WO2010119645A1 - 液封入式防振装置 - Google Patents

液封入式防振装置 Download PDF

Info

Publication number
WO2010119645A1
WO2010119645A1 PCT/JP2010/002552 JP2010002552W WO2010119645A1 WO 2010119645 A1 WO2010119645 A1 WO 2010119645A1 JP 2010002552 W JP2010002552 W JP 2010002552W WO 2010119645 A1 WO2010119645 A1 WO 2010119645A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic wall
liquid
elastic
fixture
wall
Prior art date
Application number
PCT/JP2010/002552
Other languages
English (en)
French (fr)
Inventor
小笠原大
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to EP10764232.4A priority Critical patent/EP2420699B1/en
Priority to US13/257,786 priority patent/US20120018936A1/en
Priority to JP2011509199A priority patent/JP5284463B2/ja
Priority to CN2010800164232A priority patent/CN102395809B/zh
Publication of WO2010119645A1 publication Critical patent/WO2010119645A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/10Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like
    • F16F13/105Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper the wall being at least in part formed by a flexible membrane or the like characterised by features of partitions between two working chambers
    • F16F13/106Design of constituent elastomeric parts, e.g. decoupling valve elements, or of immediate abutments therefor, e.g. cages

Definitions

  • the present invention relates to a liquid-filled vibration isolator.
  • the liquid-filled vibration isolator generally includes a first mounting tool, a cylindrical second mounting tool, a vibration-proof base made of a rubber-like elastic material that connects the first mounting tool and the second mounting tool, and the first mounting tool.
  • a diaphragm made of a rubber film which is attached to a fixture and forms a liquid sealing chamber between the vibration isolating substrate and the liquid sealing chamber as a first liquid chamber on the vibration isolating substrate side and a second liquid chamber on the diaphragm side.
  • a partition body for partitioning and an orifice channel for communicating the first liquid chamber and the second liquid chamber are provided.
  • Patent Document 1 proposes that a partition body that partitions the first liquid chamber and the second liquid chamber is configured as follows. That is, the partition body is connected to each other via an annular orifice forming member, an elastic wall made of a rubber-like elastic material that closes between the inner peripheral surfaces thereof, and a connecting portion that penetrates the elastic wall, and the elastic wall serves as an axial core. A pair of partition plates sandwiched in the direction, and the displacement amount of the pair of partition plates in the axial direction is restricted by the elastic wall.
  • the present invention has been made in view of the above points, and is a liquid-filled type anti-vibration that can further reduce the dynamic spring during fine amplitude vibration while ensuring high damping performance during large amplitude vibration.
  • An object is to provide an apparatus.
  • a liquid-filled vibration isolator comprises a first mounting tool, a cylindrical second mounting tool, and a vibration-proof base made of a rubber-like elastic material that connects the first mounting tool and the second mounting tool.
  • a diaphragm made of a rubber-like elastic film that is attached to the second fixture and forms a liquid sealing chamber between the vibration isolating substrate and the first liquid chamber on the side of the vibration isolating substrate.
  • a liquid-filled vibration isolator comprising: a partition body that partitions the second liquid chamber on the diaphragm side; and an orifice channel that communicates the first liquid chamber and the second liquid chamber, wherein the partition body includes: An annular orifice forming member that is provided inside the peripheral wall portion of the second fixture and forms the orifice channel, and an elastic wall made of a rubber-like elastic material that plugs between the inner peripheral surfaces of the orifice forming member; Each of the elastic walls is connected to each other through a connecting portion that passes through the central portion in the radial direction. Is connected, a pair of partition plates which sandwich the elastic wall in the axial direction of the elastic wall, in that it consists of those having a basic configuration.
  • the through-hole penetrated to an axial direction at least one said partition plate is provided in the radial direction outer side of the said connection part.
  • a recess is provided on at least one wall surface of the elastic wall, and the recess is formed on the radially outer side of the recess with the first liquid chamber or the second liquid.
  • a radially extending groove for connection to the chamber is provided on the plate surface of the partition plate or the wall surface of the elastic wall, and the gap between the plate surface of the partition plate and the wall surface of the elastic wall formed by the groove is provided.
  • the inside of the recess is connected to the first liquid chamber or the second liquid chamber so that the liquid can flow.
  • the liquid flow effect by the orifice flow path is controlled by the elastic wall with respect to the large amplitude vibration in the low frequency range by restricting the amount of displacement of the pair of partition plates. Therefore, high damping performance can be ensured.
  • the vibration can be reduced by reducing the dynamic spring constant by reciprocating the pair of partition plates.
  • the gap formed by the groove provided in the partition plate or the elastic wall can act as a high-frequency orifice channel during the minute amplitude vibration. Therefore, similarly to the first aspect, liquid resonance can be generated in a specific frequency band, and the dynamic spring constant of the frequency band can be reduced. Further, in this aspect, at the time of large amplitude vibration, the partition plate is displaced in the axial direction so that the gap can be closed by the partition plate, which is advantageous for ensuring high damping performance by the original orifice channel.
  • FIG. 1 is a longitudinal sectional view of a liquid-filled vibration isolator according to a first embodiment.
  • Longitudinal sectional view of the partition of the vibration isolator cross section corresponding to line II-II in FIG. 7
  • Exploded longitudinal sectional view of the partition section corresponding to line III-III in FIG. 8
  • Longitudinal sectional view of a pair of partition plates constituting the partition body in a connected state The principal part longitudinal cross-sectional view of the same partition body which expands and shows the structure around the through-hole of a partition plate.
  • the principal part longitudinal cross-sectional view of the same partition body which expands and shows the structure around the highly rigid part of an elastic wall. Bottom view of the partition Plan view of partition plate constituting the partition FIG.
  • FIG. 12 is a longitudinal sectional view of a partition body according to the second embodiment (a section corresponding to the line IX-IX in FIG. 12). Exploded longitudinal sectional view of the partition body of the second embodiment (cross section corresponding to line XX in FIG. 13) The principal part expansion longitudinal cross-sectional view of the partition body of 2nd Embodiment The bottom view of the partition body of 2nd Embodiment The top view of the partition plate which comprises the partition body of 2nd Embodiment.
  • SYMBOLS 10 Liquid enclosure type vibration isolator, 12 ... 1st attachment tool, 14 ... 2nd attachment tool, 14A ... Peripheral wall part 16 ... Anti-vibration base
  • substrate 36 ... Liquid enclosure chamber, 36A ... 1st liquid chamber, 36B ... 2nd Liquid chamber 38 ... Diaphragm, 40 ... Partition body, 42 ... Orifice flow path 44 ... Orifice forming member, 44A ... Inner peripheral surface of orifice forming member, 46 ... Elastic wall 48, 50 ... Partition plate, 56 ... Connecting portion 60 ... Nipping 64, first clamping part, 66 ... second clamping part, 68 ...
  • high compression clamping part 74 concave part, 76 ... low rigidity part, 78 ... high rigidity part, 80 ... through hole 100 ... partition body, 102 ... groove 104 ... Gap 110 ... Groove, 112 ... Gap C ... Circumferential direction, K ... Radial direction, Ko ... Radially outward, Ki ... Radially inward, X ... Shaft direction
  • FIG. 1 is a longitudinal sectional view of a liquid-filled vibration isolator 10 according to the first embodiment.
  • the vibration isolator 10 includes an upper first attachment 12 attached to an automobile engine, a lower cylindrical second attachment 14 attached to a vehicle body frame, and a rubber-like elastic material for connecting them.
  • An engine mount including a vibration-proof substrate 16.
  • the first fixture 12 is a boss fitting arranged above the shaft core portion of the second fixture 14 and is outward Ko in the radial direction (that is, the direction perpendicular to the axis perpendicular to the axis direction X) K.
  • the stopper part 18 which protrudes in the shape of a flange toward is provided.
  • a mounting bolt 20 protrudes upward at the upper end and is configured to be attached to the engine side via the bolt 20.
  • the second fixture 14 includes a cylindrical tubular fitting 22 and a cup-shaped bottom fitting 24 on which the vibration-proof base 16 is vulcanized, and a downward mounting bolt 26 projects from the center of the bottom fitting 24. It is configured to be attached to the vehicle body side via the bolt 26.
  • the lower end of the cylindrical fitting 22 is fixed by caulking to the upper end opening of the bottom fitting 24 by a caulking portion 28.
  • Reference numeral 30 denotes a stopper fitting fixed by caulking to the upper end portion of the cylindrical fitting 22, and exerts a stopper action with the stopper portion 18 of the first fixture 12.
  • Reference numeral 32 denotes a stopper rubber that covers the upper surface of the stopper fitting 30.
  • the antivibration base 16 is formed in a truncated cone shape, and its upper end is vulcanized and bonded to the first fixture 12 and its lower end is vulcanized and bonded to the upper end opening of the cylindrical fitting 22.
  • a rubber film-like seal wall portion 34 covering the inner peripheral surface of the cylindrical metal fitting 22 is connected to the lower end portion of the vibration isolation base 16.
  • a diaphragm 38 made of a flexible rubber film is attached to the second fixture 14 so as to face the lower surface of the vibration-isolating base 16 in the axial direction X and form a liquid sealing chamber 36 between the lower surface.
  • the liquid is enclosed in the liquid enclosure chamber 36.
  • the liquid enclosure chamber 36 is partitioned by a partition 40 into a first liquid chamber 36A on the vibration isolation base 16 side and a second liquid chamber 36B on the diaphragm 38 side.
  • the first liquid chamber 36A and the second liquid chamber 36B. Are communicated with each other via an orifice channel 42 as a throttle channel.
  • the first liquid chamber 36A is a main liquid chamber in which the vibration isolation base 16 forms part of the chamber wall
  • the second liquid chamber 36B is a sub-liquid chamber in which the diaphragm 38 forms part of the chamber wall.
  • the partition 40 includes an annular orifice forming member 44 provided inside a cylindrical peripheral wall portion 14 ⁇ / b> A of the second fixture 14, and an inner peripheral surface of the orifice forming member 44.
  • 44A includes an elastic wall 46 made of a rubber elastic body in which the outer peripheral portion 46A is vulcanized and bonded to the inner peripheral surface 44A, and a pair of upper and lower partition plates 48 and 50 that sandwich the elastic wall 46 in the axial direction X thereof.
  • the orifice forming member 44 is a member made of a rigid body that forms an orifice passage 42 extending in the circumferential direction between the orifice mounting member 44 and the peripheral wall portion 14A of the second fixture 14, and the seal wall portion 34 on the inner periphery of the peripheral wall portion 14A. Is fitted. More specifically, the orifice forming member 44 includes a cylindrical portion 44B disposed coaxially with the peripheral wall portion 14A of the second fixture 14, and outwardly in a U-shaped cross section on the outer peripheral side of the cylindrical portion 44B. An open groove 44C is provided. The inner peripheral surface of the cylindrical portion 44B is the inner peripheral surface 44A. In addition, the orifice channel 42 is formed between the groove portion 44 ⁇ / b> C and the peripheral wall portion 14 ⁇ / b> A of the second fixture 14.
  • the orifice forming member 44 is sandwiched and fixed by a reinforcing metal fitting 38A embedded in the outer peripheral edge of the diaphragm 38 and a receiving step 16A formed on the outer periphery of the lower end of the vibration isolating base 16.
  • a reinforcing metal fitting 38A provided on the outer peripheral edge portion of the diaphragm 38 is fixed by caulking portions 28 of the second mounting tool 14, and via a rubber portion of the diaphragm 38 covering the inner peripheral edge portion of the reinforcing metal fitting 38A.
  • the lower end portion of the orifice forming member 44 is supported by the reinforcing metal fitting 38A.
  • the elastic wall 46 has a circular shape in plan view, and its outer peripheral portion 46A is vulcanized and bonded to the inner peripheral surface 44A of the cylindrical portion 44B of the orifice forming member 44 as shown in FIG.
  • the elastic wall 46 includes a circular connecting hole 52 penetrating in the axial direction X at the radial center, and annular ridges 54 protruding in the axial direction X on both front and back sides around the connecting hole 52. Is provided.
  • the pair of partition plates 48 and 50 are connected to each other via a cylindrical connecting portion 56 that penetrates the connecting hole 52, and are integrally formed of a thermoplastic resin.
  • One (upper) partition plate 48 of them constitutes a part of the chamber wall of the first liquid chamber 36A, that is, is arranged facing the first liquid chamber 36A (see FIG. 1).
  • the other (lower) partition plate 50 constitutes a part of the chamber wall of the second liquid chamber 36B, that is, is arranged facing the second liquid chamber 36B.
  • the displacement amount in the axial direction X of the pair of partition plates 48 and 50 is restricted by the elastic wall 46.
  • the pair of partition plates 48 and 50 are formed to have an outer shape smaller than that of the elastic wall 46 in plan view. That is, the outer peripheral edges 48A and 50A of the partition plates 48 and 50 are terminated on the radially inner side Ki from the inner peripheral surface 44A of the orifice forming member 44 where the outer peripheral edge of the elastic wall 46 is located (see FIG. 2). ).
  • the connecting portion 56 includes a ring-shaped first flat surface portion 56 ⁇ / b> A that is provided in the lower partition plate 50 and perpendicular to the axial direction X, and the first flat surface portion 56 ⁇ / b> A extends in the axial direction X.
  • a vertical ring-shaped second flat surface portion 56D As shown in FIG. 4, the fitting projection 56B and the fitting recess 56C are ultrasonically welded in a state where the first plane portion 56A and the second plane portion 56D are positioned in the axial direction X by contact with each other. Is fixed by fitting.
  • the pair of partition plates 48 and 50 are each provided with an annular groove 58 around which the upper and lower ridges 54 of the elastic wall 46 are fitted around the central connecting portion 56 (see FIGS. 3 and 8).
  • a sandwiching portion 60 that sandwiches the elastic wall 46 in the axial direction X is annularly provided over the entire circumference.
  • a clearance formation that forms a clearance 61 (see FIG. 6) that gradually increases toward the radially outward Ko side between the outer peripheral surface of the sandwiching portion 60, that is, the radially outward Ko side, with the opposing wall surface of the elastic wall 46.
  • a portion 62 is provided, and the clearance forming portion 62 constitutes the outer peripheral edge of the partition plates 48 and 50.
  • the sandwiching portion 60 has a radially intermediate Ko side, that is, an outer peripheral side as a first sandwiching portion 64 with a radial intermediate position as a boundary, and a radially inward Ki side, That is, when the inner peripheral side is the second clamping portion 66, the first clamping portion 64 is provided with a high compression clamping portion 68 that clamps the elastic wall 46 at a higher compression rate in the axial direction X than the second clamping portion 66. It has been. That is, the sandwiching portion 60 includes a high compression sandwiching portion 68 in which the compression rate in the axial direction X of the elastic wall 46 is set to be the highest in the first sandwiching portion 64 on the outer peripheral side. Is set to be higher than the compression rate on the radially inner Ki side and the compression rate on the radially outer Ko side.
  • the compressibility in the axial direction X of the elastic wall 46 is obtained by dividing the amount of compression in the axial direction X of the elastic wall 46 by the pair of partition plates 48 and 50 by the original thickness of the elastic wall 46.
  • the distance between the pair of partition plates 48 and 50 at the target portion is U (see FIG. 4), and the original thickness of the elastic wall 46 at that portion is T (see FIG. 3). -U) / T.
  • the compression rate in the high compression sandwiching portion 68 is such that the high compression sandwiching portion 68 does not separate from the wall surface of the elastic wall 46 even at the maximum expected displacement of the partition plates 48 and 50 in the axial direction X. That is, it is set high so that compression remains.
  • the compression ratio in the axial direction X of the elastic wall 46 is set to be substantially constant in the second sandwiching portion 66 on the inner peripheral side.
  • the compression rate gradually increases toward the radially outer Ko side, and the compression rate becomes maximum at the high compression clamping portion 68, and gradually increases from the radially outer Ko side. It is set so that the compression rate decreases to the clearance forming portion 62 that forms the clearance 61.
  • the pair of partition plates 48 and 50 and the elastic wall 46 have cross-sectional shapes formed as follows.
  • the partition plates 48 and 50 have a planar shape perpendicular to the axial direction X so that the interval U is constant in the radial direction K from the second clamping part 66 to the high compression clamping part 68 of the first clamping part 64.
  • the outer side of the radial direction Ko is formed in an inclined surface shape that is gradually located on the outer side Xo in the axial direction (see FIGS. 4 and 6).
  • the elastic wall 46 has a wall surface 70 facing the second sandwiching portion 66 formed in a planar shape perpendicular to the axial direction X, and the outer peripheral side portion thereof, that is, the first sandwiching portion 64 and the first sandwiching portion 64.
  • the wall surface 72 that faces the partition plate portion (that is, the clearance forming portion 62) on the radially outer side Ko is formed in an inclined surface shape that is located on the axially outer side Xo toward the radially outer side Ko. (See FIGS. 3 and 6). As a result, the outer peripheral portion 46A of the elastic wall 46 is formed thick.
  • the inclined surface on the outer peripheral side of the partition plates 48 and 50 with respect to the high compression sandwiching portion 68 and the inclined surface of the wall surface 72 of the elastic wall 46 are both formed in a curved surface shape, and the former is inclined. Is set larger. As a result, the clearance 61 is gradually formed wider toward the radially outer side Ko.
  • the elastic wall 46 is provided with a concave portion 74 that is recessed in the axial direction X on the wall surface of the elastic wall portion sandwiched by the high compression sandwiching portion 68.
  • the recess 74 is provided on the wall surface (lower wall surface) facing the second liquid chamber 36B, and a plurality (six in this case) are provided in the circumferential direction C as shown in FIG. It is provided at intervals.
  • the thin-walled low-rigidity portion 76 is intermittently provided in the circumferential direction C on the elastic wall portion sandwiched by the high compression clamping portion 68.
  • the recess 74 is provided over substantially the entire portion facing the first sandwiching portion 64 in the radial direction K. Moreover, as shown in FIG. 7, the recessed part 74 is formed in circular arc shape, and it connects between each recessed part 74 so that the inner peripheral side elastic wall part and the outer peripheral side elastic wall part may be connected gently.
  • the inclined surface-like high-rigidity portions 78 that are gradually thicker toward the radially outer side Ko are radially formed. The high rigidity portion 78 makes contact between the partition plate 50 and the elastic wall 46 at the high compression holding portion 68.
  • the pair of partition plates 48, 50 has a through hole 80 penetrating in the axial direction X into a sandwiching portion 60 that sandwiches the elastic wall 46 on the radially outer side Ko of the connecting portion 56.
  • the through-holes 80 have a circular shape in plan view, and a plurality (here, six) are provided at equal intervals in the circumferential direction C.
  • the through hole 80 is provided at a position overlapping the concave portion 74 of the elastic wall 46 in the axial direction X. That is, in this example, the through hole 80 is provided so as to fall within the range of the low-rigidity portion 76 formed by the recess 74 in the plan view shown in FIG. For each of the plurality of recesses 74, one through hole 80 is provided at a position overlapping in the axial direction X. Further, in this example, the through holes 80 are provided in the upper and lower partition plates 48 and 50 so as to overlap in the axial direction X, respectively.
  • the plurality of through holes 80 provided in the upper partition plate 48 and the plurality of through holes 80 provided in the lower partition plate 50 are provided with the same shape, size and position. It has been. As described above, in this example, as shown in FIG. 5, the through hole 80 provided in the lower partition plate 50 is provided so as to open to the recess 74 and is provided in the upper partition body 48. The through hole 80 is provided so as to contact the surface of the low rigidity portion 76 on the back side of the recess 74.
  • Reference numeral 82 denotes a raised portion provided on the outer peripheral portion 46A of the elastic wall 46 (see FIG. 6), and on the first liquid chamber 36A side of the elastic wall 46, the inclined surface of the wall surface 72 is referred to. It is formed so as to protrude to the axial direction outward Xo side, that is, the first liquid chamber 36A side.
  • the raised portion 82 protrudes from the upper surface of the partition plate 48 on the first liquid chamber 36A side so as to protrude outward in the axial direction Xo.
  • Reference numeral 84 denotes a convex portion provided on the inner peripheral surface 44A of the orifice forming member 44, and is formed to protrude radially inward Ki at the base portion of the elastic wall 46 on the second liquid chamber 36B side.
  • the convex portion 84 has a side surface 84 ⁇ / b> A on the second liquid chamber 36 ⁇ / b> B side formed in a planar shape perpendicular to the axial direction X of the elastic wall 46, and the side surface 84 ⁇ / b> A is a pressing surface of the mold when the elastic wall 46 is molded. (Seal surface for deburring).
  • the rigidity of the base portion of the elastic wall 46 with respect to the orifice forming member 44 is increased, and the displacement regulating effect of the pair of partition plates 48 and 50 at the time of low frequency and large amplitude is achieved. Has been enhanced.
  • the pair of partition plates 48 and 50 are reciprocated together to form the first.
  • the vibration can be reduced by absorbing the liquid pressure in the liquid chamber 36A. Therefore, it is possible to effectively reduce the dynamic spring constant with respect to the high frequency fine amplitude vibration.
  • the displacement amount of the pair of partition plates 48 and 50 is regulated by the elastic wall 46, so that the first liquid chamber 36A and the second liquid are passed through the orifice channel 42.
  • the liquid can be circulated between the chambers 36B, and the vibration can be attenuated by the liquid flow effect.
  • the through holes provided in the partition plates 48 and 50 are generated when the partition plates 48 and 50 vibrate in the axial direction X when the fine amplitude vibration is input in the high frequency range.
  • a liquid flow in the axial direction X is generated in the shaft 80, whereby the through-hole 80 can be used as a high-frequency orifice that operates in a higher frequency region than the orifice channel 42. That is, the through-hole 80 can be caused to act as a high-frequency orifice when a fine amplitude is input in which the amount of movement of the partition plates 48 and 50 is not restricted by the elastic wall 46. Therefore, by generating liquid resonance in a specific frequency band, the dynamic spring constant of the frequency band can be reduced.
  • the vibration and noise to be transmitted can be reduced by matching the resonance of the orifice by the through hole 80 with the frequency band in which the vehicle performance deteriorates and reducing the dynamic spring constant.
  • the characteristics can be tuned by changing the number of through holes 80, the opening area, the length, and the like.
  • the elastic wall 46 is provided with a recess 74 in the elastic wall portion sandwiched by the sandwiching portions 60 of the partition plates 48 and 50, and in a position overlapping with the recess 74 in the axial direction X.
  • a through hole 80 is provided.
  • a plurality of the concave portions 74 are provided in the circumferential direction C of the elastic wall 46 so that the thin low-rigidity portion 76 is intermittently formed in the circumferential direction C on the elastic wall portion sandwiched by the sandwiching portion 60.
  • a through hole 80 is provided corresponding to each recess 74.
  • the first clamping portion 64 on the radially outward Ko side of the clamping portions 60 of the pair of partition plates 48 and 50 is more than the second clamping portion 66 on the radially inner Ki side.
  • a high compression clamping portion 68 that sandwiches the elastic wall 46 at a high compression rate in the axial direction X is provided. Therefore, the displacement amount in the axial direction X of the partition plates 48 and 50 until the partition plates 48 and 50 start to be separated from the elastic wall 46 can be set large, and the partition plates 48 and 50 are separated from the elastic wall 46. The resulting abnormal noise can be reduced.
  • a pair of partition plates connected to each other via a central connecting portion moves away from the elastic wall from the outer peripheral side with respect to displacement in the axial direction.
  • the partition plates 48 and 50 are excessively displaced upward, the upper partition plate 48 tends to move away from the elastic wall 46 from its outer peripheral edge side,
  • the contact state with the elastic wall 46 can be maintained in the high compression clamping portion 68, and the partition plates 48 and 50 are separated until the partition plates 48 and 50 begin to separate from the elastic wall 46.
  • the displacement amount in the axial direction X of the plates 48 and 50 can be set large.
  • the compression ratio of this portion is set high so that the high compression clamping portion 68 does not separate from the wall surface of the elastic wall 46. Therefore, it is possible to reliably prevent the sandwiching portion 60 from separating from the elastic wall 46, and to more effectively prevent the generation of abnormal noise.
  • the high compression clamping portion 68 is provided on the radially outer side Ko in the clamping portion 60 of the partition plates 48 and 50 as described above, and the compression rate is not increased in the entire radial direction K, the elastic wall The increase in rigidity of the entire 46 can be suppressed, and the ease of reciprocation of the partition plates 48 and 50 against high frequency vibration can be ensured. Further, when the partition body 40 is assembled, it is possible to avoid poor welding at the connecting portion 56 due to the reaction force of the rubber of the elastic wall 46 compressed in the axial direction X, and the assembly of the partition body 40 is excellent.
  • the concave portion 74 is provided in the elastic wall portion sandwiched by the high compression sandwiching portion 68, the following operational effects are exhibited. That is, the high compression clamping portion 68 is a part that increases the compression rate in the axial direction X in order to prevent the partition plates 48 and 50 from being separated from the elastic wall 46 even when the displacement in the axial direction X is large. When the compressibility in the axial direction X is increased, the elastic wall 46 becomes harder accordingly. Therefore, by providing the high compression sandwiching portion 68 with the low rigidity portion 76 by the recess 74 in an intermittent manner, the elastic wall portion sandwiched by the first sandwiching portion 64 on the radially outer side Ko can be hardened.
  • the compressibility in the axial direction X can be increased so that the partition plates 48 and 50 are not separated from the elastic wall 46 while keeping the portion soft. Further, it is possible to facilitate the reciprocating movement of the partition plates 48 and 50 in the axial direction X with respect to the minute amplitude vibration in the high frequency range, and the dynamic spring constant can be reduced. Further, since the low-rigidity portion 76 is provided in the first clamping portion 64 on the outer peripheral side, the pair of partition plates 48 and 50 are displaced in a twisting direction in which the shaft core is inclined when a high-frequency vibration is input. Can be smoothly reciprocated in the axial direction X.
  • the outer peripheral portion 46A of the elastic wall 46 is formed in a thick shape, the reciprocating displacement of the partition plates 48 and 50 is effectively restricted at the time of large amplitude vibration in the low frequency range. be able to.
  • the partition plates 48 and 50 are not provided with the through holes 80. Instead, with respect to the recess 74 provided on the wall surface (lower wall surface) facing the second liquid chamber 36B side of the elastic wall 46, the recess 74 is moved to the second liquid chamber 36B on the radially outer side Ko.
  • a groove 102 extending in the radial direction K for connection is provided on the plate surface of the lower partition plate 50.
  • a gap 104 is provided by the groove 102 between the plate surface of the partition plate 50 and the wall surface of the elastic wall 46 on the radially outer side Ko of the recess 74 (see FIG. 11). Through the gap 104, the inside of the recess 74 and the second liquid chamber 36B are connected so as to allow liquid flow.
  • the groove 102 is formed to extend radially outward Ko on the plate surface of the partition plate 50 facing the recess 74, and is formed on the peripheral edge of the partition plate 50 from the first sandwiching portion 64 to the clearance forming portion 62. Is provided. Further, as shown in FIG. 12, the groove 102 is provided within the range of the recess 74 in the circumferential direction C, and a plurality of grooves 102 are provided at equal intervals in the circumferential direction C corresponding to each recess 74. As shown also in FIG. 13, it is formed in a radial groove extending from each recess 74 to the radially outward Ko side.
  • the elastic wall 46 is alternately provided with the low-rigidity portions 76 corresponding to the grooves 102 and the high-rigidity portions 78 held in the compressed state in the axial direction X by the holding portions 60 in the circumferential direction C.
  • the gap 104 is not continuous in the circumferential direction C and is provided at a predetermined interval.
  • the gap 104 enables the liquid flow between the recess 74 and the second liquid chamber 36B at the neutral position of the partition plates 48 and 50, while the pair of partition plates 48 and 50 have the axial direction X in the case of large amplitude vibration.
  • the neutral position means a state in which there is no difference in hydraulic pressure between the first liquid chamber 36A and the second liquid chamber 36B, that is, a state in which the pair of partition plates 48 and 50 are not displaced in the axial direction X. Position.
  • the gap 104 formed by the groove 102 provided in the partition plate 50 can be caused to act as a high-frequency orifice channel at the time of fine amplitude vibration. Liquid resonance in the band can be generated, and the dynamic spring constant of the frequency band can be reduced. Further, in this aspect, during large amplitude vibration, the partition plate 50 is displaced in the axial direction X so that the gap 104 can be closed by the partition plate 50, and high damping performance is ensured by the original orifice channel 42. Is advantageous.
  • a liquid-filled vibration isolator according to a third embodiment will be described with reference to FIGS.
  • a groove 110 is provided in the elastic wall 46, and other configurations are the same as those in the second embodiment. is there.
  • the partition plate 50 is not provided with the groove 102, and instead, the wall surface (lower side) of the elastic wall 46 facing the second liquid chamber 36 ⁇ / b> B side.
  • the groove 110 extending in the radial direction K for connecting the concave portion 74 to the second liquid chamber 36B on the radial outer side Ko is opposed to the lower partition plate 50.
  • the elastic wall 46 is provided on the lower wall surface.
  • a gap 112 is provided by the groove 110 between the plate surface of the partition plate 50 and the wall surface of the elastic wall 46 on the radially outer side Ko of the recess 74 (see FIG. 16). Through this gap 112, the inside of the recess 74 and the second liquid chamber 36B are connected so that the liquid can flow.
  • the groove 110 is formed to extend radially outward Ko from the recess 74 on the wall surface of the elastic wall portion on the outer peripheral side thereof.
  • the grooves 110 are provided within a range where the concave portions 74 are formed in the circumferential direction C, and a plurality of grooves 110 are provided at equal intervals in the circumferential direction C so as to correspond to the respective concave portions 74.
  • a radial groove extending from each recess 74 toward the radially outward Ko side is formed.
  • the elastic wall 46 is alternately provided with the low-rigidity portions 76 corresponding to the grooves 110 and the high-rigidity portions 78 clamped in the axial direction X by the clamping portions 60 in the circumferential direction C.
  • the gap 112 is not continuous in the circumferential direction C and is provided at a predetermined interval.
  • the gap 112 enables the liquid flow between the recess 74 and the second liquid chamber 36B at the neutral position of the partition plates 48 and 50, while the pair of partition plates 48 and 50 have the axial direction X in the case of large amplitude vibration.
  • the partition plate 50 is configured to be closed by being pressed to the groove 110 by displacement.
  • the gap 112 formed by the groove 110 provided in the partition plate 50 can act as a high-frequency orifice flow path at the time of minute amplitude vibration.
  • the liquid resonance in the frequency band can be generated, and the dynamic spring constant of the frequency band can be reduced.
  • the gap 112 can be closed by the partition plate 50, which is advantageous in securing high attenuation performance by the original orifice channel 42. .
  • Other configurations and operational effects are the same as those of the second embodiment, and a description thereof will be omitted.
  • the arrangement, number, and shape of the through holes 80 provided in the partition plates 48 and 50 are not limited to the above embodiment, and various changes can be made.
  • the through holes 80 are provided in the upper and lower partition plates 48 and 50, but only one of them may be provided.
  • the elastic wall 46 is provided with the concave portion 74 and the through hole 80 is provided so as to overlap the concave portion 74.
  • the provision of the through hole 80 so as to overlap the concave portion 74 is not essential.
  • Providing the recess 74 itself is not essential.
  • the recessed part 74 may be provided not only on the lower surface of the elastic wall 46 but on the upper surface, and may be provided so as to overlap both the upper and lower surfaces.
  • the arrangement, number, and shape of the grooves 102 and 110 provided in the partition plate 50 and the elastic wall 46 are not limited to the above-described embodiments, and various changes can be made.
  • the recess 74 is provided on the lower surface of the elastic wall 46, and the grooves 102 and 110 connected thereto are provided on the lower partition plate 50 and the lower surface of the elastic wall 46, so that the second liquid chamber is provided.
  • the concave portion is provided on the upper surface of the elastic wall 46, and the groove connected thereto is provided on the upper partition plate 48 and the upper surface of the elastic wall 46 so as to be connected to the first liquid chamber 36A.
  • the same effect is exhibited.
  • the present invention can be used as various anti-vibration devices for automobiles, such as engine mounts for automobiles, in which vibration bodies and supports are coupled in an anti-vibration manner, and can also be used for various vehicles other than automobiles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

 第1液室36Aと第2液室36Bを仕切る仕切り体40は、環状のオリフィス形成部材44と、その内周面44Aの間を塞ぐ弾性壁46と、弾性壁をその軸芯方向Xで挟み込む一対の仕切り板48,50とからなる。少なくとも一方の仕切り板48,50に、軸芯方向Xに貫通する貫通穴80を、連結部56の径方向外方Ko側に設ける。これにより、微振幅振動の入力時に、仕切り板の貫通穴80内に液体流動を生じさせて、高周波のオリフィス流路として作用させる。

Description

液封入式防振装置
 本発明は、液封入式防振装置に関するものである。
 液封入式防振装置は一般に、第1取付け具と、筒状の第2取付け具と、前記第1取付け具と第2取付け具を連結するゴム状弾性材からなる防振基体と、前記第2取付け具に取付けられて防振基体との間に液体封入室を形成するゴム膜からなるダイヤフラムと、前記液体封入室を防振基体側の第1液室とダイヤフラム側の第2液室に仕切る仕切り体と、これら第1液室と第2液室を連通させるオリフィス流路とを備えて構成されている。
 このような液封入式防振装置として、下記特許文献1には、第1液室と第2液室を仕切る仕切り体を次のように構成することが提案されている。すなわち、仕切り体は、環状のオリフィス形成部材と、その内周面間を塞ぐゴム状弾性材からなる弾性壁と、該弾性壁を貫通する連結部を介して互いに連結され前記弾性壁を軸芯方向で挟み込む一対の仕切り板、とからなり、該一対の仕切り板の軸芯方向における変位量が弾性壁によって規制されるように構成されている。
 この液封入式防振装置であると、一対の仕切り板の変位量が弾性壁によって規制されるので、低周波数域での大振幅振動に対してオリフィス流路による液体流動効果によって振動を減衰しながら、高周波数域での微振幅振動に対して仕切り板の往復動による動ばね定数の低減によって振動を低減することができる。
特開2009-002433号公報
 上記のように、特許文献1に開示の構成であると、低周波数域での大振幅振動に対して減衰を十分確保しつつ、高周波数域での微振幅振動に対して低動ばね化を実現することができる。しかしながら、微振幅振動時における更なる低動ばね化の要請があり、特許文献1に開示の構成では、大振幅振動時の高減衰性能を確保したまま、上記要請に十分に応えることは困難であった。
 本発明は、以上の点に鑑みてなされたものであり、大振幅振動時の高減衰性能を確保したまま、微振幅振動時の更なる低動ばね化を図ることができる液封入式防振装置を提供することを目的とする。
 本発明に係る液封入式防振装置は、第1取付け具と、筒状の第2取付け具と、前記第1取付け具と前記第2取付け具を連結するゴム状弾性材からなる防振基体と、前記第2取付け具に取付けられて前記防振基体との間に液体封入室を形成するゴム状弾性膜からなるダイヤフラムと、前記液体封入室を前記防振基体側の第1液室と前記ダイヤフラム側の第2液室に仕切る仕切り体と、前記第1液室と第2液室を連通させるオリフィス流路と、を備えた液封入式防振装置であって、前記仕切り体が、前記第2取付け具の周壁部の内側に設けられて前記オリフィス流路を形成する環状のオリフィス形成部材と、前記オリフィス形成部材の内周面の間を塞ぐゴム状弾性材からなる弾性壁と、前記弾性壁の径方向中央部を貫通する連結部を介して互いに連結され、前記弾性壁を該弾性壁の軸芯方向で挟み込む一対の仕切り板と、からなることを基本構成とするものである。
 そして、本発明の第1の態様に係るものでは、少なくとも一方の前記仕切り板に軸芯方向に貫通する貫通穴が前記連結部の径方向外方側に設けられている。
 また、本発明の第2の態様に係るものでは、前記弾性壁の表裏少なくとも一方の壁面に凹部が設けられ、前記凹部を当該凹部の径方向外方側で前記第1液室又は第2液室に繋げるための径方向に延びる溝が前記仕切り板の板面又は前記弾性壁の壁面に設けられ、前記溝によって形成される前記仕切り板の板面と前記弾性壁の壁面との隙間を介して前記凹部内と前記第1液室又は第2液室とが液体流動可能に繋げられている。
 本発明の液封入式防振装置であると、低周波数域での大振幅振動に対しては、一対の仕切り板の変位量が弾性壁によって規制されることにより、オリフィス流路による液体流動効果によって高減衰性能を確保することができる。高周波数域での微振幅振動に対しては、一対の仕切り板が往復動することにより、動ばね定数の低減によって振動を低減することができる。
 そして、上記第1の態様であると、微振幅振動の入力時に、仕切り板が微振幅振動することによって、仕切り板に設けられた軸芯方向に貫通する貫通穴内に液体流動が生じ、これにより当該貫通穴を高周波のオリフィス流路として作用させることができる。そのため、特定の周波数帯で液共振を発生させることができ、当該周波数帯の動ばね定数を低減することができる。
 また、上記第2の態様であると、微振幅振動時に、仕切り板又は弾性壁に設けた溝によって形成された隙間を、高周波のオリフィス流路として作用させることができる。そのため、第1の態様と同様に、特定の周波数帯で液共振を発生させることができ、当該周波数帯の動ばね定数を低減することができる。また、この態様では、大振幅振動時には、仕切り板が軸芯方向に変位することで上記隙間を仕切り板によって塞ぐことが可能となり、本来のオリフィス流路による高減衰性能の確保に有利である。
 以上より、本発明によれば、大振幅振動時の高減衰性能を確保したまま、微振幅振動時の更なる低動ばね化を図ることができる。
第1実施形態に係る液封入式防振装置の縦断面図 同防振装置の仕切り体の縦断面図(図7のII-II線に相当する断面) 同仕切り体の分解縦断面図(図8のIII-III線に相当する断面) 同仕切り体を構成する一対の仕切り板の連結状態での縦断面図 仕切り板の貫通穴周りの構造を拡大して示す同仕切り体の要部縦断面図。 弾性壁の高剛性部周りの構造を拡大して示す同仕切り体の要部縦断面図。 同仕切り体の底面図 同仕切り体を構成する仕切り板の平面図 第2実施形態における仕切り体の縦断面図(図12のIX-IX線に相当する断面) 第2実施形態の仕切り体の分解縦断面図(図13のX-X線に相当する断面) 第2実施形態の仕切り体の要部拡大縦断面図 第2実施形態の仕切り体の底面図 第2実施形態の仕切り体を構成する仕切り板の平面図 第3実施形態における仕切り体の縦断面図 第3実施形態の仕切り体を構成するオリフィス形成部材及び弾性壁の縦断面図 第3実施形態の仕切り体の要部拡大縦断面図 第3実施形態のオリフィス形成部材及び弾性壁の底面図
10…液封入式防振装置、12…第1取付け具、14…第2取付け具、14A…周壁部
16…防振基体、36…液体封入室、36A…第1液室、36B…第2液室
38…ダイヤフラム、40…仕切り体、42…オリフィス流路
44…オリフィス形成部材、44A…オリフィス形成部材の内周面、46…弾性壁
48,50…仕切り板、56…連結部
60…挟持部分、64…第1挟持部分、66…第2挟持部分、68…高圧縮挟持部
74…凹部、76…低剛性部、78…高剛性部、80…貫通穴
100…仕切り体、102…溝、104…隙間
110…溝、112…隙間
C…周方向、K…径方向、Ko…径方向外方、Ki…径方向内方、X…軸芯方向
 以下、本発明の実施形態に係る液封入式防振装置を図面に基づいて説明する。
(第1実施形態)
 図1は、第1実施形態に係る液封入式防振装置10の縦断面図である。この防振装置10は、自動車のエンジンに取付けられる上側の第1取付け具12と、車体フレームに取付けられる下側の筒状の第2取付け具14と、これらを連結するゴム状弾性材からなる防振基体16とを備えてなるエンジンマウントである。
 第1取付け具12は、第2取付け具14の軸芯部上方に配されたボス金具であり、径方向(即ち、軸芯方向Xに垂直な方向である軸直角方向)Kの外方Koに向けてフランジ状に突出するストッパ部18を備える。また、上端部には取付ボルト20が上向きに突設されて、このボルト20を介してエンジン側に取り付けられるよう構成されている。
 第2取付け具14は、防振基体16が加硫成形される円筒状の筒状金具22とカップ状の底金具24とからなり、底金具24の中央部に下向きの取付ボルト26が突設され、このボルト26を介して車体側に取り付けられるように構成されている。筒状金具22は、その下端部が底金具24の上端開口部に対し、かしめ部28によりかしめ固定されている。符号30は、筒状金具22の上端部にかしめ固定されたストッパ金具であり、第1取付具12のストッパ部18との間でストッパ作用を発揮する。また、符号32は、ストッパ金具30の上面を覆うストッパゴムである。
 防振基体16は円錐台形状に形成され、その上端部が第1取付け具12に、下端部が筒状金具22の上端開口部にそれぞれ加硫接着されている。この防振基体16の下端部に、筒状金具22の内周面を覆うゴム膜状のシール壁部34が連なっている。
 第2取付け具14には、防振基体16の下面に対して軸芯方向Xに対向配置されて当該下面との間に液体封入室36を形成する可撓性ゴム膜からなるダイヤフラム38が取り付けられ、液体封入室36に液体が封入されている。液体封入室36は、仕切り体40により、防振基体16側の第1液室36Aとダイヤフラム38側の第2液室36Bに仕切られており、これら第1液室36Aと第2液室36Bは、絞り流路としてのオリフィス流路42を介して互いに連通されている。第1液室36Aは、防振基体16が室壁の一部をなす主液室であり、第2液室36Bは、ダイヤフラム38が室壁の一部をなす副液室である。
 仕切り体40は、図1,2に示されるように、第2取付け具14の円筒状の周壁部14Aの内側に設けられた円環状のオリフィス形成部材44と、オリフィス形成部材44の内周面44Aに外周部46Aが加硫接着されて内周面44Aの間を塞ぐゴム弾性体からなる弾性壁46と、弾性壁46をその軸芯方向Xで挟み込む上下一対の仕切り板48,50とからなる。
 オリフィス形成部材44は、第2取付け具14の周壁部14Aとの間に、周方向に延びるオリフィス流路42を形成する剛体からなる部材であり、該周壁部14Aの内周のシール壁部34に嵌着されている。より詳細には、オリフィス形成部材44は、第2取付け具14の周壁部14Aに同軸に配された円筒状部44Bと、該円筒状部44Bの外周側において断面コの字状に外向きに開かれた凹溝部44Cとを備えてなる。円筒状部44Bの内周面が上記内周面44Aになっている。また、凹溝部44Cにより第2取付け具14の周壁部14Aとの間で上記オリフィス流路42が形成されている。
 オリフィス形成部材44は、ダイヤフラム38の外周縁部に埋設された補強金具38Aと、防振基体16の下端外周部に形成された受止め段部16Aとで挟持固定されている。詳細には、ダイヤフラム38の外周縁部に設けた補強金具38Aが第2取付け具14のかしめ部28でかしめ固定されており、補強金具38Aの内周縁部を覆うダイヤフラム38のゴム部分を介して、オリフィス形成部材44の下端部が補強金具38Aにより支持されている。
 上記弾性壁46は、平面視円形状をなしており、図3に示すように、その外周部46Aが、オリフィス形成部材44の円筒状部44Bの内周面44Aに加硫接着されている。弾性壁46は、径方向中央部に軸芯方向Xに貫通する円形の連結用孔52を備え、連結用孔52の周りの表裏両側には、軸芯方向Xに突出する環状の凸条54が設けられている。
 一対の仕切り板48,50は、図2,4に示すように連結用孔52を貫通する円柱状の連結部56を介して互いに連結されており、熱可塑性樹脂により一体に成形されている。そのうちの一方(上側)の仕切り板48が第1液室36Aの室壁の一部を構成しており、即ち、第1液室36Aに面して配されている(図1参照)。また、他方(下側)の仕切り板50が第2液室36Bの室壁の一部を構成しており、即ち、第2液室36Bに面して配されている。そして、これら一対の仕切り板48,50の軸芯方向Xにおける変位量が弾性壁46によって規制されている。
 一対の仕切り板48,50は、平面視において弾性壁46よりも外形が小さく形成されている。すなわち、仕切り板48,50の外周縁48A,50Aは、弾性壁46の外周縁が位置するオリフィス形成部材44の内周面44Aよりも径方向内方Ki側で終端している(図2参照)。
 連結部56は、図3に示すように、下側の仕切り板50に設けられた軸芯方向Xに垂直なリング状の第1平面部56Aと、第1平面部56Aから軸芯方向Xに突出する嵌合凸部56Bと、上側の仕切り板48に設けられて嵌合凸部56Bが嵌合する嵌合凹部56Cと、嵌合凹部56Cの開口縁部に設けられて軸芯方向Xに垂直なリング状の第2平面部56Dとを備えてなる。そして、図4に示すように、第1平面部56Aと第2平面部56Dが対接することで軸芯方向Xに位置決めされた状態で、嵌合凸部56Bと嵌合凹部56Cが超音波溶着により嵌合固定されている。
 一対の仕切り板48,50は、中央部の連結部56の周りに、それぞれ、弾性壁46の上下の凸条54が嵌合する環状溝58が設けられている(図3,8参照)。環状溝58の外周、即ち径方向外方Ko側には、弾性壁46を軸芯方向Xで挟み込む挟持部分60が全周にわたって環状に設けられている。更に、挟持部分60の外周、即ち径方向外方Ko側に、弾性壁46の対向する壁面との間で径方向外方Ko側ほど漸次広くなるクリアランス61(図6参照)を形成するクリアランス形成部62が設けられており、該クリアランス形成部62が仕切り板48,50の外周縁部を構成している。
 図6に示すように、上記挟持部分60は、その径方向中間位置を境として、それよりも径方向外方Ko側、即ち外周側を第1挟持部分64とし、径方向内方Ki側、即ち内周側を第2挟持部分66としたとき、第1挟持部分64に、第2挟持部分66よりも、弾性壁46を軸芯方向Xにおいて高い圧縮率で挟み込む高圧縮挟持部68が設けられている。すなわち、挟持部分60は、その外周側の第1挟持部分64において、弾性壁46の軸芯方向Xでの圧縮率が最も高く設定された高圧縮挟持部68を備え、この高圧縮挟持部68での圧縮率が、その径方向内方Ki側での圧縮率、及び径方向外方Ko側での圧縮率よりも高く設定されている。
 ここで、弾性壁46の軸芯方向Xでの圧縮率とは、一対の仕切り板48,50による弾性壁46の軸芯方向Xでの圧縮量を、弾性壁46の元の厚みで割った値であり、対象となる部位での一対の仕切り板48,50の間隔をU(図4参照)とし、その部位での弾性壁46の元の厚みをT(図3参照)として、(T-U)/Tで定義される。そして、高圧縮挟持部68での圧縮率は、軸芯方向Xでの仕切り板48,50の想定される最大変位時でも、高圧縮挟持部68が弾性壁46の壁面から離れないように、即ち圧縮が残るように、高く設定されている。
 より詳細には、この例では、図6に示すように、内周側の第2挟持部分66では、弾性壁46の軸芯方向Xでの圧縮率が略一定に設定されている。そして、外周側の第1挟持部分64において、径方向外方Ko側ほど徐々に圧縮率が高くなり、上記高圧縮挟持部68で圧縮率が最大となり、そこから径方向外方Ko側ほど徐々に圧縮率が低くなって、上記クリアランス61を形成するクリアランス形成部62に至るように設定されている。
 このような圧縮率の設定にするため、一対の仕切り板48,50と弾性壁46は、断面形状が、それぞれ次のように形成されている。仕切り板48,50は、第2挟持部分66から第1挟持部分64の高圧縮挟持部68に至るまで、径方向Kで間隔Uが一定となるように、軸芯方向Xに垂直な平面状に形成され、高圧縮挟持部68より外周側において、径方向外方Ko側ほど漸次軸芯方向外方Xoに位置する傾斜面状に形成されている(図4,6参照)。一方、弾性壁46は、第2挟持部分66に対向する壁面70が軸芯方向Xに垂直な平面状に形成され、その外周側部分、即ち、第1挟持部分64及び該第1挟持部分64よりも径方向外方Ko側の仕切り板部分(即ち、クリアランス形成部62)に対向する壁面72が、径方向外方Ko側ほど軸芯方向外方Xoに位置する傾斜面状に形成されている(図3,6参照)。これにより、弾性壁46は、外周部46Aが厚肉状に形成されている。仕切り板48,50の高圧縮挟持部68よりも外周側の上記傾斜面と、弾性壁46の上記壁面72の傾斜面は、ともに湾曲面状に形成されており、かつ、前者の方が勾配が大きく設定されている。これにより、上記クリアランス61は径方向外方Ko側ほど漸次広く形成されている。
 図3に示すように、弾性壁46には、上記高圧縮挟持部68によって挟み込まれる弾性壁部分において、その壁面に軸芯方向Xに陥没する凹部74が設けられている。凹部74は、この例では、第2液室36B側に向く壁面(下側の壁面)に設けられており、図7に示すように、複数個(ここでは6個)が周方向Cに等間隔にて設けられている。これにより、高圧縮挟持部68によって挟み込まれる弾性壁部分には、薄肉状の低剛性部76が周方向Cに断続的に設けられている。
 凹部74は、この例では、径方向Kにおいて、第1挟持部分64に対向する部分の略全体にわたって設けられている。また、図7に示すように、凹部74は円弧状に形成されており、各凹部74の間には、その内周側の弾性壁部分と外周側の弾性壁部分とをなだらかに繋ぐように、径方向外方Ko側ほど漸次厚肉となる傾斜面状の高剛性部78が放射状に形成されている。そして、この高剛性部78により、高圧縮挟持部68での仕切り板50と弾性壁46との当接がなされている。
 図2に示すように、一対の仕切り板48,50には、上記連結部56の径方向外方Ko側にて弾性壁46を挟み込む挟持部分60に、軸芯方向Xに貫通する貫通穴80がそれぞれ設けられている。貫通穴80は、図8に示すように、平面視円形状をなして、複数個(ここでは6個)が周方向Cに等間隔にて設けられている。
 図7に示すように、貫通穴80は、弾性壁46の凹部74に対して軸芯方向Xに重なる位置に設けられている。すなわち、この例では、貫通穴80は、図7に示す平面視において、凹部74によって形成された低剛性部76の範囲内に入るように設けられている。複数の凹部74のそれぞれについて、軸芯方向Xに重なる位置に貫通穴80が1つずつ設けられている。また、この例では、貫通穴80は、上下の仕切り板48,50において、軸芯方向Xに重なり合うように、それぞれ設けられている。詳細には、上側の仕切り板48に設けられた複数の貫通穴80と、下側の仕切り板50に設けられた複数の貫通穴80とは、その形状、大きさ及び位置が一致させて設けられている。以上により、この例では、図5に示すように、下側の仕切り板50に設けられた貫通穴80は、凹部74に対して開口するように設けられ、上側の仕切り体48に設けられた貫通穴80は、凹部74の裏側の低剛性部76の表面に当接するように設けられている。
 なお、符号82は、弾性壁46の外周部46Aに設けられた隆起部であり(図6参照)、弾性壁46の第1液室36A側において、その傾斜面状の上記壁面72に対して軸芯方向外方Xo側、即ち第1液室36A側に隆起して形成されている。隆起部82は、第1液室36A側の仕切り板48の上面よりも軸芯方向外方Xo側にはみ出すように突出形成されている。
 また、符号84は、オリフィス形成部材44の内周面44Aに設けられた凸部であり、弾性壁46の第2液室36B側の付け根部分において、径方向内方Kiに突出形成されている。凸部84は、第2液室36B側の側面84Aが弾性壁46の軸芯方向Xに垂直な平面状に形成されて、この側面84Aが弾性壁46の成型時における成形型の押し当て面(バリ止めのためのシール面)とされている。
 これらの隆起部82及び凸部84を設けたことにより、オリフィス形成部材44に対する弾性壁46の付け根部の剛性を上げて、低周波大振幅時における一対の仕切り板48,50の変位規制効果が高められている。
 以上よりなる本実施形態の液封入式防振装置10であると、高周波数域の微振幅振動が生じたとき、一対の仕切り板48,50が一体となって往復動することで、第1液室36Aの液圧を吸収して振動を低減することができる。そのため、高周波微振幅振動に対し、動ばね定数を効果的に低減することができる。一方、低周波数域の大振幅振動が生じたときには、一対の仕切り板48,50の変位量が弾性壁46によって規制されるので、オリフィス流路42を通って第1液室36Aと第2液室36B間で液体を流通させることができ、その液体流動効果によって振動を減衰することができる。
 しかも、本実施形態であると、高周波数域での微振幅振動の入力時に、仕切り板48,50が軸芯方向Xに微振幅振動することによって、仕切り板48,50に設けられた貫通穴80内に軸芯方向Xでの液体流動が生じ、これにより当該貫通穴80を、上記オリフィス流路42よりも高周波数域にて作用する高周波オリフィスとして用いることができる。すなわち、仕切り板48,50の移動量が弾性壁46によって規制されない微振幅入力時に、貫通穴80を高周波オリフィスとして作用させることができる。そのため、特定の周波数帯で液共振を発生させることにより、当該周波数帯の動ばね定数を低減することができる。例えば、車両性能が悪化する周波数帯に、上記貫通穴80によるオリフィスの共振を合わせ、動ばね定数を低減させることで、伝達する振動や騒音を低減することができる。なお、貫通穴80の数や開口面積、長さなどを変えることで、特性のチューニングは可能である。
 本実施形態であると、また、弾性壁46には仕切り板48,50の挟持部分60によって挟み込まれる弾性壁部分に凹部74が設けられ、該凹部74に対して軸芯方向Xに重なる位置に貫通穴80が設けられている。このように貫通穴80に対応させて凹部74による低剛性部76が設けられているので、弾性壁46が振動しやすくなり、貫通穴80での液体流動を促進することができる。
 本実施形態であると、また、凹部74が弾性壁46の周方向Cに複数設けられることで挟持部分60によって挟み込まれる弾性壁部分に薄肉状の低剛性部76が周方向Cに断続状に設けられ、各凹部74に対応させて貫通穴80が設けられている。これにより、貫通穴80に対応させた低剛性部76と、挟持部分60によって軸芯方向Xに圧縮された状態に挟持される高剛性部78とが、周方向Cに交互に設けられている。そのため、貫通穴80において高周波オリフィスとしての機能を持たせながら、その間の高剛性部78において弾性壁46に対する仕切り板48,50の接触状態を維持して、弾性壁46と仕切り板48,50との打音に起因する異音を低減することができる。
 本実施形態であると、また、一対の仕切り板48,50の挟持部分60のうち径方向外方Ko側の第1挟持部分64に、径方向内方Ki側の第2挟持部分66よりも、弾性壁46を軸芯方向Xにおいて高い圧縮率で挟み込む高圧縮挟持部68が設けられている。そのため、仕切り板48,50が弾性壁46から離れ始めるまでの仕切り板48,50の軸芯方向Xにおける変位量を大きく設定することができ、仕切り板48,50が弾性壁46から離れることに起因する異音を低減することができる。
 この点について詳述すると、一般に中央の連結部を介して互い連結された一対の仕切り板は、軸芯方向の変位に対し、その外周縁側より弾性壁から離れていく。これに対し、本実施形態のものでは、例えば、仕切り板48,50が上方に過大変位したとき、上側の仕切り板48がその外周縁側より弾性壁46から離れようとするが、離れる起点となる外周側に高圧縮挟持部68を設けたことにより、該高圧縮挟持部68において弾性壁46に対する接触状態を維持することができ、仕切り板48,50が弾性壁46から離れ始めるまでの仕切り板48,50の軸芯方向Xにおける変位量を大きく設定することができる。特にこの例では、想定される最大の軸芯方向Xでの変位が生じたときでも、高圧縮挟持部68が弾性壁46の壁面から離れないようにこの部分の圧縮率が高く設定されているので、挟持部分60が弾性壁46から離れてしまうのを確実に防止して、異音の発生をより効果的に防止することができる。
 また、このように仕切り板48,50の挟持部分60における径方向外方Ko側に高圧縮挟持部68を設けており、径方向Kの全体で圧縮率を高くしたものではないので、弾性壁46全体の剛性アップを抑えて、高周波数振動に対する仕切り板48,50の往復動しやすさを確保することができる。また、仕切り体40の組み立て時において、軸芯方向Xに圧縮される弾性壁46のゴムの反力による連結部56での溶着不良を回避することができ、仕切り体40の組み立て性に優れる。
 また、本実施形態であると、この高圧縮挟持部68によって挟み込まれる弾性壁部分に上記凹部74を設けたので、次の作用効果が奏される。すなわち、高圧縮挟持部68は、軸芯方向Xでの大変位時にも仕切り板48,50が弾性壁46から離れないようにするために軸芯方向Xでの圧縮率を高める部位である一方、軸芯方向Xでの圧縮率を高めるとその分弾性壁46は硬くなってしまう。そこで、該高圧縮挟持部68に凹部74による低剛性部76を断続状に設けたことで、径方向外方Ko側の第1挟持部分64によって挟持される弾性壁部分を硬くすることなく、むしろその部分を柔らかく維持しながら、仕切り板48,50が弾性壁46から離れないように軸芯方向Xでの圧縮率を高めることができる。また、高周波数域での微振幅振動に対し、仕切り板48,50を軸芯方向Xに往復動させやすくして、動ばね定数を低減することができる。また、該低剛性部76が外周側の第1挟持部分64に設けられたので、高周波数域の振動入力時に、一対の仕切り板48,50を、軸芯が傾くようなこじり方向での変位を抑えながら、軸芯方向Xにスムーズに往復動させることができる。
 また、本実施形態であると、弾性壁46の外周部46Aが厚肉状に形成されたので、低周波数域の大振幅振動時に、仕切り板48,50の往復動変位を効果的に規制することができる。
(第2実施形態)
 第2実施形態に係る液封入式防振装置について、図9~13に基づいて説明する。第2実施形態は、仕切り体100の構成のみが第1実施形態とは異なる。以下、異なる点についてのみ説明する。
 図9,10に示すように、本実施形態では、仕切り板48,50には貫通穴80は設けられていない。その代わりに、弾性壁46の第2液室36B側に向く壁面(下側の壁面)に設けられた凹部74に対し、該凹部74をその径方向外方Ko側で第2液室36Bに繋げるための径方向Kに延びる溝102が、下側の仕切り板50の板面に設けられている。これにより、上記凹部74の径方向外方Ko側において、仕切り板50の板面と弾性壁46の壁面との間には、上記溝102によって隙間104が設けられており(図11参照)、この隙間104を介して凹部74内と第2液室36Bとが液体流動可能に繋げられている。
 溝102は、凹部74に対向する仕切り板50の板面において、径方向外方Koに延びて形成されており、上記第1挟持部分64からクリアランス形成部62に至る仕切り板50の周縁部に設けられている。また、図12に示すように、溝102は、周方向Cにおいて凹部74の範囲内で設けられており、各凹部74に対応させて周方向Cに等間隔にて複数個設けられ、これにより、図13にも示されるように、各凹部74から径方向外方Ko側に延びる放射状溝に形成されている。そのため、弾性壁46は、溝102に対応した低剛性部76と、挟持部分60によって軸芯方向Xに圧縮された状態に挟持される高剛性部78とが、周方向Cに交互に設けれており、上記隙間104は、周方向Cで連続せずに所定間隔をおいて設けられている。
 上記隙間104は、仕切り板48,50の中立位置では、凹部74と第2液室36Bとの間の液体流動を可能としつつ、大振幅振動時には一対の仕切り板48,50が軸芯方向Xに変位して溝102が弾性壁46に押し付けられることにより、閉塞されるように構成されている。ここで、中立位置とは、第1液室36Aと第2液室36Bとの間に液圧差がない状態、即ち一対の仕切り板48,50が軸芯方向Xに変位していない状態での位置である。
 その他の構成は、仕切り体構成も含めて第1実施形態と同様であり、基本的には同様の作用効果が奏される。本実施形態特有の作用効果としては、微振幅振動時に、仕切り板50に設けた溝102によって形成された隙間104を、高周波のオリフィス流路として作用させることができるので、この部分で特定の周波数帯における液共振を発生させることができ、当該周波数帯の動ばね定数を低減することができる。また、この態様では、大振幅振動時には、仕切り板50が軸芯方向Xに変位することで上記隙間104を仕切り板50によって塞ぐことが可能となり、本来のオリフィス流路42による高減衰性能の確保に有利である。
(第3実施形態)
 第3実施形態に係る液封入式防振装置について、図14~17に基づいて説明する。第3実施形態は、上記第2実施形態において仕切り板50に溝102を設けたのに代えて、弾性壁46に溝110を設けたものであり、その他の構成は第2実施形態と同じである。
 すなわち、本実施形態では、図14,15に示すように、仕切り板50には溝102は設けられておらず、その代わりに、弾性壁46の第2液室36B側に向く壁面(下側の壁面)に設けられた凹部74に対し、該凹部74をその径方向外方Ko側で第2液室36Bに繋げるための径方向Kに延びる溝110が、下側の仕切り板50に対向する弾性壁46の下側の壁面に設けられている。これにより、上記凹部74の径方向外方Ko側において、仕切り板50の板面と弾性壁46の壁面との間には、上記溝110によって隙間112が設けられており(図16参照)、この隙間112を介して凹部74内と第2液室36Bとが液体流動可能に繋げられている。
 溝110は、凹部74からその外周側の弾性壁部分の壁面において径方向外方Koに延びて形成されている。また、図17に示すように、溝110は、周方向Cにおいて凹部74が形成された範囲内で設けられており、各凹部74に対応させて周方向Cに等間隔にて複数個設けられ、これにより、各凹部74から径方向外方Ko側に延びる放射状溝に形成されている。そのため、弾性壁46は、溝110に対応した低剛性部76と、挟持部分60によって軸芯方向Xに圧縮された状態に挟持される高剛性部78とが、周方向Cに交互に設けれており、上記隙間112は、周方向Cで連続せずに所定間隔をおいて設けられている。
  上記隙間112は、仕切り板48,50の中立位置では、凹部74と第2液室36Bとの間の液体流動を可能としつつ、大振幅振動時には一対の仕切り板48,50が軸芯方向Xに変位して仕切り板50が溝110に押し付けられることにより、閉塞されるように構成されている。
 本実施形態でも、第2実施形態と同様、微振幅振動時に、仕切り板50に設けた溝110によって形成された隙間112を、高周波のオリフィス流路として作用させることができるので、この部分で特定の周波数帯における液共振を発生させることができ、当該周波数帯の動ばね定数を低減することができる。また、大振幅振動時に、仕切り板50が軸芯方向Xに変位することで上記隙間112を仕切り板50によって塞ぐことが可能となり、本来のオリフィス流路42による高減衰性能の確保に有利である。その他の構成及び作用効果は第2実施形態と同様であり、説明は省略する。
(その他の実施形態)
 第1実施形態において、仕切り板48,50に設けた貫通穴80の配置や数、形状は、上記実施形態に限定されるものではなく、種々の変更が可能である。第1実施形態では、上下両方の仕切り板48,50に貫通穴80を設けたが、いずれか一方のみ設けてもよい。また、第1実施形態では、弾性壁46に凹部74を設けた上でこれに重なるように貫通穴80を設けたが、凹部74に重なるように貫通穴80を設けることは必須ではなく、また凹部74を設けること自体も必須ではない。また、凹部74は、弾性壁46の下面だけでなく、上面に設けてもよく、上下両面に重なるように設けてもよい。
 第2及び第3実施形態において、仕切り板50や弾性壁46に設けた溝102,110の配置や数、形状は、上記実施形態に限定されるものではなく、種々の変更が可能である。また、第2及び第3実施形態では、凹部74を弾性壁46の下面に設け、これに繋がる溝102,110を下側の仕切り板50や弾性壁46の下面に設けて、第2液室36Bに繋げるようにしたが、凹部を弾性壁46の上面に設けて、これに繋がる溝を上側の仕切り板48や弾性壁46の上面に設けて、第1液室36Aに繋げるように構成しても同様の作用効果が奏される。また、弾性壁46の上下両面に、これら溝及び隙間の構成を設けてもよい。また、第2実施形態における仕切り板50に溝102を設ける構成と、第3実施形態における弾性壁46に溝112を設ける構成を組み合わせて、両溝102,112によって隙間を形成するようにしてもよい。
 更に、第1実施形態における仕切り板48,50に貫通穴80を設ける構成と、第2及び第3実施形態における溝102,110によって隙間104,112を設ける構成とを組み合わせることも可能である。
 その他、一々列挙しないが、本発明の趣旨を逸脱しない限り、種々の変更が可能である。
 本発明は、自動車のエンジンマウントを始め、振動体と支持体とを防振的に結合する自動車の各種防振装置として用いることができ、また、自動車以外の各種車両に用いることもできる。

Claims (8)

  1.  第1取付け具と、筒状の第2取付け具と、前記第1取付け具と前記第2取付け具を連結するゴム状弾性材からなる防振基体と、前記第2取付け具に取付けられて前記防振基体との間に液体封入室を形成するゴム状弾性膜からなるダイヤフラムと、前記液体封入室を前記防振基体側の第1液室と前記ダイヤフラム側の第2液室に仕切る仕切り体と、前記第1液室と第2液室を連通させるオリフィス流路と、を備えた液封入式防振装置であって、
     前記仕切り体は、
     前記第2取付け具の周壁部の内側に設けられて前記オリフィス流路を形成する環状のオリフィス形成部材と、
     前記オリフィス形成部材の内周面の間を塞ぐゴム状弾性材からなる弾性壁と、
     前記弾性壁の径方向中央部を貫通する連結部を介して互いに連結され、前記弾性壁を該弾性壁の軸芯方向で挟み込む一対の仕切り板と、からなり、
     少なくとも一方の前記仕切り板に軸芯方向に貫通する貫通穴が前記連結部の径方向外方側に設けられた
     ことを特徴とする液封入式防振装置。
  2.  前記一対の仕切り板は、前記連結部の径方向外方側に前記弾性壁を挟み込む挟持部分を有し、前記弾性壁は、前記挟持部分によって挟み込まれる弾性壁部分において前記弾性壁の表裏少なくとも一方の壁面に凹部を有し、前記凹部に対して軸芯方向に重なる位置に前記貫通穴が設けられた、ことを特徴とする請求項1記載の液封入式防振装置。
  3.  前記凹部が前記弾性壁の周方向に複数設けられることで前記挟持部分によって挟み込まれる弾性壁部分に薄肉状の低剛性部が周方向に断続状に設けられ、前記各凹部に対して軸芯方向に重なる位置に前記貫通穴が設けられた、ことを特徴とする請求項2記載の液封入式防振装置。
  4.  前記貫通穴が、前記一対の仕切り板において軸芯方向に重なり合うようそれぞれ設けられた、ことを特徴とする請求項2又は3記載の液封入式防振装置。
  5.  前記挟持部分が径方向外方側の第1挟持部分と径方向内方側の第2挟持部分とからなり、前記第1挟持部分に前記第2挟持部分よりも前記弾性壁を軸芯方向において高い圧縮率で挟み込む高圧縮挟持部が設けられ、前記高圧縮挟持部によって挟み込まれる弾性壁部分に前記凹部が設けられた、ことを特徴とする請求項2~4のいずれか1項に記載の液封入式防振装置。
  6.  第1取付け具と、筒状の第2取付け具と、前記第1取付け具と前記第2取付け具を連結するゴム状弾性材からなる防振基体と、前記第2取付け具に取付けられて前記防振基体との間に液体封入室を形成するゴム状弾性膜からなるダイヤフラムと、前記液体封入室を前記防振基体側の第1液室と前記ダイヤフラム側の第2液室に仕切る仕切り体と、前記第1液室と第2液室を連通させるオリフィス流路と、を備えた液封入式防振装置であって、
     前記仕切り体は、
     前記第2取付け具の周壁部の内側に設けられて前記オリフィス流路を形成する環状のオリフィス形成部材と、
     前記オリフィス形成部材の内周面の間を塞ぐゴム状弾性材からなる弾性壁と、
     前記弾性壁の径方向中央部を貫通する連結部を介して互いに連結され、前記弾性壁を該弾性壁の軸芯方向で挟み込む一対の仕切り板と、からなり、
     前記弾性壁の表裏少なくとも一方の壁面に凹部が設けられ、前記凹部を当該凹部の径方向外方側で前記第1液室又は第2液室に繋げるための径方向に延びる溝が前記仕切り板の板面又は前記弾性壁の壁面に設けられ、前記溝によって形成される前記仕切り板の板面と前記弾性壁の壁面との隙間を介して前記凹部内と前記第1液室又は第2液室とが液体流動可能に繋げられた
     ことを特徴とする液封入式防振装置。
  7.  前記一対の仕切り板は、前記連結部の径方向外方側に前記弾性壁を挟み込む挟持部分を有し、前記凹部が、前記挟持部分によって挟み込まれる弾性壁部分において前記弾性壁の周方向に複数設けられることで、当該弾性壁部分に薄肉状の低剛性部が周方向に断続状に設けられ、前記溝が前記各凹部から径方向外方側に延びる放射状溝に形成された、ことを特徴とする請求項6記載の液封入式防振装置。
  8.  前記挟持部分が径方向外方側の第1挟持部分と径方向内方側の第2挟持部分とからなり、前記第1挟持部分に前記第2挟持部分よりも前記弾性壁を軸芯方向において高い圧縮率で挟み込む高圧縮挟持部が設けられ、前記高圧縮挟持部によって挟み込まれる弾性壁部分に前記凹部が設けられた、ことを特徴とする請求項7記載の液封入式防振装置。
PCT/JP2010/002552 2009-04-13 2010-04-07 液封入式防振装置 WO2010119645A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10764232.4A EP2420699B1 (en) 2009-04-13 2010-04-07 Liquid-sealed vibration-isolating device
US13/257,786 US20120018936A1 (en) 2009-04-13 2010-04-07 Liquid-sealed antivibration device
JP2011509199A JP5284463B2 (ja) 2009-04-13 2010-04-07 液封入式防振装置
CN2010800164232A CN102395809B (zh) 2009-04-13 2010-04-07 液封式防振装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009097284 2009-04-13
JP2009-097284 2009-04-13

Publications (1)

Publication Number Publication Date
WO2010119645A1 true WO2010119645A1 (ja) 2010-10-21

Family

ID=42982321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002552 WO2010119645A1 (ja) 2009-04-13 2010-04-07 液封入式防振装置

Country Status (5)

Country Link
US (1) US20120018936A1 (ja)
EP (1) EP2420699B1 (ja)
JP (1) JP5284463B2 (ja)
CN (1) CN102395809B (ja)
WO (1) WO2010119645A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121696A (ja) * 2014-12-24 2016-07-07 東洋ゴム工業株式会社 能動型防振装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103890443B (zh) * 2011-12-27 2015-11-25 住友理工株式会社 流体封入式隔振装置
US10589615B2 (en) * 2015-08-03 2020-03-17 Ford Global Technologies, Llc Decoupler for a hydraulic engine mount
JP6653206B2 (ja) * 2016-03-31 2020-02-26 山下ゴム株式会社 液封防振装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074617A (ja) * 2001-08-31 2003-03-12 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2008196705A (ja) * 2008-04-01 2008-08-28 Toyo Tire & Rubber Co Ltd 流体封入式防振装置
JP2009002433A (ja) 2007-06-21 2009-01-08 Toyo Tire & Rubber Co Ltd 液封入式防振装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3024089C3 (de) * 1980-06-27 1992-10-08 Boge Gmbh Hydraulisch dämpfendes lager
GB2237354A (en) * 1989-10-27 1991-05-01 Draftex Ind Ltd A hydroelastic support
JP2884799B2 (ja) * 1991-02-04 1999-04-19 東海ゴム工業株式会社 流体封入式マウント装置
GB2297600A (en) * 1995-02-02 1996-08-07 Draftex Ind Ltd Hydroelastic support assembly
GB2332498A (en) * 1997-12-22 1999-06-23 Draftex Ind Ltd Hydroelastic supports
JP2006207672A (ja) * 2005-01-27 2006-08-10 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2007092972A (ja) * 2005-09-30 2007-04-12 Tokai Rubber Ind Ltd 流体封入式防振装置
US20090224445A1 (en) * 2006-01-16 2009-09-10 Toyo Tire & Rubber Co., Ltd. Liquid Filled Type Vibration Isolator
DE102006054110A1 (de) * 2006-11-15 2008-05-21 Carl Freudenberg Kg Hydrolager mit einer wellenförmigen Membran
JP2008164102A (ja) * 2006-12-28 2008-07-17 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP5264272B2 (ja) * 2008-04-30 2013-08-14 株式会社ブリヂストン 防振装置
JP5557837B2 (ja) * 2009-04-28 2014-07-23 株式会社ブリヂストン 防振装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074617A (ja) * 2001-08-31 2003-03-12 Tokai Rubber Ind Ltd 流体封入式防振装置
JP2009002433A (ja) 2007-06-21 2009-01-08 Toyo Tire & Rubber Co Ltd 液封入式防振装置
JP2008196705A (ja) * 2008-04-01 2008-08-28 Toyo Tire & Rubber Co Ltd 流体封入式防振装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121696A (ja) * 2014-12-24 2016-07-07 東洋ゴム工業株式会社 能動型防振装置

Also Published As

Publication number Publication date
JPWO2010119645A1 (ja) 2012-10-22
EP2420699A4 (en) 2017-10-25
CN102395809B (zh) 2013-11-20
CN102395809A (zh) 2012-03-28
JP5284463B2 (ja) 2013-09-11
US20120018936A1 (en) 2012-01-26
EP2420699A1 (en) 2012-02-22
EP2420699B1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP5095763B2 (ja) 液封入式防振装置
WO2011099357A1 (ja) 防振装置
JP4358891B1 (ja) 液封入式防振装置
JP4740776B2 (ja) 液封入式防振装置
JP5202729B2 (ja) 液封入式防振装置
JP5801134B2 (ja) 液封入式防振装置
JP2015145701A (ja) 流体封入式防振装置
JP5284463B2 (ja) 液封入式防振装置
JP5431982B2 (ja) 液封入式防振装置
JP2010071452A (ja) 液封入式防振装置
JP5925545B2 (ja) 液封入式防振装置
JP2007218416A (ja) 液封入式防振装置
JP2012202512A (ja) 多方向防振型の流体封入式防振装置
JP5801135B2 (ja) 液封入式防振装置
JP4891295B2 (ja) 液封入式防振装置
JP4603014B2 (ja) 液封入式防振装置
JP2014031844A (ja) 防振装置
JP7146654B2 (ja) 流体封入式防振装置
JP3853962B2 (ja) 防振装置
JP6572104B2 (ja) 液封入式防振装置
JP5215156B2 (ja) 液封入式防振装置
JP5619653B2 (ja) 液封入式防振装置
JP4555364B2 (ja) 液封入式防振装置
JP5690988B2 (ja) 液封入式防振装置
JP5122523B2 (ja) 液封入式防振装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016423.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509199

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13257786

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010764232

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE