WO2010116526A1 - タンクおよびその製造方法 - Google Patents

タンクおよびその製造方法 Download PDF

Info

Publication number
WO2010116526A1
WO2010116526A1 PCT/JP2009/057351 JP2009057351W WO2010116526A1 WO 2010116526 A1 WO2010116526 A1 WO 2010116526A1 JP 2009057351 W JP2009057351 W JP 2009057351W WO 2010116526 A1 WO2010116526 A1 WO 2010116526A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tank
fiber
winding
circumferential
Prior art date
Application number
PCT/JP2009/057351
Other languages
English (en)
French (fr)
Inventor
弘和 大坪
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/263,691 priority Critical patent/US8727174B2/en
Priority to JP2011508168A priority patent/JP5348570B2/ja
Priority to PCT/JP2009/057351 priority patent/WO2010116526A1/ja
Priority to CN200980158623.9A priority patent/CN102388256B/zh
Priority to EP09843035.8A priority patent/EP2418412B1/en
Publication of WO2010116526A1 publication Critical patent/WO2010116526A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/06Closures, e.g. cap, breakable member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/08Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
    • B29C63/10Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0665Synthetics in form of fibers or filaments radially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0668Synthetics in form of fibers or filaments axially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/067Synthetics in form of fibers or filaments helically wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0675Synthetics with details of composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • F17C2205/0397Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • F17C2209/2163Winding with a mandrel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/234Manufacturing of particular parts or at special locations of closing end pieces, e.g. caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a tank and a manufacturing method thereof. More specifically, the present invention relates to an improvement in the structure of a tank filled with hydrogen gas or the like at a high pressure.
  • a tank used for storing hydrogen gas or the like As a tank used for storing hydrogen gas or the like, a tank that is provided with an FRP layer in which hoop layers and helical layers are alternately laminated on the outer periphery of the liner and is reduced in weight is used (see, for example, Patent Document 1). ).
  • the liner functions as a member that prevents permeation of hydrogen gas and the like and stores it in an airtight manner
  • the FRP layer functions as a member that provides strength to withstand high internal pressure.
  • the hoop layer forming the FRP layer is a layer formed by winding a fiber (for example, carbon fiber) by hoop winding (a method of winding the fiber around the tank axis in the tank body portion). (It is substantially parallel to the tank axis and is wound up to the tank dome.) (See FIG. 2). Further, helical winding can be performed in different manners such as high angle helical winding and low angle helical winding by changing the winding angle with respect to the tank axis. When forming the FRP layer in this manner, how the fibers are wound is an important factor for improving the efficiency of strength expression by the FRP layer.
  • a circumferential fiber layer for example, a circumferential fiber layer (hoop layer, high-angle helical layer) and an axial fiber layer (low-angle helical layer) are alternately or the ratio of the number of layers is There has been proposed such that winding is performed sequentially so that the ratio becomes 1: 1.
  • the present invention optimizes the lamination mode of the hoop layer and the helical layer, and improves the efficiency of the strength expression by the wound fiber and the tank
  • An object is to provide a manufacturing method.
  • the present inventor has made various studies to solve such problems.
  • the above-mentioned problem is that when the tank has a low pressure and a small diameter, the stress in the tank wall can be treated as an equal distribution based on the concept of a thin cylinder (a cylinder that is thinner than the diameter). It is not a big problem because it is possible.
  • the FRP layer has become thicker to meet the demands for larger tanks and higher pressures (for example, about 70 MPa) and for the reduction in the number of tanks for the purpose of improving the degree of freedom in vehicle layout.
  • FRP is an anisotropic material, and since the circumferential fiber layer and the axial fiber layer are overlapped in the tank, the influence of the stress gradient tends to become more prominent.
  • the present inventor who examined the efficiency of the fiber strength expression in the circumferential fiber layer (hoop layer) at the time of winding the fiber reduces the rigidity of the fiber itself as follows when the high-angle helical layer is formed. As a result, it was confirmed that the efficiency of strength expression was lowered. That is, compared with the case where the hoop winding rigidity with a winding angle of 89 ° with respect to the tank shaft is 1, for example, about 0.9 at a winding angle of 80 °, about 0.7 at a winding angle of 70 °, and 0 at a winding angle of 60 °. The rigidity decreases to about .4, which is inefficient in terms of strength.
  • the present inventor who has conducted further studies based on these situations has obtained new knowledge that leads to the solution of such problems.
  • the present invention is based on such knowledge, and an axial direction in which fibers are wound around the outer periphery of the liner in a range in which the winding angle with respect to the liner and the tank axis at the center of the tank is more than 0 ° and less than 30 °.
  • a fiber layer, and an FRP layer comprising a circumferential fiber layer formed by winding fibers on the outer periphery of the liner in a range where the winding angle with respect to the tank shaft is 30 ° or more and less than 90 °, and the circumferential direction
  • the fiber folded end portion in the tank axial direction of the fiber layer describes a trajectory that narrows from the inner side to the outer side in the fiber layer stacking direction.
  • the fiber folded end portion formed on the outer side in the stacking direction of the fiber layer is in the tank axial direction with respect to the fiber folded end portion in the tank axial direction of the circumferential fiber layer formed on the inner side in the stacking direction. It is located near the center.
  • the fiber folding end formed when folding the fiber winding position is closer to the center in the tank axial direction on the inner side (inner side of the tank) than on the outer side (outer side of the tank). I am doing so.
  • the folding width becomes narrower, and the fiber folding end portion approaches the center of the tank.
  • the high-angle helical layer has a certain thickness, and is bent (undulated) into the low-angle helical layer formed so as to continue from the high-angle helical layer to both ends in the tank axial direction (tank dome). ) May occur (see FIG. 12), but according to the present invention in which the fiber folded end portion is inclined as described above, bending (undulation) of the low-angle helical layer can be suppressed.
  • the ratio of the circumferential fiber layer is larger in the inner portion than in the outer portion in the stacking direction of the fiber layers.
  • the thickness of the FRP layer increases, a stress gradient is generated as described above, and the strength expression due to the outer fibers tends to be ineffective.
  • these circumferential fiber layers are evenly laminated in the FRP layer, Instead, by arranging more (inner layers) in the portion closer to the inside of the tank in this way, it becomes possible to maintain a high fiber strength expression rate by these circumferential fiber layers. This also makes it possible to reduce the cost by reducing the amount of fiber used. Further, when the number of fiber layers is the same, the strength expression rate of the outermost layer can be improved, so that the strength expression rate by the outer fibers can be relatively improved.
  • a circumferential fiber layer is formed by a hoop layer having a winding angle of 80 ° or more and less than 90 ° with respect to the tank shaft, and a low-angle helical layer having a winding angle of 0 ° or more and less than 30 ° with respect to the tank shaft.
  • An axial fiber layer is preferably formed.
  • a high-angle helical layer having a winding angle with respect to the tank axis of 30 ° or more and less than 80 ° is used as the outermost layer of the FRP layer.
  • the high-angle helical layer is easily thickened because the folded end of the fiber is located at the boundary between the straight part of the tank and the dome, and this high-angle helical layer is the middle of the FRP layer.
  • fiber bending (undulation) and meandering may occur in the low-angle helical layer due to the influence of the thickened folded end as in the conventional tank (see FIG. 12).
  • the high-angle helical layer is used as the outermost layer of the FRP layer as described above, fiber bending or the like in such a low-angle helical layer can be suppressed.
  • the FRP layer is constituted by the hoop layer and the helical layer in which the ratio of the number of hoop layers: the number of helical layers is 2 or more.
  • the ratio of the number of hoop layers: the number of helical layers is preferably 2 or more in order to ensure the strength required for the dome portion and the straight portion of the tank.
  • the fiber folded end portion of some circumferential fiber layers is located closer to the center of the tank in the tank axial direction than the fiber folded end portions of other circumferential fiber layers located on the outer side in the stacking direction from the circumferential fiber layer. It is also preferable. Considering the moldability and smoothness of the hoop layers or high-angle helical layers that make up each layer of the circumferential fiber layer, the folding end position of these circumferential fiber layers is always narrowed toward the outer circumference of the tank. For example, the folded end position may be moved back and forth in the tank axial direction.
  • the winding start with respect to the liner can be a fiber that forms a helical layer whose winding angle with respect to the tank axis is 0 ° or more and less than 80 °.
  • the winding start with respect to a liner can also be made into the fiber which forms the hoop layer whose winding angle with respect to a tank shaft is 80 degrees or more and less than 90 degrees. In this way, by appropriately changing the fiber at the start of winding, it is possible to set which part is the destruction start position when the tank is to be destroyed.
  • the manufacturing method according to the present invention forms an axial fiber layer by winding fibers on the outer periphery of the liner in a range where the winding angle with respect to the tank shaft at the center of the tank is more than 0 ° and less than 30 °.
  • the method for manufacturing a tank in which a fiber is wound in a range in which a winding angle with respect to an axis is 30 ° or more and less than 90 ° to form a circumferential fiber layer and an FRP layer is formed A trajectory narrowing from the inner side to the outer side in the stacking direction of the fiber layers is drawn by the fiber folded end portion in the tank axial direction of the directional fiber layer.
  • a tank having a structure in which both burst strength and fatigue strength are achieved can be realized.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 1 shows an example of a lamination mode of an axial fiber layer and a circumferential fiber layer. It is a figure which shows roughly an example of the aspect in which the fiber folding
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 1 showing another embodiment of the present invention. It is a figure which shows an example of FW (filament winding) apparatus.
  • FIG. 1 to 11 show an embodiment of a tank and a manufacturing method thereof according to the present invention. Below, it demonstrates, exemplifying the case where the tank (high pressure tank) 1 concerning this invention is applied to the high pressure hydrogen tank as a hydrogen fuel supply source.
  • the hydrogen tank can be used in a fuel cell system or the like.
  • FIG. 3 is a cross-sectional view showing the main part of the tank 1.
  • the tank 1 has, for example, a cylindrical tank body 10 having both ends substantially hemispherical, and a base 11 attached to one end of the tank body 10 in the longitudinal direction.
  • the substantially hemispherical portion is referred to as a dome portion
  • the cylindrical body portion is referred to as a straight portion, which are denoted by reference numerals 1d and 1s, respectively (see FIGS. 1 and 2).
  • the high pressure tank 1 shown by this embodiment has the nozzle
  • the tank body 10 has, for example, a two-layer wall layer, and has a liner 20 that is an inner wall layer and, for example, an FRP layer 21 that is a resin fiber layer (reinforcing layer) that is an outer wall layer on the outer side.
  • the FRP layer 21 is formed of, for example, only the CFRP layer 21c, or the CFRP layer 21c and the GFRP layer 21g (see FIG. 1).
  • the liner 20 is formed in substantially the same shape as the tank body 10.
  • the liner 20 is made of, for example, polyethylene resin, polypropylene resin, or other hard resin.
  • the liner 20 may be a metal liner formed of aluminum or the like.
  • a folded portion 30 that is bent inward is formed on the tip end side of the liner 20 having the base 11.
  • the folded portion 30 is folded toward the inside of the tank body 10 so as to be separated from the outer FRP layer 21.
  • the folded portion 30 has, for example, a reduced diameter portion 30a that gradually decreases in diameter as it approaches the folded tip, and a cylindrical portion 30b that is connected to the distal end of the reduced diameter portion 30a and has a constant diameter.
  • the cylindrical portion 30b forms an opening of the liner 20.
  • the base 11 has a substantially cylindrical shape and is fitted into the opening of the liner 20.
  • the base 11 is made of, for example, aluminum or an aluminum alloy, and is manufactured in a predetermined shape by, for example, a die casting method.
  • the base 11 is fitted into an injection-molded split liner. Further, the base 11 may be attached to the liner 20 by insert molding, for example.
  • the base 11 has a valve fastening seat surface 11a formed on the tip side (the outer side in the axial direction of the tank 1), for example, and the tank 1 on the rear side (the inner side in the axial direction of the tank 1) of the valve fastening seat surface 11a.
  • An annular recess 11b is formed with respect to the axis.
  • the dent 11b is convexly curved on the shaft side and has an R shape.
  • the vicinity of the tip of the R-shaped FRP layer 21 is in airtight contact with the recess 11b.
  • the surface of the recess 11b that contacts the FRP layer 21 is provided with a solid lubricating coating C such as a fluorine-based resin. Thereby, the friction coefficient between the FRP layer 21 and the recessed part 11b is reduced.
  • the rear side of the recessed portion 11b of the base 11 is formed to fit, for example, the shape of the folded portion 30 of the liner 20, and for example, a flange portion (crest portion) 11c having a large diameter is formed continuously from the recessed portion 11b.
  • a cap cylindrical portion 11d having a constant diameter is formed rearward from the flange portion 11c.
  • the reduced diameter portion 30a of the folded portion 30 of the liner 20 is in close contact with the surface of the flange portion 11c, and the cylindrical portion 30b is in close contact with the surface of the cap cylindrical portion 11d. Seal members 40 and 41 are interposed between the cylindrical portion 30b and the base cylindrical portion 11d.
  • the valve assembly 50 controls the supply and discharge of the fuel gas between the external gas supply line (supply path 22) and the inside of the tank 1. Seal members 60 and 61 are interposed between the outer peripheral surface of the bubble assembly 50 and the inner peripheral surface of the base 11.
  • the FRP layer 21 is formed by, for example, FW molding (filament winding molding), winding a resin-impregnated fiber (reinforcing fiber) 70 around the outer peripheral surface of the liner 20 and the recess 11b of the base 11 and curing the resin.
  • FW molding filament winding molding
  • resin-impregnated fiber (reinforcing fiber) 70 around the outer peripheral surface of the liner 20 and the recess 11b of the base 11 and curing the resin.
  • the resin of the FRP layer 21 for example, an epoxy resin, a modified epoxy resin, an unsaturated polyester resin, or the like is used.
  • the fiber 70 carbon fiber (CF), metal fiber, or the like is used.
  • the outer periphery of the liner 20 is moved by moving the guide of the fiber 70 along the tank axis direction while rotating the liner 20 around the tank axis (indicated by reference numeral 12 in FIGS.
  • the fiber 70 can be wound around.
  • a fiber bundle in which a plurality of fibers 70 are bundled is generally wound around the liner 20.
  • the fiber bundle is simply referred to as a fiber including the case of a fiber bundle.
  • the FW device 80 shown in FIGS. 10 and 11 reciprocates the guide device (referred to as “eye opening”) 81 of the fiber 70 along the tank axial direction while rotating the liner 20 around the tank shaft 12.
  • the fiber 70 is wound around the outer periphery of the liner 20.
  • the winding angle of the fiber 70 can be changed by changing the relative speed of the movement of the guide device 81 with respect to the rotational speed of the liner 20.
  • the guide device 81 is operably supported by a jig, for example.
  • the tank 1 is formed by winding a fiber (for example, carbon fiber) 70 around the outer periphery of the liner 20 and curing the resin.
  • the fiber 70 is wound into a hoop winding and a helical winding (see FIG. 2).
  • a hoop layer (indicated by reference numeral 70P in FIG. 4) is formed by a layer in which a resin is hoop-wound, and a helical layer is formed by a helical wound layer.
  • Layers (indicated by reference numeral 70HH and reference numeral 70HL in FIG. 4) are respectively formed.
  • the fiber 70 is wound around the straight portion (tank body portion) 1 s of the tank 1 like a coil spring to tighten the portion, and the force in the positive direction of the Y axis by the gas pressure (outward in the radial direction) A force to counteract the force to spread) is applied to the liner 20.
  • the latter helical winding is a winding method whose main purpose is to wind the dome portion 1d in the tightening direction (inward in the tank axis direction), and the fiber 70 is caught in the tank 1 so as to be caught by the dome portion 1d.
  • the overall wrapping contributes mainly to improving the strength of the dome 1d.
  • an acute angle (of which an acute angle is formed) between a string 70 of a fiber 70 wound like a coil spring (a thread line in a screw) and a center line of the tank 1 (tank shaft 12). 2) is the “winding angle with respect to the tank shaft (12)” of the fiber 70 referred to in the present specification, which is indicated by the symbol ⁇ in FIG.
  • the hoop winding is a method in which the fiber 70 is wound substantially perpendicularly to the tank shaft 12 in the straight portion, and a specific winding angle at that time is, for example, 80 to 90 ° (see FIG. 2). ).
  • Helical winding (or impeller winding) is a winding method in which the fibers 70 are wound around the dome portion, and the winding angle with respect to the tank shaft 12 is smaller than that in the case of hoop winding (see FIG. 2). If the helical winding is roughly divided into two types, there are two types: high angle helical winding and low angle helical winding.
  • the high angle helical winding has a relatively large winding angle with respect to the tank shaft 12, and specific examples of the winding angle are as follows. 70 to 80 °.
  • the low-angle helical winding has a relatively small winding angle with respect to the tank shaft 12, and a specific example of the winding angle is 5 to 30 °.
  • the winding angle when the fiber 70 is parallel to the tank shaft 12 is 0 °
  • the winding angle when the fiber 70 is wound around in the circumferential direction is 90 °.
  • the term “low angle helical winding” including helical winding at a winding angle of 0 to 5 ° is referred to.
  • a helical winding at a winding angle of 30 to 70 ° between them may be referred to as a medium angle helical winding.
  • the helical layers formed by the high angle helical winding, the medium angle helical winding, and the low angle helical winding are respectively a high angle helical layer (indicated by reference numeral 70HH), a medium angle helical layer (see FIG. 2), and a low angle helical layer ( This is indicated as 70LH.
  • the folded portion in the tank axial direction in the dome portion 1d of the high angle helical winding is referred to as a folded portion (see FIG. 2).
  • the hoop winding is a winding method that allows the fibers 70 to be wound spirally while adjoining the fibers 70 so that the fibers 70 are not stacked and the unevenness is not generated.
  • the helical winding is generally intended to tighten the dome portion, and it is difficult to reduce the stacking and unevenness of the fibers 70, or sufficient consideration is given to reducing them. There is no winding method.
  • the hoop winding and the helical winding are appropriately combined according to specifications such as the axial length and diameter of the tank 1, and the hoop layer 70P and the helical layer 70H are stacked around the liner 20 (see FIG. 1 and the like).
  • the helical layer 70H when the helical layer 70H is adjacent to the hoop layer 70P, the unevenness of the helical layer 70H is transferred to the hoop layer 70P, and the fibers 70 of the hoop layer 70P may be bent (undulated).
  • the axial fibers for example, the hoop layer 70P
  • the strength expression efficiency by the fibers 70 may be reduced.
  • the fiber folded end portion 70e in the tank axial direction of the circumferential fiber layer is from the inside in the stacking direction of the fiber layers.
  • a locus narrowing toward the outside is drawn (see FIGS. 4 and 5).
  • a “trajectory” can be defined as a set of all points that satisfy a certain condition.
  • the trajectory of the fiber folded end portion 70e referred to in this specification refers to a set of the fiber folded end portions 70e appearing in the longitudinal section of the tank 1.
  • the axial fiber layer refers to a fiber layer formed by winding the fibers 70 around the outer periphery of the liner 20 in a range where the winding angle with respect to the tank shaft 12 at the center of the tank is greater than 0 ° and less than 30 °.
  • the circumferential fiber layer refers to a fiber layer formed by winding fibers on the outer periphery of the liner 20 in a range where the winding angle with respect to the tank shaft 12 is 30 ° or more and less than 90 ° (see FIG. 2).
  • the hoop layer (winding angle 80 to 90 °) 70P, the high angle helical layer (winding angle 70 to 80 °) 70HH, and the medium angle helical layer (winding angle 30 to 70 °) are the circumference. It is a directional fiber layer.
  • the low-angle helical layer (winding angle 0 to 30 °, preferably 5 to 30 °) 70LH is an axial fiber layer, for example, a fiber that is in contact with the base 11 or is laminated to the vicinity of the base 11. It is formed. 2 and the like, reference numeral 71 denotes a circumferential fiber or a layer formed thereby (circumferential fiber layer), and reference numeral 72 denotes an axial fiber or a layer formed thereby (axial fiber layer). .
  • both the helical layer 70H and the hoop layer 70P have a greater contribution to the tank strength as the inner layer (layer closer to the liner 20), and in particular, the straight portion 1s is wound to sufficiently express and act on the fiber strength.
  • the role of the innermost hoop layer 70P is great in that
  • the hoop layer 70P of the circumferential fiber layer 71 is aggregated in the inner layer portion (inner layer), and the fiber hoop layer 70P aggregated on the inner layer side improves the fiber strength expression efficiency.
  • a low-angle helical layer 70LH (axial fiber layer 72) is formed around the periphery, and a high-angle helical layer 70HH that forms the outermost layer of the FRP layer 21 is formed around the periphery (see FIGS. 4 and 6).
  • the high-angle helical layer 70HH in this case can be a single layer, but in the present embodiment, it is formed from a plurality of layers.
  • the fiber strength expression rate by the circumferential fiber layers 71 (especially the hoop layers 70P) is high. Can be maintained.
  • the circumferential fiber layer 71 (the hoop layer 70P, the high-angle helical layer 70HH, and the medium-angle helical layer) and the axial fiber layer 72 (the low-angle helical layer 70LH) are equally formed in the FRP 21 layer.
  • the hoop layer 70P When laminated (when laminated so that the thickness of each layer is evenly repeated), it was particularly difficult to develop high fiber strength by the hoop layer 70P (see FIG. 12).
  • high fiber strength due to the hoop layer 70P is particularly easily developed.
  • the inner layer of the circumferential fiber layer 71 (particularly the hoop layer 70P), for example, aggregates the hoop layer 70P within 75% of the inner layer side (the portion of the FRP layer 21 near the Y-axis origin) of the thickness of the FRP layer 21. This can be realized (see FIGS. 4 and 6).
  • the fiber folded end portion 70e in the tank axial direction of the circumferential fiber layer 71 extends from the inner side (inner layer) to the outer side (outer layer) in the fiber layer stacking direction.
  • a trajectory that gradually narrows toward the center in the tank axial direction is drawn. That is, when winding the fiber forming the circumferential fiber layer 71 (particularly the hoop layer 70P), the length from the fiber folded end portion 70e to the next fiber folded end portion 70e (folded width w) is gradually narrowed, Since the trajectory of the fiber folding end portion 70e in the cross section is the left and right sides of the trapezoid (see FIG.
  • the folding is performed as the circumferential fiber layers 71 (in the case of the present embodiment, the hoop layer 70P) are stacked.
  • the width becomes narrower and the fiber folded end portion 70e approaches the center of the tank.
  • the high-angle helical layer has a certain thickness, and the low-angle helical layer protruding from the high-angle helical layer may bend (undulate) (see FIG. 12).
  • the fiber folded end portion 70e is inclined toward the center in the tank axial direction as described above, it is possible to suppress bending (undulation) of, for example, the low-angle helical layer 70LH formed thereon. Become.
  • this tank 1 it becomes possible to efficiently stack another helical layer (for example, a low-angle helical layer 70LH as shown in FIG. 4) on the inclined portion. That is, when the fiber folded end portion 70e of the hoop layer 70P gradually approaches the cap 11 of the tank 1, it is bent into a layer (such as the low-angle helical layer 70LH) formed between the hoop layers 70P. As a result of occurrence of (undulations) and meandering, the fiber strength may not be sufficiently developed (see FIG. 12), but in the case of this embodiment, this layer (in this embodiment, the low-angle helical layer 70LH) It is possible to efficiently stack the fibers 70 so that bending or the like does not occur in the fiber, thereby improving the fiber strength expression efficiency.
  • a low-angle helical layer 70LH as shown in FIG. 4
  • the high-angle helical layer 70HH is preferably used as the outermost layer of the FRP layer 21.
  • the high-angle helical layer 70HH is likely to be thick because the folded end portion 70e of the fiber 70 is located at the boundary portion between the straight portion 1s and the dome portion 1d of the tank 1.
  • fiber bending (undulation) or meandering may occur in the low-angle helical layer 70LH due to the influence of the folded end portion 70e that has been thickened as in the prior art.
  • the high-angle helical layer 70HH is formed as the outermost layer, and fiber bending or the like in the low-angle helical layer 70LH is suppressed so that high fiber strength can be expressed as a whole (see FIG. 4).
  • FIG. 4 shows only some of the fibers 70 constituting the high-angle helical layer 70HH, and does not show all the fibers 70.
  • the specific content in the case of enlarging the ratio which the circumferential direction fiber layer 71 occupies as mentioned above is not limited, For example, ratio of the number of layers, ie, (number of hoop layers 70P) :( number of helical layers 70H) It is preferable that the FRP layer 21 is constituted by the hoop layer 70P and the helical layer 70H in a hoop-rich state having a value of 2 or more. If the number of hoop layers 70P is twice or more the number of layers of the helical layer 70H, it is preferable in that the necessary strength can be easily ensured particularly in the straight portion 1s of the tank 1.
  • the circumferential fiber layer 71 is configured by laminating two or more layers of the same type as a group.
  • two or more such hoop layers 70P having a winding angle of 89 ° are laminated as a group consisting of the same kind of layers, for example, helical
  • the expression efficiency of fiber strength can also be improved by this, suppressing the effort and time which are required for winding of the fiber 70.
  • the fiber folded end portion 70e of the circumferential fiber layer 71 (for example, the hoop layer 70P) draws a trajectory narrowing from the inner side to the outer side in the stacking direction (see FIG. 4).
  • the trajectory may not always narrow from the inner side (inner layer) to the outer side (outer layer) in the stacking direction.
  • the fiber folded end portion 70e of a part of the circumferential fiber layer 71 is more than the fiber folded end portion 70e of the other circumferential fiber layer 71 located on the outer side (outer layer) in the stacking direction than the circumferential fiber layer 71. It may be located closer to the center of the tank in the tank axial direction.
  • one layer in the fiber group is, for example, a hoop layer 70P with a winding angle of 80 °.
  • the fiber folded end portion 70e of the hoop layer 70P ' is more than the fiber folded end portion 70e of the hoop layer 70P on the inner side.
  • m may be extended in the tank axial direction (see FIG. 7).
  • the position of the fiber turn-back end portion 70e of the circumferential fiber layer 71 is always the locus. It does not need to be arranged so as to narrow toward the outer periphery. Thus, even if the position of the fiber folded end portion 70e moves back and forth in a part of the circumferential fiber layer 71, it is only necessary to draw a trajectory in which the fiber folded end portion 70e narrows as a whole from the inner layer toward the outer layer.
  • the stacking mode of the hoop layer 70P and the helical layer 70H is optimized. It is possible to improve the efficiency of strength expression by each of the fibers 70 wound. This is particularly effective under the current situation where the tank 1 is required to have a larger size, a higher pressure, and a reduced number of tanks.
  • the FRP layer 21 of the tank 1 includes a hoop layer 70P and a high-angle helical layer 70HH that mainly share the stress in the tank circumferential direction, a low-angle helical layer 70LH that mainly shares the stress in the tank axial direction, and the like.
  • the ratio of the circumferential fiber layer 71 in the inner portion (inner layer) is larger than that in the tank outer portion (outer layer). According to this, higher fiber strength can be expressed especially in the circumferential fiber layer 71 (the hoop layer 70P in this embodiment).
  • the high-angle helical layer 70HH is more If it is brought closer to the straight portion 1s side (near the center of the tank) and fiber strength is further expressed, it can be hooped.
  • the fiber strength per layer of the high-angle helical layer 70HH can be improved, the thickness of the high-angle helical layer 70HH can be reduced to that extent.
  • the low-angle helical layer 70LH can be structured to be closer to the straight portion 1s side (near the center of the tank), the fiber strength per layer of the low-angle helical layer 70LH is improved, and the low-angle helical layer 70LH is improved. It is possible to reduce the thickness of the layer 70LH to that extent.
  • the low angle helical layer 70LH is smoothly aggregated in the vicinity of the joint portion between the straight portion 1s and the dome portion 1d (see FIG. 4), and the high angle helical layer 70HH is used as the outermost layer of the FRP layer 21.
  • the high-angle helical layer 70 ⁇ / b> HH can be hooped, and bending (undulation) and meandering can be suppressed in the fibers 70 of the low-angle helical layer 70 ⁇ / b> LH.
  • both ends in the tank axial direction of the circumferential fiber layer 71 are tapered along the tank axial direction.
  • the low angle helical layer 70LH is connected to the annular inclined surface of the circumferential fiber layer 71 having such a taper shape so that both ends of the low angle helical layer 70LH are continuous.
  • Layer 70LH is formed. According to this, the conventional state (see FIG.
  • the low-angle helical layer 70LH can be formed so that the fiber strength expression efficiency continues smoothly.
  • the reinforcing frame can be formed by the high-angle helical layer 70HH using the characteristic that the fiber folded end portion 70e tends to be thick due to the overlapping of the fibers 70. That is, when the influence of the stress gradient cannot be ignored due to the increase in the thickness of the FRP layer 21, for example, the high-angle helical layer 70HH is concentrated on the outer layer, and the fiber folded end portion 70e is made thick. Thus, it can function as a reinforcing frame 70f that can reduce the influence of such a stress gradient (see FIG. 8).
  • the tank 1 is required to have a predetermined impact resistance in preparation for an impact such as when the tank is dropped or when the vehicle collides.
  • the fiber folded end portion 70e thick in this way, it particularly interferes with the outside. It is possible to reinforce an easy part (for example, a joint part between the straight part 1s and the dome part 1d, or a part from the joint part to the dome part 1d). Further, the straight portion 1s and the dome portion 1d of the tank 1 have different thicknesses and stiffnesses, so that the stresses are different. Generally, the stress in the straight portion 1s is higher and is integrated through the joint portion. Therefore, a moment also acts on the joint portion. It is more preferable that the reinforcing frame 70f formed as described above is thick so as to cancel such a moment.
  • the stacking mode of the hoop layer 70P and the helical layer 70H is optimized, and the fiber in each direction (tank axial direction, stacking direction (tank radial direction), circumferential direction) and various fiber layers. Since the strength is expressed efficiently, it is possible to reduce the thickness of each layer, the amount of fibers, and the total number of layers. Accordingly, there is an advantage that the weight of the entire tank 1 can be reduced.
  • the tank 1 it is possible to increase the internal capacity of the tank 1 by reducing the total number of layers (the hoop layer 70P and the helical layer 70H) constituting the FRP layer 21 as described above.
  • the tank 1 When the tank 1 is used as a hydrogen supply tank for a fuel cell vehicle, for example, it can contribute to the extension of the cruising distance of the vehicle.
  • the weight of the tank 1 can be reduced by arranging the fiber folded end portion 70e closer to the center in the tank axial direction as in the above-described embodiment.
  • the tank 1 having a small L / D (tank axial length / tank diameter) (tank having a large tank diameter relative to the axial length) 1 the effect of weight reduction is great. That is, a tank with a small L / D shape (thick tank for the axial length) 1 has a resin fiber layer as compared to a tank with a large L / D shape (thin tank for the axial length).
  • the thickness of the FRP layer 21 as the (reinforcing layer) increases, the efficiency of the strength expression of the fiber 70 tends to decrease, and as a result, the resin fiber layer (reinforcing layer) tends to become thicker. Accordingly, it is possible to reduce the weight of the tank 1 effectively.
  • the width of the fiber 70 that can be employed is widened, and the fiber 70 having a lower degree of strength, rigidity, or the like than the conventional one may be employed. It becomes possible. According to this, the cost required for the tank 1 can be reduced.
  • the fibers 70 of the same kind are wound continuously or collectively such that a large number of the circumferential fiber layers 71 (for example, the hoop layers 70P) are arranged inside the tank to form an inner layer. I am doing so.
  • the combination winding required at the time of transition to a different fiber layer 70 for example, transition from the hoop layer 70P to the low-angle helical layer 70LP
  • the step difference of the fiber 70 is minimized.
  • the weight of the tank 1 can be reduced, the molding time can be shortened, and the quality and performance can be improved.
  • the present invention is applied to a hydrogen tank that can be used in a fuel cell system and the like has been described as an example.
  • a tank for filling a fluid other than hydrogen gas for example, CNG (compression
  • the present invention can also be applied to a high-pressure vessel used in a CNG vehicle using natural gas as a fuel.
  • the present invention can be applied to things other than a tank (pressure vessel), for example, a cylindrical body (including a cylindrical portion) 1 'such as a long object or a structure having an FRP layer.
  • a tank pressure vessel
  • a cylindrical body (including a cylindrical portion) 1 ' such as a long object or a structure having an FRP layer.
  • the FRP layer 21 having the helical layer 70H or the hoop layer 70P is formed by wrapping the fiber 70 around a mandrel (such as a mandrel) or a mold by helical winding or hoop winding, a hoop layer is formed.
  • a mandrel such as a mandrel
  • a mold by helical winding or hoop winding
  • a hoop layer is formed.
  • the same as in the above-described embodiment such as improving the expression efficiency of the fiber strength by concentrating 70P on the inner side or arranging the fiber folded end portion 70e so as to draw a loc
  • the helical layer 70H is a smooth helical layer to reduce unevenness that may occur in the hoop layer 70P adjacent to the outside.
  • the smooth helical layer 70 ⁇ / b> H is a layer formed by helical winding so as to reduce the overlap of the fibers 70 in the layer, and in principle, the next fiber 70 is aligned next to the adjacent fibers 70. Is wound, and the way the fibers 70 overlap is different from the conventional helical layer (uneven helical layer).
  • the fibers 70 in the hoop layer 70P are formed. Structural bending (undulations) or undulations and undulations can be reduced. That is, since the surface (surface layer) of the smooth helical layer 70H is smoother than the conventional surface, in the hoop layer 70P formed on the smooth surface, the bending (undulation) of the structural fibers 70 caused by unevenness. ) Is reduced.
  • Vf represents the fiber volume content.
  • the winding start of the liner 20 can be either the fiber 70 forming the helical layer 70H or the fiber 70 forming the hoop layer 70P. In this way, by appropriately changing the fiber 70 at the start of winding, it is possible to set the break start position when the tank 1 should break. As described above, both the helical layer 70H and the hoop layer 70P have a greater contribution to the tank strength as the layer located on the inner side (the layer closer to the liner 20).
  • the break start position becomes the dome portion 1d in advance. It is possible to set.
  • FIG. 6 is used to illustrate the case where the circumferential fiber layer 71 is disposed on the inner layer side of the FRP layer 21 and the axial fiber 72 is disposed on the outer layer side, but this is only an example.
  • other modes can be appropriately employed.
  • the high angle helical layer 70HH may not be provided in the outermost layer (see FIG. 6).
  • a configuration in which one or a plurality of high-angle helical layers 70HH are inserted may be employed.
  • a single-layer (or a plurality of layers) high-angle helical layer 70HH is formed on the innermost layer (the outer periphery of the liner 20) so as to express desired fiber strength.
  • the present invention is suitable when applied to a tank having an FRP layer, and further to a cylindrical body such as a long object or a structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Moulding By Coating Moulds (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pressure Vessels And Lids Thereof (AREA)

Abstract

 フープ層とヘリカル層の積層態様を最適化し、巻回された繊維による強度発現の効率を向上させるようにしたタンクおよびその製造方法を提供する。これを実現するため、ライナ(20)と、当該タンク(1)の中心のタンク軸(12)に対する巻角度が0°を超え30°未満となる範囲でライナ(20)の外周に繊維(70)が巻回されて形成される軸方向繊維層(72)と、タンク軸(12)に対する巻角度が30°以上90°未満となる範囲でライナ(20)の外周に繊維(70)が巻回されて形成される周方向繊維層(71)とからなるFRP層(21)と、を有し、周方向繊維層(71)のタンク軸方向における繊維折返し端部(70e)が、繊維層の積層方向内側から外側に向けて狭まる軌跡を描いている。繊維層の積層方向外寄りに形成される繊維折返し端部(70e)は、原則、積層方向内寄りに形成される周方向繊維層(71)のタンク軸方向における繊維折返し端部(70e)に対して、当該タンク(1)の中央寄りに位置している。

Description

タンクおよびその製造方法
 本発明は、タンクおよびその製造方法に関する。さらに詳述すると、本発明は、水素ガス等が高圧で充填されるタンクにおける構造の改良に関する。
 水素ガス等の貯蔵に利用されるタンクとして、ライナの外周にフープ層とヘリカル層とが交互に積層されたFRP層を備え、軽量化を図ったものが利用されている(例えば特許文献1参照)。ライナは、水素ガス等の透過を防いで気密に貯蔵する部材として機能し、FRP層は、高い内圧に耐える強度を付与する部材として機能する。
 FRP層を形成するフープ層は、繊維(例えば炭素繊維)がフープ巻(タンク胴体部においてタンク軸にほぼ垂直に巻く巻き方)されて形成された層であり、ヘリカル層は、繊維がヘリカル巻(タンク軸にほぼ平行であり、タンクドーム部まで巻く巻き方)されて形成された層である(図2参照)。また、ヘリカル巻は、タンク軸に対する巻角度を変えることによって高角度ヘリカル巻や低角度ヘリカル巻といった態様の異なる巻き方とすることが可能である。このようにしてFRP層を形成する際、繊維をどのように巻回させるかは、FRP層による強度発現の効率を向上させるための重要な要素となっている。
 従来、繊維の具体的な巻回のさせ方としては、例えば周方向繊維層(フープ層、高角度ヘリカル層)および軸方向繊維層(低角度ヘリカル層)を交互に、もしくは層数の比が1:1となるように順次巻回していく、といったものが提案されている。
特開2008-032088号公報
 しかしながら、上述のごとき従来のタンクにおいては、(1)高角度ヘリカル層が多用されており、繊維の周方向の剛性が低下し、巻回した繊維による強度発現効率が低下している (2)FRP層内において各方向の繊維(周方向繊維、軸方向繊維)を順次巻回するなど、周方向繊維層と軸方向繊維層がほぼ均等に形成された状態になっていることから、このことによっても強度発現効率が低下している (3)高角度ヘリカル層の上下に積層される軸方向繊維層において、高角度ヘリカル層の凹凸が転写されることによる繊維の曲げ(起伏)が生じて蛇行することも、強度発現効率の低下の一因となっている (4)繊維を巻回する際の折返し位置がタンクのドーム部にまで及ぶことから、繊維の使用量が増えてタンクの質量増加を招くことがある といった問題がある。
 そこで、本発明は、上述の問題の少なくとも一つを解決するために、フープ層とヘリカル層の積層態様を最適化し、巻回された繊維による強度発現の効率を向上させるようにしたタンクおよびその製造方法を提供することを目的とする。
 かかる課題を解決するべく本発明者は種々の検討を行った。上述した問題点は、タンクが低圧力でかつ小径である場合には、薄肉円筒(直径に比べて肉厚の薄い円筒)についての考え方に基づいてタンク壁内の応力を等分布と扱うことが可能であることから特に大きな問題とはならない。ところが、近時、タンクの大型化・高圧化(一例として、70MPa程度)の要請や、車両レイアウトの自由度向上を目的としたタンク本数の減少化の要請に応じるため、FRP層が厚肉化する傾向にあり、厚肉化すればFRP層内にて作用する応力勾配を無視することができなくなる、という実情がある。とりわけ、FRPは違方性材料であって、タンクにおいては周方向繊維層と軸方向繊維層とが重ね合わされて構成されていることから、応力勾配の影響がより顕著になりやすい。
 ここで、繊維巻回時の周方向繊維層(フープ層)における繊維強度発現の効率について検討した本発明者は、高角度ヘリカル層を形成した場合には繊維自体の剛性が以下のように低下して強度発現の効率が低下することを確認した。すなわち、タンク軸に対する巻角度が89°のフープ巻の剛性を1とした場合に比べ、例えば巻角度80°では0.9程度、巻角度70°では0.7程度、巻角度60°では0.4程度というように剛性が低下し、強度発現という観点からすればそのぶん非効率となる。その理由としては、(A)FRP層を構成する繊維は引っ張りには強いが引っ張り方向とは垂直な横方向(トラバース方向)の外力には弱く、フープ巻にすれば強度を発現させやすいがヘリカル巻にすると強度を発現させにくくなり力を有効的に作用させることが難しくなること、(B)FRP層の厚みが増して応力勾配が生じると、外側に巻かれる繊維ほど強度発現のポテンシャルを発揮できなくなり、強度への貢献度が低くなること、等が挙げられる。
 これらの状況をふまえてさらに検討を重ねた本発明者は、かかる課題の解決に結び付く新たな知見を得るに至った。本発明はかかる知見に基づくもので、ライナと、当該タンクの中心のタンク軸に対する巻角度が0°を超え30°未満となる範囲でライナの外周に繊維が巻回されて形成される軸方向繊維層と、タンク軸に対する巻角度が30°以上90°未満となる範囲でライナの外周に繊維が巻回されて形成される周方向繊維層とからなるFRP層と、を有し、周方向繊維層のタンク軸方向における繊維折返し端部が、繊維層の積層方向内側から外側に向けて狭まる軌跡を描いている、というものである。また、好ましくは、繊維層の積層方向外寄りに形成される繊維折返し端部が、積層方向内寄りに形成される周方向繊維層のタンク軸方向における繊維折返し端部に対して、当該タンクの中央寄りに位置していることである。
 ライナの外周に繊維を巻回してFRP層を形成する場合、回転するライナに対して繊維巻付け位置をタンク軸方向に沿って往復するように移動させながら繊維を巻き付けることが一般に行われている。これに関し、本発明においては、繊維巻付け位置を折り返す際に形成される繊維折返し端部を、外寄り(タンク外側)よりも内寄り(タンク内側)のほうが、タンク軸方向の中央寄りとなるようにしている。このようなタンクにおいては、周方向繊維層の積層を重ねるにつれ、折返し幅が狭くなり、繊維折返し端部がタンク中央へ寄っていく。従来の態様であれば、高角度ヘリカル層にある程度の厚みがあり、当該高角度ヘリカル層からタンク軸方向両端側(タンクドーム部)へと続くように形成される低角度ヘリカル層に曲げ(起伏)が生じることがあったが(図12参照)、繊維折返し端部を上述のように傾斜させる本発明によれば、低角度ヘリカル層の曲げ(起伏)を抑制することが可能となる。
 しかも、このようなタンクにおいては、傾斜部分に他のヘリカル層を効率的に積層することができる。このため、繊維強度の発現効率をより向上させることが可能となる。
 このようなタンクにおいては、繊維層の積層方向の外寄り部分よりも内寄り部分の方で、周方向繊維層が占める割合が大きくなっていることが好ましい。特に、FRP層の厚みが増すと上述したように応力勾配が生じ、外側の繊維による強度発現が有効でなくなる傾向にあるが、これら周方向繊維層をFRP層内に均等的に積層するのではなく、このようにタンク内寄りの部分により多く配置する(内層化する)ことにより、これら周方向繊維層による繊維強度の発現率を高い状態で維持することが可能となる。また、これによって、繊維の使用量を減らしてコスト削減を図ることも可能となる。また、繊維層の層数を同数とした場合には最外層の強度発現率を向上させることができることから、相対的に、外寄りの繊維による強度発現率を向上させることも可能となる。
 上述したタンクにおいては、タンク軸に対する巻角度が80°以上90°未満であるフープ層によって周方向繊維層が形成され、タンク軸に対する巻角度が0°以上30°未満である低角度ヘリカル層によって軸方向繊維層が形成されていることが好ましい。
 この場合、タンク軸に対する巻角度が30°以上80°未満である高角度ヘリカル層がFRP層の最外層に用いられていることがさらに好ましい。一般に、高角度ヘリカル層は、タンクのストレート部とドーム部との境界部分に繊維の折返し端部が位置することから当該部分が厚肉となりやすく、このような高角度ヘリカル層をFRP層の真ん中に用いると、従来のタンクにおけるように、厚肉化した折返し端部の影響で低角度ヘリカル層にて繊維曲げ(起伏)や蛇行が生じる場合がある(図12参照)。これに対し、上述のように高角度ヘリカル層をFRP層の最外層に用いる本発明によれば、このような低角度ヘリカル層における繊維曲げなどを抑制することが可能である。
 このようなタンクにおいて、FRP層が、フープ層の数:ヘリカル層の数の比が2以上である当該フープ層およびヘリカル層によって構成されていることも好ましい。フープ層の数:ヘリカル層の数の比が2以上であることは、タンクのドーム部とストレート部に必要な強度を担保するために好ましい。
 また、一部の周方向繊維層の繊維折返し端部が、当該周方向繊維層より積層方向外側に位置する他の周方向繊維層の繊維折返し端部よりも、タンク軸方向タンク中央寄りに位置していることも好ましい。周方向繊維層の各層を構成するフープ層または高角度ヘリカル層の成形性や滑らかさ等を考慮すると、これら周方向繊維層の折返し端部位置は常にその軌跡がタンク外周に向けて狭まるように配置されていなくても構わず、例えば、タンク軸方向において折返し端部位置が前後したとしても構わない。
 上述したタンクにおいて、ライナに対する巻き始めを、タンク軸に対する巻角度が0°以上80°未満であるヘリカル層を形成する繊維とすることができる。あるいは、ライナに対する巻き始めを、タンク軸に対する巻角度が80°以上90°未満であるフープ層を形成する繊維とすることもできる。このように巻き始めの繊維を適宜変更することにより、当該タンクが万が一破壊に至る場合の破壊開始位置をいずれの部位にするか設定することが可能である。
 また、本発明にかかる製造方法は、当該タンクの中心のタンク軸に対する巻角度が0°を超え30°未満となる範囲でライナの外周に繊維を巻回して軸方向繊維層を形成し、タンク軸に対する巻角度が30°以上90°未満となる範囲で繊維を巻回して周方向繊維層を形成し、FRP層を形成するタンクの製造方法において、周方向繊維層を形成する際、当該周方向繊維層のタンク軸方向における繊維折返し端部により、繊維層の積層方向内側から外側に向けて狭まる軌跡を描かせる、というものである。
 本発明によれば、バースト強度と疲労強度の両立を図った構造のタンクを実現することができる。
本発明の一実施形態におけるタンクの構造を示す断面図および部分拡大図である。 繊維の各種の巻き方について説明するための図である。 タンクの口金付近の構造例を示す断面図である。 ドーム部とストレート部の境界近傍における軸方向繊維層と周方向繊維層の積層態様の一例を示す、タンクの部分断面のみを表す図である。 周方向繊維の繊維折返し端部が描く軌跡の一例を示す、繊維の巻回の一態様を表した図である。 軸方向繊維層と周方向繊維層の積層態様の一例を示す、図1のA-A線での断面図である。 一部の周方向繊維層の繊維折返し端部が、他の周方向繊維層の繊維折返し端部よりもタンク軸方向においてタンク中央寄りに位置している態様の一例を概略的に示す図である。 高角度ヘリカル層により厚肉の補強フレームを形成した場合の態様を示すタンクの部分断面図である。 本発明の他の実施形態を示す、図1のA-A線での断面図である。 FW(フィラメントワインディング)装置の一例を示す図である。 FW装置の繊維ガイド装置を使ってライナの外周に繊維を巻き付ける様子を示す図である。 従来のタンクにおける軸方向繊維層と周方向繊維層の積層態様の一例を参考として示す、タンクの部分断面のみを表す図である。
 以下、本発明の構成を図面に示す実施の形態の一例に基づいて詳細に説明する。
 図1~図11に本発明にかかるタンクおよびその製造方法の実施形態を示す。以下では、本発明にかかるタンク(高圧タンク)1を水素燃料供給源としての高圧水素タンクに適用した場合を例示しつつ説明する。水素タンクは、燃料電池システム等において利用可能なものである。
 図3は、タンク1の要部を示す断面図である。タンク1は、例えば両端が略半球状である円筒形状のタンク本体10と、当該タンク本体10の長手方向の一端部に取り付けられた口金11を有する。なお、本明細書では略半球状部分をドーム部、筒状胴体部分をストレート部といい、それぞれ符号1d,1sで表す(図1、図2等参照)。また、本実施形態で示す高圧タンク1は両端に口金11を有するものであるが、説明の便宜上、当該高圧タンク1の要部を示す図3中のX軸の正方向(矢示する方向)を先端側、負方向を基端側として説明を行う。このX軸に垂直なY軸の正方向(矢示する方向)がタンク外周側を指している。
 タンク本体10は、例えば二層構造の壁層を有し、内壁層であるライナ20とその外側の外壁層である樹脂繊維層(補強層)としての例えばFRP層21を有している。FRP層21は、例えばCFRP層21cのみ、あるいは該CFRP層21cおよびGFRP層21gによって形成されている(図1参照)。
 ライナ20は、タンク本体10とほぼ同じ形状に形成される。ライナ20は、例えばポリエチレン樹脂、ポリプロピレン樹脂、またはその他の硬質樹脂などにより形成されている。あるいは、ライナ20はアルミニウムなどで形成された金属ライナであってもよい。
 ライナ20の口金11のある先端側には、内側に屈曲した折返し部30が形成されている。折返し部30は、外側のFRP層21から離間するようにタンク本体10の内側に向けて折り返されている。折返し部30は、例えば折り返しの先端に近づくにつれて次第に径が小さくなる縮径部30aと、当該縮径部30aの先端に接続され径が一定の円筒部30bとを有している。この円筒部30bによりライナ20の開口部が形成されている。
 口金11は、略円筒形状を有し、ライナ20の開口部に嵌入されている。口金11は、例えばアルミニウム又はアルミニウム合金からなり、例えばダイキャスト法等により所定の形状に製造されている。口金11は射出成形された分割ライナに嵌め込まれている。また、口金11は例えばインサート成形によりライナ20に取り付けられてもよい。
 また、口金11は、例えば先端側(タンク1の軸方向の外側)にバルブ締結座面11aが形成され、そのバルブ締結座面11aの後方側(タンク1の軸方向の内側)に、タンク1の軸に対して環状の凹み部11bが形成されている。凹み部11bは、軸側に凸に湾曲しR形状になっている。この凹み部11bには、同じくR形状のFRP層21の先端部付近が気密に接触している。
 例えばFRP層21と接触する凹み部11bの表面には、例えばフッ素系の樹脂などの固体潤滑コーティングCが施されている。これにより、FRP層21と凹み部11bとの間の摩擦係数が低減されている。
 口金11の凹み部11bのさらに後方側は、例えばライナ20の折返し部30の形状に適合するように形成され、例えば凹み部11bに連続して径の大きい鍔部(ツバ部)11cが形成され、その鍔部11cから後方に一定径の口金円筒部11dが形成されている。上記ライナ20の折返し部30の縮径部30aは、鍔部11cの表面に密着し、円筒部30bは、口金円筒部11dの表面に密着している。円筒部30bと口金円筒部11dとの間には、シール部材40、41が介在している。
 バルブアッセンブリ50は、外部のガス供給ライン(供給路22)とタンク1の内部との間で燃料ガスの給排を制御するものである。バブルアッセンブリ50の外周面と口金11の内周面との間には、シール部材60、61が介在されている。
 FRP層21は、例えばFW成形(フィラメントワインディング成形)により、ライナ20の外周面と口金11の凹み部11bに、樹脂を含浸した繊維(補強繊維)70を巻き付け、当該樹脂を硬化させることにより形成されている。FRP層21の樹脂には、例えばエポキシ樹脂、変性エポキシ樹脂、不飽和ポリエステル樹脂等が用いられる。また、繊維70としては、炭素繊維(CF)、金属繊維などが用いられる。FW成形の際には、タンク軸(図1、図2において符号12で示す)を中心としてライナ20を回転させながら繊維70のガイドをタンク軸方向に沿って動かすことにより当該ライナ20の外周面に繊維70を巻き付けることができる。なお、実際には複数本の繊維70が束ねられた繊維束がライナ20に巻き付けられることが一般的であるが、本明細書では繊維束である場合を含めて単に繊維と呼ぶ。
 次に、FRP層21のフープ層とヘリカル層の積層態様を最適化し、巻回された繊維70による強度発現の効率を向上させるための構造例について説明する(図2等参照)。
 ここで、まず繊維70を巻くためのFW(フィラメントワインディング)装置の一例を簡単に説明しておく。図10、図11に示すFW装置80は、タンク軸12を中心としてライナ20を回転させながら、繊維70のガイド装置(「アイ口」などと呼ばれる)81をタンク軸方向に沿って往復動させることにより当該ライナ20の外周に繊維70を巻き付けるものである。ライナ20の回転数に対するガイド装置81の動きの相対速度を変化させることによって繊維70の巻角度を変えることができる。ガイド装置81は、例えば治具によって動作可能に支持されている。
 上述したように、タンク1は、ライナ20の外周に繊維(例えば炭素繊維)70を巻き付け、樹脂を硬化させることにより形成されている。ここで、繊維70の巻き付けにはフープ巻とヘリカル巻があり(図2参照)、樹脂がフープ巻された層によってフープ層(図4において符号70Pで示す)が、ヘリカル巻された層によってヘリカル層(図4において符号70HHおよび符号70HLで示す)がそれぞれ形成される。前者のフープ巻は、タンク1のストレート部(タンク胴体部分)1sに繊維70をコイルスプリングのように巻くことによって当該部分を巻き締め、気体圧によりY軸正方向へ向かう力(径方向外側へ拡がろうとする力)に対抗するための力をライナ20に作用させるものである。一方、後者のヘリカル巻はドーム部1dを巻き締め方向(タンク軸方向の内側向き)に巻き締めることを主目的とした巻き方であり、当該ドーム部1dに引っ掛かるようにして繊維70をタンク1に対し全体的に巻き付けることにより、主として当該ドーム部1dの強度向上に寄与する。なお、コイルスプリングのように巻かれた繊維70の弦巻(つるまき)線(ネジにおけるネジ山の線)と、当該タンク1の中心線(タンク軸12)とのなす角度(のうちの鋭角のほう)が、図2において符号αで示す、本明細書でいう繊維70の「タンク軸(12)に対する巻角度」である(図2参照)。
 これら種々の巻き付け方のうち、フープ巻は、ストレート部において繊維70をタンク軸12にほぼ垂直に巻くものであり、その際の具体的な巻角度は例えば80~90°である(図2参照)。ヘリカル巻(または、インプレ巻)は、ドーム部にも繊維70を巻き付ける巻き方であり、タンク軸12に対する巻角度がフープ巻の場合よりも小さい(図2参照)。ヘリカル巻を大きく2つに分ければ高角度ヘリカル巻と低角度ヘリカル巻の2種類があり、そのうち高角度ヘリカル巻はタンク軸12に対する巻角度が比較的大きいもので、その巻角度の具体例は70~80°である。一方、低角度ヘリカル巻は、タンク軸12に対する巻角度が比較的小さいもので、その巻角度の具体例は5~30°である。ちなみに、繊維70がタンク軸12と平行な場合の巻角度は0°、周方向に周回するように巻かれた場合の巻角度は90°ということになる。本実施形態では、巻角度0~5°の場合のヘリカル巻を含めて低角度ヘリカル巻と呼ぶ。
 なお、本明細書においては、これらの間となる30~70°の巻角度でのヘリカル巻を中角度ヘリカル巻と呼ぶ場合がある。さらに、高角度ヘリカル巻、中角度ヘリカル巻、低角度ヘリカル巻により形成されるヘリカル層をそれぞれ高角度ヘリカル層(符号70HHで示す)、中角度ヘリカル層(図2参照)、低角度ヘリカル層(符号70LHで示す)と呼ぶ。また、高角度ヘリカル巻のドーム部1dにおけるタンク軸方向の折り返し部分を折返し部と呼ぶ(図2参照)。
 一般的に、フープ巻は、それ自体、繊維70どうしを隣接させながら螺旋状に巻き、繊維70の積み重ねをなくして凹凸を生じさせないようにすることが可能な巻き方である。一方、ヘリカル巻は、一般的にはドーム部を巻き締めることを主目的としており、繊維70の積み重なりや凹凸を減らすことは困難であるか、あるいはこれらを低減させることについて十分には考慮されていない巻き方である。これらフープ巻とヘリカル巻は、当該タンク1の軸長、直径などの仕様に応じて適宜組み合わされ、ライナ20の周囲にフープ層70Pおよびヘリカル層70Hが積層される(図1等参照)。このとき、フープ層70Pにヘリカル層70Hが隣接していると、当該ヘリカル層70Hの凹凸がフープ層70Pに転写し、当該フープ層70Pの繊維70に曲げ(起伏)が生じることがある。特に、高角度ヘリカル層70HHの上下に積層される軸方向繊維(例えばフープ層70P)に曲げ(起伏)が生じて蛇行すると、繊維70による強度発現効率が低下する要因となりうる。
 この点、本実施形態では、軸方向繊維と周方向繊維からなるFRP層21を有するタンク1において、周方向繊維の層のタンク軸方向における繊維折返し端部70eが、繊維層の積層方向内側から外側に向けて狭まる軌跡を描くようにしている(図4、図5参照)。「軌跡」は、ある一定条件を満たす点全体の集合などと定義することができるものである。本明細書でいう繊維折返し端部70eの軌跡とは、タンク1の縦断面に表れる当該繊維折返し端部70eの集合をいう。また、軸方向繊維層とは、タンク中心にあるタンク軸12に対する巻角度が0°を超え30°未満となる範囲でライナ20の外周に繊維70が巻回されて形成される繊維層をいい、周方向繊維層とは、タンク軸12に対する巻角度が30°以上90°未満となる範囲でライナ20の外周に繊維が巻回されて形成される繊維層をいう(図2参照)。上述した種々の繊維層のうち、フープ層(巻角度80~90°)70P、高角度ヘリカル層(巻角度70~80°)70HH、および中角度ヘリカル層(巻角度30~70°)は周方向繊維層である。また、低角度ヘリカル層(巻角度0~30°で、好ましくは5~30°)70LHは軸方向繊維層であり、例えば口金11と接し、あるいは当該口金11の近傍付近まで積層される繊維で形成される。なお、図2等において、周方向繊維またはこれによって形成される層(周方向繊維層)を符号71で示し、軸方向繊維またはこれによって形成される層(軸方向繊維層)を符号72で示す。
 このような積層構造とする場合、各繊維層の積層方向の外寄り部分(外層)よりも内寄り部分(内層)の方で、周方向繊維層71が占める割合が大きくなるようにすることが好ましい(図4、図6参照)。通常、ヘリカル層70H、フープ層70Pとも、内側に位置する層(ライナ20寄りの層)ほどタンク強度への寄与度が大きく、特に、ストレート部1sを巻き締めて繊維強度を十分に発現・作用させるという点において最内層のフープ層70Pの役割が大きい。この点、本実施形態では、周方向繊維層71のうちのフープ層70Pを内層部分に集約し(内層化)、内層側に集約したフープ層70Pにより繊維強度の発現効率を向上させたうえで、その周囲に低角度ヘリカル層70LH(軸方向繊維層72)を形成し、さらにその周囲にFRP層21の最外層を構成する高角度ヘリカル層70HHを形成している(図4、図6参照)。ちなみに、この場合の高角度ヘリカル層70HHは単層とすることも可能であるが、本実施形態では複数の層から形成することとしている。このように、タンク内寄りの内層部分に周方向繊維層71(特にフープ層70P)をより多く配置することにより、周方向繊維層71(特にフープ層70P)による繊維強度の発現率を高い状態で維持することが可能となる。
 すなわち、従来のごとく、周方向繊維層71(フープ層70P、高角度ヘリカル層70HH、および中角度ヘリカル層)と、軸方向繊維層72(低角度ヘリカル層70LH)とをFRP21層に均等的に積層した場合(各層の厚みが均等に繰り返されるように積層した場合)、特にフープ層70Pによる高い繊維強度を発現させることが難しかった(図12参照)。この点、上述のようにフープ層70Pを内層部分に多く配置していわば内層化した本実施形態の場合には、特にフープ層70Pによる高い繊維強度を発現させやすい。なお、周方向繊維層71(特にフープ層70P)の内層化は、例えばFRP層21の厚さの内層側(FRP層21のうちのY軸原点寄り部分)75%内にフープ層70Pを集約することにより実現することができる(図4、図6等参照)。
 しかも、上述のように、本実施形態では、周方向繊維層71(特に、フープ層70P)のタンク軸方向における繊維折返し端部70eが、繊維層の積層方向内側(内層)から外側(外層)に向けて徐々にタンク軸方向中央寄りへと狭まる軌跡を描くようにしている。すなわち、周方向繊維層71(特にフープ層70P)を形成する繊維を巻回する際、繊維折返し端部70eから次の繊維折返し端部70eまでの長さ(折返し幅w)を徐々に狭め、断面における繊維折返し端部70eの軌跡が台形の左右両辺となるようにしているので(図5参照)、周方向繊維層71(本実施形態の場合、フープ層70P)の積層を重ねるにつれ、折返し幅が狭くなり、繊維折返し端部70eがタンク中央へ寄っていく。従来の態様であれば、高角度ヘリカル層にある程度の厚みがあり、当該高角度ヘリカル層からはみ出た形の低角度ヘリカル層に曲げ(起伏)が生じることがあったが(図12参照)、繊維折返し端部70eを上述のようにタンク軸方向中央寄りに傾斜させる本実施形態の場合には、その上に形成される例えば低角度ヘリカル層70LHの曲げ(起伏)を抑制することが可能となる。
 これについてさらに説明を加える。従来の態様において、高角度ヘリカル層70HHからはみ出た形の低角度ヘリカル層70LHに曲げ(起伏)が生じているような場合、特にタンク1のストレート部1sとドーム部1dの繋ぎ目の部分(接続部分)の近傍において、高角度ヘリカル層70HHから低角度ヘリカル層70LHにかけて滑らかに連続するよう成形することが難しい場合があった。この点、本実施形態のタンク1においては、ストレート部1sとドーム部1dの境界となる繋ぎ目部分の近傍において、特に低角度ヘリカル層70LHを滑らかな形状で集約させることが可能である(図4参照)。
 加えて、このタンク1においては、傾斜部分に他のヘリカル層(例えば、図4に示すような低角度ヘリカル層70LH)を効率的に積層することができるようになる。すなわち、フープ層70Pの繊維折返し端部70eがタンク1の口金11のほうへ徐々に寄ってしまっていると、これらフープ層70Pの間に形成される層(低角度ヘリカル層70LHなど)に曲げ(起伏)や蛇行が生じる結果、繊維強度が十分に発現しないことがあったが(図12参照)、本実施形態の場合には、当該層(本実施形態の場合、低角度ヘリカル層70LH)に曲げなどが生じないよう繊維70を効率的に積層して繊維強度の発現効率を向上させることが可能となる。
 また、高角度ヘリカル層70HHは、FRP層21の最外層に用いられていることが好ましい。一般に、高角度ヘリカル層70HHは、タンク1のストレート部1sとドーム部1dとの境界部分に繊維70の折返し端部70eが位置することから当該部分が厚肉となりやすく、このような高角度ヘリカル層70HHをFRP層21の中層に用いると、従来におけるように厚肉化した折返し端部70eの影響で低角度ヘリカル層70LHにて繊維曲げ(起伏)や蛇行が生じる場合があった。この点、本実施形態では、高角度ヘリカル層70HHを最外層に形成し、低角度ヘリカル層70LHにおける繊維曲げなどを抑制して全体として高い繊維強度を発現できるようにしている(図4参照)。なお、図4では高角度ヘリカル層70HHを構成する繊維70のうちの数本のみを示しているだけであり、すべての繊維70を示しているわけではない。
 なお、上述のように周方向繊維層71が占める割合を大きくする場合の具体内容は限定されないが、例えば、層数の比、すなわち(フープ層70Pの数):(ヘリカル層70Hの数)の値が2以上であるいわばフープリッチ状態のフープ層70Pおよびヘリカル層70HによってFRP層21を構成することが好ましい。フープ層70Pの層数をヘリカル層70Hの層数の2倍以上とすれば、特にタンク1のストレート部1sにおいて必要な強度を担保しやすいという点で好ましい。
 また、上述した実施形態において、2層以上同種類の繊維層を群として積層していくことにより周方向繊維層71を構成することも好ましい。例えば、巻角度89°の繊維を巻回してフープ層70Pを形成する場合、このような巻角度89°のフープ層70Pを2層以上、同種の層からなる群として積層することにより、例えばヘリカル層70Hの凹凸がフープ層70Hに転写されるのを抑制して繊維70の疲労強度を向上させることができる。また、これにより、繊維70の巻回に要する手間と時間を抑えつつ繊維強度の発現効率を向上させることもできる。
 さらに、ここまでは、周方向繊維層71(例えばフープ層70P)の繊維折返し端部70eが、積層方向内側から外側に向けて狭まる軌跡を描く場合について説明したが(図4参照)、この場合の軌跡は、積層方向内側(内層)から外側(外層)に向け常に狭まるものではなくても構わない。例えば、一部の周方向繊維層71の繊維折返し端部70eが、当該周方向繊維層71より積層方向外側(外層)に位置する他の周方向繊維層71の繊維折返し端部70eよりも、タンク軸方向においてタンク中央寄りに位置していても構わない。具体例を挙げて説明すると、巻角度89°のフープ層70Pが積層されて周方向繊維群が形成されている場合に、その繊維群中の一つの層を例えば巻角度80°のフープ層70P’とし(あるいは、巻角度80°未満の高角度ヘリカル層70HH’としてもよい)、当該フープ層70P’の繊維折返し端部70eを、それよりも内側のフープ層70Pの繊維折返し端部70eよりもタンク軸方向に例えばmだけ延ばしても構わない(図7参照)。周方向繊維層71の各層を構成するフープ層70Pや高角度ヘリカル層70HHの成形性や滑らかさ等を考慮すると、これら周方向繊維層71の繊維折返し端部70eの位置は常にその軌跡がタンク外周に向かうにつれ狭まるように配置されていなくても構わない。このように周方向繊維層71の一部において繊維折返し端部70eの位置が前後していても、これら繊維折返し端部70eが内層から外層に向け全体として狭まる軌跡を描いていればよい。
 以上説明した本実施形態のタンク1においては以下に述べるような作用効果が得られる。
 すなわち、本実施形態では、内層から外層に向かうにつれ繊維折返し端部70eが狭まるようにする等によりフープ層70Pとヘリカル層70Hの積層態様の最適化を図っていることから、ライナ20の周囲に巻回される各繊維70による強度発現の効率を向上させることができる。このことは、タンク1の大型化・高圧化やンク本数の減少化などが要請される近時の現状下では特に有効である。
 また、一般に、タンク1のFRP層21は、主にタンク周方向の応力を分担するフープ層70Pおよび高角度ヘリカル層70HH、また主にタンク軸方向の応力を分担する低角度ヘリカル層70LH等からなるところ、本実施形態ではさらに、タンク外寄り部分(外層)よりも内寄り部分(内層)の方で周方向繊維層71が占める割合を大きくしている。これによれば、特に周方向繊維層71(本実施形態ではフープ層70P)においてより高い繊維強度を発現させることができる。
 また、本実施形態のタンク1においては、周方向繊維層71(特にフープ層70P)の繊維折返し端部70eをストレート部1sまたはその近傍内に収めることとすれば、高角度ヘリカル層70HHをよりストレート部1sの側(タンク中央寄り)に寄せ、繊維強度をさらに発現させていわばフープ化することも可能となる。当然ながら、こうした場合には、高角度ヘリカル層70HHの一層あたりの繊維強度を向上させうるから、当該高角度ヘリカル層70HHの厚みをそのぶん低減させることも可能になる。同様に、低角度ヘリカル層70LHをよりストレート部1sの側(タンク中央寄り)に寄せた構造とすることもできるから、低角度ヘリカル層70LHの一層あたりの繊維強度を向上させ、当該低角度ヘリカル層70LHの厚みをそのぶん低減させることも可能になる。
 また、ストレート部1sとドーム部1dの繋ぎ目部分の近傍において低角度ヘリカル層70LHを滑らかに集約させ(図4参照)、尚かつ高角度ヘリカル層70HHをFRP層21の最外層に用いる本実施形態のタンク1によれば、高角度ヘリカル層70HHをフープ化すること、低角度ヘリカル層70LHの繊維70に曲げ(起伏)や蛇行が生じるのを抑制することが可能となっている。例えば本実施形態では、周方向繊維層71(特にフープ層70P)のタンク軸方向の両端(筒状に形成される周方向繊維層71の環状の両端)を、当該タンク軸方向に沿って先細りとなるようなテーパ状とし(図4等参照)、尚かつ、このようなテーパ状である周方向繊維層71の環状斜面に低角度ヘリカル層70LHの両端が連続するようにしながら当該低角度ヘリカル層70LHを形成している。これによれば、フープ層70Pの繊維折返し端部70eがタンク1の口金11のほうへ徐々に寄ってしまう従来の状態(図12参照)を回避し、低角度ヘリカル層70LHに曲げを生じさせないようにしつつ、繊維強度の発現効率が滑らかに連続するように低角度ヘリカル層70LHを形成することができる。
 加えて、繊維折返し端部70eにおいては繊維70どうしの重なりによって厚肉になりやすい特性を利用し、高角度ヘリカル層70HHにより補強フレームを形成することもできる。すなわち、FRP層21の厚みが増すことによって応力勾配の影響が無視できなくなってきたような場合に、例えば高角度ヘリカル層70HHを外層に集約し、繊維折返し端部70eを厚肉とすることで、このような応力勾配の影響を低減させうる補強フレーム70fとして機能させることができる(図8参照)。タンク落下時や車両衝突時などの衝撃に備え、タンク1には所定の耐衝撃性能が要求されることから、このように繊維折返し端部70eを厚肉とすることにより、特に外部と干渉しやすい部分(例えばストレート部1sとドーム部1dの繋ぎ目部分、あるいはこの繋ぎ目部分からドーム部1dにかけての部分)を補強することができる。また、タンク1のストレート部1sとドーム部1dとでは厚みも剛性も異なるため応力も異なり、一般的にはストレート部1sにおける応力のほうが高く、尚かつ繋ぎ目部分を介して一体化されているため当該繋ぎ目部分にモーメントも作用する。上述したように形成される補強フレーム70fは、このようなモーメントを打ち消すように厚肉とされたものであればさらに好ましい。
 また、上述したように、本実施形態においてはフープ層70Pとヘリカル層70Hの積層態様を最適化し、各方向(タンク軸方向、積層方向(タンク径方向)、周方向)および各種繊維層に関して繊維強度が効率よく発現されるようにしているので、これによって各層の厚みや繊維量、さらには総層数の低減を図ることが可能である。したがって、タンク1全体の軽量化を実現できるという利点もある。
 また、上述のようにFRP層21を構成する層(フープ層70P、ヘリカル層70H)の総数を低減させることによって、タンク1の内容量増加を図ることも可能である。タンク1が例えば燃料電池車用の水素供給用タンクとして利用される場合には、当該車両の航続距離の延伸に寄与することができる。
 また、上述した実施形態におけるように繊維折返し端部70eをタンク軸方向中央寄りに配置したことにより、タンク1の軽量化を図ることができるという利点もある。とりわけ、L/D(タンクの軸方向長さ/タンク直径)が小さい形状のタンク(軸方向長さの割にタンク径が大きいタンク)1においては、軽量化の効果が大きい。すなわち、L/Dが小さい形状のタンク(軸方向長さの割に太いタンク)1は、L/Dが大きい形状のタンク(軸方向長さの割に細いタンク)1に比べ、樹脂繊維層(補強層)としてのFRP層21の厚みが大となって繊維70の強度発現の効率が低下しやすく、この結果、当該樹脂繊維層(補強層)がより厚くなりやすいが、本実施形態によれば特にこのようなタンク1の効果的な軽量化を図ることが可能である。
 また、上述した実施形態におけるように繊維強度の発現効率を向上させることとすれば、採用可能な繊維70の幅が広がり、従来よりも強度や剛性などの程度が低い繊維70を採用することも可能となる。これによれば、タンク1に要するコストの削減を図ることが可能となる。
 また、上述したタンク1においては、周方向繊維層71(例えばフープ層70P)をタンク内寄りの多く配置して内層化するなど、同種層の繊維70を連続して、あるいはまとめて巻回するようにしている。こうした場合には、種類の異なる繊維層70への移行(例えばフープ層70Pから低角度ヘリカル層70LPへの移行)時に必要となるコンビネーション巻きを減らすことができるから、繊維70の段差を必要最小限にでき、タンク1の軽量化と成形時間短縮、さらには品質および性能の向上を図ることが可能となる。
 なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば上述した実施形態では、L/D(タンクの軸方向長さ/タンク直径)が小さい形状のタンク1において軽量化の効果が大きい点については上述したが、ライナ20に軸方向繊維72および周方向繊維層71が巻回する構成はFRP製圧力容器の基本的要素の一つであり、L/D、使用圧力の大小、FRP層21の形状や肉厚の大小などを問わず、FRP層21を有する種々のタンク1に本発明を適用することが可能である。一例を挙げると、タンク1のストレート部1sにおける最小必要厚みtは、下記の数式1から明らかなように使用圧力Pとタンク半径Rの積に比例するものであるが(なお、σ1は引張強度(あるいは破壊応力、繊維破断応力)を指す)、本発明は、この式に基づき算出される各繊維層の必要な総層数に応じ、あらゆる形状のタンク1に適用可能である。
[数1]
   t=3PR/2σ1
 また、ここまでの実施形態では、燃料電池システム等において利用可能な水素タンクに本発明を適用した場合を例示して説明したが、水素ガス以外の流体を充填するためのタンク、例えばCNG(圧縮天然ガス)を燃料として用いるCNG車両に利用される高圧圧力容器などに対しても本発明を適用することはもちろん可能である。
 さらに、本発明を、タンク(圧力容器)以外の物、例えば、FRP層を有する長尺物や構造物などの筒体(筒状の部分を含む)1’に適用することも可能である。一例を挙げれば、心棒(例えばマンドレルのようなもの)や型の外側にヘリカル巻やフープ巻によって繊維70を巻き付けてヘリカル層70Hやフープ層70Pを有するFRP層21を形成する場合に、フープ層70Pを内側に集約して内層化しあるいは繊維折返し端部70eを外層に向かうにつれて狭まる軌跡を描くように配置するなどにより、繊維強度の発現効率を向上させるといった、上述した実施形態におけるのと同様の作用効果を実現することが可能となる。このように本発明を筒体に適用する場合における筒体1’の具体例としては、ゴルフクラブのシャフトやカーボンバットといった運動用具、釣竿等のレジャー用具、さらにはプラント設備等のエンジニアリング製品、建築資材などの構造物といったものを挙げることができる。
 また、上述した実施形態では詳述していないが、ヘリカル層70Hの少なくとも一部を平滑ヘリカル層とし、その外側に隣接するフープ層70Pに生じうる凹凸を低減させることも好ましい。ここでいう平滑ヘリカル層70Hは、当該層内における繊維70どうしの重なりを低減させるようにしたヘリカル巻によって形成される層であり、原則、隣接する繊維70の真横に並ぶように次の繊維70が巻かれており、繊維70の重なり方が従来のヘリカル層(凹凸ヘリカル層)とは異なる。このように、一部のヘリカル層70Hを平滑ヘリカル層としたうえで、当該平滑ヘリカル層70Hの外側に繊維70をフープ巻してフープ層70Pを形成した場合、当該フープ層70Pにおける繊維70の構造的な曲げ(起伏)ないしは波打ち、うねりを低減することができる。すなわち、平滑ヘリカル層70Hの表面(表層)は従来よりも平滑な面となるため、当該平滑面の上に形成されるフープ層70Pにおいては、凹凸に起因する構造的な繊維70の曲げ(起伏)が低減する。このようにフープ層70Pの繊維70の構造的な曲げ(起伏)を抑えることにより当該繊維70の疲労強度を向上させることができ、尚かつ、当該フープ層70Pが薄肉化、高Vf化してバースト強度が向上するという利点が得られる。また、ヘリカル層70H自体が平滑であることも、当該層の薄肉化、高Vf化を通じてバースト強度を向上させうる。Vfは繊維体積含有率を表し、その値(Vf値)が大きくなると繊維の含有率が高くなり、樹脂の含有率が小さくなる。このVfの値が高すぎると疲労耐久性が悪化し、値を下げすぎるとタンク外形が大きくなる。
 また、上述したタンク1において、ライナ20に対する巻き始めを、ヘリカル層70Hを形成する繊維70、あるいはフープ層70Pを形成する繊維70のいずれとすることも可能である。このように巻き始めの繊維70を適宜変更することにより、当該タンク1が万が一破壊に至る場合の破壊開始位置を設定することができる。上述したように、ヘリカル層70H、フープ層70Pとも、内側に位置する層(ライナ20寄りの層)ほどタンク強度への寄与度が大きい。そこで、例えば、ライナ20に対する巻き始めをフープ層70Pの形成繊維70とし、ストレート部1sに対する繊維強度をドーム部1dに対するそれよりも大きくすることにより、破壊開始位置がドーム部1dとなるように予め設定することが可能である。
 また、上述した実施形態では、図6を用いて、FRP層21の内層側に周方向繊維層71を配し、外層側に軸方向繊維72を配した場合を示したがこれは一例にすぎず、適宜この他の態様とすることが可能である。例えば、軸方向繊維72(低角度ヘリカル層70LH)によって十分な繊維強度が発現される場合には、最外層に高角度ヘリカル層70HHを設けないこととすることができる(図6参照)。
 さらには、FRP層20における局所的な変形を抑えたい場合、あるいはライナ20の変形を抑えたい場合などにおいて、高角度ヘリカル層70HHを単数もしくは複数入れ込んだ構成とすることもできる。例えば図9に示す形態では、単層(ないしは複数の層)の高角度ヘリカル層70HHを最内層(ライナ20の外周)に形成し、所望の繊維強度が発現されるようにしている。
 本発明は、FRP層を有するタンク、さらには長尺物や構造物などの筒体に適用しても好適なものである。
1…タンク、1’…筒体、12…タンク軸、20…ライナ、21…FRP層、70…繊維、70e…繊維折返し端部、70P…フープ層、70LH…低角度ヘリカル層、70HH…高角度ヘリカル層、71…周方向繊維(層)、72…軸方向繊維(層)、

Claims (11)

  1.  ライナと、
     当該タンクの中心のタンク軸に対する巻角度が0°を超え30°未満となる範囲で前記ライナの外周に繊維が巻回されて形成される軸方向繊維層と、前記タンク軸に対する巻角度が30°以上90°未満となる範囲で前記ライナの外周に前記繊維が巻回されて形成される周方向繊維層とからなるFRP層と、
    を有し、
     前記周方向繊維層の前記タンク軸方向における繊維折返し端部が、前記繊維層の積層方向内側から外側に向けて狭まる軌跡を描いている、タンク。
  2.  前記繊維層の積層方向外寄りに形成される前記繊維折返し端部が、積層方向内寄りに形成される前記周方向繊維層のタンク軸方向における繊維折返し端部に対して、当該タンクの中央寄りに位置している、請求項1に記載のタンク。
  3.  前記繊維層の積層方向の外寄り部分よりも内寄り部分の方で、前記周方向繊維層が占める割合が大きくなっている、請求項1または2に記載のタンク。
  4.  前記周方向繊維層は、2層以上の同種繊維層を群として積層することにより構成されたものである、請求項1から3のいずれか一項に記載のタンク。
  5.  前記タンク軸に対する巻角度が80°以上90°未満であるフープ層によって前記周方向繊維層が形成され、前記タンク軸に対する巻角度が0°以上30°未満である低角度ヘリカル層によって前記軸方向繊維層が形成されている、請求項1から4のいずれか一項に記載のタンク。
  6.  前記タンク軸に対する巻角度が30°以上80°未満である高角度ヘリカル層が前記FRP層の最外層に用いられている、請求項5に記載のタンク。
  7.  前記FRP層が、前記フープ層の数:前記ヘリカル層の数の比が2以上である当該フープ層およびヘリカル層によって構成されている、請求項5または6に記載のタンク。
  8.  一部の前記周方向繊維層の繊維折返し端部が、当該周方向繊維層より積層方向外側に位置する他の周方向繊維層の繊維折返し端部よりも、タンク軸方向タンク中央寄りに位置している、請求項1に記載のタンク。
  9.  前記ライナに対する巻き始めが、前記タンク軸に対する巻角度が0°以上80°未満であるヘリカル層を形成する繊維である、請求項1から8のいずれか一項に記載のタンク。
  10.  前記ライナに対する巻き始めが、前記タンク軸に対する巻角度が80°以上90°未満であるフープ層を形成する繊維である、請求項1から8のいずれか一項に記載のタンク。
  11.  当該タンクの中心のタンク軸に対する巻角度が0°を超え30°未満となる範囲でライナの外周に繊維を巻回して軸方向繊維層を形成し、前記タンク軸に対する巻角度が30°以上90°未満となる範囲で前記繊維を巻回して周方向繊維層を形成し、FRP層を形成するタンクの製造方法において、
     前記周方向繊維層を形成する際、当該周方向繊維層の前記タンク軸方向における繊維折返し端部により、前記繊維層の積層方向内側から外側に向けて狭まる軌跡を描かせる、タンクの製造方法。
PCT/JP2009/057351 2009-04-10 2009-04-10 タンクおよびその製造方法 WO2010116526A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/263,691 US8727174B2 (en) 2009-04-10 2009-04-10 Tank and manufacturing method thereof
JP2011508168A JP5348570B2 (ja) 2009-04-10 2009-04-10 タンクおよびその製造方法
PCT/JP2009/057351 WO2010116526A1 (ja) 2009-04-10 2009-04-10 タンクおよびその製造方法
CN200980158623.9A CN102388256B (zh) 2009-04-10 2009-04-10 罐及其制造方法
EP09843035.8A EP2418412B1 (en) 2009-04-10 2009-04-10 Tank and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057351 WO2010116526A1 (ja) 2009-04-10 2009-04-10 タンクおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2010116526A1 true WO2010116526A1 (ja) 2010-10-14

Family

ID=42935834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057351 WO2010116526A1 (ja) 2009-04-10 2009-04-10 タンクおよびその製造方法

Country Status (5)

Country Link
US (1) US8727174B2 (ja)
EP (1) EP2418412B1 (ja)
JP (1) JP5348570B2 (ja)
CN (1) CN102388256B (ja)
WO (1) WO2010116526A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149739A (ja) * 2011-01-21 2012-08-09 Toyota Motor Corp 高圧タンクの製造方法、および、高圧タンク
WO2012161006A1 (ja) * 2011-05-26 2012-11-29 八千代工業株式会社 圧力容器
JP2013053729A (ja) * 2011-09-06 2013-03-21 Nippon Soken Inc 高圧ガスタンク、及び高圧ガスタンクの製造方法
JP2017140809A (ja) * 2016-02-12 2017-08-17 トヨタ自動車株式会社 タンクの製造方法
WO2018096905A1 (ja) * 2016-11-24 2018-05-31 東レ株式会社 圧力容器の製造方法
JP2019178702A (ja) * 2018-03-30 2019-10-17 豊田合成株式会社 高圧タンク及びその製造方法
CN110871577A (zh) * 2018-08-31 2020-03-10 丰田自动车株式会社 罐的制造方法
JP2020112189A (ja) * 2019-01-09 2020-07-27 トヨタ自動車株式会社 圧力容器
US10801668B2 (en) 2018-08-31 2020-10-13 Toyota Jidosha Kabushiki Kaisha Manufacturing method for tank
EP4215796A1 (en) * 2022-01-25 2023-07-26 Indian Oil Corporation Limited A pressure vessel for storing fluid

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2963659B1 (fr) * 2010-08-03 2014-03-21 Astrium Sas Liaison entre liner metallique et structure composite dans la zone d'embase d'un reservoir
DE102011105300A1 (de) * 2011-06-22 2012-12-27 Georg Weirather Behälter und Verfahren zur Herstellung desselben
JP5864146B2 (ja) * 2011-06-29 2016-02-17 株式会社日本自動車部品総合研究所 高圧ガスタンク、及び高圧ガスタンクの製造方法
JP5531040B2 (ja) * 2012-02-27 2014-06-25 トヨタ自動車株式会社 高圧ガスタンクの製造方法
US20140291048A1 (en) * 2013-03-28 2014-10-02 GM Global Technology Operations LLC Tank for storing compressed natural gas
JP5999039B2 (ja) * 2013-07-10 2016-09-28 トヨタ自動車株式会社 高圧タンクおよび高圧タンクの製造方法
EP3055601B1 (en) * 2013-10-08 2020-03-04 Performance Pulsation Control, Inc. Composite pulsation dampener
CA2956995C (en) * 2014-08-04 2021-07-06 Nissan Motor Co., Ltd. Reinforcing layer for a high-pressure tank
US9829153B2 (en) * 2014-09-18 2017-11-28 Spencer Composites Corporation Composite pressure vessel and method of construction
JP6281525B2 (ja) * 2015-05-21 2018-02-21 トヨタ自動車株式会社 高圧タンク、高圧タンクの製造方法、ライナー形状の設計方法
JP6241450B2 (ja) * 2015-06-02 2017-12-06 トヨタ自動車株式会社 タンクの製造方法
DE202015105815U1 (de) * 2015-09-24 2016-12-28 Rehau Ag + Co Druckbehälter zur Speicherung von Gasen oder Flüssigkeiten unter Drücken oberhalb von 200 bar
JP6703715B2 (ja) * 2015-10-26 2020-06-03 サムテック株式会社 複合容器
EP3425258B1 (en) * 2016-03-04 2020-05-27 Nissan Motor Co., Ltd. Structure body, and method for manufacturing structure body
KR102261803B1 (ko) * 2016-03-07 2021-06-08 헥사곤 테크놀로지 에이에스 압력 용기를 위한 권취 장착식 단부 보호 구성요소
JP6638587B2 (ja) * 2016-07-15 2020-01-29 株式会社豊田自動織機 繊維巻回体、繊維強化樹脂材、及び繊維巻回体の製造方法
KR20180017377A (ko) * 2016-08-09 2018-02-21 현대자동차주식회사 고압 용기
JP6705402B2 (ja) * 2017-03-13 2020-06-03 トヨタ自動車株式会社 補強層の製造方法
RU2670289C2 (ru) * 2017-03-30 2018-10-22 Акционерное общество "Дзержинское производственное объединение "Пластик" Способ изготовления силовой оболочки полимерно-композитного газового баллона высокого давления
DE102017208492B4 (de) * 2017-05-19 2020-07-30 Nproxx B.V. Polkappenverstärkter Druckbehälter
KR102322373B1 (ko) * 2017-05-26 2021-11-05 현대자동차주식회사 후프층 및 헬리컬층이 와인딩된 고압용기
JP6766756B2 (ja) * 2017-06-08 2020-10-14 豊田合成株式会社 耐圧容器
DE102017214606A1 (de) * 2017-08-22 2019-02-28 Volkswagen Ag Brennstofftank und Fahrzeug
DE102018201254A1 (de) * 2018-01-29 2019-08-01 Audi Ag Gasdruckspeicher, Verfahren zur Herstellung eines Gasdruckspeichers und Vorrichtung zur Durchführung des Verfahrens
DE102018210788A1 (de) 2018-06-29 2020-01-02 Ford Global Technologies, Llc Herstellungsverfahren für einen faserverstärkten Behälter
JP7351077B2 (ja) * 2018-09-28 2023-09-27 トヨタ自動車株式会社 高圧タンク
JP7001041B2 (ja) * 2018-11-02 2022-02-03 トヨタ自動車株式会社 高圧タンクの製造方法
JP7099270B2 (ja) * 2018-11-15 2022-07-12 村田機械株式会社 フィラメントワインディング装置
JP7092058B2 (ja) * 2019-01-31 2022-06-28 トヨタ自動車株式会社 高圧タンクおよびその製造方法
JP7207103B2 (ja) * 2019-04-01 2023-01-18 トヨタ自動車株式会社 高圧タンク及びその製造方法
JP7401213B2 (ja) * 2019-07-10 2023-12-19 株式会社Soken 高圧タンク
JP7230758B2 (ja) * 2019-09-27 2023-03-01 トヨタ自動車株式会社 構造物の拘束構造
KR102401745B1 (ko) * 2019-11-27 2022-05-25 롯데케미칼 주식회사 후프층 및 헬리컬층이 와인딩된 고압탱크 및 그 제작방법
JP7226345B2 (ja) * 2020-01-09 2023-02-21 トヨタ自動車株式会社 高圧タンクの製造方法
JP7338583B2 (ja) * 2020-07-31 2023-09-05 トヨタ自動車株式会社 高圧タンクの製造方法
JP7091407B2 (ja) * 2020-09-08 2022-06-27 本田技研工業株式会社 高圧容器
RU2765217C1 (ru) * 2020-12-30 2022-01-26 Закрытое акционерное общество Научно-производственное предприятие "Маштест" Металлокомпозитный баллон для дыхательного аппарата
JP7447851B2 (ja) * 2021-03-16 2024-03-12 トヨタ自動車株式会社 高圧タンクの製造方法、高圧タンク製造装置、及びコンピュータプログラム
JP2022144646A (ja) * 2021-03-19 2022-10-03 本田技研工業株式会社 高圧タンク及びその製造方法
LU102846B1 (en) * 2021-07-16 2023-01-16 Plastic Omnium New Energies France Dome reinforcement shell for a pressure vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106787A (ja) * 2000-09-26 2002-04-10 Toyota Motor Corp 高圧ガス容器及びその製造方法
JP2005036918A (ja) * 2003-07-16 2005-02-10 Samtec Kk 高剛性繊維を用いた高圧タンク及びその製造方法
JP2005113971A (ja) * 2003-10-03 2005-04-28 Fuji Heavy Ind Ltd 耐圧容器用ライナ
JP2008032088A (ja) 2006-07-27 2008-02-14 Toyota Motor Corp タンク
JP2008057632A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 流体貯蔵タンク

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2744043A (en) * 1950-01-23 1956-05-01 Fels & Company Method of producing pressure containers for fluids
US2791241A (en) * 1954-07-06 1957-05-07 Smith Corp A O Fiber reinforced tubular article
US3240644A (en) * 1962-11-02 1966-03-15 Specialties Dev Corp Method of making pressure vessels
US3815773A (en) * 1971-05-17 1974-06-11 Brunswick Corp Cyclic pressure vessel
US4366917A (en) * 1975-03-04 1983-01-04 Technigaz Cryogenic tank
FR2387414A1 (fr) * 1977-04-15 1978-11-10 Air Liquide Recipient leger pour le stockage de fluides sous pression
US5499739A (en) * 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
US6190481B1 (en) * 1995-12-04 2001-02-20 Toray Industries, Inc. Pressure vessel and process for producing the same
US5798156A (en) * 1996-06-03 1998-08-25 Mitlitsky; Fred Lightweight bladder lined pressure vessels
JPH11101397A (ja) 1997-09-26 1999-04-13 Mitsubishi Heavy Ind Ltd Frp製ドーム付き円筒形状圧力容器
US7803241B2 (en) * 2002-04-12 2010-09-28 Microcosm, Inc. Composite pressure tank and process for its manufacture
US7541078B1 (en) * 2004-05-10 2009-06-02 The United States Of America As Represented By The Secretary Of The Air Force Fiber composite over-wrap for a cryogenic structure
US20080061466A1 (en) * 2006-09-12 2008-03-13 John Bennette Cornwell Water management chamber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106787A (ja) * 2000-09-26 2002-04-10 Toyota Motor Corp 高圧ガス容器及びその製造方法
JP2005036918A (ja) * 2003-07-16 2005-02-10 Samtec Kk 高剛性繊維を用いた高圧タンク及びその製造方法
JP2005113971A (ja) * 2003-10-03 2005-04-28 Fuji Heavy Ind Ltd 耐圧容器用ライナ
JP2008032088A (ja) 2006-07-27 2008-02-14 Toyota Motor Corp タンク
JP2008057632A (ja) * 2006-08-30 2008-03-13 Toyota Motor Corp 流体貯蔵タンク

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418412A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012149739A (ja) * 2011-01-21 2012-08-09 Toyota Motor Corp 高圧タンクの製造方法、および、高圧タンク
WO2012161006A1 (ja) * 2011-05-26 2012-11-29 八千代工業株式会社 圧力容器
JP2013053729A (ja) * 2011-09-06 2013-03-21 Nippon Soken Inc 高圧ガスタンク、及び高圧ガスタンクの製造方法
JP2017140809A (ja) * 2016-02-12 2017-08-17 トヨタ自動車株式会社 タンクの製造方法
WO2018096905A1 (ja) * 2016-11-24 2018-05-31 東レ株式会社 圧力容器の製造方法
JP2019178702A (ja) * 2018-03-30 2019-10-17 豊田合成株式会社 高圧タンク及びその製造方法
CN110871577A (zh) * 2018-08-31 2020-03-10 丰田自动车株式会社 罐的制造方法
US10801668B2 (en) 2018-08-31 2020-10-13 Toyota Jidosha Kabushiki Kaisha Manufacturing method for tank
CN110871577B (zh) * 2018-08-31 2022-07-22 丰田自动车株式会社 罐的制造方法
US11400640B2 (en) 2018-08-31 2022-08-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for tank
JP2020112189A (ja) * 2019-01-09 2020-07-27 トヨタ自動車株式会社 圧力容器
EP4215796A1 (en) * 2022-01-25 2023-07-26 Indian Oil Corporation Limited A pressure vessel for storing fluid

Also Published As

Publication number Publication date
US8727174B2 (en) 2014-05-20
EP2418412A1 (en) 2012-02-15
US20120024746A1 (en) 2012-02-02
JPWO2010116526A1 (ja) 2012-10-18
EP2418412A4 (en) 2014-01-01
CN102388256A (zh) 2012-03-21
JP5348570B2 (ja) 2013-11-20
CN102388256B (zh) 2015-03-18
EP2418412B1 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5348570B2 (ja) タンクおよびその製造方法
JP5182597B2 (ja) タンクおよびその製造方法
US9316359B2 (en) Tank and manufacturing method thereof
JP5741006B2 (ja) 高圧タンクの製造方法、および、高圧タンク
JP5408351B2 (ja) 高圧タンクおよび高圧タンクの製造方法
JP5621631B2 (ja) 高圧タンクの製造方法、および、高圧タンク
JP2006132746A (ja) 圧力容器及び水素貯蔵タンク並びに圧力容器の製造方法
JP2010270878A (ja) 圧力容器構造
WO2010116529A1 (ja) タンクおよびその製造方法
KR102322371B1 (ko) 실린더부가 보강된 압력 용기
JP2001021099A (ja) 圧力容器
JP4771209B2 (ja) Frp筒体およびその製造方法
US20210404603A1 (en) Compressed gas storage unit with preformed endcaps
JP2005113971A (ja) 耐圧容器用ライナ
CN1238655C (zh) 正交缠绕的复合高压气瓶
JPH10274391A (ja) 耐外圧性に優れたfrp圧力容器
JPH10274392A (ja) 耐外圧性に優れたfrp圧力容器
JP2008057632A (ja) 流体貯蔵タンク
JP2000337594A (ja) 圧力容器
JP7093240B2 (ja) 高圧タンク
JP2024043009A (ja) タンク
JP2020112234A (ja) 圧力容器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158623.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011508168

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13263691

Country of ref document: US

Ref document number: 2009843035

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE