WO2010117029A1 - ペルフルオロ有機過酸化物の製造方法 - Google Patents
ペルフルオロ有機過酸化物の製造方法 Download PDFInfo
- Publication number
- WO2010117029A1 WO2010117029A1 PCT/JP2010/056341 JP2010056341W WO2010117029A1 WO 2010117029 A1 WO2010117029 A1 WO 2010117029A1 JP 2010056341 W JP2010056341 W JP 2010056341W WO 2010117029 A1 WO2010117029 A1 WO 2010117029A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- peroxide
- perfluoroacyl
- aqueous solution
- production method
- tubular reactor
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C407/00—Preparation of peroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C409/00—Peroxy compounds
- C07C409/32—Peroxy compounds the —O—O— group being bound between two >C=O groups
- C07C409/34—Peroxy compounds the —O—O— group being bound between two >C=O groups both belonging to carboxylic acids
Definitions
- the present invention relates to a method for producing a fluorocarbon acyl peroxide.
- Perfluoroacyl peroxides are generally halogenated by dissolving a hydroxide such as potassium hydroxide or sodium hydroxide and hydrogen peroxide (or a metal peroxide such as Na 2 O 2 ) in an organic solvent. It is produced by stirring together with an alkyl compound.
- Perfluoroacyl peroxides generally have low thermal stability, and the yield of peroxides may decrease due to autolysis by heat of reaction. Also, since perfluoroacyl peroxide generally undergoes a hydrolysis reaction, it becomes a competitive reaction between a reaction in which perfluoroacyl peroxide is generated and a reaction in which perfluoroacyl peroxide is hydrolyzed. As it becomes stronger, the hydrolysis reaction is accelerated, and as a result, the recovery rate may decrease.
- Patent Document 1 describes a method for continuously producing peroxyesters by passing acid chloride, hydroperoxide, and aqueous alkali metal hydroxide through two continuous mechanically stirred reaction vessels. .
- the peroxyesters described in this patent example contain only carbon, hydrogen and oxygen, and there is no description of the examples relating to the production of perfluoroacyl peroxide.
- Patent Document 2 describes a continuous production method of a fluorocarbon acyl peroxide in which a hydroxide, a peroxide and an acyl halide are reacted under a continuous stirring condition.
- this Patent Document 2 it is described that the reaction product is subjected to strong stirring using an ultrasonic wave or a static mixer to complete the reaction in a short time to obtain a good yield of peroxide.
- Example 13 describes a process for producing perfluoropropionyl peroxide [CF 3 CF 2 (C ⁇ O) O] 2 , but in a yield based on the starting material C 2 F 5 COCl. In the system without addition, the yield is 18 to 23%, which is a very low yield.
- the yield is improved to 43% by adding the surfactant, but the yield is still low, and when the surfactant has an adverse effect on the use of this product, There is a disadvantage that a process for removing the agent is required.
- the present surfactant since a similar compound of PFOA which bioaccumulation potential has been pointed out (CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 COONH 4) also, its use is undesirable.
- Patent Document 3 describes a batch production method of a fluorocarbon acyl peroxide in which a hydroxide, a peroxide and an acyl halide are reacted under a batch condition.
- This Example 2 describes a method for producing perfluoropropionyl peroxide [CF 3 CF 2 (C ⁇ O) O] 2 , but it is obtained in a yield of about 82% based on the starting material C 2 F 5 COCl. It has been.
- there is no description of the reaction time but there is a problem in productivity because of the batch reaction.
- Patent Document 4 describes a continuous synthesis method of perfluoro organic peroxide using a microreactor, but the microreactor has a very narrow reactor flow path, and the reactor volume per unit reactor length. Is small. Therefore, in order to secure a sufficient residence time for completing the reaction, it is necessary to keep the flow rate of the reaction solution supplied to the reactor small or lengthen the reactor.
- the former method requires a very large number of microreactors because the production volume of each reactor is small. There's a problem.
- the latter method has a demerit that the pressure loss in the flow path increases due to the longer reactor. Therefore, the synthesis using such a microreactor also has a problem in the production of a large amount of perfluoro organic peroxide.
- perfluoroacyl peroxide which is thermally unstable and self-degradable, with easy-to-handle and easy-to-use raw materials, no auxiliary agents such as surfactants are required, and the perfluoroacyl peroxide is safe and productive. There is a need for a method of producing oxides.
- the present invention introduces a perfluoroacyl halide-containing organic solvent solution, an aqueous solution of hydrogen peroxide or metal peroxide, and an aqueous solution of a basic alkali metal compound into an inlet of a tubular reactor, and the solution is introduced into the tubular reactor.
- the flow rate ratio between the aqueous solution of hydrogen peroxide or metal peroxide and the basic alkali metal compound aqueous solution is expressed by the molar ratio of the compounds in each solution, and the basic alkali metal compound is added to the perfluoroacyl halide 1 Pelfur characterized by being in the range of 1.00 to 1.35, hydrogen peroxide or metal peroxide in the range of 0.60 to 40
- a method for producing an oloacyl peroxide is provided.
- Perfluoroacyl halide-containing organic solvent solution hydrogen peroxide or an aqueous solution of a metal peroxide such as Na 2 O 2 and an aqueous solution of a basic alkali metal compound are used as synthetic raw materials, and hydrogen peroxide or metal is used per 1 mol of perfluoroacyl halide.
- the yield of perfluoroacyl peroxide based on the raw material perfluoroacyl halide is conventionally increased by supplying the continuous reactor in the range of 0.60 to 40 mol of peroxide and 1.00 to 1.35 mol of basic alkali metal compound. It can be greatly improved compared to technology.
- an auxiliary agent such as a surfactant, a process for removing such an auxiliary agent becomes unnecessary.
- the perfluoroacyl halide used as an essential raw material component is preferably composed of a compound represented by the following formula (1).
- G is a fluorine atom or a pentafluorophenoxy group
- X is a halogen atom
- v is an integer of 0 to 10
- w is 0 or 1
- y is an integer of 0 to 7
- z is 0 or 1
- v + w ⁇ 1 represents].
- G is preferably a fluorine atom, and X is preferably a fluorine atom or a chlorine atom.
- v is preferably an integer of 1 to 5
- y is preferably an integer of 0 to 2.
- G is a fluorine atom
- X is a fluorine atom or a chlorine atom
- v is 2 or 4
- w + y + z is 0.
- perfluoroacyl halide examples include perfluoroethanoyl chloride, perfluoroethanoyl fluoride, perfluoropropanoyl chloride, perfluoropropanoyl fluoride, perfluorobutanoyl chloride, perfluorobutanoyl fluoride, and perfluoropentanoyl chloride.
- Perfluoropentanoyl fluoride perfluorohexanoyl chloride, perfluorohexanoyl fluoride, perfluoro-2,5-dimethyl-3,6-dioxanonanoyl fluoride, perfluoro-2,5,8-trimethyl-3, Preferred examples include 6,9-trioxadodecanoyl fluoride and perfluoro-2-methyl-3-oxahexanoyl fluoride.
- perfluoropropanoyl chloride perfluoropropanoyl chloride, perfluoropropanoyl chloride, perfluorobutanoyl chloride, or perfluorobutanoyl chloride is preferred, and perfluoropropanoyl chloride is particularly preferred because of easy availability and production.
- G is a fluorine atom or a pentafluorophenoxy group
- X is a halogen atom
- v is an integer of 0 to 10
- w is 0 or 1
- y is an integer of 0 to 7
- z is 0 or 1
- v + w ⁇ 1 Represents] is preferable.
- an organic solvent that is non-reactive with peroxides and easily dissolves perfluoroacyl halide and perfluoroacyl peroxide is used as the organic solvent.
- the organic solvent fluorine-containing organic solvents and hydrocarbon solvents are preferable, and fluorine-containing organic solvents such as fluorocarbons, chlorofluorocarbons, hydrofluorocarbons and hydrofluoroethers are particularly preferable.
- organic solvent examples include C 6 F 13 H, CF 3 CF 2 CHCl 2 , CF 2 ClCF 2 CHClF, C 2 F 5 I, C 4 F 9 I, C 6 F 13 I, CF 2 ClCFCl 2 , CF 3 CH 2 CF 2 H, CF 3 CF 2 CH 2 CF 2 H, CHClFCF 2 CF 2 Cl, F (CF 2 ) 4 OCH 3 , F (CF 2 ) 4 OC 2 H 5 , H (CF 2 ) 4 OCH 3 , H (CF 2 ) 4 OC 2 H 5 , perfluorobutyltetrahydrofuran, perfluoropropyltetrahydrofuran, perfluorohexane, dichloropentafluoropropane, hexane, xylene, benzene, cyclohexane or mineral spirits, or a mixture thereof .
- the concentration of perfluoroacyl halide in the organic solvent solution is preferably 1 to 80% by mass, and particularly preferably 3 to 60% by mass. If the concentration exceeds 80% by mass, the risk of self-decomposition of the product is high and handling becomes difficult. When the concentration is less than 1% by mass, the amount of solvent to be used is very large, and the productivity is lowered, which is not industrially preferable.
- hydrogen peroxide or metal peroxide include preferably hydrogen peroxide, sodium peroxide, barium peroxide, and the like.
- hydrogen peroxide is preferable from the viewpoint of easy handling and economy.
- hydrogen peroxide when used, it is preferably used alone, and when other peroxide is used, it can be used alone or as a mixture.
- the concentration of hydrogen peroxide or metal peroxide in the aqueous solution is preferably 1 to 60% by mass, particularly in the range of 5 to 50% by mass. It is preferable to do this.
- the concentration exceeds 60% by mass, the yield of the product decreases.
- the concentration is less than 1% by mass, the reaction efficiency decreases remarkably, which is not industrially preferable.
- the basic alkali metal compound is an alkali metal compound whose aqueous solution exhibits basicity, and alkali metal hydroxides, carbonates, hydrogen carbonates, and the like are preferable.
- alkali metal hydroxides, carbonates, hydrogen carbonates, and the like are preferable.
- sodium hydroxide, potassium hydroxide, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate and the like can be preferably exemplified, and potassium hydroxide is particularly preferable.
- a basic alkali metal compound it can be used individually or as a mixture.
- the concentration of the basic alkali metal compound in the aqueous solution is preferably 1 to 60% by mass, and particularly preferably in the range of 5 to 50% by mass.
- the concentration exceeds 60% by mass, the yield of the product decreases.
- the concentration is less than 1% by mass, the reaction efficiency decreases remarkably, which is not industrially preferable.
- the production method of the perfluoroacyl peroxide of the present invention is carried out by a continuous method.
- the production by the continuous method is less in the amount of raw materials and products staying in the reactor than the batch production, so that the reaction in which the products are generated from the raw materials as in the present invention is exothermic.
- even when the obtained product is unstable to heat and decomposes with heat generation, it has an advantage that it can be produced safely and in a high yield.
- the continuous production has the advantage that the production volume can be increased compared to a batch-type production apparatus of the same size.
- FIG. 1 is a schematic configuration diagram of this embodiment.
- the perfluoroacyl halide organic solvent solution 1, the hydrogen peroxide or metal peroxide aqueous solution 2, and the basic alkali metal compound aqueous solution 3 are continuously introduced from the inlet of the tubular reactor 4 at a specific flow rate. Is done.
- the tubular reactor 4 has a mixing region for uniformly mixing the solutions, and the introduced solutions are mixed in the tubular reactor and the reaction proceeds. Since the organic solvent solution and the aqueous solution are immiscible, the formation reaction of perfluoroacyl peroxide proceeds at the interface between the organic solvent solution and the aqueous solution.
- the liquid led out from the outlet of the tubular reactor is led to the two-phase separation tank 5.
- the liquid led out from the tubular reactor contains an immiscible organic solvent solution and an aqueous solution, and is separated into two phases of an organic phase and an aqueous phase in the two-phase separation tank 5. After separating into two phases, the organic phase and the aqueous phase are recovered into the organic phase recovery tank 6 and the aqueous phase recovery tank 7, respectively.
- the generated perfluoroacyl peroxide is contained in the organic phase and is recovered from the organic phase recovery tank 6.
- the flow of the organic solvent solution 1, the flow of the aqueous solution 2, and the flow of the aqueous solution 3 are merged at the inlet of the tubular reactor 4.
- the flow of the aqueous solution 2 and the flow of the aqueous solution 3 introduced into the tubular reactor 4 may be combined in advance, and the combined flow may be introduced into the tubular reactor 4. Since the organic solvent solution 1 and the aqueous solution such as the aqueous solution 2 are immiscible, the flow of the organic solvent solution 1 and the flow of the aqueous solution such as the aqueous solution 2 are merged at the inlet of the tubular reactor 4. Is preferred.
- the tubular reactor preferably has a structure capable of heating and cooling at the jacket portion and a structure capable of uniformly and continuously adding an organic solvent solution and an aqueous solution.
- the installation shape of the tubular reactor is not particularly limited, and a vertical direction, a horizontal direction, an oblique direction, and the like are employed.
- the cross-sectional shape of the reaction part of the tubular reactor is not particularly limited, and a shape such as a circle, an ellipse, a semicircle, a triangle, a square, a rectangle, a trapezoid or other quadrangle, a pentagon, a hexagon, or the like is adopted. . Preferably, it is circular for ease of manufacture.
- the tube length of the reaction part of the tubular reactor is preferably from 0.01 to 1000 m, more preferably from 0.05 to 10 m, particularly preferably from 0.1 to 5 m. If the length of the reactor is too short, the residence time of the reaction mixture is shortened and the yield of perfluoroacyl peroxide is reduced. If it is too long, the pressure loss between the reaction mixture supply port and the reaction outlet port will increase, and the reaction mixture will not flow stably in the tubular reactor.
- the internal cross-sectional area of the tubular reactor is preferably 1.0 ⁇ 10 ⁇ 7 to 5.0 ⁇ 10 ⁇ 4 m 2 , particularly 2.0 ⁇ 10 ⁇ 7 to 1.0 ⁇ 10 ⁇ 4 m 2. preferable.
- the internal cross-sectional area of the tubular reactor refers to the area of the cross section perpendicular to the direction in which the liquid flows in the flow path through which the reaction liquid flows. If the internal cross-sectional area is less than 1.0 ⁇ 10 ⁇ 7 m 2, it will be difficult to produce a continuous reactor, and the reactor volume per unit reactor length will be small, so the reaction required to complete the reaction. The length of the vessel increases and the pressure loss in the flow path increases. When it is larger than 5.0 ⁇ 10 ⁇ 4 m 2, the wall area per unit volume of the reaction part is reduced, so that the heat removal efficiency is lowered and the yield is lowered.
- This mixing region is a region in which, for example, a static mixer, a packing, an ultrasonic mixer, a mechanical mixer, and the like are provided in the flow path in the tubular reactor.
- the static mixer include a static mixer (stator tube mixer type, spiral mixer type).
- the filler include a filler having a diameter smaller than the inner diameter of the narrow tube forming the flow path (for example, resin pellet, Raschig ring, Lessing ring, pole ring, saddle, and sulzer packing).
- the flow ratio of the perfluoroacyl halide-containing organic solvent solution and the basic alkali metal compound aqueous solution introduced into the tubular reactor is such that the molar ratio of the perfluoroacyl halide to the basic alkali metal compound in each solution is perfluoroacyl halide:
- Basic alkali metal compound 1: 1.00 to 1.35.
- the flow ratio is more preferably 1: 1.02 to 1.30, and particularly preferably 1: 1.04 to 1.19.
- the flow ratio between the perfluoroacyl halide-containing organic solvent solution and the aqueous solution of hydrogen peroxide or metal peroxide introduced into the tubular reactor is the molar ratio of perfluoroacyl halide to hydrogen peroxide in each solution.
- Acyl halide: hydrogen peroxide 1: 0.60-40.
- the flow rate ratio is more preferably 1: 0.8 to 35, and 1: 1 to 10 is particularly preferable from the viewpoint of productivity.
- the present invention is a competitive reaction between a reaction in which a perfluoroacyl peroxide is generated and a reaction in which the perfluoroacyl peroxide is hydrolyzed.
- the molar ratio of the perfluoroacyl halide to the basic alkali metal compound There is an appropriate range for. If the basic alkali metal compound is less than the above range, the raw material perfluoroacyl halide remains unreacted and the yield is lowered. If the basic alkali metal compound exceeds the above range, the perfluoroacyl peroxide is hydrolyzed. The decomposition reaction is promoted and the yield decreases. On the other hand, when there is too little hydrogen peroxide etc., the reaction amount with a perfluoro acyl halide will fall, and productivity will fall when it becomes excessive.
- the reaction temperature for carrying out the reaction is preferably in the range of ⁇ 30 to + 50 ° C., particularly preferably ⁇ 10 ° C. to 30 ° C.
- the reaction temperature is less than ⁇ 30 ° C., it takes a long time for the reaction.
- the reaction temperature exceeds + 50 ° C., the resulting perfluoroacyl peroxide is decomposed and the yield is lowered, which is not preferable.
- the residence time is 0.1 seconds to 5 hours.
- the liquid derived from the tubular reactor contains an organic solvent solution and an aqueous solution that are immiscible, and is separated into two phases of an organic phase and an aqueous phase. Each phase can be recovered.
- the yield of recovered perfluoroacyl peroxide is preferably 75% or more, particularly preferably 80 to 100%.
- the recovered organic phase containing the perfluoroacyl peroxide may include a purification step of the perfluoroacyl peroxide by distillation, washing, recrystallization or the like.
- the yield of the perfluoroacyl peroxide after the purification is reduced by about 20% from the yield in the organic phase due to hydrolysis in the washing, recovery loss, etc., so 60% or more is preferable. 64 to 100% is particularly preferable.
- the tubular reactors may be used alone or in parallel.
- 2 to 1000 are preferable, and 2 to 100 are more preferable.
- Use of a plurality is preferable because the production amount of perfluoroacyl peroxide can be appropriately controlled.
- the yield was determined.
- the concentration titration was performed by the following method. Take 25 ml of acetic acid and 2 ml of saturated aqueous potassium iodide solution in this order in an Erlenmeyer flask with an internal volume of 100 ml, and weigh accurately about 0.2 g of the sample into it. Seal and mix contents and allow to react for 10 minutes in the dark. Titrate with 0.025 mol / L aqueous sodium thiosulfate solution until the iodine color disappears.
- (C 2 F 5 COO) 2 selectivity (%) ⁇ (C 2 F 5 COO) 2 production amount (mole) ⁇ 2 / C 2 F 5 COCl consumption amount (mole) ⁇ ⁇ 100 - was determined (C 2 F 5 COO) 2 yield under formula (C 2 F 5 COO) 2 yield.
- (C 2 F 5 COO) 2 yield (%) (C 2 F 5 COCl conversion) ⁇ ((C 2 F 5 COO) 2 selectivity) ⁇
- After purification (C 2 F 5 COO) after 2 yield purified (C 2 F 5 COO) 2 yield was calculated by the following equation.
- Example 1 As a synthesis raw material, a CClF 2 CF 2 CHClF solution (Fig. 1 symbol 1), a hydrogen peroxide aqueous solution (Fig. 1 symbol 2), and a KOH aqueous solution (Fig. 1 symbol 3) of perfluoroacyl halide C 2 F 5 COCl were used.
- the tubular reactor As the tubular reactor (reference numeral 4 in FIG. 1), a resin tube whose outer periphery was covered with a jacket was used. The resin tube had a static mixer (a disposable mixer manufactured by Noritake Company Limited, model DSP-MXA3-17) inside, and had an inner diameter of 0.003 m and a length of 1.2 m. The number of tubular reactors was one.
- the jacket temperature was 0-5 ° C.
- C 2 F 5 COCl was a 50% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 16 g / min.
- the concentration of the aqueous hydrogen peroxide solution was 35% by mass, the concentration of the KOH aqueous solution was 15% by mass, and each was supplied at a molar ratio of 1.02 to C 2 F 5 COCl.
- Reaction was performed by supplying these raw materials to the tubular reactor described above.
- the liquid obtained at the outlet of the tubular reactor is separated into two phases of an organic phase and a water phase using CClF 2 CF 2 CHClF as a solvent (reference numeral 5 in FIG.
- Examples 2 to 11 Hydrogen peroxide and KOH were supplied at a molar ratio of 0.89 to 1.71 with respect to C 2 F 5 COCl, respectively. Except for the above, the procedure was the same as Example 1. Table 1 shows the raw material molar ratio and the conversion rate, selectivity, and yield at that time.
- Example 12 to 14 The molar ratio of KOH to C 2 F 5 COCl was 1.05, and hydrogen peroxide was supplied at a molar ratio of 0.57, 1.13, and 10.02 to C 2 F 5 COCl, respectively. Except for the above, the procedure was the same as Example 1. Table 1 shows the raw material molar ratio and the conversion rate, selectivity, and yield at that time.
- Example 15 to 18 The molar ratio of KOH to C 2 F 5 COCl is 1.13, and hydrogen peroxide is 0.57, 1.71, 10.02, and 32.79, respectively, relative to C 2 F 5 COCl. Supplied. Except for the above, the procedure was the same as Example 1. Table 1 shows the raw material molar ratio and the conversion rate, selectivity, and yield at that time.
- Example 19 to 21 The molar ratio of KOH to C 2 F 5 COCl was 1.20, and hydrogen peroxide was supplied at a molar ratio of 0.57, 1.13, and 10.02 to C 2 F 5 COCl, respectively. Except for the above, the procedure was the same as Example 1. Table 1 shows the raw material molar ratio and the conversion rate, selectivity, and yield at that time.
- C 2 F 5 COCl was a 37% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 20 g / min. Hydrogen peroxide and KOH were each supplied at a molar ratio of 1.20 with respect to C 2 F 5 COCl. The others were the same as in Example 1. At this time, the C 2 F 5 COCl conversion rate was 100%, the (C 2 F 5 COO) 2 selectivity was 85%, and the (C 2 F 5 COO) 2 yield was 85%.
- Example 23 Resin pellets (CFC PFA pellets, diameter 2.0 mm) are used instead of static mixers (disposable mixers manufactured by Noritake Co., Limited, model DSP-MXA3-17) inside the resin tubes of the tubular reactor The procedure was the same as in Example 1 except that. At this time, C 2 F 5 COCl conversion was 96%, (C 2 F 5 COO) 2 selectivity was 90%, and (C 2 F 5 COO) 2 yield was 87%.
- FIG. 2 shows an outline of this embodiment.
- the number of tubular reactors was six (4 in FIG. 2).
- C 2 F 5 COCl was a 44% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 60 g / min.
- a CClF 2 CF 2 CHClF solution of C 2 F 5 COCl, an aqueous hydrogen peroxide solution, and an aqueous KOH solution were supplied in parallel to 6 reactors, respectively. Except for the above, the procedure was the same as Example 1. At this time, C 2 F 5 COCl conversion was 91%, (C 2 F 5 COO) 2 selectivity was 86%, and (C 2 F 5 COO) 2 yield was 79%.
- Example 25 The molar ratio of KOH to C 2 F 5 COCl was 2.00 and hydrogen peroxide was 1.00. Except for the above, the procedure was the same as Example 1. At this time, the C 2 F 5 COCl conversion rate was 98%, the (C 2 F 5 COO) 2 selectivity was 14%, and the (C 2 F 5 COO) 2 yield was 13%.
- Example 26 The organic phase obtained in Example 6 was washed with water and then allowed to stand to separate into two phases, an organic phase using CClF 2 CF 2 CHClF as a solvent and an aqueous phase, and the organic phase was recovered.
- the yield of (C 2 F 5 COO) 2 after purification was 64%.
- the tubular reactor had an inner diameter of 0.003 m and a length of 2.4 m, and the number of tubular reactors was one.
- the jacket temperature was 0-5 ° C.
- C 2 F 5 COCl was a 44% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 17.6 g / min.
- the concentration of the aqueous hydrogen peroxide solution was 35% by mass, the concentration of the KOH aqueous solution was 15% by mass, and each was supplied in a molar ratio of 1.13 with respect to C 2 F 5 COCl. Reaction was performed by supplying these raw materials to the tubular reactor described above.
- the liquid obtained at the outlet of the tubular reactor was separated into two phases of an organic phase and an aqueous phase using CClF 2 CF 2 CHClF as a solvent, and the organic phase was recovered.
- the recovered organic phase is washed with water and then allowed to stand to separate into two phases, an organic phase using CClF 2 CF 2 CHClF as a solvent and an aqueous phase. Of these, the organic phase is recovered, and the purified ( C 2 F 5 COO) 2 yield was 65%.
- the tubular reactor had an inner diameter of 0.003 m and a length of 1.2 m, and the number of tubular reactors was one.
- the jacket temperature was 7 ° C.
- C 2 F 5 COCl was a 44% by mass solution of CClF 2 CF 2 CHClF, and its flow rate was 10 g / min.
- the concentration of the aqueous hydrogen peroxide solution was 35% by mass, the concentration of the KOH aqueous solution was 15% by mass, and each was supplied in a molar ratio of 1.13 with respect to C 2 F 5 COCl. Reaction was performed by supplying these raw materials to the tubular reactor described above.
- the liquid obtained at the outlet of the tubular reactor was separated into two phases of an organic phase and an aqueous phase using CClF 2 CF 2 CHClF as a solvent, and the organic phase was recovered.
- the recovered organic phase is washed with water and then allowed to stand to separate into two phases, an organic phase using CClF 2 CF 2 CHClF as a solvent and an aqueous phase. Of these, the organic phase is recovered, and the purified ( C 2 F 5 COO) 2 yield was 64%.
- Perfluoroacyl peroxide is one of radical initiators that are useful industrially in carrying out radical reactions of polyolefins, particularly fluoroolefins such as tetrafluoroethylene. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-094170 filed on April 8, 2009 are cited herein as disclosure of the specification of the present invention. Incorporated.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
G(CF2)v[CF(CF3)CF2]w[OCF(CF3)CF2]y[OCF(CF3)]z-(C=O)X・・・・・・・・(1)
(但し、Gはフッ素原子またはペンタフルオロフェノキシ基、Xはハロゲン原子、vは0~10の整数、wは0または1、yは0~7の整数、zは0または1でありかつv+w≧1、を表す]。
Gはフッ素原子が好ましく、Xはフッ素原子または塩素原子が好ましい。vは1~5の整数が好ましく、yは0~2の整数が好ましい。特に、Gはフッ素原子、Xはフッ素原子または塩素原子、vは2または4、およびw+y+zは0であることが好ましい。
内容積100mlの三角フラスコに酢酸25ml、飽和ヨウ化カリウム水溶液2mlをこの順序に取り、ここに試料約0.2gを正確に秤量し、加える。密栓して内容物を混合し、暗所で10分間反応させる。0.025mol/Lのチオ硫酸ナトリウム水溶液にて、ヨウ素の色が消えるまで滴定する。同様の操作で試料を加えない条件でも行う(ブランク測定)。下式1により、サンプル中に含まれる生成物の重量100分率を算出した。
[式1]
重量%={(V-Vb)×Mw}/(800×Sa)
V:試料滴定に要した0.025mol/Lのチオ硫酸ナトリウム水溶液の体積(ml)
Vb:ブランク測定時に要した0.025mol/Lのチオ硫酸ナトリウム水溶液の体積(ml)
Mw:生成物の分子量326
Sa:試料の重量(g)。
・(C2F5COCl)転化率
組成分析の結果を用い、下式から(C2F5COCl)転化率を求めた。
(C2F5COCl)転化率(%)={1-(反応器出口C2F5COCl濃度(g/g)/(反応器入口C2F5COCl濃度(g/g))×100
・(C2F5COO)2選択率
組成分析の結果を用い、下式から(C2F5COO)2選択率を求めた。
(C2F5COO)2選択率(%)={(C2F5COO)2生成量(モル)×2/C2F5COCl消費量(モル)}×100
・(C2F5COO)2収率
下式から(C2F5COO)2収率を求めた。
(C2F5COO)2収率(%)=(C2F5COCl転化率)×((C2F5COO)2選択率)
・精製後の(C2F5COO)2収率
精製後の(C2F5COO)2収率は、下式により求めた。
精製後の(C2F5COO)2収率(%)={(C2F5COO)2生成速度(モル/hr)×2×反応時間(hr)}/{C2F5COCl供給速度(モル/hr)×反応時間(hr)}×100
合成原料として、ペルフルオロアシルハライドC2F5COClのCClF2CF2CHClF溶液(図1符号1)、過酸化水素水溶液(図1符号2)、およびKOH水溶液(図1符号3)を用いた。管型反応器(図1符号4)としては、ジャケットで外周を覆った樹脂管を用いた。この樹脂管は、内部に静止型混合器(ノリタケカンパニーリミテド社製ディスポーザブルミキサー、型式DSP-MXA3-17)を伴ったものとし、内径0.003m、長さ1.2mとした。管型反応器の数は1個とした。ジャケット温度は0~5℃であった。C2F5COClはCClF2CF2CHClFの50質量%溶液とし、その流量は16g/minであった。過酸化水素水溶液の濃度は35質量%、KOH水溶液の濃度は15質量%とし、それぞれC2F5COClに対してモル比で1.02となるよう供給した。これら原料を、上で述べた管型反応器に供給することにより、反応を行った。管型反応器出口で得られる液は、CClF2CF2CHClFを溶媒とする有機相と水相の二相に分離され(図1符号5)、このうち有機相を回収することにより、(C2F5COO)2のCClF2CF2CHClF溶液を得た(図1符号6)。水相は廃液とした(図1符号7)。
このとき、C2F5COCl転化率は90%、(C2F5COO)2選択率91%、(C2F5COO)2収率は82%であった。
過酸化水素およびKOHを、それぞれC2F5COClに対してモル比で、それぞれ0.89~1.71となるよう供給した。上記以外は、例1と同様にした。原料モル比とそのときの転化率、選択率、収率を表1に示す。
C2F5COClに対するKOHのモル比を1.05、過酸化水素を、C2F5COClに対してモル比でそれぞれ0.57、1.13、10.02となるよう供給した。上記以外は、例1と同様にした。原料モル比とそのときの転化率、選択率、収率を表1に示す。
C2F5COClに対するKOHのモル比を1.13、過酸化水素を、C2F5COClに対してモル比でそれぞれ0.57、1.71、10.02、32.79となるよう供給した。上記以外は、例1と同様にした。原料モル比とそのときの転化率、選択率、収率を表1に示す。
C2F5COClに対するKOHのモル比を1.20、過酸化水素を、C2F5COClに対してモル比でそれぞれ0.57、1.13、10.02となるよう供給した。上記以外は、例1と同様にした。原料モル比とそのときの転化率、選択率、収率を表1に示す。
C2F5COClはCClF2CF2CHClFの37質量%溶液とし、その流量は20g/minであった。過酸化水素およびKOHは、それぞれC2F5COClに対してモル比で1.20となるよう供給した。これら以外は例1と同様にした。このとき、C2F5COCl転化率は100%、(C2F5COO)2選択率は85%、(C2F5COO)2収率は85%であった。
管型反応器の樹脂管内部に、静止型混合器(ノリタケカンパニーリミテド社製ディスポーザブルミキサー、型式DSP-MXA3-17)の代わりに樹脂ペレット(フロン工業社製PFAペレット、直径2.0mm)を用いた以外は、例1と同様にした。このとき、C2F5COCl転化率は96%、(C2F5COO)2選択率は90%、(C2F5COO)2収率は87%であった。
図2に本実施例の概略を示す。
管型反応器の数は6個とした(図2符号4)。C2F5COClはCClF2CF2CHClFの44質量%溶液とし、その流量は60g/minであった。C2F5COClのCClF2CF2CHClF溶液、過酸化水素水溶液、KOH水溶液は、それぞれ6本の反応器に並列で供給した。上記以外は、例1と同様にした。このとき、C2F5COCl転化率は91%、(C2F5COO)2選択率86%、(C2F5COO)2収率は79%であった。
C2F5COClに対するKOHのモル比を2.00、過酸化水素が1.00となるよう供給した。上記以外は、例1と同様にした。このとき、C2F5COCl転化率は98%、(C2F5COO)2選択率14%、(C2F5COO)2収率は13%であった。
[例26]
例6で得られた有機相を水で洗浄した後に、静置することでCClF2CF2CHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収したところ、精製後の(C2F5COO)2収率は64%であった。
管型反応器を内径0.003m、長さ2.4mとし、管型反応器の数は1個とした。ジャケット温度は0~5℃であった。C2F5COClはCClF2CF2CHClFの44質量%溶液とし、その流量は17.6g/minであった。過酸化水素水溶液の濃度は35質量%、KOH水溶液の濃度は15質量%とし、それぞれC2F5COClに対してモル比で1.13となるよう供給した。これら原料を、上で述べた管型反応器に供給することにより、反応を行った。管型反応器出口で得られる液は、CClF2CF2CHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収した。
回収した有機相を水で洗浄した後に、静置することでCClF2CF2CHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収したところ、精製後の(C2F5COO)2収率は65%であった。
管型反応器を内径0.003m、長さ1.2mとし、管型反応器の数は1個とした。ジャケット温度は7℃であった。C2F5COClはCClF2CF2CHClFの44質量%溶液とし、その流量は10g/minであった。過酸化水素水溶液の濃度は35質量%、KOH水溶液の濃度は15質量%とし、それぞれC2F5COClに対してモル比で1.13となるよう供給した。これら原料を、上で述べた管型反応器に供給することにより、反応を行った。管型反応器出口で得られる液は、CClF2CF2CHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収した。
回収した有機相を水で洗浄した後に、静置することでCClF2CF2CHClFを溶媒とする有機相と水相の二相に分離され、このうち有機相を回収したところ、精製後の(C2F5COO)2収率は64%であった。
なお、2009年4月8日に出願された日本特許出願2009-094170号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
2 過酸化水素水溶液
3 塩基性アルカリ金属化合物水溶液
4 ジャケットおよび静的混合器を備えた管型反応器
5 二相分離槽
6 有機相回収槽
7 水相回収槽
Claims (12)
- ペルフルオロアシルハライド含有有機溶剤溶液、過酸化水素または金属過酸化物の水溶液および塩基性アルカリ金属化合物の水溶液を管型反応器の入口に導入し、管型反応器内で前記溶液を混合して反応させ、ペルフルオロアシル過酸化物を含む液を管型反応器の出口から導出するペルフルオロアシル過酸化物の連続製造方法において、管型反応器に導入する、ペルフルオロアシルハライド含有有機溶剤溶液、過酸化水素または金属過酸化物の水溶液および塩基性アルカリ金属化合物水溶液の流量比を、前記各溶液中の化合物のモル比で表して、ペルフルオロアシルハライド1に対して、塩基性アルカリ金属化合物を1.00~1.35、過酸化水素または金属過酸化物を0.60~40、の範囲とすることを特徴とするペルフルオロアシル過酸化物の製造方法。
- 前記ペルフルオロアシルハライドが下式(1)で表される化合物からなる、請求項1に記載の製造方法。
G(CF2)v[CF(CF3)CF2]w[OCF(CF3)CF2]y[OCF(CF3)]z-(C=O)X・・・・・・・・(1)
(但し、Gはフッ素原子またはペンタフルオロフェノキシ基、Xはハロゲン原子、vは0~10の整数、wは0または1、yは0~7の整数、zは0または1でありかつv+w≧1、を表す] - 前記ペルフルオロアシルハライドがC2F5(CO)Clである、請求項1または2に記載の製造方法。
- 過酸化水素または金属過酸化物の水溶液が過酸化水素水溶液である、請求項1~3のいずれかに記載の製造方法。
- 塩基性アルカリ金属化合物の水溶液が水酸化カリウム水溶液である、請求項1~4のいずれかに記載の製造方法。
- 管型反応器の内部断面積が1.0×10-7~5.0×10-4m2である、請求項1~5のいずれかに記載の製造方法。
- 管型反応器がその内部反応域に静的混合器を有する、請求項1~6のいずれかに記載の製造方法。
- 反応温度が-10℃~30℃である、請求項1~7のいずれかに記載の製造方法。
- ペルフルオロアシルハライド含有有機溶剤溶液中のペルフルオロアシルハライドの濃度が3~60質量%である、請求項1~8のいずれかに記載の製造方法。
- 過酸化水素または金属過酸化物の水溶液中の過酸化水素または金属過酸化物の濃度が5~50質量%である、請求項1~9のいずれかに記載の製造方法。
- 塩基性アルカリ金属化合物の水溶液中の塩基性アルカリ金属化合物の濃度が5~50質量%である、請求項1~10のいずれかに記載の製造方法。
- 管型反応器の反応部の管長が0.05~10mである、請求項1~11のいずれかに記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10761728.4A EP2418199B1 (en) | 2009-04-08 | 2010-04-07 | Method of manufacturing a perfluoro organic peroxide |
JP2011508384A JP5724874B2 (ja) | 2009-04-08 | 2010-04-07 | ペルフルオロ有機過酸化物の製造方法 |
CN201080015920.0A CN102369184B (zh) | 2009-04-08 | 2010-04-07 | 全氟有机过氧化物的制造方法 |
US13/248,732 US8759567B2 (en) | 2009-04-08 | 2011-09-29 | Process for producing perfluoro organic peroxide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009094170 | 2009-04-08 | ||
JP2009-094170 | 2009-04-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/248,732 Continuation US8759567B2 (en) | 2009-04-08 | 2011-09-29 | Process for producing perfluoro organic peroxide |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010117029A1 true WO2010117029A1 (ja) | 2010-10-14 |
Family
ID=42936310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/056341 WO2010117029A1 (ja) | 2009-04-08 | 2010-04-07 | ペルフルオロ有機過酸化物の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8759567B2 (ja) |
EP (1) | EP2418199B1 (ja) |
JP (2) | JP5724874B2 (ja) |
KR (1) | KR20120005454A (ja) |
CN (1) | CN102369184B (ja) |
WO (1) | WO2010117029A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020117441A (ja) * | 2019-01-18 | 2020-08-06 | 東ソー株式会社 | 重合開始剤組成物及びその製造方法 |
WO2021010183A1 (ja) | 2019-07-12 | 2021-01-21 | Agc株式会社 | ペルフルオロアシル過酸化物の製造方法およびフルオロアルキルアイオダイドの製造方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2418199B1 (en) * | 2009-04-08 | 2018-06-06 | Asahi Glass Company, Limited | Method of manufacturing a perfluoro organic peroxide |
CN109553560A (zh) * | 2017-08-12 | 2019-04-02 | 上海惠和化德生物科技有限公司 | 一种由醇或烷烃直接制备有机过氧化物的在线全连续流生产工艺 |
EP3778911A4 (en) * | 2018-03-28 | 2021-12-22 | Mitsui Chemicals, Inc. | METHOD OF PREPARING AN AMIDE COMPOUND |
WO2019189715A1 (ja) * | 2018-03-30 | 2019-10-03 | 関東電化工業株式会社 | 六フッ化モリブデンの製造方法及び製造装置 |
CN109535054A (zh) * | 2018-12-04 | 2019-03-29 | 浙江巨圣氟化学有限公司 | 一种全氟酰基过氧化物的连续制备方法 |
CN113260639A (zh) * | 2018-12-20 | 2021-08-13 | 索尔维特殊聚合物意大利有限公司 | 用于制备全卤酰基过氧化物的方法 |
CN111072542A (zh) * | 2019-12-26 | 2020-04-28 | 云南正邦科技有限公司 | 一种多点进料与强化混合连续生产过氧化二异丁酰的方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2792423A (en) | 1951-05-17 | 1957-05-14 | Union Carbide & Carbon Corp | Production of bis (perfluoroacyl) peroxides |
JPS5344514A (en) | 1976-09-30 | 1978-04-21 | Pennwalt Corp | Method of continuous production of peroxyester |
JPH11511464A (ja) | 1995-08-30 | 1999-10-05 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | 過酸化物の製造方法 |
JP2003155272A (ja) * | 2001-11-16 | 2003-05-27 | Asahi Glass Co Ltd | 有機過酸化物、その誘導体、ラジカル重合開始剤およびそれらの製造方法 |
JP2005244334A (ja) | 2004-02-24 | 2005-09-08 | Denso Corp | 半導体スイッチ |
JP2007308388A (ja) * | 2006-05-16 | 2007-11-29 | Asahi Glass Co Ltd | 有機過酸化物、ラジカル開始剤、その誘導体および製造方法 |
JP2008044863A (ja) * | 2006-08-11 | 2008-02-28 | Asahi Glass Co Ltd | ペルフルオロ有機過酸化物ならびにその製造方法、および重合体の製造方法 |
JP2009094170A (ja) | 2007-10-04 | 2009-04-30 | Nec Electronics Corp | 不揮発性半導体メモリ及びその製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7700412A (nl) * | 1977-01-15 | 1978-07-18 | Synres Internationaal Nv | Continu bereiding van polymeren in de massa. |
IT1301684B1 (it) * | 1998-06-11 | 2000-07-07 | Ausimont Spa | Acilperossidi perfluoropolieterei e procedimento per il loroottenimento. |
US20020026011A1 (en) * | 2000-05-25 | 2002-02-28 | Brothers Paul Douglas | Synthesis of diacyl peroxide in aprotic solvent |
JP4940598B2 (ja) * | 2004-08-27 | 2012-05-30 | 旭硝子株式会社 | 有機ペルオキシドの製造方法 |
CN1272317C (zh) * | 2004-12-29 | 2006-08-30 | 上海交通大学 | ω-卤磺酰全氟酰基过氧化物及其制备方法 |
JP4835050B2 (ja) * | 2005-06-29 | 2011-12-14 | 旭硝子株式会社 | 有機過酸化物のフッ素系溶剤溶液の製造方法 |
JP5344514B2 (ja) | 2007-05-01 | 2013-11-20 | 株式会社大一商会 | 遊技機 |
ES2828730T3 (es) * | 2009-02-05 | 2021-05-27 | Dow Global Technologies Llc | Reactor tubular de polietileno de baja densidad (LDPE) para inyección de iniciador de peróxido |
EP2418199B1 (en) * | 2009-04-08 | 2018-06-06 | Asahi Glass Company, Limited | Method of manufacturing a perfluoro organic peroxide |
-
2010
- 2010-04-07 EP EP10761728.4A patent/EP2418199B1/en active Active
- 2010-04-07 KR KR1020117023504A patent/KR20120005454A/ko not_active Application Discontinuation
- 2010-04-07 CN CN201080015920.0A patent/CN102369184B/zh active Active
- 2010-04-07 WO PCT/JP2010/056341 patent/WO2010117029A1/ja active Application Filing
- 2010-04-07 JP JP2011508384A patent/JP5724874B2/ja active Active
-
2011
- 2011-09-29 US US13/248,732 patent/US8759567B2/en active Active
-
2015
- 2015-04-01 JP JP2015075379A patent/JP2015120764A/ja not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2792423A (en) | 1951-05-17 | 1957-05-14 | Union Carbide & Carbon Corp | Production of bis (perfluoroacyl) peroxides |
JPS5344514A (en) | 1976-09-30 | 1978-04-21 | Pennwalt Corp | Method of continuous production of peroxyester |
JPH11511464A (ja) | 1995-08-30 | 1999-10-05 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | 過酸化物の製造方法 |
JP2003155272A (ja) * | 2001-11-16 | 2003-05-27 | Asahi Glass Co Ltd | 有機過酸化物、その誘導体、ラジカル重合開始剤およびそれらの製造方法 |
JP2005244334A (ja) | 2004-02-24 | 2005-09-08 | Denso Corp | 半導体スイッチ |
JP2007308388A (ja) * | 2006-05-16 | 2007-11-29 | Asahi Glass Co Ltd | 有機過酸化物、ラジカル開始剤、その誘導体および製造方法 |
JP2008044863A (ja) * | 2006-08-11 | 2008-02-28 | Asahi Glass Co Ltd | ペルフルオロ有機過酸化物ならびにその製造方法、および重合体の製造方法 |
JP2009094170A (ja) | 2007-10-04 | 2009-04-30 | Nec Electronics Corp | 不揮発性半導体メモリ及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2418199A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020117441A (ja) * | 2019-01-18 | 2020-08-06 | 東ソー株式会社 | 重合開始剤組成物及びその製造方法 |
JP7225818B2 (ja) | 2019-01-18 | 2023-02-21 | 東ソー株式会社 | 重合開始剤組成物及びその製造方法 |
WO2021010183A1 (ja) | 2019-07-12 | 2021-01-21 | Agc株式会社 | ペルフルオロアシル過酸化物の製造方法およびフルオロアルキルアイオダイドの製造方法 |
KR20220034026A (ko) | 2019-07-12 | 2022-03-17 | 에이지씨 가부시키가이샤 | 퍼플루오로아실 과산화물의 제조 방법 및 플루오로알킬아이오다이드의 제조 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP2418199A1 (en) | 2012-02-15 |
JP5724874B2 (ja) | 2015-05-27 |
KR20120005454A (ko) | 2012-01-16 |
EP2418199A4 (en) | 2013-01-23 |
EP2418199B1 (en) | 2018-06-06 |
CN102369184B (zh) | 2015-07-08 |
JP2015120764A (ja) | 2015-07-02 |
CN102369184A (zh) | 2012-03-07 |
US20120022286A1 (en) | 2012-01-26 |
US8759567B2 (en) | 2014-06-24 |
JPWO2010117029A1 (ja) | 2012-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5724874B2 (ja) | ペルフルオロ有機過酸化物の製造方法 | |
JP4940598B2 (ja) | 有機ペルオキシドの製造方法 | |
US8415516B2 (en) | Production process and purification process for 1,2,3,4-tetrachlorohexafluorobutane | |
CN101842348B (zh) | 三氟甲磺酰氟的制造方法 | |
JP5471121B2 (ja) | パーフルオロアルカンスルフィン酸塩の製造方法 | |
JP5169880B2 (ja) | トリフルオロメタンスルホニルフルオリドの精製方法 | |
JP5454567B2 (ja) | ヘキサフルオロプロピレンオキシドの製造方法 | |
TWI735700B (zh) | 四氟化硫之製造方法 | |
Francesco et al. | Recent developments in the chemistry of organic perfluoro hypofluorites | |
JP4431212B2 (ja) | 含フッ素環状炭酸エステルの製造方法 | |
JP2010059071A (ja) | トリフルオロメタンスルホニルフルオリドの精製方法 | |
JP4993462B2 (ja) | フッ素化合物の製造方法 | |
US20220041549A1 (en) | Perfluoroacyl peroxide production method, and fluoroalkyl iodide production method | |
JP2006219419A (ja) | パーフルオロビニルエーテルモノマーの製造法 | |
JP2010116390A (ja) | エーテル構造を有するペルフルオロスルホン酸及びその誘導体の製造方法、並びに含フッ素エーテルスルホン酸化合物及びその誘導体を含む界面活性剤 | |
JP5621296B2 (ja) | 3−ハロ−ペンタフルオロプロピレンオキシドの製造方法 | |
CN104262207B (zh) | 一种含氟磺酸类化合物的制备方法 | |
CN111018679B (zh) | 一种四氟丙基三氟乙烯醚的合成方法 | |
JP4864226B2 (ja) | 含フッ素化合物の製造方法 | |
CN105439981A (zh) | 一种常压条件下连续制备六氟环氧丙烷的装置及方法 | |
RU2157805C2 (ru) | Способ получения перфторированных эпоксидов | |
CN114728873A (zh) | 工业化合成全氟甲基乙烯基醚和1,1,2,2-四氟-1-三氟甲氧基乙烷的新工艺 | |
CN117417234A (zh) | 氟烷基醚类遥爪化合物的制备方法及其中间体 | |
CN111333497A (zh) | 一种含氟二元羧酸的制备方法 | |
JPH10231261A (ja) | 弗化沃化エタンの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080015920.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10761728 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011508384 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117023504 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010761728 Country of ref document: EP |