  • beryllium nitride refers not only to stoichiometric compositions such as Be 3 N 2 but also to non-stoichiometric compositions such as Be 3 N 2-x (where 0 ⁇ x ⁇ 2). It is meant to be an inclusive composition which also allows stoichiometric compositions.
  • the protective layer 14 is a layer for temporarily protecting the main layer 12. Therefore, the protective layer 14 only needs to cover at least one side of the main layer 12, but it is preferable to cover both sides of the main layer 12 with the protective layer.
  • the protective layer 14 contains as a main component at least one selected from the group consisting of amorphous carbon, Cu, Al, and organic resist. Considering that the EUV transmittance is high, the main layer 12 is less affected by the residue when the protective layer 14 is removed, and the protective layer 14 is easily removed, the protective layer 14 is made of amorphous carbon. It is preferably contained as a main component, and more preferably composed of amorphous carbon.
  • amorphous carbon rarely has a completely irregular atomic arrangement, and although it has a microscopically crystalline structure (i.e., it has microcrystals), such microcrystals are irregular. , and is often amorphous as a whole.
  • DLC Diamond-like Carbon
  • GLC Glass-like Carbon
  • the protective layer 14 may be made of carbon having a completely irregular atomic arrangement, or may be made of carbon having irregularly formed microcrystals.
  • the protective layer 14 may be amorphous carbon that is not completely dense and contains fine pores.
  • the "main component" in the protective layer 14 means that the total weight of the protective layer 14 is 50% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more, and even more preferably 80% by weight. It means an ingredient that is above.
  • the protective layer 14 may be made of at least one kind selected from the group consisting of amorphous carbon, Cu, Al, and organic resist.
  • the thickness of the protective layer 14 is preferably 5 nm or less, more preferably 3 nm or less.
  • the lower limit of the thickness of the protective layer 14 is not particularly limited, but is typically 1 nm or more.
  • the main layer 12 may be a composite layer of two or more layers, for example, the main layer 12 may include a metal layer such as a beryllium layer, and a nitride layer such as a beryllium nitride layer on one or both surfaces thereof. may be provided.
  • the main layer 12 preferably has a nitrogen concentration gradient region where the nitrogen concentration decreases as it approaches a metal layer such as a beryllium layer. That is, as mentioned above, the composition of beryllium nitride includes everything from stoichiometric compositions such as Be 3 N 2 to non-stoichiometric compositions such as Be 3 N 2-x (where 0 ⁇ x ⁇ 2).
  • the beryllium nitride constituting the beryllium nitride layer has a gradient composition that approaches a beryllium-rich composition as it approaches the beryllium layer. By doing so, it is possible to improve the adhesion between the nitride layer (i.e., beryllium nitride layer) and the metal layer (i.e., beryllium layer) that constitute the main layer 12, and also to reduce the occurrence of stress due to the difference in thermal expansion between the two layers. It can be relaxed.
  • the thickness of the nitrogen concentration gradient region is smaller than the thickness of the nitride layer. That is, the entire thickness of the nitride layer does not need to be a nitrogen concentration gradient region.
  • the main region of the EUV transmitting membrane 10 for transmitting EUV is in the form of a self-supporting membrane. That is, it is preferable that the substrate used during film formation (for example, a Si substrate) remains as a border only at the outer edge of the EUV transmitting film 10. In other words, the substrate (for example, a Si substrate) remains in the main area other than the outer edge. It is preferable that no Si substrate (Si substrate) remains, that is, the main region is composed of only the main layer 12 and the protective layer 14. Preferably, the entire protective layer 14 is removed during the exposure process.
  • the substrate used during film formation for example, a Si substrate
  • the substrate for example, a Si substrate
  • the main region is composed of only the main layer 12 and the protective layer 14.
  • the entire protective layer 14 is removed during the exposure process.
  • the inside of the exposure apparatus usually starts processing after reducing the pressure to an ultra-high vacuum, the oxygen partial pressure inside the exposure apparatus is extremely low, and the main layer 12 exposed after the protective layer 14 is removed is oxidized. Almost never.
  • the surface of the main layer 12 may be slightly oxidized due to a small amount of residual oxygen in the exposure apparatus, the oxidized portion can be reduced by EUV irradiation in a hydrogen atmosphere. Therefore, the EUV transmitting film 10 subjected to the exposure process can maintain high EUV transmittance until it is taken out from the exposure apparatus.
  • the EUV transmitting film according to the present invention can be manufactured by forming a laminated film to be an EUV transmitting film on a Si substrate, and then removing unnecessary portions of the Si substrate by etching to form a self-supporting film. Therefore, as described above, the main part of the EUV transmitting film is in the form of a self-supporting film with no remaining Si substrate.
  • a Si substrate on which a laminated film is to be formed is prepared. After a laminated film consisting of the main layer 12 and the protective layer 14 is formed on the Si substrate, the main region other than the outer edge (that is, the region to be a self-supporting film) is removed by etching. Therefore, in order to perform etching efficiently and in a short time, it is desirable to reduce the thickness of the Si substrate in advance in the region where the free-standing film is to be formed. Therefore, it is possible to reduce the thickness of the main region of the Si substrate to a predetermined thickness by forming a mask corresponding to the EUV transmission shape on the Si substrate using a normal semiconductor process and etching the Si substrate by wet etching. desired.
  • the wet etching mask may be made of any material as long as it has corrosion resistance against Si wet etching solution, and SiO 2 is preferably used, for example.
  • the wet etching solution is not particularly limited as long as it can etch Si.
  • TMAH tetramethylammonium hydroxide
  • the laminated film may be formed by any film forming method.
  • An example of a preferable film forming method is a sputtering method.
  • the beryllium film as the main layer 12 is produced by sputtering using a pure Be target
  • the amorphous carbon film as the protective layer 14 is produced by sputtering using a pure Be target. is preferably carried out by sputtering using a graphite target. Note that the methods for forming beryllium and amorphous carbon films are not limited to these.
  • beryllium film and the amorphous carbon film may be formed using a single chamber sputtering device as in the example described later, or the beryllium film and the amorphous carbon film may be formed separately using a two-chamber sputtering device. It may be formed in a chamber of
  • the beryllium film is formed by sputtering using a pure Be target, and the beryllium nitride film is formed by reactive sputtering.
  • This reactive sputtering can be performed, for example, by introducing nitrogen gas into a chamber during sputtering using a pure Be target so that beryllium and nitrogen react to produce beryllium nitride.
  • beryllium nitride can be produced by forming a beryllium film and then irradiating nitrogen plasma to cause beryllium to undergo a nitriding reaction to produce beryllium nitride.
  • the method for synthesizing beryllium nitride is not limited to these methods.
  • nitrogen gas is introduced into the chamber and pure Be target is formed. While sputtering is continued using sputtering, the introduction of nitrogen gas may be stopped midway and the process may be switched to film formation of metallic beryllium. By doing so, a region is formed in which the nitrogen concentration in the film to be formed decreases in the thickness direction as the concentration of nitrogen gas in the chamber decreases.
  • a nitrogen concentration gradient region can be formed.
  • the thickness of the nitrogen concentration gradient region can be controlled by adjusting the time for changing the nitrogen gas concentration.
  • a preferred method of using an EUV-transmissive membrane includes the steps of mounting the EUV-transmissive membrane in an EUV exposure apparatus, and irradiating the EUV-transmissive membrane with EUV, thereby removing the protective layer.
  • a preferred exposure method includes a step of installing an EUV transmitting film in an EUV exposure apparatus, a step of irradiating the EUV transmitting film with EUV, thereby removing a protective layer and exposing the main layer, and a step of exposing the main layer by The method includes a step of transmitting EUV through the main layer and subjecting a photosensitive substrate in an EUV exposure apparatus to pattern exposure.
  • Example 1 According to the procedure shown in FIGS. 2A and 2B, a composite self-supporting film (EUV transparent film) having a three-layer structure of amorphous carbon/beryllium/amorphous carbon was produced as follows.
  • EUV transparent film EUV transparent film
  • the resist mask 24 for SiO 2 etching was removed using an ashing device (FIG. 2A(e)). Thereafter, Si was wet-etched using a TMAH solution. The etching rate was measured in advance, and this etching was carried out for the etching time required to obtain the targeted Si substrate thickness of 50 ⁇ m (FIG. 2A(f)). Finally, the SiO 2 film 22 formed on the non-Si etched surface was removed and cleaned with hydrofluoric acid to prepare a Si substrate 28 (FIG. 2B(g)). The outer shape of the Si substrate may be diced with a laser 30 as necessary (FIG. 2B(h)) to obtain a desired shape (FIG. 2B(i)). In this way, a 110 mm x 145 mm cavity 26 was provided in the center of the 8-inch (20.32 cm) Si wafer 20, and a Si substrate 28 having a Si thickness of 50 ⁇ m at the cavity 26 portion was prepared.
  • this EUV transmitting film 10 includes a main layer containing Be as a main component and a protective layer containing amorphous carbon as a main component on both sides of the main layer.
  • the Si substrate 28 with the composite film prepared in (2) above was set in the chamber of a XeF 2 etcher capable of processing 8-inch (20.32 cm) substrates.
  • the inside of the chamber was sufficiently evacuated. At this time, if moisture remained in the chamber, it would react with the XeF 2 gas to produce hydrofluoric acid, which would cause corrosion of the etcher and unexpected etching, so a sufficient vacuum was applied.
  • the inside of the chamber was repeatedly vacuumed and nitrogen gas introduced to reduce residual moisture. Once the vacuum was sufficiently drawn, the valve between the XeF 2 raw material cylinder and the preliminary chamber was opened. As a result, XeF 2 sublimated and XeF 2 gas was accumulated in the preliminary chamber.
  • Example 2 (comparison) A composite self-supporting membrane having a three-layer structure of ruthenium/beryllium/ruthenium was produced in the same manner as in Example 1, except that the composite membrane was formed as follows.
  • sputtering was performed using only argon gas at an internal pressure of 0.5 Pa using a pure Be target, and the sputtering was finished after a period of time for beryllium to be deposited to a thickness of 30 nm.
  • sputtering was performed using a pure ruthenium target in the same manner as at the beginning, and the sputtering was completed after a time period was determined in which 2 nm of ruthenium was formed.
  • a composite film of 2 nm of ruthenium (Ru)/30 nm of beryllium (Be)/2 nm of ruthenium (Ru) was formed as an EUV transparent film.
  • Example 3 (comparison) A composite self-supporting film having a three-layer structure of crystalline carbon/beryllium/crystalline carbon was produced in the same manner as in Example 1, except that the composite film was formed as follows.
  • Sputtering was performed using only argon gas at an internal pressure of 0.3 Pa using a graphite target, and the sputtering was completed after a period of time for amorphous carbon to be deposited to a thickness of 0.5 nm. After that, the sputtered Si substrate is put into the vapor phase growth apparatus again, and hydrogen cleaning is performed until the amorphous carbon is sufficiently removed.Crystalline carbon having the crystal structure of graphite is grown using methane as the gas source in the same way as the first time. A 2 nm film was formed.
  • a composite film of 2 nm of crystalline carbon (C)/30 nm of beryllium (Be)/2 nm of crystalline carbon (C) was formed as an EUV transparent film. Note that the amorphous carbon film temporarily formed by sputtering was formed in order to suppress oxidation of beryllium between sputtering and chemical vapor deposition.
  • the amount of transmitted EUV light was measured with a sensor. .
  • the EUV transmittance was determined by comparing the obtained measurement value with a value obtained by directly measuring the amount of EUV light using a sensor without using an EUV transmitting film.
  • the EUV transmittance of the composite self-supporting membrane produced in Example 1 was 95%.
  • Example 3 The EUV transmittance of the composite free-standing membrane produced in Example 3, which is a comparative example, was 90%.
  • the composite self-supporting film in Example 3 was analyzed, it was confirmed that crystalline carbon remained in the protective layer. That is, in the crystalline carbon/beryllium/crystalline carbon composite free-standing film of Example 3, the EUV transmittance of the composite free-standing film decreases because the crystalline carbon is difficult to remove during the exposure process and remains on the surface of the beryllium main layer. It is thought that this will decrease.
  • the amorphous carbon is removed in the exposure process, leaving only the main layer of beryllium, so the film has a high film density of 95%. It is thought that it exhibits EUV transmittance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Laminated Bodies (AREA)

Abstract

EUV透過率低下の要因となっていた保護層によるEUV吸収を抑制することができ、それにより露光時に高いEUV透過率を呈することが可能なEUV透過膜が提供される。このEUV透過膜は、波長13.5nmにおけるEUV透過率が85%以上の、単層、又は2層以上の複合層で構成される主層(12)と、主層の少なくとも片面を覆う保護層であって、非晶質炭素、Cu、Al及び有機レジストからなる群から選択される少なくとも1種を主成分として含む保護層(14)とを備える。

Description

EUV透過膜及びその使用方法、並びに露光方法
 本発明は、EUV透過膜及びその使用方法、並びに露光方法に関するものである。
 半導体製造プロセスにおける微細化が年々進行しており、各工程で様々な改良がなされている。特に、フォトリソグラフィ工程においては、従来のArF露光の波長193nmに代えて、波長13.5nmのEUV(極端紫外線)光が使用され始めた。その結果、波長が一気に1/10以下になり、その光学的特性は全く異なるものとなった。しかし、EUV光に対して高透過率を有する物質が無いため、例えばフォトマスク(レチクル(reticle))のパーティクル付着防止膜であるペリクル(pellicle)にはまだ実用的な物が存在しない。このため、デバイスメーカーはペリクルを使うことができずに半導体デバイスの製造を行っているのが現状である。
 そこで、ペリクル膜の開発が行われており、ペリクル膜のコア材料はEUV透過率が高いSi、Be、Y、Zr等を用いるのが望ましいとされている。特許文献1(特許第6858817号公報)には、コア層が(ポリ)Si等のEUV放射に実質的に透明な材料を含むコア層と、IR放射を吸収する材料を含むキャップ層とを備えたペリクル膜が開示されている。
 また、特許文献2(特開2020-98227号公報)には、ペリクルフレームの一端面に張設されるペリクル膜であって、単結晶Siの主層と、主層の片面又は両面にグラフェンを有するペリクル膜が開示されている。主層がグラフェンを有することで、ペリクル作製中にペリクル膜の破損がなく十分な機械的強度を呈することができるとされている。
特許第6858817号公報 特開2020-98227号公報
 ところで、ペリクル膜に用いられる、上述したEUV透過率が高いコア材料は、大気中でその表面に数nmの自然酸化膜を形成し、この酸化膜がEUVを吸収することでペリクル膜のEUV透過率が低下してしまう。とりわけBeはEUV透過率が高い材料であるが、その表面には2~3nmの自然酸化膜が形成するとされており、その酸化膜による透過率損失は6~9%と大きい。また、ペリクル膜を作製するプロセスでは、大気以外のフッ素や塩素といったガスや、酸やアルカリ溶液を用いた処理を行うことがあるため、コア材料の表面に副反応膜が生じて、これによりEUV透過率が低下することも起こり得る。そのため、これらの膜の形成を抑制するための保護層を、コア材料表面に形成するのが望ましい。
 しかしながら、SiやBeのようなコア材料の表面に反応抑制保護層を付けることで、ペリクル膜の著しいEUV透過率の低下は防げるものの、このような保護層も純粋なコア材料と比べるとEUV透過率が低く、ペリクル膜全体としてのEUV透過率の低下につながる。例えば、Beコア材料の保護層としてRuが挙げられるが、このRuをBeコア材料の表面及び裏面に1~2nm設けた3層構造(Ru/Be/Ru)のペリクル膜を考えた場合、Ru保護層により約3~6%のEUV透過率損失が生じ、ペリクル膜としての性能は大きく低下する。その他にも保護層としてSiやBeのような窒化物が挙げられるが、上記同様にEUV透過率の低下が課題となる。すなわち、従来のペリクル膜においてEUV透過率低下の要因となっていた保護層によるEUV吸収を抑制又は無くすことができる、EUV透過膜が望まれる。
 本発明者らは、今般、EUV透過率が高い主層を、EUV露光により除去可能な一時保護層で覆うことで、EUV透過率低下の要因となっていた保護層によるEUV吸収を無くすことができ、それにより露光時に高いEUV透過率を呈することが可能なEUV透過膜を提供できるとの知見を得た。
 したがって、本発明の目的は、EUV透過率低下の要因となっていた保護層によるEUV吸収を無くすことができ、それにより露光時に高いEUV透過率を呈することが可能なEUV透過膜を提供することにある。
 本発明によれば、以下の態様が提供される。
[態様1]
 波長13.5nmにおけるEUV透過率が85%以上の主層であって、単層、又は2層以上の複合層で構成される主層と、
 前記主層の少なくとも片面を覆う保護層であって、非晶質炭素、Cu、Al及び有機レジストからなる群から選択される少なくとも1種を主成分として含む保護層と、
を備えた、EUV透過膜。
[態様2]
 前記主層の両面が前記保護層で覆われている、態様1に記載のEUV透過膜。
[態様3]
 前記主層が、Be、Si、Y又はZrを主成分として含む、態様1又は2に記載のEUV透過膜。
[態様4]
 前記保護層の厚さが5nm以下である、態様1~3のいずれか一つに記載のEUV透過膜。
[態様5]
 前記保護層が非晶質炭素で構成される、態様1~4のいずれか一つに記載のEUV透過膜。
[態様6]
 態様1~5のいずれか一つに記載のEUV透過膜をEUV露光装置内に取り付ける工程と、
 前記EUV透過膜にEUVを照射し、それにより前記保護層を除去する工程と、
を含む、EUV透過膜の使用方法。
[態様7]
 態様1~5のいずれか一つに記載のEUV透過膜をEUV露光装置内に取り付ける工程と、
 前記EUV透過膜にEUVを照射し、それにより前記保護層を除去して前記主層を露出させる工程と、
 EUV照射により前記露出した主層にEUVを透過させて、前記EUV露光装置内の感光基板にパターン露光を施す工程と、
を含む、露光方法。
本発明によるEUV透過膜の一形態を示す模式断面図である。 例1~3におけるEUV透過膜の製造手順の前半部分を示す工程流れ図である。 例1~3におけるEUV透過膜の製造手順の後半部分を示す工程流れ図である。
 EUV透過膜
 図1に本発明の一形態によるEUV透過膜10の模式断面図を示す。EUV透過膜10は、主層12と、主層12の少なくとも片面を覆う保護層14とを備える。主層12は波長13.5nmにおけるEUV透過率が85%以上であり、単層、又は2層以上の複合層で構成される。保護層14は非晶質炭素、Cu、Al及び有機レジストからなる群から選択される少なくとも1種を主成分として含む。このように、EUV透過率が高い主層を、EUV露光により除去可能な一時保護層で覆うことで、EUV透過率低下の要因となっていた保護層によるEUV吸収を無くすことができ、それにより露光時に高いEUV透過率を呈することが可能なEUV透過膜を提供することができる。
 前述のとおり、EUV透過率が高いコア材料は、大気中でその表面に数nmの自然酸化膜を形成することがある。また、ペリクル膜を作製するプロセスでは、大気以外のフッ素や塩素といったガスや、酸やアルカリ溶液を用いた処理を行うことがあるため、コア材料の表面に副反応膜が生じることもある。このような膜の形成により、ペリクル膜のEUV透過率が低下する。そのため、これらの膜の形成を抑制するための保護層を、コア材料表面に形成するのが望ましい。しかしながら、コア材料の表面に反応抑制保護層を付けることで、ペリクル膜全体としてのEUV透過率の低下につながる。これらの問題が、本発明のEUV透過膜によれば首尾よく解決される。本発明のEUV透過膜が、自然酸化膜等の形成を防ぎながらも、保護層によるEUV透過率低下も防ぐことができるメカニズムは以下のとおりである。本発明のEUV透過膜は、EUV透過率が高い主層と、主層の少なくとも片面を覆う保護層を備えるところ、この保護層は、EUV露光により除去可能な一時保護層である。すなわち、ペリクル膜は、これを作製しEUV露光装置に搭載され露光プロセスに付されるまでの間に、上述した自然酸化膜や副反応膜が形成されてしまうところ、本発明のEUV透過膜は保護層を有することで上述した膜の形成を防ぐことができる。次に、露光プロセスは一般的に水素雰囲気中で行われ、その雰囲気中にはEUVにより生じた水素ラジカルが多く存在する。そこで、保護層を水素ラジカルで除去される材料で構成することにより、露光装置内でEUV透過膜の保護膜が除去され、純粋なコア材料(主層)のみの膜が得られるため、ペリクル膜として高い透過率を呈することができる。このようなメカニズムにより、本発明のEUV透過膜は、一時保護層により、自然酸化膜等の形成を防ぎながらも、露光プロセス中の一時保護層の除去により、保護層によるEUV透過率低下を防ぐことができる。その結果、露光時に高いEUV透過率を呈することが可能となる。
 主層12は、波長13.5nmにおけるEUV透過率が85%以上であり、好ましくは92%以上、より好ましくは94%以上、さらに好ましくは96%以上である。露光プロセスにおいて、EUV透過膜10のうち保護層14が除去され主層12が残ることなる。そのため、主層12のEUV透過率は高ければ高いほど望ましく、その上限値は特に限定されず理想的には100%であるが、典型的には99%以下、より典型的には98%以下である。
 主層12は、単層であってもよいし、2層以上の複合層であってもよい。いずれにしても、主層12は、Be、Si、Y又はZrを主成分として含むのが好ましい。ここで、主層12における「主成分」とは、主層12の50mol%以上、好ましくは70mol%以上、より好ましくは80mol%以上、さらに好ましくは90mol%以上を占める成分を意味する。もっとも、主層12(特に単層、又は複合層を構成する少なくとも1層)がBe、Si、Y又はZrのみからなるものであってもよい。このような主層12は、ペリクル膜としての基本的機能(パーティクル付着防止機能等)を確保しながら、高いEUV透過率の実現に寄与する。かかる観点から、主層12の厚さは、10~70nmであるのが好ましく、より好ましくは15~50nm、さらに好ましくは20~35nmである。
 上述のとおり、主層12は、2層以上の複合層であってもよい。例えば、金属ベリリウム層である主層に非晶質炭素の保護層を直接設けると、非晶質炭素と金属ベリリウムが反応して炭化ベリリウムを形成する場合がある。そこで、例えば主層12を金属ベリリウム層/窒化ベリリウム層(あるいは窒化ベリリウム層/金属ベリリウム層/窒化ベリリウム層)のような複合層構成とし、窒化ベリリウム層上に非晶質炭素の保護層を設けることで、非晶質炭素と金属ベリリウムの反応を防ぐ、すなわち主層と保護層との反応を抑制することができる。なお、本明細書において「窒化ベリリウム」なる用語は、Beのような化学量論組成のみならず、Be2-x(式中0<x<2である)のような非化学量論組成も許容する包括的な組成を意味するものとする。
 保護層14は、主層12を一時的に保護するための層である。したがって、保護層14は、主層12の少なくとも片面を覆っていればよいが、主層12の両面を保護層で覆うのが好ましい。保護層14は、非晶質炭素、Cu、Al及び有機レジストからなる群から選択される少なくとも1種を主成分として含む。EUV透過率が高い点、保護層14を除去した時の残渣による主層12への影響が少ない点、及び保護層14が除去されやすい点を考慮すると、保護層14は、非晶質炭素を主成分として含むのが好ましく、より好ましくは非晶質炭素で構成される。非晶質炭素は一般に、完全に不規則の原子配列を有することは少なく、微視的には結晶構造を有しているところ(すなわち、微結晶を有する)、このような微結晶が不規則に配列し、全体として非晶質になることが多い。なかでも、ダイヤモンドのように立体的な4配位構造の微結晶を多く含むものをDLC(Diamond-like Carbon)、グラファイトのように平面的な3配位構造の微粒子を多く含むものをGLC(Graphite-like Carbon)と呼ぶ。保護層14は完全に不規則な原子配列を有する炭素であってもよく、微結晶を不規則に有する炭素であってもよい。さらには、完全に緻密でなく、微細な気孔を含む非晶質炭素であってもよい。ここで、保護層14における「主成分」とは、保護層14の総重量に占める重量が50重量%以上、好ましくは60重量%以上、より好ましくは70重量%以上、さらに好ましくは80重量%以上である成分を意味する。もっとも、保護層14は、非晶質炭素、Cu、Al及び有機レジストからなる群から選択される少なくとも1種のみからなるものであってもよい。
 保護層14の厚さは5nm以下であるのが好ましく、より好ましくは3nm以下である。保護層14の厚さの下限値は特に限定されないが、典型的には1nm以上である。
 上述のとおり、主層12は2層以上の層の複合層であってもよく、例えば、主層12がベリリウム層等の金属層に加え、その片面又は両面に窒化ベリリウム層等の窒化物層を備えていてもよい。この場合、主層12は、ベリリウム層等の金属層に近づくにつれて窒素濃度が減少する窒素濃度傾斜領域を有するのが好ましい。すなわち、上述のとおり窒化ベリリウムの組成にはBeのような化学量論組成からBe2-x(式中0<x<2である)のような非化学量論組成まで包含しうるところ、窒化ベリリウム層を構成する窒化ベリリウムが、ベリリウム層に近づくにつれてベリリウムリッチの組成に近づく傾斜組成とするのが好ましい。こうすることで、主層12を構成する窒化物層(すなわち窒化ベリリウム層)と金属層(すなわちベリリウム層)との密着性を向上できるとともに、両層間の熱膨張差に起因する応力の発生を緩和することができる。すなわち、両層間の密着性を向上させて剥離を抑制したり、EUV光を吸収して高温になった場合の両層間の熱膨張緩和層として剥離しにくくしたりすることができる。窒素濃度傾斜領域の厚さは、窒化物層の厚さよりも小さいのが好ましい。すなわち、窒化物層の厚さの全域が窒素濃度傾斜領域である必要はない。例えば、窒化物の厚さの一部のみ、例えば、窒化物層の厚さのうち10~70%の領域が窒素濃度傾斜領域であるのが好ましく、より好ましくは15~50%の領域が窒素濃度傾斜領域である。
 EUV透過膜10は、EUVを透過するための主要領域が自立膜の形態であるのが好ましい。すなわち、EUV透過膜10の外縁部にのみ、成膜時に用いた基板(例えばSi基板)がボーダー(border)として残存しているのが好ましい、つまり、外縁部以外の主要領域には基板(例えばSi基板)が残存していない、すなわち主要領域は主層12及び保護層14のみで構成されるのが好ましい。そして、露光プロセスにおいて保護層14が全て除去されるのが好ましい。なお、露光装置内は通常、超高真空になるまで減圧した後に処理を開始することから、露光装置内部の酸素分圧は著しく低く、保護層14が除去されて露出した主層12が酸化することはほぼない。露光装置内のわずかな残留酸素で、主層12表面がごくわずかに酸化する可能性があるが、酸化した部分は水素雰囲気中のEUV照射により還元することができる。そのため、露光プロセスに付されたEUV透過膜10は、露光装置から取り出すまで高いEUV透過率を維持することができる。
 製造方法
 本発明によるEUV透過膜は、Si基板上にEUV透過膜とすべき積層膜を形成した後、Si基板の不要部分をエッチングで除去して自立膜化することにより作製することができる。したがって、前述のとおり、EUV透過膜の主要部分はSi基板が残存していない自立膜の形態となっている。
(1)Si基板の準備
 まず、その上に積層膜を形成するためのSi基板を準備する。Si基板は、その上に主層12と保護層14からなる積層膜を形成した後に、その外縁部以外の主要領域(すなわち自立膜とすべき領域)がエッチングにより除去されることになる。したがって、エッチングを効率良く短時間で行うため、予め自立膜とすべき領域のSi基板の厚さを薄くしておくことが望ましい。そのため、通常の半導体プロセスを用いて、Si基板にEUV透過形状に対応したマスクを形成し、ウェットエッチングによりSi基板をエッチングして、Si基板の主要領域の厚さを所定厚さまで薄くすることが望まれる。ウェットエッチングを経たSi基板を洗浄及び乾燥することで、ウェットエッチングにより形成したキャビティを有するSi基板を準備する。なお、ウェットエッチングマスクとしては、Siのウェットエッチング液に対して耐食性を有する材質であればよく、例えばSiOが好適に使用される。また、ウェットエッチング液としては、Siをエッチング可能なものであれば特に限定されない。例えば、TMAH(水酸化テトラメチルアンモニウム)を適切な条件で使用すれば、Siに対する異方性エッチングで非常に良好なエッチングができるため好ましい。
(2)積層膜の形成
 積層膜の形成は、いかなる成膜手法により行われてもよい。好ましい成膜手法の一例としては、スパッタリング法が挙げられる。非晶質炭素/ベリリウム/非晶質炭素の3層構造を作製する場合、主層12としてのベリリウム膜は、純Beターゲットを用いたスパッタリングにより作製し、保護層14としての非晶質炭素膜は、グラファイトターゲットを用いたスパッタリングにより行うのが好ましい。なお、ベリリウムや非晶質炭素膜の形成手法はこれらに限定されるものではない。なお、ベリリウム膜と非晶質炭素膜は後述する実施例のように1つのチャンバーのスパッタリング装置で形成してもよいし、2チャンバーのスパッタリング装置を用いてベリリウム膜と非晶質炭素膜を別々のチャンバー内で形成してもよい。
 主層12を窒化ベリリウム/ベリリウム/窒化ベリリウムの3層構造の複合層として作製する場合、ベリリウム膜は、純Beターゲットを用いたスパッタリングにより作製し、窒化ベリリウム膜は、反応性スパッタリングにより行うのが好ましい。この反応性スパッタリングは、例えば、純Beターゲットを用いたスパッタリング中に、チャンバー内に窒素ガスを入れることで、ベリリウムと窒素が反応して窒化ベリリウムを生成することにより行うことができる。また、別の手法として、窒化ベリリウムの作製は、ベリリウム膜を形成した後、窒素プラズマを照射することでベリリウムを窒化反応させて窒化ベリリウムを生成させることにより行うこともできる。いずれにしても、窒化ベリリウムの合成手法はこれらに限定されるものではない。
 窒化ベリリウム/ベリリウム/窒化ベリリウムの3層構造の複合層において窒素濃度傾斜領域を形成する場合、窒化ベリリウムの成膜及び金属ベリリウムの成膜を行うに際して、チャンバー内に窒素ガスを入れて純Beターゲットを用いたスパッタリングを継続して行いながら、途中から窒素ガスの導入を止めて金属ベリリウムの成膜に切り替えればよい。こうすることで、チャンバー内の窒素ガスの濃度の低下に伴い、成膜される膜中の窒素濃度が厚さ方向に減少する領域が形成される。一方、金属ベリリウムから窒化ベリリウムに切り替える場合は、上記とは逆に、スパッタリングを継続して行いながら、途中から窒素ガスの導入を始めれば、窒素濃度傾斜領域を形成することができる。窒素濃度傾斜領域の厚さは、窒素ガス濃度を変化させる時間を調整することにより制御することができる。
(3)自立膜化
 複合膜を形成したSi基板の、ボーダーとして残す外縁部以外のSi基板の不要部分をエッチングで除去して、複合膜の自立膜化を行う。Siのエッチングは、いかなる手法により行われてもよいが、XeFを用いたエッチングにより好ましく行うことができる。
 使用方法及び露光方法
 上述のとおり、露光プロセスは一般的に水素雰囲気中で行われ、その雰囲気中にはEUVにより生じた水素ラジカルが多く存在する。そのため、EUV透過膜10における保護層14は水素ラジカルにより除去され、純粋なコア材料(主層12)のみの膜が得られるため、露光プロセスにおいて主層12はペリクル膜として高い透過率を呈することができる。したがって、好ましいEUV透過膜の使用方法は、EUV透過膜をEUV露光装置内に取り付ける工程と、EUV透過膜にEUVを照射し、それにより保護層を除去する工程とを含む。また、好ましい露光方法は、EUV透過膜をEUV露光装置内に取り付ける工程と、EUV透過膜にEUVを照射し、それにより保護層を除去して主層を露出させる工程と、EUV照射により露出した主層にEUVを透過させて、EUV露光装置内の感光基板にパターン露光を施す工程とを含む。
 本発明を以下の例によってさらに具体的に説明する。
 例1
 図2A及び2Bに示される手順に従い、非晶質炭素/ベリリウム/非晶質炭素の3層構造の複合自立膜(EUV透過膜)を以下のようにして作製した。
(1)Si基板の準備
 直径8インチ(20.32cm)のSiウェハ20を用意した(図2A(a))。このSiウェハ20の両面に、熱酸化によりSiO膜22を50nm厚さで形成した(図2A(b))。Siウェハ20の両面にレジストを塗布し、片面に110mm×145mmのレジストの穴ができるように、露光及び現像を行いSiOエッチング用のレジストマスク24を形成した(図2A(c))。この基板の一方の面をフッ酸でウェットエッチングすることにより、SiO膜22の露出部分をエッチング除去してSiOマスク22aを作製した(図2A(d))。SiOエッチングのためのレジストマスク24をアッシング装置で除去した(図2A(e))。その後、TMAH液によりSiをウェットエッチングした。このエッチングは、事前にエッチングレートを測定しておき、狙いとするSi基板厚50μmとするためのエッチング時間だけ実施した(図2A(f))。最後にSiエッチングしていない面に形成してあるSiO膜22をフッ酸により除去及び洗浄して、Si基板28を準備した(図2B(g))。Si基板外形は必要に応じてレーザー30でダイシングして(図2B(h))、所望の形状としてもよい(図2B(i))。こうして、8インチ(20.32cm)Siウェハ20の中央に110mm×145mmのキャビティ26を設け、キャビティ26部分のSi厚さが50μmであるSi基板28を準備した。
(2)複合膜の形成
 上記(1)で得られたキャビティ26を備えたSi基板28に、非晶質炭素/ベリリウム/非晶質炭素の3層構造の複合膜を以下のようにして形成した(図2B(i))。まず、マルチターゲットのスパッタリング装置にSi基板28をセットし、グラファイトターゲット及び純Beターゲットを取り付けた。チャンバー内を真空引きし、グラファイトターゲットを使用して、内圧0.3Paでアルゴンガスのみでスパッタリングを行い、非晶質炭素としてDLC(Diamond-like Carbon)が2nm成膜される時間を見計らってスパッタリングを終了した。次いで、チャンバー内を再度真空引きし、純Beターゲットを使用して、内圧0.5Paで、アルゴンガスのみでスパッタリングを行い、ベリリウムが30nm成膜される時間を見計らってスパッタリングを終了した。その後、最初と同様にグラファイトターゲットを使用してスパッタリングを行い、非晶質炭素が2nm成膜される時間を見計らってスパッタリングを終了した。このようにして、非晶質炭素(C)2nm/ベリリウム(Be)30nm/非晶質炭素(C)2nmの複合膜をEUV透過膜10として形成した。すなわち、このEUV透過膜10は、Beを主成分として含む主層と、非晶質炭素を主成分として含む保護層を主層の両面に備える。
(3)自立膜化
 8インチ(20.32cm)基板を処理可能なXeFエッチャーのチャンバー内に、上記(2)で準備した複合膜付きのSi基板28をセットした。チャンバー内を十分真空引きした。このとき、チャンバー内に水分が残留していると、XeFガスと反応してフッ酸を生じ、エッチャーの腐食や想定外のエッチングが起きてしまうため、十分な真空引きを行った。必要に応じて、チャンバー内を、真空引きと窒素ガス導入を繰り返し、残留水分を減らした。十分に真空引きが出来たところで、XeF原料ボンベと予備室の間のバルブを開いた。その結果、XeFが昇華して予備室内にもXeFガスが蓄積された。十分に予備室内にXeFガスが蓄積されたところで、予備室とチャンバーの間のバルブを開き、XeFガスをチャンバー内に導入した。XeFガスはXeとFに分解し、FはSiと反応してSiFを生成した。SiFの沸点は-95℃であるため、生成したSiFは速やかに蒸発し、新たに露出したSi基板とFの反応が引き起こされた。Siエッチングが進行し、チャンバー内のFが減少したところで、チャンバー内を真空引きし、再度XeFガスをチャンバー内に導入しエッチングを行った。このようにして、真空引き、XeFガス導入、及びエッチングを繰り返して、自立膜化させる部分に対応するSi基板28が消失するまでエッチングを続けた。不要部分のSi基板が無くなったところでエッチングを終了した。こうして、Si製ボーダー(border)20を有する複合自立膜をEUV透過膜10として得た(図2B(j))。
 例2(比較)
 複合膜の形成を以下のとおり行ったこと以外は、例1と同様にしてルテニウム/ベリリウム/ルテニウムの3層構造の複合自立膜を作製した。
(複合膜の形成)
 例1の上記(1)で得られたキャビティを形成したSi基板を、マルチターゲットのスパッタリング装置内に入れ、純ルテニウムターゲット及び純Beターゲットを取り付けた。チャンバー内を真空引きし、純ルテニウムターゲットを使用して、内圧0.3Paでアルゴンガスのみでスパッタリングを行い、ルテニウムが2nm成膜される時間を見計らってスパッタリングを終了した。次いで、チャンバー内を再度真空引きし、純Beターゲットを使用して、内圧0.5Paで、アルゴンガスのみでスパッタリングを行い、ベリリウムが30nm成膜される時間を見計らってスパッタリングを終了した。その後、最初と同様に純ルテニウムターゲットを使用してスパッタリングを行い、ルテニウムが2nm成膜される時間を見計らってスパッタリングを終了した。このようにして、ルテニウム(Ru)2nm/ベリリウム(Be)30nm/ルテニウム(Ru)2nmの複合膜をEUV透過膜として形成した。
 例3(比較)
 複合膜の形成を以下のとおり行ったこと以外は、例1と同様にして結晶性炭素/ベリリウム/結晶性炭素の3層構造の複合自立膜を作製した。
(複合膜の形成)
 例1の上記(1)で得られたキャビティを形成したSi基板を、化学気相成長(CVD(Chemical Vaper Deposition))装置内に入れ、メタンをガス原料としてグラファイトの結晶構造を有する結晶性炭素を2nm成膜した。次いで、結晶性炭素を成膜したSi基板をマルチターゲットのスパッタリング装置内に入れ、グラファイトターゲット及び純Beターゲットを取り付けた。チャンバー内を真空引きし、純Beターゲットを使用して、内圧0.5Paで、アルゴンガスのみでスパッタリングを行い、ベリリウムが30nm成膜される時間を見計らってスパッタリングを終了した。グラファイトターゲットを使用して、内圧0.3Paで、アルゴンガスのみでスパッタリングを行い、非晶質炭素が0.5nm成膜される時間を見計らってスパッタリングを終了した。その後、スパッタリングしたSi基板を再度気相成長装置に入れ、非晶質炭素が十分に除去されるまで、水素クリーニングを行い、最初と同様にメタンをガス原料としてグラファイトの結晶構造を有する結晶性炭素を2nm成膜した。このようにして、結晶性炭素(C)2nm/ベリリウム(Be)30nm/結晶性炭素(C)2nmの複合膜をEUV透過膜として形成した。なお、スパッタリングで一時的に成膜した非晶質炭素はスパッタリングから化学気相成長するまでの間に、ベリリウムが酸化することを抑制するために形成したものである。
 EUV透過率
 例1~3で作製したEUV透過膜としての自立膜に対して、20Paの水素雰囲気中にて600Wの出力でEUV光を15分間照射した後、透過したEUV光量をセンサーで測定した。得られた測定値と、EUV透過膜無しで直接のEUV光量をセンサーで測定した値との比較から、EUV透過率を求めた。その結果、例1で作製した複合自立膜のEUV透過率は95%であった。比較例である例2で作製した複合自立膜のEUV透過率は88%であった。比較例である例3で作製した複合自立膜のEUV透過率は90%であった。例3における複合自立膜を解析したところ、保護層には結晶性炭素が残存していることが確認された。すなわち、例3の結晶性炭素/ベリリウム/結晶性炭素の複合自立膜においては、露光プロセスにおいて結晶性炭素が除去されにくくベリリウムの主層表面に残存することで、複合自立膜のEUV透過率が低下すると考えられる。一方で、例1の非晶質炭素/ベリリウム/非晶質炭素の複合自立膜においては、露光プロセスにおいて非晶質炭素が除去されることでベリリウムの主層のみとなるため、95%という高いEUV透過率を呈するものと考えられる。

Claims (7)

  1.  波長13.5nmにおけるEUV透過率が85%以上の主層であって、単層、又は2層以上の複合層で構成される主層と、
     前記主層の少なくとも片面を覆う保護層であって、非晶質炭素、Cu、Al及び有機レジストからなる群から選択される少なくとも1種を主成分として含む保護層と、
    を備えた、EUV透過膜。
  2.  前記主層の両面が前記保護層で覆われている、請求項1に記載のEUV透過膜。
  3.  前記主層が、Be、Si、Y又はZrを主成分として含む、請求項1に記載のEUV透過膜。
  4.  前記保護層の厚さが5nm以下である、請求項1又は2に記載のEUV透過膜。
  5.  前記保護層が非晶質炭素で構成される、請求項1又は2に記載のEUV透過膜。
  6.  請求項1又は2に記載のEUV透過膜をEUV露光装置内に取り付ける工程と、
     前記EUV透過膜にEUVを照射し、それにより前記保護層を除去する工程と、
    を含む、EUV透過膜の使用方法。
  7.  請求項1又は2に記載のEUV透過膜をEUV露光装置内に取り付ける工程と、
     前記EUV透過膜にEUVを照射し、それにより前記保護層を除去して前記主層を露出させる工程と、
     EUV照射により前記露出した主層にEUVを透過させて、前記EUV露光装置内の感光基板にパターン露光を施す工程と、
    を含む、露光方法。
PCT/JP2022/034607 2022-09-15 2022-09-15 Euv透過膜及びその使用方法、並びに露光方法 WO2024057500A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2022/034607 WO2024057500A1 (ja) 2022-09-15 2022-09-15 Euv透過膜及びその使用方法、並びに露光方法
EP22936051.6A EP4365676A1 (en) 2022-09-15 2022-09-15 Euv-transmissive film, method for using same, and exposure method
KR1020237014967A KR20240038642A (ko) 2022-09-15 2022-09-15 Euv 투과막 및 그 사용 방법과, 노광 방법
TW112113430A TW202414068A (zh) 2022-09-15 2023-04-11 Euv透明膜及其使用方法,和曝光方法
US18/483,609 US20240094620A1 (en) 2022-09-15 2023-10-10 Euv transmissive membrane, method of use thereof, and exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034607 WO2024057500A1 (ja) 2022-09-15 2022-09-15 Euv透過膜及びその使用方法、並びに露光方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/483,609 Continuation US20240094620A1 (en) 2022-09-15 2023-10-10 Euv transmissive membrane, method of use thereof, and exposure method

Publications (1)

Publication Number Publication Date
WO2024057500A1 true WO2024057500A1 (ja) 2024-03-21

Family

ID=90244695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034607 WO2024057500A1 (ja) 2022-09-15 2022-09-15 Euv透過膜及びその使用方法、並びに露光方法

Country Status (5)

Country Link
US (1) US20240094620A1 (ja)
EP (1) EP4365676A1 (ja)
KR (1) KR20240038642A (ja)
TW (1) TW202414068A (ja)
WO (1) WO2024057500A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558817B2 (ja) 1985-11-14 1993-08-27 Toshikazu Okuno
JP2017522590A (ja) * 2014-07-04 2017-08-10 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置内で用いられる膜及びそのような膜を含むリソグラフィ装置
JP2020098227A (ja) 2018-12-17 2020-06-25 信越化学工業株式会社 フォトリソグラフィ用ペリクル膜及びこれを備えたペリクル
KR20200076258A (ko) * 2018-12-19 2020-06-29 주식회사 에스앤에스텍 판면에 주름부를 구비한 펠리클 및 그의 제조방법
WO2021018777A1 (en) * 2019-07-30 2021-02-04 Asml Netherlands B.V. Pellicle membrane
KR20210047455A (ko) * 2019-10-22 2021-04-30 주식회사 에스앤에스텍 다공성 표면을 갖는 극자외선 리소그래피용 펠리클 및 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0558817B2 (ja) 1985-11-14 1993-08-27 Toshikazu Okuno
JP2017522590A (ja) * 2014-07-04 2017-08-10 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置内で用いられる膜及びそのような膜を含むリソグラフィ装置
JP2020098227A (ja) 2018-12-17 2020-06-25 信越化学工業株式会社 フォトリソグラフィ用ペリクル膜及びこれを備えたペリクル
KR20200076258A (ko) * 2018-12-19 2020-06-29 주식회사 에스앤에스텍 판면에 주름부를 구비한 펠리클 및 그의 제조방법
WO2021018777A1 (en) * 2019-07-30 2021-02-04 Asml Netherlands B.V. Pellicle membrane
KR20210047455A (ko) * 2019-10-22 2021-04-30 주식회사 에스앤에스텍 다공성 표면을 갖는 극자외선 리소그래피용 펠리클 및 제조방법

Also Published As

Publication number Publication date
KR20240038642A (ko) 2024-03-25
US20240094620A1 (en) 2024-03-21
EP4365676A1 (en) 2024-05-08
TW202414068A (zh) 2024-04-01

Similar Documents

Publication Publication Date Title
KR101900720B1 (ko) 극자외선 리소그래피용 펠리클 및 그의 제조방법
US8518612B2 (en) Pellicle for lithography and manufacturing method thereof
KR101981950B1 (ko) 극자외선 리소그래피용 펠리클
US7294438B2 (en) Method of producing a reflective mask and method of producing a semiconductor device
US6811936B2 (en) Structure and process for a pellicle membrane for 157 nanometer lithography
CN111836681A (zh) 石墨烯表膜光刻设备
KR102482649B1 (ko) 극자외선 리소그라피용 펠리클의 제조방법
KR20190053766A (ko) 극자외선 리소그래피용 펠리클 및 그의 제조방법
WO2024057500A1 (ja) Euv透過膜及びその使用方法、並びに露光方法
KR102301568B1 (ko) 탄화규소 층을 포함하는 극자외선용 펠리클의 제조방법
JP7492649B2 (ja) Euv透過膜
AU744883B2 (en) Method of forming a silicon layer on a surface
WO2023175990A1 (ja) Euv透過膜の製造方法及びペリクル
JP7372501B1 (ja) Euv透過膜
WO2023112330A1 (ja) ペリクルの製造に用いられるためのSiメンブレン構造体、及びペリクルの製造方法
EP2049948B1 (en) Method to minimize cd etch bias
KR20240111817A (ko) Euv 투과막의 제조 방법 및 펠리클
JP3631017B2 (ja) X線マスクブランク及びその製造方法、並びにx線マスク及びその製造方法
KR20240092300A (ko) Euv 펠리클 멤브레인의 제조방법
TW202417982A (zh) Euv透過膜
KR20230125966A (ko) 극자외선 리소그라피용 펠리클의 제조방법
WO2003067293A1 (fr) Procede de fabrication de guide d'onde optique

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022936051

Country of ref document: EP

Effective date: 20231019

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936051

Country of ref document: EP

Kind code of ref document: A1