WO2014129527A1 - 反射型マスクブランクの製造方法、及び反射型マスクの製造方法 - Google Patents

反射型マスクブランクの製造方法、及び反射型マスクの製造方法 Download PDF

Info

Publication number
WO2014129527A1
WO2014129527A1 PCT/JP2014/053987 JP2014053987W WO2014129527A1 WO 2014129527 A1 WO2014129527 A1 WO 2014129527A1 JP 2014053987 W JP2014053987 W JP 2014053987W WO 2014129527 A1 WO2014129527 A1 WO 2014129527A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
reference mark
defect
mask blank
substrate
Prior art date
Application number
PCT/JP2014/053987
Other languages
English (en)
French (fr)
Inventor
笑喜 勉
和宏 浜本
洋平 池邊
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US14/768,787 priority Critical patent/US10067419B2/en
Priority to KR1020157025136A priority patent/KR102219307B1/ko
Priority to JP2015501487A priority patent/JP6357143B2/ja
Priority to KR1020217004751A priority patent/KR102330533B1/ko
Publication of WO2014129527A1 publication Critical patent/WO2014129527A1/ja
Priority to US16/054,295 priority patent/US11131921B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/66Containers specially adapted for masks, mask blanks or pellicles; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • G03F1/84Inspecting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the present invention relates to a method for manufacturing a reflective mask blank used for manufacturing a semiconductor device or the like, and a method for manufacturing a reflective mask.
  • a fine pattern is formed using a photolithography method.
  • a number of transfer masks usually called photomasks, are used to form this fine pattern.
  • This transfer mask is generally provided with a fine pattern made of a metal thin film or the like on a translucent glass substrate, and the photolithographic method is also used in the manufacture of this transfer mask.
  • a mask blank having a thin film (for example, a light shielding film) for forming a transfer pattern (mask pattern) on a translucent substrate such as a glass substrate is used for manufacturing a transfer mask by photolithography.
  • the production of a transfer mask using the mask blank includes a drawing process for drawing a desired pattern on the resist film formed on the mask blank, and developing the resist film after drawing to form a desired resist pattern.
  • the developing process is formed, the etching process is performed to etch the thin film using the resist pattern as a mask, and the process is performed to peel and remove the remaining resist pattern.
  • a desired pattern is drawn on the resist film formed on the mask blank, and then a developing solution is supplied to dissolve a portion of the resist film that is soluble in the developing solution, thereby forming a resist pattern.
  • the resist pattern is used as a mask to remove the exposed portion of the thin film on which the resist pattern is not formed by dry etching or wet etching, thereby forming a desired mask pattern on the translucent substrate. Form. Thus, a transfer mask is completed.
  • EUV lithography which is an exposure technique using extreme ultraviolet (Extreme Ultra Violet: hereinafter referred to as “EUV”) light, is promising.
  • EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 0.2 to 100 nm.
  • a reflective mask has been proposed as a mask used in this EUV lithography.
  • Such a reflective mask is a substrate in which a multilayer reflective film that reflects EUV light as exposure light is formed on a substrate, and an absorber film that absorbs EUV light is formed in a pattern on the multilayer reflective film. is there.
  • the position of a substrate defect is specified by the distance from that position with the substrate center as the origin (0,0). For this reason, the positional accuracy is low, and there is a variation in detection between apparatuses, and it is difficult to avoid in the order of ⁇ m even when patterning is performed on a pattern forming thin film while avoiding defects. For this reason, the defect is avoided by changing the pattern transfer direction or by roughly shifting the transfer position on the order of mm.
  • Patent Document 1 a size equivalent to a sphere equivalent diameter of 30 to 30 mm is formed on the film forming surface of a reflective mask blank substrate for EUV lithography so that the position of a minute defect having a sphere equivalent diameter of about 30 nm can be accurately identified. It is disclosed to form at least three marks of 100 nm.
  • the reference mark when the reference mark is formed on the multilayer reflective film, the following various problems occur.
  • a protective film having an etching stopper function also referred to as a capping layer or a buffer layer
  • the alloy material is generally used in many cases. However, this Ru or its alloy material has poor cleaning resistance, and damage due to the cleaning is large.
  • the multilayer reflective film is, for example, an alternately laminated film of about 40 to 60 cycles of Si layer and Mo layer
  • etching when a reference mark is formed on the multilayer reflective film by, for example, etching, its cross-sectional shape tends to be a slope, and thus A fiducial mark with a sloping cross section reduces the alignment accuracy.
  • the reference mark is formed on the multilayer reflective film, if the multilayer reflective film is completely etched in the depth direction, the etching proceeds to the surface of the glass substrate, which causes a problem that recycling of the glass substrate becomes difficult.
  • the present invention has been made in view of such a conventional problem, and the object of the present invention is firstly, the contamination risk of the multilayer reflective film as in the case of forming a reference mark on the multilayer reflective film, It is to provide a reflective mask blank that is not damaged by cleaning and that improves the alignment accuracy with respect to the reference mark in the electron beam drawing process. Second, this reflective mask blank is used to reduce defects. It is to provide a reflective mask.
  • a multilayer reflective film is formed on the substrate. After that, only a defect inspection is performed, and then a laminated film is formed on the multilayer reflective film, and a reference mark is formed on the laminated film to obtain a reflective mask blank on which the reference mark is formed. It has been found that the above-mentioned problems can be solved by performing a defect inspection of the reflective mask blank with reference to the mark. Second, a multilayer reflective film is formed on the substrate, and only a normal defect inspection is performed on the multilayer reflective film, and then an absorber film is formed on the multilayer reflective film. It is possible to solve the above-mentioned problem by forming a reference mark to obtain a reflective mask blank on which the reference mark is formed, and then performing a defect inspection of the reflective mask blank with reference to the reference mark. I found.
  • the present inventor completed the present invention as a result of further intensive studies based on the above elucidated facts. That is, in order to solve the above problems, the present invention has the following configuration.
  • (Configuration 1) A method of manufacturing a multilayer reflective film that reflects EUV light on a substrate and a reflective mask blank in which a multilayer film is formed on the multilayer reflective film, wherein the multilayer reflective film is formed on the substrate.
  • a step of performing a defect inspection of the reflective mask blank is
  • a reflective mask blank manufacturing method in which a multilayer reflective film that reflects EUV light and an absorber film that absorbs EUV light are formed on the multilayer reflective film on a substrate comprising: Forming a multilayer reflective film to form a substrate with a multilayer reflective film; performing a defect inspection on the multilayer reflective film-coated substrate; and on the multilayer reflective film of the multilayer reflective film-coated substrate, Forming the absorber film; forming a reference mark serving as a reference for a defect position in defect information on the absorber film; and forming a reflective mask blank on which the reference mark is formed; And a step of performing a defect inspection of the reflective mask blank using the reference mark as a reference.
  • forming the reference mark on the laminated film or the absorber film formed on the multilayer reflective film has the following effects. 1. Only the normal defect inspection is performed on the multilayer reflective film formed on the substrate, and the reference mark is not formed. Therefore, there is no risk of contamination of the multilayer reflective film when the reference mark is formed on the multilayer reflective film. Further, it is not necessary to perform cleaning for removing defects due to contamination of the multilayer reflective film, and damage to the multilayer reflective film surface (protective film surface) due to cleaning does not occur. Furthermore, since it is not necessary to repeatedly perform cleaning and inspection for removing defects due to contamination of the multilayer reflective film, there is no problem of increase in inspection cost or new contamination risk.
  • the defect inspection for the reflective mask blank is performed based on the reference mark formed on the laminated film or the absorber film, and alignment can be performed using the same reference mark as described above in the electron beam drawing process in the subsequent mask manufacturing. As a result, alignment accuracy is improved.
  • the film thickness of the laminated film and the absorber film is smaller than the film thickness of the multilayer reflective film, and the absorber film is a single layer or a laminated film of 2 to 3 layers at most. Since the reference mark having a cross-sectional shape with high perpendicularity can be formed, alignment accuracy is improved. 3. Since the etching damage to the glass substrate does not occur in the process of forming the reference mark on the laminated film or the absorber film, the glass substrate can be easily recycled.
  • the reference point of the defect position is determined, and the defect position (reference point and defect Accurate defect information (defect map) including relative position information can be acquired.
  • the drawing data is corrected (corrected) with high accuracy so as to reduce the influence of the defect by collating with drawing data (mask pattern data) designed in advance based on the defect information. As a result, defects can be reduced in the finally manufactured reflective mask.
  • (Configuration 4) The defect inspection of the substrate with the multilayer reflective film is performed on the entire surface of at least the pattern formation region on the substrate with the multilayer reflective film, and the defect inspection of the reflective mask blank is performed by the defect inspection of the substrate with the multilayer reflective film. 4. The method of manufacturing a reflective mask blank according to any one of Configurations 1 to 3, wherein the position is specified for at least some of the detected defects. As in Configuration 4, the defect inspection of the substrate with the multilayer reflective film is performed on at least the entire surface of the pattern formation region on the substrate with the multilayer reflective film. The defect inspection of the reflective mask blank is performed on the substrate with the multilayer reflective film. By performing so-called partial inspection, which is performed by specifying the positions of at least some of the defects detected by the defect inspection, it is possible to significantly reduce the inspection time.
  • a pseudo defect is formed on the multilayer reflective film in the substrate with the multilayer reflective film, the pseudo defect detected by the defect inspection of the substrate with the multilayer reflective film, and the pseudo defect detected by the defect inspection of the reflective mask blank. 5. The reflection according to claim 1, wherein the defect inspection data of the substrate with a multilayer reflective film and the defect inspection data of the reflective mask blank are collated based on the defect corresponding to Mold mask blank manufacturing method.
  • a pseudo defect is formed in advance on the multilayer reflective film in the substrate with the multilayer reflective film as in Configuration 5, and is detected by defect inspection of the substrate with the multilayer reflective film.
  • the defect inspection data of the substrate with the multilayer reflective film and the defect inspection data of the reflective mask blank are collated based on the detected pseudo defect and the defect corresponding to the pseudo defect detected by the defect inspection of the reflective mask blank. You may do it.
  • the reference mark is formed at a predetermined position from the origin set with reference to the edge coordinates of the substrate, and the reflective mask blank on which the reference mark is formed is associated with the formation position information of the reference mark.
  • the reflective mask blank in which the reference mark is formed at a predetermined position from the origin set with reference to the edge coordinates of the substrate and the formation position information of the reference mark are associated with each other and the reflective mask By manufacturing the blank, the user who is provided with the reflective mask blank can reliably detect the reference mark in a short time by using the formation position information of the reference mark.
  • Configuration 7 After forming the reference mark, the coordinate mark is used to identify the formation position of the reference mark, and the reflective mask blank on which the reference mark is formed is associated with the formation position information of the reference mark.
  • the reference coordinates of the electron beam drawing machine can be converted. Therefore, the user who is provided with the reflective mask blank can easily collate the defect position specified by the defect inspection apparatus based on the reference mark with the drawing data with high accuracy, and is finally manufactured. Defects can be reliably reduced in the mask.
  • (Configuration 8) 8. The method of manufacturing a reflective mask blank according to Configuration 6 or 7, wherein defect information based on the reference mark is further added to the formation position information of the reference mark.
  • Configuration 8 by adding defect information in the multilayer reflective film-coated substrate or the reflective mask blank based on the reference mark to the formation position information of the reference mark, and manufacturing a reflective mask blank, The user provided with this reflective mask blank can reliably detect the reference mark in a short time using the formation position information of the reference mark, and in manufacturing the mask, based on the defect information, The drawing data can be corrected (corrected) with high accuracy so that the influence of the defect is reduced, and the defect can be reduced in the finally manufactured mask.
  • the present invention by forming the reference mark on the laminated film or the absorber film, there is no risk of contamination of the multilayer reflective film and damage due to cleaning as in the case of forming the reference mark on the multilayer reflective film, and the mask is manufactured.
  • Reflection type that improves the alignment accuracy with respect to the reference mark in the electron beam drawing process and enables the coordinate management of the defect (reference mark and relative position management of the defect) to be performed with high accuracy by forming the reference mark.
  • a mask blank can be provided. Further, according to the present invention, it is possible to provide a reflective mask in which defects are reduced by using this reflective mask blank and correcting drawing data based on the defect information.
  • FIG. 1 is a plan view of a reflective mask blank showing an example of arrangement of reference marks.
  • the reference marks 13 of the present invention are formed at four locations near the corner on the absorber film of the reflective mask blank 40 as an example.
  • the present invention is characterized in that a reference mark is formed on a laminated film or an absorber film.
  • all of the reference marks 13 are formed on the boundary line of the pattern formation region indicated by the broken line A on the main surface of the reflective mask blank or on the outer peripheral side from the pattern formation region. However, if it is too close to the outer peripheral edge of the substrate, it may not intersect with other types of recognition marks, which is not preferable.
  • the number of reference marks is not particularly limited. Although at least three reference marks are required, three or more reference marks may be used.
  • FIG. 2 is a diagram showing a shape example and an arrangement example of the main mark and auxiliary mark constituting the reference mark of the present invention.
  • FIG. 3 is a diagram for explaining a method of determining a reference point using the reference mark of the present invention.
  • the reference mark serves as a reference for the defect position in the defect information.
  • the reference mark 13 of the present invention includes a main mark for determining a position (reference point) to be a reference for the defect position, and the main mark.
  • the main mark preferably has a point-symmetric shape and has a width of 200 nm or more and 10 ⁇ m or less with respect to the scanning direction of the electron beam or the defect inspection light.
  • the main mark 13a has a polygonal shape having at least two sets of sides which are perpendicular to and parallel to the scanning direction of the electron beam drawing machine or the defect inspection light (X direction and Y direction in FIG. 3). Is preferred.
  • the main mark 13a has a polygonal shape having at least two sets of sides that are perpendicular to and parallel to the scanning direction of the electron beam or the defect inspection light, so that it can be detected by the electron beam drawing machine and the defect inspection apparatus. And the variation in the defect detection position can be suppressed.
  • the main mark 13a is a square having the same length in both the vertical and horizontal directions (X and Y directions).
  • the vertical and horizontal lengths (L) are 200 nm or more and 10 ⁇ m or less, respectively.
  • the main mark 13a preferably has a point-symmetric shape.
  • the square corners are rounded, as shown in FIG. 4B, as shown in FIG. 4B, as shown in FIG. )
  • the size (length and width) L) of the main mark 13a is 200 nm or more and 10 ⁇ m or less.
  • the size (vertical and horizontal length) can be set to 5 ⁇ m or more and 10 ⁇ m or less.
  • the main mark 13a may be a regular circle having a diameter of 200 nm to 10 ⁇ m.
  • the two auxiliary marks 13b and 13c are arranged around the main mark 13a along the scanning direction of the electron beam or defect inspection light (X direction and Y direction in FIG. 3).
  • the auxiliary marks 13b and 13c have a rectangular shape having a short side parallel to a long side perpendicular to the scanning direction of the electron beam or the defect inspection light. Since the auxiliary mark has a rectangular shape having a short side parallel to the long side perpendicular to the scanning direction of the electron beam or the defect inspection light, the auxiliary mark can be reliably detected by scanning with an electron beam drawing machine or a defect inspection device. The position of the main mark can be easily specified.
  • the long side is a length that can be detected by the minimum number of scans of the electron beam drawing machine and the defect inspection apparatus. For example, it is desirable to have a length of 25 ⁇ m or more and 600 ⁇ m or less. On the other hand, if the length of the long side is short, for example, less than 25 ⁇ m, it may be difficult to detect the auxiliary mark by scanning with an electron beam drawing machine or a defect inspection apparatus. Further, if the length of the long side is long, for example, if it exceeds 600 ⁇ m, the processing time may exceed 1 hour / location depending on the method of forming the reference mark, which is not preferable. More preferably, the length of the long side is 25 ⁇ m or more and 400 ⁇ m or less, and more preferably 25 ⁇ m or more and 200 ⁇ m or less.
  • auxiliary marks 13b and 13c and the main mark 13a may be separated from each other by a predetermined distance or may not be separated from each other.
  • the interval is not particularly limited. However, in the present invention, it is preferable to set the distance to, for example, about 25 ⁇ m to 50 ⁇ m.
  • Each of the main mark 13a and the auxiliary marks 13b and 13c has a concave cross-sectional shape and is a reference mark that can be recognized by providing a desired depth in the height direction of the reference mark.
  • the cross-sectional shape is formed so as to spread from the bottom of the concave shape toward the surface side, and the inclination angle of the side wall of the reference mark in this case is It is preferable that it is 75 degree
  • the upper limit of the inclination angle of the side wall of the reference mark is preferably 105 degrees or less. More preferably, it is 100 degrees or less, and more preferably 95 degrees or less.
  • the inclination angle of the side wall of the reference mark is 75 degrees to 105 degrees, more preferably 80 degrees to 100 degrees, and still more preferably 85 degrees to 95 degrees.
  • a reference point serving as a reference for the defect position is determined as follows (see FIG. 3).
  • the position of the main mark 13a can be roughly specified by scanning the auxiliary marks 13b and 13c with an electron beam or defect inspection light in the X and Y directions and detecting these auxiliary marks. After scanning the electron beam or the inspection light in the X direction and the Y direction on the main mark 13a whose position is specified, the intersection P (usually the main mark) on the main mark 13a (detected by the scanning of the auxiliary mark) The reference point is determined with the approximate center of ().
  • the auxiliary marks 13b and 13c are preferably in a rectangular shape having a short side parallel to a long side perpendicular to the scanning direction of the electron beam or the defect inspection light. It is preferable that the electron beam drawing machine and the defect inspection apparatus have a length that can be detected by the smallest possible number of scans, for example, a length of 25 ⁇ m to 600 ⁇ m. However, for example, if a length of about several hundred ⁇ m is formed with a focused ion beam, a long processing time is required. Therefore, the auxiliary mark can be divided into several rectangles as shown in FIG. FIG. 6 is an example specifically showing such an embodiment.
  • One of the main marks 13a having a size of 5 ⁇ m ⁇ 5 ⁇ m (in the Y direction) has a rectangular auxiliary mark 13b1 having a size of 50 ⁇ m ⁇ 1 ⁇ m. 13b6 are arranged at equal intervals, and the interval (space) between the auxiliary marks is 50 ⁇ m.
  • the auxiliary mark is removed in the first scan (first scan), the auxiliary mark is also removed in the second scan (second scan) shifted upward (Y direction) by 60 ⁇ m, and further shifted by 60 ⁇ m upward.
  • the auxiliary mark 13b5 can be detected by the third scan (the third scan). Even if the auxiliary mark is divided in this way, and the long side length of each divided auxiliary mark is shortened, it is possible to determine the scanning rule and reliably detect the auxiliary mark with as few scans as possible. is there. Further, by dividing the auxiliary mark in this way, the overall processing time can be shortened.
  • the fiducial mark of the present invention is formed on, for example, the multilayer reflective film of the multilayer reflective film substrate, the above-described various problems occur. Therefore, in the present invention, a highly sensitive defect inspection is performed on the multilayer reflective film.
  • the reference mark is formed on a laminated film or an absorber film formed on the multilayer reflective film, and thereafter, the defect inspection of the reflective mask blank is performed using the reference mark.
  • the reference mark of the present invention can be easily detected by either an electron beam drawing machine or an optical defect inspection apparatus, in other words, can be reliably detected.
  • the deviation of the reference point of the defect position determined by scanning with the electron beam or the defect inspection light can be reduced. Therefore, the variation in the defect detection position inspected based on the reference mark is small. Thereby, in the defect inspection, it is possible to determine the reference point of the defect position and acquire the accurate defect information (defect map) including the defect position (relative position between the reference point and the defect) information.
  • the drawing data is corrected (corrected) with high accuracy so as to reduce the influence of the defect by collating with drawing data (mask pattern data) designed in advance based on the defect information.
  • drawing data mask pattern data
  • the present invention is not limited to such an embodiment.
  • the position of the auxiliary mark relative to the main mark is arbitrary as long as the positional relationship between the main mark and the auxiliary mark is specified.
  • the edge can be used as the reference point instead of the center of the main mark.
  • the reference mark 13 of the present invention is preferably formed on the boundary line of the pattern forming area indicated by the broken line A on the main surface of the reflective mask blank or at an arbitrary position on the outer peripheral side from the pattern forming area.
  • FIGS. 7 and 8 are diagrams for explaining a method of forming a reference mark based on an edge.
  • FIB focused ion beam
  • the edge of the substrate of the reflective mask blank provided with the absorber film is detected.
  • the edge of the substrate of the reflective mask blank can be recognized by a secondary electron image, a secondary ion image, or an optical image.
  • the edge of the reflective mask blank can be recognized by an optical image, or the edge can be recognized by pressing it on one side of the stage on which the reflective mask blank is placed. Further, when the reference mark is processed by other methods (for example, indentation), it can be recognized by an optical image. As shown in FIG. 7, for example, the edge coordinates of eight locations (locations with circles) on the four sides of the substrate of the reflective mask blank 40 are confirmed, tilt correction is performed, and the origin (0, 0) is obtained. The origin in this case can be arbitrarily set, and may be the corner or center of the substrate.
  • FIG. 8 shows a predetermined position from the origin O (0, 0) set at an arbitrary corner of the substrate on the edge basis, specifically, the X distance from the edge of the end face 40A on both sides of the origin O, and the end face 40B.
  • the reference mark 13 is formed at a distance Y from the edge.
  • the reference mark formation coordinates (X, Y) with reference to the origin O (0, 0) serve as reference mark formation position information. The same applies to the reference marks formed at other positions.
  • the formation position information of the reference mark that is, the distance from the edge is known.
  • the position can be easily specified.
  • a reference mark forming position is specified by a coordinate measuring instrument after a reference mark is formed at an arbitrary position on the reflective mask blank laminated film or absorber film.
  • This coordinate measuring instrument measures the formation coordinates of a reference mark on the basis of an edge.
  • a high-accuracy pattern position measuring device LMS-IPRO4 manufactured by KLA-Tencor
  • KLA-Tencor high-accuracy pattern position measuring device
  • the coordinates serve as reference mark formation position information.
  • the coordinate measuring instrument also has a role of converting the reference coordinates of the electron beam drawing machine, so that the user who is provided with the reflective mask blank can easily determine the defect position specified by the defect inspection apparatus based on the reference mark and the drawing. Data can be collated with high accuracy, and defects can be reliably reduced in a finally manufactured mask.
  • the defect inspection apparatus or the electron beam drawing is performed. Since the position of the reference mark on the reflective mask blank can be easily specified by the apparatus, the size of the reference mark can be reduced.
  • the reference mark 13 of the present invention is composed of the main mark and auxiliary mark described above, the width of the main mark is 200 nm to 10 ⁇ m, and the long side of the auxiliary mark is, for example, a size of 25 ⁇ m to 250 ⁇ m.
  • the FIB as the reference mark forming means because the processing time of the reference mark can be shortened. Further, the detection time of the reference mark can be shortened, which is preferable.
  • FIG. 9 shows an example of the shape and arrangement of the reference mark in the case of forming with the edge reference as described above.
  • a configured reference mark is a typical example.
  • the auxiliary mark is not necessarily required, and for example, only the main mark 13a as shown in FIG.
  • the reflective mask blank in which the reference mark is formed at a predetermined position from the origin set with reference to the edge coordinates of the substrate is associated with the reference mark formation position information (reference mark formation coordinates) in this case.
  • the reference mark formation position information reference mark formation coordinates
  • the coordinate mark is used to identify the formation position of the reference mark, the reflective mask blank on which the reference mark is formed, and the reference mark formation position information in this case ( By providing the user with the identified reference mark position coordinates), the user can reliably detect the reference mark in a short time by using the reference mark formation position information.
  • the reference coordinates of the electron beam drawing machine can be converted. Therefore, the user who is provided with the reflective mask blank can easily collate the defect position specified by the defect inspection apparatus based on the reference mark with the drawing data with high accuracy, and the mask finally manufactured Defects can be reliably reduced.
  • defect information position information, size, etc.
  • the reference mark is added to the reference mark formation position information and provided to the user so that the user can use the reference mark formation position information.
  • the reference mark can be reliably detected in a short time, and the drawing data is corrected (corrected) with high accuracy so as to reduce the influence of the defect based on the defect information. Defects can be reduced.
  • the reflective mask blank manufacturing method according to the present invention includes a multilayer reflective film that reflects EUV light on a substrate and a reflective film in which a multilayer film is formed on the multilayer reflective film.
  • a method of manufacturing a mold mask blank comprising: forming a multilayer reflective film on the substrate to form a multilayer reflective film-coated substrate; and performing a defect inspection on the multilayer reflective film-coated substrate; Forming the laminated film on the multilayer reflective film of the substrate with the multilayer reflective film, and forming a reference mark serving as a reference for a defect position in defect information on the laminated film,
  • the method includes a step of forming a reflective mask blank on which a mark is formed, and a step of performing a defect inspection of the reflective mask blank with reference to the reference mark.
  • the reflective mask blank manufacturing method includes a multilayer reflective film that reflects EUV light on a substrate, and an absorption that absorbs EUV light on the multilayer reflective film, as in Configuration 2 above.
  • a method of manufacturing a reflective mask blank in which a body film is formed comprising: forming a multilayer reflective film on the substrate to form a multilayer reflective film-coated substrate; and A step of performing a defect inspection on the substrate, a step of forming the absorber film on the multilayer reflective film of the substrate with the multilayer reflective film, and a reference serving as a reference for a defect position in defect information on the absorber film Forming a reflective mask blank on which the reference mark is formed, and performing a defect inspection of the reflective mask blank with reference to the reference mark. .
  • FIG. 10 is a cross-sectional view showing a manufacturing process of the reflective mask blank and the reflective mask according to the present invention.
  • a manufacturing method of the reflective mask blank having the configuration 2 will be described.
  • the absorber film 41 or the relationship between the absorber film 41 and the hard mask film 61 is replaced with a laminated film.
  • the present invention can also be applied to the manufacturing method of the reflective mask blank having the configuration 1.
  • the absorber film 41 is not limited to a single layer film, and may be formed of a laminated film of the same material or a laminated film of different materials.
  • the reflective mask blank according to the present invention can be configured as a laminated film or a laminated film of a single-layer absorber film and a hard mask film as described above.
  • the reference mark may be formed by removing at least the upper part of the multilayer film. It may be formed by removing all in the thickness direction.
  • the reference mark may be formed at least on the hard mask film.
  • a base layer 21, a multilayer reflective film 31 that reflects EUV light, and a protective film 32 are sequentially formed on a glass substrate 11 as a substrate to produce a substrate 30 with a multilayer reflective film (FIG. 10A). reference).
  • the glass substrate 11 is preferable as the substrate.
  • it is within the range of 0 ⁇ 1.0 ⁇ 10 ⁇ 7 / ° C., more preferably 0 ⁇ .
  • Those having a low thermal expansion coefficient within the range of 0.3 ⁇ 10 ⁇ 7 / ° C. are preferably used.
  • the main surface of the glass substrate 11 on which the transfer pattern is formed is subjected to surface processing so as to have high flatness from the viewpoint of obtaining at least pattern transfer accuracy and position accuracy.
  • the flatness is preferably 0.1 ⁇ m or less, particularly preferably 0.05 ⁇ m or less, in the main surface 142 mm ⁇ 142 mm region on the side where the transfer pattern of the glass substrate 11 is formed.
  • the main surface opposite to the side on which the transfer pattern is formed is a surface that is electrostatically chucked when being set in the exposure apparatus, and in a 142 mm ⁇ 142 mm region, the flatness is 0.1 ⁇ m or less, preferably 0.05 ⁇ m or less.
  • a material having a low thermal expansion coefficient such as SiO 2 —TiO 2 glass is used as the glass substrate 11, and such a glass material has a surface roughness of, for example, RMS by precision polishing. Therefore, it is difficult to achieve high smoothness of 0.1 nm or less. Therefore, it is preferable to form the base layer 21 on the surface of the glass substrate 11 for the purpose of reducing the surface roughness of the glass substrate 11 or reducing defects on the surface of the glass substrate 11.
  • the material for the underlayer 21 it is not necessary to have a light-transmitting property with respect to the exposure light, and a material that provides high smoothness and good defect quality when the surface of the underlayer is precisely polished is preferably selected. Is done.
  • Si or a silicon compound containing Si is preferably used because high smoothness is obtained when it is precisely polished and the defect quality is good. In particular, Si is preferable.
  • the surface of the base layer 21 is preferably a surface that has been precisely polished so as to have the smoothness required for a reflective mask blank substrate. It is desirable that the surface of the underlayer 21 be precisely polished so that the root mean square roughness (RMS) is 0.15 nm or less, particularly preferably 0.1 nm or less. In consideration of the influence on the surface of the multilayer reflective film 31 formed on the underlayer 21, the surface of the underlayer 21 has Rmax / RMS of 2 to 10 in relation to the maximum height (Rmax). In particular, it is desirable to perform precision polishing so as to be 2 to 8.
  • the film thickness of the underlayer 21 is preferably in the range of 10 nm to 300 nm, for example.
  • the multilayer reflective film 31 is a multilayer film in which a low refractive index layer and a high refractive index layer are alternately stacked.
  • a thin film of a heavy element or a compound thereof and a thin film of a light element or a compound thereof are used.
  • a multilayer film in which about 40 to 60 cycles are alternately stacked is used.
  • a Mo / Si periodic laminated film in which Mo films and Si films are alternately laminated for about 40 cycles is preferably used as a multilayer reflective film for EUV light having a wavelength of 13 to 14 nm.
  • Ru / Si periodic multilayer film As a multilayer reflective film used in the EUV light region, Ru / Si periodic multilayer film, Mo / Be periodic multilayer film, Mo compound / Si compound periodic multilayer film, Si / Nb periodic multilayer film, Si / Mo / Examples include Ru periodic multilayer films, Si / Mo / Ru / Mo periodic multilayer films, and Si / Ru / Mo / Ru periodic multilayer films.
  • the material may be appropriately selected depending on the exposure wavelength.
  • the protective film 32 (also referred to as a capping layer or a buffer film) is provided on the multilayer reflective film 31 for the purpose of protecting the multilayer reflective film during patterning or pattern modification of the absorber film.
  • a material for such a protective film 32 in addition to silicon, ruthenium or a ruthenium compound containing at least one element of niobium, zirconium, and rhodium in ruthenium is used, and in addition, a chromium-based material is used. Sometimes.
  • the thickness of the protective film 32 is preferably in the range of about 1 nm to 5 nm, for example.
  • the method for forming the base layer 21, the multilayer reflective film 31, and the protective film 32 is not particularly limited, but usually an ion beam sputtering method, a magnetron sputtering method, or the like is preferable.
  • FIG. 11A schematically shows the result of the defect inspection performed on the multilayer reflective film-coated substrate 30.
  • the black circle ( ⁇ ) 20 shown indicates the position of the detected defect as an example. ing.
  • an absorber film 41 that absorbs EUV light is formed on the protective film 32 in the multilayer reflective film-coated substrate 30 to produce a reflective mask blank 40 (see FIG. 10B).
  • a back conductive film 42 is provided on the opposite side of the glass substrate 11 from the side on which the multilayer reflective film or the like is formed.
  • the absorber film 41 has a function of absorbing EUV light as exposure light.
  • the absorber film 41 is formed by the multilayer reflective film 31 and the protective film 32. What is necessary is just to have a desired reflectance difference between reflected light and the reflected light by the absorber film
  • the reflectance of the absorber film 41 with respect to EUV light is selected between 0.1% and 40%.
  • a desired phase difference may be provided between the reflected light from the multilayer reflective film 31 and the protective film 32 and the reflected light from the absorber film pattern 41a.
  • membrane 41 in the reflective mask blank 40 is used as a phase shift film. May be called.
  • the phase difference is in the range of 180 ° ⁇ 10 °.
  • the reflectance of the absorber film 41 is preferably set to 3% or more and 40% or less.
  • the absorber film 41 may be a single layer or a laminated structure. In the case of a laminated structure, a laminated film of the same material or a laminated film of different materials may be used.
  • the laminated film may have a material or composition that is changed stepwise and / or continuously in the film thickness direction.
  • As the material of the absorber film 41 for example, tantalum (Ta) alone or a material containing Ta is preferably used.
  • the material containing Ta includes a material containing Ta and B, a material containing Ta and N, a material containing Ta and B and further containing at least one of O and N, a material containing Ta and Si, and Ta and Si.
  • materials containing Ta and Ge, materials containing Ta, Ge and N, materials containing Ta and Pd, materials containing Ta and Ru, and the like are used.
  • the material other than Ta may be Cr alone or a material containing Cr, Ru alone or a material containing Ru, Pd alone or a material containing Pd, Mo alone or a material containing Mo.
  • the film thickness of the absorber film 41 is preferably in the range of about 30 nm to 100 nm, for example.
  • a method for forming the absorber film 41 is not particularly limited, but a magnetron sputtering method, an ion beam sputtering method, or the like is generally preferable.
  • a cross-shaped reference mark 13 is formed at a predetermined position on the absorber film 41 of the reflective mask blank 40 using a focused ion beam (FIB) (see FIG. 10C).
  • FIG. 10C shows an example in which the absorber film 41 is removed so that the protective film 32 is exposed and the reference mark 13 is formed.
  • the mark 13 may be formed.
  • FIG. 11B schematically shows the result of the defect inspection performed on the reflective mask blank 40, and the black circle ( ⁇ ) 23 shown indicates the position of the detected defect as an example. Yes.
  • the defect inspection in the reflective mask blank and the defect coordinate management based on the reference mark are as follows. It can be carried out. Since the absorber film 41 is formed on the multilayer reflective film 31 as described above, the defect inspection data of the reflective mask blank 40 reflects the defect inspection of the substrate 30 with the multilayer reflective film obtained above. Therefore, by comparing the defect inspection data of the substrate with the multilayer reflective film with the defect inspection data of the reflective mask blank based on the defect in which the defect of the substrate with the multilayer reflective film and the defect of the reflective mask blank match. The defect inspection data for the substrate with the multilayer reflective film and the defect inspection data for the reflective mask blank can be obtained based on the reference mark.
  • the defect detected by the defect inspection of the multilayer reflective film-coated substrate 30 and the reflective mask blank 40 can be detected without forming a reference mark on the multilayer reflective film 31 of the multilayer reflective film-coated substrate 30.
  • the defect inspection data of the multilayer reflective film-coated substrate 30 and the defect inspection data of the reflective mask blank 40 are collated and formed on the absorber film 41.
  • the reference mark 13 is used as a reference. Defect inspection data of the multilayer reflective film-coated substrate 30 can be acquired.
  • the defect inspection of the substrate 30 with the multilayer reflective film is performed on at least the entire surface of the pattern formation region on the substrate with the multilayer reflective film.
  • the defect inspection of the reflective mask blank 40 is performed by the entire surface inspection.
  • the inspection time can be greatly shortened by performing the partial inspection. That is, in the defect inspection of the reflective mask blank 40, an area of about 1 mm square is specified by specifying the position of at least a part of the defects detected by the defect inspection of the multilayer reflective film-coated substrate 30. To do. The area is set in consideration of the displacement of the inspection.
  • a predetermined region B including the defect position 23 of each defect corresponding to some (a plurality of) defects detected by the defect inspection of the multilayer reflective film-coated substrate 30 is specified, and the reflective mask A defect inspection of the blank 40 is performed (see FIG. 11B).
  • the inspection time can be significantly reduced to about 10 minutes or less.
  • the method for forming the reference mark 13 is not limited to the method using the above-described focused ion beam.
  • the cross-sectional shape of the fiducial mark when it is concave, it can be formed by photolithography, recess formation by laser light, machining traces scanned with a diamond needle, indentation by a minute indenter, embossing by imprint method, etc. it can.
  • the reference mark 13 is formed by photolithography.
  • symbol is attached
  • a resist film 51 is formed on the surface of the reflective mask blank 40 as shown in FIG.
  • a pattern of the reference mark 13 is drawn or exposed on the resist film 51 and developed to form a resist pattern corresponding to the reference mark 13.
  • the absorber film 41 is dry-etched, for example, to form a desired reference mark 13 at a predetermined position on the absorber film 41 (see FIG. 12C).
  • the reference mark formed by the photolithographic method using the dry etching described above is finished in a cross-sectional shape with better sidewall verticality than the reference mark formed by the focused ion beam, for example, in the electron beam drawing process of mask manufacturing It is possible to further improve the alignment accuracy of the reference mark.
  • the defect detected by the defect inspection of the multilayer reflective film substrate and the defect detected by the defect inspection of the reflective mask blank are overlapped for the purpose of obtaining a defect in which both coincide with each other. Therefore, it is not necessary to form a pseudo defect on the multilayer reflective film in the multilayer reflective film substrate in advance, and the pseudo defect detected by the defect inspection of the multilayer reflective film substrate and the reflection type You may make it collate the defect inspection data of the board
  • the present invention by forming the reference mark on the absorber film formed on the multilayer reflective film without forming the reference mark on the multilayer reflective film, the following effects can be obtained. Play. 1. Only the normal defect inspection is performed on the multilayer reflective film formed on the substrate, and the reference mark is not formed. Therefore, there is no risk of contamination of the multilayer reflective film when the reference mark is formed on the multilayer reflective film. Further, it is not necessary to perform cleaning for removing defects due to contamination of the multilayer reflective film, and damage to the multilayer reflective film surface (protective film surface) due to cleaning does not occur. Furthermore, since it is not necessary to repeatedly perform cleaning and inspection for removing defects due to contamination of the multilayer reflective film, there is no problem of increase in inspection cost or new contamination risk.
  • the defect inspection for the reflective mask blank is performed with reference to the reference mark formed on the absorber film, and in the subsequent electron beam drawing step in mask manufacturing, alignment can be performed using the same reference mark as described above. Alignment accuracy is improved.
  • the thickness of the absorber film is thinner than that of the multilayer reflective film, and the absorber film is a single layer or a laminated film of 2 to 3 layers at most. Since the reference mark having a cross-sectional shape with high perpendicularity can be formed, alignment accuracy is improved. 3.
  • Etching damage to the glass substrate does not occur in the process of forming the reference mark on the absorber film, so that the glass substrate can be easily recycled.
  • the reference point of the defect position is determined, and the defect position (reference It is possible to acquire accurate defect information (defect map) including information on the relative positions of points and defects. Further, in the manufacture of the mask, the drawing data is corrected (corrected) with high accuracy so as to reduce the influence of the defect by collating with drawing data (mask pattern data) designed in advance based on the defect information. As a result, defects can be reduced in the finally manufactured reflective mask.
  • the reflective mask blank 40 of the present invention described above includes a mode in which a resist film 51 is formed on the absorber film 41. Such a resist film is used when the reference mark is formed on the absorber film or the laminated film by the photolithography method as described above. Such a resist film is also used when an absorber film or a laminated film in a reflective mask blank having a reference mark is patterned by a photolithography method.
  • the reflective mask blank 40 of the present invention includes an embodiment in which a hard mask film (also referred to as an etching mask film) is formed between the absorber film 41 and the resist film 51.
  • the hard mask film has a mask function when the absorber film 41 is patterned, and is made of a material having an etching selectivity different from that of the uppermost layer of the absorber film 41.
  • the hard mask film can be made of a material such as chromium, a chromium compound, or silicon, a silicon compound.
  • the chromium compound include a material containing Cr and at least one element selected from N, O, C, and H.
  • Examples of the silicon compound include a material containing at least one element selected from Si and N, O, C, and H, metal silicon containing a metal in silicon or a silicon compound (metal silicide), a metal silicon compound (metal silicide compound), and the like. Materials.
  • Examples of the metal silicon compound include a material containing at least one element selected from metals, Si and N, O, C, and H.
  • the absorber film 41 is a laminated film of a material containing Ta and a material containing Cr from the multilayer reflective film 31 side
  • the material of the hard mask film is silicon, a silicon compound, A metal silicide, a metal silicide compound, etc. can be selected.
  • the absorber film is composed of a laminated film of the uppermost layer and other layers made of materials having different etching selectivity, and the uppermost layer is hard to the other layers. It can also be set as the structure which has a function as a mask film
  • FIG. 13 and 14 are cross-sectional views showing other embodiments of the manufacturing process of the reflective mask blank and the reflective mask according to the present invention, respectively.
  • symbol is attached
  • the reflective mask blank 40 in which the hard mask film is formed on the absorber film 41 the defect inspection is performed on the substrate 30 with the multilayer reflective film in the same manner as described above, and then the absorber film 41 is formed on the protective film 32. Is formed (FIG. 13B).
  • the hard mask film 61 is formed on the absorber film 41 with or without performing defect inspection of the absorber film 41 (FIG. 13C), and the reference mark 13 is formed on the hard mask film 61. (FIG. 13D). Then, it can be set as the manufacturing method of the reflective mask blank which has each process which performs the defect inspection of the reflective mask blank 40 on the basis of the said reference mark 13.
  • FIG. 13B the same code
  • symbol is attached
  • the reference mark 13 is also formed on the absorber film 41 located under the hard mask film 61 (FIG. 13E), and the defect of the reflective mask blank 40 is determined based on the reference mark 13.
  • An inspection can also be performed.
  • the absorber film 41 is formed on the protective film 32 (FIG. 14B).
  • the reference mark 13 is formed on the absorber film 41 (FIG. 14C).
  • the hard mask film 61 is formed on the absorber film 41 with or without performing defect inspection of the absorber film 41 with reference to the reference mark 13 (FIG. 14D). Thereafter, the defect inspection of the reflective mask blank 40 can be performed with the reference mark 13 as a reference.
  • “defect inspection” in parentheses means “above or not performing defect inspection of absorber film 41”.
  • the entire surface inspection is performed for the defect inspection of the substrate 30 with the multilayer reflective film.
  • the defect inspection of the reflective mask blank 40 is performed based on the reference mark 13, It is preferable to perform a partial inspection as described above.
  • the present invention also provides a method for manufacturing a reflective mask in which the absorber film in the reflective mask blank having the above-described structure is patterned. That is, the reflective mask 50 is formed by patterning the absorber film 41 in the above-described reflective mask blank 40 to form the absorber film pattern 41a (see FIGS. 10D and 12D). .
  • a method for patterning the absorber film serving as a transfer pattern in the reflective mask blank a photolithography method is most preferable. Note that when a reflective mask blank is manufactured using a reflective mask blank having a structure including the etching mask film, the etching mask film may be finally removed. If the function is not affected, it is not particularly necessary to remove it.
  • the reflective mask 50 obtained by patterning the absorber film 41 in the reflective mask blank 40 having the above-described configuration is obtained by correcting and correcting drawing data based on defect information in the multilayer reflective film-coated substrate 30 or the reflective mask blank 40. A product with reduced defects is obtained.
  • Example 1 A SiO 2 —TiO 2 glass substrate (size is about 152.) which is stepwise polished with cerium oxide abrasive grains or colloidal silica abrasive grains using a double-side polishing apparatus, and the substrate surface is surface-treated with low concentration silicic acid. 0 mm ⁇ about 152.0 mm and a thickness of about 6.35 mm).
  • the surface roughness of the obtained glass substrate was 0.25 nm in terms of root mean square roughness (RMS) (measured with an atomic force microscope. The measurement area was 1 ⁇ m ⁇ 1 ⁇ m.).
  • RMS root mean square roughness
  • the flatness of the glass substrate surface and back surface is about 290 nm. Met.
  • the surface shape was adjusted by performing local surface processing on the glass substrate surface.
  • the flatness of the front and back surfaces was 80 nm, which was 100 nm or less, in a 142 mm ⁇ 142 mm measurement region. there were.
  • a B-doped Si target is used, a mixed gas of Ar gas and He gas is used as a sputtering gas, and a 100 nm Si underlayer is formed by DC magnetron sputtering, and then thermal energy is applied to the Si film.
  • the stress reduction process was performed.
  • the surface shape (surface morphology, flatness) and surface roughness of the obtained Si underlayer surface were measured, the measurement area of 142 mm ⁇ 142 mm was 80 nm and 100 nm or less. Moreover, the surface roughness was 0.08 nm in terms of root mean square roughness RMS in a measurement area of 1 ⁇ m ⁇ 1 ⁇ m, which was very good. Since RMS has an extremely high smoothness of 0.1 nm or less, background noise in a high-sensitivity defect inspection apparatus is reduced, and it is effective in terms of suppressing detection of pseudo defects. The maximum height (Rmax) was 0.60 nm and Rmax / RMS was 7.5 in the measurement region of 1 ⁇ m ⁇ 1 ⁇ m, and the variation in surface roughness was small and good.
  • an Si beam (film thickness: 4.2 nm) and a Mo film (film thickness: 2.8 nm) are laminated on the Si underlayer using an ion beam sputtering apparatus as one cycle, and finally, 40 cycles are stacked.
  • a Si film (film thickness: 4 nm) was formed, and a protective film (film thickness: 2.5 nm) made of RuNb was further formed thereon to obtain a substrate with a multilayer reflective film.
  • the substrate surface with the multilayer reflective film was subjected to defect inspection using a blanks defect inspection apparatus (Teron 600 series manufactured by KLA-Tencor) with reference to the center of the substrate main surface.
  • a blanks defect inspection apparatus Teon 600 series manufactured by KLA-Tencor
  • convex and concave defect position information and defect size information with reference to the center of the substrate main surface were obtained, and a defect map was created.
  • the reflectance of the protective film surface of the substrate with the multilayer reflective film was evaluated by an EUV reflectometer, it was found to be as good as 64% ⁇ 0.2% due to suppression of variations in the surface roughness of the underlayer. It was.
  • an absorber film composed of a stacked film of a TaBN film (film thickness: 56 nm) and a TaBO film (film thickness: 14 nm) is formed on the protective film of the substrate with the multilayer reflective film.
  • a CrN conductive film (film thickness: 20 nm) was formed on the back surface to obtain an EUV reflective mask blank.
  • a reference mark having the following surface shape and a concave cross section was formed at a predetermined location on the surface of the absorber film.
  • the reference mark was formed using a focused ion beam.
  • the conditions at this time were an acceleration voltage of 50 kV and a beam current value of 20 pA.
  • cleaning was performed.
  • the above-mentioned main mark and auxiliary mark are formed as a reference mark so as to have an arrangement relationship as shown in FIG.
  • the main mark 13a is a rectangle having a size of 5 ⁇ m ⁇ 5 ⁇ m, and the depth is set to about 70 nm because all the absorber film is removed.
  • the auxiliary marks 13b and 13c are both a rectangle having a size of 1 ⁇ m ⁇ 200 ⁇ m, and the depth is set to about 70 nm because the absorber film is completely removed.
  • the inclination angle of the side wall was 87 degrees, and the curvature radius of the ridge line portion between the absorber film surface and the side wall was about 120 nm, which was a good cross-sectional shape.
  • the reference mark formed on the absorber film has a high contrast of 0.020 and can be detected with high accuracy by an electron beam lithography apparatus or a blanks inspection apparatus, and the variation in defect detection position is 81 nm. I confirmed that I can do it.
  • the obtained EUV reflective mask blank was subjected to defect inspection using a blanks defect inspection apparatus (Teron 600 series manufactured by KLA-Tencor).
  • a blanks defect inspection apparatus Teon 600 series manufactured by KLA-Tencor.
  • convex and concave defect position information and defect size information were acquired using the above-described reference mark as a reference.
  • defect inspection of a substrate with a multilayer reflective film based on a plurality of defects in which defects detected by defect inspection of a substrate with a multilayer reflective film coincide with defects detected by defect inspection of a reflective mask blank.
  • Blank defect inspection data and defect inspection data of a substrate with a multilayer reflective film on the basis of the reference mark were obtained.
  • an EUV reflective mask blank with defect information in which the reflective mask blank was associated with these defect position information and defect size information was obtained.
  • the above-described defect inspection of the reflective mask blank is performed by specifying the position of at least some of the defects detected by the defect inspection of the substrate with the multilayer reflective film (partial inspection). As a result, the inspection time can be significantly shortened as compared with the case where the entire surface inspection is performed.
  • an EUV reflective mask was manufactured using this EUV reflective mask blank with defect information.
  • an electron beam drawing resist was applied on an EUV reflective mask blank by a spin coating method and baked to form a resist film.
  • mask pattern data designed in advance, and corrected to mask pattern data that does not affect pattern transfer using the exposure apparatus, or for pattern transfer. If it is determined that there is an effect, for example, if the defect is not corrected by mask pattern data with correction pattern data added so that the defect is hidden under the pattern, or if the corrected pattern data cannot be dealt with, the defect after mask fabrication The mask pattern data is corrected so that the load of correction can be reduced.
  • a mask pattern is drawn and developed on the above-described resist film with an electron beam to form a resist pattern.
  • the mask pattern data can be corrected with high accuracy.
  • the TaBO film is removed by etching with a fluorine-based gas (CF 4 gas) and the TaBN film is etched with a chlorine-based gas (Cl 2 gas), and the absorber film is formed on the protective film. A pattern was formed. Further, the resist pattern remaining on the absorber film pattern was removed with hot sulfuric acid to obtain an EUV reflective mask.
  • the obtained EUV reflective mask was inspected with a mask defect inspection apparatus (Teron 600 series manufactured by KLA-Tencor), no convex defect was confirmed on the multilayer reflective film.
  • the reflective mask thus obtained is set in an exposure apparatus and pattern transfer is performed on a semiconductor substrate on which a resist film is formed, there is no defect in the transfer pattern due to the reflective mask, and good pattern transfer can be performed. it can.
  • Example 2 A reflective mask blank was produced in the same manner as in Example 1 except that the reference mark in Example 1 was formed by photolithography.
  • the formation position of the reference mark, the surface shape and the cross-sectional shape of the reference mark were the same as in Example 1. That is, an electron beam lithography resist is applied and baked by spin coating on an EUV reflective mask blank in which an underlayer, a multilayer reflective film, a protective film and an absorber film are formed on a substrate in the same manner as in Example 1. A resist film was formed. Next, a reference mark pattern was drawn on the above resist film with an electron beam and developed to form a resist pattern.
  • the absorber film was dry-etched to form a reference mark on the absorber film.
  • the cross-sectional shape of the formed reference mark was observed with an atomic force microscope (AFM)
  • the inclination angle of the side wall was 89 degrees, and the verticality of the side wall was better than using the focused ion beam of Example 1. It was possible to form a fiducial mark with a simple shape.
  • a multilayer reflective film is provided on the basis of a plurality of defects in which a defect detected by the defect inspection of the substrate with the multilayer reflective film matches a defect detected by the defect inspection of the reflective mask blank.
  • the reference mark formed on the absorber film is used as a reference.
  • the defect inspection data of the reflective mask blank thus obtained and the defect inspection data of the substrate with the multilayer reflective film based on the reference mark were obtained.
  • an EUV reflective mask blank with defect information in which the reflective mask blank was associated with these defect position information and defect size information was obtained.
  • an EUV reflective mask was prepared using this EUV reflective mask blank with defect information.
  • the obtained EUV reflective mask was inspected by a mask defect inspection apparatus (Teron 600 series manufactured by KLA-Tencor), no convex defect was confirmed on the multilayer reflective film.
  • a mask defect inspection apparatus Teon 600 series manufactured by KLA-Tencor
  • no convex defect was confirmed on the multilayer reflective film.
  • the reflective mask thus obtained is set in an exposure apparatus and pattern transfer is performed on a semiconductor substrate on which a resist film is formed, there is no defect in the transfer pattern due to the reflective mask, and good pattern transfer can be performed. it can.
  • a substrate with a multilayer reflective film and a reflective mask blank were produced in the same manner as in Example 1 except that the reference mark in Example 1 was not formed on the absorber film, but was formed on the multilayer reflective film.
  • the multilayer reflective film having the protective film in the multilayer reflective film-coated substrate in which the base layer, the multilayer reflective film, and the protective film are formed on the same substrate as in Example 1 a cross-sectional shape with the following surface shape at a predetermined position Formed a concave reference mark.
  • the reference mark was formed using a focused ion beam. The conditions at this time were an acceleration voltage of 50 kV and a beam current value of 20 pA. After forming the reference mark, cleaning was performed.
  • main marks and auxiliary marks similar to those in the first embodiment are formed as reference marks so as to have an arrangement relationship as shown in FIG.
  • the main mark 13a is a rectangle having a size of 5 ⁇ m ⁇ 5 ⁇ m, and the depth is set to about 280 nm since all the multilayer reflective film is removed.
  • each of the auxiliary marks 13b and 13c is a rectangle having a size of 1 ⁇ m ⁇ 200 ⁇ m, and the depth is set to about 280 nm since all the multilayer reflective film is removed.
  • the inclination angle of the side wall was 85 degrees, and the verticality of the side wall was lower than that of the above example.
  • this reference mark formed on the multilayer reflective film had a high contrast of 0.025 and could be detected with high accuracy by a blank inspection apparatus, and the variation in defect detection position was 83 nm, so that it could be detected with good reproducibility.
  • the obtained substrate with a multilayer reflective film was subjected to defect inspection with a blanks defect inspection apparatus (Teron 600 series manufactured by KLA-Tencor). As a result of the defect inspection, many defects were detected, and cleaning and defect inspection were repeated again. The reason why a large number of defects are detected is considered to be that a large number of foreign matter defects are generated in the process of forming the reference marks on the multilayer reflective film.
  • a blanks defect inspection apparatus Teon 600 series manufactured by KLA-Tencor
  • convex and concave defect position information and defect size information were obtained using the above-described reference mark as a reference.
  • the reflectance of the protective film surface of the substrate with the multilayer reflective film on which the reference mark was formed was evaluated by an EUV reflectometer, and found to be 62%. This is the reflection of the protective film surface before forming the reference mark. It was slightly lower than the rate.
  • Example 2 an absorber film similar to that in Example 1 was formed on the multilayer reflective film-coated substrate on which the reference mark was formed, to obtain a reflective mask blank.
  • the obtained reflective mask blank was subjected to defect inspection with a blanks defect inspection apparatus (Teron 600 series manufactured by KLA-Tencor).
  • a blanks defect inspection apparatus Teon 600 series manufactured by KLA-Tencor.
  • convex and concave defect position information and defect size information were acquired using the above-described reference mark as a reference.
  • an EUV reflective mask blank with defect information in which the reflective mask blank was associated with these defect position information and defect size information was obtained.
  • an EUV reflective mask was produced in the same manner as in Example 1.
  • the pattern drawing process based on the defect information of the EUV reflective mask blank, whether it is compared with mask pattern data designed in advance and corrected to mask pattern data that does not affect pattern transfer using an exposure apparatus. If it is determined that there is an effect on pattern transfer, for example, it is corrected to mask pattern data to which correction pattern data is added so as to hide defects under the pattern, or for defects that cannot be dealt with even with correction pattern data, The mask pattern data was corrected to reduce the load of defect correction after fabrication, and based on the corrected mask pattern data, the mask pattern was drawn and developed with an electron beam on the resist film to form a resist pattern. .
  • Example 3 a reflective mask blank was produced in which the absorber film in Examples 1 and 2 was a phase shift film made of a laminated film made of different materials.
  • a substrate with a multilayer reflective film is produced in the same manner as in Example 1 above, and the surface of the substrate with the multilayer reflective film is inspected for defects with a blanks defect inspection apparatus (Teron600 series manufactured by KLA-Tencor) with reference to the center of the substrate main surface. went. In this defect inspection, convex and concave defect position information and defect size information with reference to the center of the substrate main surface were obtained, and a defect map was created.
  • a phase shift film composed of a laminated film of a TaN film (film thickness: 27 nm) and a CrCON film (film thickness 25 nm) is formed on the protective film of the multilayer reflective film-coated substrate.
  • a CrN conductive film (film thickness: 20 nm) was formed on the back surface to obtain an EUV reflective mask blank.
  • the TaN film and CrCON film constituting the formed phase shift film have a reflectance of 2% (wavelength 13.5 nm) in the phase shift film pattern formed on the protective film when a reflective mask is used.
  • the refractive index n, the extinction coefficient k, and the film thickness are set so that the phase difference of the reflected light between the phase shift film pattern and the protective film exposed portion is 180 degrees.
  • a reference mark was formed on the phase shift film made of a laminated film by the photolithography method as in Example 2. The formation position of the reference mark, the surface shape and the cross-sectional shape of the reference mark were the same as in Example 2.
  • a resist film was formed by applying and baking an electron beam drawing resist on the EUV reflective mask blank by spin coating.
  • a reference mark pattern was drawn on the above resist film with an electron beam and developed to form a resist pattern.
  • the CrCON film is dry etched with a mixed gas of Cl 2 gas and O 2 gas, and then the TaN film is dry etched with Cl 2 gas to form a reference mark on the phase shift film. did.
  • the cross-sectional shape of the formed reference mark was observed with an atomic force microscope (AFM), the inclination angle of the side wall was 88 degrees, and a reference mark having a good shape could be formed.
  • AFM atomic force microscope
  • Example 1 a plurality of defects in which defects detected by defect inspection of the substrate with the multilayer reflective film coincide with defects detected by defect inspection of the reflective mask blank with reference to the reference mark .
  • the defect inspection data of the substrate with the multilayer reflective film and the defect inspection data of the reflective mask blank are collated, and coordinate conversion is performed using the reference mark formed on the phase shift film as a reference.
  • the defect inspection data of the reflective mask blank with reference to the formed reference mark and the defect inspection data of the substrate with the multilayer reflective film with reference to the reference mark were obtained.
  • an EUV reflective mask blank with defect information in which the reflective mask blank was associated with these defect position information and defect size information was obtained.
  • an EUV reflective mask was prepared using this EUV reflective mask blank with defect information.
  • Example 4 A reflective mask blank having a hard mask film formed on the phase shift film in Example 3 was prepared.
  • a substrate with a multilayer reflective film is produced in the same manner as in Example 1 above, and the surface of the substrate with the multilayer reflective film is inspected for defects with a blanks defect inspection apparatus (Teron600 series manufactured by KLA-Tencor) with reference to the center of the substrate main surface. went. In this defect inspection, convex and concave defect position information and defect size information with reference to the center of the substrate main surface were obtained, and a defect map was created.
  • a blanks defect inspection apparatus Teon600 series manufactured by KLA-Tencor
  • a phase shift film composed of a laminated film of a TaN film (film thickness: 5 nm) and a CrCON film (film thickness 46 nm) is formed on the protective film of the multilayer reflective film-coated substrate.
  • a SiO 2 film (film thickness: 5 nm) was formed on the phase shift film using an RF sputtering apparatus.
  • a CrN conductive film film thickness: 20 nm was formed on the back surface to obtain an EUV reflective mask blank.
  • the TaN film and the CrCON film constituting the formed phase shift film have a reflectance of 26% (wavelength 13.5 nm) in the phase shift film pattern formed on the protective film when a reflective mask is used.
  • the refractive index n, the extinction coefficient k, and the film thickness are set so that the phase difference of the reflected light between the phase shift film pattern and the protective film exposed portion is 180 degrees.
  • a reference mark was formed on the phase shift film and the hard mask film made of the laminated film by the photolithography method in the same manner as in Example 3.
  • the formation position of the reference mark, the surface shape and the cross-sectional shape of the reference mark were the same as in Example 3.
  • a resist for electron beam drawing was applied by a spin coating method and baked to form a resist film.
  • a reference mark pattern was drawn on the above resist film with an electron beam and developed to form a resist pattern. By using this resist pattern as a mask, dry etching of the SiO 2 film with CF 4 gas is performed, and then dry etching of the CrCON film with a mixed gas of Cl 2 gas and O 2 gas and TaN film with Cl 2 gas is performed.
  • a reference mark was formed on the laminated film of the hard mask film and the phase shift film.
  • a multilayer reflective film is provided on the basis of a plurality of defects in which a defect detected by the defect inspection of the substrate with the multilayer reflective film matches a defect detected by the defect inspection of the reflective mask blank.
  • the defect inspection data of the reflective mask blank thus obtained and the defect inspection data of the substrate with the multilayer reflective film based on the reference mark were obtained.
  • an EUV reflective mask blank with defect information in which the reflective mask blank was associated with these defect position information and defect size information was obtained.
  • an EUV reflective mask was prepared using this EUV reflective mask blank with defect information.
  • the hard mask film made of the SiO 2 film remaining on the phase shift film pattern was removed by dry etching with CF 4 gas.
  • a mask defect inspection apparatus Teon 600 series manufactured by KLA-Tencor
  • no convex defect was confirmed on the multilayer reflective film.
  • the reflective mask thus obtained is set in an exposure apparatus and pattern transfer is performed on a semiconductor substrate on which a resist film is formed, there is no defect in the transfer pattern due to the reflective mask, and good pattern transfer can be performed. it can.
  • the reference mark is formed by using a focused ion beam or a photolithographic method.
  • the present invention is not limited to this. As described above, in addition to these methods, it can be formed by forming a recess by laser light, processing marks by scanning a diamond needle, indentation by a minute indenter, embossing by an imprint method, etc. .
  • the example in which the base layer is formed on both the multilayer reflective film-coated substrate and the reflective mask blank has been described.
  • the present invention is not limited to this. It may be a substrate with a multilayer reflective film in which an underlayer is not formed, or a reflective mask blank.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 本発明は多層反射膜の汚染リスクや洗浄ダメージのない、欠陥の座標管理を高精度で行うための基準マークを形成した反射型マスクブランクを提供する。 本発明では基板上にEUV光を反射する多層反射膜を成膜して多層反射膜付き基板を形成し、この多層反射膜付き基板に対して欠陥検査を行う。上記多層反射膜上にEUV光を吸収する吸収体膜を成膜し、該吸収体膜に欠陥情報における欠陥位置の基準となる基準マークを形成して反射型マスクブランクを形成する。上記基準マークを基準にして反射型マスクブランクの欠陥検査を行う。多層反射膜付き基板と反射型マスクブランクの各欠陥検査データを照合して、基準マークを基準にした多層反射膜付き基板の欠陥検査データを取得する。

Description

反射型マスクブランクの製造方法、及び反射型マスクの製造方法
 本発明は、半導体装置等の製造に用いられる反射型マスクブランクの製造方法、及び反射型マスクの製造方法に関する。
 一般に、半導体装置の製造工程では、フォトリソグラフィ法を用いて微細パターンの形成が行われている。また、この微細パターンの形成には通常何枚ものフォトマスクと呼ばれている転写用マスクが使用される。この転写用マスクは、一般に透光性のガラス基板上に、金属薄膜等からなる微細パターンを設けたものであり、この転写用マスクの製造においてもフォトリソグラフィ法が用いられている。
 フォトリソグラフィ法による転写用マスクの製造には、ガラス基板等の透光性基板上に転写パターン(マスクパターン)を形成するための薄膜(例えば遮光膜など)を有するマスクブランクが用いられる。このマスクブランクを用いた転写用マスクの製造は、マスクブランク上に形成されたレジスト膜に対し、所望のパターン描画を施す描画工程と、描画後、前記レジスト膜を現像して所望のレジストパターンを形成する現像工程と、このレジストパターンをマスクとして前記薄膜をエッチングするエッチング工程と、残存するレジストパターンを剥離除去する工程とを有して行われている。上記現像工程では、マスクブランク上に形成されたレジスト膜に対し所望のパターン描画を施した後に現像液を供給して、現像液に可溶なレジスト膜の部位を溶解し、レジストパターンを形成する。また、上記エッチング工程では、このレジストパターンをマスクとして、ドライエッチング又はウェットエッチングによって、レジストパターンの形成されていない薄膜が露出した部位を除去し、これにより所望のマスクパターンを透光性基板上に形成する。こうして、転写用マスクが出来上がる。
 転写用マスクの種類としては、従来の透光性基板上にクロム系材料からなる遮光膜パターンを有するバイナリ型マスクのほかに、位相シフト型マスクが知られている。
 また、近年、半導体産業において、半導体デバイスの高集積化に伴い、従来の紫外光を用いたフォトリソグラフィ法の転写限界を上回る微細パターンが必要とされてきている。このような微細パターン形成を可能とするため、極紫外(ExtremeUltra Violet:以下、「EUV」と呼ぶ。)光を用いた露光技術であるEUVリソグラフィが有望視されている。ここで、EUV光とは、軟X線領域又は真空紫外線領域の波長帯の光を指し、具体的には波長が0.2~100nm程度の光のことである。このEUVリソグラフィにおいて用いられるマスクとして反射型マスクが提案されている。このような反射型マスクは、基板上に露光光であるEUV光を反射する多層反射膜が形成され、該多層反射膜上にEUV光を吸収する吸収体膜がパターン状に形成されたものである。
 以上のように、リソグラフィ工程での微細化に対する要求が高まることにより、そのリソグラフィ工程での課題が顕著になりつつある。その1つが、リソグラフィ工程で用いられるマスクブランク用基板等の欠陥情報に関する問題である。
 従来は、ブランクス検査等において、基板の欠陥の存在位置を、基板センターを原点(0,0)とし、その位置からの距離で特定していた。このため、位置精度が低く、装置間でも検出のばらつきがあり、パターン描画時に、欠陥を避けてパターン形成用薄膜にパターニングする場合でもμmオーダーでの回避は困難であった。このため、パターンを転写する方向を変えたり、転写する位置をmmオーダーでラフにずらして欠陥を回避していた。
 このような状況下、欠陥位置の検査精度を上げることを目的に、例えばマスクブランク用基板に基準マークを形成し、これを基準位置として欠陥の位置を特定する提案がなされている。
 特許文献1には、球相当直径で30nm程度の微小な欠陥の位置を正確に特定できるように、EUVリソグラフィ用反射型マスクブランク用基板の成膜面に、大きさが球相当直径で30~100nmの少なくとも3つのマークを形成することが開示されている。
国際公開2008/129914号公報
 上記特許文献1に開示されているような欠陥の位置を特定するための基準マークを使用する方法によりマスクブランクの欠陥位置の検査精度を上げることは可能である。
 ところで、EUV光を露光光として使用する反射型マスクにおいては、特に多層反射膜に存在する欠陥は、修正が殆ど不可能である上に、転写パターン上で重大な位相欠陥となり得るので、転写パターン欠陥を低減させるためには多層反射膜上の欠陥情報が重要である。従って、少なくとも多層反射膜成膜後に欠陥検査を行い、欠陥情報を取得することが望ましい。そのためには、基板上に多層反射膜を成膜して作製した多層反射膜付き基板の例えば多層反射膜に基準マークを形成することが好ましいと考えられる。
 しかし、基準マークを多層反射膜に形成する場合には以下のような種々の問題が発生する。
 まず、多層反射膜に基準マークを形成するプロセスにおいて、多層反射膜表面を汚染させるリスクがある。多層反射膜表面の汚染は、新たな異物欠陥が生じたり、反射率の低下など、反射型マスクにとって重大な問題を生じる。異物欠陥などは洗浄により除去できる可能性もあるが、洗浄後に高感度検査を行う必要があり、場合によっては検査と洗浄を繰返し行う必要が生じ、検査コストが増えるだけでなく、新たな汚染リスクも増えるおそれがある。また、多層反射膜表面上には、通常、多層反射膜を保護するためのエッチングストッパー機能を有する保護膜(キャッピング層あるいはバッファ層とも呼ばれる。)が設けられ、このような保護膜としてはRu又はその合金材料が一般に用いられることが多いが、このRu又はその合金材料は洗浄耐性に乏しく、上記洗浄によるダメージが大きい。
 また、多層反射膜に形成した基準マークを基準にして多層反射膜上での欠陥検査を行い、その後のマスク製造における電子線描画工程では、吸収体膜が成膜された後の基準マークでアライメントを行うため、凹形状の基準マーク上に吸収体膜が成膜されることによるマーク形状の変化がアライメント誤差となる可能性がある。また、多層反射膜は例えばSi層とMo層の40~60周期程度の交互積層膜であるため、多層反射膜に例えばエッチングで基準マークを形成した場合、その断面形状がスロープとなりやすく、このような断面がスロープ形状の基準マークはアライメント精度を低下させる。
 また、多層反射膜に基準マークを形成する場合、多層反射膜を深さ方向に完全にエッチングするとガラス基板表面までエッチングが進行してしまい、ガラス基板のリサイクルが困難になるという問題が生じる。
 そこで本発明は、このような従来の問題に鑑みなされたものであり、その目的とするところは、第一に、多層反射膜に基準マークを形成する場合のような多層反射膜の汚染リスクや洗浄によるダメージがなく、しかも電子線描画工程での基準マークに対するアライメント精度が向上する反射型マスクブランクを提供することであり、第二に、この反射型マスクブランクを使用し、欠陥を低減させた反射型マスクを提供することである。
 本発明者は、上記課題を解決するため、特に基準マークの形成位置に着目し、鋭意検討した結果、第一に、基板上に多層反射膜を成膜し、多層反射膜に対しては通常の欠陥検査のみを行い、その後、多層反射膜上に積層膜を成膜し、この積層膜の上部に基準マークを形成して、該基準マークが形成された反射型マスクブランクとし、その後、基準マークを基準にして反射型マスクブランクの欠陥検査を行うことにより上記課題を解決することが可能であることを見出した。第二に、基板上に多層反射膜を成膜し、多層反射膜に対しては通常の欠陥検査のみを行い、その後、多層反射膜上に吸収体膜を成膜し、この吸収体膜に基準マークを形成して、該基準マークが形成された反射型マスクブランクとし、その後、基準マークを基準にして反射型マスクブランクの欠陥検査を行うことにより上記課題を解決することが可能であることを見出した。
 本発明者は、以上の解明事実に基づき、さらに鋭意研究を続けた結果、本発明を完成したものである。
 すなわち、上記課題を解決するため、本発明は以下の構成を有する。
(構成1)
 基板上に、EUV光を反射する多層反射膜と、該多層反射膜上に、積層膜が形成されている反射型マスクブランクの製造方法であって、前記基板上に、前記多層反射膜を成膜して多層反射膜付き基板を形成する工程と、前記多層反射膜付き基板に対して欠陥検査を行う工程と、前記多層反射膜付き基板の前記多層反射膜上に、前記積層膜を成膜する工程と、前記積層膜の上部に、欠陥情報における欠陥位置の基準となる基準マークを形成して、該基準マークが形成された反射型マスクブランクを形成する工程と、前記基準マークを基準にして前記反射型マスクブランクの欠陥検査を行う工程と、を含むことを特徴とする反射型マスクブランクの製造方法。
(構成2)
 基板上に、EUV光を反射する多層反射膜と、該多層反射膜上に、EUV光を吸収する吸収体膜が形成されている反射型マスクブランクの製造方法であって、前記基板上に、前記多層反射膜を成膜して多層反射膜付き基板を形成する工程と、前記多層反射膜付き基板に対して欠陥検査を行う工程と、前記多層反射膜付き基板の前記多層反射膜上に、前記吸収体膜を成膜する工程と、前記吸収体膜に、欠陥情報における欠陥位置の基準となる基準マークを形成して、該基準マークが形成された反射型マスクブランクを形成する工程と、前記基準マークを基準にして前記反射型マスクブランクの欠陥検査を行う工程と、を含むことを特徴とする反射型マスクブランクの製造方法。
 構成1や構成2にあるように、多層反射膜上に成膜した積層膜や吸収体膜に基準マークを形成することにより、以下のような作用効果を有する。
1.基板上に成膜した多層反射膜に対しては通常の欠陥検査のみを行い、基準マークの形成は行わないので、多層反射膜に基準マークを形成する場合の多層反射膜の汚染リスクがなくなる。また、多層反射膜の汚染による欠陥を除去するための洗浄を行う必要がなく、洗浄による多層反射膜表面(保護膜表面)のダメージは生じない。またさらには、多層反射膜の汚染による欠陥を除去するための洗浄と検査を繰返し行う必要も生じないので、検査コストの増大や、新たな汚染リスクの増大の問題も発生しない。
2.反射型マスクブランクに対する欠陥検査は、積層膜や吸収体膜に形成した基準マークを基準にして行い、その後のマスク製造における電子線描画工程では、上記と同じ基準マークを用いてアライメントを行うことができるので、アライメント精度が向上する。また、多層反射膜の膜厚に比べて積層膜や吸収体膜の膜厚は薄く、また吸収体膜は単一層か、あるいは多くても2~3層の積層膜であるため、加工時間を短縮でき、垂直性の高い断面形状の基準マークを形成することができるので、アライメント精度が向上する。
3.積層膜や吸収体膜に基準マークを形成する過程で、ガラス基板へのエッチングダメージは発生しないので、ガラス基板のリサイクルが容易である。
 また、以上のような積層膜や吸収体膜に基準マークが形成された反射型マスクブランクを得ることによって、欠陥検査においては、欠陥位置の基準点を決定し、欠陥位置(基準点と欠陥の相対位置)情報を含む精度の良い欠陥情報(欠陥マップ)を取得することができる。さらに、マスクの製造においては、この欠陥情報に基づいて、予め設計しておいた描画データ(マスクパターンデータ)と照合し、欠陥による影響が低減するように描画データを高い精度で修正(補正)することが可能になり、その結果として、最終的に製造される反射型マスクにおいて欠陥を低減させることができる。
(構成3)
 前記多層反射膜付き基板の欠陥検査により検出された欠陥と前記反射型マスクブランクの欠陥検査により検出された欠陥とが一致している欠陥を元に、前記多層反射膜付き基板の欠陥検査データと、前記反射型マスクブランクの欠陥検査データとを照合することにより、前記吸収体膜に形成した前記基準マークを基準にした前記多層反射膜付き基板の欠陥検査データを取得することを特徴とする構成1又は2に記載の反射型マスクブランクの製造方法。
 構成3にあるように、多層反射膜付き基板の多層反射膜には基準マークを形成しなくても、構成1又は2による多層反射膜付き基板の欠陥検査により検出された欠陥と反射型マスクブランクの欠陥検査により検出された欠陥とが一致している欠陥を元に、多層反射膜付き基板の欠陥検査データと、反射型マスクブランクの欠陥検査データとを照合し、積層膜や吸収体膜に形成した基準マークを基準とする座標変換を行うことにより、積層膜や吸収体膜に形成した基準マークを基準にした反射型マスクブランクの欠陥検査データに加えて、上記基準マークを基準にした多層反射膜付き基板の欠陥検査データを取得することができる。
(構成4)
 前記多層反射膜付き基板の欠陥検査は、前記多層反射膜付き基板上の少なくともパターン形成領域の全面に対して行い、前記反射型マスクブランクの欠陥検査は、前記多層反射膜付き基板の欠陥検査により検出された欠陥のうちの少なくとも一部の欠陥に対して、その位置を特定して行うことを特徴とする構成1乃至3のいずれかに記載の反射型マスクブランクの製造方法。
 構成4にあるように、多層反射膜付き基板の欠陥検査は、多層反射膜付き基板上の少なくともパターン形成領域の全面に対して行うが、反射型マスクブランクの欠陥検査は、多層反射膜付き基板の欠陥検査により検出された欠陥のうちの少なくとも一部の欠陥に対して、その位置を特定して行う、謂わば部分検査を行うことにより、検査時間を大幅に短縮することが可能である。
(構成5)
 前記多層反射膜付き基板における前記多層反射膜上に擬似欠陥を形成し、前記多層反射膜付き基板の欠陥検査により検出された擬似欠陥と前記反射型マスクブランクの欠陥検査により検出された前記擬似欠陥に対応する欠陥とを元に、前記多層反射膜付き基板の欠陥検査データと、前記反射型マスクブランクの欠陥検査データとを照合することを特徴とする構成1乃至4のいずれかに記載の反射型マスクブランクの製造方法。
 構成5にあるように、多層反射膜付き基板の欠陥検査により検出された欠陥と反射型マスクブランクの欠陥検査により検出された欠陥とを重ね合せて両者が一致している欠陥を求める目的のためには、実際の欠陥でなくてもよいので、構成5にあるように、多層反射膜付き基板における多層反射膜上に予め擬似欠陥を形成しておき、多層反射膜付き基板の欠陥検査により検出された擬似欠陥と反射型マスクブランクの欠陥検査により検出された前記擬似欠陥に対応する欠陥とを元に、多層反射膜付き基板の欠陥検査データと反射型マスクブランクの欠陥検査データとを照合するようにしてもよい。
(構成6)
 前記基準マークを、前記基板のエッジ座標を基準に設定した原点からの所定の位置に形成し、前記基準マークを形成した前記反射型マスクブランクと、前記基準マークの形成位置情報とを対応付けることを特徴とする構成1乃至5のいずれかに記載の反射型マスクブランクの製造方法。
 構成6にあるように、基板のエッジ座標を基準に設定した原点からの所定の位置に前記基準マークを形成した反射型マスクブランクと、前記基準マークの形成位置情報とを対応付けて反射型マスクブランクを製造することにより、この反射型マスクブランクを提供されたユーザーは、この基準マークの形成位置情報を利用して基準マークを短時間で確実に検出することができる。
(構成7)
 前記基準マークを形成した後、座標計測器で前記基準マークの形成位置を特定し、前記基準マークを形成した前記反射型マスクブランクと、前記基準マークの形成位置情報とを対応付けることを特徴とする構成1乃至5のいずれかに記載の反射型マスクブランクの製造方法。
 構成7にあるように、吸収体膜に基準マークを形成した後、座標計測器で前記基準マークの形成位置を特定し、前記基準マークを形成した反射型マスクブランクと、前記基準マークの形成位置情報とを対応付けて反射型マスクブランクを製造することにより、この反射型マスクブランクを提供されたユーザーは、この基準マークの形成位置情報を利用して基準マークを短時間で確実に検出することができる。また、基準マークの形成位置を座標計測器で特定することにより、電子線描画機の基準座標の変換が可能となる。したがって、この反射型マスクブランクを提供されたユーザーは、容易に基準マークに基づき欠陥検査装置により特定した欠陥位置と、描画データとを高精度に照合することが可能となり、最終的に製造されるマスクにおいて欠陥を確実に低減させることができる。
(構成8)
 前記基準マークの形成位置情報に、さらに前記基準マークを基準とした欠陥情報を加えることを特徴とする構成6又は7に記載の反射型マスクブランクの製造方法。
 構成8にあるように、前記基準マークの形成位置情報に、さらに前記基準マークを基準とした多層反射膜付き基板又は反射型マスクブランクにおける欠陥情報を加えて反射型マスクブランクを製造することにより、この反射型マスクブランクを提供されたユーザーはこの基準マークの形成位置情報を利用して基準マークを短時間で確実に検出することができるとともに、マスクの製造においては、この欠陥情報に基づいて、欠陥による影響が低減するように描画データを高い精度で修正(補正)し、最終的に製造されるマスクにおいて欠陥を低減させることができる。
(構成9)
 構成1乃至8のいずれかに記載の反射型マスクブランクの製造方法により得られる反射型マスクブランクにおける前記積層膜もしくは前記吸収体膜をパターニングして、積層膜パターンもしくは吸収体膜パターンを形成することを特徴とする反射型マスクの製造方法。
 上記構成の反射型マスクブランクにおける吸収体膜がパターニングされて得られる反射型マスクは、多層反射膜付き基板又は反射型マスクブランクにおける欠陥情報に基づく描画データの補正・修正によって、欠陥を低減させたものが得られる。
 本発明によれば、積層膜もしくは吸収体膜に基準マークを形成することにより、多層反射膜に基準マークを形成する場合のような多層反射膜の汚染リスクや洗浄によるダメージがなく、しかもマスク製造における電子線描画工程での基準マークに対するアライメント精度が向上し、また基準マークを形成することにより、欠陥の座標管理(基準マークと欠陥の相対位置管理)を高精度で行うことが可能な反射型マスクブランクを提供することができる。
 また、本発明によれば、この反射型マスクブランクを使用し、これらの欠陥情報に基づき、描画データの修正を行なうことで欠陥を低減させた反射型マスクを提供することができる。
本発明における基準マークの配置例を示す平面図である。 本発明における基準マークを構成するメインマーク及び補助マークの形状例及び配置例を示す図である。 本発明における基準マークを用いた基準点を決定する方法を説明するための図である。 メインマークの他の形状例を示す図である。 補助マークの他の形状例を示す図である。 補助マークの検出方法の一例を説明するための図である。 エッジ基準で基準マークを形成する方法を説明するための図である。 エッジ基準で基準マークを形成する方法を説明するための図である。 エッジ基準で形成する場合の基準マークの形状例及び配置例を示す図である。 本発明に係る反射型マスクブランク及び反射型マスクの製造工程を示す断面図である。 本発明における欠陥検査を説明するための多層反射膜付き基板及び反射型マスクブランクの平面図である。 本発明に係る反射型マスクブランク及び反射型マスクの製造工程の他の実施形態を示す断面図である。 本発明に係る反射型マスクブランク及び反射型マスクの製造工程の他の実施形態を示す断面図である。 本発明に係る反射型マスクブランク及び反射型マスクの製造工程の他の実施形態を示す断面図である。
 以下、本発明の実施の形態を詳述する。
[基準マーク]
 まず、本発明における基準マーク(以下、「本発明の基準マーク」とも呼ぶ。)について詳しく説明する。
 図1は、基準マークの配置例を示す反射型マスクブランクの平面図である。
 図1では、例えば一例として反射型マスクブランク40の吸収体膜上のコーナー近傍の4箇所に本発明の基準マーク13を形成している。後でも詳しく説明するように、本発明では、基準マークを積層膜や吸収体膜に形成することを特徴としている。
 なお、図示していないが、本発明の基準マークの近傍に、該基準マークよりも相対的に大きく、それ自体は基準マークの役割は有していないが、上記基準マーク13との位置関係が予め決められていて、上記基準マーク13の位置を検出し易くするための役割を有するラフアライメントマークを形成するようにしてもよい。
 図1においては、基準マーク13はいずれも反射型マスクブランク主表面上の破線Aで示すパターン形成領域の境界線上、あるいはパターン形成領域より外周縁側に形成することが好適である。但し、基板外周縁にあまり近いと、他の種類の認識マークと交差する可能性があるので好ましくない。
 基準マークの個数は特に限定されない。基準マークについては、最低3個必要であるが、3個以上であっても構わない。
 図2は、本発明の基準マークを構成するメインマーク及び補助マークの形状例及び配置例を示す図である。また、図3は、本発明の基準マークを用いた基準点を決定する方法を説明するための図である。
 上記基準マークは、欠陥情報における欠陥位置の基準となるものであるが、本発明の基準マーク13は、欠陥位置の基準となる位置(基準点)を決定するためのメインマークと、該メインマークの周囲に配置された補助マークとから構成される。そして、上記メインマークは、点対称の形状であって、且つ、電子線又は欠陥検査光の走査方向に対して200nm以上10μm以下の幅の部分を有することが好ましい。
 図2及び図3には、上記メインマーク13aと、その周囲に配置された2つの補助マーク13b,13cとから構成される基準マーク13を一例として示している。
 本発明において、上記メインマーク13aは、電子線描画機又は欠陥検査光の走査方向(図3におけるX方向及びY方向)に対して垂直で且つ平行な辺を少なくとも2組有する多角形状であることが好適である。このように、上記メインマーク13aは、電子線又は欠陥検査光の走査方向に対して垂直で且つ平行な辺を少なくとも2組有する多角形状であることにより、電子線描画機、欠陥検査装置による検出の容易性(確実性)を向上させ、また、欠陥検出位置のばらつきを抑えることができる。図2及び図3では、具体例として、上記メインマーク13aが、縦横(X及びY方向)が同じ長さの正方形である場合を示している。この場合、縦横の長さ(L)がそれぞれ200nm以上10μm以下である。
 上記メインマーク13aは、点対称の形状であることが好ましい。上記の正方形に限らず、例えば図4の(a)に示すように、正方形の角部が丸みを帯びた形状や、同図(b)のように、八角形の形状や、同図(c)のように、十字形状であってもよい。この場合においても、メインマーク13aの大きさ(縦横の長さ)L)は、200nm以上10μm以下とすることが好適である。具体例として、メインマーク13aが十字形状の場合、その大きさ(縦横の長さ)は、5μm以上10μm以下とすることができる。また、図示していないが、上記メインマーク13aは、直径が200nm以上10μm以下の正円形とすることもできる。
 また、上記2つの補助マーク13b,13cは、上記メインマーク13aの周囲に、電子線又は欠陥検査光の走査方向(図3におけるX方向及びY方向)に沿って配置されている。本発明においては、上記補助マーク13b,13cは、電子線又は欠陥検査光の走査方向に対して垂直な長辺と平行な短辺を有する矩形状であることが好適である。補助マークが、電子線又は欠陥検査光の走査方向に対して垂直な長辺と平行な短辺を有する矩形状であることにより、電子線描画機、欠陥検査装置の走査により確実に検出できるため、メインマークの位置を容易に特定することができる。この場合、長辺は、電子線描画機、欠陥検査装置のできるだけ最小回数の走査により検出可能な長さであることが望ましい。例えば、25μm以上600μm以下の長さを有することが望ましい。一方、長辺の長さが短いと、例えば25μm未満であると、電子線描画機、欠陥検査装置の走査により補助マークをなかなか検出できない恐れがある。また、長辺の長さが長いと、例えば、600μmを超えると、基準マークの形成方法によっては加工時間に1時間/箇所を超えることになるので好ましくない。より好ましくは、長辺の長さは、25μm以上400μm以下、さらに好ましくは、25μm以上200μm以下が望ましい。
 また、上記補助マーク13b,13cとメインマーク13aは、所定の間隔離間させても良いし、離間させなくても良い。補助マークとメインマークを離間させる場合、間隔は特に制約されないが、本発明においては例えば25μm~50μm程度の範囲とすることが好適である。
 なお、上記メインマーク13a、補助マーク13b、13cはいずれも断面形状を凹形状とし、基準マークの高さ方向に所望の深さを設けることで認識し得る基準マークとしている。電子線や欠陥検査光による検出精度を向上させる観点から、凹形状の底部から表面側へ向かって広がるように形成された断面形状であることが好ましく、この場合の基準マークの側壁の傾斜角度は75度以上であることが好ましい。さらに好ましくは、80度以上、さらに好ましくは、85度以上とすることが望ましい。基準マークの側壁の傾斜角度の上限は、105度以下であることが好ましい。さらに好ましくは、100度以下、さらに好ましくは、95度以下である。基準マークの側壁の傾斜角度は、75度以上105度以下、さらに好ましくは、80度以上100度以下、さらに好ましくは、85度以上95度以下とすることが望ましい。
 上記基準マークを用いて、欠陥位置の基準となる基準点は次のようにして決定される(図3を参照)。
 上記補助マーク13b,13c上を電子線、あるいは欠陥検査光がX方向、Y方向に走査し、これら補助マークを検出することにより、メインマーク13aの位置を大まかに特定することができる。位置が特定された上記メインマーク13a上を電子線、あるいは検査光がX方向及びY方向に走査後、(上記補助マークの走査により検出された)メインマーク13a上の交点P(通常、メインマークの略中心)をもって基準点を決定する。
 上記したように、上記補助マーク13b、13cは、電子線又は欠陥検査光の走査方向に対して垂直な長辺と平行な短辺を有する矩形状であることが好ましく、この場合、長辺は、電子線描画機、欠陥検査装置のできるだけ最小回数の走査により検出可能な長さ、例えば25μm以上600μm以下の長さを有することが好適である。但し、例えば集束イオンビームでこの数百μm程度の長さを形成するとなると、加工時間が長時間必要となる。
 そこで、上記補助マークを、図5に示すように、いくつかの矩形に分割することができる。図6は、このような態様を具体的に示した例であり、5μm×5μmの大きさのメインマーク13aの一方(Y方向)に、50μm×1μmの大きさの矩形状の補助マーク13b1~13b6を等間隔で配置し、各補助マーク間の間隔(スペース)は50μmとする。
 この場合、例えば第1スキャン(1回目のスキャン)では補助マークを外し、上(Y方向)に60μmシフトさせた第2スキャン(2回目のスキャン)でも補助マークを外し、さらに上に60μmシフトさせた第3スキャン(3回目のスキャン)で補助マーク13b5を検出することができる。
 このように補助マークを分割し、分割した個々の補助マークの長辺の長さを短くしても、走査ルールを決めて、出来るだけ少ない走査回数で補助マークを確実に検出することが可能である。また、このように補助マークを分割することで、全体の加工時間の短縮が図れる。
 なお、EUV光を露光光として使用する反射型マスクにおいては、特に多層反射膜に存在する欠陥は、修正が殆ど不可能である上に、転写パターン上で重大な位相欠陥となり得るので、転写パターン欠陥を低減させるためには多層反射膜上の欠陥情報が重要である。従って、少なくとも多層反射膜成膜後に欠陥検査を行い、欠陥情報を取得することが望ましい。但し、多層反射膜付き基板の例えば多層反射膜に本発明の基準マークを形成すると、前述したような種々の問題を生じるため、本発明においては、多層反射膜上では高感度の欠陥検査を行うが、基準マークは、多層反射膜上に成膜される積層膜や吸収体膜に形成し、その後で、基準マークを用いて反射型マスクブランクの欠陥検査を行うようにしている。
 以上説明したように、本発明の基準マークは、電子線描画機、光学式の欠陥検査装置のいずれでも容易に検出でき、言い換えれば確実に検出することができる。しかも、点対称の形状を有することで、電子線、又は欠陥検査光の走査によって決定される欠陥位置の基準点のずれを小さくすることができる。従って、基準マークを元に検査した欠陥検出位置のばらつきが小さい。これによって、欠陥検査においては、欠陥位置の基準点を決定し、欠陥位置(基準点と欠陥の相対位置)情報を含む精度の良い欠陥情報(欠陥マップ)を取得することができる。さらに、マスクの製造においては、この欠陥情報に基づいて、予め設計しておいた描画データ(マスクパターンデータ)と照合し、欠陥による影響が低減するように描画データを高い精度で修正(補正)することが可能になり、その結果として、最終的に製造される反射型マスクにおいて欠陥を低減させることができる。
 なお、以上の実施の形態では、上記メインマーク13aの周囲に、電子線描画機や欠陥検査装置の走査方向(X方向、Y方向)に沿って2つの補助マーク13b、13cを配置した例について説明したが、本発明はこのような実施の形態に限定されるわけではない。例えば欠陥の検出が検査光の走査によらない方式においては、メインマークと補助マークとの位置関係が特定されていれば、メインマークに対する補助マークの配置位置は任意である。また、この場合、メインマークの中心ではなく、エッジを基準点とすることもできる。
 本発明の基準マーク13は、上述のとおり、反射型マスクブランク主表面上の破線Aで示すパターン形成領域の境界線上、あるいはパターン形成領域より外周縁側の任意の位置に形成されることが好適であるが(図1参照)、この場合、エッジ基準で基準マークを形成したり、或いは基準マークを形成後、座標計測器で基準マーク形成位置を特定することが好適である。
 まず、上記のエッジ基準で基準マークを形成する方法について説明する。
 図7及び図8はそれぞれエッジ基準で基準マークを形成する方法を説明するための図である。
 例えば、基準マーク形成手段としてFIB(集束イオンビーム)を採用し、吸収体膜に基準マークを形成する場合、吸収体膜を備えた反射型マスクブランクの基板のエッジの検出を行う。基準マークをFIBで加工する場合、反射型マスクブランクの基板のエッジは、2次電子像、2次イオン像、あるいは光学像で認識することができる。基準マークをフォトリソ法で加工する場合、反射型マスクブランクのエッジは、光学像で認識するか、又は反射型マスクブランクを載置するステージの片側に押し付けてエッジを認識することができる。また、基準マークをその他の方法(例えば圧痕)で加工する場合は、光学像で認識することができる。図7に示すように、例えば反射型マスクブランク40の基板の四辺の8箇所(丸印を付した箇所)のエッジ座標を確認し、チルト補正して、原点(0,0)出しを行う。この場合の原点は任意に設定可能であり、基板の角部でも中心でもよい。
 このようにエッジ基準で設定した原点からの所定の位置にFIBで基準マークを形成する。図8には、エッジ基準で基板の任意の角部に設定した原点O(0,0)からの所定の位置、具体的には原点Oの両隣の端面40AのエッジからXの距離、端面40BのエッジからYの距離に基準マーク13を形成する場合を示している。この場合、原点O(0,0)を基準とする基準マーク形成座標(X,Y)が基準マークの形成位置情報となる。他の位置に形成する基準マークについても同様である。
 このようなエッジ基準で形成した反射型マスクブランクの基準マークを欠陥検査装置や電子線描画装置で検出する際、基準マークの形成位置情報、つまりエッジからの距離がわかっているため、基準マーク形成位置を容易に特定することが可能である。
 また、反射型マスクブランクの積層膜や吸収体膜上の任意の位置に基準マークを形成した後、座標計測器で基準マーク形成位置を特定する方法を適用することもできる。この座標計測器は、基準マークの形成座標をエッジ基準で計測するものであり、例えば高精度パターン位置測定装置(KLA-Tencor社製LMS-IPRO4)を使用することができ、特定した基準マーク形成座標が基準マークの形成位置情報となる。また、座標計測器は、電子線描画機の基準座標に変換する役割もあるので、反射型マスクブランクを提供されたユーザーは、容易に基準マークに基づき欠陥検査装置により特定した欠陥位置と、描画データとを高精度に照合することが可能となり、最終的に製造されるマスクにおいて欠陥を確実に低減させることができる。
 以上説明したように、基準マークをエッジ基準で形成したり、或いは基準マークを任意の位置に形成後、座標計測器で基準マーク形成位置を特定する方法によれば、欠陥検査装置や電子線描画装置で反射型マスクブランク上での基準マークの形成位置を容易に特定することが可能であるため、基準マークのサイズを小さくすることが可能である。具体的には、本発明の基準マーク13が、前述のメインマークと補助マークとから構成される場合、メインマークの幅は200nm以上10μm以下、補助マークの長辺は例えば25μm以上250μm以下のサイズにすることが可能である。このように基準マークのサイズを小さくした場合、基準マークの形成手段として例えば前記のFIBを採用した場合には、基準マークの加工時間が短縮できるので好ましい。また、基準マークの検出時間についても短縮できるので好ましい。
 図9には、以上で説明したようなエッジ基準で形成する場合の基準マークの形状例及び配置例を示しているが、同図(a)のようなメインマーク13aと補助マーク13b,13cから構成される基準マークが代表的な例である。また、上記のとおり、基準マークのサイズを小さくすることができるので、必ずしも補助マークを必要とせず、例えば同図(b)に示すようなメインマーク13aのみとすることが可能である。さらに、同図(c)に示すようなメインマーク13aの周囲に4つの補助マーク13b~13eを配置したものや、同図(d)に示すような十字形の基準マークとすることもできる。
 また、基板のエッジ座標を基準に設定した原点からの所定の位置に前記基準マークを形成した反射型マスクブランクと、この場合の基準マークの形成位置情報(基準マーク形成座標)とを対応付けてユーザーに提供することにより、ユーザーは、例えばマスク製造工程において、この基準マークの形成位置情報を利用して基準マークを短時間で確実に検出することができる。
 また、反射型マスクブランクに基準マークを形成した後、座標計測器で前記基準マークの形成位置を特定し、前記基準マークを形成した反射型マスクブランクと、この場合の基準マークの形成位置情報(特定した基準マークの位置座標)とを対応付けてユーザーに提供することにより、ユーザーは、この基準マークの形成位置情報を利用して基準マークを短時間で確実に検出することができる。また、基準マークの形成位置を座標計測器で特定することにより、電子線描画機の基準座標の変換が可能となる。したがって、反射型マスクブランクを提供されたユーザーは、容易に基準マークに基づき欠陥検査装置により特定した欠陥位置と、描画データとを高精度に照合することが可能となり、最終的に製造されるマスクにおいて欠陥を確実に低減させることができる。
 また、上記基準マークの形成位置情報に、さらに基準マークを基準とした欠陥情報(位置情報、サイズ等)を加えてユーザーに提供することにより、ユーザーはこの基準マークの形成位置情報を利用して基準マークを短時間で確実に検出することができるとともに、この欠陥情報に基づいて、欠陥による影響が低減するように描画データを高い精度で修正(補正)し、最終的に製造されるマスクにおいて欠陥を低減させることができる。
[反射型マスクブランク]
 次に、本発明に係る上記基準マークが形成された反射型マスクブランクの製造方法について説明する。
 本発明に係る反射型マスクブランクの製造方法は、前記構成1にあるように、基板上に、EUV光を反射する多層反射膜と、該多層反射膜上に、積層膜が形成されている反射型マスクブランクの製造方法であって、前記基板上に、前記多層反射膜を成膜して多層反射膜付き基板を形成する工程と、前記多層反射膜付き基板に対して欠陥検査を行う工程と、前記多層反射膜付き基板の前記多層反射膜上に、前記積層膜を成膜する工程と、前記積層膜の上部に、欠陥情報における欠陥位置の基準となる基準マークを形成して、該基準マークが形成された反射型マスクブランクを形成する工程と、前記基準マークを基準にして前記反射型マスクブランクの欠陥検査を行う工程と、を含むことを特徴としている。
 また、本発明に係る反射型マスクブランクの製造方法は、前記構成2にあるように、基板上に、EUV光を反射する多層反射膜と、該多層反射膜上に、EUV光を吸収する吸収体膜が形成されている反射型マスクブランクの製造方法であって、前記基板上に、前記多層反射膜を成膜して多層反射膜付き基板を形成する工程と、前記多層反射膜付き基板に対して欠陥検査を行う工程と、前記多層反射膜付き基板の前記多層反射膜上に、前記吸収体膜を成膜する工程と、前記吸収体膜に、欠陥情報における欠陥位置の基準となる基準マークを形成して、該基準マークが形成された反射型マスクブランクを形成する工程と、前記基準マークを基準にして前記反射型マスクブランクの欠陥検査を行う工程と、を含むことを特徴としている。
 図10は、本発明に係る反射型マスクブランク及び反射型マスクの製造工程を示す断面図である。以下、図10に示された工程に従って説明する。
 なお、以下の説明では、構成2の反射型マスクブランクの製造方法について説明するが、以下の説明において、吸収体膜41や、吸収体膜41とハードマスク膜61との関係を積層膜に置き換えた構成1の反射型マスクブランクの製造方法にも適用できる。詳しくは後述するが、吸収体膜41は、単層膜には限られず、同一材料の積層膜、異種材料の積層膜で構成することができる。また、本発明に係る反射型マスクブランクは、上記のような積層膜あるいは単層膜の吸収体膜とハードマスク膜との積層膜の構成とすることができる。上記構成1のように、多層反射膜上に積層膜を成膜して反射型マスクブランクとする場合、基準マークは積層膜の少なくとも上部を除去して形成されていればよいが、積層膜を厚さ方向にすべて除去して形成してもよい。たとえば、上記のような吸収体膜とハードマスク膜との積層膜の構成を含む場合、少なくともハードマスク膜に基準マークを形成すればよい。
 まず、基板としてガラス基板11上に、下地層21、EUV光を反射する多層反射膜31、及び保護膜32を順に成膜して、多層反射膜付き基板30を作製する(図10(a)参照)。
 EUV露光用の場合、基板としてはガラス基板11が好ましく、特に、露光時の熱によるパターンの歪みを防止するため、0±1.0×10-7/℃の範囲内、より好ましくは0±0.3×10-7/℃の範囲内の低熱膨張係数を有するものが好ましく用いられる。この範囲の低熱膨張係数を有する素材としては、例えば、SiO-TiO系ガラス、多成分系ガラスセラミックス等を用いることが出来る。
 上記ガラス基板11の転写パターンが形成される側の主表面は、少なくともパターン転写精度、位置精度を得る観点から高平坦度となるように表面加工されている。EUV露光用の場合、ガラス基板11の転写パターンが形成される側の主表面142mm×142mmの領域において、平坦度が0.1μm以下であることが好ましく、特に好ましくは0.05μm以下である。また、転写パターンが形成される側と反対側の主表面は、露光装置にセットする時に静電チャックされる面であって、142mm×142mmの領域において、平坦度が0.1μm以下、好ましくは0.05μm以下である。
 また、上記ガラス基板11としては、上記のとおり、SiO-TiO系ガラスなどの低熱膨張係数を有する素材が用いられるが、このようなガラス素材は、精密研磨により、表面粗さとして例えばRMSで0.1nm以下の高平滑性を実現することが困難である。そのため、ガラス基板11の表面粗さの低減、若しくはガラス基板11表面の欠陥を低減する目的で、ガラス基板11の表面に下地層21を形成することが好適である。このような下地層21の材料としては、露光光に対して透光性を有する必要はなく、下地層表面を精密研磨した時に高い平滑性が得られ、欠陥品質が良好となる材料が好ましく選択される。例えば、Si又はSiを含有するケイ素化合物(例えばSiO2、SiONなど)は、精密研磨した時に高い平滑性が得られ、欠陥品質が良好なため、好ましく用いられる。特にSiが好ましい。
 下地層21の表面は、反射型マスクブランク用基板として要求される平滑度となるように精密研磨された表面とすることが好適である。下地層21の表面は、二乗平均平方根粗さ(RMS)で0.15nm以下、特に好ましくは0.1nm以下となるように精密研磨されることが望ましい。また、下地層21の表面は、下地層21上に形成する多層反射膜31の表面への影響を考慮すると、最大高さ(Rmax)との関係において、Rmax/RMSが2~10であることが良く、特に好ましくは、2~8となるように精密研磨されることが望ましい。
 下地層21の膜厚は、例えば10nm~300nmの範囲が好ましい。
 上記多層反射膜31は、低屈折率層と高屈折率層を交互に積層させた多層膜であり、一般的には、重元素又はその化合物の薄膜と、軽元素又はその化合物の薄膜とが交互に40~60周期程度積層された多層膜が用いられる。
 例えば、波長13~14nmのEUV光に対する多層反射膜としては、Mo膜とSi膜を交互に40周期程度積層したMo/Si周期積層膜が好ましく用いられる。その他に、EUV光の領域で使用される多層反射膜として、Ru/Si周期多層膜、Mo/Be周期多層膜、Mo化合物/Si化合物周期多層膜、Si/Nb周期多層膜、Si/Mo/Ru周期多層膜、Si/Mo/Ru/Mo周期多層膜、Si/Ru/Mo/Ru周期多層膜などがある。露光波長により、材質を適宜選択すればよい。
 通常、吸収体膜のパターニング或いはパターン修正の際に多層反射膜を保護する目的で、上記多層反射膜31上には、上記保護膜32(キャッピング層あるいはバッファ膜とも呼ばれることがある。)を設ける。このような保護膜32の材料としては、ケイ素のほか、ルテニウムや、ルテニウムにニオブ、ジルコニウム、ロジウムのうち1以上の元素を含有するルテニウム化合物が用いられ、この他には、クロム系材料が用いられることもある。
 保護膜32の膜厚としては、例えば1nm~5nm程度の範囲が好ましい。
 以上の下地層21、多層反射膜31、及び保護膜32の成膜方法は特に限定されないが、通常、イオンビームスパッタリング法や、マグネトロンスパッタリング法などが好適である。
 次に、以上のようにして作製した多層反射膜付き基板30に対して欠陥検査を行う。この場合、多層反射膜付き基板の段階では基準マークが形成されていないので、多層反射膜付き基板30に対して、欠陥検査装置により、例えば主表面の中心を基準点として欠陥検査を行い、欠陥検査により検出された欠陥と位置情報とを取得する。また、この場合の欠陥検査は、少なくともパターン形成領域の全面に対して行う。図11の(a)は、多層反射膜付き基板30に対して行った欠陥検査の結果を模式的に示すもので、図示する黒丸(●)20は、一例として検出された欠陥の位置を示している。
 次に、上記多層反射膜付き基板30における上記保護膜32上に、EUV光を吸収する吸収体膜41を成膜して、反射型マスクブランク40を作製する(図10(b)参照)。
 なお、図10(b)に示された反射型マスクブランク40においては、ガラス基板11の多層反射膜等が形成されている側とは反対側に裏面導電膜42が設けられている。
 上記吸収体膜41は、露光光であるEUV光を吸収する機能を有するもので、反射型マスクブランク40を使用して作製される反射型マスク50において、上記多層反射膜31、保護膜32による反射光と、吸収体膜パターン41aによる反射光との間で所望の反射率差を有するものであればよい。例えば、EUV光に対する吸収体膜41の反射率は、0.1%以上40%以下の間で選定される。また、上記反射率差に加えて、上記多層反射膜31、保護膜32による反射光と、吸収体膜パターン41aによる反射光との間で所望の位相差を有するものであってもよい。なお、上記多層反射膜31、保護膜32による反射光と、吸収体膜パターン41aによる反射光との間で所望の位相差を有する場合、反射型マスクブランク40における吸収体膜41を位相シフト膜と称する場合がある。上記多層反射膜31、保護膜32による反射光と、吸収体膜パターン41aによる反射光との間で所望の位相差を設けて、コントラストを向上させる場合、位相差は180度±10度の範囲に設定するのが好ましく、吸収体膜41の反射率は、3%以上40%以下に設定するのが好ましい。
 上記吸収体膜41は、単層でも積層構造であってもよい。積層構造の場合、同一材料の積層膜、異種材料の積層膜でもよい。積層膜は、材料や組成が膜厚方向に段階的及び/又は連続的に変化したものとすることができる。
 上記吸収体膜41の材料としては、例えば、タンタル(Ta)単体又はTaを含む材料が好ましく用いられる。Taを含有する材料としては、TaとBを含む材料、TaとNを含む材料、TaとBを含み、更にOとNの少なくとも何れかを含む材料、TaとSiを含む材料、TaとSiとNを含む材料、TaとGeを含む材料、TaとGeとNを含む材料、TaとPdを含む材料、TaとRuを含む材料等が用いられる。また、Ta以外の材料としては、Cr単体又はCrを含有する材料、Ru単体又はRuを含有する材料、Pd単体又はPdを含有する材料、Mo単体又はMoを含有する材料であってもよい。吸収体膜41が積層膜の場合、上述に挙げた材料を組み合わせた積層構造とすることができる。
 上記吸収体膜41の膜厚としては、例えば30nm~100nm程度の範囲が好ましい。吸収体膜41の成膜方法は特に限定されないが、通常、マグネトロンスパッタリング法や、イオンビームスパッタリング法などが好適である。
 次に、以上のようにして作製した反射型マスクブランク40に前述の基準マークを形成する。基準マークについてはすでに詳しく説明したので、ここでは説明を省略する。
 ここでは、反射型マスクブランク40の吸収体膜41上の所定の位置に、集束イオンビーム(FIB)を用いて、例えば十字形状の基準マーク13を形成している(図10(c)参照)。
 なお、図10(c)においては、保護膜32が露出するように吸収体膜41を除去して基準マーク13が形成されている例を示すが、吸収体膜41の途中まで除去して基準マーク13を形成してもよい。
 次に、以上のようにして作製した基準マークが形成された反射型マスクブランク40に対して欠陥検査を行う。
 この場合、上記の基準マーク13を基準にして欠陥検査装置により欠陥検査を行い、欠陥検査により検出された欠陥と位置情報とを取得する。図11の(b)は、反射型マスクブランク40に対して行った欠陥検査の結果を模式的に示すもので、図示する黒丸(●)23は、一例として検出された欠陥の位置を示している。
 本発明においては、多層反射膜付き基板に対する欠陥検査の段階では基準マークが形成されていないので、反射型マスクブランクにおける欠陥検査と、基準マークを基準にした欠陥の座標管理は以下のようにして行うことができる。
 上記の通り吸収体膜41は多層反射膜31上に形成するので、この反射型マスクブランク40の欠陥検査データは、上記で取得した多層反射膜付き基板30の欠陥検査も反映されている。従って、多層反射膜付き基板の欠陥と反射型マスクブランクの欠陥が一致している欠陥を元に、多層反射膜付き基板の欠陥検査データと、反射型マスクブランクの欠陥検査データを照合することにより、上記基準マークを基準にした多層反射膜付き基板の欠陥検査データと、反射型マスクブランクの欠陥検査データを得ることができる。
 すなわち、本発明においては、多層反射膜付き基板30における多層反射膜31には基準マークを形成しなくても、多層反射膜付き基板30の欠陥検査により検出された欠陥と反射型マスクブランク40の欠陥検査により検出された欠陥とが一致している欠陥を元に、多層反射膜付き基板30の欠陥検査データと、反射型マスクブランク40の欠陥検査データとを照合し、吸収体膜41に形成した基準マーク13を基準とする座標変換を行うことにより、吸収体膜41に形成した基準マーク13を基準にした反射型マスクブランク40の欠陥検査データに加えて、上記基準マーク13を基準にした多層反射膜付き基板30の欠陥検査データを取得することができる。
 また、上述の多層反射膜付き基板30の欠陥検査は、多層反射膜付き基板上の少なくともパターン形成領域の全面に対して行うが、反射型マスクブランク40の欠陥検査については、勿論全面検査を行ってもよいが、部分検査を行うことにより、検査時間を大幅に短縮することが可能である。すなわち、反射型マスクブランク40の欠陥検査においては、多層反射膜付き基板30の欠陥検査により検出された欠陥のうちの少なくとも一部の欠陥に対して、その位置を特定して1mm角程度のエリアで行う。エリアは検査の位置ずれを考慮して設定する。例えば、多層反射膜付き基板30の欠陥検査により検出された欠陥のうちの一部の(複数の)欠陥と対応する各欠陥の欠陥位置23を含む所定の領域Bを特定して、反射型マスクブランク40の欠陥検査を行う(図11(b)参照)。例えば100mm×100mmの領域を全面検査する場合、通常約4時間程度を要するが、上述の部分検査を行うことにより、例えば検査時間を約10分間以下と大幅に短縮することが可能である。
 上記基準マーク13を形成する方法は上述の集束イオンビームを用いる方法には限定されない。例えば基準マークの断面形状が凹形状の場合、フォトリソ法や、レーザー光による凹部形成、ダイヤモンド針を走査しての加工痕、微小圧子によるインデンション、インプリント法による型押しなどで形成することができる。
 図12に示される反射型マスクブランクの製造工程では、上記基準マーク13をフォトリソ法により形成する場合を示している。なお、図10と同等の箇所には同一の符号を付して重複説明はここでは省略する。
 フォトリソ法で基準マークを形成する場合、図12(b)に示すように、反射型マスクブランク40の表面にレジスト膜51を形成する。このレジスト膜51に対して、基準マーク13のパターンを描画もしくは露光し、現像して、基準マーク13に対応するレジストパターンを形成する。次いで、このレジストパターンをマスクとして、吸収体膜41を例えばドライエッチングすることにより、吸収体膜41上の所定位置に所望の基準マーク13を形成する(図12(c)参照)。
 以上のドライエッチングを用いたフォトリソ法で形成した基準マークは、集束イオンビームで形成した基準マークよりも、側壁の垂直性がより良好な断面形状に仕上がるので、例えばマスク製造の電子線描画工程での基準マークのアライメント精度をより向上させることが可能である。
 なお、本発明においては、多層反射膜付き基板の欠陥検査により検出された欠陥と反射型マスクブランクの欠陥検査により検出された欠陥とを重ね合せて両者が一致している欠陥を求める目的のためには、実際の欠陥でなくてもよいので、多層反射膜付き基板における多層反射膜上に予め擬似欠陥を形成しておき、多層反射膜付き基板の欠陥検査により検出された擬似欠陥と反射型マスクブランクの欠陥検査により検出された前記擬似欠陥に対応する欠陥とを元に、多層反射膜付き基板の欠陥検査データと反射型マスクブランクの欠陥検査データとを照合するようにしてもよい。
 以上説明したように、本発明においては、多層反射膜には基準マークを形成せず、多層反射膜上に成膜した吸収体膜に基準マークを形成することにより、以下のような作用効果を奏する。
1.基板上に成膜した多層反射膜に対しては通常の欠陥検査のみを行い、基準マークの形成は行わないので、多層反射膜に基準マークを形成する場合の多層反射膜の汚染リスクがなくなる。また、多層反射膜の汚染による欠陥を除去するための洗浄を行う必要がなく、洗浄による多層反射膜表面(保護膜表面)のダメージは生じない。またさらには、多層反射膜の汚染による欠陥を除去するための洗浄と検査を繰返し行う必要も生じないので、検査コストの増大や、新たな汚染リスクの増大の問題も発生しない。
2.反射型マスクブランクに対する欠陥検査は、吸収体膜に形成した基準マークを基準にして行い、その後のマスク製造における電子線描画工程では、上記と同じ基準マークを用いてアライメントを行うことができるので、アライメント精度が向上する。また、多層反射膜の膜厚に比べて吸収体膜の膜厚は薄く、また吸収体膜は単一層か、あるいは多くても2~3層の積層膜であるため、マーク形成の加工時間を短縮でき、垂直性の高い断面形状の基準マークを形成することができるので、アライメント精度が向上する。
3.吸収体膜に基準マークを形成する過程で、ガラス基板へのエッチングダメージは発生しないので、ガラス基板のリサイクルが容易である。
 また、前にも説明したが、以上のような吸収体膜に基準マークが形成された反射型マスクブランクを得ることによって、欠陥検査においては、欠陥位置の基準点を決定し、欠陥位置(基準点と欠陥の相対位置)情報を含む精度の良い欠陥情報(欠陥マップ)を取得することができる。さらに、マスクの製造においては、この欠陥情報に基づいて、予め設計しておいた描画データ(マスクパターンデータ)と照合し、欠陥による影響が低減するように描画データを高い精度で修正(補正)することが可能になり、その結果として、最終的に製造される反射型マスクにおいて欠陥を低減させることができる。
 なお、上記説明した本発明の反射型マスクブランク40には、前記吸収体膜41上に、レジスト膜51を形成した態様も含まれる。このようなレジスト膜は、前記のように、吸収体膜や積層膜にフォトリソ法で基準マークを形成する場合に用いられる。また、このようなレジスト膜は、基準マークを形成した反射型マスクブランクにおける吸収体膜や積層膜をフォトリソ法によりパターニングする際にも用いられる。
 また、本発明の反射型マスクブランク40には、前記吸収体膜41と前記レジスト膜51との間に、ハードマスク膜(エッチングマスク膜とも言う。)を形成した態様も含まれる。ハードマスク膜は、吸収体膜41をパターニングする際にマスク機能を有するものであり、吸収体膜41の最上層の材料とエッチング選択性が異なる材料により構成する。例えば、吸収体膜41がTa単体又はTaを含む材料の場合、ハードマスク膜は、クロムやクロム化合物、若しくはケイ素やケイ素化合物などの材料を使用することができる。クロム化合物としては、CrとN、O、C、Hから選ばれる少なくとも一つの元素を含む材料が挙げられる。ケイ素化合物としては、SiとN、O、C、Hから選ばれる少なくとも一つの元素を含む材料や、ケイ素やケイ素化合物に金属を含む金属ケイ素(金属シリサイド)や金属ケイ素化合物(金属シリサイド化合物)などの材料が挙げられる。金属ケイ素化合物としては、金属、SiとN、O、C、Hから選ばれる少なくとも一つの元素を含む材料が挙げられる。吸収体膜41が、多層反射膜31側からTaを含む材料と、Crを含む材料の積層膜の場合、ハードマスク膜の材料は、Crを含む材料とエッチング選択性が異なるケイ素、ケイ素化合物、金属シリサイド、金属シリサイド化合物などを選択することができる。
 また、本発明の反射型マスクブランク40は、吸収体膜を、互いにエッチング選択性が異なる材料からなる最上層とそれ以外の層との積層膜で構成し、最上層がそれ以外の層に対するハードマスク膜としての機能を有するようにした構成とすることもできる。
 図13および図14は、それぞれ本発明に係る反射型マスクブランク及び反射型マスクの製造工程の他の実施形態を示す断面図である。なお、図10と同等の箇所には同一の符号を付して重複説明はここでは省略する。
 吸収体膜41上にハードマスク膜が形成された反射型マスクブランク40においては、上記と同様に多層反射膜付き基板30に対して欠陥検査を行った後、保護膜32上に吸収体膜41を形成する(図13(b))。次に、吸収体膜41の欠陥検査を行うか、又は行わずに吸収体膜41上にハードマスク膜61を形成し(図13(c))、該ハードマスク膜61に基準マーク13を形成する(図13(d))。その後、前記基準マーク13を基準にして反射型マスクブランク40の欠陥検査を行う各プロセスを有する反射型マスクブランクの製造方法とすることができる。
 上記工程において前記ハードマスク膜61に形成された基準マーク13を基準に欠陥検査を行う際に、基準マーク13を検出するに当たってコントラストが十分でない場合は、前記ハードマスク膜61に形成された基準マーク13を元に、該ハードマスク膜61の下に位置する吸収体膜41にも基準マーク13を形成し(図13(e))、該基準マーク13を基準にして反射型マスクブランク40の欠陥検査を行うこともできる。
 または、上記と同様に多層反射膜付き基板30に対して欠陥検査を行った後、保護膜32上に吸収体膜41を形成する(図14(b))。次に、吸収体膜41上に基準マーク13を形成する(図14(c))。次に、基準マーク13を基準にして吸収体膜41の欠陥検査を行うか、又は行わずに吸収体膜41上にハードマスク膜61を形成する(図14(d))。その後、前記基準マーク13を基準にして反射型マスクブランク40の欠陥検査を行うこともできる。
 なお、図13および図14中において、「欠陥検査」を括弧書きで示している箇所は、上述の「吸収体膜41の欠陥検査を行うか、又は行わずに」を意味している。
 また、図13または図14に示す実施形態においても、多層反射膜付き基板30に対する欠陥検査は全面検査を行うが、基準マーク13を基準にして反射型マスクブランク40の欠陥検査を行う際は前述のように部分検査を行うことが好ましい。
[反射型マスク]
 本発明は、上記構成の反射型マスクブランクにおける前記吸収体膜がパターニングされた反射型マスクの製造方法についても提供する。
 すなわち、上述の反射型マスクブランク40における吸収体膜41をパターニングして吸収体膜パターン41aを形成することにより反射型マスク50が作製される(図10(d)、図12(d)参照)。
 反射型マスクブランクにおける転写パターンとなる上記吸収体膜をパターニングする方法は、フォトリソグラフィー法が最も好適である。なお、上記エッチングマスク膜を含む構成の反射型マスクブランクを用いて反射型マスクを製造する場合、エッチングマスク膜は最終的には除去してもよいが、残存していても反射型マスクとしての機能に影響がなければ、特に除去しなくてもよい。
 上記構成の反射型マスクブランク40における吸収体膜41がパターニングされて得られる反射型マスク50は、多層反射膜付き基板30又は反射型マスクブランク40における欠陥情報に基づく描画データの補正・修正によって、欠陥を低減させたものが得られる。
 以下、実施例により、本発明の実施の形態を更に具体的に説明する。
(実施例1)
 両面研磨装置を用い、酸化セリウム砥粒やコロイダルシリカ砥粒により段階的に研磨し、低濃度のケイフッ酸で基板表面を表面処理したSiO-TiO系のガラス基板(大きさが約152.0mm×約152.0mm、厚さが約6.35mm)を準備した。得られたガラス基板の表面粗さは、二乗平均平方根粗さ(RMS)で0.25nmであった(原子間力顕微鏡にて測定した。測定領域は1μm×1μm。)。
 このガラス基板の表裏両面の表面形状(表面形態、平坦度)を平坦度測定装置(トロッペル社製UltraFlat)で測定(測定領域148mm×148mm)した結果、ガラス基板表面及び裏面の平坦度は約290nmであった。
 次に、ガラス基板表面に局所表面加工を施し表面形状を調整した。
 得られたガラス基板表面の表面形状(表面形態、平坦度)と表面粗さを測定したところ、142mm×142mmの測定領域において、表裏面の平坦度は80nmで、100nm以下となっており良好であった。
 次に、BドープSiターゲットを使用し、スパッタリングガスとしてArガスとHeガスの混合ガスを使用し、DCマグネトロンスパッタリングにより、100nmのSi下地層を成膜した後、Si膜に熱エネルギーを付与して応力低減処理を行った。
 その後、Si下地層表面について、表面形状を維持し、表面粗さを低減するため、片面研磨装置を用いた精密研磨を行った。
 得られたSi下地層表面の表面形状(表面形態、平坦度)と表面粗さを測定したところ、142mm×142mmの測定領域において、80nmで、100nm以下となっており良好であった。また、表面粗さは、1μm×1μmの測定領域において、二乗平均平方根粗さRMSで0.08nmとなっており極めて良好であった。RMSで0.1nm以下と極めて高い平滑性を有しているので、高感度の欠陥検査装置におけるバックグランドノイズが低減し、擬似欠陥検出抑制の点でも効果がある。
 また、最大高さ(Rmax)は、1μm×1μmの測定領域において、0.60nmで、Rmax/RMSは7.5となっており、表面粗さのばらつきは小さく良好であった。
 次に、Si下地層上に、イオンビームスパッタリング装置を用いて、Si膜(膜厚:4.2nm)とMo膜(膜厚:2.8nm)を一周期として、40周期積層し、最後にSi膜(膜厚:4nm)を形成し、さらにその上に、RuNbからなる保護膜(膜厚:2.5nm)を成膜して、多層反射膜付き基板を得た。
 次に、多層反射膜付き基板表面をブランクス欠陥検査装置(KLA-Tencor社製Teron600シリーズ)で、基板主表面の中心を基準にして欠陥検査を行った。この欠陥検査では、上記基板主表面の中心を基準とした凸、凹の欠陥位置情報と、欠陥サイズ情報を取得し、欠陥マップを作成した。
 また、この多層反射膜付き基板の保護膜表面の反射率を、EUV反射率計により評価したところ、下地層表面粗さばらつきが抑えられたことにより、64%±0.2%と良好であった。
 次に、DCマグネトロンスパッタリング装置を用いて、上記多層反射膜付き基板の保護膜上に、TaBN膜(膜厚:56nm)とTaBO膜(膜厚:14nm)の積層膜からなる吸収体膜を形成し、また、裏面にCrN導電膜(膜厚:20nm)を形成してEUV反射型マスクブランクを得た。
 次に、上記吸収体膜の表面の所定の箇所に以下の表面形状で断面形状が凹形状の基準マークを形成した。基準マークの形成は集束イオンビームを用いて行った。この時の条件は加速電圧50kV、ビーム電流値20pAとした。基準マークの形成後、洗浄を行った。
 なお、本実施例では、基準マークとして、前述のメインマークと補助マークを図2に示すような配置関係となるように形成した。メインマーク13aは、大きさが5μm×5μmの矩形、深さは吸収体膜を全て除去したので、約70nmとした。また、補助マーク13b,13cはいずれも、大きさが1μm×200μmの矩形、深さは吸収体膜を全て除去したので、約70nmとした。
 基準マークの断面形状を原子間力顕微鏡(AFM)により観察したところ、側壁の傾斜角度が87度、吸収体膜表面と側壁との間の稜線部の曲率半径が約120nmと良好な断面形状であった。
 また、吸収体膜に形成したこの基準マークは、電子線描画装置やブランクス検査装置で、コントラストが0.020と高く、精度良く検出でき、しかも欠陥検出位置のばらつきも81nmとなり、再現性良く検出できることを確認した。
 得られたEUV反射型マスクブランクについて、ブランクス欠陥検査装置(KLA-Tencor社製Teron600シリーズ)で欠陥検査を行った。この欠陥検査では、上述の基準マークを基準として、凸、凹の欠陥位置情報と、欠陥サイズ情報を取得した。
 ここで、多層反射膜付き基板の欠陥検査により検出された欠陥と反射型マスクブランクの欠陥検査により検出された欠陥とが一致している複数の欠陥を元に、多層反射膜付き基板の欠陥検査データと、反射型マスクブランクの欠陥検査データとを照合し、吸収体膜に形成した基準マークを基準とする座標変換を行うことにより、吸収体膜に形成した基準マークを基準にした反射型マスクブランクの欠陥検査データと、上記基準マークを基準にした多層反射膜付き基板の欠陥検査データを取得した。
 こうして、反射型マスクブランクと、これら欠陥位置情報、欠陥サイズ情報とを対応させた欠陥情報付きEUV反射型マスクブランクを得た。
 なお、上述の反射型マスクブランクの欠陥検査は、多層反射膜付き基板の欠陥検査により検出された欠陥のうちの少なくとも一部の欠陥に対して、その位置を特定して行う(部分検査)ことにより、全面検査を行う場合に比べると検査時間を大幅に短縮することが可能である。
 次に、この欠陥情報付きのEUV反射型マスクブランクを用いて、EUV反射型マスクを作製した。
 まず、EUV反射型マスクブランク上に電子線描画用レジストをスピンコーティング法により塗布、ベーキングしてレジスト膜を形成した。
 次に、EUV反射型マスクブランクの欠陥情報に基づいて、予め設計しておいたマスクパターンデータと照合し、露光装置を用いたパターン転写に影響のないマスクパターンデータに修正するか、パターン転写に影響があると判断した場合には、例えば欠陥をパターンの下に隠すように修正パターンデータを追加したマスクパターンデータに修正するか、修正パターンデータでも対応ができない欠陥については、マスク作製後の欠陥修正の負荷が低減できるマスクパターンデータに修正し、この修正されたマスクパターンデータに基づいて、上述のレジスト膜に対して電子線によりマスクパターンを描画、現像を行い、レジストパターンを形成した。本実施例では、上記基準マークと欠陥との相対位置関係が高い精度で管理できたので、マスクパターンデータの修正を高精度で行うことができた。
 このレジストパターンをマスクとし、吸収体膜に対してフッ素系ガス(CFガス)によりTaBO膜を、塩素系ガス(Clガス)によりTaBN膜をエッチング除去して、保護膜上に吸収体膜パターンを形成した。
 さらに、吸収体膜パターン上に残ったレジストパターンを熱硫酸で除去し、EUV反射型マスクを得た。
 この得られたEUV反射型マスクについてマスク欠陥検査装置(KLA-Tencor社製Teron600シリーズ)により検査したところ、多層反射膜上に凸欠陥は確認されなかった。
 こうして得られた反射型マスクを露光装置にセットし、レジスト膜を形成した半導体基板上へのパターン転写を行う場合、反射型マスク起因の転写パターンの欠陥も無く、良好なパターン転写を行うことができる。
(実施例2)
 上記実施例1における基準マークを、フォトリソ法により形成したこと以外は、実施例1と同様にして反射型マスクブランクを作製した。なお、基準マークの形成位置、基準マークの表面形状及び断面形状は実施例1と同様にした。
 すなわち、実施例1と同様にして基板上に下地層、多層反射膜、保護膜及び吸収体膜を成膜したEUV反射型マスクブランク上に電子線描画用レジストをスピンコーティング法により塗布、ベーキングしてレジスト膜を形成した。
 次に、上述のレジスト膜に対して電子線により基準マークのパターンを描画、現像を行い、レジストパターンを形成した。
 このレジストパターンをマスクとし、吸収体膜のドライエッチングを行って、吸収体膜に基準マークを形成した。
 形成された基準マークの断面形状を原子間力顕微鏡(AFM)により観察したところ、側壁の傾斜角度は89度であり、実施例1の集束イオンビームを用いるよりも、側壁の垂直性がより良好な形状の基準マークを形成することができた。
 実施例1と同様に、多層反射膜付き基板の欠陥検査により検出された欠陥と反射型マスクブランクの欠陥検査により検出された欠陥とが一致している複数の欠陥を元に、多層反射膜付き基板の欠陥検査データと、反射型マスクブランクの欠陥検査データとを照合し、吸収体膜に形成した基準マークを基準とする座標変換を行うことにより、吸収体膜に形成した基準マークを基準にした反射型マスクブランクの欠陥検査データと、上記基準マークを基準にした多層反射膜付き基板の欠陥検査データを取得した。
 こうして、反射型マスクブランクと、これら欠陥位置情報、欠陥サイズ情報とを対応させた欠陥情報付きEUV反射型マスクブランクを得た。
 次に、実施例1と同様にして、この欠陥情報付きのEUV反射型マスクブランクを用いて、EUV反射型マスクを作製した。
 得られたEUV反射型マスクについてマスク欠陥検査装置(KLA-Tencor社製Teron600シリーズ)により検査したところ、多層反射膜上に凸欠陥は確認されなかった。
 こうして得られた反射型マスクを露光装置にセットし、レジスト膜を形成した半導体基板上へのパターン転写を行う場合、反射型マスク起因の転写パターンの欠陥も無く、良好なパターン転写を行うことができる。
(参考例)
 上記実施例1における基準マークを吸収体膜には形成せず、多層反射膜に形成したこと以外は実施例1と同様にして多層反射膜付き基板及び反射型マスクブランクを作製した。
 実施例1と同様の基板上に下地層、多層反射膜及び保護膜を成膜した多層反射膜付き基板における上記保護膜を有する多層反射膜に対し、所定の箇所に以下の表面形状で断面形状が凹形状の基準マークを形成した。基準マークの形成は集束イオンビームを用いて行った。この時の条件は加速電圧50kV、ビーム電流値20pAとした。基準マークの形成後、洗浄を行った。
 本参考例では、基準マークとして、実施例1と同様のメインマークと補助マークを図2に示すような配置関係となるように形成した。メインマーク13aは、大きさが5μm×5μmの矩形、深さは多層反射膜を全て除去したので、約280nmとした。また、補助マーク13b,13cはいずれも、大きさが1μm×200μmの矩形、深さは多層反射膜を全て除去したので、約280nmとした。
 基準マークの断面形状を原子間力顕微鏡(AFM)により観察したところ、側壁の傾斜角度が85度であり、上記実施例よりも側壁の垂直性が低下した。
 また、多層反射膜に形成したこの基準マークは、ブランクス検査装置で、コントラストが0.025と高く、精度良く検出でき、しかも欠陥検出位置のばらつきも83nmとなり、再現性良く検出できることを確認した。
 得られた多層反射膜付き基板について、ブランクス欠陥検査装置(KLA-Tencor社製Teron600シリーズ)で欠陥検査を行った。
 欠陥検査の結果、欠陥が多数検出されたため、洗浄と欠陥検査を再度繰返した。欠陥が多数検出された原因は、多層反射膜に基準マークを形成する過程において異物欠陥が多数発生したことによるものと考えられる。
 この再度の欠陥検査により、上述の基準マークを基準として、凸、凹の欠陥位置情報と、欠陥サイズ情報を取得した。
 また、この基準マークを形成した多層反射膜付き基板の保護膜表面の反射率を、EUV反射率計により評価したところ、62%であり、これは基準マークを形成する前の保護膜表面の反射率よりも若干低下していた。
 次に、上記基準マークを形成した多層反射膜付き基板上に、実施例1と同様の吸収体膜を成膜して、反射型マスクブランクを得た。
 得られた反射型マスクブランクについて、ブランクス欠陥検査装置(KLA-Tencor社製Teron600シリーズ)で欠陥検査を行った。この欠陥検査では、上述の基準マークを基準として、凸、凹の欠陥位置情報と、欠陥サイズ情報を取得した。
 こうして、反射型マスクブランクと、これら欠陥位置情報、欠陥サイズ情報とを対応させた欠陥情報付きEUV反射型マスクブランクを得た。
 次に、この欠陥情報付きのEUV反射型マスクブランクを用いて、実施例1と同様にしてEUV反射型マスクを作製した。
 なお、パターン描画工程では、EUV反射型マスクブランクの欠陥情報に基づいて、予め設計しておいたマスクパターンデータと照合し、露光装置を用いたパターン転写に影響のないマスクパターンデータに修正するか、パターン転写に影響があると判断した場合には、例えば欠陥をパターンの下に隠すように修正パターンデータを追加したマスクパターンデータに修正するか、修正パターンデータでも対応ができない欠陥については、マスク作製後の欠陥修正の負荷が低減できるマスクパターンデータに修正し、この修正されたマスクパターンデータに基づいて、レジスト膜に対して電子線によりマスクパターンを描画、現像を行い、レジストパターンを形成した。
 得られたEUV反射型マスクについてマスク欠陥検査装置(KLA-Tencor社製Teron600シリーズ)により検査したところ、多層反射膜上にも多数の凸欠陥が確認された。
 この原因は、上述の多層反射膜に基準マークを形成する過程において生じた異物欠陥の一部がその後の洗浄によっても除去されずに多層反射膜上に残留したことや、マスク製造時の電子線描画工程において、表面に吸収体膜が形成されたためにマーク形状の変化した基準マークを用いてアライメントを行ったため、マーク形状の変化によるアライメント誤差が影響したものと推測される。
(実施例3)
 本実施例は、実施例1、2における吸収体膜を材料の異なる積層膜からなる位相シフト膜とした反射型マスクブランクを作製した。
 上記実施例1と同様に多層反射膜付き基板を作製し、多層反射膜付き基板表面をブランクス欠陥検査装置(KLA-Tencor社製Teron600シリーズ)で、基板主表面の中心を基準にして欠陥検査を行った。この欠陥検査では、上記基板主表面の中心を基準とした凸、凹の欠陥位置情報と、欠陥サイズ情報を取得し、欠陥マップを作成した。
 次に、DCマグネトロンスパッタリング装置を用いて、上記多層反射膜付き基板の保護膜上に、TaN膜(膜厚:27nm)とCrCON膜(膜厚25nm)の積層膜からなる位相シフト膜を形成し、また、裏面にCrN導電膜(膜厚:20nm)を形成してEUV反射型マスクブランクを得た。
 なお、上記形成した位相シフト膜を構成するTaN膜、CrCON膜は、反射型マスクにしたときに、保護膜上に形成された位相シフト膜パターンにおける反射率が2%(波長13.5nm)、位相シフト膜パターンと保護膜露出部との反射光の位相差が180度となるように、屈折率n、消衰係数k、膜厚が設定されている。
 次に、積層膜からなる位相シフト膜に、実施例2と同様にフォトリソ法により基準マークを形成した。なお、基準マークの形成位置、基準マークの表面形状及び断面形状は実施例2と同様にした。
 まず、上記EUV反射型マスクブランク上に電子線描画用レジストをスピンコーティング法により塗布、ベーキングしてレジスト膜を形成した。
 次に、上述のレジスト膜に対して電子線により基準マークのパターンを描画、現像を行い、レジストパターンを形成した。
 このレジストパターンをマスクとし、ClガスとOガスとの混合ガスによりCrCON膜のドライエッチングを行い、その後、ClガスによりTaN膜のドライエッチングを行うことで位相シフト膜に基準マークを形成した。
 形成された基準マークの断面形状を原子間力顕微鏡(AFM)により観察したところ、側壁の傾斜角度は88度であり、良好な形状の基準マークを形成することができた。
 実施例1と同様に、多層反射膜付き基板の欠陥検査により検出された欠陥と上記基準マークを基準にした反射型マスクブランクの欠陥検査により検出された欠陥とが一致している複数の欠陥を元に、多層反射膜付き基板の欠陥検査データと、反射型マスクブランクの欠陥検査データとを照合し、位相シフト膜に形成した基準マークを基準とする座標変換を行うことにより、位相シフト膜に形成した基準マークを基準にした反射型マスクブランクの欠陥検査データと、上記基準マークを基準にした多層反射膜付き基板の欠陥検査データを取得した。
 こうして、反射型マスクブランクと、これら欠陥位置情報、欠陥サイズ情報とを対応させた欠陥情報付きEUV反射型マスクブランクを得た。
 次に、実施例1と同様にして、この欠陥情報付きのEUV反射型マスクブランクを用いて、EUV反射型マスクを作製した。
 得られたEUV反射型マスクについてマスク欠陥検査装置(KLA-Tencor社製Teron600シリーズ)により検査したところ、多層反射膜上に凸欠陥は確認されなかった。
 こうして得られた反射型マスクを露光装置にセットし、レジスト膜を形成した半導体基板上へのパターン転写を行う場合、反射型マスク起因の転写パターンの欠陥も無く、良好なパターン転写を行うことができる。
(実施例4)
 上記実施例3における位相シフト膜上にハードマスク膜が形成された反射型マスクブランクを作製した。
 上記実施例1と同様に多層反射膜付き基板を作製し、多層反射膜付き基板表面をブランクス欠陥検査装置(KLA-Tencor社製Teron600シリーズ)で、基板主表面の中心を基準にして欠陥検査を行った。この欠陥検査では、上記基板主表面の中心を基準とした凸、凹の欠陥位置情報と、欠陥サイズ情報を取得し、欠陥マップを作成した。
 次に、DCマグネトロンスパッタリング装置を用いて、上記多層反射膜付き基板の保護膜上に、TaN膜(膜厚:5nm)とCrCON膜(膜厚46nm)の積層膜からなる位相シフト膜を形成し、前記位相シフト膜上にRFスパッタリング装置を用いて、SiO膜(膜厚:5nm)を形成した。また、裏面にCrN導電膜(膜厚:20nm)を形成してEUV反射型マスクブランクを得た。
 なお、上記形成した位相シフト膜を構成するTaN膜、CrCON膜は、反射型マスクにしたときに、保護膜上に形成された位相シフト膜パターンにおける反射率が26%(波長13.5nm)、位相シフト膜パターンと保護膜露出部との反射光の位相差が180度となるように、屈折率n、消衰係数k、膜厚が設定されている。
 次に、積層膜からなる位相シフト膜、ハードマスク膜の上部に、実施例3と同様にフォトリソ法により基準マークを形成した。なお、基準マークの形成位置、基準マークの表面形状及び断面形状は実施例3と同様にした。
 上記EUV反射型マスクブランク上に電子線描画用レジストをスピンコーティング法により塗布、ベーキングしてレジスト膜を形成した。
 次に、上述のレジスト膜に対して電子線により基準マークのパターンを描画、現像を行い、レジストパターンを形成した。
 このレジストパターンをマスクとし、CFガスによりSiO膜のドライエッチングを行い、その後、ClガスとOガスとの混合ガスによりCrCON膜、ClガスによりTaN膜のドライエッチングを行うことで、ハードマスク膜、位相シフト膜の積層膜に基準マークを形成した。
 形成された基準マークの断面形状を原子間力顕微鏡(AFM)により観察したところ、側壁の傾斜角度は87度であり、良好な形状の基準マークを形成することができた。
 実施例1と同様に、多層反射膜付き基板の欠陥検査により検出された欠陥と反射型マスクブランクの欠陥検査により検出された欠陥とが一致している複数の欠陥を元に、多層反射膜付き基板の欠陥検査データと、反射型マスクブランクの欠陥検査データとを照合し、吸収体膜に形成した基準マークを基準とする座標変換を行うことにより、吸収体膜に形成した基準マークを基準にした反射型マスクブランクの欠陥検査データと、上記基準マークを基準にした多層反射膜付き基板の欠陥検査データを取得した。
 こうして、反射型マスクブランクと、これら欠陥位置情報、欠陥サイズ情報とを対応させた欠陥情報付きEUV反射型マスクブランクを得た。
 次に、実施例1と同様にして、この欠陥情報付きのEUV反射型マスクブランクを用いて、EUV反射型マスクを作製した。なお、位相シフト膜パターン上に残ったSiO膜からなるハードマスク膜は、CFガスによりドライエッチングを行い除去した。
 得られたEUV反射型マスクについてマスク欠陥検査装置(KLA-Tencor社製Teron600シリーズ)により検査したところ、多層反射膜上に凸欠陥は確認されなかった。
 こうして得られた反射型マスクを露光装置にセットし、レジスト膜を形成した半導体基板上へのパターン転写を行う場合、反射型マスク起因の転写パターンの欠陥も無く、良好なパターン転写を行うことができる。
 なお、上述の実施例では、基準マークを集束イオンビーム、またはフォトリソ法により形成した例を挙げて説明したが、これに限定されない。前にも説明したとおり、これらの方法以外にも、レーザー光等による凹部形成、ダイヤモンド針を走査しての加工痕、微小圧子によるインデンション、インプリント法による型押しなどで形成することができる。
 また、上述の実施例では、多層反射膜付き基板、反射型マスクブランクともに、下地層を形成した例を挙げて説明したが、これに限られない。下地層が形成されていない多層反射膜付き基板、反射型マスクブランクであっても構わない。
11 ガラス基板
13 基準マーク
13a メインマーク
13b、13c 補助マーク
21 下地層
30 多層反射膜付き基板
31 多層反射膜
32 保護膜
40 反射型マスクブランク
41 吸収体膜
50 反射型マスク

Claims (9)

  1.  基板上に、EUV光を反射する多層反射膜と、該多層反射膜上に、積層膜が形成されている反射型マスクブランクの製造方法であって、
     前記基板上に、前記多層反射膜を成膜して多層反射膜付き基板を形成する工程と、
     前記多層反射膜付き基板に対して欠陥検査を行う工程と、
     前記多層反射膜付き基板の前記多層反射膜上に、前記積層膜を成膜する工程と、
     前記積層膜の上部に、欠陥情報における欠陥位置の基準となる基準マークを形成して、該基準マークが形成された反射型マスクブランクを形成する工程と、
     前記基準マークを基準にして前記反射型マスクブランクの欠陥検査を行う工程と、
    を含むことを特徴とする反射型マスクブランクの製造方法。
  2.  基板上に、EUV光を反射する多層反射膜と、該多層反射膜上に、EUV光を吸収する吸収体膜が形成されている反射型マスクブランクの製造方法であって、
     前記基板上に、前記多層反射膜を成膜して多層反射膜付き基板を形成する工程と、
     前記多層反射膜付き基板に対して欠陥検査を行う工程と、
     前記多層反射膜付き基板の前記多層反射膜上に、前記吸収体膜を成膜する工程と、
     前記吸収体膜に、欠陥情報における欠陥位置の基準となる基準マークを形成して、該基準マークが形成された反射型マスクブランクを形成する工程と、
     前記基準マークを基準にして前記反射型マスクブランクの欠陥検査を行う工程と、
    を含むことを特徴とする反射型マスクブランクの製造方法。
  3.  前記多層反射膜付き基板の欠陥検査により検出された欠陥と前記反射型マスクブランクの欠陥検査により検出された欠陥とが一致している欠陥を元に、前記多層反射膜付き基板の欠陥検査データと、前記反射型マスクブランクの欠陥検査データとを照合することにより、前記積層膜もしくは前記吸収体膜に形成した前記基準マークを基準にした前記多層反射膜付き基板の欠陥検査データを取得することを特徴とする請求項1又は2に記載の反射型マスクブランクの製造方法。
  4.  前記多層反射膜付き基板の欠陥検査は、前記多層反射膜付き基板上の少なくともパターン形成領域の全面に対して行い、前記反射型マスクブランクの欠陥検査は、前記多層反射膜付き基板の欠陥検査により検出された欠陥のうちの少なくとも一部の欠陥に対して、その位置を特定して行うことを特徴とする請求項1乃至3のいずれかに記載の反射型マスクブランクの製造方法。
  5.  前記多層反射膜付き基板における前記多層反射膜上に擬似欠陥を形成し、前記多層反射膜付き基板の欠陥検査により検出された擬似欠陥と前記反射型マスクブランクの欠陥検査により検出された前記擬似欠陥に対応する欠陥とを元に、前記多層反射膜付き基板の欠陥検査データと、前記反射型マスクブランクの欠陥検査データとを照合することを特徴とする請求項1乃至4のいずれかに記載の反射型マスクブランクの製造方法。
  6.  前記基準マークを、前記基板のエッジ座標を基準に設定した原点からの所定の位置に形成し、
     前記基準マークを形成した前記反射型マスクブランクと、前記基準マークの形成位置情報とを対応付けることを特徴とする請求項1乃至5のいずれかに記載の反射型マスクブランクの製造方法。
  7.  前記基準マークを形成した後、座標計測器で前記基準マークの形成位置を特定し、
     前記基準マークを形成した前記反射型マスクブランクと、前記基準マークの形成位置情報とを対応付けることを特徴とする請求項1乃至5のいずれかに記載の反射型マスクブランクの製造方法。
  8.  前記基準マークの形成位置情報に、さらに前記基準マークを基準とした前記多層反射膜の欠陥情報を加えることを特徴とする請求項6又は7に記載の反射型マスクブランクの製造方法。
  9.  請求項1乃至8のいずれかに記載の反射型マスクブランクの製造方法により得られる反射型マスクブランクにおける前記積層膜もしくは前記吸収体膜をパターニングして、積層膜パターンもしくは吸収体膜パターンを形成することを特徴とする反射型マスクの製造方法。
     
     
PCT/JP2014/053987 2013-02-22 2014-02-20 反射型マスクブランクの製造方法、及び反射型マスクの製造方法 WO2014129527A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/768,787 US10067419B2 (en) 2013-02-22 2014-02-20 Method for manufacturing reflective mask blank, and method for manufacturing reflective mask
KR1020157025136A KR102219307B1 (ko) 2013-02-22 2014-02-20 반사형 마스크블랭크의 제조방법, 및 반사형 마스크의 제조방법
JP2015501487A JP6357143B2 (ja) 2013-02-22 2014-02-20 反射型マスクブランクの製造方法、及び反射型マスクの製造方法
KR1020217004751A KR102330533B1 (ko) 2013-02-22 2014-02-20 반사형 마스크블랭크의 제조방법, 및 반사형 마스크의 제조방법
US16/054,295 US11131921B2 (en) 2013-02-22 2018-08-03 Method for manufacturing reflective mask blank, and method for manufacturing reflective mask

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-033408 2013-02-22
JP2013033408 2013-02-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/768,787 A-371-Of-International US10067419B2 (en) 2013-02-22 2014-02-20 Method for manufacturing reflective mask blank, and method for manufacturing reflective mask
US16/054,295 Division US11131921B2 (en) 2013-02-22 2018-08-03 Method for manufacturing reflective mask blank, and method for manufacturing reflective mask

Publications (1)

Publication Number Publication Date
WO2014129527A1 true WO2014129527A1 (ja) 2014-08-28

Family

ID=51391311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053987 WO2014129527A1 (ja) 2013-02-22 2014-02-20 反射型マスクブランクの製造方法、及び反射型マスクの製造方法

Country Status (5)

Country Link
US (2) US10067419B2 (ja)
JP (1) JP6357143B2 (ja)
KR (2) KR102330533B1 (ja)
TW (2) TWI705484B (ja)
WO (1) WO2014129527A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016122684A (ja) * 2014-12-24 2016-07-07 Hoya株式会社 反射型マスクブランク及び反射型マスク
WO2017169973A1 (ja) * 2016-03-31 2017-10-05 Hoya株式会社 反射型マスクブランクの製造方法、反射型マスクブランク、反射型マスクの製造方法、反射型マスク、及び半導体装置の製造方法
CN108803231A (zh) * 2017-04-27 2018-11-13 台湾积体电路制造股份有限公司 光刻掩模
JP2019086802A (ja) * 2019-03-15 2019-06-06 Hoya株式会社 反射型マスクブランク及び反射型マスク
EP3792692A1 (en) 2019-09-13 2021-03-17 Shin-Etsu Chemical Co., Ltd. Method of manufacturing reflective mask blank, reflective mask blank, and method of manufacturing reflective mask
TWI744316B (zh) * 2016-04-25 2021-11-01 荷蘭商Asml荷蘭公司 用於極紫外線微影之膜及其製造方法
KR20220133122A (ko) 2021-03-24 2022-10-04 호야 가부시키가이샤 다층 반사막 구비 기판의 제조 방법, 반사형 마스크 블랭크 및 그 제조 방법, 그리고 반사형 마스크의 제조 방법
EP4446809A2 (en) 2023-04-11 2024-10-16 Shin-Etsu Chemical Co., Ltd. Method for evaluating reference mark formed on euv mask blank

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129527A1 (ja) * 2013-02-22 2014-08-28 Hoya株式会社 反射型マスクブランクの製造方法、及び反射型マスクの製造方法
US9870612B2 (en) * 2016-06-06 2018-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method for repairing a mask
KR20180072036A (ko) * 2016-12-20 2018-06-29 삼성전자주식회사 마스크 처리 장치 및 방법
DE102017212848A1 (de) * 2017-07-26 2019-01-31 Carl Zeiss Sms Ltd. Verfahren und Vorrichtung zum Kompensieren von Defekten eines Maskenrohlings
TWI667530B (zh) * 2017-09-28 2019-08-01 日商紐富來科技股份有限公司 Inspection method and inspection device
KR102374206B1 (ko) 2017-12-05 2022-03-14 삼성전자주식회사 반도체 장치 제조 방법
US10416061B2 (en) * 2017-12-08 2019-09-17 Fca Us Llc Blank washer inspection system
TWI811369B (zh) 2018-05-25 2023-08-11 日商Hoya股份有限公司 反射型光罩基底、反射型光罩、以及反射型光罩及半導體裝置之製造方法
WO2020153228A1 (ja) * 2019-01-21 2020-07-30 Agc株式会社 反射型マスクブランク、反射型マスク、および反射型マスクブランクの製造方法
SG11202109240PA (en) * 2019-02-28 2021-09-29 Hoya Corp Reflective mask blank, reflective mask and method of manufacturing the same, and method of manufacturing semiconductor device
CN113674250B (zh) * 2021-08-25 2023-10-20 长鑫存储技术有限公司 光罩缺陷检测方法、装置、电子设备、存储介质及芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151902A (ja) * 2002-11-18 2003-05-23 Canon Inc 露光装置とこれによる半導体デバイス
JP2003248299A (ja) * 2002-02-26 2003-09-05 Toshiba Corp マスク基板およびその製造方法
WO2008129914A1 (ja) * 2007-04-17 2008-10-30 Asahi Glass Company, Limited Euvマスクブランク
JP2009251412A (ja) * 2008-04-09 2009-10-29 Renesas Technology Corp マスクブランク検査装置および方法、反射型露光マスクの製造方法ならびに半導体集積回路の製造方法
JP2012059984A (ja) * 2010-09-10 2012-03-22 Nuflare Technology Inc マスク検査装置及び露光用マスク製造装置
WO2013118716A1 (ja) * 2012-02-10 2013-08-15 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク、マスクブランク及びそれらの製造方法、反射型マスク並びにマスク
JP2014044385A (ja) * 2011-09-28 2014-03-13 Hoya Corp マスクブランク用ガラス基板、多層反射膜付き基板、マスクブランク及びマスク、並びにそれらの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627362B2 (en) * 2001-10-30 2003-09-30 Intel Corporation Photolithographic mask fabrication
US7212282B2 (en) * 2004-02-20 2007-05-01 The Regents Of The University Of California Method for characterizing mask defects using image reconstruction from X-ray diffraction patterns
KR101100003B1 (ko) 2004-03-09 2011-12-28 호야 가부시키가이샤 마스크 블랭크 생산 시스템
JP2008129914A (ja) 2006-11-22 2008-06-05 Toshiba Corp ソフトウェア検証用モデル生成装置、及びソフトウェア検証用モデル生成方法
JP5039495B2 (ja) 2007-10-04 2012-10-03 ルネサスエレクトロニクス株式会社 マスクブランク検査方法、反射型露光マスクの製造方法、反射型露光方法および半導体集積回路の製造方法
KR101650370B1 (ko) * 2009-03-26 2016-08-23 호야 가부시키가이샤 반사형 마스크용 다층 반사막 부착 기판 및 반사형 마스크블랭크 그리고 그것들의 제조방법
JP2012038786A (ja) * 2010-08-03 2012-02-23 Dainippon Printing Co Ltd 擬似位相欠陥を有する反射型マスクブランクスの製造方法、および擬似位相欠陥を有する反射型マスクの製造方法
JP5880449B2 (ja) * 2011-01-26 2016-03-09 旭硝子株式会社 フォトマスクの製造方法
JP5846785B2 (ja) * 2011-07-08 2016-01-20 ルネサスエレクトロニクス株式会社 投影露光方法、投影露光装置、およびマスクパターンの転写方法
KR102048487B1 (ko) * 2012-03-28 2020-01-22 호야 가부시키가이샤 다층 반사막 부착 기판의 제조 방법, 반사형 마스크 블랭크의 제조 방법 및 반사형 마스크의 제조 방법
WO2014129527A1 (ja) * 2013-02-22 2014-08-28 Hoya株式会社 反射型マスクブランクの製造方法、及び反射型マスクの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248299A (ja) * 2002-02-26 2003-09-05 Toshiba Corp マスク基板およびその製造方法
JP2003151902A (ja) * 2002-11-18 2003-05-23 Canon Inc 露光装置とこれによる半導体デバイス
WO2008129914A1 (ja) * 2007-04-17 2008-10-30 Asahi Glass Company, Limited Euvマスクブランク
JP2009251412A (ja) * 2008-04-09 2009-10-29 Renesas Technology Corp マスクブランク検査装置および方法、反射型露光マスクの製造方法ならびに半導体集積回路の製造方法
JP2012059984A (ja) * 2010-09-10 2012-03-22 Nuflare Technology Inc マスク検査装置及び露光用マスク製造装置
JP2014044385A (ja) * 2011-09-28 2014-03-13 Hoya Corp マスクブランク用ガラス基板、多層反射膜付き基板、マスクブランク及びマスク、並びにそれらの製造方法
WO2013118716A1 (ja) * 2012-02-10 2013-08-15 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク、マスクブランク及びそれらの製造方法、反射型マスク並びにマスク

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10394113B2 (en) 2014-12-24 2019-08-27 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP2016122684A (ja) * 2014-12-24 2016-07-07 Hoya株式会社 反射型マスクブランク及び反射型マスク
TWI721681B (zh) * 2014-12-24 2021-03-11 日商Hoya股份有限公司 反射型光罩基底、反射型光罩、及半導體裝置之製造方法
US10642149B2 (en) 2014-12-24 2020-05-05 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP7286604B2 (ja) 2016-03-31 2023-06-05 Hoya株式会社 反射型マスクブランクの製造方法、反射型マスクの製造方法、及び半導体装置の製造方法
JPWO2017169973A1 (ja) * 2016-03-31 2019-03-14 Hoya株式会社 反射型マスクブランクの製造方法、反射型マスクブランク、反射型マスクの製造方法、反射型マスク、及び半導体装置の製造方法
JP2021012399A (ja) * 2016-03-31 2021-02-04 Hoya株式会社 反射型マスクブランクの製造方法、反射型マスクブランク、反射型マスクの製造方法、反射型マスク、及び半導体装置の製造方法
US11852964B2 (en) 2016-03-31 2023-12-26 Hoya Corporation Method for manufacturing reflective mask blank, reflective mask blank, method for manufacturing reflective mask, reflective mask, and method for manufacturing semiconductor device
WO2017169973A1 (ja) * 2016-03-31 2017-10-05 Hoya株式会社 反射型マスクブランクの製造方法、反射型マスクブランク、反射型マスクの製造方法、反射型マスク、及び半導体装置の製造方法
US11048159B2 (en) 2016-03-31 2021-06-29 Hoya Corporation Method for manufacturing reflective mask blank, reflective mask blank, method for manufacturing reflective mask, reflective mask, and method for manufacturing semiconductor device
TWI744316B (zh) * 2016-04-25 2021-11-01 荷蘭商Asml荷蘭公司 用於極紫外線微影之膜及其製造方法
US11762281B2 (en) 2016-04-25 2023-09-19 Asml Netherlands B.V. Membrane for EUV lithography
CN108803231A (zh) * 2017-04-27 2018-11-13 台湾积体电路制造股份有限公司 光刻掩模
CN108803231B (zh) * 2017-04-27 2023-12-12 台湾积体电路制造股份有限公司 光刻掩模
JP2019086802A (ja) * 2019-03-15 2019-06-06 Hoya株式会社 反射型マスクブランク及び反射型マスク
US11415874B2 (en) 2019-09-13 2022-08-16 Shin-Etsu Chemical Co., Ltd. Method of manufacturing reflective mask blank, reflective mask blank, and method of manufacturing reflective mask
KR20210031834A (ko) 2019-09-13 2021-03-23 신에쓰 가가꾸 고교 가부시끼가이샤 반사형 마스크 블랭크의 제조 방법, 반사형 마스크 블랭크 및 반사형 마스크의 제조 방법
EP3792692A1 (en) 2019-09-13 2021-03-17 Shin-Etsu Chemical Co., Ltd. Method of manufacturing reflective mask blank, reflective mask blank, and method of manufacturing reflective mask
KR20220133122A (ko) 2021-03-24 2022-10-04 호야 가부시키가이샤 다층 반사막 구비 기판의 제조 방법, 반사형 마스크 블랭크 및 그 제조 방법, 그리고 반사형 마스크의 제조 방법
EP4446809A2 (en) 2023-04-11 2024-10-16 Shin-Etsu Chemical Co., Ltd. Method for evaluating reference mark formed on euv mask blank

Also Published As

Publication number Publication date
US20160004153A1 (en) 2016-01-07
JP6357143B2 (ja) 2018-07-11
JPWO2014129527A1 (ja) 2017-02-02
US11131921B2 (en) 2021-09-28
TW201909239A (zh) 2019-03-01
KR20210021141A (ko) 2021-02-24
TW201440120A (zh) 2014-10-16
TWI705484B (zh) 2020-09-21
TWI628695B (zh) 2018-07-01
KR20150120419A (ko) 2015-10-27
US20180348628A1 (en) 2018-12-06
US10067419B2 (en) 2018-09-04
KR102219307B1 (ko) 2021-02-23
KR102330533B1 (ko) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6357143B2 (ja) 反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP6460617B2 (ja) 反射型マスクブランク、反射型マスクの製造方法、及び反射型マスクブランクの製造方法
JP6509987B2 (ja) 反射型マスクブランク及びその製造方法、並びに反射型マスク及びその製造方法
JP7286604B2 (ja) 反射型マスクブランクの製造方法、反射型マスクの製造方法、及び半導体装置の製造方法
JP7500828B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP6282844B2 (ja) 薄膜付き基板及び転写用マスクの製造方法
JP7492456B2 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
JP6713251B2 (ja) 多層反射膜付き基板、反射型マスクブランク及び反射型マスク、並びにそれらの製造方法
JP6561099B2 (ja) 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法及び反射型マスクの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015501487

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14768787

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157025136

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14754140

Country of ref document: EP

Kind code of ref document: A1