WO2010119681A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2010119681A1
WO2010119681A1 PCT/JP2010/002720 JP2010002720W WO2010119681A1 WO 2010119681 A1 WO2010119681 A1 WO 2010119681A1 JP 2010002720 W JP2010002720 W JP 2010002720W WO 2010119681 A1 WO2010119681 A1 WO 2010119681A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
carcass
rotation axis
line segment
intersection
Prior art date
Application number
PCT/JP2010/002720
Other languages
English (en)
French (fr)
Inventor
文男 高橋
壮人 中山
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to EP10764268.8A priority Critical patent/EP2420395B1/en
Priority to US13/259,891 priority patent/US8752601B2/en
Priority to CN201080017125.5A priority patent/CN102395474B/zh
Publication of WO2010119681A1 publication Critical patent/WO2010119681A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • B60C3/04Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C15/00Tyre beads, e.g. ply turn-up or overlap
    • B60C15/0009Tyre beads, e.g. ply turn-up or overlap features of the carcass terminal portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C3/00Tyres characterised by the transverse section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/0292Carcass ply curvature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • B60C9/08Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship the cords extend transversely from bead to bead, i.e. radial ply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/28Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass
    • B60C2009/283Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass characterised by belt curvature
    • B60C2009/286Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers characterised by the belt or breaker dimensions or curvature relative to carcass characterised by belt curvature being substantially flat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10855Characterized by the carcass, carcass material, or physical arrangement of the carcass materials

Definitions

  • the present invention relates to a pneumatic tire with low rolling resistance.
  • Patent Document 1 proposes reducing the rolling resistance by devising the cross-sectional shape of the tire. This proposal surely reduces rolling resistance, but more detailed design is required in view of compatibility with other performances, particularly excellent wear resistance.
  • an object of the present invention is to propose the details of the tire shape in order to provide a tire with low rolling resistance.
  • the inventors have studied diligently to reduce the energy loss that has been the main cause of tire rolling resistance, and determined the shape of the tire so that the deformation of the tread portion before and after the load is minimized. The inventors have found that designing is effective, and have completed the present invention.
  • the gist configuration of the present invention is as follows.
  • the belt having a “flat shape” in the tire width direction means that, in the cross section in the width direction, the belt has a shape substantially parallel to the rotation axis of the tire.
  • the ratio BD / BW of the diameter difference BD between the center portion in the width direction of the inclined belt layer and the end portion in the width direction with respect to the width BW of the inclined belt layer having the narrowest width among the constituting inclined belt layers is 0.01 or more.
  • the ratio BD / BW is preferably 0.01 or more and 0.04 or less.
  • the state in which the tire is mounted on the applicable rim is a state in which it is incorporated in a standard rim or other applicable rim defined in the Japan Automobile Tire Association Standard (JATMA), without applying internal pressure, or up to about 30 kPa. This means a state where an extremely low internal pressure is applied.
  • JTMA Japan Automobile Tire Association Standard
  • the carcass has a folded portion that extends from the inner side to the outer side in the width direction of the tire by a bead core, and the shortest distance between the end of the folded portion and a line segment drawn parallel to the tire rotation axis at the bead toe
  • the distance CSEh is equal to or shorter than the shortest distance SWh between a line segment drawn parallel to the tire rotation axis at the maximum width position of the tire and a line segment drawn parallel to the tire rotation axis at the bead toe.
  • the shortest distance CSEh between the end of the folded portion and the line segment drawn parallel to the tire rotation axis on the bead toe is the bead toe and the line segment drawn parallel to the tire rotation axis at the maximum width position of the tire.
  • the pneumatic tire according to (2) characterized in that it is 0.5 times or less of the shortest distance SWh with a line segment drawn in parallel with the rotation axis of the tire.
  • a tire with low rolling resistance can be provided.
  • FIG. 1 shows a cross section in the width direction of a tire according to the present invention.
  • reference numeral 1 denotes a pair of bead cores, and a carcass 2 made of a radial arrangement ply of a cord straddling the bead cores 1 in a toroidal shape is used as a skeleton, on the radially outer side of the crown portion of the carcass 2.
  • At least one layer in the illustrated example, two inclined belt layers 3a and 3b, in which a number of cords extending in a direction inclined with respect to the equator plane 0 are coated with rubber, are arranged, and radially outside these belt layers.
  • At least one circumferential belt layer 4 in the illustrated example is disposed in which a large number of cords extending along the equator plane 0 of the tire are covered with rubber, and the tread 5 is disposed radially outside these belt layers.
  • the inclined belt layer may be a single layer, but in that case, it is preferable that the belt is constituted by a combination with at least one circumferential belt layer.
  • Such a tire 6 is mounted on the application rim 7 and used.
  • the belt has a flat shape in the tire width direction
  • [2] Ratio of the shortest distance SWh between the line segment drawn parallel to the tire rotation axis at the maximum width position of the tire and the line segment drawn parallel to the tire rotation axis on the bead toe 10 with respect to the tire cross-section height SH SWh / SH is 0.5 or more
  • [3] The curvature of the carcass in the cross section in the tire width direction is determined from the intersection I 2 between the carcass and the line segment drawn perpendicularly to the tire rotation axis from the widthwise end of the narrowest inclined belt layer.
  • FIG. 2 shows the unloaded state before filling the internal pressure of a conventional general tire with a solid line, and the state where a load is applied after filling with the internal pressure, with a dotted line.
  • the shoulder portion 9 of the tire greatly expands obliquely downward as the load is applied, so that the curved tread portion 5 is stretched flat and grounded.
  • the tire side portion has a wide range of bending when loaded, and the bead portion 11 is deformed.
  • FIG. 3 shows the deformation of the tire according to the invention before and after loading under the same conditions as in FIG. According to FIG. 3, in the tire according to the present invention, the shoulder portion 9 is greatly bent when a load is applied, but a large spread in the tire width direction is not seen. Therefore, it can be seen that the shapes of the tread portion 5 and the bead portion 11 are hardly deformed before and after loading.
  • the shoulder portion 9 with little energy loss due to deformation is preferentially bent, so that bending of the tread portion 5 and bead portion 11 with large energy loss due to deformation is alleviated and energy loss as a whole is suppressed.
  • FIG. 4 is a sectional view in the width direction of a conventional tire
  • FIG. 5 is a diagram showing the effect of the ratio BD / BW on the rolling resistance
  • FIG. 6 is a diagram showing the effect of the ratio SWh / SH on the rolling resistance
  • FIG. 7 is a diagram showing the effect of the ratio CSR 1 / CSR 2 on the rolling resistance
  • FIG. 8 is a diagram showing the effect of the ratio CSEh / SWh on the rolling resistance
  • FIG. 9 is the curvature. It is a figure which shows the influence which the radius R has on rolling resistance.
  • the above-mentioned rule [1] for making the belt flat in the tire width direction means that the inclined belt layer 3 has a small diameter difference in the width direction, specifically, the inclination constituting the belt.
  • the ratio BD / BW of the diameter difference BD between the widthwise central portion and the widthwise end of the inclined belt layer 3a with respect to the width BW of the narrowest inclined belt layer 3a of the belt layers 3 is 0.01 or more and 0. 0.07 or less.
  • the “diameter difference BD” refers to a difference value between each line segment drawn on the rotation axis of the tire from both the width direction central portion and the width direction short portion.
  • the test tire was mounted on a standard rim and the internal pressure was adjusted to 210 kPa, and then a drum tester (speed: 80 km / h) having a steel plate surface with a diameter of 1.7 m was used.
  • a drum tester speed: 80 km / h having a steel plate surface with a diameter of 1.7 m was used.
  • the measurement results were indexed with the rolling resistance of the conventional tire 1 (ratio BD / BW: more than 0.04 and not more than 0.07) as shown in FIG. It shows that rolling resistance is so small that this figure is small.
  • a difference of 5% or more is regarded as a significant difference from the viewpoint of market superiority excluding errors.
  • a rolling resistance of 10% or more it can be said that this is a great effect.
  • a conventional tire 1 shown in Table 1 is a tire having the same shape as the tire whose cross section in the width direction is shown in FIG.
  • Comparative tires 1 to 4 shown in Table 1 are tires in which the belt drop rate, that is, the above-described ratio BD / BW is variously changed with respect to the conventional tire 1. Based on Table 1, a comparison of the evaluation results of these tires is shown in FIG. 5, and the rolling resistances of the comparative tires 1 to 4 are all smaller than the rolling resistance of the conventional tire 1 and can be said to be superior. . However, the rolling resistance is minimized in the comparative example tire 3 in which the ratio BD / BW is 0.026, and when the ratio BD / BW is less than 0.026, a tendency to increase can be confirmed.
  • the rolling resistance of the comparative tire 4 with the ratio BD / BW being less than 0.01 was larger than the rolling resistance of the comparative tires 2 and 3, and the results were almost the same as the rolling resistance of the conventional tire 1. .
  • this is because, when the belt is made completely flat, the contact pressure is not uniform due to the influence of the deformation of the side portion at the time of contact. Therefore, it is not appropriate to set the ratio BD / BW to less than 0.01.
  • the ground contact portion of the tire is inevitably close to flat. For this reason, as a secondary effect, the distribution of the shearing force acting in the ground contact surface can be made uniform, and the wear resistance performance of the tire can be improved. As physical behavior, wear due to the differential shear force can be greatly reduced.
  • the definition of [2] that the ratio SWh / SH of SHh to SH is 0.5 or more means that the tire has the maximum width near the road surface from the middle of the side portion, that is, near the shoulder portion 9. .
  • the tire has a locally bent region in the vicinity of the shoulder portion 9, and the bending rigidity with respect to the tire radial load is reduced in this portion. Thereby, the bending of the tire under load can be concentrated in the vicinity of the shoulder portion 9. Now, as a dominant factor of the rubber energy loss causing the rolling resistance of the tire, there is bending of the tread portion 5.
  • the shear deformation which arises in the tread part 5 can be relieved by intentionally lowering the rigidity in the vicinity of both sides of the tread part 5 and bending it in this way. Therefore, energy loss is reduced, and rolling resistance can be reduced.
  • the “tire sectional height SH” refers to a distance in the tire radial direction from a position where the tire has the maximum diameter to a line segment drawn on the bead toe 10 in parallel with the rotation axis of the tire.
  • the reason that the tire maximum width position height SWh is set to be equal to or more than half of the tire cross-section height SH is because the loss of energy occurs at the time of deformation on the bead portion 11 side where the carcass 2 may be folded back. This is because the effect of bending is small.
  • Comparative example tires 5 to 8 shown in Table 1 are tires in which the ratio SWh / SH described above was changed variously with respect to the comparative example tire 3.
  • FIG. 6 shows a comparison of the evaluation results of these tires based on Table 1.
  • the comparative tire 3 and the comparative tire 5 are compared, it can be seen that the comparative tire 5 is significantly superior in terms of rolling resistance. That is, the rolling resistance can be greatly reduced by setting the ratio SWh / SH to 0.5 or more. Further, it was possible to confirm that the rolling resistance decreased as the ratio SWh / SH was increased, and this tendency was confirmed at least until the ratio SWh / SH was 0.654. .
  • the “height CRh of the portion where the curvature of the carcass 2 is maximized” refers to the shortest distance from the portion where the curvature of the carcass 2 is maximized to a straight line passing through the bead toe 10 and parallel to the tire rotation axis.
  • the “curvature of the carcass 2” refers to the curvature of the carcass 2 that can be measured on the outer side in the tire radial direction than the line segment connecting the outermost ends in the tire radial direction of both bead cores 1. That is, for example, when the carcass 2 has a turn-up portion 2a extending from the inside in the width direction of the tire to the outside in the bead core 1, the “curvature of the carcass 2” is a curvature measured at the turn-up portion 2a. Not included.
  • the comparative example tire 9 is a tire in which the ratio CRh / SWh described above is changed with respect to the comparative example tire 8.
  • the comparative tire 9 is compared with the comparative tire 8 based on Table 1, it can be seen that the comparative tire 9 is superior in rolling resistance.
  • the rolling resistance can be reduced as the ratio CRh / SWh is increased, the inner curvature of the carcass has a manufacturing limit, which limits the value of the ratio CRh / SWh.
  • the measurement position of the height CRh is preferably located from the intersection I 4 near the middle of the path leading to the intersection I 2. Therefore, a suitable numerical value of the ratio CRh / SWh is 1.15 to 1.25.
  • the inner portion in the tire radial direction from the intersection I 1 of the carcass, hereinafter, the lower carcass 2d is It will be in the state where it stood up in the tire radial direction.
  • an angle ⁇ formed by a straight line drawn from the bead fit point 8 toward the measurement position of the tire maximum width SW on the outer peripheral surface of the tire side portion with respect to the tire rotation axis, hereinafter, a bead back surface angle. ⁇ increases.
  • the bead fit point 8 is an intersection of a straight line drawn from the center of the bead core 1 to the outer side in the tire radial direction and the outer peripheral surface of the bead portion.
  • the energy loss that causes the rolling resistance is mainly caused by deformation of the tire tread portion 5, and this is because the tread portion 5 is made of steel circumferential belt layer 4 and It includes materials with different elongation rates, such as the inclined belt layer 3, and is caused by high rigidity. Accordingly, the bead portion 11 having a high rigidity usually includes a hard rubber and the carcass 2 is folded back. As a result, a large energy loss occurs during the bending as described above. According to the rule [4] described above, the upper carcass 2u is bent to lower the rigidity, and the lower carcass 2d is raised to improve the rigidity, whereby the upper carcass 2u is preferentially bent and the bead portion 11 is bent. To suppress bending of the lower carcass 2d located at the center. Thereby, the energy loss by the load rolling of a tire can be suppressed, and rolling resistance can be reduced.
  • the inventive tires 1 to 3 are tires in which the ratio CSR 1 / CSR 2 is variously changed with respect to the comparative tire 9 described above.
  • FIG. 7 shows a comparison of the evaluation results of these tires based on Table 1. According to FIG. 7, before and after the ratio CSR 1 / CSR 2 becomes 1.0 or more, that is, over the comparative tire 9 or the inventive tire 1, a significant reduction in rolling resistance can be confirmed. If the ratio CSR 1 / CSR 2 is further increased from here, the rolling resistance can be further decreased. Although the rolling resistance can be reduced as the ratio CSR 1 / CSR 2 increases, this has a manufacturing limit. Therefore, the optimum value of the ratio CSR 1 / CSR 2 in view of the limitation is 1.23.
  • the carcass 2 has a folded portion 2 a that extends from the inside in the width direction of the tire to the outside by a bead core 1, and ends the folded portion 2 a.
  • the shortest distance SWh or less from the line segment is suitable, and more preferably 0.5 times or less.
  • the bead portion 11 When the tire has the carcass folded-back portion 2a, the bead portion 11 includes the carcass 2 in a double manner, so that energy loss due to bending increases.
  • the energy loss in the bead part 11 is one of the causes of rolling resistance. Therefore, by shortening the folded portion 2a, it is possible to expand a bending range in which energy loss hardly occurs in the tire side portion.
  • the height CSEh of the folded end portion is not more than half of SWh. That is, normally, when a tire is loaded, it bends largely in the vicinity of half of this SWh, but by setting CSEh to SWh / 2 or less, it is possible to reduce energy loss due to the bending of this portion, which is effective. It is.
  • Inventive tires 4 to 8 are tires in which the ratio CSEh / SWh is variously changed with respect to the above inventive tire 3.
  • FIG. 8 shows a comparison of the evaluation results of the above inventive example tires 4 to 8 based on Table 1.
  • the rolling resistance gradually decreases as the ratio CSEh / SWh is decreased from 1.0. Further, in the vicinity where the ratio CSEh / SWh is 0.5 or less, it can be confirmed that the rolling resistance is significantly reduced.
  • the ratio CSEh / SWh is preferably 1.0 or less, and more preferably, the ratio CSEh / SWh is 0.5 or less.
  • the radius of curvature R of the portion where the curvature of the carcass 2 is maximum is preferably 25 mm or less. This is because by increasing the curvature of the carcass 2 in the vicinity of the tread portion 5 where the curvature of the carcass 2 is maximum, the bending rigidity of the tire side portion of that portion can be reduced. This is because bending can be relaxed.
  • Inventive tires 9 to 12 are tires in which the radius of curvature R of the portion where the curvature of the carcass 2 is maximized is variously changed with respect to the inventive tire 8.
  • FIG. 9 shows a comparison of the evaluation results of these tires based on Table 1. According to FIG. 9, it can be seen that the rolling resistance of the tire gradually decreases as the radius of curvature is made smaller than 40. In particular, a significant improvement effect can be confirmed when the radius of curvature is 30 mm or less, and further 25 mm or less.
  • the rolling resistance can be reduced by increasing the curvature of the carcass 2 near the tread portion 5 of the tire.
  • the curvature radius R cannot be less than 20 mm due to manufacturing problems. Met. Therefore, an appropriate range of the radius of curvature R in consideration of the manufacturing viewpoint is 25 mm or less. From the above results, in the present invention, the curvature radius R is preferably 25 mm or less.
  • a radial tire of size 195/65 R15 was created under the specifications shown in Table 1 and tested for rolling resistance.
  • the basic structure of the tire is the same, one carcass ply, and the inclined belt layer consists of two layers in which cords arranged at an inclination angle of 24 ° with respect to the equator plane of the tire intersect each other, A nylon circumferential reinforcing layer is provided thereon.
  • the tire according to the present invention can be widely used in the automobile industry, thereby greatly reducing the environmental load of the automobile.
  • the present invention greatly contributes to solving environmental problems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

 耐偏摩耗性能に優れかつ転がり抵抗の少ない空気入りタイヤを提供する。 適用リム(7)に装着した状態のタイヤ幅方向断面において、ベルトがフラット形状であり、タイヤ最大幅位置の高さ(SWh)が、タイヤの断面高さ(SH)の半分以上であり、カーカス(2)の径方向最外側端とビードコア(1)のタイヤ径方向最外側端との間のタイヤ径方向距離(CSH)を2等分してタイヤの回転軸と平行に延びる線と前記カーカスとの交点(I)から、最も幅狭の傾斜ベルト層(3a)の幅方向端部からタイヤの回転軸と直角に引いた線分とカーカス(2)との交点(I)までの、カーカスの経路長(CSR)は、交点(I)から、両ビードコア1のタイヤ径方向最外側端を結ぶ線分とカーカス2との交点(I)までの、カーカスの経路長(CSR)よりも長いことを特徴とした空気入りタイヤ(6)。

Description

空気入りタイヤ
 本発明は、転がり抵抗の低い空気入りタイヤに関する。
 近年、地球環境問題への懸念から省エネルギー化の需要が高まりつつあり、特に、自動車の低燃費化に関する研究が盛んである。自動車の低燃費化を図る手段の一つとして、走行時の主なエネルギー損失であるタイヤの転がり抵抗の低減を挙げることができる。
 以下に、この転がり抵抗の低減を図る従来の改良方法をいくつか紹介する。
 タイヤの転がり抵抗の原因としては、トレッド部のゴム内にて発生するエネルギーロスが支配的であることが知られている。直接的な改良方法として、このトレッド部に使用されるゴムを損失正接が小さいものに変更することが有効である。しかしながら、この方法では、タイヤの、例えば耐摩耗性能をはじめとする他の性能が犠牲になることも知られている。
 一方、転がり抵抗を増すエネルギーロスの発生源であるゴムを減らすために、トレッド厚さを薄くする方法も容易に考えられるが、この場合はタイヤの摩耗寿命を確保できないことが問題になる。さらには、特許文献1では、タイヤの断面形状を工夫して転がり抵抗を低減することが提案されている。この提案によって、転がり抵抗の低減が確かに図られるが、他性能、とりわけ優れた耐摩耗性能との両立を考えた場合、より詳細の設計が求められている。
特開2006-327502号公報
 そこで、本発明の目的は、転がり抵抗の少ないタイヤを提供するための、タイヤ形状の詳細について提案することにある。
 発明者らは、タイヤの転がり抵抗の主な原因となっていたエネルギーロスの低減を図り、鋭意検討していたところ、荷重負荷前後におけるトレッド部の変形がなるべく小さくなるように、タイヤの形状を設計することが効果的であることを知見し、本発明を完成するに到った。
 従い、本発明の要旨構成は、次のとおりである。
(1)一対のビード部間にトロイダル状に跨るカーカスを骨格として、該カーカスのクラウン部の径方向外側に、少なくとも1層の傾斜ベルト層を有するベルトおよびトレッドを順に配置した空気入りタイヤであって、
 該タイヤを適用リムに装着した状態のタイヤ幅方向断面において、
 [1]前記ベルトが、タイヤ幅方向にフラット形状であり、
 [2]タイヤの断面高さSHに対する、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWhの比SWh/SHが0.5以上であり、
 [3]前記タイヤ幅方向断面における前記カーカスの曲率は、最も幅の狭い傾斜ベルト層の幅方向端部からタイヤの回転軸と直角に引いた線分とカーカスとの交点Iから、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分と前記カーカスとの交点Iまでの経路上で最大となり、
 [4]カーカスの径方向最外側端とビードコアのタイヤ径方向最外側端との間のタイヤ径方向距離CSHを2等分してタイヤの回転軸と平行に延びる線と前記カーカスとの交点Iから、前記交点Iまでの、カーカスの経路長CSRは、前記交点Iから、両ビードコアのタイヤ径方向最外側端を結ぶ線分とカーカスとの交点Iまでの、カーカスの経路長CSRよりも長いこと、
を特徴とした空気入りタイヤ。
 ここで、前記ベルトが、タイヤ幅方向に「フラット形状」であるとは、幅方向断面において、前記ベルトが、タイヤの回転軸と略平行の形状であること、具体的には、前記ベルトを構成する傾斜ベルト層のうち最も幅の狭い傾斜ベルト層の幅BWに対する、当該傾斜ベルト層の幅方向中心部と幅方向端部との径差BDの比BD/BWが0.01以上0.07以下であることを意味し、より好ましくは比BD/BWは、0.01以上0.04以下である。尚、前記タイヤを適用リムに装着した状態とは、日本自動車タイヤ協会規格(JATMA)に規定の標準リムまたはその他の適用リムに組み込んだ状態にて、内圧を付加せずに若しくは、30kPa程度までの極低内圧を付加した状態を意味する。
(2)前記カーカスは、ビードコアにてタイヤの幅方向内側から外側へと巻き返して延びる折り返し部を有し、該折り返し部の端末とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離CSEhが、前記タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWh以下であることを特徴とした、前記(1)に記載の空気入りタイヤ。
(3)前記折り返し部の端末とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離CSEhが、前記タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWhの0.5倍以下であることを特徴とした、前記(2)に記載の空気入りタイヤ。
(4)前記カーカスの曲率が最大となる部分の曲率半径は、25mm以下であることを特徴とした、前記(1)~(3)のいずれかに記載の空気入りタイヤ。
 本発明によれば、転がり抵抗の少ないタイヤを提供することができる。
本発明に従うタイヤの幅方向断面図である。 従来タイヤの荷重負荷前後の挙動を示す図である。 本発明に従うタイヤの荷重負荷前後の挙動を示す図である。 従来タイヤの幅方向断面図である。 比BD/BWが転がり抵抗に与える影響を示す図である。 比SWh/SHが転がり抵抗に与える影響を示す図である。 比CSR/CSRが転がり抵抗に与える影響を示す図である。 比CSEh/SWhが転がり抵抗に与える影響を示す図である。 曲率半径Rが転がり抵抗に与える影響を示す図である。
 以下、図面を参照にして本発明を詳細に説明する。
 図1に、本発明に従うタイヤについて、その幅方向断面を示す。同図において、符号1は一対のビードコアであり、これらビードコア1間にトロイダル状に跨る、コードのラジアル配列プライからなるカーカス2を骨格として、該カーカス2のクラウン部の径方向外側に、タイヤの赤道面0に対して傾斜した向きに延びるコードの多数本をゴムで被覆した、少なくとも1層、図示例で2層の傾斜ベルト層3aおよび3bを配置し、これらのベルト層の径方向外側に、タイヤの赤道面0に沿って延びるコードの多数本をゴムで被覆した、少なくとも1層、図示例で1層の周方向ベルト層4を配置し、これらベルト層の径方向外側にトレッド5を配置してなる。なお、傾斜ベルト層は1層でも構わないが、その際には、少なくとも1層の周方向ベルト層との組み合わせにてベルトを構成することが好ましい。
 かようなタイヤ6は、適用リム7に装着されて使用に供される。ここで、該タイヤ6を適用リム7に装着した状態のタイヤ幅方向断面において、図1に示すように、
 [1]前記ベルトが、タイヤ幅方向にフラット形状であり、
 [2]タイヤの断面高さSHに対する、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥ10にタイヤの回転軸と平行に引いた線分との最短距離SWhの比SWh/SHが0.5以上であり、
 [3]前記タイヤ幅方向断面における前記カーカスの曲率は、最も幅の狭い傾斜ベルト層の幅方向端部からタイヤの回転軸と直角に引いた線分とカーカスとの交点Iから、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分と前記カーカスとの交点Iまでの経路上で最大となり、
 [4]カーカスの径方向最外側端とビードコアのタイヤ径方向最外側端との間のタイヤ径方向距離CSHを2等分してタイヤの回転軸と平行に延びる線と前記カーカスとの交点Iから、前記交点Iまでの、カーカスの経路長CSRは、前記交点Iから、両ビードコアのタイヤ径方向最外側端を結ぶ線分とカーカスとの交点Iまでの、カーカスの経路長CSRよりも長いことが肝要である。
 尚、ここでいう傾斜ベルト層とは、カーカスの最大幅CSWの0.6倍以上の幅を有するものである。
 以上に詳細に記述した規定[1]~[4]は、変形によって多くのエネルギーロスを生じる部分の変形を抑制し、変形によるエネルギーロスの少ない部分を優先的に変形させることによって転がり抵抗を低減せしめるものである。
 即ち、従来のタイヤは、自然平衡形状に代表される比較的丸い断面形状を有することが多かった。これは、本来圧力容器として設計される空気入りタイヤという意味では理にかなっているものの、タイヤへの荷重負荷によってトレッド部やビード部が大きく変形してしまい、この変形がエネルギーロスを生じさせていた。
 図2は、従来の一般的なタイヤの内圧充填前の無負荷状態を実線にておよび、内圧充填後に荷重を負荷した状態を点線にて示す。図2にからもわかるように、従来のタイヤは、荷重負荷に伴ってタイヤのショルダー部9が斜め下方に向かって大きく拡がることにより、湾曲していたトレッド部5が、平らに引き伸ばされて接地することがわかる。また、タイヤサイド部において荷重時に屈曲する範囲が広く、ビード部11まで変形している。
 一方、本発明によるタイヤでは、接地によるトレッド部5およびビード部11の変形量が少ない。図3は、図2の場合と同じ条件における、本発明によるタイヤの荷重負荷前後の変形を示す。図3によると、本発明によるタイヤは、荷重負荷時にショルダー部9が大きく屈曲しているものの、タイヤ幅方向への大きな拡がりは見られない。そのため、トレッド部5およびビード部11の形状は、荷重負荷前後でほとんど変形していないことがわかる。即ち、変形によるエネルギーロスの少ないショルダー部9を優先的に屈曲させることにより、変形によるエネルギーロスの多いトレッド部5およびビード部11の屈曲を緩和し、全体としてのエネルギーロスを抑えていると言える。
 以下に、本発明によるタイヤが満たす各規定[1]~[4]について詳細に説明する。尚、図4は従来タイヤの幅方向断面図であり、図5は比BD/BWが転がり抵抗に与える影響を示す図であり、図6は比SWh/SHが転がり抵抗に与える影響を示す図であり、図7は、比CSR/CSRが転がり抵抗に与える影響を示す図であり、図8は比CSEh/SWhが転がり抵抗に与える影響を示す図であり、また、図9は曲率半径Rが転がり抵抗に与える影響を示す図である。
 まず、前記ベルトをタイヤ幅方向にフラット形状とする上記規定[1]は、傾斜ベルト層3について、その幅方向における径差が少ないことを意味し、具体的には、前記ベルトを構成する傾斜ベルト層3のうち最も幅の狭い傾斜ベルト層3aの幅BWに対する、当該傾斜ベルト層3aの幅方向中心部と幅方向端部との径差BDの比BD/BWが、0.01以上0.07以下であることを意味する。かように、ベルトをフラット形状とすることにより、荷重負荷前後におけるタイヤトレッド部5の変形を小さくすることができ、転がり抵抗の低減に効果的である。尚、上記「径差BD」とは、幅方向中心部および幅方向短部の両位置からタイヤの回転軸に引いたそれぞれの線分の差分値を言う。
 また、実際のタイヤ設計では、サイド部の変形に伴った変形部分や、偏摩耗を起こさないための接地形状ならびに接地圧分布を考慮しなければいけないことから、完全に平坦にすることなく適正な範囲に設定することが肝要である。この適正な範囲について鋭意究明したところ、上記した比BD/BWが0.01以上であることが判明した。
 以上の知見を得るに到った実験結果について、以下に詳しく説明する。
 即ち、サイズ195/65 R15のラジアルタイヤを用いて、上記した比BD/BWを種々に変化させた条件の下、転がり抵抗の試験を行った。尚、タイヤの基本構造は同じであり、カーカスプライが1枚、傾斜ベルト層はタイヤの赤道面に対して24°の傾斜角度で配置したコードを層間で相互に交差させた2層からなり、その上にナイロンの周方向補強層を具える。
 ここで、転がり抵抗試験は、供試タイヤを標準リムに装着し内圧を210kPaに調整したのち、直径1.7mの鉄板表面を持つドラム試験機(速度:80km/h)を用いて、車軸の転がり抵抗力を求める。この測定結果は、例えば図4に幅方向断面を示すような従来タイヤ1(比BD/BW:0.04超0.07以下)での転がり抵抗力を100として指数化した。この数値が小さいほど、転がり抵抗が小さいことを示している。評価としては、誤差を除きなおかつ市場優位性の観点から5%以上の差異を有意差とみなす。特に、10%以上の転がり抵抗が見られる場合は大きな効果であると言える。
 表1に示す従来例タイヤ1は、図4に幅方向断面を示すタイヤと同一形状のタイヤである。また、表1に示す比較例タイヤ1~4は、上記従来例タイヤ1につき、そのベルト落ち率、即ち、上記した比BD/BWを種々に変化させたタイヤである。表1を基に、これらのタイヤの評価結果比較を図5に示すように、比較例タイヤ1~4の転がり抵抗は、いずれも従来例タイヤ1の転がり抵抗よりも小さく、優れていると言える。但し、転がり抵抗は、比BD/BWを0.026とした比較例タイヤ3において最小となり、比BD/BWを0.026未満とすると、増加する傾向が確認できる。また、比BD/BWを0.01未満とした比較例タイヤ4の転がり抵抗は、比較例タイヤ2および3の転がり抵抗よりも大きく、従来例タイヤ1の転がり抵抗とほぼ同等の結果を呈した。これは、上述したように、ベルトを完全に平坦にすると、接地時にサイド部の変形による影響を受けて接地圧が均等ではなくなることに起因する。従って、比BD/BWを0.01未満とすることは妥当ではない。
 以上より、比BD/BWが0.01以上0.07以下の範囲において、転がり抵抗につき、従来タイヤ1に対する有意差が認められた。さらに望ましくは。0.01以上0.04以下である。
 また、ベルトをフラットとすることにより、必然的にタイヤの接地部もフラットに近い状態となる。このため、副次的な効果として、接地面内に働くせん断力の分布を均一とすることができ、タイヤの耐摩耗性能を向上させることが可能である。物理挙動としては径差せん断力に起因する摩耗を大幅に削減することができる。
 SHに対するSWhの比SWh/SHを0.5以上とする[2]の規定は、タイヤが、サイド部の中間より路面に近い部分、即ちショルダー部9付近で最大の幅を持つことを意味する。通常、この形状によれば、タイヤは、ショルダー部9付近において局所的に曲がった領域を持つことになり、タイヤ径方向荷重に対する曲げ剛性はこの部分で小さくなる。これにより、荷重時のタイヤの屈曲をショルダー部9付近に集中させることができる。さて、タイヤの転がり抵抗を引き起こすゴムのエネルギーロスの支配的要因として、トレッド部5の屈曲がある。これに対し、トレッド部5の両サイド付近の剛性を意図的に低下させ、このように積極的に屈曲させることにより、トレッド部5に生じるせん断変形を緩和することができる。そのため、エネルギーロスが減少することとなり、転がり抵抗の低減が可能である。尚、上記において「タイヤの断面高さSH」とは、タイヤが最大径となる位置から、ビードトゥ10にタイヤの回転軸と平行に引いた線分までの、タイヤ径方向距離を言う。
 ここで、タイヤ最大幅位置高さSWhをタイヤの断面高さSHの半分以上としたのは、カーカス2の折り返しを有することがあるビード部11側では、変形時にエネルギーロスが生じるため、積極的に屈曲させる効果が小さいためである。
 以上の知見を得るに到った実験結果について、以下に詳しく説明する。
 即ち、サイズ195/65 R15のラジアルタイヤを用いて、上記した比SWh/SHを種々に変化させた条件の下、転がり抵抗の試験を行った。尚、比BD/BWは0.026と同じにした。その他のタイヤ構成条件や評価手法は、比BD/BWの実験と同様である。
 表1に示す比較例タイヤ5~8は、上記比較例タイヤ3につき、上記した比SWh/SHを種々に変化させたタイヤである。表1を基にこれらのタイヤの評価結果を比較したものを図6に示す。まず、比較例タイヤ3と比較例タイヤ5とを比べると、転がり抵抗につき、比較例タイヤ5の方が著しく優れていることがわかる。即ち、比SWh/SHを0.5以上とすることにより転がり抵抗を大幅に減少させることが可能である。また、比SWh/SHを増大させていくに伴って転がり抵抗が低下する様子を確認することができ、この傾向は、少なくとも、比SWh/SHを0.654とするまで確認することができた。
 これは、タイヤの最大幅の位置を接地面付近まで近づけたため、ショルダー部9付近の曲率が大きくなり、荷重時の屈曲が、この部分に優先的に集中するようになったためである。これにより、トレッド部5の荷重による屈曲が緩和され、転がり抵抗を低減させることができた。以上の結果より、比SWh/SHが0.5以上の範囲において、転がり抵抗につき、従来タイヤに対する有意差が認められた。
 前記タイヤ幅方向断面におけるカーカス2の曲率を、前記交点Iから前記交点Iまでの経路上で最大とする[3]の規定は、前記タイヤ最大幅SWの測定位置よりもタイヤ径方向外側の位置で、カーカス2が大きく屈曲することを意味する。即ち、タイヤ最大幅位置の高さSWhに対する、カーカス2の曲率が最大となる部分の高さCRhの比CRh/SWhは、1以上となる。尚、前記「カーカス2の曲率が最大となる部分の高さCRh」とは、カーカス2の曲率が最大となる部分から、ビードトゥ10を通りタイヤ回転軸と平行な直線までの最短距離を言う。タイヤの骨格となるカーカス2の曲率を大きくすると、タイヤの曲げ剛性が低下し、上述のように、荷重時の屈曲がその部分に集中することとなる。従い、カーカス2の曲率が最大となる位置を路面近くとすることにより、[2]の規定による効果と同様にトレッド部の荷重による屈曲を緩和することができ、転がり抵抗が低減される。
 尚、前記「カーカス2の曲率」とは、両ビードコア1のタイヤ径方向最外側端を結ぶ線分よりも、タイヤ径方向外側において測定できるカーカス2の曲率のことを言う。即ち、例えば、前記カーカス2が、ビードコア1にてタイヤの幅方向内側から外側へと巻き返して延びる折り返し部2aを有する場合、前記「カーカス2の曲率」は、該折り返し部2aにおいて測定される曲率を含まない。
 以上の知見を得るに到った実験結果について、以下に詳しく説明する。
 即ち、サイズ195/65 R15のラジアルタイヤを用いて、上記した比CRh/SWhを種々に変化させた条件の下、転がり抵抗の試験を行った。尚、比BD/BWは0.026および比SWh/SHは0.654と同じにした。その他のタイヤ構成条件や評価手法は、比BD/BWの実験と同様である。
 比較例タイヤ9は、上記比較例タイヤ8につき、上記した比CRh/SWhを変化させたタイヤである。表1を基に、比較例タイヤ9を比較例タイヤ8と比較すると、比較例タイヤ9の方が、転がり抵抗につき優れていることがわかる。尚、比CRh/SWhを大きくするほど転がり抵抗を減少させることができるが、カーカスの内面曲率には製造上の限界があり、これにより比CRh/SWhの値は制限される。かかる制限を鑑みると、前記高さCRhの測定位置は、前記交点Iから前記交点Iに到る経路上の中間付近に位置することが好ましい。そのため、比CRh/SWhの好適な数値は、1.15~1.25である。
 これは、タイヤのトレッド部5付近の曲率を大きくしたことにより、その部分の曲げ剛性が低下し、上記と同様にトレッド部5の荷重による変形が緩和されたためである。以上の結果より、比SWh/SHが0.5以上の範囲において、転がり抵抗につき、従来タイヤに対する有意差が認められた。
 また、接地面付近でタイヤの幅が最大となるようにし、かつベルトをなるべくフラットとするためには、その間、即ちIからIまで間の経路の曲率を大きくすることが求められる。従って、前記タイヤ幅方向断面におけるカーカスの曲率を、前記交点Iから前記交点Iまでの経路上で最大となるものとする[3]の規定を満たすことにより、上記[1]および[2]の規定との両立が容易となる。
 カーカス2の前記経路長CSRを、前記経路長CSRより長いものとする規定[4]を満たすことにより、カーカスの前記交点Iよりもタイヤ径方向内側部分、以下、下部カーカス2dは、タイヤ径方向に立ち上がった状態となる。このとき、前記タイヤ幅方向断面において、ビードフィット点8からタイヤサイド部外周面におけるタイヤ最大幅SWの測定位置に向かって引いた直線がタイヤ回転軸に対して成す角α、以下、ビード背面角αは大きくなる。尚、前記ビードフィット点8とは、ビードコア1の中心からタイヤ径方向外側に引いた直線とビード部外周面との交点を言う。
 下部カーカス2dが立ち上がった状態となる、即ち、前記ビード背面角αがより90°に近づくことにより、この部分では、タイヤ径方向の荷重に対する剛性が大きくなり、変形がしにくくなる。一方、カーカス2の前記交点Iよりもタイヤ径方向外側部分、以下、上部カーカス2uは、たわんだ形状となり、タイヤ径方向の荷重に対する剛性が低下する。そのため、荷重時におけるタイヤ変形を、前記上部カーカス2u付近に集中させることが可能である。
 さて、転がり抵抗の原因となるエネルギーロスは、主にタイヤトレッド部5の変形によるものが支配的であることを述べたが、これは、トレッド部5が、スチール製の周方向ベルト層4や傾斜ベルト層3等、伸び率の異なる材料を含んでおり、剛性が高いことに起因する。従い、硬質ゴムを含み、カーカス2が折り返す等して、通常、剛性が高いビード部11においても、前記と同様、屈曲に際して大きなエネルギーロスが生じる。上記した[4]の規定では、上部カーカス2uをたわませて剛性を低下させるとともに、下部カーカス2dを立ち上がらせて剛性を向上させることにより、優先的に上部カーカス2uを屈曲させ、ビード部11に位置する下部カーカス2dの屈曲の抑制を図る。これにより、タイヤの負荷転動によるエネルギーロスを抑え、転がり抵抗を低減させることができる。
 以上の知見を得るに到った実験結果について、以下に詳細に説明する。
 即ち、サイズ195/65 R15のラジアルタイヤを用いて、上記した比CSR/CSRを種々に変化させた条件の下、転がり抵抗の試験を行った。尚、比BD/BWは0.026、比SWh/SHは0.654および比CRh/SWhは1.20と同じにした。その他のタイヤ構成条件や評価手法は、比BD/BWの実験と同様である。
 発明例タイヤ1~3は、上記比較例タイヤ9につき、比CSR/CSRを種々に変化させたタイヤである。表1を基にこれらのタイヤの評価結果を比較したものを図7に示す。図7によれば、比CSR/CSRが1.0以上となる前後において、即ち、比較例タイヤ9ないし発明例タイヤ1にかけて、転がり抵抗の大幅な低下が確認できる。また、ここからさらに比CSR/CSRを増大させると、さらに、転がり抵抗を減少させることができる。尚、比CSR/CSRの値が大きいほど転がり抵抗を減少させることができるが、これには製造上の限界がある。そのため、前記制限を鑑みた上での比CSR/CSRの最適値は、1.23である。
 これは、タイヤショルダー部9の曲げ剛性を小さくして荷重時に優先的に屈曲するようにしたことにより、ビード部11およびトレッド部5の荷重による変形が緩和されたためである。以上より、比CSR/CSRが1.0以上の範囲において、転がり抵抗につき、従来タイヤに対する有意差が認められた。また、比CSR/CSRの値を大きくするほど、転がり抵抗が減少していくことが確認された。
 以上に、本発明のタイヤが満たす各規定[1]~[4]について説明した。ここで、本発明のタイヤにおいては、図1に示すように、前記カーカス2は、ビードコア1にてタイヤの幅方向内側から外側へ巻き返して延びる折り返し部2aを有し、該折り返し部2aの端末とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離CSEhが、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWh以下であることが好適であり、より好ましくは0.5倍以下である。
 タイヤがカーカスの折り返し部2aを有する場合、ビード部11はカーカス2を2重に備えるため、屈曲によるエネルギーロスが大きくなる。このビード部11におけるエネルギーロスは、転がり抵抗の要因のひとつである。そこで、この折り返し部2aを短くすることにより、タイヤサイド部において、エネルギーロスの生じにくい屈曲範囲を拡大することが可能である。また、折り返し端部の高さCSEhを、SWhの半分以下とするとさらに好適である。即ち、通常、タイヤの荷重時には、このSWhの半分付近の部分において大きく屈曲するが、CSEhをSWh/2以下とすることによって、該部分の屈曲によるエネルギーロスを軽減することができるので、効果的である。
 以上の知見を得るに到った実験結果について、以下に詳細に説明する。
 即ち、サイズ195/65 R15のラジアルタイヤを用いて、上記した比CSEh/SWhを種々に変化させた条件の下、転がり抵抗の試験を行った。尚、比BD/BWは0.026、比SWh/SHは0.654、比CRh/SWhは1.20および比CSR/CSRは1.23と同じにした。その他のタイヤ構成条件や評価手法は、比BD/BWの実験と同様である。
 発明例タイヤ4~8は、上記発明例タイヤ3につき、比CSEh/SWhを種々に変化させたタイヤである。表1を基に上記発明例タイヤ4~8の評価結果を比較したものを図8に示す。図8によれば、比CSEh/SWhを1.0から減少させていくことに伴い、転がり抵抗も漸減していくことがわかる。また、比CSEh/SWhが0.5以下となる付近において、特に大幅な転がり抵抗の減少を確認することができる。
 これは、屈曲時のエネルギーロスの要因となる折り返し部2aを短くしたことにより、タイヤサイド部において、エネルギーロスの生じにくい屈曲範囲を、拡大することができたためである。比CSEh/SWhが0.5以下となる付近で特に顕著な効果が見られたのは、従来のタイヤでは、荷重時に、タイヤ最大幅位置の高さSWhの中間部分において特に大きく屈曲していたためである。これに対し、カーカスの折り返し部2aを短くし、この中間部分に至らないようにしたことにより、タイヤサイド部におけるエネルギーロスを低減させることができ、転がり抵抗が低減したと考えられる。
 以上の結果より、本発明において、比CSEh/SWhは、1.0以下であることが好ましく、さらに好ましくは、比CSEh/SWhは0.5以下である。
 また、本発明においては、前記カーカス2の曲率が最大となる部分の曲率半径Rは、25mm以下であることが好ましい。これは、カーカス2の曲率が最大となる部分、即ち、トレッド部5付近のカーカス2の曲率を大きくすることにより、その部分のタイヤサイド部の曲げ剛性を低下させることができ、トレッド部5の屈曲を緩和することができるためである。
 以上の知見を得るに到った実験結果について、以下に詳細に説明する。
 即ち、サイズ195/65 R15のラジアルタイヤを用いて、上記した曲率半径Rを種々に変化させた条件の下、転がり抵抗の試験を行った。尚、比BD/BWは0.026、比SWh/SHは0.654、比CRh/SWhは1.20、比CSR/CSRは1.23および比CSEh/SWhは0.25と同じにした。その他のタイヤ構成条件や評価手法は、比BD/BWの実験と同様である。
 発明例タイヤ9~12は、上記発明例タイヤ8につき、前記カーカス2の曲率が最大となる部分の曲率半径Rを種々に変化させたタイヤである。表1を基にこれらのタイヤの評価結果を比較したものを図9に示す。図9によれば、前記曲率半径を40より小さくしていくことに伴い、タイヤの転がり抵抗が漸減していくことがわかる。特に、前記曲率半径を30mm以下、さらには、25mm以下としたときに大幅な改良効果が確認できる。
 即ち、上記の性能評価試験においては、タイヤのトレッド部5付近のカーカス2の曲率を大きくしたことにより、転がり抵抗を低減できたと言える。尚、前記曲率を大きくすれば、それだけ転がり抵抗の低減効果を得ることができることは、図示例からも明らかであるが、製造上の問題により、前記曲率半径Rを20mm未満とすることは不可能であった。そのため、製造上の観点も踏まえた上での前記曲率半径Rの適切な範囲は、25mm以下である。以上の結果より、本発明においては、前記曲率半径Rを25mm以下にすることが好ましい。
 サイズ195/65 R15のラジアルタイヤを、表1に示す仕様の下に作成し、転がり抵抗の試験を行った。尚、タイヤの基本構造は同じであり、カーカスプライが1枚、傾斜ベルト層はタイヤの赤道面に対して24°の傾斜角度で配置したコードを層間で相互に交差させた2層からなり、その上にナイロンの周方向補強層を備える。
 その評価結果を表1に示すように、本発明に従う発明例は、転がり抵抗において、従来例に対する有意差が認められた。
Figure JPOXMLDOC01-appb-T000001
 本発明に従うタイヤは自動車産業界において広く使用することができ、これにより、自動車の環境負荷を大幅に削減することができる。また、今日の地球環境問題に対して自動車産業が荷担する影響の多大さを鑑みれば、本発明が環境問題の解決に大きく寄与すると言える。
SW   タイヤの最大幅
CSW  カーカスの最大幅
BW   ベルト幅
BD   ベルトのタイヤ幅方向端部および中心部の径差
SH   タイヤの断面高さ
CSH  カーカスの高さ
R    カーカスの曲率が最大となる部分の曲率半径
CRh  カーカスの曲率が最大となる部分の高さ
CSEh 折り返し部端の高さ
SWh  タイヤの最大幅測定位置の高さ
   交点1(CSH/2)
   交点2(ベルト端の下)
   交点3(ビードコアの上)
   交点4(タイヤの最大幅測定点の高さ)
CSR 上部カーカスの経路長
CSR 下部カーカスの経路長
0    タイヤの赤道面
1    ビードコア
2    カーカス
2s   ショルダー部カーカス
2u   上部カーカス
2d   下部カーカス
2a   折り返し部
3a   傾斜ベルト層(最も幅が狭い)
3b   傾斜ベルト層
4    周方向ベルト層
5    トレッド部
6    空気入りタイヤ
7    標準リム
8    ビードフィット点
9    ショルダー部
10   ビードトゥ
11   ビード部
α    ビード背面角

Claims (4)

  1.  一対のビード部間にトロイダル状に跨るカーカスを骨格として、該カーカスのクラウン部の径方向外側に、少なくとも1層の傾斜ベルト層を有するベルトおよびトレッドを順に配置した空気入りタイヤであって、
     該タイヤを適用リムに装着した状態のタイヤ幅方向断面において、
     前記ベルトが、タイヤ幅方向にフラット形状であり、
     タイヤの断面高さSHに対する、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWhの比SWh/SHが0.5以上であり、
     前記タイヤ幅方向断面における前記カーカスの曲率は、最も幅の狭い傾斜ベルト層の幅方向端部からタイヤの回転軸と直角に引いた線分とカーカスとの交点Iから、タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分と前記カーカスとの交点Iまでの経路上で最大となり、
     カーカスの径方向最外側端とビードコアのタイヤ径方向最外側端との間のタイヤ径方向距離CSHを2等分してタイヤの回転軸と平行に延びる線と前記カーカスとの交点Iから、前記交点Iまでの、カーカスの経路長CSRは、前記交点Iから、両ビードコアのタイヤ径方向最外側端を結ぶ線分とカーカスとの交点Iまでの、カーカスの経路長CSRよりも長いこと、
    を特徴とした空気入りタイヤ。
  2.  前記カーカスは、ビードコアにてタイヤの幅方向内側から外側へと巻き返して延びる折り返し部を有し、該折り返し部の端末とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離CSEhが、前記タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWh以下であることを特徴とした、請求項1に記載の空気入りタイヤ。
  3.  前記折り返し部の端末とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離CSEhが、前記タイヤの最大幅位置にタイヤの回転軸と平行に引いた線分とビードトゥにタイヤの回転軸と平行に引いた線分との最短距離SWhの0.5倍以下であることを特徴とした、請求項2に記載の空気入りタイヤ。
  4.  前記カーカスの曲率が最大となる部分の曲率半径は、25mm以下であることを特徴とした、請求項1~3のいずれかに記載の空気入りタイヤ。
PCT/JP2010/002720 2009-04-16 2010-04-14 空気入りタイヤ WO2010119681A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10764268.8A EP2420395B1 (en) 2009-04-16 2010-04-14 Pneumatic tire
US13/259,891 US8752601B2 (en) 2009-04-16 2010-04-14 Pneumatic tire with specified carcass curvature
CN201080017125.5A CN102395474B (zh) 2009-04-16 2010-04-14 充气轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009100283A JP5366629B2 (ja) 2009-04-16 2009-04-16 空気入りタイヤ
JP2009-100283 2009-04-16

Publications (1)

Publication Number Publication Date
WO2010119681A1 true WO2010119681A1 (ja) 2010-10-21

Family

ID=42982354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002720 WO2010119681A1 (ja) 2009-04-16 2010-04-14 空気入りタイヤ

Country Status (5)

Country Link
US (1) US8752601B2 (ja)
EP (1) EP2420395B1 (ja)
JP (1) JP5366629B2 (ja)
CN (1) CN102395474B (ja)
WO (1) WO2010119681A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708381A4 (en) * 2011-04-26 2014-12-03 Bridgestone Corp TIRE
US9987883B2 (en) 2012-12-28 2018-06-05 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11325429B2 (en) 2015-07-22 2022-05-10 The Yokohama Rubber Co., Ltd. Pneumatic tire

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101741054B1 (ko) * 2012-07-13 2017-06-15 요코하마 고무 가부시키가이샤 공기입 타이어
CN105392641B (zh) * 2013-07-17 2017-06-30 株式会社普利司通 轮胎
JP6434235B2 (ja) * 2014-07-03 2018-12-05 株式会社ブリヂストン タイヤ
WO2016120872A1 (en) * 2015-01-29 2016-08-04 Alliance Tire Co. Ltd A laterally stable pneumatic tire
JP7031348B2 (ja) * 2018-02-14 2022-03-08 横浜ゴム株式会社 空気入りタイヤ
EP3812180B1 (en) * 2018-06-25 2023-12-13 Bridgestone Corporation Run-flat tire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211104A (ja) * 1985-03-15 1986-09-19 Bridgestone Corp 転り抵抗の低い荷重用空気入りタイヤ
JPS63269702A (ja) * 1987-04-27 1988-11-08 Sumitomo Rubber Ind Ltd ラジアルタイヤ
JPH06156011A (ja) * 1992-11-18 1994-06-03 Bridgestone Corp 空気入りラジアルタイヤ
JP2002514539A (ja) * 1998-05-11 2002-05-21 コンパニー ゼネラール デ エタブリッスマン ミシュラン−ミシュラン エ コムパニー 三角形クラウン補強体を備えたタイヤ
JP2004098838A (ja) * 2002-09-09 2004-04-02 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2006327502A (ja) 2005-05-27 2006-12-07 Bridgestone Corp 空気入りタイヤ
WO2009078425A1 (ja) * 2007-12-17 2009-06-25 Bridgestone Corporation 空気入りタイヤ
JP2009279948A (ja) * 2008-05-19 2009-12-03 Bridgestone Corp 空気入りタイヤ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5464303A (en) 1977-10-31 1979-05-24 Bridgestone Corp Radial tire
US4630663A (en) * 1984-11-27 1986-12-23 The Firestone Tire & Rubber Company Tire construction utilizing low-twist body ply yarn with low turn-up ends
US4762158A (en) 1985-03-15 1988-08-09 Bridgestone Corporation Reduced rolling resistance pneumatic radial tire
JPH02241807A (ja) * 1989-03-15 1990-09-26 Bridgestone Corp 乗用車用空気入りラジアルタイヤ
DE19932027A1 (de) * 1999-07-09 2001-01-18 Continental Ag Fahrzeugluftreifen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211104A (ja) * 1985-03-15 1986-09-19 Bridgestone Corp 転り抵抗の低い荷重用空気入りタイヤ
JPS63269702A (ja) * 1987-04-27 1988-11-08 Sumitomo Rubber Ind Ltd ラジアルタイヤ
JPH06156011A (ja) * 1992-11-18 1994-06-03 Bridgestone Corp 空気入りラジアルタイヤ
JP2002514539A (ja) * 1998-05-11 2002-05-21 コンパニー ゼネラール デ エタブリッスマン ミシュラン−ミシュラン エ コムパニー 三角形クラウン補強体を備えたタイヤ
JP2004098838A (ja) * 2002-09-09 2004-04-02 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2006327502A (ja) 2005-05-27 2006-12-07 Bridgestone Corp 空気入りタイヤ
WO2009078425A1 (ja) * 2007-12-17 2009-06-25 Bridgestone Corporation 空気入りタイヤ
JP2009279948A (ja) * 2008-05-19 2009-12-03 Bridgestone Corp 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2420395A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2708381A4 (en) * 2011-04-26 2014-12-03 Bridgestone Corp TIRE
US9987883B2 (en) 2012-12-28 2018-06-05 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11325429B2 (en) 2015-07-22 2022-05-10 The Yokohama Rubber Co., Ltd. Pneumatic tire
US11813897B2 (en) 2015-07-22 2023-11-14 The Yokohama Rubber Co., Ltd. Pneumatic tire

Also Published As

Publication number Publication date
EP2420395B1 (en) 2014-11-12
US8752601B2 (en) 2014-06-17
CN102395474B (zh) 2014-10-22
US20120018071A1 (en) 2012-01-26
JP5366629B2 (ja) 2013-12-11
JP2010247705A (ja) 2010-11-04
EP2420395A1 (en) 2012-02-22
EP2420395A4 (en) 2013-07-17
CN102395474A (zh) 2012-03-28

Similar Documents

Publication Publication Date Title
JP5366629B2 (ja) 空気入りタイヤ
JP6549199B2 (ja) 乗用車用空気入りラジアルタイヤ、該タイヤの使用方法及び、該タイヤを備えるタイヤ・リム組立体
JP6050568B2 (ja) 空気入りタイヤ
JP5735743B2 (ja) 空気入りタイヤ
CN104936797B (zh) 用于重负载的轮胎
JP5030978B2 (ja) 空気入りタイヤ
JP4973810B1 (ja) 空気入りタイヤ
WO2010122804A1 (ja) 空気入りタイヤ
WO2015008752A1 (ja) タイヤ
JP2009286225A (ja) 重荷重用空気入りタイヤ
WO2012147356A1 (ja) 空気入りタイヤ
JPWO2006098112A1 (ja) 自動二輪車用空気入りラジアルタイヤ
JP6848356B2 (ja) 空気入りタイヤ
WO2015159468A1 (ja) ランフラットタイヤ
JP2009262808A (ja) 空気入りタイヤ
JP2009279948A (ja) 空気入りタイヤ
JP4436146B2 (ja) 乗用車用タイヤ
JP5358333B2 (ja) 空気入りタイヤ
WO2014199756A1 (ja) ランフラットタイヤ
JP2008132818A (ja) 空気入りタイヤおよび空気入りタイヤの良否の判定方法
JP5069510B2 (ja) 重荷重用タイヤ
JP5436031B2 (ja) 空気入りタイヤ
JP2013079018A (ja) 空気入りタイヤ
JP6455095B2 (ja) 空気入りタイヤ
JP7494492B2 (ja) 重荷重用タイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017125.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13259891

Country of ref document: US

Ref document number: 2010764268

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7572/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE