WO2010117029A1 - ペルフルオロ有機過酸化物の製造方法 - Google Patents

ペルフルオロ有機過酸化物の製造方法 Download PDF

Info

Publication number
WO2010117029A1
WO2010117029A1 PCT/JP2010/056341 JP2010056341W WO2010117029A1 WO 2010117029 A1 WO2010117029 A1 WO 2010117029A1 JP 2010056341 W JP2010056341 W JP 2010056341W WO 2010117029 A1 WO2010117029 A1 WO 2010117029A1
Authority
WO
WIPO (PCT)
Prior art keywords
peroxide
perfluoroacyl
aqueous solution
production method
tubular reactor
Prior art date
Application number
PCT/JP2010/056341
Other languages
English (en)
French (fr)
Inventor
勝也 上野
田中 俊幸
麻耶子 高橋
山田 和彦
総明 竹尾
古田 昇二
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP10761728.4A priority Critical patent/EP2418199B1/en
Priority to JP2011508384A priority patent/JP5724874B2/ja
Priority to CN201080015920.0A priority patent/CN102369184B/zh
Publication of WO2010117029A1 publication Critical patent/WO2010117029A1/ja
Priority to US13/248,732 priority patent/US8759567B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C409/00Peroxy compounds
    • C07C409/32Peroxy compounds the —O—O— group being bound between two >C=O groups
    • C07C409/34Peroxy compounds the —O—O— group being bound between two >C=O groups both belonging to carboxylic acids

Definitions

  • the present invention relates to a method for producing a fluorocarbon acyl peroxide.
  • Perfluoroacyl peroxides are generally halogenated by dissolving a hydroxide such as potassium hydroxide or sodium hydroxide and hydrogen peroxide (or a metal peroxide such as Na 2 O 2 ) in an organic solvent. It is produced by stirring together with an alkyl compound.
  • Perfluoroacyl peroxides generally have low thermal stability, and the yield of peroxides may decrease due to autolysis by heat of reaction. Also, since perfluoroacyl peroxide generally undergoes a hydrolysis reaction, it becomes a competitive reaction between a reaction in which perfluoroacyl peroxide is generated and a reaction in which perfluoroacyl peroxide is hydrolyzed. As it becomes stronger, the hydrolysis reaction is accelerated, and as a result, the recovery rate may decrease.
  • Patent Document 1 describes a method for continuously producing peroxyesters by passing acid chloride, hydroperoxide, and aqueous alkali metal hydroxide through two continuous mechanically stirred reaction vessels. .
  • the peroxyesters described in this patent example contain only carbon, hydrogen and oxygen, and there is no description of the examples relating to the production of perfluoroacyl peroxide.
  • Patent Document 2 describes a continuous production method of a fluorocarbon acyl peroxide in which a hydroxide, a peroxide and an acyl halide are reacted under a continuous stirring condition.
  • this Patent Document 2 it is described that the reaction product is subjected to strong stirring using an ultrasonic wave or a static mixer to complete the reaction in a short time to obtain a good yield of peroxide.
  • Example 13 describes a process for producing perfluoropropionyl peroxide [CF 3 CF 2 (C ⁇ O) O] 2 , but in a yield based on the starting material C 2 F 5 COCl. In the system without addition, the yield is 18 to 23%, which is a very low yield.
  • the yield is improved to 43% by adding the surfactant, but the yield is still low, and when the surfactant has an adverse effect on the use of this product, There is a disadvantage that a process for removing the agent is required.
  • the present surfactant since a similar compound of PFOA which bioaccumulation potential has been pointed out (CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 COONH 4) also, its use is undesirable.
  • Patent Document 3 describes a batch production method of a fluorocarbon acyl peroxide in which a hydroxide, a peroxide and an acyl halide are reacted under a batch condition.
  • This Example 2 describes a method for producing perfluoropropionyl peroxide [CF 3 CF 2 (C ⁇ O) O] 2 , but it is obtained in a yield of about 82% based on the starting material C 2 F 5 COCl. It has been.
  • there is no description of the reaction time but there is a problem in productivity because of the batch reaction.
  • Patent Document 4 describes a continuous synthesis method of perfluoro organic peroxide using a microreactor, but the microreactor has a very narrow reactor flow path, and the reactor volume per unit reactor length. Is small. Therefore, in order to secure a sufficient residence time for completing the reaction, it is necessary to keep the flow rate of the reaction solution supplied to the reactor small or lengthen the reactor.
  • the former method requires a very large number of microreactors because the production volume of each reactor is small. There's a problem.
  • the latter method has a demerit that the pressure loss in the flow path increases due to the longer reactor. Therefore, the synthesis using such a microreactor also has a problem in the production of a large amount of perfluoro organic peroxide.
  • perfluoroacyl peroxide which is thermally unstable and self-degradable, with easy-to-handle and easy-to-use raw materials, no auxiliary agents such as surfactants are required, and the perfluoroacyl peroxide is safe and productive. There is a need for a method of producing oxides.
  • the present invention introduces a perfluoroacyl halide-containing organic solvent solution, an aqueous solution of hydrogen peroxide or metal peroxide, and an aqueous solution of a basic alkali metal compound into an inlet of a tubular reactor, and the solution is introduced into the tubular reactor.
  • the flow rate ratio between the aqueous solution of hydrogen peroxide or metal peroxide and the basic alkali metal compound aqueous solution is expressed by the molar ratio of the compounds in each solution, and the basic alkali metal compound is added to the perfluoroacyl halide 1 Pelfur characterized by being in the range of 1.00 to 1.35, hydrogen peroxide or metal peroxide in the range of 0.60 to 40
  • a method for producing an oloacyl peroxide is provided.
  • Perfluoroacyl halide-containing organic solvent solution hydrogen peroxide or an aqueous solution of a metal peroxide such as Na 2 O 2 and an aqueous solution of a basic alkali metal compound are used as synthetic raw materials, and hydrogen peroxide or metal is used per 1 mol of perfluoroacyl halide.
  • the yield of perfluoroacyl peroxide based on the raw material perfluoroacyl halide is conventionally increased by supplying the continuous reactor in the range of 0.60 to 40 mol of peroxide and 1.00 to 1.35 mol of basic alkali metal compound. It can be greatly improved compared to technology.
  • an auxiliary agent such as a surfactant, a process for removing such an auxiliary agent becomes unnecessary.
  • the perfluoroacyl halide used as an essential raw material component is preferably composed of a compound represented by the following formula (1).
  • G is a fluorine atom or a pentafluorophenoxy group
  • X is a halogen atom
  • v is an integer of 0 to 10
  • w is 0 or 1
  • y is an integer of 0 to 7
  • z is 0 or 1
  • v + w ⁇ 1 represents].
  • G is preferably a fluorine atom, and X is preferably a fluorine atom or a chlorine atom.
  • v is preferably an integer of 1 to 5
  • y is preferably an integer of 0 to 2.
  • G is a fluorine atom
  • X is a fluorine atom or a chlorine atom
  • v is 2 or 4
  • w + y + z is 0.
  • perfluoroacyl halide examples include perfluoroethanoyl chloride, perfluoroethanoyl fluoride, perfluoropropanoyl chloride, perfluoropropanoyl fluoride, perfluorobutanoyl chloride, perfluorobutanoyl fluoride, and perfluoropentanoyl chloride.
  • Perfluoropentanoyl fluoride perfluorohexanoyl chloride, perfluorohexanoyl fluoride, perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride, perfluoro-2,5,8-trimethyl-3, Preferred examples include 6,9-trioxadodecanoyl fluoride and perfluoro-2-methyl-3-oxahexanoyl fluoride.
  • perfluoropropanoyl chloride perfluoropropanoyl chloride, perfluoropropanoyl chloride, perfluorobutanoyl chloride, or perfluorobutanoyl chloride is preferred, and perfluoropropanoyl chloride is particularly preferred because of easy availability and production.
  • G is a fluorine atom or a pentafluorophenoxy group
  • X is a halogen atom
  • v is an integer of 0 to 10
  • w is 0 or 1
  • y is an integer of 0 to 7
  • z is 0 or 1
  • v + w ⁇ 1 Represents] is preferable.
  • an organic solvent that is non-reactive with peroxides and easily dissolves perfluoroacyl halide and perfluoroacyl peroxide is used as the organic solvent.
  • the organic solvent fluorine-containing organic solvents and hydrocarbon solvents are preferable, and fluorine-containing organic solvents such as fluorocarbons, chlorofluorocarbons, hydrofluorocarbons and hydrofluoroethers are particularly preferable.
  • organic solvent examples include C 6 F 13 H, CF 3 CF 2 CHCl 2 , CF 2 ClCF 2 CHClF, C 2 F 5 I, C 4 F 9 I, C 6 F 13 I, CF 2 ClCFCl 2 , CF 3 CH 2 CF 2 H, CF 3 CF 2 CH 2 CF 2 H, CHClFCF 2 CF 2 Cl, F (CF 2 ) 4 OCH 3 , F (CF 2 ) 4 OC 2 H 5 , H (CF 2 ) 4 OCH 3 , H (CF 2 ) 4 OC 2 H 5 , perfluorobutyltetrahydrofuran, perfluoropropyltetrahydrofuran, perfluorohexane, dichloropentafluoropropane, hexane, xylene, benzene, cyclohexane or mineral spirits, or a mixture thereof .
  • the concentration of perfluoroacyl halide in the organic solvent solution is preferably 1 to 80% by mass, and particularly preferably 3 to 60% by mass. If the concentration exceeds 80% by mass, the risk of self-decomposition of the product is high and handling becomes difficult. When the concentration is less than 1% by mass, the amount of solvent to be used is very large, and the productivity is lowered, which is not industrially preferable.
  • hydrogen peroxide or metal peroxide include preferably hydrogen peroxide, sodium peroxide, barium peroxide, and the like.
  • hydrogen peroxide is preferable from the viewpoint of easy handling and economy.
  • hydrogen peroxide when used, it is preferably used alone, and when other peroxide is used, it can be used alone or as a mixture.
  • the concentration of hydrogen peroxide or metal peroxide in the aqueous solution is preferably 1 to 60% by mass, particularly in the range of 5 to 50% by mass. It is preferable to do this.
  • the concentration exceeds 60% by mass, the yield of the product decreases.
  • the concentration is less than 1% by mass, the reaction efficiency decreases remarkably, which is not industrially preferable.
  • the basic alkali metal compound is an alkali metal compound whose aqueous solution exhibits basicity, and alkali metal hydroxides, carbonates, hydrogen carbonates, and the like are preferable.
  • alkali metal hydroxides, carbonates, hydrogen carbonates, and the like are preferable.
  • sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate and the like can be preferably exemplified, and potassium hydroxide is particularly preferable.
  • a basic alkali metal compound it can be used individually or as a mixture.
  • the concentration of the basic alkali metal compound in the aqueous solution is preferably 1 to 60% by mass, and particularly preferably in the range of 5 to 50% by mass.
  • the concentration exceeds 60% by mass, the yield of the product decreases.
  • the concentration is less than 1% by mass, the reaction efficiency decreases remarkably, which is not industrially preferable.
  • the production method of the perfluoroacyl peroxide of the present invention is carried out by a continuous method.
  • the production by the continuous method is less in the amount of raw materials and products staying in the reactor than the batch production, so that the reaction in which the products are generated from the raw materials as in the present invention is exothermic.
  • even when the obtained product is unstable to heat and decomposes with heat generation, it has an advantage that it can be produced safely and in a high yield.
  • the continuous production has the advantage that the production volume can be increased compared to a batch-type production apparatus of the same size.
  • FIG. 1 is a schematic configuration diagram of this embodiment.
  • the perfluoroacyl halide organic solvent solution 1, the hydrogen peroxide or metal peroxide aqueous solution 2, and the basic alkali metal compound aqueous solution 3 are continuously introduced from the inlet of the tubular reactor 4 at a specific flow rate. Is done.
  • the tubular reactor 4 has a mixing region for uniformly mixing the solutions, and the introduced solutions are mixed in the tubular reactor and the reaction proceeds. Since the organic solvent solution and the aqueous solution are immiscible, the formation reaction of perfluoroacyl peroxide proceeds at the interface between the organic solvent solution and the aqueous solution.
  • the liquid led out from the outlet of the tubular reactor is led to the two-phase separation tank 5.
  • the liquid led out from the tubular reactor contains an immiscible organic solvent solution and an aqueous solution, and is separated into two phases of an organic phase and an aqueous phase in the two-phase separation tank 5. After separating into two phases, the organic phase and the aqueous phase are recovered into the organic phase recovery tank 6 and the aqueous phase recovery tank 7, respectively.
  • the generated perfluoroacyl peroxide is contained in the organic phase and is recovered from the organic phase recovery tank 6.
  • the flow of the organic solvent solution 1, the flow of the aqueous solution 2, and the flow of the aqueous solution 3 are merged at the inlet of the tubular reactor 4.
  • the flow of the aqueous solution 2 and the flow of the aqueous solution 3 introduced into the tubular reactor 4 may be combined in advance, and the combined flow may be introduced into the tubular reactor 4. Since the organic solvent solution 1 and the aqueous solution such as the aqueous solution 2 are immiscible, the flow of the organic solvent solution 1 and the flow of the aqueous solution such as the aqueous solution 2 are merged at the inlet of the tubular reactor 4. Is preferred.
  • the tubular reactor preferably has a structure capable of heating and cooling at the jacket portion and a structure capable of uniformly and continuously adding an organic solvent solution and an aqueous solution.
  • the installation shape of the tubular reactor is not particularly limited, and a vertical direction, a horizontal direction, an oblique direction, and the like are employed.
  • the cross-sectional shape of the reaction part of the tubular reactor is not particularly limited, and a shape such as a circle, an ellipse, a semicircle, a triangle, a square, a rectangle, a trapezoid or other quadrangle, a pentagon, a hexagon, or the like is adopted. . Preferably, it is circular for ease of manufacture.
  • the tube length of the reaction part of the tubular reactor is preferably from 0.01 to 1000 m, more preferably from 0.05 to 10 m, particularly preferably from 0.1 to 5 m. If the length of the reactor is too short, the residence time of the reaction mixture is shortened and the yield of perfluoroacyl peroxide is reduced. If it is too long, the pressure loss between the reaction mixture supply port and the reaction outlet port will increase, and the reaction mixture will not flow stably in the tubular reactor.
  • the internal cross-sectional area of the tubular reactor is preferably 1.0 ⁇ 10 ⁇ 7 to 5.0 ⁇ 10 ⁇ 4 m 2 , particularly 2.0 ⁇ 10 ⁇ 7 to 1.0 ⁇ 10 ⁇ 4 m 2. preferable.
  • the internal cross-sectional area of the tubular reactor refers to the area of the cross section perpendicular to the direction in which the liquid flows in the flow path through which the reaction liquid flows. If the internal cross-sectional area is less than 1.0 ⁇ 10 ⁇ 7 m 2, it will be difficult to produce a continuous reactor, and the reactor volume per unit reactor length will be small, so the reaction required to complete the reaction. The length of the vessel increases and the pressure loss in the flow path increases. When it is larger than 5.0 ⁇ 10 ⁇ 4 m 2, the wall area per unit volume of the reaction part is reduced, so that the heat removal efficiency is lowered and the yield is lowered.
  • This mixing region is a region in which, for example, a static mixer, a packing, an ultrasonic mixer, a mechanical mixer, and the like are provided in the flow path in the tubular reactor.
  • the static mixer include a static mixer (stator tube mixer type, spiral mixer type).
  • the filler include a filler having a diameter smaller than the inner diameter of the narrow tube forming the flow path (for example, resin pellet, Raschig ring, Lessing ring, pole ring, saddle, and sulzer packing).
  • the flow ratio of the perfluoroacyl halide-containing organic solvent solution and the basic alkali metal compound aqueous solution introduced into the tubular reactor is such that the molar ratio of the perfluoroacyl halide to the basic alkali metal compound in each solution is perfluoroacyl halide:
  • Basic alkali metal compound 1: 1.00 to 1.35.
  • the flow ratio is more preferably 1: 1.02 to 1.30, and particularly preferably 1: 1.04 to 1.19.
  • the flow ratio between the perfluoroacyl halide-containing organic solvent solution and the aqueous solution of hydrogen peroxide or metal peroxide introduced into the tubular reactor is the molar ratio of perfluoroacyl halide to hydrogen peroxide in each solution.
  • Acyl halide: hydrogen peroxide 1: 0.60-40.
  • the flow rate ratio is more preferably 1: 0.8 to 35, and 1: 1 to 10 is particularly preferable from the viewpoint of productivity.
  • the present invention is a competitive reaction between a reaction in which a perfluoroacyl peroxide is generated and a reaction in which the perfluoroacyl peroxide is hydrolyzed.
  • the molar ratio of the perfluoroacyl halide to the basic alkali metal compound There is an appropriate range for. If the basic alkali metal compound is less than the above range, the raw material perfluoroacyl halide remains unreacted and the yield is lowered. If the basic alkali metal compound exceeds the above range, the perfluoroacyl peroxide is hydrolyzed. The decomposition reaction is promoted and the yield decreases. On the other hand, when there is too little hydrogen peroxide etc., the reaction amount with a perfluoro acyl halide will fall, and productivity will fall when it becomes excessive.
  • the reaction temperature for carrying out the reaction is preferably in the range of ⁇ 30 to + 50 ° C., particularly preferably ⁇ 10 ° C. to 30 ° C.
  • the reaction temperature is less than ⁇ 30 ° C., it takes a long time for the reaction.
  • the reaction temperature exceeds + 50 ° C., the resulting perfluoroacyl peroxide is decomposed and the yield is lowered, which is not preferable.
  • the residence time is 0.1 seconds to 5 hours.
  • the liquid derived from the tubular reactor contains an organic solvent solution and an aqueous solution that are immiscible, and is separated into two phases of an organic phase and an aqueous phase. Each phase can be recovered.
  • the yield of recovered perfluoroacyl peroxide is preferably 75% or more, particularly preferably 80 to 100%.
  • the recovered organic phase containing the perfluoroacyl peroxide may include a purification step of the perfluoroacyl peroxide by distillation, washing, recrystallization or the like.
  • the yield of the perfluoroacyl peroxide after the purification is reduced by about 20% from the yield in the organic phase due to hydrolysis in the washing, recovery loss, etc., so 60% or more is preferable. 64 to 100% is particularly preferable.
  • the tubular reactors may be used alone or in parallel.
  • 2 to 1000 are preferable, and 2 to 100 are more preferable.
  • Use of a plurality is preferable because the production amount of perfluoroacyl peroxide can be appropriately controlled.
  • the yield was determined.
  • the concentration titration was performed by the following method. Take 25 ml of acetic acid and 2 ml of saturated aqueous potassium iodide solution in this order in an Erlenmeyer flask with an internal volume of 100 ml, and weigh accurately about 0.2 g of the sample into it. Seal and mix contents and allow to react for 10 minutes in the dark. Titrate with 0.025 mol / L aqueous sodium thiosulfate solution until the iodine color disappears.
  • (C 2 F 5 COO) 2 selectivity (%) ⁇ (C 2 F 5 COO) 2 production amount (mole) ⁇ 2 / C 2 F 5 COCl consumption amount (mole) ⁇ ⁇ 100 - was determined (C 2 F 5 COO) 2 yield under formula (C 2 F 5 COO) 2 yield.
  • (C 2 F 5 COO) 2 yield (%) (C 2 F 5 COCl conversion) ⁇ ((C 2 F 5 COO) 2 selectivity) ⁇
  • After purification (C 2 F 5 COO) after 2 yield purified (C 2 F 5 COO) 2 yield was calculated by the following equation.
  • Example 1 As a synthesis raw material, a CClF 2 CF 2 CHClF solution (Fig. 1 symbol 1), a hydrogen peroxide aqueous solution (Fig. 1 symbol 2), and a KOH aqueous solution (Fig. 1 symbol 3) of perfluoroacyl halide C 2 F 5 COCl were used.
  • the tubular reactor As the tubular reactor (reference numeral 4 in FIG. 1), a resin tube whose outer periphery was covered with a jacket was used. The resin tube had a static mixer (a disposable mixer manufactured by Noritake Company Limited, model DSP-MXA3-17) inside, and had an inner diameter of 0.003 m and a length of 1.2 m. The number of tubular reactors was one.
  • the jacket temperature was 0-5 ° C.
  • C 2 F 5 COCl was a 50% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 16 g / min.
  • the concentration of the aqueous hydrogen peroxide solution was 35% by mass, the concentration of the KOH aqueous solution was 15% by mass, and each was supplied at a molar ratio of 1.02 to C 2 F 5 COCl.
  • Reaction was performed by supplying these raw materials to the tubular reactor described above.
  • the liquid obtained at the outlet of the tubular reactor is separated into two phases of an organic phase and a water phase using CClF 2 CF 2 CHClF as a solvent (reference numeral 5 in FIG.
  • Examples 2 to 11 Hydrogen peroxide and KOH were supplied at a molar ratio of 0.89 to 1.71 with respect to C 2 F 5 COCl, respectively. Except for the above, the procedure was the same as Example 1. Table 1 shows the raw material molar ratio and the conversion rate, selectivity, and yield at that time.
  • Example 12 to 14 The molar ratio of KOH to C 2 F 5 COCl was 1.05, and hydrogen peroxide was supplied at a molar ratio of 0.57, 1.13, and 10.02 to C 2 F 5 COCl, respectively. Except for the above, the procedure was the same as Example 1. Table 1 shows the raw material molar ratio and the conversion rate, selectivity, and yield at that time.
  • Example 15 to 18 The molar ratio of KOH to C 2 F 5 COCl is 1.13, and hydrogen peroxide is 0.57, 1.71, 10.02, and 32.79, respectively, relative to C 2 F 5 COCl. Supplied. Except for the above, the procedure was the same as Example 1. Table 1 shows the raw material molar ratio and the conversion rate, selectivity, and yield at that time.
  • Example 19 to 21 The molar ratio of KOH to C 2 F 5 COCl was 1.20, and hydrogen peroxide was supplied at a molar ratio of 0.57, 1.13, and 10.02 to C 2 F 5 COCl, respectively. Except for the above, the procedure was the same as Example 1. Table 1 shows the raw material molar ratio and the conversion rate, selectivity, and yield at that time.
  • C 2 F 5 COCl was a 37% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 20 g / min. Hydrogen peroxide and KOH were each supplied at a molar ratio of 1.20 with respect to C 2 F 5 COCl. The others were the same as in Example 1. At this time, the C 2 F 5 COCl conversion rate was 100%, the (C 2 F 5 COO) 2 selectivity was 85%, and the (C 2 F 5 COO) 2 yield was 85%.
  • Example 23 Resin pellets (CFC PFA pellets, diameter 2.0 mm) are used instead of static mixers (disposable mixers manufactured by Noritake Co., Limited, model DSP-MXA3-17) inside the resin tubes of the tubular reactor The procedure was the same as in Example 1 except that. At this time, C 2 F 5 COCl conversion was 96%, (C 2 F 5 COO) 2 selectivity was 90%, and (C 2 F 5 COO) 2 yield was 87%.
  • FIG. 2 shows an outline of this embodiment.
  • the number of tubular reactors was six (4 in FIG. 2).
  • C 2 F 5 COCl was a 44% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 60 g / min.
  • a CClF 2 CF 2 CHClF solution of C 2 F 5 COCl, an aqueous hydrogen peroxide solution, and an aqueous KOH solution were supplied in parallel to 6 reactors, respectively. Except for the above, the procedure was the same as Example 1. At this time, C 2 F 5 COCl conversion was 91%, (C 2 F 5 COO) 2 selectivity was 86%, and (C 2 F 5 COO) 2 yield was 79%.
  • Example 25 The molar ratio of KOH to C 2 F 5 COCl was 2.00 and hydrogen peroxide was 1.00. Except for the above, the procedure was the same as Example 1. At this time, the C 2 F 5 COCl conversion rate was 98%, the (C 2 F 5 COO) 2 selectivity was 14%, and the (C 2 F 5 COO) 2 yield was 13%.
  • Example 26 The organic phase obtained in Example 6 was washed with water and then allowed to stand to separate into two phases, an organic phase using CClF 2 CF 2 CHClF as a solvent and an aqueous phase, and the organic phase was recovered.
  • the yield of (C 2 F 5 COO) 2 after purification was 64%.
  • the tubular reactor had an inner diameter of 0.003 m and a length of 2.4 m, and the number of tubular reactors was one.
  • the jacket temperature was 0-5 ° C.
  • C 2 F 5 COCl was a 44% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 17.6 g / min.
  • the concentration of the aqueous hydrogen peroxide solution was 35% by mass, the concentration of the KOH aqueous solution was 15% by mass, and each was supplied in a molar ratio of 1.13 with respect to C 2 F 5 COCl. Reaction was performed by supplying these raw materials to the tubular reactor described above.
  • the liquid obtained at the outlet of the tubular reactor was separated into two phases of an organic phase and an aqueous phase using CClF 2 CF 2 CHClF as a solvent, and the organic phase was recovered.
  • the recovered organic phase is washed with water and then allowed to stand to separate into two phases, an organic phase using CClF 2 CF 2 CHClF as a solvent and an aqueous phase. Of these, the organic phase is recovered, and the purified ( C 2 F 5 COO) 2 yield was 65%.
  • the tubular reactor had an inner diameter of 0.003 m and a length of 1.2 m, and the number of tubular reactors was one.
  • the jacket temperature was 7 ° C.
  • C 2 F 5 COCl was a 44% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 10 g / min.
  • the concentration of the aqueous hydrogen peroxide solution was 35% by mass, the concentration of the KOH aqueous solution was 15% by mass, and each was supplied in a molar ratio of 1.13 with respect to C 2 F 5 COCl. Reaction was performed by supplying these raw materials to the tubular reactor described above.
  • the liquid obtained at the outlet of the tubular reactor was separated into two phases of an organic phase and an aqueous phase using CClF 2 CF 2 CHClF as a solvent, and the organic phase was recovered.
  • the recovered organic phase is washed with water and then allowed to stand to separate into two phases, an organic phase using CClF 2 CF 2 CHClF as a solvent and an aqueous phase. Of these, the organic phase is recovered, and the purified ( C 2 F 5 COO) 2 yield was 64%.
  • Perfluoroacyl peroxide is one of radical initiators that are useful industrially in carrying out radical reactions of polyolefins, particularly fluoroolefins such as tetrafluoroethylene. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-094170 filed on April 8, 2009 are cited herein as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 生産性よく安全にペルフルオロアシル過酸化物を製造する方法について提供すること。 ペルフルオロアシルハライド含有有機溶剤溶液、過酸化水素または金属過酸化物の水溶液および塩基性アルカリ金属化合物水溶液の流量比を、前記各溶液中の化合物のモル比で表して、ペルフルオロアシルハライド1に対して、塩基性アルカリ金属化合物を1.00~1.35、過酸化水素または金属過酸化物を0.60~40、の範囲で管型反応器に供給して反応させることで、原料ペルフルオロアシルハライドを基にしたペルフオロアシル過酸化物の収率を従来技術に比較して大幅に向上せしめることができる。

Description

ペルフルオロ有機過酸化物の製造方法
 本発明はフルオロカーボンアシル過酸化物の製造方法に関する。
 ペルフルオロアシル過酸化物は一般的には水酸化カリウムや水酸化ナトリウム等の水酸化物及び過酸化水素(または例えばNaの如き金属過酸化物)を有機溶媒中に溶解させたハロゲン化アルキル化合物と共に攪拌することにより製造される。ペルフルオロアシル過酸化物は一般的に熱安定性が低く、反応熱による自己分解により過酸化物の収率が低下する可能性がある。また、一般的にペルフルオロアシル過酸化物は加水分解反応を起こすため、ペルフルオロアシル過酸化物が生成する反応と、ペルフルオロアシル過酸化物が加水分解する反応の競争反応となるが、攪拌または乳化が強くなるにつれ、加水分解反応が促進され、結果として回収率が低下する可能性がある。
 特許文献1には、連続する2つの機械的に攪拌されている反応容器中に酸クロリド、ヒドロペルオキシド、水性アルカリ金属水酸化物を通過させてペルオキシエステル類を連続製造する方法が記載されている。この特許実施例に記載のペルオキシエステル類は炭素と水素と酸素のみを含有するものであり、ペルフルオロアシル過酸化物の製造に関する実施例の記載はない。
 特許文献2には、連続攪拌条件下で水酸化物、過酸化物及びハロゲン化アシルを反応させるフルオロカーボンアシル過酸化物の連続製造方法が記載されている。この特許文献2では、反応物を超音波や静的混合機などを用いて強攪拌にかけることにより短時間で反応を完結させて良好な収率の過酸化物を得ることが記載されている。しかしながら実施例13では、過酸化ペルフルオロプロピオニル[CFCF(C=O)O]の製造方法が記載されるが、出発原料CCOClを基にした収率で、界面活性剤を添加しない系では18~23%で得られており、非常に低収率である。また、界面活性剤を添加することにより、収率は43%に向上しているが、未だ低収率であり、また本生成物の使用に際して界面活性剤が悪影響を及ぼす場合には、界面活性剤を除去するプロセスが必要になるという欠点がある。さらに本界面活性剤は、生体蓄積性が指摘されているPFOAの類似化合物(CFCFCFCFCFCFCFCOONH)であることからも、その使用は望ましくない。
 特許文献3には、バッチ条件下で水酸化物、過酸化物及びハロゲン化アシルを反応させるフルオロカーボンアシル過酸化物のバッチ製造方法について記載されている。この実施例2では過酸化ペルフルオロプロピオニル[CFCF(C=O)O]の製造方法が記載されているが、出発原料CCOClを基にした収率82%程度で得られている。本実施例では反応時間の記載はないがバッチ式反応のため、生産性に問題がある。
 特許文献4には、マイクロリアクターを用いたペルフルオロ有機過酸化物の連続合成方法についての記載があるが、マイクロリアクターは反応器の流路が非常に狭く、単位反応器長さ当りの反応器容積が小さい。したがって、反応を完結させるのに十分な滞留時間を確保するためには、反応器に供給する反応液の流量を小さく抑える、もしくは反応器を長くすることが必要になる。しかしながら大きな生産量が必要な場合には、前者の手法では個々のリアクターの生産量が小さくなるために、非常に多くの数のマイクロリアクターを要することとなり、それにかかる計装類も多くなる等の問題がある。また、後者の手法では、反応器が長くなることで流路の圧力損失が大きくなるというデメリットがある。したがって、このようなマイクロリアクターを用いた合成も、多量のペルフルオロ有機過酸化物の生産には問題がある。
特開昭53-44514号公報 特開平11-511464号公報 米国特許2,792,423号明細書 特開2005-244334号公報
 熱的に不安定で自己分解性のあるペルフルオロアシル過酸化物を、取扱い容易で入手容易な原料を使用して、界面活性剤等の助剤を必要とせず、安全かつ生産性良くペルフルオロアシル過酸化物を製造する方法が必要とされている。
 本発明は、ペルフルオロアシルハライド含有有機溶剤溶液、過酸化水素または金属過酸化物の水溶液および塩基性アルカリ金属化合物の水溶液を管型反応器の入口に導入し、管型反応器内で前記溶液を混合して反応させ、ペルフルオロアシル過酸化物を含む液を管型反応器の出口から導出するペルフルオロアシル過酸化物の連続製造方法において、管型反応器に導入する、ペルフルオロアシルハライド含有有機溶剤溶液、過酸化水素または金属過酸化物の水溶液および塩基性アルカリ金属化合物水溶液の流量比を、前記各溶液中の化合物のモル比で表して、ペルフルオロアシルハライド1に対して、塩基性アルカリ金属化合物を1.00~1.35、過酸化水素または金属過酸化物を0.60~40、の範囲とすることを特徴とするペルフルオロアシル過酸化物の製造方法を提供する。
 ペルフルオロアシルハライド含有有機溶剤溶液、過酸化水素または例えばNaの如き金属過酸化物の水溶液および塩基性アルカリ金属化合物の水溶液を合成原料とし、ペルフルオロアシルハライド1molに対し、過酸化水素または金属過酸化物0.60~40mol、塩基性アルカリ金属化合物1.00~1.35molの範囲で連続反応器に供給することにより、原料ペルフルオロアシルハライドを基にしたペルフオロアシル過酸化物の収率を従来技術に比較して大幅に向上せしめることができる。また、本発明では界面活性剤等の助剤を必要としないため、こうした助剤を除去するプロセスが不要となる。
例1に示した管型反応器概略図 例24に示した管型反応器概略図
 本発明のペルフルオロアシル過酸化物の製造において、必須の原料成分として用いる前記ペルフルオロアシルハライドは、下式(1)で表される化合物からなることが好ましい。
 G(CF2)v[CF(CF3)CF2]w[OCF(CF3)CF2]y[OCF(CF3)]z-(C=O)X・・・・・・・・(1)
 (但し、Gはフッ素原子またはペンタフルオロフェノキシ基、Xはハロゲン原子、vは0~10の整数、wは0または1、yは0~7の整数、zは0または1でありかつv+w≧1、を表す]。
 Gはフッ素原子が好ましく、Xはフッ素原子または塩素原子が好ましい。vは1~5の整数が好ましく、yは0~2の整数が好ましい。特に、Gはフッ素原子、Xはフッ素原子または塩素原子、vは2または4、およびw+y+zは0であることが好ましい。
 前記ペルフルオロアシルハライドとしては、具体的には例えば、ペルフルオロエタノイルクロリド、ペルフルオロエタノイルフロリド、ペルフルオロプロパノイルクロリド、ペルフルオロプロパノイルフロリド、ペルフルオロブタノイルクロリド、ペルフルオロブタノイルフロリド、ペルフルオロペンタノイルクロリド、ペルフルオロペンタノイルフロリド、ペルフルオロヘキサノイルクロリド、ペルフルオロヘキサノイルフロリド、ぺルフルオロ-2,5-ジメチル-3,6-ジオキサノナノイルフルオリド、ペルフルオロ-2,5,8-トリメチル-3,6,9-トリオキサドデカノイルフルオリド、ペルフルオロ-2-メチル-3-オキサヘキサノイルフルオロド等を好ましく挙げることができる。特に入手および製造が容易なことから、ペルフルオロプロパノイルクロリド、ペルフルオロプロパノイルフロリド、ペルフルオロブタノイルクロリド、またはペルフルオロブタノイルフロリドが好ましく、ペルフルオロプロパノイルクロリドが特に好ましい。
 また本発明によって合成されるペルフルオロアシル過酸化物は、{R(C=O)O}[式中、Rは、G(CF2)v[CF(CF3)CF2]w[OCF(CF3)CF2]y[OCF(CF3)]z-を表す。Gはフッ素原子またはペンタフルオロフェノキシ基、Xはハロゲン原子、vは0~10の整数、wは0または1、yは0~7の整数、zは0または1でありかつv+w≧1、を表す]が好ましい。
 また本発明において、有機溶剤としては過酸化物に非反応性であり且つペルフルオロアシルハライド及びペルフルオロアシルペルオキシドを容易に溶解させる有機溶剤を用いる。有機溶剤としては、含フッ素有機溶剤や炭化水素系溶剤が好ましく、特にフルオロカーボン類、クロロフルオロカーボン類、ハイドロフルオロカーボン、ハイドロフルオロエーテル類などの含フッ素有機溶剤が好ましい。有機溶剤としては、例えば、C13H、CFCFCHCl、CFClCFCHClF、CI、CI、C13I、CFClCFCl、CFCHCFH、CFCFCHCFH、CHClFCFCFCl、F(CFOCH、F(CFOC、H(CFOCH、H(CFOC、パーフルオロブチルテトラヒドロフラン、パーフルオロプロピルテトラヒドロフラン、パーフルオロヘキサン、ジクロロペンタフルオロプロパン、ヘキサン、キシレン、ベンゼン、シクロヘキサンまたはミネラルスピリッツ等またはこれらの混合物が挙げられる。前記ペルフルオロアシルハライド含有有機溶剤溶液において、有機溶剤溶液中のペルフルオロアシルハライドの濃度は、1~80質量%とするのが好ましく、特に3~60質量%の範囲とするのが好ましい。前記濃度が80質量%を超えると、生成物の自己分解による危険性が高く、取扱い難くなる。前記濃度が1質量%未満の場合には、使用する溶媒量が非常に多くなり、生産性が低くなるため工業的に好ましくない。
 本発明において、過酸化水素または金属過酸化物としては、具体的には、例えば、過酸化水素、過酸化ナトリウム、過酸化バリウム等を好ましく挙げることができる。特にハンドリングの容易性および経済性の点から過酸化水素が好ましい。この際過酸化水素を用いる場合には、単独で用いるのが好ましく、他の過酸化物を用いる場合には単独若しくは混合物として用いることができる。
 また、前記過酸化水素または金属過酸化物の水溶液は、水溶液中の過酸化水素または金属過酸化物の濃度は、1~60質量%とするのが好ましく、特に5~50質量%の範囲とするのが好ましい。前記濃度が60質量%を超えると、生成物の収率が低下し、1質量%未満の場合には、反応効率が著しく低下し、工業的にも好ましくない。
 本発明において、塩基性アルカリ金属化合物は、その水溶液が塩基性を示すアルカリ金属化合物であり、アルカリ金属の水酸化物、炭酸塩、炭酸水素塩などが好ましい。具体的には、例えば、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム等を好ましく挙げることができるが、なかでも水酸化カリウムが特に好ましい。なお、塩基性アルカリ金属化合物の使用に際しては、単独若しくは混合物として用いることができる。
 また、塩基性アルカリ金属化合物の水溶液は、水溶液中の塩基性アルカリ金属化合物の濃度が、1~60質量%とするのが好ましく、特に5~50質量%の範囲とするのが好ましい。前記濃度が60質量%を超えると、生成物の収率が低下し、1質量%未満の場合には、反応効率が著しく低下し、工業的にも好ましくない。
 本発明のペルフルオロアシル過酸化物の製造方法は連続方法で実施する。連続方法による製造は、バッチ式の製造と比べて、反応器内部に滞留する原料および生成物の量が少ないことから、本発明のように原料から生成物が生成する反応が発熱を伴う場合にも、また、得られる生成物が熱に不安定で発熱を伴って分解するような場合にも、安全に、かつ高収率で製造が可能である、という利点を有する。さらに、連続的に製造を行うことにより、同程度のサイズのバッチ式製造装置と比べて、生産量を大きくすることができる、という利点を有する。
 本発明のペルフルオロアシル過酸化物の製造方法を具体的に説明する。図1は本実施例の概略構成図である。原料であるペルフルオロアシルハライドの有機溶剤溶液1、過酸化水素または金属過酸化物の水溶液2、塩基性アルカリ金属化合物の水溶液3は、特定の流量で連続的に管型反応器4の入口から導入される。管型反応器4は、各溶液を均一に混合する混合領域を有しており、導入された各溶液は管型反応器内で混合され反応が進行する。有機溶剤溶液と水溶液が非混和性であるので、ペルフルオロアシル過酸化物の生成反応は有機溶剤溶液と水溶液の界面で進行する。このため、有機溶剤溶液と水溶液とをより均一に微細に分散混合することが好ましい。管型反応器の出口から導出された液は、二相分離槽5に導出される。管型反応器から導出された液は、非混和性である有機溶剤溶液及び水溶液を含んでおり、二相分離槽5中で有機相と水相の2相に分離する。2相に分離した後、有機相と水相はそれぞれ有機相回収槽6、水相回収槽7へと回収される。生成されたペルフルオロアシル過酸化物は有機相に含有されており、有機相回収槽6より回収される。
 本発明において、前記有機溶剤溶液1の流れと前記水溶液2の流れと前記水溶液3の流れが管型反応器4の入口で合流されることが好ましい。また、管型反応器4へ導入される前記水溶液2の流れと前記水溶液3の流れはあらかじめ合流されて、その合流された流れが管型反応器4に導入されてもよい。前記有機溶剤溶液1と前記水溶液2等の水溶液は非混和性であるので、前記有機溶剤溶液1の流れと前記水溶液2等の水溶液の流れは、管型反応器4の入口で合流されることが好ましい。
 前記管型反応器としては、ジャケット部での昇温・冷却が可能な構造を有し、有機溶剤溶液と水溶液を均一に連続添加させることのできる構造を有するものが好ましい。管型反応器の設置形状としては、特に限定されず、鉛直方向、水平方向、斜め方向等が採用される。管型反応器の反応部の断面形状は特に限定されず、円形、楕円形、半円形、三角形、正方形、長方形、台形等の四角形、五角形、六角形等の多角形等の形状が採用される。好ましくは、製作の容易さから円形である。
 前記管型反応器の反応部の管長は、0.01~1000mが好ましく、0.05~10mがより好まく、0.1~5mが特に好ましい。反応器の長さが、あまりに短いと反応混合物の滞留時間が短くなり、ペルフルオロアシル過酸化物の収率が低下する。あまりに長いと反応混合物の供給口と反応後の取り出し口の間の圧力損失が大きくなり、管型反応器内を反応混合物が安定して流れなくなる。
 前記管型反応器の内部断面積は、1.0×10-7~5.0×10-4が好ましく、2.0×10-7~1.0×10-4が特に好ましい。管型反応器の内部断面積とは、反応液が流れる流路の、液が流れる方向に対して垂直方向の断面の面積をいう。内部断面積が1.0×10-7より小さいと連続反応器製作が困難になるとともに、単位反応器長さ当りの反応器容積が小さくなるために、反応を完結させるのに要する反応器の長さが長くなり、流路の圧力損失が大きくなる。5.0×10-4より大きいと反応部単位体積当たりの壁面積が小さくなるため除熱効率が低下し、収率が低下する。
 非混和性の有機溶剤溶液と水溶液とを均一にかつ微細に分散混合させるために、管型反応器には、混合領域を設けることが好ましい。この混合領域は、管型反応器内の流路に、例えば、静止型混合器、充填物、超音波混合器、機械的混合器などを設けた領域である。静止型混合器としては、例えば、スタティックミキサー(ステータチューブミキサータイプ、スパイラルミキサータイプ)が挙げられる。充填物としては、流路を形成する細管の内径よりも小さな直径を有する充填物(例えば樹脂ペレット、ラシヒリング、レッシングリング、ポールリング、サドル、スルザーパッキン)が挙げられる。特に、流路に静止型混合器を設けて、非混和性の有機溶液と水溶液とを分割、反転、転換しながら混合することが望ましい。
 管型反応器に導入する、前記ペルフルオロアシルハライド含有有機溶剤溶液と塩基性アルカリ金属化合物水溶液との流量比は、各溶液中のペルフルオロアシルハライドと塩基性アルカリ金属化合物のモル比がペルフルオロアシルハライド:塩基性アルカリ金属化合物=1:1.00~1.35の範囲とする。より好ましいこの流量比は1:1.02~1.30であり、特に1:1.04~1.19が好ましい。
 管型反応器に導入する、前記ペルフルオロアシルハライド含有有機溶剤溶液と過酸化水素または金属過酸化物の水溶液との流量比は、各溶液中のペルフルオロアシルハライドと過酸化水素等のモル比がペルフルオロアシルハライド:過酸化水素=1:0.60~40の範囲とする。より好ましいこの流量比は1:0.8~35であり、生産性の点から特に1:1~10が好ましい。
 本発明では、ペルフルオロアシル過酸化物が生成する反応と、ペルフルオロアシル過酸化物が加水分解する反応の競争反応であり、生産性向上の観点から、ペルフルオロアシルハライドと塩基性アルカリ金属化合物のモル比には適切な範囲が存在する。塩基性アルカリ金属化合物が前記範囲よりも少ないと原料のペルフルオロアシルハライドが未反応のまま残存するため収率が低下し、塩基性アルカリ金属化合物が前記範囲よりも多くなるとペルフルオロアシル過酸化物が加水分解する反応が促進され収率は低下する。一方で、過酸化水素等は、少なすぎるとペルフルオロアシルハライドとの反応量が低下し、過剰になると生産性が低下する。
 また前記反応を行う際の反応温度は、-30~+50℃の範囲が好ましく、-10℃~30℃が特に好ましい。前記反応温度が、-30℃未満の場合には、反応に長時間を要し、+50℃を超えると、生成したペルフルオロアシル過酸化物の分解反応が起こり、収率が低下するため好ましくない。また滞留時間は0.1秒~5時間とするのが工業的にも好ましい。
 本発明では、管型反応器から導出された液は、非混和性である有機溶剤溶液及び水溶液を含んでおり、有機相と水相の2相に分離するため、分液により有機相と水相はそれぞれ回収することができる。回収されたペルフルオロアシル過酸化物の収率は、75%以上が好ましく、80~100%が特に好ましい。さらに、回収したペルフルオロアシル過酸化物を含む有機相を蒸留、洗浄、再結晶などよってペルフルオロアシル過酸化物の精製工程を含んでいてもよい。精製工程を含む場合、精製後のペルフルオロアシル過酸化物の収率は、洗浄での加水分解、回収ロスなどによって前記有機相での収率から約20%低下するため、60%以上が好ましく、64~100%が特に好ましい。
 本発明において、管型反応器は単独で用いてもよく、複数個並列して用いることも好ましい。複数個用いる場合には、2~1000個が好ましく、2~100個がより好ましい。複数個用いることにより、ペルフルオロアシル過酸化物の生産量を適宜制御できるので好ましい。
 以下に、実施例(例1、4~8、13、14、16~18、20~24、26~28)、比較例(例2、3、9~12、15、19、25)を用いて本願発明を詳細に説明するが、本発明はこれらに限定されない。
 本反応により得られた液について、濃度滴定およびガスクロマトグラフにより組成分析を行い、下記のようにしてCCOCl転化率、(CCOO)選択率、(CCOO)収率を求めた。濃度滴定は、以下の手法で行った。
  内容積100mlの三角フラスコに酢酸25ml、飽和ヨウ化カリウム水溶液2mlをこの順序に取り、ここに試料約0.2gを正確に秤量し、加える。密栓して内容物を混合し、暗所で10分間反応させる。0.025mol/Lのチオ硫酸ナトリウム水溶液にて、ヨウ素の色が消えるまで滴定する。同様の操作で試料を加えない条件でも行う(ブランク測定)。下式1により、サンプル中に含まれる生成物の重量100分率を算出した。
[式1]
重量%={(V-Vb)×Mw}/(800×Sa)
V:試料滴定に要した0.025mol/Lのチオ硫酸ナトリウム水溶液の体積(ml)
Vb:ブランク測定時に要した0.025mol/Lのチオ硫酸ナトリウム水溶液の体積(ml)
Mw:生成物の分子量326
Sa:試料の重量(g)。
 ・(CCOCl)転化率
 組成分析の結果を用い、下式から(CCOCl)転化率を求めた。
  (CCOCl)転化率(%)={1-(反応器出口CCOCl濃度(g/g)/(反応器入口CCOCl濃度(g/g))×100
 ・(CCOO)選択率
  組成分析の結果を用い、下式から(CCOO)選択率を求めた。
    (CCOO)選択率(%)={(CCOO)生成量(モル)×2/CCOCl消費量(モル)}×100
 ・(CCOO)収率
 下式から(CCOO)収率を求めた。
  (CCOO)収率(%)=(CCOCl転化率)×((CCOO)選択率)
・精製後の(CCOO)収率
 精製後の(CCOO)収率は、下式により求めた。
  精製後の(CCOO)収率(%)={(CCOO)生成速度(モル/hr)×2×反応時間(hr)}/{CCOCl供給速度(モル/hr)×反応時間(hr)}×100
 [例1]
 合成原料として、ペルフルオロアシルハライドCCOClのCClFCFCHClF溶液(図1符号1)、過酸化水素水溶液(図1符号2)、およびKOH水溶液(図1符号3)を用いた。管型反応器(図1符号4)としては、ジャケットで外周を覆った樹脂管を用いた。この樹脂管は、内部に静止型混合器(ノリタケカンパニーリミテド社製ディスポーザブルミキサー、型式DSP-MXA3-17)を伴ったものとし、内径0.003m、長さ1.2mとした。管型反応器の数は1個とした。ジャケット温度は0~5℃であった。CCOClはCClFCFCHClFの50質量%溶液とし、その流量は16g/minであった。過酸化水素水溶液の濃度は35質量%、KOH水溶液の濃度は15質量%とし、それぞれCCOClに対してモル比で1.02となるよう供給した。これら原料を、上で述べた管型反応器に供給することにより、反応を行った。管型反応器出口で得られる液は、CClFCFCHClFを溶媒とする有機相と水相の二相に分離され(図1符号5)、このうち有機相を回収することにより、(CCOO)のCClFCFCHClF溶液を得た(図1符号6)。水相は廃液とした(図1符号7)。
  このとき、CCOCl転化率は90%、(CCOO)選択率91%、(CCOO)収率は82%であった。
 [例2~11]
 過酸化水素およびKOHを、それぞれCCOClに対してモル比で、それぞれ0.89~1.71となるよう供給した。上記以外は、例1と同様にした。原料モル比とそのときの転化率、選択率、収率を表1に示す。
 [例12~14]
 CCOClに対するKOHのモル比を1.05、過酸化水素を、CCOClに対してモル比でそれぞれ0.57、1.13、10.02となるよう供給した。上記以外は、例1と同様にした。原料モル比とそのときの転化率、選択率、収率を表1に示す。
 [例15~18]
 CCOClに対するKOHのモル比を1.13、過酸化水素を、CCOClに対してモル比でそれぞれ0.57、1.71、10.02、32.79となるよう供給した。上記以外は、例1と同様にした。原料モル比とそのときの転化率、選択率、収率を表1に示す。
 [例19~21]
 CCOClに対するKOHのモル比を1.20、過酸化水素を、CCOClに対してモル比でそれぞれ0.57、1.13、10.02となるよう供給した。上記以外は、例1と同様にした。原料モル比とそのときの転化率、選択率、収率を表1に示す。
 [例22]
 CCOClはCClFCFCHClFの37質量%溶液とし、その流量は20g/minであった。過酸化水素およびKOHは、それぞれCCOClに対してモル比で1.20となるよう供給した。これら以外は例1と同様にした。このとき、CCOCl転化率は100%、(CCOO)選択率は85%、(CCOO)収率は85%であった。
 [例23]
 管型反応器の樹脂管内部に、静止型混合器(ノリタケカンパニーリミテド社製ディスポーザブルミキサー、型式DSP-MXA3-17)の代わりに樹脂ペレット(フロン工業社製PFAペレット、直径2.0mm)を用いた以外は、例1と同様にした。このとき、CCOCl転化率は96%、(CCOO)選択率は90%、(CCOO)収率は87%であった。
 [例24]
 図2に本実施例の概略を示す。
  管型反応器の数は6個とした(図2符号4)。CCOClはCClFCFCHClFの44質量%溶液とし、その流量は60g/minであった。CCOClのCClFCFCHClF溶液、過酸化水素水溶液、KOH水溶液は、それぞれ6本の反応器に並列で供給した。上記以外は、例1と同様にした。このとき、CCOCl転化率は91%、(CCOO)選択率86%、(CCOO)収率は79%であった。
 [例25]
 CCOClに対するKOHのモル比を2.00、過酸化水素が1.00となるよう供給した。上記以外は、例1と同様にした。このとき、CCOCl転化率は98%、(CCOO)選択率14%、(CCOO)収率は13%であった。
Figure JPOXMLDOC01-appb-T000001
<精製工程>
 [例26]
 例6で得られた有機相を水で洗浄した後に、静置することでCClFCFCHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収したところ、精製後の(CCOO)収率は64%であった。
 [例27]
 管型反応器を内径0.003m、長さ2.4mとし、管型反応器の数は1個とした。ジャケット温度は0~5℃であった。CCOClはCClFCFCHClFの44質量%溶液とし、その流量は17.6g/minであった。過酸化水素水溶液の濃度は35質量%、KOH水溶液の濃度は15質量%とし、それぞれCCOClに対してモル比で1.13となるよう供給した。これら原料を、上で述べた管型反応器に供給することにより、反応を行った。管型反応器出口で得られる液は、CClFCFCHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収した。
  回収した有機相を水で洗浄した後に、静置することでCClFCFCHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収したところ、精製後の(CCOO)収率は65%であった。
 [例28]
 管型反応器を内径0.003m、長さ1.2mとし、管型反応器の数は1個とした。ジャケット温度は7℃であった。CCOClはCClFCFCHClFの44質量%溶液とし、その流量は10g/minであった。過酸化水素水溶液の濃度は35質量%、KOH水溶液の濃度は15質量%とし、それぞれCCOClに対してモル比で1.13となるよう供給した。これら原料を、上で述べた管型反応器に供給することにより、反応を行った。管型反応器出口で得られる液は、CClFCFCHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収した。
  回収した有機相を水で洗浄した後に、静置することでCClFCFCHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収したところ、精製後の(CCOO)収率は64%であった。
 以上説明したように、本発明によれば安全かつ経済的にペルフルオロアシル過酸化物を高収率で製造することができる。ペルフルオロアシル過酸化物はポリオレフィン、特にテトラフルオロエチレンなどのフルオロオレフィンのラジカル反応を行う際に、工業的に有用に使用されるラジカル開始剤の一つである。
 なお、2009年4月8日に出願された日本特許出願2009-094170号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1 ペルフルオロアシルハライド含有有機溶剤溶液
2 過酸化水素水溶液
3 塩基性アルカリ金属化合物水溶液
4 ジャケットおよび静的混合器を備えた管型反応器
5 二相分離槽
6 有機相回収槽
7 水相回収槽

Claims (12)

  1.  ペルフルオロアシルハライド含有有機溶剤溶液、過酸化水素または金属過酸化物の水溶液および塩基性アルカリ金属化合物の水溶液を管型反応器の入口に導入し、管型反応器内で前記溶液を混合して反応させ、ペルフルオロアシル過酸化物を含む液を管型反応器の出口から導出するペルフルオロアシル過酸化物の連続製造方法において、管型反応器に導入する、ペルフルオロアシルハライド含有有機溶剤溶液、過酸化水素または金属過酸化物の水溶液および塩基性アルカリ金属化合物水溶液の流量比を、前記各溶液中の化合物のモル比で表して、ペルフルオロアシルハライド1に対して、塩基性アルカリ金属化合物を1.00~1.35、過酸化水素または金属過酸化物を0.60~40、の範囲とすることを特徴とするペルフルオロアシル過酸化物の製造方法。
  2.  前記ペルフルオロアシルハライドが下式(1)で表される化合物からなる、請求項1に記載の製造方法。
     G(CF2)v[CF(CF3)CF2]w[OCF(CF3)CF2]y[OCF(CF3)]z-(C=O)X・・・・・・・・(1)
     (但し、Gはフッ素原子またはペンタフルオロフェノキシ基、Xはハロゲン原子、vは0~10の整数、wは0または1、yは0~7の整数、zは0または1でありかつv+w≧1、を表す]
  3.  前記ペルフルオロアシルハライドがC(CO)Clである、請求項1または2に記載の製造方法。
  4.  過酸化水素または金属過酸化物の水溶液が過酸化水素水溶液である、請求項1~3のいずれかに記載の製造方法。
  5.  塩基性アルカリ金属化合物の水溶液が水酸化カリウム水溶液である、請求項1~4のいずれかに記載の製造方法。
  6.  管型反応器の内部断面積が1.0×10-7~5.0×10-4である、請求項1~5のいずれかに記載の製造方法。
  7.  管型反応器がその内部反応域に静的混合器を有する、請求項1~6のいずれかに記載の製造方法。
  8.  反応温度が-10℃~30℃である、請求項1~7のいずれかに記載の製造方法。
  9.  ペルフルオロアシルハライド含有有機溶剤溶液中のペルフルオロアシルハライドの濃度が3~60質量%である、請求項1~8のいずれかに記載の製造方法。
  10.  過酸化水素または金属過酸化物の水溶液中の過酸化水素または金属過酸化物の濃度が5~50質量%である、請求項1~9のいずれかに記載の製造方法。
  11.  塩基性アルカリ金属化合物の水溶液中の塩基性アルカリ金属化合物の濃度が5~50質量%である、請求項1~10のいずれかに記載の製造方法。
  12.  管型反応器の反応部の管長が0.05~10mである、請求項1~11のいずれかに記載の製造方法。
PCT/JP2010/056341 2009-04-08 2010-04-07 ペルフルオロ有機過酸化物の製造方法 WO2010117029A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10761728.4A EP2418199B1 (en) 2009-04-08 2010-04-07 Method of manufacturing a perfluoro organic peroxide
JP2011508384A JP5724874B2 (ja) 2009-04-08 2010-04-07 ペルフルオロ有機過酸化物の製造方法
CN201080015920.0A CN102369184B (zh) 2009-04-08 2010-04-07 全氟有机过氧化物的制造方法
US13/248,732 US8759567B2 (en) 2009-04-08 2011-09-29 Process for producing perfluoro organic peroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009094170 2009-04-08
JP2009-094170 2009-04-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/248,732 Continuation US8759567B2 (en) 2009-04-08 2011-09-29 Process for producing perfluoro organic peroxide

Publications (1)

Publication Number Publication Date
WO2010117029A1 true WO2010117029A1 (ja) 2010-10-14

Family

ID=42936310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056341 WO2010117029A1 (ja) 2009-04-08 2010-04-07 ペルフルオロ有機過酸化物の製造方法

Country Status (6)

Country Link
US (1) US8759567B2 (ja)
EP (1) EP2418199B1 (ja)
JP (2) JP5724874B2 (ja)
KR (1) KR20120005454A (ja)
CN (1) CN102369184B (ja)
WO (1) WO2010117029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117441A (ja) * 2019-01-18 2020-08-06 東ソー株式会社 重合開始剤組成物及びその製造方法
WO2021010183A1 (ja) 2019-07-12 2021-01-21 Agc株式会社 ペルフルオロアシル過酸化物の製造方法およびフルオロアルキルアイオダイドの製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2418199B1 (en) * 2009-04-08 2018-06-06 Asahi Glass Company, Limited Method of manufacturing a perfluoro organic peroxide
CN109553560A (zh) * 2017-08-12 2019-04-02 上海惠和化德生物科技有限公司 一种由醇或烷烃直接制备有机过氧化物的在线全连续流生产工艺
EP3778911A4 (en) * 2018-03-28 2021-12-22 Mitsui Chemicals, Inc. METHOD OF PREPARING AN AMIDE COMPOUND
WO2019189715A1 (ja) * 2018-03-30 2019-10-03 関東電化工業株式会社 六フッ化モリブデンの製造方法及び製造装置
CN109535054A (zh) * 2018-12-04 2019-03-29 浙江巨圣氟化学有限公司 一种全氟酰基过氧化物的连续制备方法
CN113260639A (zh) * 2018-12-20 2021-08-13 索尔维特殊聚合物意大利有限公司 用于制备全卤酰基过氧化物的方法
CN111072542A (zh) * 2019-12-26 2020-04-28 云南正邦科技有限公司 一种多点进料与强化混合连续生产过氧化二异丁酰的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2792423A (en) 1951-05-17 1957-05-14 Union Carbide & Carbon Corp Production of bis (perfluoroacyl) peroxides
JPS5344514A (en) 1976-09-30 1978-04-21 Pennwalt Corp Method of continuous production of peroxyester
JPH11511464A (ja) 1995-08-30 1999-10-05 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 過酸化物の製造方法
JP2003155272A (ja) * 2001-11-16 2003-05-27 Asahi Glass Co Ltd 有機過酸化物、その誘導体、ラジカル重合開始剤およびそれらの製造方法
JP2005244334A (ja) 2004-02-24 2005-09-08 Denso Corp 半導体スイッチ
JP2007308388A (ja) * 2006-05-16 2007-11-29 Asahi Glass Co Ltd 有機過酸化物、ラジカル開始剤、その誘導体および製造方法
JP2008044863A (ja) * 2006-08-11 2008-02-28 Asahi Glass Co Ltd ペルフルオロ有機過酸化物ならびにその製造方法、および重合体の製造方法
JP2009094170A (ja) 2007-10-04 2009-04-30 Nec Electronics Corp 不揮発性半導体メモリ及びその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7700412A (nl) * 1977-01-15 1978-07-18 Synres Internationaal Nv Continu bereiding van polymeren in de massa.
IT1301684B1 (it) * 1998-06-11 2000-07-07 Ausimont Spa Acilperossidi perfluoropolieterei e procedimento per il loroottenimento.
US20020026011A1 (en) * 2000-05-25 2002-02-28 Brothers Paul Douglas Synthesis of diacyl peroxide in aprotic solvent
JP4940598B2 (ja) * 2004-08-27 2012-05-30 旭硝子株式会社 有機ペルオキシドの製造方法
CN1272317C (zh) * 2004-12-29 2006-08-30 上海交通大学 ω-卤磺酰全氟酰基过氧化物及其制备方法
JP4835050B2 (ja) * 2005-06-29 2011-12-14 旭硝子株式会社 有機過酸化物のフッ素系溶剤溶液の製造方法
JP5344514B2 (ja) 2007-05-01 2013-11-20 株式会社大一商会 遊技機
ES2828730T3 (es) * 2009-02-05 2021-05-27 Dow Global Technologies Llc Reactor tubular de polietileno de baja densidad (LDPE) para inyección de iniciador de peróxido
EP2418199B1 (en) * 2009-04-08 2018-06-06 Asahi Glass Company, Limited Method of manufacturing a perfluoro organic peroxide

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2792423A (en) 1951-05-17 1957-05-14 Union Carbide & Carbon Corp Production of bis (perfluoroacyl) peroxides
JPS5344514A (en) 1976-09-30 1978-04-21 Pennwalt Corp Method of continuous production of peroxyester
JPH11511464A (ja) 1995-08-30 1999-10-05 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 過酸化物の製造方法
JP2003155272A (ja) * 2001-11-16 2003-05-27 Asahi Glass Co Ltd 有機過酸化物、その誘導体、ラジカル重合開始剤およびそれらの製造方法
JP2005244334A (ja) 2004-02-24 2005-09-08 Denso Corp 半導体スイッチ
JP2007308388A (ja) * 2006-05-16 2007-11-29 Asahi Glass Co Ltd 有機過酸化物、ラジカル開始剤、その誘導体および製造方法
JP2008044863A (ja) * 2006-08-11 2008-02-28 Asahi Glass Co Ltd ペルフルオロ有機過酸化物ならびにその製造方法、および重合体の製造方法
JP2009094170A (ja) 2007-10-04 2009-04-30 Nec Electronics Corp 不揮発性半導体メモリ及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418199A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020117441A (ja) * 2019-01-18 2020-08-06 東ソー株式会社 重合開始剤組成物及びその製造方法
JP7225818B2 (ja) 2019-01-18 2023-02-21 東ソー株式会社 重合開始剤組成物及びその製造方法
WO2021010183A1 (ja) 2019-07-12 2021-01-21 Agc株式会社 ペルフルオロアシル過酸化物の製造方法およびフルオロアルキルアイオダイドの製造方法
KR20220034026A (ko) 2019-07-12 2022-03-17 에이지씨 가부시키가이샤 퍼플루오로아실 과산화물의 제조 방법 및 플루오로알킬아이오다이드의 제조 방법

Also Published As

Publication number Publication date
EP2418199A1 (en) 2012-02-15
JP5724874B2 (ja) 2015-05-27
KR20120005454A (ko) 2012-01-16
EP2418199A4 (en) 2013-01-23
EP2418199B1 (en) 2018-06-06
CN102369184B (zh) 2015-07-08
JP2015120764A (ja) 2015-07-02
CN102369184A (zh) 2012-03-07
US20120022286A1 (en) 2012-01-26
US8759567B2 (en) 2014-06-24
JPWO2010117029A1 (ja) 2012-10-18

Similar Documents

Publication Publication Date Title
JP5724874B2 (ja) ペルフルオロ有機過酸化物の製造方法
JP4940598B2 (ja) 有機ペルオキシドの製造方法
US8415516B2 (en) Production process and purification process for 1,2,3,4-tetrachlorohexafluorobutane
CN101842348B (zh) 三氟甲磺酰氟的制造方法
JP5471121B2 (ja) パーフルオロアルカンスルフィン酸塩の製造方法
JP5169880B2 (ja) トリフルオロメタンスルホニルフルオリドの精製方法
JP5454567B2 (ja) ヘキサフルオロプロピレンオキシドの製造方法
TWI735700B (zh) 四氟化硫之製造方法
Francesco et al. Recent developments in the chemistry of organic perfluoro hypofluorites
JP4431212B2 (ja) 含フッ素環状炭酸エステルの製造方法
JP2010059071A (ja) トリフルオロメタンスルホニルフルオリドの精製方法
JP4993462B2 (ja) フッ素化合物の製造方法
US20220041549A1 (en) Perfluoroacyl peroxide production method, and fluoroalkyl iodide production method
JP2006219419A (ja) パーフルオロビニルエーテルモノマーの製造法
JP2010116390A (ja) エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤
JP5621296B2 (ja) 3−ハロ−ペンタフルオロプロピレンオキシドの製造方法
CN104262207B (zh) 一种含氟磺酸类化合物的制备方法
CN111018679B (zh) 一种四氟丙基三氟乙烯醚的合成方法
JP4864226B2 (ja) 含フッ素化合物の製造方法
CN105439981A (zh) 一种常压条件下连续制备六氟环氧丙烷的装置及方法
RU2157805C2 (ru) Способ получения перфторированных эпоксидов
CN114728873A (zh) 工业化合成全氟甲基乙烯基醚和1,1,2,2-四氟-1-三氟甲氧基乙烷的新工艺
CN117417234A (zh) 氟烷基醚类遥爪化合物的制备方法及其中间体
CN111333497A (zh) 一种含氟二元羧酸的制备方法
JPH10231261A (ja) 弗化沃化エタンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015920.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761728

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011508384

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117023504

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010761728

Country of ref document: EP