WO2010110237A1 - 反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法 - Google Patents

反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法 Download PDF

Info

Publication number
WO2010110237A1
WO2010110237A1 PCT/JP2010/054923 JP2010054923W WO2010110237A1 WO 2010110237 A1 WO2010110237 A1 WO 2010110237A1 JP 2010054923 W JP2010054923 W JP 2010054923W WO 2010110237 A1 WO2010110237 A1 WO 2010110237A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
film
reference point
multilayer reflective
mark
Prior art date
Application number
PCT/JP2010/054923
Other languages
English (en)
French (fr)
Inventor
笑喜 勉
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2011506042A priority Critical patent/JP5420639B2/ja
Priority to US13/259,862 priority patent/US8512918B2/en
Publication of WO2010110237A1 publication Critical patent/WO2010110237A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/708Mark formation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating

Definitions

  • the present invention relates to a substrate with a multilayer reflective film for a reflective mask, a reflective mask blank, and a method for producing them.
  • EUV lithography which is an exposure technique using extreme ultraviolet light (Extreme Ultra Violet; hereinafter referred to as EUV light) with a shorter wavelength
  • EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 0.2 nm to 100 nm.
  • the exposure mask used in this EUV lithography has a multilayer reflective film (multilayer film) that reflects EUV light as exposure light on a substrate (underlying substrate), and further absorbs EUV light on the multilayer reflective film.
  • a reflective mask in which an absorber film (metal film) is provided in a pattern is usually used.
  • the exposure light incident on the reflective mask is absorbed at a portion where the absorber film pattern is present, and the absorber film pattern.
  • the light reflected by the multilayer reflective film is transferred to, for example, a semiconductor substrate (a silicon wafer with a resist) through a reflective optical system.
  • problems in the photolithography process used in the semiconductor manufacturing process are becoming more prominent.
  • One of the problems is a problem related to defects in a photomask substrate on which a pattern is used, which is used in a photolithography process.
  • the position of the defect on the photomask substrate is specified by the distance from the end face of the substrate. For this reason, the positional accuracy is low, and even when patterning on the light-shielding film while avoiding defects, it is difficult to avoid in the order of ⁇ m. For this reason, defects have been avoided by changing the pattern transfer direction or roughly shifting the transfer position on the order of mm.
  • a reference mark which is a recess having a cross-sectional shape whose width is reduced from the main surface to the bottom
  • a multilayer reflective film that is a laminated film of several tens of cycles is used as the reference mark. Therefore, the depth and width of the recesses are likely to be reduced compared to a normal light-shielding film having the same film thickness.
  • the depth is about 3 ⁇ m
  • the recesses are formed each time the multilayer reflective film is stacked one by one. As the depth and width decrease, contrast with inspection light (such as deep ultraviolet light of about 190 to 260 nm) cannot be obtained.
  • the defect includes a defect present in the glass substrate and a defect present in the light shielding film.
  • the defect of the glass substrate can be selected for use according to the number and position of the defect in the inspection after the polishing process of the glass substrate is completed. For this reason, importance is attached to avoiding defects in the light shielding film. About the defect of a light shielding film, it is possible to correct the defect by FIB etc. in the part which cannot be avoided.
  • the EUV exposure light does not pass through the glass substrate, and defects on the surface of the glass substrate directly affect the multilayer reflective film.
  • Defect inspection is also performed on the substrate after the multilayer reflective film is formed, but the defect of the multilayer reflective film has many factors such as surface defects on the substrate and contamination of particles when forming the multilayer reflective film. The incidence of defects is higher than that of mask blanks, and if the selection criteria are made too strict, the yield will be greatly deteriorated.
  • the present invention relates to a substrate with a multilayer reflective film in which a multilayer reflective film is formed on a glass substrate having a reference point mark at a predetermined position, or a reflective mask blank in which an absorber film is formed thereon.
  • a substrate with a multilayer reflective film in which a multilayer reflective film is formed on a glass substrate having a reference point mark at a predetermined position, or a reflective mask blank in which an absorber film is formed thereon.
  • defect inspection sufficient contrast is obtained between the position of the reference point mark and its surroundings even if the outermost surface of the multilayer reflective film or absorber film on the reference point mark is irradiated with inspection light. It is an object of the present invention to provide a device that can identify the position of the reference point mark with high accuracy.
  • the conventional reference point mark has a configuration in which a concave shape having a gentle cross-sectional shape physically formed by a laser is formed on the main surface of the substrate, so that it is also a boundary portion between the main surface and the side wall on the main surface of the substrate. Edge contrast is difficult to obtain, and in the state of a mask blank in which a film is formed on the main surface, it is more difficult to obtain edge contrast. For this reason, the defect inspection apparatus detects the reference point mark based on the contrast between the portion of the film surface where the reference point mark is not formed and the deep concave portion.
  • a reflective mask blank since a multilayer reflective film, a capping film, a buffer film, an absorber film, etc. are laminated, it is not possible to obtain contrast on the absorber film surface at a depth of about 3 ⁇ m. It was difficult. Further, the edge roughness of the reference mark is large, and it is difficult to detect the mark with high accuracy.
  • the present inventor makes a concave or convex shape in which the side wall of the mark pattern is generally upright on the substrate surface in order to obtain contrast at the edge portion of the reference point mark.
  • a reference point mark that can provide sufficient contrast was considered.
  • the substrate with a multilayer reflective film for a reflective mask according to the present invention is mainly composed of a substrate, a high refractive index layer mainly composed of a high refractive index material and a low refractive index material on the main surface of the substrate.
  • a substrate with a multilayer reflective film for a reflective mask having a multilayer reflective film having a structure in which low refractive index layers are alternately laminated, and outside the pattern formation region on the main surface of the substrate on which the multilayer reflective film is formed A reference point mark having a concave shape or a convex shape in which the side wall is substantially upright is formed in the region.
  • the multilayer reflective film is characterized in that the multilayer reflective film is formed on a main surface including a portion where a reference point mark is formed. In this way, there is an advantage that the step of forming the multilayer reflective film does not need to be changed from the conventional one.
  • the multilayer reflective film may be formed excluding at least the main surface of the portion where the reference point mark is formed. In this way, when an electron beam is used for scanning the reference point mark, it is possible to suppress the influence of thermal damage or the like.
  • the reference point mark may have a depth that can be detected by scanning with an electron beam.
  • scanning with an electron beam detection is possible even if the height difference between the reference point mark and its surroundings is small compared to scanning with inspection light used in conventional defect inspection. Further, since the line width of the scanning electron beam is small, position detection with higher accuracy is possible.
  • the reference point mark has a concave shape or a convex shape whose side walls are generally upright, the contrast of the edge portion is easily obtained. Even if the height of the convex shape is made larger than 30 nm, it sufficiently functions as a reference point mark.
  • the depth of the concave shape or the height of the convex shape is preferably 40 nm or more. Furthermore, when more reliable detection is required even in the case of scanning with inspection light used in the conventional defect inspection, it may be larger than 50 nm.
  • the substrate with a multilayer reflective film for a reflective mask includes a mark forming thin film between the substrate and the multilayer reflective film, and the reference point mark is a concave shape formed on the mark forming thin film, or a mark forming thin film. It is good also as the concave shape formed over a board
  • a resist pattern having a concave pattern is formed on the mark forming thin film, and the concave shape is formed on the mark forming thin film by dry etching using the resist pattern as a mask, or the substrate is also dry etched as it is.
  • a concave shape is formed from the mark forming thin film to the substrate to form a reference point mark. This eliminates the need to peel off the mark forming thin film after forming the reference point mark.
  • the mark forming thin film may be formed of a material having resistance to an etching gas for etching the substrate.
  • a resist pattern having a concave pattern is formed on the mark forming thin film, and the concave shape is formed on the mark forming thin film by dry etching using the resist pattern as a mask, or the concave pattern is further transferred.
  • the substrate is dry-etched using the etching mask pattern, which is the mark forming thin film, as a mask, and a concave shape is formed from the mark forming thin film to the substrate to form a reference point mark. This also eliminates the need to peel off the mark forming thin film after forming the reference point mark. Furthermore, the film thickness of the resist pattern can be reduced.
  • the mark forming thin film is made of a conductive material
  • the following effects are also obtained.
  • a reflective mask blank is manufactured by forming a capping film, a buffer film, an absorber film, etc. on this substrate with a multilayer reflective film, and a reflective mask is manufactured based on this, EUV exposure light is applied to the reflective mask. If the irradiation continues, the multilayer reflective film is gradually charged. At this time, if the mark forming thin film is made of a conductive material, electrons can be released therefrom.
  • the reflective mask is of the type that utilizes the phase shift effect and the multilayer reflective film in the blind area is removed, the electrons charged in the multilayer reflective film inside the blind area are transferred from the thin film for mark formation. It can be escaped and is more effective.
  • a convex reference point mark it may be formed of a material different from the material forming the substrate.
  • a mark forming thin film made of a material that can be etched with an etching gas that is difficult to etch the substrate is formed on the main surface of the substrate, and a resist pattern having a convex pattern is formed on the mark forming thin film.
  • a convex shape is formed with a mark forming thin film by dry etching using as a mask, and this is used as a reference point mark. Thereby, deterioration of the surface roughness and flatness of the substrate main surface other than the portion where the convex shape is formed can be reliably suppressed.
  • a glass-based material is often used for the substrate. Therefore, a chlorine-based gas, which is an etching gas in which the glass-based material is difficult to be etched, or a mixture of a chlorine-based gas and oxygen is used. Materials that are etched with gas are preferred. Materials that can be etched with a chlorine-based gas include tantalum-based materials that do not substantially contain oxygen (for example, Ta, TaB, TaC, TaN, TaBN, TaCN, TaBCN, etc.) and tantalum-based alloy materials (TaHf, TaZr, etc.) ).
  • Examples of materials that can be etched with a mixed gas of chlorine-based gas and oxygen include chromium-based materials (for example, Cr, CrN, CrC, CrO, CrON, CrCN, CrOC, CrOCN) and ruthenium-based materials.
  • the position where the reference point mark is formed is outside the pattern formation region of the reflective mask, and further, inside by a predetermined width from the outer edge of the substrate. It is preferable.
  • the reference point mark may have a cross shape when viewed from the main surface side of the substrate. Further, it is more preferable that three or more reference point marks are provided, and the three or more reference point marks are formed at positions that do not line up on a straight line.
  • the method for manufacturing a substrate with a multilayer reflective film for a reflective mask according to the present invention comprises a substrate, a high refractive index layer mainly composed of a high refractive index material, and a low refractive index material on the main surface of the substrate.
  • the method for manufacturing a substrate with a multilayer reflective film for a reflective mask according to the present invention comprises a substrate, a high refractive index layer mainly composed of a high refractive index material, and a low refractive index material on the main surface of the substrate.
  • the reference point mark is formed on the mark forming thin film, there is an advantage that it is not necessary to perform a step of dry etching the substrate and a step of peeling off the mark forming thin film.
  • the resist pattern can be made thinner.
  • deterioration of the flatness and surface roughness of the substrate can be suppressed.
  • the method for manufacturing a substrate with a multilayer reflective film for a reflective mask according to the present invention includes a substrate, a high refractive index layer mainly composed of a high refractive index material and a low refractive index material as main components on the main surface of the substrate.
  • Forming a mark-forming thin film having resistance to the mark forming a resist pattern having a reference point mark pattern on the upper surface of the mark-forming thin film, and using the resist pattern as a mask, for forming the mark
  • a step of dry etching the thin film to form an etching mask pattern and the substrate is dry etched using the etching mask pattern as a mask so that the side walls are substantially upright.
  • Forming a reference point mark is a concave or convex shape, characterized by having a.
  • the film thickness of the mark forming thin film can be made thinner and the film stress can be made smaller.
  • the above-described method for manufacturing a substrate with a multilayer reflective film for a reflective mask may include a step of peeling the mark forming thin film after forming a reference point mark on the substrate.
  • the multilayer reflective film may be formed excluding at least the main surface of the portion where the reference point mark is formed.
  • the mark forming thin film is preferably made of a material containing Cr as a main component. Examples of the material containing Cr as a main component include Cr, CrN, CrC, CrO, CrON, CrCN, CrOC, and CrOCN.
  • the chromium-based material is a material that is etched with a mixed gas of chlorine-based gas and oxygen, and has very high etching resistance to the fluorine-based gas.
  • a substrate made of a glass-based material is easily etched with a fluorine-based gas and has high etching resistance to a mixed gas of chlorine-based gas and oxygen.
  • the chromium-based material has a very high etching selectivity with respect to the glass-based material substrate, and the deterioration of the surface roughness and flatness of the main surface of the substrate when peeling off the mark forming thin film is ensured. Can be suppressed.
  • a tantalum-based material for example, Ta, TaB, TaC, TaN, substantially free of oxygen
  • a chlorine-based gas for example, TaBN, TaCN, TaBCN, etc.
  • tantalum alloy materials titanium-based materials
  • Examples of the material that can be etched with a mixed gas of chlorine-based gas and oxygen include ruthenium-based materials.
  • the reference mark is formed only on the mark forming thin film using the resist pattern as a mask, or the reference mark is formed on the mark forming thin film and the substrate using only the resist pattern as a mask. In this case, the reference mark can be formed without any problem even if a material that can be etched with a fluorine-based gas is used.
  • the reflective mask blank according to the present invention is characterized by having an absorber film that absorbs exposure light on the multilayer reflective film of the multilayer reflective film-coated substrate for a reflective mask.
  • a buffer film mainly containing Cr or a capping film mainly containing Ru may be provided between the multilayer reflective film and the absorber film.
  • the reflective mask blank manufacturing method absorbs exposure light on the multilayer reflective film of the reflective mask multilayer reflective substrate manufactured by the reflective mask multilayer reflective substrate manufacturing method.
  • a step of forming an absorber film is included before the step of forming the absorber film.
  • a step of forming a buffer film mainly containing Cr or a capping film mainly containing Ru on the multilayer reflective film may be included before the step of forming the absorber film.
  • the method for manufacturing a reflective mask according to the present invention includes a step of patterning the absorber film of the reflective mask blank into a predetermined shape.
  • the substrate with a multilayer reflective film according to the present invention by forming a reference point mark having a concave shape or a convex shape with the sidewalls substantially upright on the substrate, even if the multilayer reflective film is formed on the reference point mark, A sufficient contrast with respect to inspection light for defect inspection or scanning with an electron beam can be obtained, and the position of the reference point mark can be identified with high accuracy. Thereby, a substrate with a multilayer reflective film can be obtained in which the position of the defect can be specified with an accuracy of the order of ⁇ m with reference to the reference point mark.
  • the reference point mark and its Sufficient contrast is obtained with the surroundings. Since the position of the defect can be specified with an accuracy of the order of ⁇ m, the defect can be avoided with high accuracy when the transfer pattern is patterned on the absorber film, and a defect-free reflective mask can be manufactured.
  • FIG. 1B is a cross-sectional view for explaining a reflective mask blank according to an embodiment of the present invention, and is a cross-sectional view taken along the line Ib-Ib in FIG. 1A. It is a figure for demonstrating the reference point mark in embodiment of this invention, and is an enlarged view of the cross section of a reference point mark. It is a figure for demonstrating the reference point mark in embodiment of this invention, and is an enlarged view of the figure seen from the upper direction of the board
  • FIG. 1 is a diagram for explaining a reflective mask blank according to an embodiment of the present invention.
  • 1A is a plan view of a reflective mask blank
  • FIG. 1B is a cross-sectional view taken along the line Ib-Ib in FIG. 1A.
  • the reflective mask blank 10 has two relatively large reference point marks 11a for coarse alignment and a small reference mark 11b on the reflective mask blank 10. And have.
  • an example having two course alignment reference marks 11a and four reference point marks 11b is shown as an example.
  • the region where the reference point mark is formed is preferably a region where the flatness of the substrate main surface of the reflective mask blank 10 is good, but the outer peripheral side of the substrate main surface is flat because of the polishing characteristics in the polishing process of the substrate main surface. Tends to get worse.
  • the center side of the main surface (for example, the inside of a 132 mm square region with respect to the center of the substrate) is a pattern formation region when the reflective mask is manufactured, the portions where the reference marks 11a and 11b are provided are It is better to be as close to the outer peripheral edge as possible.
  • the reference marks 11a and 11b are regions in which a predetermined flatness can be ensured as indicated by a one-dot chain line A in FIG. 1A (for example, in the case of a 152 mm square substrate, a 134 mm square with the substrate center as a reference). It is preferable to arrange it in the vicinity of the boundary of the region.
  • the reference point marks 11a and 11b may be provided in a region inside the 142 mm square of the main surface of the substrate, and the flatness of the main surface of the substrate.
  • the degree When the degree is high, it may be a region inside a 146 mm square.
  • the shape of the main surface of the reflective mask blank 10 on the side on which the reference point mark is formed is, for example, a flatness in a 142 mm square inner area in the case of a 152 mm square substrate. Is not more than 0.3 ⁇ m, and the shape is desirably a convex shape that is relatively high at the center and relatively low at the periphery.
  • a reflective mask blank 10 includes a substrate 12, a multilayer reflective film 13 formed on the main surface, a buffer film 14 formed thereon, Furthermore, it has the absorber film
  • the multilayer reflective film 13 has a structure in which a high refractive index layer mainly composed of a high refractive index material and a low refractive index layer mainly composed of a low refractive index material are alternately laminated. If necessary, a capping film may be provided instead of the buffer film 14 or between the multilayer reflective film 13 and the buffer layer.
  • membrane 15, and the electrically conductive film 16 is called a board
  • FIG. 2A is an enlarged view of a cross section of the reference point mark 11b formed on the substrate 12, and FIG. 2B is an enlarged view of the view (plan view) seen from above the substrate main surface.
  • the cross section of the reference point mark 11b is a groove-shaped recess 21 whose side walls are generally upright.
  • the shape (plan view) of the reference point mark 11b viewed from above the main surface of the substrate is a cross shape as shown in FIG. 2B. Size, it is preferable that the width (in FIG. 2A indicated by W E) is not less than 4Myunm.
  • the reference point mark 11b when the reference point mark 11b is scanned with an electron beam, detection is possible even if it is smaller than this width.
  • the depth (denoted by DE in FIG. 2A) needs to be greater than 30 nm.
  • the thickness In the case of scanning using an electron beam, when more reliable detection is required, the thickness should be 40 nm or more. In the case of scanning with inspection light used in the conventional defect inspection, it is preferable to make it larger than 50 nm.
  • the reproducibility of detection tends to decrease if the depth of the reference point mark 11b is greater than 200 nm.
  • the depth of the reference point mark 11b is at least 200 nm or less, reproducibility is easily obtained, and if it is 150 nm or less, the reproducibility is further improved, and is preferably less than 150 nm (for example, 140 nm or less, 130 nm or less, etc.).
  • the length (indicated by L E in FIG. 2B) may, if more than 100 [mu] m, more preferably if more than 400 [mu] m.
  • the groove shape in which the side walls are substantially upright is not limited to the vertical direction (90 ° with respect to the bottom surface), and can be used as a reference point mark if the inclination angle is about 80 ° to 100 ° with respect to the bottom surface. Works well.
  • the reference point mark When the reference point mark is scanned with the inspection light or the electron beam, when there is no resist film on the absorber film 15 at the position where the reference point mark is present (the resist film is formed on the entire surface of the absorber film 15). If the resist film is formed, the resist film is formed, and then the electron beam is drawn on the upper layer. In some cases, a conductive coat film is formed to ensure the conductivity at the time. In any case, the reference point mark functions sufficiently under the above conditions.
  • the reference mark 11b is small in size, and it is difficult to visually estimate the position. There is also a method in which the reference mark 11b is suddenly scanned with inspection light or an electron beam. However, when the detection takes a long time or a resist film is formed on the reference point mark 11b, the inspection at the time of scanning is performed. There is a possibility that a portion where the resist sensitivity is changed by light may be generated, and in particular, scanning with an electron beam is not preferable because a portion where the resist is exposed may be generated. For this reason, it is desirable to provide a reference mark 11a for course alignment that is larger in size than the reference mark 11b.
  • the width W E and the depth D E of the reference point mark 11a can be sufficiently detected as long as they are about the same size as the reference mark 11b. Further, the length L E is 10 times or more of the reference mark 11a (1000 .mu.m, more preferably at least 4000 .mu.m) suffices.
  • the reference mark 11a In FIG. 1A, two reference marks 11a are provided. However, three or four or more reference marks may be provided. Further, although the reference mark 11b is also provided at one place at each of the four corners in FIG. 1A, two or more places may be provided at each corner.
  • reference point marks 11a and 11b in addition to the cross-shaped configuration in plan view as described above, as shown in FIG. It is conceivable that a rectangular recess 31 is provided on the base plate and this is used as the reference point marks 11a and 11b.
  • the size such as the width (W E ), the depth (D E ), and the length (L E ) may be the same as the cross shape shown in FIG. 2B.
  • the reference point marks 11a and 11b can be formed by dry etching by the following process.
  • a glass substrate is used as an example of the substrate 12 is shown.
  • ⁇ Reference point mark formation process> (1) Cr-based films (CrN, CrO, CrC, CrON, CrCN, CrOC, CrOCN, etc. are used as the mark forming thin film on the upper surface of the substrate 12, but considering the low film stress, CrOCN is optimal. A). (2) An electron beam drawing resist film (Fuji Film FEP-171 or the like) is formed on the upper surface of the Cr-based film. (3) The pattern of the reference point mark 11 is drawn on the resist film with an electron beam, and development processing is performed to form a pattern in which the developed resist film remains in a portion other than the reference point mark 11.
  • the Cr film is dry-etched with a mixed gas of Cl 2 gas and O 2 gas (or wet etching with a wet etching solution such as a mixed solution of ceric ammonium sulfate and perchloric acid) to form a Cr-based film.
  • the etching mask pattern of the reference point mark is transferred.
  • the glass substrate is dry-etched with a mixed gas of fluorine-based gas such as CF 4 gas and He gas to form the reference point mark 11 on the glass substrate. Note that the Cr-based film has resistance to the mixed gas, and thus functions as an etching mask.
  • the Cr-based film is peeled off by wet etching with a wet etchant or by dry etching with a mixed gas of Cl 2 gas and O 2 gas.
  • the reference point mark 11 can be formed on the glass substrate. Note that surface defects on the main surface of the substrate may increase due to peeling of the mark forming thin film after the concave reference point mark 11 is formed.
  • the very surface layer for example, about 5 to 10 nm
  • the polishing in this case examples include non-contact polishing using abrasive grains such as colloidal silica, MRF polishing using magnetic fluid, CMP, and short-time polishing using planetary gear motion using colloidal silica.
  • the depth of the reference point mark 11 may be a depth obtained by adding the above-mentioned polishing allowance to an identifiable depth.
  • Example 1 to 8 and Comparative Example 1 a reflective mask blank is manufactured using a glass substrate with a reference point mark having the shape shown in FIGS. 2A and 2B, and the quality of the reference point mark is checked. The results are shown.
  • a substrate a 6 inch square (about 152 mm ⁇ 152 mm ⁇ 6.35 mm) glass substrate is used, and the reference point marks 11a and 11b are areas inside a 134 mm square with respect to the center of the main surface of the substrate.
  • the reference point marks 11a and 11b were each provided with two reference point marks 11a and four reference point marks 11b at the positions shown in FIG.
  • the reference mark was formed with a recess by the process using dry etching described above.
  • Several types of glass substrates with different sizes of the reference point mark 11b were prepared by changing dry etching conditions and the like.
  • FEP-171 manufactured by Fuji Film Electronics Materials Co., Ltd.
  • the resist pattern of the reference point mark 11b is several 100 nm ⁇ 30 nm depth D E, and several 4 [mu] m ⁇ 1 [mu] m width W E, and cross-shaped length L E and 400 [mu] m.
  • the reference point marks 11a without the comparison because of the large size than the reference point marks 11b, and the resist pattern, the depth D E is 100 nm, the width W E 4 [mu] m, the length L E is 4000 ⁇ m Fixed.
  • the mark forming thin film was dry-etched with a mixed gas of Cl 2 gas and O 2 gas, and the reference point mark pattern was transferred to the mark forming thin film.
  • the mark forming thin film pattern (etching mask pattern) as a mask
  • the glass substrate was dry-etched with a mixed gas of CF 4 gas and He gas so that the depth DE from the main surface was 100 nm to 30 nm.
  • the remaining etching mask film was peeled off by dry etching with a mixed gas of Cl 2 gas and O 2 gas.
  • the reference point marks 11a and 11b were formed on the glass substrate by the above process.
  • a substrate with a multilayer reflective film is manufactured by firstly forming an Si layer (low refractive index layer) and Mo layer (as a reflective film in the region of 13 to 14 nm, which is the wavelength of EUV exposure light) and Mo layer (on the substrate) by ion beam sputtering.
  • a multilayer reflective film having a total thickness of 291 nm firstly, a Si layer is formed with a thickness of 4.2 nm, and then a Mo layer is formed with a thickness of 2.8 nm.
  • an Si film was finally formed to have a thickness of 11 nm.
  • the scattered particles from the Mo target were incident at an angle of 63 ° with respect to the vertical direction of the substrate (oblique incidence film formation).
  • scattered particles from the Si target were incident in the direction perpendicular to the substrate (direct incidence film formation).
  • a reflective mask blank was manufactured based on this multilayer reflective film-coated substrate.
  • a buffer film made of chromium nitride (CrN: N 10 atomic%) was formed on the upper surface of the multilayer reflective film. Film formation was performed with a DC magnetron sputtering apparatus, and the film thickness was 10 nm. Further thereon, an absorber film made of tantalum boron nitride (TaBN) was formed with a film thickness of 50 nm.
  • TaBN tantalum boron nitride
  • the quality of the recognition of the reference point mark was confirmed for several types of reflective mask blanks manufactured by the above method and having different shapes (width W E and depth D E ) of the reference point mark 11b. Whether the reference point mark is recognized or not is good when using the KLA-Tencor mask inspection machine KLA-5 Series, which is one of the conventional defect inspection machines using inspection light, and when using an electron beam. With the respective detection methods, the reference point marks of various widths and depths were confirmed. The results are shown in Table 1.
  • the reference point mark 11b for the reference point mark 11b whose depth DE is 60 nm or more (Examples 1 and 2).
  • the reference point mark 11b could not be recognized well for those having a depth DE of 50 nm or less (Examples 3, 4, 5, and Comparative Example 1).
  • the depth D E of the reference point mark 11b is 60 nm, also (Example 2,6,7,8) go to narrow the 4 [mu] m ⁇ 1 [mu] m and a width of the width W E can be well identified There was no difference.
  • the reference point mark 11b is determined for the reference point mark 11b having a depth DE of 35 nm or more (Examples 1, 2, 3, 4, 5). Although it was able to be recognized well, the reference point mark 11b was not able to be recognized well for those having a depth DE of less than 35 nm (Comparative Example 1).
  • the depth D E of the reference point mark 11b is 60 nm, also (Example 2,6,7,8) go to narrow the 4 [mu] m ⁇ 1 [mu] m and a width of the width W E can be well identified There was no difference.
  • Example 9 to 16 and Comparative Example 2 a reflective mask blank is manufactured using a glass substrate with reference point marks 11a and 11b having the shape shown in FIG. 2B, and the quality of the reference point mark identification is examined. The results are shown. A difference from Examples 1 to 8 and Comparative Example 1 is that in Examples 9 to 16 and Comparative Example 2, a reflective multilayer film is not formed in a portion to which a reference point mark is attached.
  • a buffer film and an absorber film are formed on the upper surface of the multilayer reflective film-coated substrate, and a conductive film is formed on the main surface on the opposite side of the substrate.
  • a reflective mask blank was manufactured.
  • the buffer film and the absorber film were also formed in a portion where the multilayer reflective film was not formed (a region including a portion where the reference point mark was formed).
  • the reference point mark 11b for the reference point mark 11b whose depth DE is 60 nm or more (Examples 9 and 10).
  • the reference point mark 11b was not well recognized for those having a depth DE of 50 nm or less (Examples 11, 12, 13 and Comparative Example 2).
  • the depth D E of the reference point mark 11b is 60 nm, also (Example 10,14,15,16) by narrowing the 4 [mu] m ⁇ 1 [mu] m and a width of the width W E can be satisfactorily identified, differences There was no.
  • the reference point mark 11b is determined for the reference point mark 11b whose depth DE is 35 nm or more (Examples 9, 10, 11, 12, 13). Although it was able to be recognized well, the reference point mark 11b was not able to be recognized well for those having a depth DE of less than 35 nm (Comparative Example 2).
  • the depth D E of the reference point mark 11b is 60 nm, also (Example 10,14,15,16) by narrowing the 4 [mu] m ⁇ 1 [mu] m and a width of the width W E can be satisfactorily identified, differences There was no.
  • a reflective mask using the reflective mask blank according to the present invention since the reference point mark can be recognized well, the position of the defect in the reflective mask blank can be accurately identified, When patterning the transfer pattern on the absorber film, a reflective mask with few defects can be manufactured by patterning after avoiding defects with high accuracy.
  • the reference point mark has a concave shape in which the side wall is substantially upright.
  • the present invention is not limited to this, and the same effect can be obtained even in a convex shape in which the side wall is generally upright.
  • the buffer film made of chromium nitride is formed between the multilayer reflective film and the absorber film
  • a capping film containing Ru as a main component may be formed between the multilayer reflective film and the absorber film.
  • the thickness of the capping film is preferably in the range of about 2 nm to 5 nm.
  • a low reflection layer made of tantalum boron oxide (TaBO) may be formed on the upper surface of the absorber layer.

Abstract

 基板上に、側壁が概ね直立した凹形状又は凸形状である基準点マークを形成したことにより、基準点マークの上方に多層反射膜や吸収体膜等を形成しても、検査光に対する十分なコントラストが得られて、基準点マークの位置を高い精度で識別できる。

Description

反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法
 本発明は、反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法に関する。
 近年、半導体産業において、半導体デバイスの高集積化に伴い、従来の紫外光を用いたフォトリソグラフィ法の転写限界を上回る微細パターンが必要とされている。このような微細パターンの転写を可能とするため、より波長の短い極端紫外光(Extreme Ultra Violet;以下、EUV光と呼ぶ。)を用いた露光技術であるEUVリソグラフィが有望視されている。なお、ここで、EUV光とは、軟X線領域又は真空紫外線領域の波長帯の光を指し、具体的には波長が0.2nm~100nm程度の光のことである。
 このEUVリソグラフィにおいて用いられる露光用マスクとしては、基板(下地基板)上に露光光であるEUV光を反射する多層反射膜(多層膜)を有し、さらに、多層反射膜上にEUV光を吸収する吸収体膜(金属膜)がパターン状に設けられた反射型マスクが通常用いられる。
 このような反射型マスクを搭載した露光機(パターン転写装置)を用いてパターン転写を行なうと、反射型マスクに入射した露光光は、吸収体膜パターンのある部分では吸収され、吸収体膜パターンのない部分では多層反射膜により反射された光が反射光学系を通して例えば半導体基板(レジスト付きシリコンウエハ)上に転写される。
 一方、フォトリソグラフィ工程での微細化に対する要求が高まったことにより、半導体製造プロセスに用いられているフォトリソグラフィ工程での課題が顕著になりつつある。その一つとして、フォトリソグラフィ工程で用いられる、パターンが形成されたフォトマスク基板の欠陥に関する問題があげられる。
 従来は、フォトマスク基板の欠陥の存在位置を、基板の端面からの距離で特定していた。このため、位置精度が低く、欠陥を避けて遮光膜にパターニングする場合でもμmオーダーでの回避は困難であった。このため、パターンを転写する方向を変えたり、転写する位置をmmオーダーでラフにずらして欠陥を回避してきた。
 このような中、光透過型マスクにおける欠陥位置の検査精度を上げることを目的に透明基板上に基準マークを形成し、これを基準位置として欠陥の位置を特定する試みがある(例えば、特開2003-248299号公報(特許文献1)参照)。この公報記載の発明では、基準マークである凹部にダストが溜まらないように非常に浅く形成(深さが3μm程度)されている。通常の光透過型マスクの場合、基準マークの上面に遮光膜等の薄膜が形成されるが、単層あるいは数層程度であるため、基準マークの深さが浅くても、欠陥検査の際の検査光(190~260nm程度の深紫外光等)でのコントラストが得られて基準マーク位置を認識できる。
特開2003-248299号公報
 しかしながら、この主表面上から底部に向かって幅が縮小した断面形状の凹部である基準マークを反射型マスクブランクに適用しようとする場合、数十周期の積層膜である多層反射膜がその基準マークの上面に積層されるため、同じ膜厚の通常の遮光膜に比べて凹部の深さと幅が減少しやすく、深さが3μm程度では、多層反射膜が一層ずつ積層していくごとに凹部の深さと幅が減少していき、検査光(190~260nm程度の深紫外光等)でのコントラストが得られなくなってしまう。さらに、この多層反射膜上に、キャッピング膜、バッファ膜、吸収体膜が成膜されると、凹部の深さはさらに減少してしまう。また、特許文献1のような基準マークをYAGレーザーの照射によって形成する場合、基準マークを形成した部分のエッジラフネスが大きく、これに起因して基準マークの検出精度をより高精度にすることが難しかった。
 光透過型マスクブランクの場合、欠陥には、ガラス基板に存在する欠陥と、遮光膜に存在する欠陥がある。ガラス基板の欠陥は、ガラス基板の研磨工程が終了後の検査で欠陥の数や位置によって使用可否を選別できる。このため、遮光膜の欠陥回避の方が重要視される。遮光膜の欠陥については、回避しきれない部分にFIB等による欠陥修正することが可能である。
 一方、反射型マスクブランクの場合、EUV露光光がガラス基板を透過しないこと、ガラス基板表面の欠陥が多層反射膜に直接的に影響することから、多層反射膜の欠陥が特に問題となる。多層反射膜成膜後の基板についても欠陥検査を行うが、多層反射膜の欠陥は、基板の表面欠陥、多層反射膜成膜時のパーティクルの混入等、多くの要因があるため、光透過型マスクブランクに比べて欠陥の発生率が高く、選別基準を厳格にし過ぎると歩留まりが大幅に悪化してしまう。
 このため、許容する欠陥の基準を下げ、多層反射膜の欠陥箇所を露出させないように(つまり、欠陥箇所が吸収体膜で覆われるように)転写パターンを配置して対応する必要があるが、これには欠陥の平面位置を高い精度で特定することが必須である。
 本発明は、所定の位置に基準点マークが付けられたガラス基板の上に多層反射膜が成膜された多層反射膜付基板又は、その上に吸収体膜が成膜された反射型マスクブランクにおいて、欠陥検査をする際に、基準点マーク上の多層反射膜又は吸収体膜の最表面に検査光を照射しても、基準点マークの位置とその周囲との間で十分なコントラストが得られ、基準点マークの位置を高い精度で識別できるものを提供することを目的とする。
 従来の基準点マークは、基板主表面にレーザーで物理的に断面形状が緩やかなカーブを持った凹形状を形成した構成であったため、基板主表面上でも主表面と側壁との境界部分であるエッジのコントラストは得にくく、主表面上に膜が形成されたマスクブランクの状態では、さらにエッジのコントラストは得にくいものであった。このため、欠陥検査装置は、膜面の基準点マークが形成されていない部分と凹形状の深い部分とのコントラストで基準点マークを検出している。しかし、前記のとおり、反射型マスクブランクの場合、多層反射膜、キャッピング膜、バッファ膜、吸収体膜等が積層する構造のため、深さ3μm程度では吸収体膜面上でコントラストを得ることは困難であった。また基準マークのエッジラフネスが大きく、高精度なマーク検出が困難であった。
 そこで、上記目的を達成するために、本発明者は、基準点マークのエッジ部分でコントラストが得られるようにするために、基板表面にマークパターンの側壁が概ね直立した凹形状または凸形状とすることで、十分なコントラストが得られる基準点マークを考えた。また、このような溝形状の基準点マークとした場合、その凹形状である場合の深さまたは凸形状である場合の高さが30nmよりも大きくすれば、十分なコントラストが得られる
ことを見出した。
 つまり本発明に係る反射型マスク用多層反射膜付基板は、基板と、前記基板の主表面上に、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造の多層反射膜を有する反射型マスク用多層反射膜付基板であって、前記基板の多層反射膜が形成される側の主表面におけるパターン形成領域の外側の領域に、側壁が概ね直立した凹形状または凸形状である基準点マークが形成されていることを特徴とする。さらに、多層反射膜は、基準点マークが形成された部分を含む主表面上に前記多層反射膜が形成されていることを特徴とする。このようにすると、多層反射膜を形成する工程については、従来と変える必要がないというメリットがある。
 逆に、多層反射膜を少なくとも前記基準点マークが形成された部分の主表面上を除いて形成するようにしてもよい。このようにすると、基準点マークの走査に電子線を用いた場合、熱ダメージ等によって影響を与えることを抑制することができる。
 上記反射型マスク用多層反射膜付基板においては、基準点マークを電子線による走査で検出可能な深さとすることもできる。電子線による走査の場合、従来の欠陥検査で用いられる検査光による走査に比べて、基準点マークとその周囲との高低差が小さくても検出が可能である。また、走査する電子線の線幅が小さいため、より高精度の位置検出が可能となる。
 上記反射型マスク用多層反射膜付基板においては、基準点マークを、側壁が概ね直立した凹形状または凸形状としたことから、エッジ部分のコントラストが得られやすくなるので、凹形状の深さまたは凸形状の高さを30nmよりも大きくする程度でも、基準点マークとして十分に機能する。なお、電子線による走査の場合で、より確実な検出が求められる場合には、凹形状の深さまたは凸形状の高さを40nm以上とするとよい。さらに、従来の欠陥検査で用いられる検査光による走査の場合においてもより確実な検出が求められる場合には、50nmよりも大きくするとよい。
 上記反射型マスク用多層反射膜付基板においては、基板と多層反射膜との間にマーク形成用薄膜を備え、基準点マークは、マーク形成用薄膜に形成される凹形状、またはマーク形成用薄膜から基板にわたって形成される凹形状としてもよい。この場合、マーク形成用薄膜上に凹形状のパターンを有するレジストパターン形成し、それをマスクとするドライエッチングによって、マーク形成用薄膜に凹形状を形成し、あるいは、さらに、そのまま基板もドライエッチングし、マーク形成用薄膜から基板にわたって凹形状を形成して基準点マークとする。これにより、基準点マークを形成後、マーク形成用薄膜を剥離する必要がなくなる。
 また、マーク形成用薄膜を、基板をエッチングするエッチングガスに対して耐性を有する材料で形成してもよい。この場合、マーク形成用薄膜上に凹形状のパターンを有するレジストパターン形成し、それをマスクとするドライエッチングによって、マーク形成用薄膜に凹形状を形成し、あるいは、さらに凹形状のパターンが転写されたマーク形成用薄膜であるエッチングマスクパターンをマスクとして、基板をドライエッチングし、マーク形成用薄膜から基板にわたって凹形状を形成して基準点マークとする。これによっても、基準点マークを形成後、マーク形成用薄膜を剥離する必要がなくなる。さらに、レジストパターンの膜厚を薄くすることができる。
 マーク形成用薄膜が導電性を有する材料からなる場合は、以下の効果も奏する。この多層反射膜付基板上に、キャッピング膜、バッファ膜、吸収体膜等を形成して反射型マスクブランクを製造し、これを基に反射型マスクを作製した場合、反射型マスクにEUV露光光を照射し続けると、多層反射膜に徐々に帯電していく。このときマーク形成用薄膜が導電性を有する材料であると、そこから電子を逃がすことが可能になる。特に、反射型マスクが位相シフト効果を利用するタイプのものであり、ブラインドエリアの多層反射膜が除去された構成の場合、ブラインドエリアの内側の多層反射膜に帯電した電子をマーク形成用薄膜から逃がすことができ、より有効である。
 凸形状の基準点マークの場合において、基板を形成する材料とは異なる材料で形成してもよい。この場合、基板の主表面上に基板がエッチングされ難いエッチングガスでエッチング可能な材料からなるマーク形成用薄膜を形成し、マーク形成用薄膜上に凸形状のパターンを有するレジストパターンを形成し、それをマスクとするドライエッチングによって、マーク形成用薄膜で凸形状を形成し、これを基準点マークとする。これにより、凸形状が形成される部分以外の基板主表面の表面粗さや平坦度の悪化を確実に抑制できる。この場合におけるマーク形成用薄膜の材料としては、基板にはガラス系材料が用いられることが多いことから、ガラス系材料がエッチングされ難いエッチングガスである塩素系ガスや、塩素系ガスと酸素の混合ガスでエッチングされる材料が好ましい。塩素系ガスでエッチング可能な材料としては、酸素を実質的に含有しないタンタル系材料(例えば、Ta、TaB、TaC、TaN、TaBN、TaCN、TaBCN等)や、タンタル系合金材料(TaHf、TaZr等)が挙げられる。塩素系ガスと酸素の混合ガスでエッチング可能な材料としては、クロム系材料(例えば、Cr、CrN、CrC、CrO、CrON、CrCN、CrOC、CrOCN等)やルテニウム系材料等が挙げられる。
 上記反射型マスク用多層反射膜付基板においては、前記基準点マークが形成される位置が、反射型マスクのパターン形成領域の外側であり、さらには、前記基板の外縁から所定の幅だけ内側であると好適である。また、基準点マークは基板の主表面側から見た形状が十字状であると良い。また、前記基準点マークを3つ以上有し、前記3つ以上の基準点マークが一直線上に並ばない位置に形成されていると、さらに好適である。
 また、本発明に係る反射型マスク用多層反射膜付基板の製造方法は、基板と、前記基板の主表面上に、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造の多層反射膜を有する反射型マスク用多層反射膜付基板の製造方法であって、前記基板の主表面上に、基準点マークのパターンを有するレジストパターンを形成する工程と、前記レジストパターンをマスクとし、前記基板をドライエッチングし、側壁が概ね直立した凹形状又は凸形状である基準点マークを形成する工程と、を有することを特徴とする。この場合、基板主表面の表面粗さや平坦度の悪化の恐れがなく、基準点マークを形成に伴う欠陥数の増加も抑制できる。
 また、本発明に係る反射型マスク用多層反射膜付基板の製造方法は、基板と、前記基板の主表面上に、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造の多層反射膜を有する反射型マスク用多層反射膜付基板の製造方法であって、前記基板の主表面上に、マーク形成用薄膜を形成する工程と、前記マーク形成用薄膜の上面に、基準点マークのパターンを有するレジストパターンを形成する工程と、前記レジストパターンをマスクとし、前記マーク形成用薄膜をドライエッチングして側壁が概ね直立した凹形状又は凸形状である基準点マークを形成する工程と、を有することを特徴とする。
 この場合、マーク形成用薄膜に基準点マークが形成されるため、基板をドライエッチングする工程、マーク形成用薄膜を剥離する工程を行う必要がないメリットがある。また、レジストパターンの薄膜化が図れる。特に、凸形状の基準点マークを形成する場合には、基板の平坦度や表面粗さの悪化を抑制できる。
 本発明に係る反射型マスク用多層反射膜付基板の製造方法は、基板と、前記基板の主表面上に、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造の多層反射膜を有する反射型マスク用多層反射膜付基板の製造方法であって、前記基板の主表面上に、基板をエッチングするエッチングガスに対して耐性を有するマーク形成用薄膜を形成する工程と、前記マーク形成用薄膜の上面に、基準点マークのパターンを有するレジストパターンを形成する工程と、前記レジストパターンをマスクとし、前記マーク形成用薄膜をドライエッチングして、エッチングマスクパターンを形成する工程と、前記エッチングマスクパターンをマスクとして前記基板をドライエッチングし、側壁が概ね直立した凹形状または凸形状である基準点マークを形成する工程と、を有することを特徴とする。
 この場合、マーク形成用薄膜と基板に形成された凹形状で基準点マークを形成するため、マーク形成用薄膜の膜厚をより薄くすることができ、膜応力をより小さくすることができる。
 上記反射型マスク用多層反射膜付基板の製造方法においては、基板に基準点マークを形成後、マーク形成用薄膜を剥離する工程を有しても良い。多層反射膜を少なくとも前記基準点マークが形成された部分の主表面上を除いて形成するようにしてもよい。マーク形成用薄膜は、Crを主成分とする材料で構成されていると好適である。Crを主成分とする材料としては、たとえば、Cr、CrN、CrC、CrO、CrON、CrCN、CrOC、CrOCNなどが挙げられる。クロム系材料は、塩素系ガスと酸素の混合ガスでエッチングされる材料であり、フッ素系ガスに対するエッチング耐性が非常に高い。ガラス系材料の基板は、フッ素系ガスでエッチングされやすく、塩素系ガスと酸素の混合ガスに対するエッチング耐性が高い。このため、クロム系材料は、ガラス系材料の基板に対して、非常に高いエッチング選択性が得られ、マーク形成用薄膜を剥離する場合の基板主表面の表面粗さや平坦度の悪化を確実に抑制できる。
 この他にガラス系材料の基板に対するエッチング選択性の高い材料としては、塩素系ガスでエッチング可能な材料である、酸素を実質的に含有しないタンタル系材料(例えば、Ta、TaB、TaC、TaN、TaBN、TaCN、TaBCN等)や、タンタル系合金材料(TaHf、TaZr等)が挙げられる。また、塩素系ガスと酸素の混合ガスでエッチング可能な材料としては、ルテニウム系材料等が挙げられる。なお、マーク形成用薄膜を剥離しない場合で、レジストパターンをマスクとしてマーク形成用薄膜だけに基準マークを形成する構成や、レジストパターンだけをマスクとしてマーク形成用薄膜と基板に基準マークを形成する構成の場合は、フッ素系ガスでエッチング可能な材料を用いても問題なく基準マークを形成できる。
 本発明に係る反射型マスクブランクは、上記反射型マスク用多層反射膜付基板の前記多層反射膜の上に露光光を吸収する吸収体膜を有することを特徴とする。前記多層反射膜と前記吸収体膜との間にCrを主成分とするバッファ膜又は、Ruを主成分とするキャッピング膜を有すると良い。
 本発明に係る反射型マスクブランクの製造方法は、上記反射型マスク用多層反射膜付基板の製造方法により製造された反射型マスク用多層反射膜付基板の多層反射膜の上に露光光を吸収する吸収体膜を形成する工程を有することを特徴とする。また、吸収体膜を形成する工程前に、前記多層反射膜の上にCrを主成分とするバッファ膜又はRuを主成分とするキャッピング膜を形成する工程を有しても良い。
 本発明に係る反射型マスクの製造方法は、上記反射型マスクブランクの前記吸収体膜を所定の形状にパターニングする工程を有することを特徴とする。
 本発明に係る多層反射膜付基板では、基板上に側壁が概ね直立した凹形状又は凸形状である基準点マークを形成したことにより、基準点マークの上に多層反射膜を形成しても、欠陥検査の検査光や電子線での走査に対する十分なコントラストが得られて、基準点マークの位置を高い精度で識別できる。これにより、欠陥の位置を、基準点マークを基準にμmオーダーの精度で特定できる多層反射膜付基板が得られる。さらに、この多層反射膜付基板の上面に吸収体膜等を形成して反射型マスクブランクを作製した場合であっても、吸収体膜の上から検査光を照射しても基準点マークとその周囲との間で十分なコントラストが得られる。欠陥の位置をμmオーダーの精度で特定できるので、吸収体膜への転写パターンのパターニングの際、欠陥を精度よく回避でき、欠陥フリーの反射型マスクを作製することができる。
本発明の実施の形態における反射型マスクブランクを説明するための平面図である。 本発明の実施の形態における反射型マスクブランクを説明するための断面図であり、図1AのIb-Ib断面図である。 本発明の実施の形態における基準点マークを説明するための図であり、基準点マークの断面の拡大図である。 本発明の実施の形態における基準点マークを説明するための図であり、基板主表面の上方から見た(平面視)図の拡大図である。 本発明の実施の形態における基準点マークを説明するための図である。
 以下に、本発明の実施の形態を図、実施例等を使用して説明する。なお、これらの図、実施例等および説明は本発明を例示するものであり、本発明の範囲を制限するものではなない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。
 本発明の実施の形態に係る反射型マスクブランクを説明するための図を図1に示す。図1Aが反射型マスクブランクの平面図であり、図1Bが図1AのIb-Ib断面における断面図である。
 本発明の実施の形態に係る反射型マスクブランク10は図1Aに示すとおり、反射型マスクブランク10の上にコースアライメント用のサイズの比較的大きな2つの基準点マーク11aとサイズの小さい基準マーク11bとを有する。同図においては、一例として2つのコースアライメント用基準マーク11aと、4つの基準点マーク11bを有する例を示す。基準点マークを形成する領域としては、反射型マスクブランク10の基板主表面の平坦度が良好な領域が好ましいが、基板主表面の研磨工程における研磨特性上、基板主表面の外周縁側は平坦度が悪化しやすい。しかし、主表面の中央側(例えば、基板中心を基準とした132mm角の領域の内側)は、反射型マスクを作製する際のパターン形成領域となるため、基準マーク11a、11bを設ける部分は、外周縁側にできる限り近い方がよい。これらのことを考慮すると、基準マーク11a、11bは、図1Aの一点鎖線Aで示すような、所定の平坦度を確保できる領域(例えば、152mm角基板の場合、基板中心を基準とした134mm角の領域)の内側であり、その領域の境界近傍に配置するようにするとよい。また、基板主表面の平坦度をより良好にすることができる場合においては、基準点マーク11a、11bを、基板主表面の142mm角の内側の領域に設けてもよく、さらに基板主表面の平坦度が高い場合は、146mm角の内側の領域としてもよい。
 なお、反射型マスクブランク10の基準点マークを形成する側(多層反射膜を形成する側)の主表面の形状は、例えば152mm角基板の場合においては、142mm角の内側のエリアでの平坦度が0.3μm以下であり、かつ、その形状が中央部で相対的に高く、周縁部で相対的に低くなる凸形状であることが望ましい。
 本発明の実施の形態に係る反射型マスクブランク10は、図1Bに示すとおり、基板12と、その主表面上に形成された多層反射膜13と、その上に形成されたバッファ膜14と、さらにその上に形成された吸収体膜15を有し、基板12の裏面に導電膜16を少なくとも有する。多層反射膜13は、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造を有する。必要に応じて、バッファ膜14に代えて、あるいは多層反射膜13とバッファ層の間にキャッピング膜を有していても良い。
 なお、バッファ膜14、吸収体膜15及び導電膜16を形成する前の、基板12の上に多層反射膜13が形成された状態のものを多層反射膜付基板と呼ぶ。
 次に図2を用いて、基準点マーク11bの形状を説明する。図2Aは、基板12に形成された基準点マーク11bの断面の拡大図であり、図2Bは、基板主表面の上方から見た(平面視)図の拡大図である。基準点マーク11bの断面は、図2Bに示すように側壁が概ね直立した溝形状の凹部21となっている。また、基準点マーク11bの、基板主表面の上方から見た形状(平面視)は、図2Bに示すように十字形状である。サイズは、幅(図2AにWで示す)が4μnm以上であることが好ましい。ただし、基準点マーク11bを電子線で走査する場合には、この幅よりも小さくても検出は可能である。また、深さ(図2AにDで示す)は30nmよりも大きくする必要がある。電子線を用いた走査の場合で、より確実な検出を求められる場合には、40nm以上とするとよい。従来の欠陥検査で用いられている検査光による走査の場合においては、50nmよりも大きくするとよい。特に、基準点マーク11bを電子線で走査する場合においては、基準点マーク11bの深さが200nmよりも大きいと検出の再現性が低下する傾向がある。基準点マーク11bの深さは、少なくとも200nm以下とすると再現性が得られやすくなり、150nm以下とするとさらに再現性が向上し、150nm未満(例えば140nm以下、130nm以下等)とすると好適である。なお、長さ(図2BにLで示す)は100μm以上あれば良く、400μm以上あればより好ましい。ここで、側壁が概ね直立した溝形状とは、垂直方向(底面に対して90°)に限定されず、底面に対して、80°~100°程度の傾斜角度であれば、基準点マークとして十分に機能する。
 基準点マークの検査光や電子線での走査を行う時点においては、基準点マークがある位置の吸収体膜15上にレジスト膜がない場合(吸収体膜15の全面にレジスト膜が形成されていない場合と基準点マークがある位置を含む外周を除く領域にレジスト膜が形成されている場合を含む)、レジスト膜が形成されている場合、レジスト膜が形成され、さらにその上層に電子線描画時の導電性確保のための導電性コート膜が形成されている場合がある。いずれの場合においても、上記の条件であれば、基準点マークは十分に機能する。
 基準マーク11bはサイズが小さく、目視で位置の目安を付けることは困難である。また、検査光や電子線でいきなり基準マーク11bを走査する方法もあるが、検出に時間が掛かることや、基準点マーク11bの上にレジスト膜が形成されている場合においては、走査時の検査光によってレジスト感度が変化してしまう部分が発生する恐れがあり、特に電子線による走査では、レジストを感光させてしまう部分が発生する恐れがあるため好ましくない。このため、基準マーク11bよりもサイズの大きなコースアライメント用の基準マーク11aを設けることが望ましい。基準点マーク11aの幅Wや深さDについては、基準マーク11bと同程度以上の大きさであれば十分に検出可能である。また、長さLについては、基準マーク11aの10倍以上(1000μm以上、より好ましくは4000μm以上)あればよい。また、図1Aでは、基準マーク11aを2か所設ける構成としたが、3か所あるいは4か所以上としてもよい。また、基準マーク11bについても、図1Aでは4隅に1か所ずつとしたが、各隅に2か所以上設けてもよい。
 なお、基準点マーク11a、11bとしては、上記のような平面視で十字形状の構成の他に、図3に示すように、基準点マークの中心としたい中心点に対して、上下左右等間隔に矩形状の凹部31を設け、これを基準点マーク11a、11bとした構成が考えられる。幅(W)、深さ(D)、長さ(L)等のサイズは、図2Bに示す十字形状と同様で良い。
 次に、基板12に基準点マーク11a、11bを形成する方法を説明する。基準点マーク11a、11bは、以下に示すような工程により、ドライエッチングにより、形成することができる。なお、ここでは基板12の一例としてガラス基板を用いた例を示す。
<基準点マーク形成プロセス>
(1)基板12上面に、マーク形成用薄膜として、Cr系膜(CrN、CrO、CrC、CrON、CrCN、CrOC、CrOCN等があげられるが、低膜応力の観点から考慮すると、CrOCNが最適である)を成膜する。
(2)上記Cr系膜の上面に電子線描画用レジスト膜(富士フィルムFEP-171等)を形成する。 
(3)上記レジスト膜に、基準点マーク11のパターンを電子線描画し、現像処理を行い、基準点マーク11以外の部分に現像後のレジスト膜が残るようなパターンを形成する。 
(4)ClガスとOガスの混合ガスでCr系膜をドライエッチング(あるいは、硫酸第2セリウムアンモニウムと過塩素酸の混合液等のウェットエッチング液でウェットエッチング)し、Cr系膜に基準点マークのエッチングマスクパターンを転写する。 
(5)レジスト膜を剥離する。 
(6)CFガス等のフッ素系ガスとHeガスの混合ガスでガラス基板をドライエッチングし、ガラス基板に基準点マーク11を形成する。なお、Cr系膜はこの混合ガスに対して耐性を有するので、エッチングマスクとして機能する。 
(7)Cr系膜をウェットエッチング液でウェットエッチングにより剥離、あるいはClガスとOガスの混合ガスでドライエッチングにより剥離する。 
 上記のプロセスにより、ガラス基板に基準点マーク11を形成することができる。 
 なお、凹形状の基準点マーク11を形成後、マーク形成用薄膜を剥離したことによって基板主表面の表面欠陥が増加する場合がある。表面欠陥の増加を確実に抑制したい場合には、基準点マーク11を形成後、基板主表面のごく表層(例えば、5~10nm程度)を研磨によって除去し、従来と同様の洗浄を行うことが望ましい。この場合の研磨としては、コロイダルシリカ等の研磨砥粒を用いた非接触研磨、磁性流体を用いたMRF研磨、CMP、コロイダルシリカを用いた遊星歯車運動による短時間研磨などが挙げられる。また、この場合、基準点マーク11の深さは、識別可能な深さに前記の研磨取り代分を加算した深さとするとよい。
(実施例1~8、比較例1)
 以下、実施例1~8および比較例1として、図2A、図2Bに示す形状の基準点マークを付けたガラス基板を用いて反射型マスクブランクを作製し、基準点マークの識別の良否を調べた結果を示す。まず、基板としては、6インチ角(約152mm×152mm×6.35mm)のガラス基板を用い、基準点マーク11a、11bを、基板主表面の中心を基準とした134mm角の内側のエリアであって、基準点マーク11a、11bの外周縁側がそのエリアの境界に接するよう、図1Aに示す位置にそれぞれ(基準点マーク11aを2か所、基準点マーク11bを4か所)設けた。
 基準点マークは、上記で説明したドライエッチングを用いたプロセスで、凹部を形成した。ドライエッチングの条件等を変えることにより、基準点マーク11bのサイズが異なる数種類のガラス基板を用意した。
 基準点マーク11a、11bの形成は、最初に、基板の主表面に、CrOCN(Cr:O:C:N=33:36:20:11 原子%比)からなるマーク形成用薄膜を10nmの膜厚で低応力になるように成膜した。次に、レジスト膜として、マーク形成用薄膜の上面に電子線描画用化学増幅型レジスト(FEP-171:富士フィルムエレクトロニクスマテリアルズ社製)を300nmの膜厚で形成した。そして、レジスト膜に基準点マークのパターンを電子線描画し、続いて現像処理を行うことにより、基準点マークのレジストパターンを形成した。このとき、基準点マーク11bのレジストパターンは、深さDを100nm~30nmの数種類、幅Wを4μm~1μmの数種類とし、十字形状の長さLを400μmとした。なお、基準点マーク11aについては、基準点マーク11bよりもサイズが大きいため比較対象とはせず、レジストパターンを、深さDが100nm、幅Wが4μm、長さLが4000μmの固定とした。
 次に、このレジストパターンをマスクとして、ClガスとOガスの混合ガスでマーク形成用薄膜をドライエッチングし、マーク形成用薄膜に基準点マークのパターンを転写した。さらに、マーク形成用薄膜のパターン(エッチングマスクパターン)をマスクとして、CFガスとHeガスの混合ガスでガラス基板を、主表面からの深さDが100nm~30nmになるようドライエッチングした。最後に、残っているエッチングマスク膜を、ClガスとOガスの混合ガスでドライエッチングして剥離した。
 以上のプロセスにより、ガラス基板に、基準点マーク11a、11bを形成した。
 次に、ガラス基板の基準点マーク11a、11bを形成した主表面上(基準点マークを形成した部分を含む)に多層反射膜を形成して多層反射膜付基板を製造した。多層反射膜付基板の製造は、まず上記基板上に、イオンビームスパッタリングにより、EUV露光光の波長である13~14nmの領域の反射膜として適したSi層(低屈折率層)とMo層(高屈折率層)とを積層して、合計厚さ291nmの多層反射膜(最初にSi層を4.2nm成膜し、次にMo層を2.8nm成膜し、これを1周期として40周期積層した後、最後にSi膜を11nm成膜)を形成した。Mo層の成膜については、Moターゲットからの飛散粒子が基板の垂直方向に対して63°傾斜して入射(斜入射成膜)するようにした。また、Si層の成膜については、Siターゲットからの飛散粒子が基板の垂直方向に入射(直入射成膜)するようにした。
 次に、この多層反射膜付基板を基に、反射型マスクブランクを製造した。上記多層反射膜の上面に、窒化クロム(CrN:N=10原子%)からなるバッファ膜を形成した。成膜は、DCマグネトロンスパッタリング装置により行い、膜厚は10nmとした。さらにその上に、タンタルホウ素窒化物(TaBN)からなる吸収体膜を、膜の厚さが50nmで成膜した。成膜は、DCマグネトロンスパッタリング装置により行い、TaB合金ターゲット(Ta:B=80:20原子%比)で、スパッタガスとして、キセノン(Xe)ガスと窒素ガス(N)の混合ガス(Xe:N=12.9:6 流量比)を用いて行った。
 また、ガラス基板の裏側には、窒化クロム(CrN:N=10原子%)からなる導電膜を膜厚70nmで形成した。成膜は、DCマグネトロンスパッタリング装置により行った。
 上記のような方法で製造した、基準点マーク11bの形状(幅W及び深さD)の異なる数種類の反射型マスクブランクについて、基準点マークの認識の良否を確認した。基準点マークの認識の良否は、従来から用いられている検査光による欠陥検査機の1つであるKLA-Tencor社製のマスク検査機 KLA-5Seriesを用いた場合と、電子線を用いた場合とのそれぞれの検出方法で、様々な幅および深さの基準点マークについて確認した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1からわかるように、従来の検査光を用いた基準点マーク検出の場合では、基準点マーク11bの深さDが60nm以上のもの(実施例1、2)については、基準点マーク11bが良好に認識できたが、深さDが50nm以下のもの(実施例3、4、5、比較例1)については、基準点マーク11bが良好には認識できなかった。また、基準点マーク11bの深さDが60nmであり、幅Wを4μm~1μmと幅を狭くしていっても(実施例2、6、7、8)良好に識別することができ、違いはなかった。
 また、電子線を用いた基準点マーク検出の場合では、基準点マーク11bの深さDが35nm以上のもの(実施例1、2、3、4、5)については、基準点マーク11bが良好に認識できたが、深さDが35nm未満のもの(比較例1)については、基準点マーク11bが良好には認識できなかった。また、基準点マーク11bの深さDが60nmであり、幅Wを4μm~1μmと幅を狭くしていっても(実施例2、6、7、8)良好に識別することができ、違いはなかった。
(実施例9~16、比較例2)
 以下、実施例9~16および比較例2として、図2Bに示す形状の基準点マーク11a、11bを付けたガラス基板を用いて反射型マスクブランクを作製し、基準点マークの識別の良否を調べた結果を示す。実施例1~8および比較例1と異なる点は、実施例9~16および比較例2においては、基準点マークが付された部分には、反射多層膜を形成しない点である。
 本実施例では、実施例1~8および比較例1の場合と同様の基板を用いて、同様の方法でサイズの異なる基準点マーク11a、11bを形成して、数種類の基板を用意した。
 次に実施例1~8および比較例1の場合と同様の方法で、ガラス基板の基準点マークを形成した主表面上に多層反射膜を形成して多層反射膜付基板を製造した。ただし、本実施例では、基準点マークを形成した部分には、多層反射膜を形成しなかった。
 次に、実施例1~8および比較例1の場合と同様に、この多層反射膜付基板の上面にバッファ膜、吸収体膜を形成し、基板の反対側の主表面に導電膜を形成し、反射型マスクブランクを製造した。この際、バッファ膜、吸収体膜は、多層反射膜を形成しなかった部分(基準点マークを形成した部分を含む領域)にも形成するようにした。
 上記のような方法で製造した、基準点マーク11bのサイズ(幅W及び深さD)の異なる数種類の反射型マスクブランクについて、基準点マークの認識の良否を、実施例1~8と同様の方法で確認した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、従来の検査光を用いた基準点マーク検出の場合では、基準点マーク11bの深さDが60nm以上のもの(実施例9、10)については、基準点マーク11bが良好に認識できたが、深さDが50nm以下のもの(実施例11、12,13、比較例2)については、基準点マーク11bが良好には認識できなかった。また、基準点マーク11bの深さDが60nmであり、幅Wを4μm~1μmと幅を狭くしても(実施例10、14、15、16)良好に識別することができ、違いはなかった。
 また、電子線を用いた基準点マーク検出の場合では、基準点マーク11bの深さDが35nm以上のもの(実施例9、10、11、12、13)については、基準点マーク11bが良好に認識できたが、深さDが35nm未満のもの(比較例2)については、基準点マーク11bが良好には認識できなかった。また、基準点マーク11bの深さDが60nmであり、幅Wを4μm~1μmと幅を狭くしても(実施例10、14、15、16)良好に識別することができ、違いはなかった。
 以上の結果からは、基準点マーク11bの上に多層反射膜を形成した場合と、形成しない場合との間では、基準点マーク11bの検出に関しては特に差は生じなかった。
 なお、本発明に係る反射型マスクブランクを用いて反射型マスクを製造するには、基準点マークを良好に認識できるので、反射型マスクブランク内の欠陥の位置を精度よく特定することができ、吸収体膜への転写パターンのパターニングの際に、欠陥を精度よく回避した上でパターニングすることで、欠陥の少ない反射型マスクを製造することができる。
 なお、本発明は上記実施の形態に限定されず、適宜変更して実施することができる。例えば、上記実施の形態では、基準点マークを、側壁が概ね直立した凹形状としたが、これには限定されず、側壁が概ね直立した凸形状でも同様の効果が得られた。また、多層反射膜と吸収体膜との間に窒化クロムからなるバッファ膜を形成したが、多層反射膜と吸収体膜との間にRuを主成分とするキャッピング膜を形成しても良い。このキャッピング膜の膜厚は、2nmから5nm程度の範囲とするとよい。
 さらには、吸収体層の上面にタンタルホウ素酸化物(TaBO)からなる低反射層を形成しても良い。層の厚さを15nmとすれば好適であり、成膜は、DCマグネトロンスパッタリング装置により行い、TaB合金ターゲット(Ta:B=80:20 原子%比)で、スパッタガスとして、アルゴン(Ar)ガスと酸素ガス(O)の混合ガス(Ar:O=58:32.5 流量比)を用いて行うことができる。
 また、上記実施の形態における材料、サイズ、処理手順などは一例であり、本発明の効果を発揮する範囲内において種々変更して実施することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。

Claims (24)

  1.  基板と、前記基板の主表面上に、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造の多層反射膜を有する反射型マスク用多層反射膜付基板であって、前記基板の多層反射膜が形成される側の主表面におけるパターン形成領域の外側の領域に、側壁が概ね直立した凹形状又は凸形状である基準点マークが形成されている反射型マスク用多層反射膜付基板。
  2.  前記多層反射膜は、前記基準点マークが形成された部分を含む主表面上に前記多層反射膜が形成されている請求項1記載の反射型マスク用多層反射膜付基板。
  3.  前記多層反射膜は、少なくとも前記基準点マークが形成された部分の主表面上を除いて形成されている請求項1記載の反射型マスク用多層反射膜付基板。
  4.  前記基準点マークは、電子線走査で検出可能な深さの凹形状または電子線走査で検出可能な高さの凸形状を有する請求項1乃至3のいずれか記載の反射型マスク用多層反射膜付基板。
  5.  前記基準点マークは、凹形状の深さまたは凸形状の高さが30nmより大きい請求項1乃至3のいずれか記載の反射型マスク用多層反射膜付基板。
  6.  前記基板と前記多層反射膜との間にマーク形成用薄膜を備え、前記基準点マークは、前記マーク形成用薄膜に形成された凹形状、又は前記マーク形成用薄膜から基板にわたり形成された凹形状からなる請求項1乃至5のいずれか記載の反射型マスク用多層反射膜付基板。
  7.  前記マーク形成用薄膜は、基板をエッチングするエッチングガスに対して耐性を有する材料で形成されている請求項6記載の反射型マスク用多層反射膜付基板。
  8.  前記基準点マークは、凸形状であって基板を形成する材料とは異なる材料で形成される請求項1乃至5のいずれか記載の反射型マスク用多層反射膜付基板。
  9.  前記基準点マークが形成される位置が、前記基板の外縁から所定の幅だけ内側である請求項1乃至8のいずれか記載の反射型マスク用多層反射膜付基板。
  10.  前記基準点マークは基板の主表面側から見た形状が十字状である請求項1乃至9のいずれか記載の反射型マスク用多層反射膜付基板。
  11.  前記基準点マークを3つ以上有し、前記3つ以上の基準点マークが一直線上に並ばない位置に形成されている請求項1乃至10のいずれか記載の反射型マスク用多層反射膜付基板。
  12.  基板と、前記基板の主表面上に、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造の多層反射膜を有する反射型マスク用多層反射膜付基板の製造方法であって、前記基板の主表面上に、基準点マークのパターンを有するレジストパターンを形成する工程と、前記レジストパターンをマスクとして前記基板をドライエッチングし、側壁が概ね直立した凹形状又は凸形状である基準点マークを形成する工程と、を有する反射型マスク用多層反射膜付基板の製造方法。
  13.  基板と、前記基板の主表面上に、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造の多層反射膜を有する反射型マスク用多層反射膜付基板の製造方法であって、前記基板の主表面上に、マーク形成用薄膜を形成する工程と、前記マーク形成用薄膜の上面に、基準点マークのパターンを有するレジストパターンを形成する工程と、前記レジストパターンをマスクとし、前記マーク形成用薄膜をドライエッチングして側壁が概ね直立した凹形状又は凸形状である基準点マークを形成する工程と、を有する反射型マスク用多層反射膜付基板の製造方法。
  14.  基板と、前記基板の主表面上に、高屈折率材料を主成分とする高屈折率層と低屈折率材料を主成分とする低屈折率層とが交互に積層した構造の多層反射膜を有する反射型マスク用多層反射膜付基板の製造方法であって、前記基板の主表面上に、基板をエッチングするエッチングガスに対して耐性を有するマーク形成用薄膜を形成する工程と、前記マーク形成用薄膜の上面に、基準点マークのパターンを有するレジストパターンを形成する工程と、前記レジストパターンをマスクとし、前記マーク形成用薄膜をドライエッチングして、エッチングマスクパターンを形成する工程と、前記エッチングマスクパターンをマスクとして前記基板をドライエッチングし、側壁が概ね直立した凹形状又は凸形状である基準点マークを形成する工程と、を有する反射型マスク用多層反射膜付基板の製造方法。
  15.  基板に基準点マークを形成後、マーク形成用薄膜を剥離する工程を有する請求項14記載の反射型マスク用多層反射膜付基板の製造方法。
  16.  多層反射膜を形成する工程では、少なくとも基準点マークが形成された部分の主表面上を除いて形成する請求項12乃至15のいずれか記載の反射型マスク用多層反射膜付基板の製造方法。
  17.  前記マーク形成用薄膜は、Crを主成分とする材料で構成されている請求項13乃至16のいずれか記載の反射型マスク用多層反射膜付基板の製造方法。
  18.  請求項1乃至11のいずれか記載の反射型マスク用多層反射膜付基板の前記多層反射膜の上に露光光を吸収する吸収体膜を有する反射型マスクブランク。
  19.  前記多層反射膜と前記吸収体膜との間にCrを主成分とするバッファ膜を有する請求項18記載の反射型マスクブランク。
  20.  前記多層反射膜と前記吸収体膜との間にRuを主成分とするキャッピング膜を有する請求項18記載の反射型マスクブランク。
  21.  請求項12乃至17のいずれか記載の反射型マスク用多層反射膜付基板の製造方法により製造された反射型マスク用多層反射膜付基板の多層反射膜の上に露光光を吸収する吸収体膜を形成する工程を有する反射型マスクブランクの製造方法。
  22.  前記吸収体膜を形成する工程前に、前記多層反射膜の上にCrを主成分とするバッファ膜を形成する工程を有する請求項21記載の反射型マスクブランクの製造方法。
  23.  前記吸収体膜を形成する工程前に、前記多層反射膜の上にRuを主成分とするキャッピング膜を形成する工程を有する請求項21記載の反射型マスクブランクの製造方法。
  24.  請求項18乃至20のいずれか記載の反射型マスクブランクの前記吸収体膜を所定の形状にパターニングする工程を有する反射型マスクの製造方法。
PCT/JP2010/054923 2009-03-26 2010-03-23 反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法 WO2010110237A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011506042A JP5420639B2 (ja) 2009-03-26 2010-03-23 反射型マスクブランク及び反射型マスクブランクの製造方法
US13/259,862 US8512918B2 (en) 2009-03-26 2010-03-23 Multilayer reflective film coated substrate for a reflective mask, reflective mask blank, and methods of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009077362 2009-03-26
JP2009-077362 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010110237A1 true WO2010110237A1 (ja) 2010-09-30

Family

ID=42780930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054923 WO2010110237A1 (ja) 2009-03-26 2010-03-23 反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法

Country Status (5)

Country Link
US (1) US8512918B2 (ja)
JP (1) JP5420639B2 (ja)
KR (1) KR101650370B1 (ja)
TW (1) TWI468852B (ja)
WO (1) WO2010110237A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084363A1 (en) * 2010-12-20 2012-06-28 Asml Netherlands B.V. Method and system for monitoring the integrity of an article, and euv optical apparatus incorporating the same
WO2012121159A1 (ja) * 2011-03-07 2012-09-13 旭硝子株式会社 多層基板、多層基板の製造方法、多層基板の品質管理方法
WO2013031863A1 (ja) * 2011-09-01 2013-03-07 旭硝子株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、及び反射型マスクブランクの品質管理方法
JP2013135194A (ja) * 2011-12-27 2013-07-08 Canon Inc 描画装置及び物品の製造方法
JP2013219339A (ja) * 2012-03-12 2013-10-24 Hoya Corp 反射型マスクブランク及び反射型マスクの製造方法、並びにマスクブランク及びマスクの製造方法
WO2014050891A1 (ja) * 2012-09-28 2014-04-03 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびにeuvリソグラフィ用反射型マスクおよびその製造方法
JP2014099461A (ja) * 2012-11-13 2014-05-29 Hoya Corp 反射型マスクブランク及び反射型マスクの製造方法
JPWO2013146488A1 (ja) * 2012-03-28 2015-12-10 Hoya株式会社 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP2017075997A (ja) * 2015-10-13 2017-04-20 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法
US9927693B2 (en) 2015-09-17 2018-03-27 Asahi Glass Company, Limited Reflective mask blank and process for producing the reflective mask blank

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10157495B2 (en) * 2011-03-04 2018-12-18 General Electric Company Method and device for displaying a two-dimensional image of a viewed object simultaneously with an image depicting the three-dimensional geometry of the viewed object
US10586341B2 (en) 2011-03-04 2020-03-10 General Electric Company Method and device for measuring features on or near an object
US9875574B2 (en) * 2013-12-17 2018-01-23 General Electric Company Method and device for automatically identifying the deepest point on the surface of an anomaly
JP6460617B2 (ja) * 2012-02-10 2019-01-30 Hoya株式会社 反射型マスクブランク、反射型マスクの製造方法、及び反射型マスクブランクの製造方法
US8962222B2 (en) * 2012-06-13 2015-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. Photomask and method for forming the same
WO2014129527A1 (ja) 2013-02-22 2014-08-28 Hoya株式会社 反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP5970021B2 (ja) * 2013-08-20 2016-08-17 Hoya株式会社 フォトマスクの製造方法、描画装置、フォトマスクの検査方法、フォトマスクの検査装置、及び表示装置の製造方法
US9818039B2 (en) 2013-12-17 2017-11-14 General Electric Company Method and device for automatically identifying a point of interest in a depth measurement on a viewed object
JP6469469B2 (ja) * 2015-02-06 2019-02-13 富士通コンポーネント株式会社 光導波路モジュール
KR20180072036A (ko) 2016-12-20 2018-06-29 삼성전자주식회사 마스크 처리 장치 및 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158218A (ja) * 1991-12-10 1993-06-25 Hitachi Ltd マスク基板および描画方法
JP2001033941A (ja) * 1999-07-16 2001-02-09 Toshiba Corp パターン形成方法及び露光装置
JP2003248299A (ja) * 2002-02-26 2003-09-05 Toshiba Corp マスク基板およびその製造方法
JP2004193269A (ja) * 2002-12-10 2004-07-08 Hitachi Ltd マスクの製造方法および半導体集積回路装置の製造方法
JP2006195291A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 反射防止構造体を有する部材の製造方法
WO2007043488A1 (en) * 2005-10-03 2007-04-19 Asahi Glass Company, Limited Method for depositing multilayer film of mask blank for euv lithography and method for producing mask blank for euv lithography
JP2007273678A (ja) * 2006-03-31 2007-10-18 Hoya Corp 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
JP2008041740A (ja) * 2006-08-02 2008-02-21 Toppan Printing Co Ltd 反射型フォトマスクブランク、反射型フォトマスク及び極端紫外線の露光方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9001611A (nl) * 1990-07-16 1992-02-17 Asm Lithography Bv Apparaat voor het afbeelden van een maskerpatroon op een substraat.
JP2000077306A (ja) * 1998-08-31 2000-03-14 Nikon Corp 反射マスクおよびx線投影露光装置
JP4693451B2 (ja) * 2005-03-22 2011-06-01 Hoya株式会社 グレートーンマスクの製造方法及び薄膜トランジスタ基板の製造方法
WO2008129914A1 (ja) 2007-04-17 2008-10-30 Asahi Glass Company, Limited Euvマスクブランク
JP4663749B2 (ja) * 2008-03-11 2011-04-06 大日本印刷株式会社 反射型マスクの検査方法および製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05158218A (ja) * 1991-12-10 1993-06-25 Hitachi Ltd マスク基板および描画方法
JP2001033941A (ja) * 1999-07-16 2001-02-09 Toshiba Corp パターン形成方法及び露光装置
JP2003248299A (ja) * 2002-02-26 2003-09-05 Toshiba Corp マスク基板およびその製造方法
JP2004193269A (ja) * 2002-12-10 2004-07-08 Hitachi Ltd マスクの製造方法および半導体集積回路装置の製造方法
JP2006195291A (ja) * 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd 反射防止構造体を有する部材の製造方法
WO2007043488A1 (en) * 2005-10-03 2007-04-19 Asahi Glass Company, Limited Method for depositing multilayer film of mask blank for euv lithography and method for producing mask blank for euv lithography
JP2007273678A (ja) * 2006-03-31 2007-10-18 Hoya Corp 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
JP2008041740A (ja) * 2006-08-02 2008-02-21 Toppan Printing Co Ltd 反射型フォトマスクブランク、反射型フォトマスク及び極端紫外線の露光方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084363A1 (en) * 2010-12-20 2012-06-28 Asml Netherlands B.V. Method and system for monitoring the integrity of an article, and euv optical apparatus incorporating the same
JP5910625B2 (ja) * 2011-03-07 2016-04-27 旭硝子株式会社 多層基板、多層基板の製造方法、多層基板の品質管理方法
US8921017B2 (en) 2011-03-07 2014-12-30 Asahi Glass Company, Limited Multilayer substrate, manufacturing method for multilayer substrate, and quality control method for multilayer substrate
WO2012121159A1 (ja) * 2011-03-07 2012-09-13 旭硝子株式会社 多層基板、多層基板の製造方法、多層基板の品質管理方法
US8916316B2 (en) 2011-09-01 2014-12-23 Asahi Glass Company, Limited Reflecting mask blank, method for manufacturing reflective mask blank and method for quality control for reflective mask blank
JPWO2013031863A1 (ja) * 2011-09-01 2015-03-23 旭硝子株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、及び反射型マスクブランクの品質管理方法
WO2013031863A1 (ja) * 2011-09-01 2013-03-07 旭硝子株式会社 反射型マスクブランク、反射型マスクブランクの製造方法、及び反射型マスクブランクの品質管理方法
JP2013135194A (ja) * 2011-12-27 2013-07-08 Canon Inc 描画装置及び物品の製造方法
JP2013219339A (ja) * 2012-03-12 2013-10-24 Hoya Corp 反射型マスクブランク及び反射型マスクの製造方法、並びにマスクブランク及びマスクの製造方法
JP2017227933A (ja) * 2012-03-12 2017-12-28 Hoya株式会社 反射型マスクブランク及び反射型マスクの製造方法、並びにマスクブランク及びマスクの製造方法
JPWO2013146488A1 (ja) * 2012-03-28 2015-12-10 Hoya株式会社 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
WO2014050891A1 (ja) * 2012-09-28 2014-04-03 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびにeuvリソグラフィ用反射型マスクおよびその製造方法
US9268207B2 (en) 2012-09-28 2016-02-23 Asahi Glass Company, Limited Reflective mask blank for EUV lithography, method of manufacturing thereof, reflective mask for EUV lithography and method of manufacturing thereof
JPWO2014050891A1 (ja) * 2012-09-28 2016-08-22 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびにeuvリソグラフィ用反射型マスクおよびその製造方法
JP2014099461A (ja) * 2012-11-13 2014-05-29 Hoya Corp 反射型マスクブランク及び反射型マスクの製造方法
US9927693B2 (en) 2015-09-17 2018-03-27 Asahi Glass Company, Limited Reflective mask blank and process for producing the reflective mask blank
JP2017075997A (ja) * 2015-10-13 2017-04-20 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法

Also Published As

Publication number Publication date
JPWO2010110237A1 (ja) 2012-09-27
US8512918B2 (en) 2013-08-20
TWI468852B (zh) 2015-01-11
KR101650370B1 (ko) 2016-08-23
JP5420639B2 (ja) 2014-02-19
US20120019916A1 (en) 2012-01-26
KR20120006011A (ko) 2012-01-17
TW201107873A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
JP5420639B2 (ja) 反射型マスクブランク及び反射型マスクブランクの製造方法
US11131921B2 (en) Method for manufacturing reflective mask blank, and method for manufacturing reflective mask
US10126641B2 (en) Multilayer reflective film formed substrate, reflective mask blank, mask blank, methods of manufacturing the same, reflective mask, and mask
JP6509987B2 (ja) 反射型マスクブランク及びその製造方法、並びに反射型マスク及びその製造方法
JP6111243B2 (ja) 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP7286604B2 (ja) 反射型マスクブランクの製造方法、反射型マスクの製造方法、及び半導体装置の製造方法
JP5279840B2 (ja) 多層反射膜付基板及び反射型マスクブランク並びに反射型マスクの製造方法
US20230266658A1 (en) Reflective structure, reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP6282844B2 (ja) 薄膜付き基板及び転写用マスクの製造方法
JP5874407B2 (ja) 位相欠陥の影響を低減するeuv露光用反射型マスクの製造方法
WO2020095959A1 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
JP6561099B2 (ja) 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法及び反射型マスクの製造方法
JP2013131728A (ja) 反射型マスク用基板、反射型マスクブランクス、反射型マスク、および、それらの製造方法
TWI808103B (zh) 附多層反射膜之基板、反射型光罩基底、反射型光罩、及半導體裝置之製造方法
JP2013110173A (ja) 反射型マスクブランクス、反射型マスク、および、それらの製造方法、並びに、反射型マスクブランクスの検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756033

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506042

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117021769

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13259862

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756033

Country of ref document: EP

Kind code of ref document: A1