WO2015080245A1 - 回路基板の製造方法および回路基板 - Google Patents

回路基板の製造方法および回路基板 Download PDF

Info

Publication number
WO2015080245A1
WO2015080245A1 PCT/JP2014/081541 JP2014081541W WO2015080245A1 WO 2015080245 A1 WO2015080245 A1 WO 2015080245A1 JP 2014081541 W JP2014081541 W JP 2014081541W WO 2015080245 A1 WO2015080245 A1 WO 2015080245A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conductor layer
aluminum
circuit board
fluoride
Prior art date
Application number
PCT/JP2014/081541
Other languages
English (en)
French (fr)
Inventor
孝輔 辻
和徳 小池
桂 川島
權壽 土屋
信治 今井
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to KR1020167015367A priority Critical patent/KR20160091921A/ko
Priority to JP2015551011A priority patent/JP6490012B2/ja
Priority to EP14865961.8A priority patent/EP3076771B1/en
Priority to CN201480064315.0A priority patent/CN105766070B/zh
Priority to US15/039,949 priority patent/US10206287B2/en
Publication of WO2015080245A1 publication Critical patent/WO2015080245A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/067Etchants
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/017Glass ceramic coating, e.g. formed on inorganic substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0384Etch stop layer, i.e. a buried barrier layer for preventing etching of layers under the etch stop layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography

Definitions

  • the present invention relates to a circuit board manufacturing method and a circuit board.
  • the PVD method and the CVD method have problems such as high cost due to the vacuum process and insufficient adhesion.
  • a metal foil when used, it is necessary to use an adhesive to fix the metal foil to the ceramic substrate, which is disadvantageous in terms of long-term stability due to its deterioration.
  • noble metals such as gold, silver, and copper are generally used.
  • the cost is high, and the resistance value increases due to migration in silver and oxidation in copper.
  • Patent Document 1 proposes a method using an aluminum paste.
  • etching can be formed with higher definition than etching in a circuit form because it is not affected by the printability and the particle size of the metal particles in the metal paste.
  • a glass frit containing silicon is added to the paste and fired to obtain a conductor layer containing silicon. It is common to do.
  • Patent Document 2 JP 2010-278410 A
  • the conductor layer contains glass containing silicon as an insulator; Therefore, there is a possibility that performance such as conductivity of the conductor layer is deteriorated.
  • the fineness of the circuit is lost due to the limitation of the particle size of the abrasive.
  • the merit of the etching method that can be performed is lost. That is, for example, when a fine wiring having a distance between lines (conductor / insulator / conductor) of less than 100 ⁇ m is formed by sand blasting, it is required to reduce the particle size of the abrasive used for sand blasting. However, if the particle size is too small, the grinding ability becomes insufficient, and it becomes difficult to remove the residue after etching. In addition, after grinding by sandblasting, a process for removing the abrasive adhered to the substrate is also required, which increases the number of processes and results in an increase in cost.
  • the present invention has been made in view of the situation as described above, and the object of the present invention is to make use of the merit of the etching method that a circuit can be formed with high definition between the substrate and the conductor layer.
  • a method of manufacturing a circuit board that achieves both high adhesion and easy removal of residues after etching, and high adhesion between the board and the conductor layer and excellent insulation reliability between the wires. It is to provide a circuit board having the same.
  • the inventors In order to achieve the problem of facilitating the removal of a conductor layer that remains as a residue by a normal etching method and making it possible to form a high fine wiring, the inventors have at least silicon on the surface. And the etching solution contains metal ions of metal M and fluoride ions, the standard electrode potential of which is greater than the standard electrode potential of aluminum. As a result, the present invention has been completed.
  • the present invention includes a step of preparing a substrate containing at least silicon on the surface, a step of applying a paste containing aluminum particles on the substrate, and a conductor on the substrate by firing the substrate coated with the paste.
  • a method of manufacturing a circuit board including a step of forming a layer, a step of forming a resist film having a specific pattern on the conductor layer, and a step of removing the conductor layer in a portion where the resist film is not formed with an etching solution
  • the etching solution is a method for manufacturing a circuit board, which includes metal ions of metal M and fluoride ions, the standard electrode potential of which is greater than the standard electrode potential of aluminum.
  • the metal ions are iron ions or copper ions
  • the fluoride ions are hydrogen fluoride, tetrafluorosilicon, hexafluorosilicate, hexafluorosilicate, boron trifluoride, fluoroboric acid, Derived from at least one compound selected from the group consisting of fluoroborate, phosphorus fluoride, ammonium fluoride, silver fluoride, aluminum fluoride, cesium fluoride, potassium fluoride, sodium fluoride and lithium fluoride It may be.
  • the etching solution may contain 0.01 to 10% by mass of the fluoride ions.
  • the present invention also includes a substrate containing at least silicon on the surface, a conductor layer containing aluminum formed on the substrate, and aluminum and silicon derived from the conductor layer formed at the interface between the substrate and the conductor layer.
  • the substrate has a portion from which the conductor layer is partially removed so that the conductor layer forms a specific wiring pattern on the substrate,
  • the peak intensity by energy dispersive X-ray analysis (hereinafter also referred to as EDS analysis) of the aluminum element derived from the conductor layer in the surface region of the substrate in the portion where the conductor layer is partially removed;
  • It is a circuit board having a ratio (peak intensity of aluminum element / peak intensity of silicon element) of 1/10 or less of the peak intensity by energy dispersive X-ray analysis of silicon element.
  • the numerical value obtained by subtracting the peak intensity of the aluminum element derived from the substrate from the peak intensity of the aluminum element in the analysis result can be treated as the peak intensity of the aluminum element derived from the conductor layer.
  • the method of manufacturing a circuit board according to the present invention provides high adhesion between the substrate and the conductor layer while taking advantage of the etching method that a circuit can be formed with high definition, and removes residues after etching. The excellent effect of being able to achieve both removal easily.
  • the circuit board obtained by the manufacturing method of the present invention is a circuit board suitable for multichip and high-density mounting.
  • the circuit board of the present invention has high adhesion between the board and the conductor layer and excellent insulation reliability between the wirings.
  • FIG. 2 is an optical microscope image obtained by observing the surface of a conductor layer of a circuit board of Example 1.
  • FIG. It is the figure which showed the elemental analysis result of the interface part of a conductor layer and a board
  • the method for manufacturing a circuit board according to the present invention includes a step of preparing a substrate containing silicon at least on a surface, a step of applying a paste containing aluminum particles on the substrate, and baking the substrate on which the paste has been applied. Forming a conductive layer on the conductive layer, forming a resist film having a specific pattern on the conductive layer, and removing a portion of the conductive layer where the resist film is not formed with an etching solution. .
  • the method for producing a circuit board of the present invention includes a step of preparing a substrate containing silicon at least on the surface.
  • the substrate containing silicon at least on the surface examples include a substrate in which a glass composition 3 containing silicon is coated on a ceramic substrate 2 as shown as a glass-ceramic composite substrate 1 in FIG. Can do.
  • the material of the ceramic substrate is not particularly limited, and examples thereof include alumina, aluminum nitride, and silicon carbide.
  • the material of the glass composition is not particularly limited as long as it contains silicon, and examples thereof include borosilicate glass and alkaline earth silicate glass.
  • the glass-ceramic composite substrate can be formed, for example, by applying and baking a glass paste on the surface of the ceramic substrate.
  • the glass-ceramic composite substrate as described above is illustrated as the substrate containing at least silicon on the surface, but the substrate used in the present invention is not limited to this.
  • a glass substrate can be used as long as it contains silicon.
  • the material of a glass substrate is not specifically limited, Soda lime glass, aluminosilicate glass, borosilicate glass, etc. are mentioned. When such a glass substrate is used, silicon is contained in the entire substrate including the surface.
  • the substrate when a glass substrate is used, the substrate can be made transparent.
  • the surface smoothness and durability are higher than those of a ceramic alone. Obtained and can be selected according to the application.
  • the substrate used in the present invention contains silicon at least on the surface as described above, it is considered that a mixed layer is formed after firing with aluminum particles contained in a paste described later. Thus, since the mixed layer containing aluminum and silicon is formed on the substrate surface, it is assumed that high adhesion is imparted between the conductor layer and the substrate.
  • the method for producing a circuit board of the present invention includes a step of applying a paste containing aluminum particles on the board.
  • This step is a step of applying a paste 4 containing aluminum particles on a glass-ceramic composite substrate 1 as shown in FIG. 1 (i), for example.
  • the paste can be applied once or multiple times.
  • a paste containing at least aluminum particles and a solvent can be used.
  • a paste composed of an organic liquid vehicle containing a solvent and aluminum particles can be suitably used.
  • the aluminum particles are preferably flaky aluminum particles, and the average particle size of the aluminum particles is preferably 0.5 to 50 ⁇ m, and more preferably 0.5 to 20 ⁇ m.
  • the “average particle diameter” in the present invention means an average particle diameter calculated based on a volume average particle size distribution measured by a laser diffraction method.
  • the average particle diameter is also called a median diameter (D50), and is defined as a particle diameter such that a larger particle diameter and a smaller particle diameter are present in equal amounts.
  • D50 median diameter
  • the average particle size of the aluminum particles is less than 0.5 ⁇ m, the specific surface area of the aluminum particles increases and the paste viscosity becomes high, so that it is difficult to obtain a viscosity suitable for printing.
  • the average particle diameter of the aluminum particles exceeds 50 ⁇ m, the printability of the paste may deteriorate.
  • the aluminum particles are preferably contained in the paste in an amount of 5 to 40% by mass, more preferably 10 to 30% by mass. If the amount is less than 5% by mass, a portion having a small amount of aluminum is likely to be formed, and the conductivity may be deteriorated. If the amount exceeds 40% by mass, the amount of aluminum is ensured, so that the conductivity may not be deteriorated. However, the coating film of the paste becomes thick and etching may be difficult.
  • Organic liquid vehicle The structure of the organic liquid vehicle contained in the paste used in the present invention is not particularly limited, but may include a binder resin and a solvent.
  • the component of the binder resin is not particularly limited, and resins such as ethyl cellulose resin, alkyd resin, polyester resin, and acrylic resin can be used.
  • a binder resin that is completely burned and decomposed at the firing temperature by applying the paste of the present invention to the substrate and then heating and firing is preferred.
  • organic solvents such as isopropyl alcohol, toluene, cyclohexanone, glycol ether, glycol ester, and terpineol can be used.
  • the organic liquid vehicle preferably contains 5 to 40% by mass of a binder resin in the solvent. If the composition of the organic liquid vehicle is within the above range, the paste used in the method for producing a circuit board of the present invention is excellent in terms of applicability to various substrates and printability.
  • the organic liquid vehicle is preferably contained in an amount of 60 to 95% by mass based on the entire paste.
  • the paste used in the present invention may or may not contain glass frit.
  • the paste since silicon exists on the surface of the substrate, even if the paste does not necessarily contain glass frit, when the paste is made into a conductor layer by firing in a later step, high adhesion between the substrate and the conductor layer Can be granted. Further, if the conductor layer does not contain an insulating material derived from glass frit, it is excellent in performance and reliability such as conductivity. For this reason, it is preferable that the glass frit is not contained in the paste.
  • the method for applying the paste in the present invention is not particularly limited, and a doctor blade method, a spray coating method, a screen printing method, an ink jet method, or the like can be adopted to apply the paste to form a coating film.
  • the number of times of application may be one time or multiple times.
  • the coated portion is preferably the entire surface of the substrate, but even if there is an uncoated portion, it does not depart from the scope of the present invention.
  • the suitable thickness of the coating film varies appropriately depending on the coating method and the solid content concentration in the paste, but is preferably 0.1 to 100 ⁇ m, and more preferably 0.2 to 5 ⁇ m.
  • the coating film is too thick, it may not be completely removed by etching after the coating film is fired, and erosion in the line width direction may occur before etching in the thickness direction is completed. If the coating film is too thin, when the coating film is baked to form a conductor layer, sufficient adhesion may not be provided between the conductor layer and the substrate.
  • drying and degreasing treatment After application of the paste, drying and degreasing treatment may be performed as necessary.
  • the treatment conditions for drying and degreasing are not particularly limited. Usually, the drying temperature is 50 ° C. to 150 ° C., and the degreasing temperature is 250 ° C. to 450 ° C.
  • the atmosphere during drying and degreasing is not particularly limited, but is generally in the air.
  • the circuit board manufacturing method of the present invention includes a step of forming a conductor layer on a substrate by firing the substrate coated with paste.
  • the step of forming the conductor layer for example, as shown in FIG. 1 (ii), the substrate coated with the paste 4 is baked to form the conductor layer 5 on the substrate. That is, the paste 4 is fired to form the conductor layer 5.
  • the paste baking method in the present invention is not particularly limited.
  • Various types of firing furnaces can be used, such as a batch-type firing furnace, a roller-type firing furnace, a belt-type firing furnace, etc., but a substrate coated with a paste such as a belt-type firing furnace is continuously fired. It is preferable in terms of productivity to use a firing furnace that can be used.
  • the firing temperature is preferably 400 ° C. to 850 ° C., more preferably 450 ° C. to 600 ° C.
  • the firing time is not particularly limited as long as the paste containing aluminum particles becomes a conductive layer having conductivity after firing from short-time firing to long-time firing. However, short-time firing is preferable in order to suppress the formation of an aluminum oxide film that causes an increase in resistance.
  • the firing atmosphere is not particularly limited, and a conductor layer exhibiting good conductivity and adhesion can be obtained in any firing atmosphere such as in air, non-oxidizing atmosphere, reducing atmosphere, and vacuum. it can. However, from the viewpoint of suppressing the formation of an oxide film, it is more preferable to use a non-oxidizing atmosphere, a reducing atmosphere, or a vacuum.
  • the “non-oxidizing atmosphere” is an atmosphere containing no oxygen, for example, any gas such as argon, helium and nitrogen, or a mixed gas atmosphere containing a plurality of these gases.
  • a reducing gas such as hydrogen gas may be mixed with the non-oxidizing atmosphere gas to form a reducing atmosphere.
  • the conductor layer is obtained by baking the paste applied on the substrate to form the conductor layer 5. High adhesion is imparted by firing at the interface between the substrate and the conductor layer. Such a conductor layer has conductivity.
  • Interface between substrate and conductor layer The method for producing a circuit substrate of the present invention is high between the substrate and the conductor layer by applying a paste on a substrate containing silicon at least on the surface and baking it. It provides adhesion.
  • the manufacturing method of the circuit board of this invention includes the process of forming the resist film of a specific pattern on a conductor layer. In this step, for example, as shown in FIGS. 1 (iii) and (iv), a resist film 6 having a specific pattern is formed on the conductor layer 5 formed in the step of forming the conductor layer.
  • the resist film 6 is not particularly limited as long as it is not eroded by an etching solution for removing a subsequent conductor layer among known resist films.
  • a commercially available resist film such as a dry film may be used, or a resist solution may be applied onto the conductor layer using a coating method such as a spin coating method or a roll coating method to form a resist film.
  • a photomask 8 on which a light transmission part 7 having a specific wiring pattern of interest is formed is prepared, and the photomask 8 is overlaid on the resist film 6 as shown in FIG. Is irradiated with a predetermined light for curing. Thereafter, the resist film is developed with a developing solution, so that the resist film in the unexposed portion is dissolved.
  • a resist film having a specific pattern corresponding to a desired wiring pattern is formed as a conductor layer. Formed on top.
  • a contact method or a proximity method can be employed for exposure, and development can be performed with a known developer.
  • the method for producing a circuit board of the present invention includes a step of removing a portion of the conductor layer where the resist film is not formed with an etching solution. In this step, for example, as shown in FIG. 1 (v), a portion of the conductor layer 5 where the resist film 6 is not formed is removed with an etching solution to form the conductor layer in a desired wiring pattern.
  • the etching solution used in this step includes metal ions of metal M (hereinafter, also simply referred to as “metal ions”) and fluoride ions whose standard electrode potential is larger than the standard electrode potential of aluminum.
  • the metal ion is an ion of metal M in which the standard electrode potential takes a value larger than the standard electrode potential of aluminum.
  • the type of the metal M is not particularly limited as long as it is a metal M ion having a standard electrode potential larger than that of aluminum. Therefore, the larger the potential difference from aluminum, the higher the effect, and examples include gold, platinum, silver, copper, lead, tin, nickel, iron, and zinc. In particular, iron and copper can be suitably used from the viewpoint of price.
  • the valence of iron ions is not particularly limited, but trivalent iron ions are preferred. This is because divalent iron is easily oxidized by oxygen in the air and is difficult to handle in controlling the composition.
  • the copper ion is preferably a divalent copper ion.
  • Such iron ions and copper ions are derived from at least one compound selected from the group consisting of ferric chloride, iron nitrate, iron sulfate, cupric chloride, copper nitrate and copper sulfate. Although it can illustrate, it is not necessarily limited to these.
  • “derived from a compound” means that the compound is contained in an etching solution and generates metal ions.
  • the content of metal ions depends on the metal ions contained, it is preferably 5 to 30% by mass in the etching solution for convenience of etching rate, and more preferably 10 to 15% by mass.
  • the etching solution used in the present invention contains fluoride ions together with the above metal ions.
  • This fluoride ion is hydrogen fluoride, tetrafluorosilicon, hexafluorosilicate, hexafluorosilicate, boron trifluoride, fluoroboric acid, fluoroborate, phosphorus fluoride, ammonium fluoride, silver fluoride, fluoride.
  • it is preferably derived from at least one compound selected from the group consisting of aluminum fluoride, cesium fluoride, potassium fluoride, sodium fluoride and lithium fluoride.
  • “derived from a compound” means that the compound is contained in an etching solution and generates fluoride ions, as in the case of the metal ions.
  • ammonium fluoride is preferable. This is because there is no danger like hydrogen fluoride.
  • the content of fluoride ions in the etching solution is preferably 0.01 to 10% by mass and more preferably 0.3 to 5% by mass in the etching solution. If the fluoride ion content is less than 0.01% by mass, a sufficient removal effect of the reactant may not be obtained. On the other hand, if the content is more than 10% by mass, the corrosiveness with respect to the production apparatus and the substrate may become too large.
  • the etching solution contains only the above metal ions. Even if fluoride ions are not included, etching is possible. However, when a circuit is formed by etching a conductor layer (a conductor layer formed by firing a paste containing aluminum particles) formed by the circuit board manufacturing method of the present invention, only the above metal ions are used. Even when an etching solution containing is used, a residue remains on the substrate even after the etching, and it is not possible to perform etching so that a circuit having excellent insulation reliability can be obtained. Therefore, the etching solution used in the present invention contains metal ions and fluoride ions. This makes it possible to form a circuit without leaving a residue on the substrate.
  • an oxide film is formed on the surface of the aluminum foil, no oxide film is formed inside the aluminum foil.
  • the oxide of aluminum is difficult to dissolve in the etching solution containing only the above metal ions, but can be dissolved in the etching solution containing only the above metal ions as long as it is only one oxide film on the surface of the aluminum foil. . And if only an oxide film melt
  • a mixed layer in which aluminum and silicon are mixed is formed at the interface between the conductor layer and the substrate, as described above, and this mixed layer contains only the above metal ions.
  • the etching solution used in the present invention is considered to exhibit a sufficient etching action even for such a mixed layer.
  • the etching solution used in the present invention is (1) the oxide film on the surface of the aluminum particles is dissolved by the action of fluoride ions, and (2) the aluminum of the aluminum particles is dissolved by the action of the above metal ions. Because of the repeated action of (1) and (2), it is presumed that the conductor layer can be easily dissolved even in the state where a large number of oxide films are stacked in the conductor layer. It is assumed that the layer can be easily dissolved because the above metal ions act on aluminum and the fluoride ions act on silicon.
  • the specific method of removing the conductive layer in the portion where the resist film is not formed is not particularly limited, but a method of immersing the entire substrate in the etching solution, a method of spraying the etching solution, or the like may be employed. it can.
  • a portion of the conductor layer where the resist film is not formed can be removed with an etching solution, and the conductor layer can be formed into a desired wiring pattern.
  • the circuit board manufacturing method of the present invention may include other optional steps as long as each of the above steps is included.
  • a step of removing the resist film 6 may be included after the step of removing the conductor layer with an etching solution.
  • a circuit board as shown in FIG. 1 (vi) can be obtained.
  • a step of plating a metal such as gold or nickel on the formed conductor layer (fine wiring) for the purpose of soldering or the like may be included.
  • the circuit board of the present invention includes a substrate containing at least silicon on the surface, a conductor layer containing aluminum formed on the substrate, and a mixed layer containing aluminum and silicon formed at the interface between the substrate and the conductor layer. And the substrate has a portion in which the conductor layer is partially removed so that the conductor layer forms a specific wiring pattern on the substrate, and the conductor layer is partially in a cross section perpendicular to the substrate.
  • the ratio of the peak intensity of aluminum element in the surface region of the substrate removed by energy dispersive X-ray analysis to the peak intensity of silicon element by energy dispersive X-ray analysis peak intensity of aluminum element / peak of silicon element
  • the circuit board of the present invention has a substrate containing silicon at least on the surface.
  • the same substrate as described in the description of the method for manufacturing a circuit board can be used. That is, as a substrate containing silicon on the surface of the circuit board of the present invention, for example, a glass composition 3 containing silicon is coated on a ceramic substrate 2 as shown as a glass-ceramic composite substrate 1 in FIG.
  • a glass substrate in which silicon is contained in the entire substrate including at least the surface.
  • the circuit board of the present invention provides a high adhesion between the conductor layer and the substrate because a mixed layer is formed between the conductor layer described later by using a substrate containing silicon on the surface. It is estimated that
  • the circuit board of the present invention has a conductor layer containing aluminum formed on the board.
  • the circuit board of the present invention can ensure the conductivity of the conductor layer by using a conductor layer containing aluminum, and a mixed layer is formed between the conductor layer and the board. It is presumed that high adhesion can be imparted between the two.
  • the conductor layer only needs to contain aluminum and have conductivity, but in order to improve the conductivity, it is preferable to contain 70% by mass or more of aluminum, and 90% by mass or more. More preferred.
  • the thickness of the conductor layer is not particularly limited, but is preferably 0.1 ⁇ m to 100 ⁇ m, and more preferably 0.2 to 5 ⁇ m, in order to improve conductivity.
  • the conductor layer of the present invention can be formed using a method similar to the method for forming a conductor layer described in the description of the method for manufacturing a circuit board. That is, for example, as shown in FIGS. 1 (i) and (ii), the conductor layer 5 can be formed by applying a paste 4 containing aluminum particles on the substrate 1 and firing the paste.
  • the circuit board of the present invention has a mixed layer in which aluminum and silicon are formed at the interface between the board and the conductor layer.
  • the circuit board of the present invention is presumed to have adhesion between the board and the conductor layer by having a mixed layer at the interface between the board and the conductor layer.
  • the mixed layer may be any layer in which aluminum and silicon are mixed to provide adhesion between the substrate and the conductor layer.
  • the thickness of the mixed layer is not particularly limited, but is preferably 0.005 ⁇ m to 10 ⁇ m, and more preferably 0.01 to 5 ⁇ m, in order to improve the adhesion.
  • a mixed layer of aluminum and silicon is formed between the conductor layer and the substrate, for example, with respect to a region including the conductor layer and the substrate in a cross section perpendicular to the substrate. Then, by performing energy dispersive X-ray spectroscopic analysis using an electron microscope (trade name: “TITAN 80-300”, manufactured by FEI) and observing changes in the concentrations of aluminum and silicon at the interface between the conductor layer and the substrate, Good.
  • the detection value of aluminum is more than one tenth of the detection value of aluminum in the conductor layer
  • the detection value of silicon is one tenth of the detection value of silicon in the substrate. If the simultaneously existing region is confirmed to be 5 nm or more, it can be determined that a mixed layer is formed between the conductor layer and the substrate.
  • the mixed layer of the present invention can be formed using the same method as the mixed layer forming method described in the description of the method for manufacturing a circuit board. That is, for example, as shown in FIGS. 1 (i) and 1 (ii), a paste 4 containing aluminum particles is applied onto a substrate 1 containing silicon at least on the surface and baked to thereby form a conductor layer containing aluminum on the substrate 1.
  • a mixed layer (not shown) can be formed because silicon contained in the substrate surface and aluminum of aluminum particles contained in the paste coexist.
  • the substrate in the circuit board of the present invention has a portion where the conductor layer is partially removed so that the conductor layer forms a specific wiring pattern on the substrate.
  • the wiring pattern of the conductor layer is not particularly limited, and a desired pattern may be selected.
  • a high-definition circuit pattern can be formed without using an etching capable of forming a high-definition circuit and removing the residue after etching by sandblasting. It is possible to adopt a simple wiring pattern.
  • the width of the wiring (line width) and the distance between adjacent wirings (between the lines), that is, so-called line and space (L / S) are not particularly limited. Is preferably 100 ⁇ m or less, more preferably 60 ⁇ m or less, and even more preferably 40 ⁇ m or less.
  • the wiring pattern forming method of the present invention can use the same method as the wiring pattern forming method described in the above description of the circuit board manufacturing method. That is, for example, as shown in FIGS. 1 (iii) to (vi), a resist film 6 having a specific pattern is formed on the conductor layer 5, and a portion of the conductor layer where the resist film is not formed is removed with an etching solution. Thus, the conductor layer can be formed in a desired wiring pattern.
  • the energy of the aluminum element derived from the conductor layer in the surface area of the substrate where the conductor layer is partially removed (hereinafter also referred to as “surface area of the substrate”) in the cross section perpendicular to the substrate.
  • the ratio (peak intensity of aluminum element / peak intensity of silicon element) between the peak intensity determined by dispersive X-ray analysis and the peak intensity determined by energy dispersive X-ray analysis of silicon element is set to 1/10 or less.
  • the circuit board of the present invention has a ratio of the peak intensity of aluminum element derived from the conductor layer in the surface region of the board by energy dispersive X-ray analysis to the peak intensity of silicon element by energy dispersive X-ray analysis (peak intensity of aluminum element (Peak intensity of silicon element) is 1/10 or less, the possibility of energization between the wirings intended to be insulated due to the presence of aluminum element is reduced, and the insulation reliability is excellent. It is estimated that
  • the “surface area of the substrate” means the surface formed by removing the conductor layer among the portions where the conductor layer is partially removed so that the conductor layer forms a specific wiring pattern on the substrate. It means a nearby area.
  • the “surface region of the substrate” is defined including the residue.
  • the surface region of the substrate does not have a residue derived from the conductor layer due to the reaction with the etching solution described above, and a mixed layer of aluminum and silicon, so that the ideal inclusion of aluminum element in the surface region of the substrate The amount is zero.
  • the aforementioned residue and mixed layer cannot be completely removed by etching or the like due to factors such as the composition of the etching solution and the time required for etching.
  • the ratio of the peak intensity by energy dispersive X-ray analysis of the aluminum element derived from the conductor layer in the surface region of the substrate to the peak intensity by energy dispersive X-ray analysis of silicon element By setting the aluminum element peak intensity / silicon element peak intensity to 1/10 or less, the effect of excellent insulation reliability between wirings is not impaired.
  • Ratio of peak intensity by energy dispersive X-ray analysis of aluminum element derived from the conductor layer in the surface region of the substrate to peak intensity by energy dispersive X-ray analysis of silicon element Is a method of removing the conductor layer with the etching solution in the method for manufacturing a circuit board of the present invention, for example, metal ions of metal M in which the standard electrode potential is larger than the standard electrode potential of aluminum. And a method of removing the conductor layer with an etching solution containing fluoride ions.
  • the ratio of the peak intensity of the aluminum element derived from the conductor layer in the surface region of the substrate by the energy dispersive X-ray analysis to the peak intensity of the silicon element by the energy dispersive X-ray analysis is preferably 7/100 or less, more preferably 2/100 or less, and even more preferably 1/100 or less.
  • the aluminum element content in the surface region of the board may be 1000 ppm or less, more preferably 100 ppm or less, and 50 ppm or less. Is more preferable. By setting it as such a numerical value range, the effect that it is excellent in the insulation reliability between wiring shall not be impaired.
  • substrate contains an aluminum element
  • substrate from content of the aluminum element in an analysis result can be handled as content of the aluminum element derived from a conductor layer.
  • the circuit board of the present invention has a mixed layer of aluminum and silicon formed at the interface between the substrate and the conductor layer, thereby providing high adhesion between the conductor layer and the substrate.
  • the peak intensity and the energy dispersion of silicon element by energy dispersion X-ray analysis of aluminum element derived from the conductor layer in the surface region of the substrate where the conductor layer is partially removed It is presumed that excellent insulation reliability is obtained when the ratio (peak intensity of aluminum element / peak intensity of silicon element) to the peak intensity by the type X-ray analysis is 1/10 or less. Therefore, the circuit board of the present invention has high adhesion between the board and the conductor layer and excellent insulation reliability between the wirings.
  • Example 1 (Process for preparing the substrate) A soda lime glass substrate (trade name: “FL2”, manufactured by Central Glass Co., Ltd.) was prepared as a substrate.
  • This soda lime glass substrate is a substrate containing silicon in the entire substrate including the surface.
  • a paste was prepared by stirring 70 parts by mass of an organic liquid vehicle in which 10 parts by mass of ethyl cellulose was dissolved in 90 parts by mass of butyl carbitol, 20 parts by mass of butyl carbitol, and 10 parts by mass of aluminum particles having an average particle diameter of 11 ⁇ m.
  • this paste was applied to the entire surface of the soda lime glass substrate by screen printing.
  • the soda lime glass substrate on which the paste was applied was allowed to stand in a horizontal state for 10 minutes and then dried at 100 ° C. for 10 minutes. The thickness of the paste after drying was 5 ⁇ m.
  • a photosensitive dry film (trade name: “ATP-153”, manufactured by Asahi Kasei Co., Ltd.) is pasted as a resist film on the fired conductor layer, and the line width / line spacing (hereinafter also referred to as “L / S”) is 60 ⁇ m / 40 ⁇ m.
  • a photomask having the comb-shaped pattern was brought into contact with the resist film, exposed to ultraviolet light, and developed with an alkali developer to form a resist film having a specific pattern on the conductor layer.
  • an etchant which is an aqueous solution containing 14% by mass of cupric chloride and 3% by mass of ammonium fluoride, that is, a metal ion of metal M having a standard electrode potential larger than the standard electrode potential of aluminum
  • an etching solution containing divalent copper ions and fluoride ions By using an etching solution containing divalent copper ions) and fluoride ions, the portion where the resist film is not formed is immersed in the etching solution at room temperature for 10 seconds, and the conductor layer is removed with the etching solution, A specific wiring pattern was formed. Thereafter, the resist film on the conductor layer was removed with N-methylpyrrolidone.
  • FIG. 2 is an optical microscope image obtained by observing the surface of the conductor layer of the circuit board of Example 1.
  • FIG. 2 the white (light color) band indicates the conductor layer and the black (dark color) band indicates the portion where the conductor layer is removed.
  • Example 2 A circuit board was formed in the same manner as in Example 1 except that a glass-ceramic composite substrate was used as the substrate.
  • the glass-ceramic composite substrate (trade name: “Glaze processed substrate GS-32”, manufactured by MARUWA) was used. That is, this glass-ceramic composite substrate is a substrate in which a glass composition containing silicon is formed on a substrate made of ceramics, and is a substrate containing at least silicon on the surface.
  • alumina substrate (trade name: “Alumina substrate for thick film”, manufactured by Phonon Meiwa Co., Ltd.) was used as the substrate.
  • the subsequent experiment could not be performed because the film was peeled off.
  • the alumina substrate is a substrate that does not contain silicon.
  • the adhesion between the conductor layer and the substrate was measured as follows. That is, Cellotape (registered trademark) (trade name: “CT-24”, manufactured by Nichiban Co., Ltd.) was closely attached to the surface of the conductor layer, pulled at an angle of 45 degrees, and the degree of peeling of the conductor layer was visually observed. According to the observation result, the adhesion was evaluated as “good” if there was no peeling, and “impossible” if there was peeling. The results are shown in Table 1.
  • the insulation resistance was measured as follows. That is, for the insulation resistance between the linear conductor layer drawn on the circuit board and the linear conductor layer adjacent to the conductor layer, a superinsulator (trade name: “SM-8216”, manufactured by HIOKI Corporation) ), A voltage of 500 V was applied under the condition of 20 ° C., and the resistance value after 1 minute was measured. The results are shown in Table 1. A higher insulation resistance value indicates better insulation reliability.
  • the circuit board of Example 1 was checked.
  • the image of the portion including the substrate and the surface region of the substrate in the cross section in the direction perpendicular to the substrate of the portion from which the conductor layer has been removed (conductor layer removed portion) is observed with an electron microscope at an acceleration voltage of 15 kV.
  • EDS analysis was performed using an energy dispersive X-ray analyzer “X-MAX” manufactured by Horiba, Ltd. The result is shown in FIG. In FIG.
  • the peak intensity of the aluminum element in the surface region of the substrate is 40 Counts
  • the peak intensity of the silicon element is 620 Counts
  • the ratio of the peak intensity of the aluminum element to the silicon element was 0.0645.
  • the peak intensity ratio of aluminum in the surface region of the substrate and the substrate is equivalent, and the peak intensity of aluminum derived from the conductor layer is sufficiently smaller than 1/10 of silicon, In Example 1, it was clear that the mixed layer was sufficiently removed between the substrate and the conductor layer.
  • Adhesion The item “Adhesion” in Table 1 shows the evaluation results of the adhesion between the conductor layers of the circuit boards produced in Examples and Comparative Examples and the board. Referring to Table 1, in Example 1 and Comparative Example 2 using soda lime glass in which silicon is present on the substrate surface, Example 2 and Comparative Example 3 using a glass-ceramic composite substrate, the conductor layer and the substrate It is clear that the adhesion is evaluated as “good” and the adhesion is excellent.
  • the alumina substrate of Comparative Example 1 that does not contain silicon on the surface is evaluated as “impossible” for adhesion, and after firing the paste, the conductor layer peels off from the substrate, and the gap between the substrate and the conductor layer is reduced. It is clear that good adhesion is not obtained. From the above, it was revealed that the adhesion between the conductor layer and the substrate can be greatly improved by using a substrate containing silicon at least on the surface.
  • Insulation resistance in Table 1 shows the measurement results of the insulation resistance. Referring to Table 1, it is clear that in Example 1 and Example 2, the insulation resistance is 10 12 ⁇ or more, and the insulation reliability is excellent. On the other hand, in Comparative Example 2 and Comparative Example 3, as described above, a sufficient circuit could not be formed by etching, so the insulation resistance between the linear conductor layer and the adjacent linear conductor layer was measured. I could't. As described above, by using an etching solution to which metal ions of metal M and fluoride ions having a standard electrode potential larger than the standard electrode potential of aluminum is used, there is no residue between the wires, and the insulation reliability is excellent. It became clear that a circuit board could be produced.
  • FIG. 3 shows the result of elemental analysis of the interface portion between the conductor layer and the substrate in the cross section in the vertical direction between the conductor layer and the substrate of the circuit board of Example 1.
  • a mixed layer in which silicon and aluminum derived from a glass substrate are interdiffused between the substrate and the conductor layer (aluminum) and aluminum and silicon are mixed in FIG. 3, “aluminum-silicon mixed layer”). Can be confirmed).
  • a mixed layer of aluminum and silicon is formed between the conductor layer and the substrate by using a substrate containing silicon at least on the surface, and applying and baking the paste on the substrate, so that adhesion can be greatly improved. Became clear.
  • Example 1 and Example 2 according to the method for manufacturing a circuit board of the present invention make use of the merit of the etching method that a circuit can be formed with high definition, and between the substrate and the conductor layer. It can be seen that the excellent effect of providing both high adhesion and easy removal of the residue after etching can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • ing And Chemical Polishing (AREA)
  • Weting (AREA)

Abstract

 本発明は、少なくとも表面にケイ素を含有する基板を準備する工程、該基板上にアルミニウム粒子を含むペースト(4)を塗布する工程、該ペースト(4)を塗布した該基板を焼成することにより該基板上に導体層(5)を形成する工程、該導体層(5)上に特定パターンのレジスト膜(6)を形成する工程、および該レジスト膜(6)が形成されていない部分の該導体層(5)をエッチング液により除去する工程を含む回路基板の製造方法であって、該エッチング液は、標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mの金属イオンとフッ化物イオンとを含む、回路基板の製造方法およびそのような方法により製造しうる回路基板に係わる。

Description

回路基板の製造方法および回路基板
 本発明は、回路基板の製造方法および回路基板に関する。
 セラミックス回路基板の製造方法は様々あるが、低コスト、高精細、高信頼性を求めた改良が検討されている。従来このようなセラミックス回路基板は、金、銀、銅、アルミニウムなどを導体層の材質として選択し、金属箔または金属ペーストを用いる方法、PVD法(スパッタリング法、真空蒸着法など)またはCVD法などによって導体層を形成する方法が採用されている。導体層を回路パターンに形成する方法としては、導体層をエッチングする方法や、ペーストを回路状に印刷する方法が採用されている。
 導体層の形成においては、PVD法やCVD法は真空プロセスのためにコスト高となること、および密着性が不十分となることなどが問題となる。また金属箔を用いる場合にはセラミックス基板に金属箔を固定するために接着剤を使用する必要があり、その劣化から長期安定性では不利になりやすいことが問題となる。
 金属ペーストを使用する場合は、主として金、銀、銅といった貴金属類が一般的に使用されているが、コスト高な上、銀ではマイグレーション、銅では酸化による抵抗値増加が課題となっている。
 上記金属ペーストを使用する場合の課題を解決する方法のひとつとして、国際公開第2010/100893号パンフレット(以下、特許文献1)では、アルミニウムペーストを用いる方法が提案されている。
 また、金属ペーストを使用して導体層を形成する具体的方法としては、金属ペーストを回路状に印刷する方法と、金属ペーストを一面に塗布し、焼成して導体層とした後にエッチングする方法とがある。しかし、回路状に印刷するよりもエッチングするほうが、印刷性や金属ペースト中の金属粒子の粒径の影響を受けないため、より高精細に回路を形成できることが知られている。
 そして、金属ペーストを焼成して導体層とする際には、基板との密着性を付与するために、ケイ素を含むガラスフリットをペースト中に添加した上で焼成して、ケイ素を含む導体層とすることが一般的である。
 ただし、通常のエッチングでは、上記ケイ素を含む導体層を基板表面から完全に除去することが難しいため、エッチングした部分にもケイ素を含む導体層が残渣として残り、配線間の絶縁信頼性が損なわれるおそれがある。その導体層の残渣を除去する方法としては、特開2010-278410号公報(以下、特許文献2)のように、エッチングを施した部分にサンドブラスト処理を加える方法が提案されている。
国際公開第2010/100893号パンフレット 特開2010-278410号公報
 基板と導体層との密着性を付与する方法として上記のケイ素を含むガラスフリットをペースト中に添加する方法を採用する場合は、導体層中に絶縁物であるケイ素を含むガラスが含まれることとなるため、導体層の導電性などの性能が劣化するおそれがある。
 また、上記のケイ素を含む導体層の残渣を除去する方法として、サンドブラスト処理を採用する場合は、研磨材の粒径の制限により回路の精細性が損なわれてしまうため、高精細に回路を形成できるというエッチングによる方法のメリットが失われてしまう。すなわち、サンドブラスト処理を施して、たとえばライン間距離(導体/絶縁体/導体)を100μm未満とする微細配線を形成する場合などは、サンドブラスト処理に用いる研磨材の粒径を小さくすることが求められるが、粒径が小さ過ぎると研削能力が不十分となってしまい、エッチング後の残渣を除去するのが困難となる。また、サンドブラストによる研削後には基板に付着した研磨材の除去工程も必要になり、工程が増え、結果としてコスト高になってしまう。
 以上より、高精細に回路を形成できるというエッチングによる方法のメリットを生かしつつ、基板と導体層との間に高い密着性を付与することと、エッチング後の残渣を容易に取り除くこととを両立させた回路基板の製造方法およびこのような方法により製造しうる、基板と導体層との間の高い密着性と配線間の優れた絶縁信頼性とを有する回路基板は、いまだ知られていない状況にある。
 本発明は、上記のような状況に鑑みなされたものであって、その目的とするところは、高精細に回路を形成できるというエッチングによる方法のメリットを生かしつつ、基板と導体層との間に高い密着性を付与することと、エッチング後の残渣を容易に取り除くこととを両立させた回路基板の製造方法および基板と導体層との間の高い密着性と配線間の優れた絶縁信頼とを有する回路基板を提供することにある。
 本発明者らは、通常のエッチングによる方法では残渣として残ってしまう導体層の除去を容易にし、高い微細配線を形成することを可能にする、という課題を達成するためには、少なくとも表面にケイ素を含有する基板を使用し、金属ペースト中に含まれる金属としてアルミニウム粒子を用い、エッチング液は標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mの金属イオンとフッ化物イオンとを含むものとすればよいことを見出し、本発明を完成させた。
 すなわち、本発明は、少なくとも表面にケイ素を含有する基板を準備する工程、該基板上にアルミニウム粒子を含むペーストを塗布する工程、該ペーストを塗布した該基板を焼成することにより該基板上に導体層を形成する工程、該導体層上に特定パターンのレジスト膜を形成する工程、および該レジスト膜が形成されていない部分の該導体層をエッチング液により除去する工程を含む回路基板の製造方法であって、該エッチング液は、標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mの金属イオンとフッ化物イオンとを含む、回路基板の製造方法である。
 ここで、該金属イオンは、鉄イオンまたは銅イオンであって、該フッ化物イオンは、フッ化水素、テトラフルオロケイ素、ヘキサフルオロケイ酸、ヘキサフルオロケイ酸塩、三フッ化ホウ素、フルオロホウ酸、フルオロホウ酸塩、フッ化リン、フッ化アンモニウム、フッ化銀、フッ化アルミニウム、フッ化セシウム、フッ化カリウム、フッ化ナトリウムおよびフッ化リチウムからなる群より選ばれる少なくとも1種の化合物に由来するものであってもよい。
 また、該エッチング液は、0.01~10質量%の該フッ化物イオンを含んでもよい。
 また、本発明は、少なくとも表面にケイ素を含有する基板と、該基板上に形成されたアルミニウムを含む導体層と、該基板と該導体層との界面に形成された導体層由来のアルミニウムとケイ素とが混在する混在層とを含み、該基板は、該導体層が該基板上に特定の配線パターンを形成するように、該導体層が部分的に除去された部分を有し、該基板に対する垂直方向の断面において、該導体層が部分的に除去された部分の該基板の表面領域における該導体層由来のアルミニウム元素のエネルギー分散型X線分析(以下、EDS分析ともいう)によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)が10分の1以下である、回路基板である。
 なお、該基板がアルミニウム元素を含む場合には、その分析結果におけるアルミニウム元素のピーク強度から基板由来のアルミニウム元素のピーク強度を差し引いた数値を導体層由来のアルミニウム元素のピーク強度として扱うことができる。
 本発明に係る回路基板の製造方法は、高精細に回路を形成できるというエッチングによる方法のメリットを生かしつつ、基板と導体層との間に高い密着性を付与することと、エッチング後の残渣を容易に取り除くこととを両立させることができるという優れた効果を示す。
 したがって、本発明の製造方法により得られた回路基板は、マルチチップ化および高密度実装化に好適な回路基板となる。
 すなわち、本発明の回路基板は、基板と導体層との間の高い密着性と配線間の優れた絶縁信頼性とを有する。
本発明の回路基板の製造方法の工程を模式的に示した断面図である。 実施例1の回路基板の導体層の表面を観察した光学顕微鏡像である。 実施例1の回路基板の導体層と基板との間の垂直方向の断面のうち、導体層と基板との界面部分の元素分析結果を示した図である。 実施例1の回路基板の導体層と基板との間の垂直方向の断面のうち、導体層を除去した部分の元素分析結果を示した図である。
 以下、本発明をより詳細に説明する。
 <回路基板の製造方法>
 本発明の回路基板の製造方法は、少なくとも表面にケイ素を含有する基板を準備する工程と、基板上にアルミニウム粒子を含むペーストを塗布する工程と、ペーストを塗布した基板を焼成することにより基板上に導体層を形成する工程と、導体層上に特定パターンのレジスト膜を形成する工程と、レジスト膜が形成されていない部分の導体層をエッチング液により除去する工程とを含むことを特徴とする。
 <基板を準備する工程>
 本発明の回路基板の製造方法は、少なくとも表面にケイ素を含有する基板を準備する工程を含む。
 (基板)
 少なくとも表面にケイ素を含有する基板としては、たとえば、図1(i)においてガラス-セラミックス複合基板1として示されるように、セラミックス基板2上にケイ素を含むガラス組成物3を被覆した基板を挙げることができる。ここで、セラミックス基板の材質は特に限定されるものではないが、アルミナ、窒化アルミニウム、炭化ケイ素などが挙げられる。また、ガラス組成物の材質は、ケイ素を含む限り特に限定されるものではないが、ホウ珪酸系ガラス、アルカリ土類ケイ酸塩ガラスなどが挙げられる。ガラス-セラミックス複合基板はたとえば、セラミックス基板表面にガラスペーストを塗布焼成することにより、形成することができる。
 なお、図1では、少なくとも表面にケイ素を含有する基板として、上記のようなガラス-セラミックス複合基板を例示しているが、本発明において使用される基板はこれのみに限定されるものではない。たとえば、ケイ素を含有する限り、ガラス基板を用いることも可能である。ガラス基板の材質は特に限定されるものではないが、ソーダ石灰ガラス、アルミノ珪酸ガラス、ホウ珪酸ガラスなどが挙げられる。このようなガラス基板を用いる場合、表面を含む基板全体にケイ素が含まれることとなる。
 なお、少なくとも表面にケイ素を含有する基板としては、ガラス基板を用いる場合は基板を透明とすることが可能となり、ガラス-セラミックス複合基板を用いる場合はセラミックス単体と比べて表面平滑性や耐久性が得られ、用途によって選択することができる。
 本発明において使用される基板は、上記のように、少なくとも表面にケイ素を含むため、後述のペースト中に含まれるアルミニウム粒子と、焼成後において混在層を形成するものと考えられる。このように、基板表面にアルミニウムとケイ素とを含む混在層が形成されるため、導体層と基板との間に高い密着性が付与されるものと推測される。
 <ペーストを塗布する工程>
 本発明の回路基板の製造方法は、基板上にアルミニウム粒子を含むペーストを塗布する工程を含む。この工程は、たとえば図1(i)のように、ガラス-セラミックス複合基板1上に、アルミニウム粒子を含むペースト4を塗布する工程である。ペーストは、1回又は複数回塗布することができる。
 (ペースト)
 本発明において使用されるアルミニウム粒子を含むペーストとしては、少なくともアルミニウム粒子と溶剤とを含むものを用いることができる。たとえば、溶剤を含む有機液体ビヒクルとアルミニウム粒子とから構成されるペーストを、好適に用いることができる。
  (1)アルミニウム粒子
 アルミニウム粒子は、薄片状アルミニウム粒子であることが好ましく、アルミニウム粒子の平均粒径は、0.5~50μmが好ましく、0.5~20μmがより好ましい。ここで、本発明における「平均粒径」とは、レーザー回折法によって測定された体積平均の粒度分布に基づいて算出された平均粒径を意味する。平均粒径はメジアン径(D50)とも呼ばれ、それより粒径が大きいものと小さいものとが等量で存在するような粒径と定義される。上記アルミニウム粒子の粒径が0.5μm未満の場合は、アルミニウム粒子の比表面積が増大し、ペースト粘度が高くなってしまうことで印刷に適した粘度が得られにくい。またアルミニウム粒子の平均粒径が50μmを超える場合はペーストの印刷性が低下する場合がある。
 また、アルミニウム粒子は、ペースト中に5~40質量%含まれることが好ましく、10~30質量%含まれることがより好ましい。5質量%未満ではアルミニウムの存在量の少ない部位ができやすくなって導電性が悪化する場合があり、40質量%を超えると、アルミニウムの存在量が確保されるので導電性が悪化するおそれはなくなるが、ペーストの塗膜が厚くなり、エッチングが困難となる場合がある。
  (2)有機液体ビヒクル
 本発明において使用されるペースト中に含有される有機液体ビヒクルの構成は、特に限定されないが、バインダー樹脂と溶剤とを含むものとすることができる。
 バインダー樹脂の成分は特に限定されず、エチルセルロース系樹脂、アルキッド系樹脂、ポリエステル系樹脂、アクリル系樹脂などの樹脂を用いることができる。本発明のペーストを基板に塗布後、加熱し焼成することにより、その焼成温度で完全に燃焼され分解されるようなバインダー樹脂が好ましい。
 溶剤としては、イソプロピルアルコール、トルエン、シクロヘキサノン、グリコールエーテル系やグリコールエステル系、ターピネオール系などの有機溶剤を使用することができる。
 有機液体ビヒクルは、溶剤中に、バインダー樹脂が5~40質量%含有されていることが好ましい。有機液体ビヒクルの組成が上記の範囲内であれば、本発明の回路基板の製造方法において使用されるペーストは、各種基板への塗布性や印刷性の点で優れたものとなる。
 有機液体ビヒクルは、ペースト全体に対し60~95質量%含有されることが好ましい。
  (3)ガラスフリット
 本発明において使用されるペーストは、ガラスフリットを含んでいてもよいし、含んでいなくてもよい。本発明においては基板表面にケイ素が存在するために、必ずしもペースト中にガラスフリットが含まれずとも、後の工程で焼成によりペーストを導体層としたとき、基板と導体層との間に高い密着性を付与することができる。また導体層中にガラスフリット由来の絶縁物が含まれなければ、導電性などの性能や信頼性において優れたものとなる。このため、ペースト中にガラスフリットが含まれないほうが好ましい。
 (ペーストの塗布)
 本発明におけるペーストの塗布方法は、特に限定されず、ドクターブレード法、スプレー塗装法、スクリーン印刷法、インクジェット法などを採用して、ペーストを塗布し、塗膜とすることができる。塗布回数は、1回でもよく、複数回でもよい。塗布部分は、基板の表面全面とすることが好ましいが、塗布されていない部分が存在しても、本発明の範囲を逸脱するものではない。好適な塗膜の厚みは、塗布方法およびペースト中の固形分濃度に依存して適宜変動するが、0.1~100μmが好ましく、0.2~5μmとすることがさらに好ましい。塗膜が厚過ぎると、塗膜の焼成後、エッチングで除去しきれなくなるおそれがあり、また厚み方向のエッチングが完了する前に線幅方向の侵食が発生するおそれがある。塗膜が薄過ぎると、塗膜を焼成し、導体層としたとき、導体層と基板との間に十分な密着性を付与できない場合がある。
 (乾燥・脱脂)
 上記ペーストの塗布後、必要に応じて乾燥、脱脂処理を施してもよい。乾燥、脱脂の処理条件は特に限定されないが、通常、乾燥温度は50℃~150℃、脱脂温度は250℃~450℃である。また、乾燥、脱脂処理時の雰囲気は、特に限定されるものではないが、一般には空気中である。
 <導体層を形成する工程>
 本発明の回路基板の製造方法は、ペーストを塗布した基板を焼成することにより基板上に導体層を形成する工程を含む。導体層を形成する工程においては、たとえば図1(ii)のように、ペースト4を塗布した基板を焼成して、基板上に導体層5を形成する。すなわち、ペースト4を焼成して導体層5とする。
 (焼成)
 本発明におけるペーストの焼成方法については特に限定されない。焼成炉は種々のものを使用することができ、バッチ式焼成炉、ローラー式焼成炉、ベルト式焼成炉などが例示できるが、ベルト式焼成炉のようにペーストを塗布した基板を連続的に焼成するできる焼成炉を使用するのが生産性の面で好ましい。焼成温度は、400℃~850℃とすることが好ましく、450℃~600℃とすることがさらに好ましい。焼成時間は、短時間焼成から長時間焼成まで、アルミニウム粒子を含むペーストが焼成後に導電性を有する導体層となる焼成時間であれば特に限定されるものではない。ただし、抵抗値増大の要因となるアルミニウムの酸化皮膜の形成を抑制するためには短時間焼成が好ましい。
 また、焼成の雰囲気は、特に限定はされず、空気中、非酸化雰囲気中、還元雰囲気中、真空中などいずれの焼成雰囲気においても良好な導電性と密着性とを示す導体層を得ることができる。ただし、酸化皮膜の形成を抑制するという観点からは、非酸化性雰囲気、還元雰囲気または真空中とすることがより好ましい。上記の「非酸化性雰囲気」は、酸素を含まない、たとえばアルゴン、ヘリウム、窒素などのいずれかのガスを含む雰囲気、または、これらのガスを複数種含む混合ガス雰囲気である。また、上記非酸化性雰囲気のガスに、還元性ガス、たとえば水素ガスなどを混合して還元雰囲気としてもよい。
 (導体層)
 導体層は、たとえば図1(ii)のように、基板上に塗布されたペーストが焼成されて導体層5となったものである。基板と導体層との界面においては、焼成によって高い密着性が付与される。このような導体層は、導電性を有するものである。
  (1)基板と導体層との界面
 本発明の回路基板の製造方法は、少なくとも表面にケイ素を含有する基板上にペーストを塗布し、焼成を施すことにより、基板と導体層との間に高い密着性を付与するものである。
 上記の方法で高い密着性を付与できる理由については明らかではないが、以下の理由が考えられる。すなわち、少なくとも表面にケイ素を含有する基板と導体層との界面に、アルミニウムとケイ素とが混在する混在層が形成されるためと推測される。
 <レジスト膜を形成する工程>
 本発明の回路基板の製造方法は、導体層上に特定パターンのレジスト膜を形成する工程を含む。この工程においては、たとえば図1(iii)および(iv)のように、上記導体層を形成する工程で形成した導体層5上に、特定パターンのレジスト膜6が形成される。
 (レジスト膜)
 レジスト膜6は、公知のレジスト膜のうち、後の導体層を除去するエッチング液に浸食されないものであれば、特に限定されずに用いることができる。たとえば、ドライフィルムなどの市販のレジスト膜を用いてもよいし、レジスト液をスピンコート法またはロールコート法などの塗布方法を用いて導体層上に塗布し、これをレジスト膜化してもよい。
 (露光および現像)
 ドライフィルムなどの市販のレジスト膜を用いる場合においても、レジスト液をレジスト膜化して用いる場合においても、通常の露光および現像のプロセスにより、特定パターンのレジスト膜を形成することができる。
 たとえば、目的とする特定の配線パターンの光透過部7を形成したフォトマスク8を準備し、たとえば図1(iii)のように、レジスト膜6上にフォトマスク8を重ね、紫外線などのレジスト膜を硬化させる所定の光を照射する。その後レジスト膜を現像液で現像処理することにより、露光されなかった部分のレジスト膜が溶解し、たとえば図1(iv)のように、所望の配線パターンに対応した特定パターンのレジスト膜が導体層上に形成される。
 なお、露光は、コンタクト方式、プロキシミティ方式を採用することができ、現像は、公知の現像液にて行なうことができる。
 なお、上記の説明および図1においては、特定パターンのレジスト膜を形成する方法として、ネガ型のフォトマスクを使用する場合を説明したが、本発明はこれに限定されるものではなく、ポジ型のフォトマスクを使用して、通常の露光および現像方法にて特定パターンのレジスト膜を形成することも可能である。
 <導体層をエッチング液により除去する工程>
 本発明の回路基板の製造方法は、レジスト膜が形成されていない部分の導体層をエッチング液により除去する工程を含む。この工程は、たとえば図1(v)のように、レジスト膜6が形成されていない部分の導体層5をエッチング液により除去し、導体層を所望の配線パターンに形成する。
 以下、この工程で用いられるエッチング液およびエッチング方法を説明する。
 (エッチング液)
 この工程で使用するエッチング液は、標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mの金属イオン(以下単に「金属イオン」とも記す)とフッ化物イオンとを含む。
  (1)金属イオン
 金属イオンは、標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mのイオンである。標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mのイオンであれば、その種類は特に限定されない。したがってアルミニウムとの電位差が大きいほど効果が高く、金、白金、銀、銅、鉛、錫、ニッケル、鉄、亜鉛などが例示できる。特に価格の点から鉄、銅を好適に用いることができる。鉄イオンは、その価数は特に限定されないが、3価の鉄イオンが好ましい。2価の鉄は空気中の酸素により容易に酸化されやすく、組成を制御する上で扱いが困難であるためである。銅イオンは、2価の銅イオンであることが好ましい。2価の銅塩は水に溶解しやすく、水溶液中で安定しているためである。このような鉄イオンおよび銅イオンは、塩化第二鉄、硝酸鉄、硫酸鉄、塩化第二銅、硝酸銅および硫酸銅からなる群より選ばれる少なくとも1種の化合物に由来するものであることが例示できるが、これらに限定されるわけではない。ここで、「化合物に由来する」とは、その化合物がエッチング液に含まれ、金属イオンを生成することをいう。
 金属イオンの含有量は、含有される金属イオンにもよるが、エッチング液中に5~30質量%含まれることがエッチング速度の都合上好ましく、10~15質量%であることがより好ましい。
  (2)フッ化物イオン
 本発明で用いるエッチング液は、上記の金属イオンとともに、フッ化物イオンを含む。
 このフッ化物イオンは、フッ化水素、テトラフルオロケイ素、ヘキサフルオロケイ酸、ヘキサフルオロケイ酸塩、三フッ化ホウ素、フルオロホウ酸、フルオロホウ酸塩、フッ化リン、フッ化アンモニウム、フッ化銀、フッ化アルミニウム、フッ化セシウム、フッ化カリウム、フッ化ナトリウムおよびフッ化リチウムからなる群より選ばれる少なくとも1種の化合物に由来するものであることが、酸化皮膜および酸化ケイ素のエッチングの観点から好ましい。ここで、「化合物に由来する」とは、上記金属イオンの場合と同様に、その化合物がエッチング液に含まれ、フッ化物イオンを生成することをいう。このような化合物としては、フッ化アンモニウムが好ましい。フッ化水素のような危険性を伴わないためである。
 フッ化物イオンのエッチング液中における含有量は、エッチング液中において0.01~10質量%であることが好ましく、0.3~5質量%であることがより好ましい。フッ化物イオンの含有量が0.01質量%よりも少ないと、反応物の充分な除去効果が得られない場合がある。一方、含有量が10質量%よりも多いと、製造装置や基板に対する腐食性が大きくなり過ぎる場合がある。
 (3)作用
 セラミックスなどの基板に接着剤を使用してアルミニウム箔を積層し、このアルミニウム箔をエッチングして回路を形成する場合であれば、エッチング液が上記の金属イオンさえ含んでいれば、フッ化物イオンが含まれずとも、エッチングが可能である。しかしながら、本発明の回路基板の製造方法で形成された導体層(アルミニウム粒子を含むペーストを焼成することにより形成された導体層)をエッチングして回路を形成する場合には、上記の金属イオンのみを含むエッチング液を用いても、エッチング後においても基板上に残渣が残ってしまい、絶縁信頼性に優れた回路が得られるようなエッチングを行なうことはできない。そこで、本発明で用いるエッチング液は、金属イオンとフッ化物イオンとを含むものとしている。これにより、基板上に残渣を残さず回路を形成することが可能となる。
 このような本発明のエッチング液の詳細な作用は、いまだ十分には解明されていないが、本発明者は次のように考えている。
 すなわち、アルミニウム箔は、表面に酸化被膜が形成されるが、アルミニウム箔の内部には酸化被膜が形成されることはない。そして、アルミニウムの酸化物は、上記の金属イオンのみを含むエッチング液には溶解し難いが、アルミニウム箔表面の酸化被膜一層のみであれば、上記の金属イオンのみを含むエッチング液でも溶解可能である。そして、酸化被膜さえ溶解すれば、アルミニウム箔内部のアルミニウムは当該エッチング液により容易に溶解する。よって、アルミニウム箔をエッチングする場合であれば、上記の金属イオンのみを含むエッチング液を使用しても、エッチングを行なうことは可能である。
 しかしながら、本発明のように、アルミニウム粒子を含むペーストを焼成して形成した導体層をエッチングする場合、導体層中に多数のアルミニウム粒子が積み重なった状態で存在している。このアルミニウム粒子個々の表面には、アルミニウム箔表面と同様に酸化被膜が存在する。したがって、導体層中にはアルミニウム粒子の数に応じた、多数の酸化被膜が存在する。そのため、上記の金属イオンのみを含むエッチング液では、導体層中の酸化被膜を全て溶解することができないため、エッチングが不完全なものになると推測される。
 また、本発明においては、導体層と基板との界面には、前述のように、アルミニウムとケイ素とが混在する混在層が形成されるものと考えられ、この混在層が上記の金属イオンのみを含むエッチング液によっては除去されずに残ってしまうことも考えられる。本発明で使用されるエッチング液は、このような混在層に対しても十分なエッチング作用を示すと考えられる。
 なお、導体層を、フッ化物イオンのみを含む溶液でエッチングする場合は、製造装置や基板、レジスト膜に対する腐食性が大きくなり過ぎるために、所望の高精細な回路が得られるようなエッチングを行なうことはできない。
 このように本発明において使用するエッチング液は、(1)フッ化物イオンの作用によりアルミニウム粒子表面の酸化被膜が溶解され、(2)この後に上記の金属イオンの作用によりアルミニウム粒子のアルミニウムが溶解され、この(1)、(2)の繰り返しの作用により、導体層中に多数の酸化被膜が積み重なっている状態であっても、導体層を容易に溶解できると推測され、その後(3)上記混在層も、アルミニウムには上記の金属イオンが作用し、ケイ素にはフッ化物イオンが作用するため、容易に溶解することができるものと推測される。
 (エッチング方法)
 レジスト膜が形成されていない部分の導体層をエッチング液により除去する具体的な方法は、特に限定されないが、基板全体をエッチング液に浸漬する方法、エッチング液をスプレーする方法などを採用することができる。上記のような方法を採用することで、レジスト膜が形成されていない部分の導体層をエッチング液により除去し、導体層を所望の配線パターンに形成することができる。
 <その他の工程>
 本発明の回路基板の製造方法は、上記の各工程を含む限り、他の任意の工程を含んでいても差し支えない。
 たとえば上記導体層をエッチング液により除去する工程の後に、レジスト膜6を除去するような工程を含むことができる。この工程により、たとえば図1(vi)のような回路基板を得ることができる。
 また、形成した導体層(微細配線)上に、はんだ付けなどを目的として、金、ニッケルなどの金属をメッキする工程を含んでいてもよい。
 <回路基板>
 本発明の回路基板は、少なくとも表面にケイ素を含有する基板と、基板上に形成されたアルミニウムを含む導体層と、基板と導体層との界面に形成されたアルミニウムとケイ素とが混在する混在層とを含み、基板は、導体層が基板上に特定の配線パターンを形成するように、導体層が部分的に除去された部分を有し、基板に対する垂直方向の断面において、導体層が部分的に除去された部分の基板の表面領域におけるアルミニウム元素のエネルギー分散型X線分析によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)が10分の1以下である、回路基板であることを特徴とする。このような回路基板は、上記で説明した回路基板の製造方法によって、作製することができる。
 以下、本発明の回路基板について説明する。
 <基板>
 本発明の回路基板は、少なくとも表面にケイ素を含有する基板を有する。表面にケイ素を含有する基板としては、上記回路基板の製造方法の説明にて述べたのと同様の基板を用いることができる。すなわち、本発明の回路基板における表面にケイ素を含有する基板としては、たとえば図1(vi)にガラス-セラミックス複合基板1として示されるようなセラミックス基板2上にケイ素を含むガラス組成物3を被覆した基板を挙げることができる他、少なくとも表面を含む基板全体にケイ素が含まれるガラス基板を用いることも可能である。本発明の回路基板は、表面にケイ素を含有する基板を用いることによって、後述の導体層との間において混在層が形成されるため、導体層と基板との間に高い密着性を付与することができるものと推測される。
 <導体層>
 本発明の回路基板は、基板上に形成されたアルミニウムを含む導体層を有する。本発明の回路基板は、アルミニウムを含む導体層を用いることによって、導体層の導電性を確保することができ、かつ前述の基板との間において混在層が形成されるために導体層と基板との間に高い密着性を付与することができるものであると推測される。導体層は、アルミニウムを含み、導電性を有するものであればよいが、導電性をより良好にするためには、アルミニウムを70質量%以上含有することが好ましく、90質量%以上含有することがより好ましい。導体層の厚みは、特に限定されないが、導電性をより良好にするためには、0.1μm~100μmとすることが好ましく、0.2~5μmとすることがさらに好ましい。
 本発明の導体層は、上記回路基板の製造方法の説明にて述べた導体層の形成方法と同様の方法を用いて形成することができる。すなわち、たとえば図1(i)および(ii)のように、基板1上にアルミニウム粒子を含むペースト4を塗布し、該ペーストを焼成することにより、導体層5を形成することができる。
 <混在層>
 本発明の回路基板は、基板と導体層との界面に形成されたアルミニウムとケイ素とが混在する混在層を有する。本発明の回路基板は、基板と導体層との界面に混在層を有することによって、基板と導体層との間に密着性を付与することができるものと推測される。
 混在層は、アルミニウムとケイ素とが混在し、基板と導体層との間に密着性を付与するものであればよい。混在層の厚みは、特に限定されないが、密着性をより良好にするためには、0.005μm~10μmが好ましく、0.01~5μmとすることがさらに好ましい。
 なお、導体層と基板との間にアルミニウムとケイ素との混在層が形成されているか否かを確認するためには、たとえば、基板に対する垂直方向の断面における、導体層および基板を含む領域に対して、電子顕微鏡(商品名:「TITAN80-300」、FEI社製)を用いたエネルギー分散型X線分光分析を実施し、導体層と基板との界面におけるアルミニウムおよびケイ素の濃度変化を観察すればよい。エネルギー分散型X線分光分析の実施の結果、アルミニウムの検出値が導体層におけるアルミニウムの検出値の10分の1以上存在し、かつケイ素の検出値が基板におけるケイ素の検出値の10分の1以上同時に存在する領域が5nm以上確認されれば、導体層と基板との間に混在層が形成されているものと判断できる。
 本発明の混在層は、上記回路基板の製造方法の説明にて述べた混在層の形成方法と同様の方法を用いて形成することができる。すなわち、たとえば図1(i)および(ii)のように、少なくとも表面にケイ素を含む基板1上にアルミニウム粒子を含むペースト4を塗布し、焼成することにより、基板1上にアルミニウムを含む導体層5を形成する際、基板表面に含まれるケイ素とペースト中に含まれるアルミニウム粒子のアルミニウムとが混在するために、混在層(図示せず)を形成できるものと推測される。
 <配線パターン>
 本発明の回路基板における基板は、導体層が基板上に特定の配線パターンを形成するように、導体層が部分的に除去された部分を有する。導体層の配線パターンは特に限定されるものではなく、所望のパターンを選択すればよい。なお、本発明の回路基板の製造においては、高精細な回路形成の可能なエッチングを用い、かつサンドブラスト処理によりエッチング後の残渣を除く操作の必要もなく配線パターンを形成可能であるため、高精細な配線パターンを採用することが可能である。本発明の配線パターンにおける配線の幅(線幅)と隣り合う配線同士の間隔(線間)、すなわちいわゆるラインアンドスペース(L/S)は、特に限定されないが、配線パターンを高精細とするためには、100μm以下とすることが好ましく、60μm以下とすることがより好ましく、40μm以下とすることがさらに好ましい。
 本発明の配線パターンの形成方法は、上記回路基板の製造方法の説明に述べた配線パターンの形成方法と同様の方法を用いることができる。すなわち、たとえば図1(iii)~(vi)のように、導体層5上に、特定パターンのレジスト膜6を形成し、レジスト膜が形成されていない部分の導体層をエッチング液により除去することによって、導体層を所望の配線パターンに形成することができる。
 (導体層が除去された部分)
 本発明の回路基板は、基板に対する垂直方向の断面において、導体層が部分的に除去された部分の基板の表面領域(以下「基板の表面領域」とも記す)における導体層由来のアルミニウム元素のエネルギー分散型X線分析によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)を10分の1以下とするものである。
 本発明の回路基板は、基板の表面領域の導体層由来のアルミニウム元素のエネルギー分散型X線分析によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)が10分の1以下であることにより、絶縁することの意図された配線間がアルミニウム元素の存在のために通電するおそれが低下し、優れた絶縁信頼性を有することになるものと推測される。
 ここで、「基板の表面領域」とは、導体層が基板上に特定の配線パターンを形成するように、導体層が部分的に除去された部分のうち、導体層の除去により形成された表面近傍の領域を意味する。ここで、導体層が部分的に除去された基板の表面に、導体層に由来する残渣が残留する場合には、その残渣を含めて、この「基板の表面領域」を定義するものとする。
 基板の表面領域には、前述のエッチング液との反応による導体層由来の残渣、およびアルミニウムとケイ素との混在層が残っていないことが好ましいため、基板の表面領域のアルミニウム元素の理想的な含有量は0である。しかし、工業的な生産性のバランスを考慮すると、エッチング液の組成やエッチングに要する時間などの要因により、完全には前述の残渣や混在層をエッチング等により除去できない場合もある。本発明の回路基板は、上記を鑑みて、基板の表面領域の導体層由来のアルミニウム元素のエネルギー分散型X線分析によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)を10分の1以下とすることによって、配線間の絶縁信頼性に優れるという効果が損なわれないものとしたものである。
 基板の表面領域の導体層由来のアルミニウム元素のエネルギー分散型X線分析によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)を10分の1以下とすることは、本発明の回路基板の製造方法における導体層をエッチング液により除去する方法、たとえば標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mの金属イオンとフッ化物イオンとを含むエッチング液により導体層を除去する方法により達成可能である。
 なお、基板の表面領域の導体層由来のアルミニウム元素のエネルギー分散型X線分析によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)は、100分の7以下であることが好ましく、100分の2以下であることがより好ましく、100分の1以下であることがさらに好ましい。
 なお、基板の表面領域におけるアルミニウムおよびケイ素の存在の有無および含有量を確認するためには、たとえば、基板の表面領域に対して、電子顕微鏡にて画像観察を行ないながら、株式会社堀場製作所製エネルギー分散型X線分析装置「X-MAX」を用いた分散型X線分析を実施すればよい。
 また、本発明の回路基板においては、上記のピーク強度比に加え、基板の表面領域のアルミニウム元素の含有量が1000ppm以下であればよく、100ppm以下であることがより好ましく、50ppm以下であることがさらに好ましい。このような数値範囲とすることによって、配線間の絶縁信頼性に優れるという効果が損なわれないものとしたものである。なお、該基板がアルミニウム元素を含む場合には、分析結果におけるアルミニウム元素の含有量から基板由来のアルミニウム元素の含有量を差し引いた数値を導体層由来のアルミニウム元素の含有量として扱うことができる。
 本発明の回路基板は、基板と導体層との界面に形成されたアルミニウムとケイ素とが混在する混在層が存在することにより、導体層と基板との間に高い密着性が付与されることとなる一方で、基板に対する垂直方向の断面において、導体層が部分的に除去された部分の基板の表面領域における導体層由来のアルミニウム元素のエネルギー分散型X線分析によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)が10分の1以下であることにより、優れた絶縁信頼性を有することになるものと推測される。そのため、本発明の回路基板は、基板と導体層との間の高い密着性と配線間の優れた絶縁信頼性とを有するものである。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <実施例1>
 (基板を準備する工程)
 基板としてソーダライムガラス基板(商品名:「FL2」、セントラル硝子社製)を準備した。このソーダライムガラス基板は、表面を含む基板全体にケイ素を含有する基板である。
 (ペーストを塗布する工程)
 エチルセルロース10質量部をブチルカルビトール90質量部に溶解した有機液体ビヒクル70質量部、ブチルカルビトール20質量部、および平均粒径11μmのアルミニウム粒子10質量部を攪拌して、ペーストを調製した。次に、このペーストを、ソーダライムガラス基板の全面に、スクリーン印刷によりペーストを塗布した。塗布後、ペーストの凹凸をなくすために、ペーストを塗布したソーダライムガラス基板を10分間水平な状態で静置し、次に100℃で10分間乾燥させた。乾燥後のペーストの厚さは5μmであった。
 <導体層を形成する工程>
 上記工程でペーストを塗布したソーダライムガラス基板を大気雰囲気下、60分で550℃まで昇温し、550℃で60分間保持した後、30分で室温まで冷却する、という条件で焼成した。これにより、基板上に導体層を形成した。
 (レジスト膜を形成する工程)
 焼成した導体層上にレジスト膜として感光性ドライフィルム(商品名:「ATP-153」、旭化成社製)を貼り付け、線幅/線間(以下「L/S」とも記す)が60μm/40μmの櫛型パターンを有するフォトマスクをレジスト膜に接触させて紫外線露光し、アルカリ現像液にて現像することにより、導体層上に特定パターンのレジスト膜を形成した。
 (導体層をエッチング液により除去する工程など)
 エッチング液として、塩化第二銅を14質量%含み、フッ化アンモニウムを3質量%含む水溶液であるエッチング液、すなわち、標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mの金属イオン(二価の銅イオン)とフッ化物イオンとを含むエッチング液を用いて、レジスト膜が形成されていない部分を室温にて10秒間エッチング液に浸漬させ、導体層をエッチング液により除去することにより、特定の配線パターンを形成した。その後、導体層上のレジスト膜をN-メチルピロリドンにて除去した。
 以上の工程により、レジスト膜が形成されていない部分の導体層がエッチング液により除去され、導体層による特定の配線パターンの形成された回路基板が得られた。図2は、実施例1の回路基板の導体層の表面を観察した光学顕微鏡像である。図2において、白色(淡色)のバンドが導体層、黒色(濃色)のバンドが導体層の除去された部分を示している。
 <実施例2>
 基板としてガラス-セラミックス複合基板を用いる以外は、実施例1と同様の方法で回路基板を形成した。なお、ガラス-セラミックス複合基板は(商品名:「グレーズ加工基板GS-32」、MARUWA社製)を用いた。すなわち、このガラス-セラミックス複合基板は、セラミックスからなる基板上にケイ素を含むガラス組成物を形成したものであり、少なくとも表面にケイ素を含有する基板である。
 <比較例1>
 基板としてアルミナ基板(商品名:「厚膜用アルミナ基板」、フォノン明和社製)を用いる以外は、実施例1と同様の方法でペーストを塗布、乾燥、焼成したが、導体層が基板に対して密着性を有さず、剥離したため以降の実験ができなかった。アルミナ基板は、ケイ素を含有しない基板である。
 <比較例2>
 エッチング液にフッ化物イオンを加えなかった以外は、実施例1と同様の方法を実施したが、一時間浸漬してもエッチングが十分に進まなかったため、回路形成ができないと判断した。
 <比較例3>
 エッチング液にフッ化物イオンを加えなかった以外は、実施例2と同様の方法を実施したが、一時間浸漬してもエッチングが十分に進まなかったため、回路形成ができないと判断した。
 <評価方法>
 上記の実施例1~2および比較例1~3によって得られた回路基板について、導体層と基板との密着性および絶縁抵抗を測定した。また、実施例1によって得られた回路基板の導体層と基板との間の元素分析を行った。
 (密着性の測定)
 導体層と基板との密着性は、以下のように測定した。すなわち、セロテープ(登録商標)(商品名:「CT-24」、ニチバン(株)製)を導体層表面に密着させ、45度の角度で引っ張り、導体層の剥離度合いを目視で観察した。観察結果に応じて、剥離がなければ密着性は「良好」、剥離があれば密着性は「不可」と評価した。この結果を表1に示す。
 (絶縁抵抗の測定)
 絶縁抵抗は、以下のように測定した。すなわち、回路基板に描かれた線状の導体層と、その導体層と隣接する線状の導体層との間の絶縁抵抗について、超絶縁計(商品名:「SM-8216」、HIOKI社製)を用い、20℃の条件下にて、500Vの電圧を印加し、1分後の抵抗値を計測した。この結果を表1に示す。絶縁抵抗の値が高いもの程、絶縁信頼性に優れることを示す。
Figure JPOXMLDOC01-appb-T000001
 (断面方向の元素分析)
 導体層と基板との間のアルミニウムとケイ素との混在層の確認のため、導体層と基板との界面に対して、電子顕微鏡(商品名:「TITAN80-300」、FEI社製)のエネルギー分散型X線分光分析を実施例1のサンプルに対して実施した。この結果を図3に示す。
 なお、導体層を除去した箇所における基板の表面領域におけるアルミニウムの存在の有無、アルミニウムの含有量、アルミニウム元素のピーク強度およびケイ素元素のピーク強度を確認するために、実施例1の回路基板に対して、導体層が除去された部分(導体層除去済部)の、基板に対する垂直方向の断面における、基板を含む領域、および基板の表面領域について、電子顕微鏡にて加速電圧15kVで画像観察を行ないながら株式会社堀場製作所製エネルギー分散型X線分析装置「X-MAX」を用いたEDS分析を実施した。この結果を図4に示す。図4にて基板の表面領域におけるアルミニウム元素のピーク強度は40Counts、ケイ素元素のピーク強度は620Countsであり、アルミニウム元素とケイ素元素のピーク強度の比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)は、0.0645であった。また、図4にて、基板の表面領域と基板におけるアルミニウムのピーク強度比が同等であり、導体層由来のアルミニウムのピーク強度がケイ素の10分の1より十分小さいことが確認されることから、実施例1において基板と導体層との間に混在層が十分に除去されていることが明らかであった。
 <評価>
 (密着性)
 表1の「密着性」の項は、実施例および比較例において作製された回路基板の導体層と基板との密着性の評価結果を示している。表1を参照すると、ケイ素が基板表面に存在するソーダライムガラスを用いた実施例1、比較例2およびガラス-セラミックス複合基板を用いた実施例2、比較例3では、導体層と基板との密着性が「良好」と評価され、密着性に優れたものとなっていることが明らかである。一方、ケイ素を表面に含まない比較例1のアルミナ基板は、密着性が「不可」と評価されており、ペーストの焼成後に、基板から導体層が剥離してしまい、基板と導体層との間に良好な密着性が得られていないことが明らかである。以上より、少なくとも表面にケイ素を含有する基板を用いることで、導体層と基板との密着性を大きく向上できることが明らかとなった。
 (絶縁抵抗)
 表1の「絶縁抵抗」の項は、絶縁抵抗の測定結果を示す。表1を参照すると、実施例1および実施例2では、絶縁抵抗がいずれも1012Ω以上であり、絶縁信頼性に優れたものとなっていることが明らかである。これに対し、比較例2および比較例3では、前述のとおり、エッチングによる十分な回路形成ができなかったため、線状の導体層と隣接する線状の導体層との間の絶縁抵抗を測定することができなかった。以上より、標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mの金属イオンおよびフッ化物イオンの添加されたエッチング液を用いることによって、配線間に残渣のない、絶縁信頼性に優れた回路基板を作製できることが明らかとなった。
 なお、比較例1においては、基板と導体層との密着性が不十分であり配線が剥離してしまったため、絶縁抵抗を測定することができなかった。
 (断面方向の元素分析)
 図3は、実施例1の回路基板の導体層と基板との間の垂直方向の断面のうち、導体層と基板との界面部分の元素分析結果を示している。
 図3を参照すると、基板と導体層(アルミニウム)との間にガラス基板由来のケイ素とアルミニウムが相互拡散し、アルミニウムとケイ素とが混在している混在層(図3において「アルミニウム-ケイ素混在層」と記す)が確認できる。
 以上より、少なくとも表面にケイ素を含有する基板を用い、その基板にペーストを塗布し焼成することで導体層と基板との間にアルミニウムとケイ素との混在層が形成され、密着性を大きく向上できることが明らかとなった。
 以上のことから、本発明の回路基板の製造方法にしたがった実施例1および実施例2は、高精細に回路を形成できるというエッチングによる方法のメリットを生かしつつ、基板と導体層との間に高い密着性を付与することと、エッチング後の残渣を容易に取り除くこととを両立させることができるという優れた効果を示すことがわかる。
 以上のように本発明の実施の形態および実施例について説明を行なったが、上述の各実施の形態および実施例の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 ガラス-セラミックス複合基板、2 セラミックス基板、3 ケイ素を含むガラス組成物、4 ペースト、5 導体層、6 レジスト膜、7 光透過部、8 フォトマスク。

Claims (4)

  1.  少なくとも表面にケイ素を含有する基板を準備する工程、
     前記基板上にアルミニウム粒子を含むペーストを塗布する工程、
     前記ペーストを塗布した前記基板を焼成することにより前記基板上に導体層を形成する工程、
     前記導体層上に特定パターンのレジスト膜を形成する工程、および
     前記レジスト膜が形成されていない部分の前記導体層をエッチング液により除去する工程
     を含む回路基板の製造方法であって、
     前記エッチング液は、標準電極電位がアルミニウムの標準電極電位より大きな値をとる金属Mの金属イオンとフッ化物イオンとを含む、回路基板の製造方法。
  2.  前記金属Mの金属イオンは、鉄イオンまたは銅イオンであり、前記フッ化物イオンは、フッ化水素、テトラフルオロケイ素、ヘキサフルオロケイ酸、ヘキサフルオロケイ酸塩、三フッ化ホウ素、フルオロホウ酸、フルオロホウ酸塩、フッ化リン、フッ化アンモニウム、フッ化銀、フッ化アルミニウム、フッ化セシウム、フッ化カリウム、フッ化ナトリウムおよびフッ化リチウムからなる群より選ばれる少なくとも1種の化合物に由来するものである、請求項1に記載の回路基板の製造方法。
  3.  前記エッチング液は、0.01~10質量%の前記フッ化物イオンを含む、請求項1または2に記載の回路基板の製造方法。
  4.  少なくとも表面にケイ素を含有する基板と、前記基板上に形成されたアルミニウムを含む導体層と、前記基板と前記導体層との界面に形成されたアルミニウムとケイ素とが混在する混在層とを含み、
     前記基板は、前記導体層が前記基板上に特定の配線パターンを形成するように、前記導体層が部分的に除去された部分を有し、
     前記基板に対する垂直方向の断面において、前記導体層が部分的に除去された部分の前記基板の表面領域における前記導体層由来のアルミニウム元素のエネルギー分散型X線分析によるピーク強度とケイ素元素のエネルギー分散型X線分析によるピーク強度との比(アルミニウム元素のピーク強度/ケイ素元素のピーク強度)が10分の1以下である、回路基板。
PCT/JP2014/081541 2013-11-28 2014-11-28 回路基板の製造方法および回路基板 WO2015080245A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167015367A KR20160091921A (ko) 2013-11-28 2014-11-28 회로 기판의 제조 방법 및 회로 기판
JP2015551011A JP6490012B2 (ja) 2013-11-28 2014-11-28 回路基板の製造方法
EP14865961.8A EP3076771B1 (en) 2013-11-28 2014-11-28 Method for manufacturing circuit board and circuit board
CN201480064315.0A CN105766070B (zh) 2013-11-28 2014-11-28 电路基板的制造方法以及电路基板
US15/039,949 US10206287B2 (en) 2013-11-28 2014-11-28 Method for manufacturing circuit board and circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-246414 2013-11-28
JP2013246414 2013-11-28

Publications (1)

Publication Number Publication Date
WO2015080245A1 true WO2015080245A1 (ja) 2015-06-04

Family

ID=53199180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081541 WO2015080245A1 (ja) 2013-11-28 2014-11-28 回路基板の製造方法および回路基板

Country Status (7)

Country Link
US (1) US10206287B2 (ja)
EP (1) EP3076771B1 (ja)
JP (1) JP6490012B2 (ja)
KR (1) KR20160091921A (ja)
CN (1) CN105766070B (ja)
TW (1) TWI634825B (ja)
WO (1) WO2015080245A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112868273B (zh) * 2018-10-16 2023-08-29 株式会社富士 电路形成方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846331A (ja) * 1994-07-20 1996-02-16 At & T Corp 銅含有デバイスのエッチング方法
JPH11158660A (ja) * 1997-10-01 1999-06-15 Morton Internatl Inc プリント回路板からはんだ及びスズを除去する組成物及び方法
JP2000104183A (ja) * 1997-12-25 2000-04-11 Canon Inc エッチング方法
WO2010100893A1 (ja) 2009-03-06 2010-09-10 東洋アルミニウム株式会社 導電性ペースト組成物およびそれを用いて形成された導電性膜
EP2241653A1 (en) * 2009-04-15 2010-10-20 ATOTECH Deutschland GmbH Composition and method for micro etching of copper and copper alloys
JP2010278410A (ja) 2009-04-30 2010-12-09 Mitsuboshi Belting Ltd 導体パターンの形成方法及び電子回路基板
JP2012072441A (ja) * 2010-09-29 2012-04-12 Toyo Aluminium Kk 導電性アルミニウムフィラー、および、それを含む導電性ペースト組成物、ならびに、その導電性ペースト組成物を用いて形成された導電性膜
US20130034923A1 (en) * 2011-08-05 2013-02-07 Samsung Electronics Co., Ltd. Etching composition, method of forming a metal pattern using the etching composition, and method of manufacturing a display substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10335267A (ja) * 1997-05-30 1998-12-18 Mitsubishi Electric Corp 半導体装置の製造方法
US6162366A (en) 1997-12-25 2000-12-19 Canon Kabushiki Kaisha Etching process
FR2775280B1 (fr) 1998-02-23 2000-04-14 Saint Gobain Vitrage Procede de gravure d'une couche conductrice
JP4554161B2 (ja) 2003-01-31 2010-09-29 三菱マテリアル株式会社 回路基板の製造方法及び回路基板
US7494607B2 (en) * 2005-04-14 2009-02-24 E.I. Du Pont De Nemours And Company Electroconductive thick film composition(s), electrode(s), and semiconductor device(s) formed therefrom
JP5406556B2 (ja) 2009-02-23 2014-02-05 関東化学株式会社 金属積層膜用エッチング液組成物
KR101156151B1 (ko) * 2009-04-09 2012-06-18 스미또모 가가꾸 가부시키가이샤 금속 베이스 회로 기판 및 그 제조 방법
JP2011035024A (ja) * 2009-07-30 2011-02-17 Toyo Aluminium Kk ペースト組成物およびそれを用いた太陽電池素子
JP6100605B2 (ja) * 2013-05-17 2017-03-22 昭和電工株式会社 多層クラッド材の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846331A (ja) * 1994-07-20 1996-02-16 At & T Corp 銅含有デバイスのエッチング方法
JPH11158660A (ja) * 1997-10-01 1999-06-15 Morton Internatl Inc プリント回路板からはんだ及びスズを除去する組成物及び方法
JP2000104183A (ja) * 1997-12-25 2000-04-11 Canon Inc エッチング方法
WO2010100893A1 (ja) 2009-03-06 2010-09-10 東洋アルミニウム株式会社 導電性ペースト組成物およびそれを用いて形成された導電性膜
EP2241653A1 (en) * 2009-04-15 2010-10-20 ATOTECH Deutschland GmbH Composition and method for micro etching of copper and copper alloys
JP2010278410A (ja) 2009-04-30 2010-12-09 Mitsuboshi Belting Ltd 導体パターンの形成方法及び電子回路基板
JP2012072441A (ja) * 2010-09-29 2012-04-12 Toyo Aluminium Kk 導電性アルミニウムフィラー、および、それを含む導電性ペースト組成物、ならびに、その導電性ペースト組成物を用いて形成された導電性膜
US20130034923A1 (en) * 2011-08-05 2013-02-07 Samsung Electronics Co., Ltd. Etching composition, method of forming a metal pattern using the etching composition, and method of manufacturing a display substrate

Also Published As

Publication number Publication date
TWI634825B (zh) 2018-09-01
US10206287B2 (en) 2019-02-12
TW201540150A (zh) 2015-10-16
EP3076771A1 (en) 2016-10-05
JPWO2015080245A1 (ja) 2017-03-16
CN105766070B (zh) 2018-12-21
KR20160091921A (ko) 2016-08-03
EP3076771B1 (en) 2018-08-08
US20170034920A1 (en) 2017-02-02
EP3076771A4 (en) 2017-10-25
JP6490012B2 (ja) 2019-03-27
CN105766070A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
TWI552658B (zh) 配線基板之鍍覆方法、鍍覆配線基板之製造方法、以及銀蝕刻液
JP2013503443A (ja) 銀厚膜ペースト組成物および太陽電池用導電体におけるその使用
JP2011502330A (ja) 鉛フリーの伝導性組成物、および半導体デバイスの製造における使用方法:Mg含有添加剤
JP2011501866A (ja) 鉛フリーの伝導性組成物、および半導体デバイスの製造における使用方法:フラックス材料
JP2011503772A (ja) 伝導性組成物、および半導体デバイスの製造における使用方法:Mg含有添加剤
JPWO2012090647A1 (ja) メタライズド基板、金属ペースト組成物、および、メタライズド基板の製造方法
JP6490012B2 (ja) 回路基板の製造方法
CN112071465B (zh) 一种包含含镍的合金粉的抗银迁移片式电阻正面电极浆料
KR20150045903A (ko) 은이 코팅된 구리입자의 제조방법
KR102387759B1 (ko) 플렉시블 디바이스용 기판
JP6444118B2 (ja) 回路基板の製造方法
US20100307802A1 (en) Wiring Member, Method of Manufacturing the Wiring Member and Electronic Element
JP2010238570A (ja) プラズマディスプレイパネルおよび該パネルの電極形成用ペースト
JP4803726B2 (ja) 電子回路及びその製造方法
JPS60137818A (ja) 透明導電膜形成用組成物
JP2008050252A (ja) 隔壁付きガラス基板の製造方法
JP3701038B2 (ja) 厚膜銅導体ペースト組成物及びそれを用いた回路基板の製造方法
JPH0693307A (ja) メッキ付け可能な厚膜銅導体ペースト組成物
JPH06224538A (ja) セラミックス回路基板の製造方法
JP5445208B2 (ja) 導電性組成物及びそれを用いた太陽電池の製造方法
JP2000277021A (ja) ガス放電型表示パネル用隔壁及びその製造方法
JP2007308320A (ja) 誘電体組成物、誘電体ペースト組成物、およびそれを用いて得られる誘電体
JP2009013262A (ja) 組成物及び銅膜の製造方法
WO2016056788A2 (ko) 무전해 도금층과의 접합력 증대를 위한 유리기판 제조방법
JP2011171442A (ja) 導電性組成物及びそれを用いた太陽電池の製造方法並びに太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551011

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15039949

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865961

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865961

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167015367

Country of ref document: KR

Kind code of ref document: A