WO2010117023A1 - 金属ベース回路基板およびその製造方法 - Google Patents

金属ベース回路基板およびその製造方法 Download PDF

Info

Publication number
WO2010117023A1
WO2010117023A1 PCT/JP2010/056327 JP2010056327W WO2010117023A1 WO 2010117023 A1 WO2010117023 A1 WO 2010117023A1 JP 2010056327 W JP2010056327 W JP 2010056327W WO 2010117023 A1 WO2010117023 A1 WO 2010117023A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
insulating
circuit board
metal
metal substrate
Prior art date
Application number
PCT/JP2010/056327
Other languages
English (en)
French (fr)
Inventor
公一 草川
和彦 許斐
敏 岡本
豊誠 伊藤
Original Assignee
日本発條株式会社
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社, 住友化学株式会社 filed Critical 日本発條株式会社
Priority to CN201080014975.XA priority Critical patent/CN102388682B/zh
Priority to US13/262,944 priority patent/US20120193131A1/en
Priority to JP2011508380A priority patent/JP5427884B2/ja
Priority to KR1020117023562A priority patent/KR101156151B1/ko
Publication of WO2010117023A1 publication Critical patent/WO2010117023A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0141Liquid crystal polymer [LCP]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils

Definitions

  • the present invention relates to a metal base circuit board having excellent heat dissipation and electrical insulation and high electrical reliability even at high temperatures, and a method for manufacturing the same.
  • circuit boards for semiconductor mounting downsizing, high-density mounting and high performance are always present requirements.
  • Such circuit boards are improved by improving the miniaturization technology of semiconductor elements mounted on circuit boards. Every year, it is becoming smaller.
  • a ceramic base circuit board is mainly used as the circuit board used in the high temperature environment.
  • the ceramic base circuit board is a circuit board having a configuration in which a substrate made of alumina or aluminum nitride is used as a support substrate, and a conductive foil for forming a circuit is laminated on the surface of the support substrate using a metalizing technique.
  • This ceramic base circuit board has good durability under high temperature environment, but has a problem that it is difficult to make a large product. Furthermore, this ceramic base circuit board cannot be used for products used under severe vibration conditions such as electronic parts for in-vehicle electronic products because the ceramic substrate itself is fragile. Is very expensive and it is difficult to reduce the product price.
  • metal base circuit boards have been adopted mainly for power supply fields such as inverters because of their excellent heat dissipation.
  • the metal base circuit board it is necessary to form a structure in which an insulating layer is formed on a metal plate and a conductive foil for forming a circuit is laminated on the insulating layer. Therefore, the heat generated from the semiconductor element connected to the circuit is transmitted to the metal substrate through the resin material constituting the insulating layer, and is radiated from the metal substrate.
  • the resin constituting the insulating layer has low thermal conductivity, the heat dissipation of the metal base circuit board is insufficient.
  • the metal base circuit board cannot be used for an electronic component placed in a high temperature environment. At present, an improvement in heat dissipation of the metal base circuit board having a low product price is expected.
  • the inorganic filler is closely packed in the insulating resin layer, so that the inorganic fillers having high thermal conductivity are contained in the resin layer.
  • Attempts have been made to improve heat dissipation by bringing them into contact with each other (for example, Patent Document 1). Although this attempt improved the filling properties of the inorganic filler and increased the thermal conductivity, the contact area between the inorganic filler particles was small, and the thermal conductivity achieved was insufficient at 5 W / mK. Further, since the amount of the resin component in the insulating layer is reduced, the resin layer becomes brittle, and a new problem arises that the mechanical strength of the insulating layer of the obtained metal base circuit board becomes insufficient.
  • the inorganic filler particles do not increase unless they come into contact with each other. Therefore, in consideration of increasing the thermal conductivity of the insulating layer, the amount of the inorganic filler must be increased to a state close to the closest packed structure. As the compounding amount of the inorganic filler increases, the amount of the resin component constituting the insulating layer decreases. As a result, the adhesiveness between the insulating layer and the metal substrate or conductive foil is greatly reduced. In addition, there is a problem that the insulating layer becomes brittle as the amount of the resin component decreases. This problem becomes conspicuous when a thermosetting resin such as a thermosetting epoxy resin is used as the resin component.
  • Patent Document 2 a metal base circuit board using boron nitride, diamond, and beryllium oxide having high thermal conductivity as an inorganic filler and using an epoxy resin as a resin component is disclosed (Patent Document 2).
  • Patent Document 2 a metal base circuit board using boron nitride, diamond, and beryllium oxide having high thermal conductivity as an inorganic filler and using an epoxy resin as a resin component.
  • the resin component is an amorphous epoxy resin having low thermal conductivity, and heat conduction is interrupted by the resin layer, so that the overall thermal conductivity of the insulating layer is high. 12.4 W / mK.
  • thermotropic liquid crystal polyester exhibiting anisotropy showing anisotropy is used as a resin component, and a filler having a thermal conductivity of 10 W / mK or more at 300 ° K is used as a filler.
  • An electric component substrate having an insulating layer is disclosed (Patent Document 4).
  • the melt viscosity of the resin becomes extremely high by blending the inorganic filler with the molten resin, so the blending amount of the inorganic filler cannot be increased, and therefore the thermal conductivity of the insulating layer is increased. Is not done.
  • the thickness of the insulating layer of the metal base substrate is preferably 50 to 200 ⁇ m
  • the material described in Patent Document 4 is completely incompatible with the insulating layer of the metal base circuit substrate. This is because, as disclosed in Example 1 of Patent Document 4, the compounding amount of alumina is as small as 35% by volume with respect to the liquid crystalline polyester, the extrusion thickness is as thick as 0.4 mm, and the thermal conductivity is 1.5 W. This can be confirmed from the low value of / mK.
  • the polymer when liquid crystalline polyester exhibiting anisotropy is extruded, the polymer is oriented in the extrusion direction, so that the thermal conductivity is high in the length direction and low in the thickness direction.
  • heat generated in the circuit flows from the circuit layer on the insulating layer toward the metal board so as to traverse the insulating layer vertically (thickness direction), so the insulating layer has thermal conductivity in the thickness direction. Is preferably high.
  • the heat conductivity in the thickness direction of the insulating layer is low, and thus the heat dissipation of the metal base circuit board has to be insufficient.
  • the present invention has been made in view of the above-described conventional circumstances, and the problem is that it has a high thermal conductivity that can be applied to an inverter or an application that requires high heat dissipation, and at the same time has thermal stability and electrical properties.
  • the object is to provide a highly reliable metal-based circuit board.
  • the ceramic base circuit board has the advantage of excellent heat resistance, it has the disadvantages that it is difficult to make a large board and is vulnerable to impacts. It is also an object of the present invention to provide a metal base circuit board having both heat resistance, insulation and reliability that can be used in the same field of application as the board.
  • the use of the metal base circuit board of the present invention is used for a board for automobiles, and examples thereof include an electric power steering control unit, an LED head up display, an automatic transmission, an ABS module, an engine control control unit, and an LED meter panel. .
  • it is also used for power lighting substrates such as LED lighting fixtures, backlights of LED display boards, and elevators and trains.
  • a metal base circuit board includes a metal substrate, an insulating layer laminated on the metal substrate, and a conductive foil for circuit formation laminated on the insulating layer.
  • a metal base circuit board having a thermal conductivity of 60 W / mK or more and a thickness of 0.2 to 5.0 mm, and the insulating layer conducting heat to a non-anisotropic liquid crystal polyester solution. It is formed using an insulating material composition in which an inorganic filler having a rate of 30 W / mK or more is dispersed.
  • the thermal conductivity of the insulating material constituting the insulating layer is 6 to 30 W / mK.
  • a method for manufacturing a metal base circuit board according to the present invention is a method for manufacturing a metal base circuit board according to the present invention, which is a non-anisotropic liquid crystal polyester solution and an inorganic filling having a thermal conductivity of 30 W / mK or more.
  • An insulating coating film forming step of coating an insulating material composition comprising an agent on the surface of a metal substrate having a thermal conductivity of 60 W / mK or more and a thickness of 0.2 to 5.0 mm; Insulating material layer forming step of drying the insulating coating film to form an insulating material layer, heat-treating the insulating material layer to increase the molecular weight and obtaining an insulating layer, and forming on the surface of the metal substrate
  • Another structure of the method for producing a metal base circuit board according to the present invention is that an insulating material composition comprising a non-anisotropic liquid crystal polyester solution and an inorganic filler having a thermal conductivity of 30 W / mK or more is applied to the surface of the conductive foil.
  • An insulating layer forming step for obtaining an insulating layer, and an exposed surface of the insulating layer formed on the surface of the conductive foil is brought into close contact with the surface of the metal substrate to form an insulating layer between the metal substrate and the conductive foil.
  • the liquid crystal polymer having high thermal conductivity is used as a matrix (base material) as an insulating material constituting the insulating layer, the insulating layer that transmits heat from the conductive foil to the metal substrate.
  • the thermal conductivity of the metal substrate can be greatly improved, and the high heat dissipation property of the metal substrate can be utilized to the maximum.
  • a liquid crystal polyester solution is used, and this liquid crystal polymer solution can be easily mixed with a large amount of an inorganic filler.
  • the desired amount of inorganic filler can be evenly dispersed, and as a result, a product with high thermal conductivity can be obtained.
  • the thermal conductivity of the resin component itself constituting the base material of the insulating layer is high, the thermal conductivity of the insulating layer is maintained high even when the amount of inorganic filler is reduced. As a result, it is possible to simultaneously improve the thermal conductivity of the insulating layer and ensure the insulating properties and mechanical strength of the insulating layer.
  • the product obtained by the present invention has high heat dissipation and excellent mechanical strength, so it can be applied to cutting and pressing, can be obtained at low cost, and a ceramic base circuit board is the mainstay. It can be applied to a wide range of fields including various fields.
  • the metal base circuit board according to the present invention has three types of components, that is, a metal substrate, an insulating layer laminated on the metal substrate, and a circuit formed on the insulating layer. Conductive foil.
  • these components will be sequentially described in detail.
  • Metal substrate As the metal substrate used in the present invention, a metal plate having a thermal conductivity of 60 W / mK or more is used.
  • the metal material constituting such a metal substrate include aluminum, aluminum alloy, iron, copper, stainless steel, or alloys thereof, and modified aluminum in which carbon having high thermal conductivity is combined.
  • the thickness of the metal substrate is preferably 0.2 to 5 mm.
  • the conductive foil used for the metal base circuit board of the present invention is preferably a copper foil or an aluminum foil, and the thickness is preferably 10 to 400 ⁇ m.
  • the insulating layer is applied to one surface (adhesive surface) of the specific insulating material composition described later on the conductive foil or metal substrate, and after drying this coating film, the insulating material layer obtained by drying is heat-treated, It is obtained by increasing the molecular weight of the resin component constituting the insulating material layer by heat treatment.
  • the conductive foil or metal substrate, which is the other side on which the coating film is not formed, is laminated after the insulating layer is formed by the heat treatment.
  • the insulating layer used in the present invention may be a film formed as a separate body.
  • a film-like insulating layer is disposed between the conductive foil and the metal substrate, and the laminate is heated to realize adhesion to the conductive foil and the metal substrate.
  • the heat treatment is preferably performed at a temperature of 250 to 350 ° C. for 1 to 10 hours.
  • the insulating material composition used for forming the insulating layer is composed of a non-anisotropic liquid crystal polyester solution and an inorganic filler having a thermal conductivity of 30 W / mK or more.
  • the non-anisotropic polyester solution is a polymer solution obtained by dissolving liquid crystal polyester in a solvent and blending other additives as necessary.
  • liquid crystal polyester used in the present invention exhibits optical anisotropy when melted and forms an anisotropic melt at a temperature of 450 ° C. or lower.
  • the liquid crystalline polyester forming this anisotropic melt is represented by the structural unit represented by the following general formula (1), the structural unit represented by the following general formula (2), and the following general formula (3).
  • the blending ratio of each structural unit represented by the general formulas (1) to (3) is 30.0 to 45.0 for the structural unit represented by the general formula (1) with respect to the total of all the structural units.
  • Mol% the structural unit represented by the general formula (2) is 27.5 to 35.0 mol%
  • the structural unit represented by the general formula (3) is 27.5 to 35.0 mol%. preferable.
  • the liquid crystalline polyester used in the present invention contains at least one structural unit (a) selected from the group consisting of a structural unit derived from an aromatic diamine and a structural unit derived from an aromatic amine having a hydroxyl group, based on all the structural units.
  • the polymer is preferably 27.5 to 35.0 mol%.
  • the structural unit (a) is included as the structural unit represented by the general formula (3), the above-described effect, that is, “shows optical anisotropy when melted and is 450 ° C. or lower. There is a tendency that the effect of “forming an anisotropic melt at a temperature” can be obtained better.
  • the structural unit represented by the general formula (1) is a structural unit derived from an aromatic hydroxycarboxylic acid
  • the structural unit represented by the general formula (2) is a structural unit derived from an aromatic dicarboxylic acid
  • the structural unit represented by Formula (3) is a structural unit derived from an aromatic diamine or an aromatic amine having a phenolic hydroxyl group.
  • a liquid crystal polyester used in the present invention can be obtained by using as a monomer a compound that derives each of such structural units (1) to (3) as a monomer and polymerizing these monomers.
  • ester-forming derivatives or amide-forming derivatives may be used instead of the above-described monomers.
  • ester-forming and amide-forming derivatives of the carboxylic acid include derivatives having high reaction activity such as acid chlorides and acid anhydrides in which the carboxyl group promotes the reaction to form polyesters and polyamides. And those in which a carboxyl group forms an ester with an alcohol or ethylene glycol that forms a polyester or polyamide by transesterification / amide exchange reaction.
  • ester-forming / amide-forming derivatives of the phenolic hydroxyl group include those in which the phenolic hydroxyl group forms an ester with a carboxylic acid so as to produce a polyester or polyamide by an ester exchange reaction. It is done.
  • Examples of the amide-forming derivative of the amino group include those in which the amino group forms an ester with a carboxylic acid so that a polyamide is produced by an amide exchange reaction.
  • Examples of the structural unit represented by the general formula (1) include aromatic hydroxycarboxylic acids selected from p-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid and 4-hydroxy-4′-biphenylcarboxylic acid.
  • Examples of such structural units include two or more structural units among these structural units.
  • the blending amount of the structural unit represented by the general formula (1) is 30.0 to 45.0 mol%, more preferably 35.0 to 40.0 mol%, based on the total of all structural units. It is a range.
  • the structural unit represented by the general formula (1) exceeds 45.0 mol%, the solubility in an aprotic solvent described later decreases, and when it is less than 30.0 mol%, the liquid crystal property of the polyester does not tend to be exhibited. Therefore, neither is preferable.
  • examples of the structural unit represented by the general formula (2) include structural units derived from aromatic dicarboxylic acids selected from terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • the structural units two or more types of structural units may be included.
  • the blending amount of the structural unit represented by the general formula (2) is 27.5 to 35.0 mol%, more preferably 30.0 to 32.5 mol% with respect to the total of all the structural units. It is a range.
  • the structural unit represented by the general formula (2) exceeds 35.0 mol%, the liquid crystallinity tends to decrease, and if it is less than 27.5 mol%, the solubility in the aprotic solvent tends to decrease. Therefore, neither is preferable.
  • the structural unit represented by the general formula (3) is, for example, an aromatic amine-derived structural unit having a phenolic hydroxyl group exemplified by 3-aminophenol or 4-aminophenol, or 1,4 Examples thereof include structural units derived from aromatic diamines exemplified by -phenylenediamine or 1,3-phenylenediamine.
  • these structural units two or more types of structural units may be contained.
  • the blending amount of the structural unit represented by the general formula (3) is 27.5 to 35.0 mol%, more preferably 30.0 to 32.5 mol% with respect to the total of all the structural units. It is a range.
  • the structural unit represented by the general formula (3) exceeds 35.0 mol%, the liquid crystallinity tends to decrease, and if it is less than 27.5 mol%, the solubility in the aprotic solvent tends to decrease. Yes, neither is preferred.
  • the structural unit represented by General formula (3) and the structural unit represented by General formula (2) are substantially equivalent, it is represented by General formula (3).
  • the degree of polymerization of the aromatic liquid crystal polyester can be controlled.
  • the manufacturing method of the said aromatic liquid crystal polyester is not specifically limited, For example, it respond
  • Acylates obtained by acylating aromatic amines having hydroxyl groups, phenolic hydroxyl groups and amino groups of aromatic diamines with excess fatty acid anhydrides to obtain acylates (ester-forming derivatives and amide-forming derivatives)
  • acylated product fatty acid esters obtained by acylation in advance may be used (see JP 2002-220444 A and JP 2002-146003 A).
  • the amount of fatty acid anhydride added is preferably 1.0 to 1.2 times equivalent to the total of phenolic hydroxyl groups and amino groups, more preferably 1.05 to 1. .1 equivalent.
  • the added amount of the fatty acid anhydride is less than 1.0 times equivalent, the acylated product, raw material monomer and the like tend to sublimate during transesterification (polycondensation), and the reaction system tends to be blocked.
  • the amount of fatty acid anhydride is preferably 1.0 to 1.2 times equivalent to the total of phenolic hydroxyl groups and amino groups, more preferably 1.05 to 1. .1 equivalent.
  • the acylation reaction is preferably performed at 130 to 180 ° C. for 5 minutes to 10 hours, more preferably at 140 to 160 ° C. for 10 minutes to 3 hours.
  • the fatty acid anhydride used in the acylation reaction is not particularly limited, and examples thereof include acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, anhydrous 2-ethylhexanoic acid, and monochloro anhydride.
  • acetic anhydride, propionic anhydride, butyric anhydride, and isobutyric anhydride are preferable, and acetic anhydride is more preferable from the viewpoints of price and handleability.
  • the acyl group of the acylated product is preferably 0.8 to 1.2 times equivalent to the carboxyl group.
  • the transesterification / amide exchange is preferably performed at 130 to 400 ° C. while increasing the temperature at a rate of 0.1 to 50 ° C./min, preferably at 150 to 350 ° C. and 0.3 to 5 ° C./min. More preferably, the temperature is raised at a rate.
  • the acylation reaction, transesterification and amide exchange may be performed in the presence of a catalyst.
  • a catalyst those conventionally used as polyester polymerization catalysts can be used, for example, metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide, and the like.
  • metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, antimony trioxide, and the like.
  • salt catalysts organic compound catalysts such as N, N-dimethylaminopyridine and N-methylimidazole.
  • heterocyclic compounds containing two or more nitrogen atoms such as N, N-dimethylaminopyridine and N-methylimidazole are preferably used (see JP 2002-146003 A).
  • the above catalyst is usually added at the time of adding monomers, and it is not always necessary to remove it after acylation. If the catalyst is not removed, transesterification can be carried out as it is.
  • the polymerization by transesterification / amide exchange is usually carried out by melt polymerization, but melt polymerization and solid phase polymerization may be used in combination.
  • the solid phase polymerization can be carried out by a known solid phase polymerization method after the polymer is extracted from the melt polymerization step and then pulverized into powder or flakes. Specifically, for example, a heat treatment method in a solid state at 20 to 350 ° C. for 1 to 30 hours under an inert atmosphere such as nitrogen can be given. Solid phase polymerization may be carried out while stirring or in a state of standing without stirring. In addition, by providing an appropriate stirring mechanism, the melt polymerization tank and the solid phase polymerization tank can be made the same reaction tank. After the solid state polymerization, the obtained aromatic liquid crystal polyester may be pelletized and molded by a known method.
  • the above-mentioned aromatic liquid crystal polyester can be produced using, for example, a batch apparatus, a continuous apparatus or the like.
  • the flow start temperature required by the following method is 260 ° C. or more, between the obtained aromatic liquid crystal polyester and a substrate that can be a conductive layer such as a metal foil, and This is preferable because higher adhesion can be obtained between the substrate and the metal substrate.
  • the flow start temperature is more preferably 250 ° C. or higher and 300 ° C. or lower. If the flow start temperature is 250 ° C. or higher, as described above, the adhesion between the conductive foil and the metal substrate and the aromatic liquid crystal polyester tends to be further improved, and conversely, the flow start temperature is 300 ° C. or lower. If so, there is a tendency that the solubility in a solvent is further improved. From this point of view, the flow start temperature is more preferably in the range of 260 ° C. or higher and 290 ° C. or lower.
  • the above flow start temperature refers to a temperature at which the melt viscosity of the aromatic polyester becomes 4800 Pa ⁇ s or less under a pressure of 9.8 MPa in the evaluation of the melt viscosity by a flow tester.
  • liquid crystal polyester resin in the 1970s.
  • the flow temperature (definition equivalent to the flow start temperature in the present invention) has been used as a measure of the molecular weight of the liquid crystal polyester resin.
  • the polymer is extracted from the melt polymerization step, and after the polymer is pulverized into a powder or flake, the flow is started by a known solid phase polymerization method. This can be done easily by adjusting the temperature.
  • the melt polymerization step in an inert atmosphere such as nitrogen, at a temperature exceeding 210 ° C., more preferably at a temperature of 220 ° C. to 350 ° C. for 1 to 10 hours in a solid state. It is obtained by a heat treatment method.
  • the solid phase polymerization may be performed while stirring or in a state of standing without stirring.
  • a method in which solid phase polymerization is carried out under a condition of a temperature of 225 ° C. for 3 hours in a state of standing without stirring in an inert atmosphere of nitrogen.
  • solvent of non-anisotropic liquid crystal polyester solution As a solvent for dissolving the liquid crystal polyester described above to obtain the non-anisotropic liquid crystal polyester solution used in the present invention, it is preferable to use an aprotic solvent containing no halogen atom.
  • aprotic solvent containing no halogen atom examples include ether solvents such as diethyl ether, tetrahydrofuran and 1,4-dioxane, ketone solvents such as acetone and cyclohexanone, ester solvents such as ethyl acetate, ⁇ - Lactone solvents such as butyrolactone, carbonate solvents such as ethylene carbonate and propylene carbonate, amine solvents such as triethylamine and pyridine, nitrile solvents such as acetonitrile and succinonitrile, N, N-dimethylformamide, N, N-dimethyl Amide solvents such as acetamide, tetramethylurea and N-methylpyrrolidone, nitro solvents such as nitromethane and nitrobenzene, sulfide solvents such as dimethyl sulfoxide and sulfolane, hexamethylphosphate De, phosphoric acid-based
  • the use of a solvent having a dipole moment of 3 or more and 5 or less is preferable from the viewpoint of the solubility of the aromatic liquid crystal polyester, specifically, N, N-dimethylformamide, N, N-dimethyl.
  • Amide solvents such as acetamide, tetramethylurea and N-methylpyrrolidone, and lactone solvents such as ⁇ -butyrolactone are preferred, and N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone (NMP) are more preferred.
  • the solvent is a highly volatile solvent having a boiling point of 180 ° C.
  • the insulating material composition containing the aromatic liquid crystal polyester solution is used as a coating film, and then the solvent is removed from the coating film.
  • the solvent is removed from the coating film.
  • N, N-dimethylformamide (DMF) and N, N-dimethylacetamide (DMAc) are particularly preferable.
  • the non-anisotropic liquid crystal polyester solution used in the present invention contains the aromatic liquid crystal polyester in an amount of 10 to 50 parts by weight, preferably 20 to 40 parts by weight, based on 100 parts by weight of the aprotic solvent.
  • the amount of the aromatic liquid crystalline polyester is less than 10 parts by weight, the solvent content is large and the appearance of the coating film is liable to be poor at the time of drying and removal.
  • the amount of the aromatic liquid crystal polyester exceeds 50 parts by weight, the aromatic liquid crystal polyester solution tends to have a high viscosity, and the handleability decreases.
  • the content of the aromatic liquid crystal polyester in the solution composition can be appropriately optimized within the above range from the balance of the solution viscosity, but the amount of the aromatic liquid crystal polyester is 20 to 40 parts by weight with respect to 100 parts by weight of the aprotic solvent. More preferably.
  • the liquid crystalline polyester used as the base material of the insulating layer of the metal base circuit board of the present invention has a relatively small molecular weight before thermosetting, so it can be made into a solution relatively easily, and a coating film can be easily formed. Can do. And after making into a coating film, it is possible to increase the molecular weight of the resin constituting the coating film by drying and then heat-treating, and as a result, the resulting insulating layer has excellent mechanical strength. Become.
  • the above liquid crystalline polyester is thermoplastic, it does not change with time due to storage of a thermosetting resin such as an epoxy resin, so it can be used safely as an industrial product. Furthermore, because it is thermoplastic, it is possible to develop the orientation sufficiently, and by taking a heating process that sufficiently increases the molecular weight, it is possible to increase the thermal conductivity significantly because the phonon conduction path length can be taken long, In addition, an insulating layer having high strength and high adhesion can be formed. Therefore, by forming an insulating layer using this liquid crystal polyester as a base material, a product with high quality and electrical reliability can be obtained while satisfying the workability of the metal base circuit board.
  • Inorganic filler As the inorganic filler used in the present invention, it is necessary to select an inorganic filler having a thermal conductivity of 30 W / mK or more and an excellent insulating property. Particles such as alumina, magnesium oxide, beryllium oxide, aluminum hydroxide, zinc oxide, aluminum nitride, boron nitride are preferred.
  • the viscosity of the insulating material composition adjusted by blending with the non-anisotropic liquid crystal polyester solution is not increased, and the particles of the inorganic filler are easily packed in the liquid crystal polyester resin.
  • the inorganic filler is made into a fine powder and then molded into a substantially spherical shape by a powder spray method.
  • These inorganic fillers desirably treat the surface of the inorganic filler particles with a surface treatment agent in order to improve adhesion and dispersibility with the resin.
  • Surface treatment agents include silane coupling agents, titanium coupling agents, aluminum and zirconium coupling agents, long chain fatty acids, isocyanate compounds, epoxy groups, methoxysilane groups, amino groups, hydroxyl groups and other highly polar materials. Molecules and reactive polymers are preferred.
  • the resin component liquid crystal polyester
  • the inorganic filler and, if necessary, other additives are dissolved and dispersed in the solvent to form a varnish (insulating material composition), and a metal foil or a metal substrate and other groups.
  • the insulating layer is formed by applying to the material and removing the solvent by heating.
  • the inorganic filler It is important to uniformly disperse the inorganic filler.
  • a resin component a coupling agent such as a silane coupling agent or a titanium coupling agent, and an ion adsorbent if necessary. Etc. are added, and these are dissolved and dispersed in a solvent. Thereafter, an appropriate amount of an inorganic filler is added, and the filler is dispersed in the resin solution while being pulverized by a ball mill, three rolls, a centrifugal stirrer, a bead mill or the like.
  • the coating method of the obtained insulating material composition is performed by roll coating, bar coating, screen printing, or the like, and continuous and single plate coating are possible.
  • a copper foil as the base material for continuous coating, a metal conductor foil with an insulating layer can be obtained.
  • iron, copper and aluminum plates can be used for the single plate coating.
  • the above configuration is a basic configuration of the manufacturing method of the metal base circuit board according to the present invention when focusing on the formation of the insulating layer.
  • the stacking order of the main components of the conductive foil, the insulating layer, and the metal substrate is as follows. In consideration of the entire manufacturing method including the following three processes, the following three processes are conceivable.
  • an insulating material composition comprising a non-anisotropic liquid crystal polyester solution and an inorganic filler having a thermal conductivity of 30 W / mK or more is applied to a thermal conductivity of 60 W / mK or more and a thickness of 0.2 to 5.0 mm.
  • a process comprising: a laminating step for forming a laminated structure provided with an insulating layer; and a thermal bonding step for bonding the insulating layer to the metal substrate and the conductive foil by heating the insulating layer after the laminating step. It is.
  • an insulating composition composed of a non-anisotropic liquid crystal polyester solution and an inorganic filler having a thermal conductivity of 30 W / mK or more is applied to the surface of the conductive foil to form an insulating coating.
  • the third process was obtained by applying an insulating material composition comprising a non-anisotropic liquid crystal polyester solution and an inorganic filler having a thermal conductivity of 30 W / mK or more to the surface of a separate support substrate.
  • the insulating coating is dried, the dried insulating coating is heat-treated, and an insulating layer forming step for obtaining a film for an insulating layer by increasing the molecular weight is performed.
  • a laminating step that is disposed between the foil and the metal substrate and that forms a laminated structure in which an insulating layer is provided between the metal substrate and the conductive foil; and by heating the insulating layer, the insulating layer, the metal substrate, and And a heat bonding step for bonding to the conductive foil.
  • the insulating layer is heated and bonded to the conductive foil and the metal substrate.
  • the liquid crystal polyester constituting the insulating material composition is a thermoplastic resin, which is a simple heat bonding.
  • the metal base circuit board according to the present invention can be manufactured by using any of the above three types of processes.
  • the heat conductive liquid crystalline polyester is used as the resin component as the base material of the insulating layer, and the heat conductive inorganic filler is blended therein, the heat of the insulating layer is obtained.
  • the conductivity can be greatly improved.
  • the liquid crystalline polyester is excellent in thermal adhesiveness to metal, it does not require a process dedicated to bonding using an adhesive means such as an adhesive, and thus is easy to manufacture and provides an economic effect.
  • the metal base circuit board according to the present invention has high heat radiation and thus high electrical reliability, and the insulating layer has high insulation and mechanical strength. It can be applied as an inexpensive alternative product for use.
  • Example 1 Liquid insulating polyester solution A having a solid content of 22%: 100 parts by weight of spherical alumina (made by Showa Denko KK, trade name “AS-40”, average particle size 11 ⁇ m) is blended by 65% by volume filling ratio to obtain an insulating material solution. Produced. This insulating material solution was stirred for 5 minutes by a centrifugal stirring and defoaming machine, and then applied to a thickness of about 300 ⁇ m on a copper foil having a thickness of 70 ⁇ m. This was dried at 100 ° C. for 20 minutes and then heat treated at 320 ° C. for 3 hours.
  • spherical alumina made by Showa Denko KK, trade name “AS-40”, average particle size 11 ⁇ m
  • the above copper foil obtained by applying an insulating material composition to an aluminum alloy having a thermal conductivity of 140 W / mK and a thickness of 2.0 mm is laminated as a metal substrate, and heat treatment is performed at a pressure of 50 kg / cm 2 and a temperature of 340 ° C. for 20 minutes. Glued.
  • each performance of thermal conductivity, solder heat resistance, voltage resistance, and T peel strength was evaluated under the following measurement conditions.
  • the transistor C2233 was attached to a substrate having a substrate size of 30 ⁇ 40 mm and a land size of 14 ⁇ 10 mm with solder.
  • the surface of the transistor and the temperature of the cooling device were measured when heat was applied to the back surface of the substrate using heat conductive silicone grease and the water cooling device was set to supply 30 W of power.
  • Thermal resistance value ⁇ (transistor surface temperature) ⁇ (cooling device surface temperature) ⁇ / load power.
  • the thermal conductivity was calculated from the thermal resistance value using a conversion formula.
  • a board with a substrate size of 50 ⁇ 50 mm and a land size of 25 ⁇ 50 mm (leaving the right half copper foil) was placed on a 300 ° C. solder bath, and it was visually observed and evaluated that there was no swelling or peeling for 4 minutes. .
  • T peel strength test A sample having a 10 mm wide pattern formed by etching the copper foil of the laminated board is prepared, and the T peel strength (N / cm) when peeling off at a rate of 50 mm / min so that the substrate and the copper foil are vertical It was measured.
  • the thermal conductivity is 10.8 W / mK
  • the T peel strength is 20.5 N / cm
  • the withstand voltage is 4.5 kV
  • the solder heat resistance is 300 ° C. for 4 minutes. there were.
  • Example 2 Liquid crystalline polyester solution A: Boron nitride (average particle size 5 to 8 ⁇ m, manufactured by Mizushima Alloy Iron Co., Ltd., trade name “HP-40”) was blended in a volume filling ratio of 70% with respect to 100 parts of liquid crystal polyester solution A.
  • a metal base circuit board was manufactured. The obtained metal base circuit board has a high thermal conductivity of 16.8 W / mK, a T peel strength of 7.6 N / cm, a withstand voltage of 4.5 kV, and a solder heat resistance of 300 ° C. for 4 minutes. , Passed.
  • Comparative Example 2 Boron nitride was blended in a volume filling ratio of 70% in 100 parts of the epoxy resin and acid anhydride curing agent used in Comparative Example 1, and a metal base circuit board was manufactured in the same procedure as in Comparative Example 1.
  • the obtained metal base circuit board had a thermal conductivity of 5.2 W / mK, which was significantly lower than that in Examples using liquid crystal polyester as a base material.
  • the metal base circuit board according to the present invention has a high thermal conductivity of the resin component itself constituting the base material of the insulating layer, the heat of the insulating layer can be reduced even if the blending amount of the inorganic filler is reduced.
  • the conductivity can be maintained in a high state, and as a result, improvement of the thermal conductivity of the insulating layer and securing of the insulating property and mechanical strength of the insulating layer can be realized at the same time. Therefore, since the metal base circuit board according to the present invention has high heat dissipation and excellent mechanical strength, it can be applied to cutting and pressing, and can be obtained at low cost. It can be applied to a wide range of fields, including

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明に係る金属ベース回路基板は、金属基板と該金属基板上に積層された絶縁層と該絶縁層上に積層された回路形成用の導電箔とを有してなる金属ベース回路基板であって、前記金属基板が熱伝導率60W/mK以上で厚みが0.2~5.0mmであり、前記絶縁層が、非異方性の液晶ポリエステル溶液に熱伝導率30W/mK以上の無機充填剤が分散されてなる絶縁材組成物を用いて形成されたものであることを特徴とする。本発明によれば、インバーターや高い放熱性を必要とする用途に適用可能な、高い熱伝導率を有すると同時に、熱安定性及び電気的信頼性の高い金属ベース回路基板を提供することができる。

Description

金属ベース回路基板およびその製造方法
 本発明は、放熱性が優れ、かつ高温下においても電気絶縁性、電気的信頼性の高い金属ベース回路基板およびその製造方法に関するものである。
 半導体搭載用の回路基板においては、小型化、高密度実装化及び高性能化は、常に存在する要求であり、かかる回路基板は、回路基板に搭載される半導体素子の小型化技術の改良により、年を追う毎に小型化されてきている。
 しかしながら、回路基板に搭載される半導体素子の小型化、高性能化、ハイパワー化が進むにつれて、半導体素子から発生した熱を如何に放散するかということが大きな問題となっており、特に高温環境下で用いられる回路基板において、その放熱性の向上が求められている。
 上記高温環境下で用いられる回路基板には、主にセラミックベース回路基板が用いられている。このセラミックベース回路基板は、アルミナや窒化アルミニウムからなる基板を支持基板として用い、この支持基板の表面にメタライジング技術を用いて回路形成用の導電箔を積層した構成の回路基板である。
 このセラミックベース回路基板は、高温環境下での耐久性が良好であるが、サイズの大きな製品を作りにくいという問題点がある。さらに、このセラミックベース回路基板は、セラミック基板自体が脆いため、車載用の電子製品用の電子部品などの振動の激しい状況下で使用される製品には使用することができず、また、材料価格が大変高く、製品価格の低減が困難であるという問題点もある。
 一方、インバーターなど電源分野を中心に、放熱性に優れるという理由で、金属ベース回路基板が採用されてきている。金属ベース回路基板では、金属板上に絶縁層を形成し、この絶縁層上に回路形成用の導電箔を積層する構造とする必要がある。したがって、回路に接続された半導体素子から発生した熱は、絶縁層を構成する樹脂材料を介して金属基板に伝えられ、金属基板から放熱されることになる。ところが、絶縁層を構成する樹脂は、熱伝導率が低いため、金属ベース回路基板の放熱は、不十分なものとなっている。このように、金属ベース回路基板を高温環境下に置かれる電子部品用に用いることはできないのが、現状であり、製品価格の安価な金属ベース回路基板の放熱性の向上が期待されている。
 そのため、従来から、金属ベース回路基板に対して、絶縁層の熱伝導率を高める様々な努力は進められている。
 例えば、樹脂成分に、球状でかつ粒度分布の広い無機フィラーを65~85体積%含有させることにより絶縁樹脂層中に無機フィラーを最密充填させ、熱伝導率の高い無機フィラー同士を樹脂層中で接触させることによって、熱放散性を向上させる試みがなされている(例えば、特許文献1)。この試みにより無機フィラーの充填性は向上し熱伝導率の上昇は図られたが、無機フィラー粒子同士の接触面積は小さく、達成される熱伝導率は5W/mKと不十分なものである。また、絶縁層に占める樹脂成分量が少なくなるために樹脂層が脆くなり、得られる金属ベース回路基板の絶縁層の機械的強度が不十分となる問題が新たに発生してしまう。
 一般に、絶縁層の熱伝導率を上げるには、無機充填剤粒子同士が接触する状態にならないと高まらない。したがって、絶縁層の熱伝導率を上げることを考慮すると、無機フィラーは最密充填構造に近い状態まで配合量を増やさなければならない。無機充填剤の配合量が増えた分だけ、絶縁層を構成する樹脂成分量が減少することになる。その結果、絶縁層と金属基板あるいは導電箔との接着性は大幅に低下することになる。また、樹脂成分量が減少することにより、絶縁層が脆くなるという問題点も発生する。この問題点は、樹脂成分として、熱硬化性のエポキシ樹脂などの熱硬化性樹脂を用いた場合に、顕著となる。このような絶縁層は、極めて脆くなるため、このような絶縁層を有する金属ベース回路基板では、切断加工された時に、絶縁層のくずが発生しやすくなる。発生したくずがパーティクルとして基板を汚したり、プレス時に基板上載ったパーティクルが打痕として基板を傷つけるなどの加工上の問題が多くなる。
 また、従来技術として、無機充填剤として熱伝導率の高い窒化ホウ素、ダイアモンド、酸化ベリリウムを用い、樹脂成分としてエポキシ樹脂を用いた金属ベース回路基板が開示されている(特許文献2)。
 しかし、前述のように、熱伝導率の高い無機充填剤を最密充填したとしても、無機充填剤同士の接触面積の向上はわずかなものであり、大部分の熱は、樹脂層を通過することになる。しかし、樹脂の熱伝導率は低いため、熱は樹脂層に、遮られてしまう。特許文献2に開示の構成でも、樹脂成分は、熱伝導率の低い非晶性のエポキシ樹脂であり、この樹脂層により熱の伝導が寸断されてしまい絶縁層の全体の熱伝導率は高くとも12.4W/mKである。
 また、従来技術として、樹脂成分として、ビスマレイイミドトリアジン(BTレジン)又はポリフェニレンオキサイドの何れかを用い、無機充填剤として、アルミナ又は窒化アルミニウムを用いる構成が開示されている(特許文献3)。
 BTレジンのような剛直な樹脂を選んでも、樹脂が非晶性のため熱伝導率が低く、前述のように樹脂成分が伝熱経路の妨げとなることに変わりなく、得られる絶縁層の熱伝導率は高くとも7.5W/mK程度である。
 また、従来技術として、樹脂成分として、異方性を示す溶融成型可能なサーモトロピック液晶ポリエステルを用い、充填剤として、熱伝導率が300°Kで10W/mK以上の充填剤を用いた構成の絶縁層を有する電気部品基板が開示されている(特許文献4)。
 この技術では、溶融樹脂に無機充填剤を配合することで樹脂の溶融粘度が極めて高くなってしまうため、無機充填剤の配合量を高めることが出来ず、そのため絶縁層の熱伝導率を高めることができていない。
 さらに、押出成形に際しても樹脂の粘度が高いため100~200μm程度の薄いフィルムは成形できない。金属ベース基板の絶縁層の厚みは好ましくは50~200μmであるので、特許文献4に記載の材料は金属ベース回路基板の絶縁層には全く適合性が無い。このことは、特許文献4の実施例1に開示されているように、液晶ポリエステルに対しアルミナの配合量は35容量%と少なく、押出し厚みは0.4mmと厚く、熱伝導率は1.5W/mKと低い値となっていることから、確認できる。
 また、異方性を示す液晶ポリエステルを押出成形すると、ポリマーは押出方向に配向するため熱伝導率も長さ方向に高く厚み方向に低くなる。金属ベース回路基板においては、回路に生じる熱は、絶縁層上の回路層から絶縁層を縦(厚み方向)に横切るように金属基板に向かって流れるので、絶縁層はその厚み方向の熱伝導率が高いことが好ましい。しかし、この特許文献4の構成では、絶縁層の厚み方向の熱伝導率は、低くなるので、金属ベース回路基板の放熱性は、不十分なものとならざるを得ない。
特開平5-167212号公報 特開平7-320538号公報 特開平6-188530号公報 特公平6-082893号公報
 本発明は、上記従来の事情に鑑みてなされたもので、その課題は、インバーターや高い放熱性を必要とする用途に適用可能な、高い熱伝導率を有すると同時に、熱安定性及び電気的信頼性の高い金属ベース回路基板を提供することにある。
 また、セラミックベース回路基板は、耐熱性に優れるという利点を有する一方で、大型基板を作りにくく、衝撃に対し弱いという欠点を持つが、これに対応して、前記欠点を持たず、セラミックベース回路基板と同じ用途分野に使用することのできる、耐熱性と絶縁性と信頼性を併せ持つ金属ベース回路基板を提供することも、本発明の課題である。本発明の金属ベース回路基板の用途は、自動車用途の基板に用いられ、例えば、電動パワーステアリングコントロールユニット、LEDヘッドアップディスプレー、オートマチックトランスミッション、ABSモジュール、エンジン制御コントロールユニット、LEDメーターパネルなどが例示できる。その他用途として、LED照明器具、LED表示板のバックライトなどの基板や、エレベータ、電車などのパワー系基板にも用いられる。
 上記課題を解決するために、本発明に係る金属ベース回路基板は、金属基板と該金属基板上に積層された絶縁層と該絶縁層上に積層された回路形成用の導電箔とを有してなる金属ベース回路基板であって、前記金属基板が熱伝導率60W/mK以上で厚みが0.2~5.0mmであり、前記絶縁層が、非異方性の液晶ポリエステル溶液に熱伝導率30W/mK以上の無機充填剤が分散されてなる絶縁材組成物を用いて形成されたものであることを特徴とする。
 上記構成において、絶縁層を構成する絶縁材の熱伝導率が6~30W/mKであることが、好ましい。
 また、本発明に係る金属ベース回路基板の製造方法は、上記本発明に係る金属ベース回路基板の製造方法であって、非異方性の液晶ポリエステル溶液と熱伝導率30W/mK以上の無機充填剤とからなる絶縁材組成物を、熱伝導率60W/mK以上で厚み0.2~5.0mmの金属基板の表面に塗工して絶縁塗膜を形成する絶縁塗膜形成工程と、前記絶縁塗膜を乾燥して絶縁材層を形成する絶縁材層形成工程と、前記絶縁材層を熱処理し、分子量を増加させて絶縁層を得る絶縁層形成工程と、前記金属基板の表面に形成された前記絶縁層の露出面に前記導電箔を密着させて前記金属基板と導電箔との間に絶縁層を設けた積層構造を構成する積層工程と、前記積層工程の後に、前記絶縁層を加熱することにより絶縁層と前記金属基板および導電箔との接着を行う熱接着工程と、を有することを特徴とする。
 上記本発明に係る金属ベース回路基板の製造方法の他の構成は、非異方性液晶ポリエステル溶液と熱伝導率30W/mK以上の無機充填剤とからなる絶縁材組成物を、導電箔の表面に塗工して絶縁塗膜を形成する絶縁塗膜形成工程と、前記絶縁塗膜を乾燥して絶縁材層を形成する絶縁材層形成工程と、前記絶縁材層を熱処理し、分子量を増加させて絶縁層を得る絶縁層形成工程と、前記導電箔の表面に形成された前記絶縁層の露出面を前記金属基板の表面に密着させて前記金属基板と導電箔との間に絶縁層を設けた積層構造を構成する積層工程と、前記積層工程の後に、前記絶縁層を加熱することにより絶縁層と前記金属基板および導電箔との接着を行う熱接着工程と、を有することを特徴とする。
 本発明に係る金属ベース回路基板によれば、絶縁層を構成する絶縁材として熱伝導率の高い液晶ポリマーをマトリックス(母材)として用いるため、導電箔からの熱を金属基板に伝達する絶縁層の熱伝導率を大幅に向上させることができ、金属基板が有する高い熱放散性を最大限に活用できる。
 また、本発明に係る金属ベース回路基板の製造方法によれば、液晶ポリエステル溶液を用いており、この液晶ポリマー溶液は、容易に大量の無機充填剤を配合することでき、そのため、樹脂成分中に所望量の無機充填剤を均等に分散させることができ、その結果、高い熱伝導率の製品を得ることができる。
 さらに、本発明によれば、絶縁層の母材を構成する樹脂成分自体の熱伝導率が高いため、無機充填剤の配合量を低減しても、絶縁層の熱伝導率を高い状態に維持でき、その結果、絶縁層の熱伝導性の向上と、絶縁層の絶縁性および機械的強度の確保とを同時に実現することができる。
 したがって、本発明により得られる製品は、高い放熱性を有するとともに、機械的強度にも優れるので、切断加工やプレス加工にも対応でき、安価に得ることができ、セラミックベース回路基板が主力であった分野を含む広い分野に適用可能である。
 前述のように、本発明に係る金属ベース回路基板は、大きく3種類の構成要素、すなわち、金属基板と、該金属基板上に積層された絶縁層と、該絶縁層上に積層された回路形成用の導電箔とを有する。以下、これらの構成要素について、順次、詳細に説明する。
(金属基板)
 本発明で用いられる金属基板としては、熱伝導率60W/mK以上の金属板が用いられる。かかる金属基板を構成する金属材料としては、アルミニウム、アルミニウム合金、鉄、銅、ステンレス、あるいはこれらの合金、熱伝導率の高いカーボンを複合化した変性アルミニウムなどを挙げることができる。該金属基板の厚みは、0.2~5mmとすることが好ましい。
(導電箔)
 本発明の金属ベース回路基板に用いる導電箔としては、銅箔、アルミニウム箔が好ましく、その厚みは、10~400μmとすることが好ましい。
(絶縁層)
 絶縁層は、後述の特定の絶縁材組成物を導電箔又は金属基板の一方の表面(接着面)に塗布し、この塗膜を乾燥した後、乾燥によって得られた絶縁材層を熱処理し、絶縁材層を構成する樹脂成分の分子量が熱処理によって増加することにより得られる。
 前記塗膜が形成されない他方である導電箔又は金属基板の積層は、前記熱処理により絶縁層が形成された後に行う。
 また、本発明に用いる絶縁層は、フィルム状に別体として形成したものを用いてもよい。この場合、フィルム状の絶縁層を導電箔と金属基板との間に配置し、この積層体を加熱することにより導電箔および金属基板への接着を実現する。熱処理に関しては、温度を250~350℃で1時間から10時間行なうことが好ましい。
 なお、前記熱接着時には、積層体を厚み方向に加圧することが好ましい。
(絶縁材組成物)
 前記絶縁層を形成するために用いられる絶縁材組成物は、非異方性液晶ポリエステル溶液と熱伝導率30W/mK以上の無機充填剤とから構成される。非異方性ポリエステル溶液は、液晶ポリエステルを溶剤に溶かし、必要に応じて他の添加剤を配合してなるポリマー溶液である。
 (液晶ポリエステル)
 本発明に用いられる液晶ポリエステルは、溶融時に光学異方性を示し、450℃以下の温度で異方性溶融体を形成するものである。
 この異方性溶融体を形成する液晶ポリエステルは、下記一般式(1)で表される構造単位と、下記一般式(2)で表される構造単位と、下記一般式(3)で表される構造単位とを有する。
 -O-Ar1-CO-   (1)
 -CO-Ar2-CO-  (2)
 -X-Ar3-Y-    (3)
(式(1)中のAr1は、フェニレンまたはナフチレンであり、式(2)中のAr2は、フェニレン、ナフチレン又は下記式(4)で表される基であり、式(3)中のAr3は、フェニレン又は下記式(4)で表される基であり、XおよびYはO又はNHを表わし、XとYが同じ構成であってもよい。なお、Ar1、Ar2及びAr3の芳香環に結合している水素原子は、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
 -Ar11-Z-Ar12-  (4)
(式(4)中、Ar11及びAr12はそれぞれ独立に、フェニレン又はナフチレンを表す。ZはO、CO又はSO2を表す。)
 上記一般式(1)~(3)で表される各構造単位の配合比率は、全構造単位の合計に対して、一般式(1)で表される構造単位が30.0~45.0モル%、一般式(2)で表される構造単位が27.5~35.0モル%、一般式(3)で表される構造単位が27.5~35.0モル%であることが好ましい。
 また、本発明で用いられる液晶ポリエステルは、芳香族ジアミン由来の構成単位及び水酸基を有する芳香族アミン由来の構成単位からなる群より選ばれる少なくとも一種の構成単位(a)を、全構成単位に対して27.5~35.0モル%含むポリマーであると好ましい。特に、前記構成単位(a)を、上記一般式(3)で表される構成単位として、有していると、上述した効果、すなわち、「溶融時に光学異方性を示し、450℃以下の温度で異方性溶融体を形成する」という効果がより良好に得られるようになる傾向にある。
 一般式(1)で表される構造単位は、芳香族ヒドロキシカルボン酸由来の構造単位であり、一般式(2)で表される構造単位は、芳香族ジカルボン酸由来の構造単位であり、一般式(3)で表される構造単位は、芳香族ジアミンまたはフェノール性水酸基を有する芳香族アミンに由来の構造単位である。このような構造単位(1)~(3)をそれぞれ誘導する化合物をモノマーとして用い、それらのモノマーを重合することにより、本発明に用いる液晶ポリエステルが得られる。
 なお、本発明に用いる芳香族液晶ポリエステルを得る重合反応の進行を容易にする観点からは、上述のモノマーの代わりに、それらのエステル形成性誘導体やアミド形成性誘導体を用いてもよい。
 上記カルボン酸のエステル形成性・アミド形成性誘導体としては、例えば、カルボキシル基が、ポリエステルやポリアミドを生成する反応を促進するような、酸塩化物、酸無水物などの反応活性が高い誘導体となっているもの、カルボキシル基が、エステル交換・アミド交換反応によりポリエステルやポリアミドを生成するようなアルコール類やエチレングリコールなどとエステルを形成しているもの等が挙げられる。
 また、上記フェノール性水酸基のエステル形成性・アミド形成性誘導体としては、例えば、エステル交換反応によりポリエステルやポリアミドを生成するように、フェノール性水酸基がカルボン酸類とエステルを形成しているもの等が挙げられる。
 また、上記アミノ基のアミド形成性誘導体としては、例えば、アミド交換反応によりポリアミドを生成するように、アミノ基がカルボン酸類とエステルを形成しているもの等が挙げられる。
 上記一般式(1)~(3)で示される構造単位としては、具体的には、下記のものを例示することができるが、これらに限定されるものではない。
 一般式(1)で表される構造単位としては、例えば、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸および4-ヒドロキシ-4’-ビフェニルカルボン酸から選ばれる芳香族ヒドロキシカルボン酸に由来の構造単位等が挙げられ、これらの構造単位のうち、2種以上の構造単位が含まれていてもよい。特に、p-ヒドロキシ安息香酸由来の構造単位または2-ヒドロキシ-6-ナフトエ酸由来の構造単位を有する芳香族液晶ポリエステルを用いることが好ましい。
 全構造単位の合計に対して、一般式(1)で表される構造単位の配合量は、30.0~45.0モル%であり、より好ましくは35.0~40.0モル%の範囲である。
 一般式(1)で表される構造単位が45.0モル%を超えると、後述する非プロトン性溶媒に対する溶解性が低下し、30.0モル%未満では、ポリエステルの液晶性を示さない傾向があるため、いずれも好ましくない。
 次に、一般式(2)で示される構造単位としては、例えば、テレフタル酸、イソフタル酸および2,6-ナフタレンジカルボン酸から選ばれる芳香族ジカルボン酸に由来の構造単位等が挙げられ、これらの構造単位のうち、2種以上の構造単位が含まれていてもよい。とりわけ、後述する非プロトン性溶媒に対する溶解性の観点からは、イソフタル酸由来の構造単位を有する液晶ポリエステルを用いることが好ましい。
 全構造単位の合計に対して、一般式(2)で表される構造単位の配合量は、27.5~35.0モル%であり、より好ましくは30.0~32.5モル%の範囲である。
 一般式(2)で表される構造単位が35.0モル%を超えると、液晶性が低下する傾向があり、27.5モル%未満では前記非プロトン性溶媒に対する溶解性が低下する傾向があるため、いずれも好ましくない。
 次に、一般式(3)で表される構造単位としては、例えば、3-アミノフェノールまたは4-アミノフェノールに例示されるフェノール性水酸基を有する芳香族アミン由来構造単位であるか、1,4-フェニレンジアミンまたは1,3-フェニレンジアミンに例示される芳香族ジアミン由来の構造単位を挙げることができ、これらの構造単位のうち、2種以上の構造単位が含まれていてもよい。中でも、液晶ポリエステル製造に係る重合反応性の観点から、4-アミノフェノール由来の構造単位を有する液晶ポリエステルを用いることが好ましい。 
 全構造単位の合計に対して、一般式(3)で表される構造単位の配合量は、27.5~35.0モル%であり、より好ましくは30.0~32.5モル%の範囲である。
 一般式(3)で表される構造単位が35.0モル%を超えると、液晶性が低下する傾向があり、27.5モル%未満では前記非プロトン性溶媒に対する溶解性が低下する傾向があり、いずれも好ましくない。
 なお、一般式(3)で表される構造単位と、一般式(2)で表される構造単位とは、実質的に等量であることが好ましいが、一般式(3)で表される構造単位を一般式(2)で表される構造単位に対して、-10モル%~+10モル%とすることにより、芳香族液晶ポリエステルの重合度を制御することもできる。
 前記芳香族液晶ポリエステルの製造方法は、特に限定されないが、例えば、一般式(1)で表される構造単位に対応する芳香族ヒドロキシカルボン酸、一般式(3)で表される構造単位に対応する水酸基を有する芳香族アミン、芳香族ジアミンのフェノール性水酸基やアミノ基を、過剰量の脂肪酸無水物によりアシル化してアシル化物(エステル形成性誘導体やアミド形成性誘導体)を得、得られたアシル化物と、一般式(2)で表される構造単位に対応する芳香族ジカルボン酸とをエステル交換(重縮合)して溶融重合する方法などが挙げられる。
 上記アシル化物としては、予めアシル化して得た脂肪酸エステルを用いてもよい(特開2002-220444号公報、特開2002-146003号公報参照)。
 上記アシル化反応においては、脂肪酸無水物の添加量は、フェノール性水酸基とアミノ基の合計に対して、1.0~1.2倍当量であることが好ましく、より好ましくは1.05~1.1倍当量である。
 脂肪酸無水物の添加量が1.0倍当量未満では、エステル交換(重縮合)時にアシル化物や原料モノマーなどが昇華し、反応系が閉塞し易い傾向がある。また、1.2倍当量を超える場合には、得られる芳香族液晶ポリエステルの着色が著しくなる傾向がある。
 上記アシル化反応は、130~180℃で5分~10時間反応させることが好ましく、140~160℃で10分~3時間反応させることがより好ましい。
 上記アシル化反応に使用される脂肪酸無水物は,特に限定されないが、例えば、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸、無水吉草酸、無水ピバル酸、無水2エチルヘキサン酸、無水モノクロル酢酸、無水ジクロル酢酸、無水トリクロル酢酸、無水モノブロモ酢酸、無水ジブロモ酢酸、無水トリブロモ酢酸、無水モノフルオロ酢酸、無水ジフルオロ酢酸、無水トリフルオロ酢酸、無水グルタル酸、無水マレイン酸、無水コハク酸、無水β-ブロモプロピオン酸などが挙げられ、これらは2種類以上を混合して用いてもよい。
 これらの中でも、価格と取り扱い性の観点から、無水酢酸、無水プロピオン酸、無水酪酸、無水イソ酪酸が好ましく、より好ましくは、無水酢酸である。
 上記エステル交換・アミド交換においては、アシル化物のアシル基がカルボキシル基の0.8~1.2倍当量であることが好ましい。
 また、上記エステル交換・アミド交換は、130~400℃で0.1~50℃/分の割合で昇温しながら行うことが、好ましく、150~350℃で0.3~5℃/分の割合で昇温しながら行うことが、より好ましい。
 上記アシル化して得た脂肪酸エステルと、カルボン酸やアミンとをエステル交換・アミド交換させる際、平衡を移動させるため、副生する脂肪酸と未反応の脂肪酸無水物は、蒸発させるなどして系外へ留去することが好ましい。
 なお、アシル化反応、エステル交換・アミド交換は、触媒の存在下に行ってもよい。該触媒としては、ポリエステルの重合用触媒として慣用のものを使用することができ、例えば、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモンなどの金属塩触媒、N,N-ジメチルアミノピリジン、N―メチルイミダゾールなどの有機化合物触媒などを挙げることができる。
 上記触媒の中でも、N,N-ジメチルアミノピリジン、N―メチルイミダゾールなどの窒素原子を2個以上含む複素環状化合物が好ましく使用される(特開2002-146003号公報参照)。
 上記触媒は、通常、モノマー類の投入時に投入され、アシル化後も除去することは必ずしも必要ではなく、該触媒を除去しない場合にはそのままエステル交換を行うことができる。
 上記エステル交換・アミド交換による重合は、通常、溶融重合により行なわれるが、溶融重合と固相重合とを併用してもよい。固相重合は、溶融重合工程からポリマーを抜き出し、その後、粉砕してパウダー状もしくはフレーク状にした後、公知の固相重合方法により行うことができる。具体的には、例えば、窒素等の不活性雰囲気下、20~350℃で、1~30時間固相状態で熱処理する方法が挙げられる。固相重合は、攪拌しながらでも、攪拌することなく静置した状態で行ってもよい。
 なお適当な攪拌機構を備えることにより溶融重合槽と固相重合槽とを同一の反応槽とすることもできる。
 固相重合後、得られた芳香族液晶ポリエステルは、公知の方法によりペレット化し、成形してもよい。
 上記芳香族液晶ポリエステルの製造は、例えば、回分装置、連続装置等を用いて行うことができる。
 また、上記芳香族液晶ポリエステルとしては、下記の方法で求められる流動開始温度が260℃以上であると、得られる芳香族液晶ポリエステルと金属箔等の導電層となり得る基材との間に、そして金属基板との間に、より高度の密着性が得られるため、好ましい。
 さらに、上記流動開始温度は250℃以上300℃以下であることが、より好ましい。流動開始温度が250℃以上であれば、上述のように、導電箔および金属基板のそれぞれと芳香族液晶ポリエステルとの密着性がより向上する傾向があり、逆に、流動開始温度が300℃以下であれば溶媒への溶解性がより向上する傾向が見られる。かかる観点から、流動開始温度が260℃以上290℃以下の範囲であることが、さらに好ましい。
 上記流動開始温度とは、フローテスターによる溶融粘度の評価において、かかる芳香族ポリエステルの溶融粘度が9.8MPaの圧力下で4800Pa・s以下になる温度をいう。
 なお、1987年発行の書籍「液晶ポリマー-合成・成形・応用-」(小出直之編、95~105頁、シーエムシー、1987年6月5日発行)によれば、1970年代に液晶ポリエステル樹脂が開発されて以降、液晶ポリエステル樹脂の分子量の目安として、フロー温度(本発明における流動開始温度と同等の定義)が用いられている。
 上記芳香族液晶ポリエステルの流動開始温度を制御する方法としては、例えば、溶融重合工程からポリマーを抜き出し、そのポリマーを粉砕してパウダー状もしくはフレーク状にした後、公知の固相重合方法により流動開始温度を調整することで容易に実施できる。
 より具体的には、例えば、溶融重合工程の後、窒素等の不活性雰囲気下、210℃を越える温度で、より好ましくは220℃~350℃の温度で、1~10時間、固相状態で熱処理する方法によって得られる。固相重合は、攪拌しながらでも、攪拌することなく静置した状態で行ってもよい。例えば、窒素の不活性雰囲気下で攪拌することなく静置した状態で、温度225℃3時間の条件下で固相重合を行う方法が挙げられる。
 (非異方性液晶ポリエステル溶液の溶媒)
 上述の液晶ポリエステルを溶解して本発明に用いる非異方性液晶ポリエステル溶液を得るための溶媒としては、ハロゲン原子を含まない非プロトン性溶媒を用いることが好ましい。
 上記ハロゲン原子を含まない非プロトン性溶媒とは、例えば、ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒、アセトン、シクロヘキサノンなどのケトン系溶媒、酢酸エチルなどのエステル系溶媒、γ―ブチロラクトンなどのラクトン系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、トリエチルアミン、ピリジンなどのアミン系溶媒、アセトニトリル、サクシノニトリルなどのニトリル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドンなどのアミド系溶媒、ニトロメタン、ニトロベンゼンなどのニトロ系溶媒、ジメチルスルホキシド、スルホランなどのスルフィド系溶媒、ヘキサメチルリン酸アミド、トリn-ブチルリン酸などのリン酸系溶媒などが挙げられる。
 これらの中で、双極子モーメントが3以上5以下の溶媒を用いると、前記の芳香族液晶ポリエステルの溶解性の観点から好ましく、具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドン等のアミド系溶媒、γ―ブチロラクトン等のラクトン系溶媒が好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン(NMP)がより好ましい。更には、前記溶媒が、1気圧における沸点が180℃以下の揮発性の高い溶媒であると、芳香族液晶ポリエステル溶液を含む絶縁材組成物を塗膜とした後、該塗膜から溶媒を除去しやすいという利点もある。この観点からは、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)が特に好ましい。
 本発明に用いられる非異方性液晶ポリエステル溶液は、上記芳香族液晶ポリエステルが、前述の非プロトン性溶媒100重量部に対して10~50重量部、好ましくは20~40重量部含有される。
 芳香族液晶ポリエステルが10重量部未満であると、溶媒分が多く、乾燥除去時に塗膜の外観不良が起きやすい。芳香族液晶ポリエステルが50重量部を超えると、芳香族液晶ポリエステル溶液が高粘度化する傾向があり、取り扱い性が低下する。前記溶液組成物における芳香族液晶ポリエステル含有量は、その溶液粘度のバランスから上記範囲で適宜最適化できるが、非プロトン性溶媒100重量部に対して、芳香族液晶ポリエステルが20~40重量部であることがより好ましい。
 本発明の金属ベース回路基板の絶縁層の母材として用いる上記液晶ポリエステルは、熱硬化前の分子量は比較的小さいため、比較的容易に溶液とすることができ、容易に塗膜を形成することができる。そして、塗膜とした後、乾燥し、その後、熱処理することにより、塗膜を構成する樹脂の分子量を増加させることができ、その結果、得られる絶縁層は、機械的強度に優れたものとなる。
 また、上記液晶ポリエステルは熱可塑性のため、エポキシ樹脂のような熱硬化性樹脂の保管による経時変化がないため、工業製品として安心して使える。更に熱可塑性であるため、配向を十分発達させることが可能であり、分子量を十分高める加熱プロセスをとることでフォノン伝導のパス長さが長く取れるため大幅に熱伝導率を高めることが可能となり、合わせて強靭で接着力の高い絶縁層を構成することができる。したがって、この液晶ポリエステルを母材として用いて絶縁層を構成することにより、金属ベース回路基板の加工性を満足しつつ品質面や電気的信頼性の高い製品が得られる。
(無機充填剤)
 本発明に用いる無機充填剤としては、30W/mK以上の熱伝導率と絶縁性に優れたものを選ぶ必要がある。アルミナ、酸化マグネシウム、酸化ベリリウム、水酸化アルミニウム、酸化亜鉛、窒化アルミニウム、窒化ホウ素などの粒子が好ましい。
 粒子の形状は、上記非異方性液晶ポリエステル溶液に配合して調整した絶縁材組成物の粘度が高まらないことや、液晶ポリエステル樹脂の中で無機充填剤の粒子が密に充填しやすいことを考慮すると、球状が好ましい。球状でない場合には、無機充填剤を微粉末にした後、パウダースプレー法により略球状に成形したものが好ましい。
 これらの無機充填剤は樹脂との密着性や分散性を向上させるために、表面処理剤で無機充填剤粒子の表面を処理することが望ましい。表面処理剤としては、シランカップリング剤、チタンカップリング剤、アルミニウムやジルコニウム系のカップリング剤、長鎖脂肪酸、イソシアナート化合物、エポキシ基やメトキシシラン基、アミノ基、水酸基などを含んだ極性高分子や反応性高分子などが好ましい。
(金属ベース回路基板の製造プロセス)
 上記樹脂成分(液晶ポリエステル)と、上記無機充填剤と、必要に応じて他の添加剤を前記溶剤に溶解・分散させてワニス(絶縁材組成物)とし、金属箔または金属基板およびその他の基材に塗布し、加熱により溶剤を除去して絶縁層を形成する。
 上記無機充填剤は均一に分散させることが大切であり、そのために、例えば、まず、溶剤に、樹脂成分と、シランカップリング剤、チタンカップリング剤などのカップリング剤と、必要によりイオン吸着剤等を添加し、これらを溶剤に溶解、分散させる。その後、無機充填材を適当量添加してボールミル、3本ロール、遠心攪拌機およびビーズミル等により充填剤を粉砕しつつ、樹脂溶液中に分散させる。
 得られた絶縁材組成物の塗工方法は、ロールコート、バーコートおよびスクリーン印刷等で行い、連続式および単板式塗工が可能である。
 連続式塗工の基材に銅箔を用いることにより絶縁層付きの金属導体箔とすることができる。
 また、単板式塗工には、鉄、銅およびアルミニウム板等を用いることも可能である。
 上記構成が絶縁層の形成に焦点を当てた場合の、本願発明に係る金属ベース回路基板の製造方法の基本的構成であるが、導電箔、絶縁層、および金属基板という主構成要素の積層順序を含めた全体の製造方法を考慮した場合、以下の3通りのプロセスが考えられる。
(第1のプロセス)
 第1のプロセスは、非異方性液晶ポリエステル溶液と熱伝導率30W/mK以上の無機充填剤とからなる絶縁材組成物を、熱伝導率60W/mK以上で厚み0.2~5.0mmの金属基板の表面に塗工して絶縁塗膜を形成する絶縁塗膜形成工程と、前記絶縁塗膜を乾燥して絶縁材層を形成する絶縁材層形成工程と、前記絶縁材層を熱処理し、分子量を増加させて絶縁層を得る絶縁層形成工程と、前記金属基板の表面に形成された前記絶縁層の露出面に前記導電箔を密着させて前記金属基板と導電箔との間に絶縁層を設けた積層構造を構成する積層工程と、前記積層工程の後に、前記絶縁層を加熱することにより絶縁層と前記金属基板および導電箔との接着を行う熱接着工程と、を有するプロセスである。
(第2のプロセス)
 第2のプロセスは、非異方性液晶ポリエステル溶液と熱伝導率30W/mK以上の無機充填剤とからなる絶縁材組成物を、導電箔の表面に塗工して絶縁塗膜を形成する絶縁塗膜形成工程と、前記絶縁塗膜を乾燥して絶縁材層を形成する絶縁材層形成工程と、前記絶縁材層を熱処理し、分子量を増加させて絶縁層を得る絶縁層形成工程と、前記導電箔の表面に形成された前記絶縁層の露出面を前記金属基板の表面に密着させて前記金属基板と導電箔との間に絶縁層を設けた積層構造を構成する積層工程と、前記積層工程の後に、前記絶縁層を加熱することにより絶縁層と前記金属基板および導電箔との接着を行う熱接着工程と、を有するプロセスである。
(第3のプロセス)
 第3のプロセスは、非異方性液晶ポリエステル溶液と熱伝導率30W/mK以上の無機充填剤とからなる絶縁材組成物を、別体の支持基材の表面に塗工し、得られた絶縁塗膜を乾燥し、乾燥した絶縁塗膜を熱処理し、分子量を増加させて絶縁層用のフィルムを得る絶縁層形成工程と、前記フィルム状の絶縁層を前記支持基材から剥離し、導電箔と金属基板との間に配置し、前記金属基板と導電箔との間に絶縁層を設けた積層構造を構成する積層工程と、前記絶縁層を加熱することにより絶縁層と前記金属基板および導電箔との接着を行う熱接着工程と、を有するプロセスである。
 上記各プロセスにおいて、絶縁層を加熱することにより導電箔および金属基板に接着しているが、これは、絶縁材組成物を構成する液晶ポリエステルが熱可塑性樹脂であるためであり、熱接着という簡易な方法により、積層の各層間の接着が確実に行われる。
 上記3種類のプロセスのどのプロセスを用いても、本願発明に係る金属ベース回路基板を製造することができる。
 以上説明したように、本発明によれば、絶縁層の母材とする樹脂成分として熱伝導性の高い液晶ポリエステルを用い、これに熱伝導性の無機充填剤を配合するため、絶縁層の熱伝導率を大幅に向上させることができる。
 また、絶縁層の母材である樹脂成分の熱伝導率が大幅に向上されることに応じて無機充填剤の配合量を過度に増大させる必要がなくなり、樹脂成分量を多くして絶縁層の絶縁性および機械的強度を向上させることも可能になる。
 さらに、液晶ポリエステルは、金属に対する熱接着性に優れているため、接着剤などの接着手段を用いた接着専用の工程を必要としないので、製造が容易であり、かつ経済的効果が得られる。
 このように本発明に係る金属ベース回路基板は、放熱性が高いために電気的信頼性が高く、しかも絶縁層の絶縁性および機械的強度が高いので、インバーターなどに使われているセラミック基板の用途に安価な代替え製品として適用することができる。
 以下、本発明の実施例を説明する。以下に示す実施例は、本発明を説明するための好適な例示であって、なんら本発明を限定するものではない。
〔1〕液晶ポリエステルの製造
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸1976g(10.5モル)、4-ヒドロキシアセトアニリド1474g(9.75モル)、イソフタル酸1620g(9.75モル)及び無水酢酸2374g(23.25モル)を仕込んだ。反応器内を十分に窒素ガスで置換した後、窒素ガス気流下で15分かけて150℃まで昇温し、その温度を保持して3時間還流させた。
 その後、留出する副生酢酸及び未反応の無水酢酸を留去しながら、170分かけて300℃まで昇温し、トルクの上昇が認められる時点を反応終了とみなし、内容物を取り出した。取り出した内容物を室温まで冷却し、粉砕機で粉砕後、比較的低分子量の液晶ポリエステルの粉末を得た。得られた粉末を島津製作所フローテスターCFT-500により流動開始温度を測定したところ、235℃であった。この液晶ポリエステル粉末を、窒素雰囲気において223℃3時間で加熱処理するといった固相重合を行った。固相重合後の液晶ポリエステルの流動開始温度は270℃であった。
〔2〕液晶ポリエステル溶液Aの調製
 前記〔1〕で得られた液晶ポリエステル2200gを、N,N-ジメチルアセトアミド(DMAc)7800gに加え、100℃で2時間加熱して液晶ポリエステル溶液Aを得た。この溶液組成物の溶液粘度は320cPであった。なお、この溶融粘度は、B型粘度計(東機産業製、「TVL-20型」、ローターNo.21(回転数:5rpm)を用いて、測定温度23℃で測定した値である。
(実施例1)
 固形分22%の液晶ポリエステル溶液A:100部に対して、球状アルミナ(昭和電工社製、商品名「AS-40」、平均粒径11μm)を体積充填率で65%配合し絶縁材溶液を作製した。この絶縁材溶液を遠心式攪拌脱泡機で5分攪拌した後、厚み70μmの銅箔上に約300μmの厚みで塗布した。これを100℃で20分乾燥後、320℃で3時間熱処理した。金属基板として熱伝導率140W/mK、厚み2.0mmのアルミニウム合金に絶縁材組成物を塗布した上記銅箔を積層し、圧力50kg/cm、温度340℃で20分加熱処理して、熱接着した。
 得られた金属ベース回路基板をサンプルとして、熱伝導率、半田耐熱性、耐電圧性、Tピール強度の各性能をそれぞれ以下の測定条件にて評価した。
 (熱伝導率)
 基板サイズ30×40mm、ランドサイズ14×10mmの基板に半田でトランジスタC2233を取り付けた。該基板裏面に熱伝導性のシリコーングリースを使い水冷却装置にセットして30Wの電力を供給したとき発熱するトランジスタ表面と冷却装置の温度を測定した。熱抵抗値={(トランジスタ表面温度)-(冷却装置表面温度)}/負荷電力 から算出した。熱抵抗値より換算式を用いて熱伝導率を算出した。
 (半田耐熱)
 300℃の半田浴の上に基板サイズ50×50mm、ランドサイズ25×50mm(右半分の銅箔を残す)の基板を乗せて4分間膨れや剥がれがないことを目視で観察して、評価した。
 (耐電圧)
 絶縁油中に試験片を浸漬し、室温で交流電圧を銅箔とアルミニウム板との間に印加し絶縁破壊する電圧を測定した。
 (Tピール強度試験)
 積層板の銅箔をエッチングして幅10mmのパターンを形成したサンプルを作製し、基板と銅箔が垂直になるように50mm/分の速度で引き剥がす際のTピール強度(N/cm)を測定した。
 上記各評価方法により評価をしたところ、熱伝導率は10.8W/mK、Tピール強度は20.5N/cm、耐電圧は4.5kV、半田耐熱は300℃で4分間であり、合格であった。
(比較例1)
 液晶ポリエステル溶液Aの代わりにビスフェノールA系エポキシ樹脂(アデカ社製、商品名「EP4100G」、エポキシ当量190)100部、酸無水物系硬化剤(アデカ社製、商品名「EH3326」、酸価650)85部、溶媒としてトルエン100部を用いた、実施例1と同様にアルミナを体積充填率で65%配合、攪拌し銅箔に塗布後乾燥した。熱処理は行なわずそのままアルミニウムに積層し180℃、50kg/cmで1.5時間加熱して、熱接着した。
 得られた金属ベース回路基板の性能は、熱伝導率は3.4W/mKと液晶ポリエステルを用いた実施例に比べ極めて低い値であった。
(実施例2)
 液晶ポリエステル溶液A:100部に対して、窒化ホウ素(平均粒径5~8μm、水島合金鉄社製、商品名「HP-40」)を体積充填率で70%配合し、実施例1と同様に金属ベース回路基板を製造した。
 得られた金属ベース回路基板の性能は、熱伝導率は16.8W/mKと高く、その他、Tピール強度が7.6N/cm、耐電圧4.5kV、半田耐熱300℃で4分間であり、合格であった。
(比較例2)
 比較例1で用いたエポキシ樹脂及び酸無水物硬化剤100部に窒化ホウ素を体積充填率で70%配合し、比較例1と同様な手順で金属ベースス回路基板を製造した。
 得られた金属ベース回路基板の熱伝導率は5.2W/mKであり、液晶ポリエステルを母材として用いた実施例に比べ大幅に低い値であった。
 以上のように、本発明にかかる金属ベース回路基板は、絶縁層の母材を構成する樹脂成分自体の熱伝導率が高いため、無機充填剤の配合量を低減しても、絶縁層の熱伝導率を高い状態に維持でき、その結果、絶縁層の熱伝導性の向上と、絶縁層の絶縁性および機械的強度の確保とを同時に実現することができる。したがって、本発明にかかる金属ベース回路基板は、高い放熱性を有するとともに、機械的強度にも優れるので、切断加工やプレス加工にも対応でき、安価に得ることができ、セラミックベース回路基板が主力であった分野を含む広い分野に適用可能である。

Claims (4)

  1.  金属基板と該金属基板上に積層された絶縁層と該絶縁層上に積層された回路形成用の導電箔とを有してなる金属ベース回路基板であって、
     前記金属基板が熱伝導率60W/mK以上で厚みが0.2~5.0mmであり、
     前記絶縁層が、非異方性の液晶ポリエステル溶液に熱伝導率30W/mK以上の無機充填剤が分散されてなる絶縁材組成物を用いて形成されたものであることを特徴とする金属ベース回路基板。
  2.  前記絶縁層を構成する絶縁材の熱伝導率が6~30W/mKであることを特徴とする請求項1に記載の金属ベース回路基板。
  3.  請求項1に記載の金属ベース回路基板の製造方法であって、
     非異方性液晶ポリエステル溶液と熱伝導率30W/mK以上の無機充填剤とからなる絶縁材組成物を、熱伝導率60W/mK以上で厚み0.2~5.0mmの金属基板の表面に塗工して絶縁塗膜を形成する絶縁塗膜形成工程と、
     前記絶縁塗膜を乾燥して絶縁材層を形成する絶縁材層形成工程と、
     前記絶縁材層を熱処理し、絶縁層を得る絶縁層形成工程と、
     前記金属基板の表面に形成された前記絶縁層の露出面に前記導電箔を密着させて前記金属基板と導電箔との間に絶縁層を設けた積層構造を構成する積層工程と、
     前記積層工程の後に、前記絶縁層を加熱することにより絶縁層と前記金属基板および導電箔との接着を行う熱接着工程と、
    を有することを特徴とする金属ベース回路基板の製造方法。
  4.  請求項1に記載の金属ベース回路基板の製造方法であって、
     非異方性液晶ポリエステル溶液と熱伝導率30W/mK以上の無機充填剤とからなる絶縁材組成物を、導電箔の表面に塗工して絶縁塗膜を形成する絶縁塗膜形成工程と、
     前記絶縁塗膜を乾燥して絶縁材層を形成する絶縁材層形成工程と、
     前記絶縁材層を熱処理し、絶縁層を得る絶縁層形成工程と、
     前記導電箔の表面に形成された前記絶縁層の露出面を前記金属基板の表面に密着させて前記金属基板と導電箔との間に絶縁層を設けた積層構造を構成する積層工程と、
     前記積層工程の後に、前記絶縁層を加熱することにより絶縁層と前記金属基板および導電箔との接着を行う熱接着工程と、
    を有することを特徴とする金属ベース回路基板の製造方法。
PCT/JP2010/056327 2009-04-09 2010-04-07 金属ベース回路基板およびその製造方法 WO2010117023A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080014975.XA CN102388682B (zh) 2009-04-09 2010-04-07 金属基电路板及其制造方法
US13/262,944 US20120193131A1 (en) 2009-04-09 2010-04-07 Metal base circuit board and production method thereof
JP2011508380A JP5427884B2 (ja) 2009-04-09 2010-04-07 金属ベース回路基板およびその製造方法
KR1020117023562A KR101156151B1 (ko) 2009-04-09 2010-04-07 금속 베이스 회로 기판 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-094821 2009-04-09
JP2009094821 2009-04-09

Publications (1)

Publication Number Publication Date
WO2010117023A1 true WO2010117023A1 (ja) 2010-10-14

Family

ID=42936304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056327 WO2010117023A1 (ja) 2009-04-09 2010-04-07 金属ベース回路基板およびその製造方法

Country Status (6)

Country Link
US (1) US20120193131A1 (ja)
JP (1) JP5427884B2 (ja)
KR (1) KR101156151B1 (ja)
CN (1) CN102388682B (ja)
TW (1) TWI410188B (ja)
WO (1) WO2010117023A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061975A1 (ja) * 2011-10-24 2013-05-02 住友化学株式会社 回路基板用積層板及び金属ベース回路基板
WO2013153771A1 (ja) * 2012-04-13 2013-10-17 日本発條株式会社 銅ベース回路基板
JP2013216085A (ja) * 2012-03-13 2013-10-24 Sumitomo Chemical Co Ltd 積層基材の製造方法
US20150140293A1 (en) * 2012-08-02 2015-05-21 Waseda University Metal-base printed circuit board

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201211123A (en) 2010-03-24 2012-03-16 Sumitomo Chemical Co Liquid composition and metal base circuit substrate
JP5487010B2 (ja) 2010-05-27 2014-05-07 日本発條株式会社 回路基板用積層板及び金属ベース回路基板
JP6086206B2 (ja) * 2012-02-28 2017-03-01 住友化学株式会社 金属ベース基板及びその製造方法
US9145469B2 (en) 2012-09-27 2015-09-29 Ticona Llc Aromatic polyester containing a biphenyl chain disruptor
WO2015080245A1 (ja) * 2013-11-28 2015-06-04 東洋アルミニウム株式会社 回路基板の製造方法および回路基板
DE102014107909A1 (de) * 2014-06-05 2015-12-17 Infineon Technologies Ag Leiterplatten und Verfahren zu deren Herstellung
WO2016003588A1 (en) 2014-07-01 2016-01-07 Ticona Llc Laser activatable polymer composition
JP6414260B2 (ja) 2017-03-23 2018-10-31 三菱マテリアル株式会社 放熱回路基板
TWI726567B (zh) * 2020-01-03 2021-05-01 瑩耀科技股份有限公司 發光元件散熱結構及其製作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167212A (ja) * 1991-12-16 1993-07-02 Matsushita Electric Works Ltd 金属ベース基板
JPH07297509A (ja) * 1994-04-21 1995-11-10 Hitachi Chem Co Ltd 金属ベース基板、およびその製造方法
JPH07320538A (ja) * 1994-05-26 1995-12-08 Denki Kagaku Kogyo Kk 絶縁材料組成物及びそれを用いた回路基板とモジュール
JPH10294335A (ja) * 1997-02-19 1998-11-04 Japan Gore Tex Inc Icチップ実装用インターポーザ及びicチップパッケージ
JP2002114894A (ja) * 2000-07-31 2002-04-16 Sumitomo Chem Co Ltd 芳香族液晶ポリエステル溶液組成物およびフィルムの製造方法
WO2005088736A1 (ja) * 2004-03-17 2005-09-22 Japan Gore-Tex Inc. 発光体用回路基板の製造方法、発光体用回路基板前駆体および発光体用回路基板、並びに発光体
JP2007146139A (ja) * 2005-10-26 2007-06-14 Sumitomo Chemical Co Ltd 樹脂含浸基材およびその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681928A (en) * 1984-06-01 1987-07-21 M&T Chemicals Inc. Poly(amide-amide acid), polyamide acid, poly(esteramide acid), poly(amide-imide), polyimide, poly(esterimide) from poly arylene diamine
EP0525644A1 (en) * 1991-07-24 1993-02-03 Denki Kagaku Kogyo Kabushiki Kaisha Circuit substrate for mounting a semiconductor element
JPH0750483A (ja) * 1993-08-03 1995-02-21 Mitsubishi Cable Ind Ltd 金属絶縁基板の製造方法
JP3209132B2 (ja) * 1997-02-27 2001-09-17 日立化成工業株式会社 金属ベース基板
CN1195394C (zh) * 1999-09-06 2005-03-30 铃木综业株式会社 线路板用基板
TWI256959B (en) * 2000-07-31 2006-06-21 Sumitomo Chemical Co Aromatic liquid-crystalline polyester solution composition
JPWO2005010987A1 (ja) * 2003-07-24 2006-09-14 松下電器産業株式会社 球状半導体素子埋設配線板
JP4501526B2 (ja) * 2004-05-14 2010-07-14 住友化学株式会社 高熱伝導性樹脂組成物
US8030818B2 (en) * 2004-06-15 2011-10-04 Siemens Energy, Inc. Stator coil with improved heat dissipation
DE102004058335A1 (de) * 2004-11-29 2006-06-14 Schulz-Harder, Jürgen, Dr.-Ing. Substrat
US7816014B2 (en) * 2005-01-18 2010-10-19 Sumitomo Chemical Company, Limited Liquid crystalline polyester and film using the same
US7655295B2 (en) * 2005-06-14 2010-02-02 Siemens Energy, Inc. Mix of grafted and non-grafted particles in a resin
TW200714666A (en) * 2005-07-29 2007-04-16 Sumitomo Chemical Co Laminate of liquid crystalline polyester with copper foil
JP2007106107A (ja) * 2005-07-29 2007-04-26 Sumitomo Chemical Co Ltd 液晶ポリエステル銅張積層板
JP5269288B2 (ja) * 2005-10-28 2013-08-21 住友化学株式会社 液晶ポリエステル樹脂組成物及び該樹脂組成物から得られるフィルム
WO2007097585A1 (en) * 2006-02-24 2007-08-30 Kolon Industries, Inc. Double side conductor laminates and its manufacture
WO2008075574A1 (ja) * 2006-12-19 2008-06-26 Hitachi Chemical Co., Ltd. 放熱材
JP2009004718A (ja) * 2007-05-18 2009-01-08 Denki Kagaku Kogyo Kk 金属ベース回路基板
JP5219404B2 (ja) * 2007-05-22 2013-06-26 日本カーバイド工業株式会社 多層配線基板およびその製造方法
US8258209B2 (en) * 2007-09-12 2012-09-04 Sumitomo Chemical Company, Limited Insulating resin composition and application thereof
KR20100112213A (ko) * 2009-04-06 2010-10-19 삼성전기주식회사 하이브리드층을 갖는 방열기판 및 조명용 모듈 기판

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05167212A (ja) * 1991-12-16 1993-07-02 Matsushita Electric Works Ltd 金属ベース基板
JPH07297509A (ja) * 1994-04-21 1995-11-10 Hitachi Chem Co Ltd 金属ベース基板、およびその製造方法
JPH07320538A (ja) * 1994-05-26 1995-12-08 Denki Kagaku Kogyo Kk 絶縁材料組成物及びそれを用いた回路基板とモジュール
JPH10294335A (ja) * 1997-02-19 1998-11-04 Japan Gore Tex Inc Icチップ実装用インターポーザ及びicチップパッケージ
JP2002114894A (ja) * 2000-07-31 2002-04-16 Sumitomo Chem Co Ltd 芳香族液晶ポリエステル溶液組成物およびフィルムの製造方法
WO2005088736A1 (ja) * 2004-03-17 2005-09-22 Japan Gore-Tex Inc. 発光体用回路基板の製造方法、発光体用回路基板前駆体および発光体用回路基板、並びに発光体
JP2007146139A (ja) * 2005-10-26 2007-06-14 Sumitomo Chemical Co Ltd 樹脂含浸基材およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061975A1 (ja) * 2011-10-24 2013-05-02 住友化学株式会社 回路基板用積層板及び金属ベース回路基板
JP2013216085A (ja) * 2012-03-13 2013-10-24 Sumitomo Chemical Co Ltd 積層基材の製造方法
WO2013153771A1 (ja) * 2012-04-13 2013-10-17 日本発條株式会社 銅ベース回路基板
JPWO2013153771A1 (ja) * 2012-04-13 2015-12-17 日本発條株式会社 銅ベース回路基板
US20150140293A1 (en) * 2012-08-02 2015-05-21 Waseda University Metal-base printed circuit board
JPWO2014021427A1 (ja) * 2012-08-02 2016-07-21 学校法人早稲田大学 金属ベースプリント配線板
US9554464B2 (en) * 2012-08-02 2017-01-24 Waseda University Metal-base printed circuit board
US10681808B2 (en) 2012-08-02 2020-06-09 Waseda University Metal-base printed circuit board

Also Published As

Publication number Publication date
KR101156151B1 (ko) 2012-06-18
CN102388682A (zh) 2012-03-21
KR20110115624A (ko) 2011-10-21
TWI410188B (zh) 2013-09-21
CN102388682B (zh) 2014-03-19
JPWO2010117023A1 (ja) 2012-10-18
TW201044926A (en) 2010-12-16
US20120193131A1 (en) 2012-08-02
JP5427884B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5427884B2 (ja) 金属ベース回路基板およびその製造方法
US9357642B2 (en) Circuit board laminate and metal-based circuit board
KR101652147B1 (ko) 액정 폴리에스테르 조성물 및 이것을 사용한 전자 회로 기판
JP2010528149A (ja) 芳香族液晶ポリエステルアミド共重合体、この芳香族液晶ポリエステルアミド共重合体を使用したプリプレグ、及びこのプリプレグを使用した積層板並びに配線板
KR20070045095A (ko) 수지-함침 베이스 기판 및 이의 제조 방법
KR101891939B1 (ko) 액상 조성물 및 금속 베이스 회로 기판
KR20120074230A (ko) 액정 폴리에스테르 필름의 제조 방법
TWI705088B (zh) 芳香族聚酯、芳香族聚酯液狀組成物、芳香族聚酯薄膜之製造方法及芳香族聚酯薄膜
JP2012514067A (ja) 芳香族ポリエステルアミド共重合体、高分子フィルム、プリプレグ、プリプレグ積層体、金属箔積層板及びプリント配線板
WO2013061975A1 (ja) 回路基板用積層板及び金属ベース回路基板
JP2012514066A (ja) 芳香族ポリエステルアミド共重合体、高分子フィルム、プリプレグ、プリプレグ積層体、金属箔積層板及びプリント配線板
JP5504064B2 (ja) 回路基板用積層板及び金属ベース回路基板の製造方法
JP2012012605A (ja) 熱硬化性樹脂製造用の組成物及びその硬化物、該硬化物を含むプリプレグ及びプリプレグ積層体、並びに該プリプレグまたはプリプレグ積層体を採用した金属箔積層板及びプリント配線板
KR20140018749A (ko) 방열수지 조성물 및 이를 이용한 액정 폴리에스테르 복합체
JP5640121B2 (ja) 回路基板用積層板及び金属ベース回路基板
KR20140005512A (ko) 방열수지 조성물 및 이를 이용한 금속 베이스 회로 기판
JP6619183B2 (ja) 芳香族ポリエステル、芳香族ポリエステル液状組成物、芳香族ポリエステルフィルムの製造方法及び芳香族ポリエステルフィルム
JP2011124550A (ja) 電子回路基板およびその製造方法
JP2011205072A (ja) 電子回路基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014975.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011508380

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13262944

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117023562

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761722

Country of ref document: EP

Kind code of ref document: A1