WO2010110211A1 - 反射板用白色フィルム - Google Patents
反射板用白色フィルム Download PDFInfo
- Publication number
- WO2010110211A1 WO2010110211A1 PCT/JP2010/054820 JP2010054820W WO2010110211A1 WO 2010110211 A1 WO2010110211 A1 WO 2010110211A1 JP 2010054820 W JP2010054820 W JP 2010054820W WO 2010110211 A1 WO2010110211 A1 WO 2010110211A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- reflector
- white
- thermoplastic polyester
- layer
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0808—Mirrors having a single reflecting layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/22—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
- F21V7/24—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
- F21V7/26—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material the material comprising photoluminescent substances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/22—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
- F21V7/28—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
- F21V7/30—Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/34—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 reflector
Definitions
- the present invention relates to a white film for a reflector used as a reflector of a backlight unit of a liquid crystal display device.
- a reflector is installed on the back to prevent light from the light source from escaping to the back of the screen.
- This reflector is required to be thin and have a high reflectance.
- a white polyester film containing fine bubbles inside the film is known and widely used.
- JP 63-62104 A Japanese Patent Publication No. 8-16175 JP 2000-37835 A JP 2005-125700 A JP 2004-50479 A
- the white film for the reflector is processed into a predetermined shape and incorporated in the backlight unit.
- this processing there is a step of cutting the reflector white film into a predetermined shape, and the cutting speed in this step increases as mass production of backlight units proceeds.
- a conventional reflective film capable of obtaining high brightness is liable to generate whiskers or burrs on the end face of the film during cutting.
- a mustache-like object is a thin protrusion generated on a cut surface by cutting. However, since this must be removed as dust, if a beard-like object is generated, productivity is lowered.
- the burrs are partially raised portions that occur in the vicinity of the cut surface due to cutting. If there are burrs, the distance between the reflecting surface and the light source changes, adversely affecting the luminance, and obtaining uniform luminance. May not be possible.
- the present invention is a white film for a reflector that has a high reflectivity and can obtain high luminance when used as a reflector in a backlight unit of a liquid crystal display device.
- An object of the present invention is to provide a white film for a reflector that is less likely to generate an object and has excellent punchability.
- the present invention has an object to provide a white film for a reflector that is suppressed in thermal deformation under a use environment as a reflector of a liquid crystal display device and has excellent flatness. .
- the present invention comprises a light reflecting layer having a void volume ratio of 55 to 80%, and a biaxially stretched polyester film supporting layer provided on at least one surface thereof, and the total thickness of the light reflecting layer and the supporting layer
- the ratio of the total thickness of the film is 85:15 to 98: 2
- the light reflectance of the film is 98.0% or more
- the punching energy by a drop impact test is 0.10 to 0.30 J.
- a white film for a reflector characterized in that the film thickness is 150 to 250 ⁇ m.
- a white film for a reflector that has a high reflectivity and can obtain a high luminance when used as a reflector in a backlight unit of a liquid crystal display device. It is possible to provide a white film for a reflector that is less prone to bearded and has excellent punchability.
- the present invention provides a white film for a reflector plate of a backlight unit of a liquid crystal display device, in which thermal deflection under a use environment as a reflector plate of a liquid crystal display device is suppressed and has excellent flatness. Can be provided.
- the white film for a reflector of the present invention comprises a light reflecting layer and a support layer of a biaxially stretched polyester film provided on at least one surface thereof.
- the light reflecting layer in the present invention is heated by adding a white colorant in the thermoplastic resin so as to exhibit a white color or a void-forming substance in the thermoplastic resin and stretching. It is a layer of a thermoplastic resin composition that exhibits a white color by forming a void at the interface between the plastic resin and the void-forming substance.
- the void volume ratio of the light reflection layer in the present invention is 55 to 80%, more preferably 60 to 75%, and particularly preferably 62 to 70%.
- the void volume ratio is less than 55%, a high reflectance cannot be obtained, and the punching workability is also inferior.
- the void volume ratio exceeds 80%, film formation becomes very difficult.
- thermoplastic polyester As the thermoplastic resin of the light reflecting layer in the present invention, a thermoplastic polyester is preferably used.
- a thermoplastic polyester a polyester comprising a dicarboxylic acid component and a diol component is used.
- the dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, adipic acid, and sebacic acid.
- diol include ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, and 1,6-hexanediol.
- thermoplastic aromatic polyesters are preferable, and polyethylene terephthalate is particularly preferable.
- the polyethylene terephthalate may be a homopolymer, but is preferably a copolymer, particularly preferably isophthalic acid copolymer polyethylene terephthalate.
- the proportion of the copolymer component is, for example, 1 to 20 mol%, preferably 2 to 15 mol%, more preferably 3 to 13 mol%, based on the total dicarboxylic acid component.
- the intrinsic viscosity of the thermoplastic polyester measured for the light reflecting layer is preferably 0.40 to 0.53 dl / g.
- the thermoplastic polyester composition of the light reflecting layer can be easily melt extruded even though it contains a high concentration of inorganic particles, and can be formed with high productivity without breaking the film. can do.
- White inorganic particles are used as the white colorant for the light reflecting layer.
- white inorganic particles organic particles, or incompatible resins are used.
- white inorganic particles for example, barium sulfate particles, titanium dioxide particles, silicon dioxide particles, and calcium carbonate particles can be used, and barium sulfate particles are particularly preferable.
- the average particle size of the white inorganic particles is preferably 0.1 to 3.0 ⁇ m, more preferably 0.2 to 2.5 ⁇ m, and particularly preferably 0.3 to 2.0 ⁇ m.
- white inorganic particles having an average particle diameter in this range it can be appropriately dispersed in the thermoplastic resin of the light reflecting layer, the aggregation of white inorganic particles hardly occurs, and light reflection without coarse protrusions on the surface. A layer can be obtained, and at the same time, the surface of the light reflection layer is not too rough, and the glossiness in an appropriate range can be obtained.
- the most preferable white inorganic particles are barium sulfate particles having an average particle diameter of 0.1 to 3.0 ⁇ m.
- the average particle diameter of the white inorganic particles is d50 (median diameter), but the particle diameter is small.
- the particle size distribution d90 / d10 is preferably 1 to 500, more preferably 1 to 300, still more preferably 1 to 100, and particularly preferably 1-50.
- the particle size distribution is within this range, coarse particles are not clogged in the filter, and fine particles are not re-agglomerated, and the film can be stably formed.
- the white inorganic particles may have any particle shape, for example, a plate shape or a spherical shape.
- the white inorganic particles may be subjected to a surface treatment in order to improve dispersibility.
- polymer particles can be used, and specifically, for example, crosslinked polystyrene particles and acrylic particles can be used.
- thermoplastic resin of the light reflecting layer When an incompatible resin is used as the void forming substance, a resin that is incompatible with the thermoplastic resin of the light reflecting layer is used.
- a thermoplastic polyester, particularly polyethylene terephthalate or a copolymer thereof is used as the thermoplastic resin of the light reflecting layer, for example, polyolefin or polystyrene can be used as the incompatible resin.
- the white inorganic particles When the light reflecting layer is composed of a thermoplastic polyester composition comprising white inorganic particles and a thermoplastic polyester, the white inorganic particles preferably account for 50 to 60% by weight in this composition, and the thermoplastic polyester is preferably 50%. It accounts for ⁇ 40% by weight. When the composition is in this range, good reflectivity, punching workability, and stable film formation can be expected.
- the white inorganic particles further preferably constitute 52 to 60% by weight, more preferably 53 to 59% by weight, particularly preferably 54 to 58% by weight.
- the organic particles When the light reflecting layer is composed of a thermoplastic polyester composition comprising organic particles and a thermoplastic polyester, the organic particles preferably account for 50 to 60% by weight in this composition, and the thermoplastic polyester is preferably 50 to 40%. Occupies% by weight. When the composition is in this range, good reflectance, punching workability, and stable film formation can be expected. In this composition, the organic particles further preferably constitute 52 to 60% by weight, more preferably 53 to 59% by weight, particularly preferably 54 to 58% by weight.
- the light reflecting layer is composed of a thermoplastic polyester composition
- the incompatible resin preferably accounts for 50 to 60% by weight
- the thermoplastic polyester is preferably Accounts for 50 to 40% by weight.
- the incompatible resin further preferably constitutes 52 to 60% by weight, more preferably 53 to 59% by weight, and particularly preferably 54 to 58% by weight.
- the support layer comprises a biaxially stretched polyester film.
- This support layer is composed of a thermoplastic polyester.
- a thermoplastic polyester a thermoplastic aromatic polyester comprising an aromatic dicarboxylic acid component and a diol component is preferable, and polyethylene terephthalate is particularly preferable.
- Polyethylene terephthalate may be a homopolymer, but is preferably a copolymer.
- the thermoplastic aromatic polyester of the support layer preferably contains 95 to 99.9 mol% of terephthalic acid component and 0.1 to 5 mol% of isophthalic acid component based on the total dicarboxylic acid component. It is a copolymerized polyethylene terephthalate as an acid component.
- the copolymerization amount of the isophthalic acid component is more preferably 0.1 to 4 mol%, particularly preferably 0.1 to 3 mol%.
- the support layer may contain white inorganic particles.
- the support layer is composed of a thermoplastic polyester composition comprising a thermoplastic polyester and white inorganic particles
- the white inorganic particles preferably account for 0.1 to 10% by weight in this composition
- the thermoplastic polyester is preferably Accounts for 99.9 to 90% by weight.
- the intrinsic viscosity of the thermoplastic polyester measured for the support layer of the white film for a reflector of the present invention is preferably 0.54 to 0.65 dl / g.
- the intrinsic viscosity of the thermoplastic polyester of the support layer is preferably higher than the intrinsic viscosity of the thermoplastic polyester of the light reflecting layer.
- the white film for reflectors of this invention is manufactured by the coextrusion method. That is, the light reflecting layer and the support layer are preferably laminated by a coextrusion method.
- the white film for a reflector of the present invention includes a single or a plurality of light reflection layers, and includes a single or a plurality of support layers.
- the ratio of the total thickness of the light reflecting layer to the total thickness of the support layer is 85:15 to 98: 2, preferably 95: 5 to 98: 2.
- the ratio of the total thickness of the reflective layer to the total thickness of the film is less than 85, it is difficult to obtain a high reflectivity.
- the ratio exceeds 98 the film is frequently broken and the film is stably formed. Becomes difficult.
- the white film for a reflector of the present invention has a configuration in which a support layer is provided on at least one surface of the light reflection layer.
- a support layer is provided on at least one surface of the light reflection layer.
- a five-layer structure of / support layer / light reflecting layer / support layer can be taken.
- a three-layer structure of support layer / light reflection layer / support layer is preferable from the viewpoint of film formation stability and production cost.
- the total thickness of the white film for a reflector of the present invention is 150 to 250 ⁇ m, preferably 170 to 230 ⁇ m. When the total thickness is within this range, good handling properties and productivity can be obtained. If it is less than 150 ⁇ m, the reflectance is insufficient. On the other hand, if it exceeds 250 ⁇ m, sufficient reflectivity can be obtained, but punchability is poor.
- the white film for a reflector of the present invention is biaxially stretched. By being biaxially stretched, high mechanical strength can be obtained.
- Drop impact test The white film for a reflector of the present invention is required to have a punching energy of 0.10 to 0.30 J by a drop impact test. If it is less than 0.10 J, the film itself is easily broken, and if it exceeds 0.30 J, beard-like materials and burrs are generated.
- the light reflectance of the white film for a reflector of the present invention is preferably 98.0% or more, more preferably 98.5% or more, and particularly preferably 99.0% or more as the light reflectance at a wavelength of 550 nm. It is. When the light reflectance is 98.0% or more, high luminance can be obtained when used in a backlight unit.
- the white film for a reflector of the present invention preferably has a maximum peak temperature of loss tangent tan ⁇ of 110 ° C. or higher by dynamic viscoelasticity measurement.
- the maximum peak temperature of the loss tangent tan ⁇ is less than 110 ° C., the film is bent due to a temperature rise due to heat from the cold cathode tube.
- the white film for a reflector of the present invention has a storage elastic modulus E ′ at 120 ° C. by dynamic viscoelasticity measurement. (120 ° C.) and 'ratio of (50 °C) (E' storage modulus at 50 °C E (120 °C) / E '(50 °C)) is preferably 0.25 to 1.00, and more preferably Is 0.27 to 1.00.
- the white film for a reflector of the present invention preferably has a Young's modulus in at least one direction of 3000 MPa or more. If the Young's modulus is less than 3000 MPa, thermal deflection occurs.
- the white film for reflectors of the present invention has a thermal shrinkage of 85 ° C. in both orthogonal directions, preferably 0.5% or less, more preferably 0.4% or less, and particularly preferably 0.3. % Or less. When the heat shrinkage rate is within this range, the flatness of the film is maintained even when exposed to high temperatures, which is preferable.
- the maximum peak temperature of the loss tangent tan ⁇ , the ratio of the storage elastic modulus E ′ (120 ° C.) to the storage elastic modulus E ′ (50 ° C.) at 50 ° C. , the Young's modulus and the heat shrinkage ratio are white under the production conditions described later. This can be achieved by producing a film.
- the optical brightener is blended, for example, 0.005 to 0.2% by weight, preferably 0.01 to 0.1% by weight per 100% by weight of the thermoplastic polyester composition in the blended layer. If the optical brightener is less than 0.005% by weight, the reflectance in the wavelength region near 350 nm is not sufficient, so it is not meaningful to add. If it exceeds 0.2% by weight, the specific color of the optical brightener is Since it appears, it is not preferable.
- OB-1 manufactured by Eastman
- Uvitex-MD manufactured by Ciba Geigy
- JP-Conc manufactured by Nippon Chemical Industry Co., Ltd.
- an antioxidant an ultraviolet absorber, a lubricant and the like may be added.
- the glass transition temperature of the polymer may be referred to as Tg and the melting point as Tm.
- the white inorganic particles may be added to the thermoplastic polyester composition during polymerization of the thermoplastic polyester or after polymerization.
- Tg glass transition temperature of the polymer
- Tm melting point
- the white inorganic particles may be added to the thermoplastic polyester composition during polymerization of the thermoplastic polyester or after polymerization.
- thermoplastic polyester When it is performed after polymerization, it may be added to the thermoplastic polyester after polymerization and melt-kneaded. In this case, a master pellet containing white inorganic particles at a relatively high concentration is produced, and this is blended with a thermoplastic polyester pellet not containing white inorganic particles, thereby thermoplasticity containing white inorganic particles at a desired content.
- a polyester composition can be obtained.
- the thermoplastic polyester used for the production of the white film for the reflector is preferably filtered using a nonwoven fabric type filter having an average opening of 10 to 100 ⁇ m made of fine stainless steel wire having a wire diameter of 15 ⁇ m or less. By performing this filtration, it is possible to suppress agglomeration of particles that normally tend to aggregate into coarse aggregated particles, and to obtain a white film with few coarse foreign matters.
- the average opening of the nonwoven fabric is preferably 20 to 50 ⁇ m, more preferably 15 to 40 ⁇ m.
- the filtered thermoplastic polyester composition is extruded in a multilayer state from a die by a simultaneous multilayer extrusion method using a feed block in a molten state to produce an unstretched laminated sheet.
- the unstretched laminated sheet extruded from the die is cooled and solidified by a casting drum to become an unstretched laminated film.
- This unstretched laminated film is heated by roll heating, infrared heating or the like, and stretched in the longitudinal direction to obtain a longitudinally stretched laminated film. This stretching is preferably performed by utilizing the difference in peripheral speed between two or more rolls.
- the stretching is preferably performed at a temperature equal to or higher than the Tg of the thermoplastic polyester.
- the stretching ratio is, for example, 2.5 to 5.0 times, preferably 2.5 to 4.3 times, more preferably 2.7 in both the longitudinal direction and the direction orthogonal to the longitudinal direction (hereinafter referred to as the transverse direction). It is ⁇ 4.2 times. If it is less than 2.5 times, the thickness unevenness of the film is deteriorated and a good film cannot be obtained. If it exceeds 5.0 times, breakage tends to occur during film formation, which is not preferable.
- the laminated film after longitudinal stretching is subsequently subjected to lateral stretching, heat setting, and thermal relaxation to form a laminated biaxially oriented film. These treatments are performed while the film is running.
- the pre-heat treatment for transverse stretching starts from a temperature higher than the Tg of the thermoplastic polyester. And it is preferable to carry out while raising the temperature from (Tg + 5 ° C.) to (Tg + 70 ° C.).
- the temperature rise in the transverse stretching process may be continuous or stepwise (sequential), the temperature is usually raised sequentially.
- the transverse stretching zone of the tenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium having a predetermined temperature for each zone.
- the transverse stretching ratio is, for example, 3.5 to 5.0 times, preferably 3.7 to 4.8 times, and more preferably 4.0 to 4.6 times.
- the ratio of the storage elastic modulus E ′ (120 ° C.) when the maximum peak temperature of the loss tangent tan ⁇ is 110 ° C. or more and 120 ° C. and the storage elastic modulus E ′ (50 ° C.) at 50 ° C. A film having E ′ (120 ° C.) / E ′ (50 ° C.) ) of 0.25 to 1.00 can be obtained without breaking the film.
- the film after transverse stretching is heat-treated at a temperature of (Tm ⁇ 20 ° C.) to (Tm ⁇ 100 ° C.) with a constant width or a decrease in width of 10% or less to reduce the thermal shrinkage rate.
- a temperature of (Tm ⁇ 20 ° C.) to (Tm ⁇ 100 ° C.) with a constant width or a decrease in width of 10% or less to reduce the thermal shrinkage rate.
- the heat treatment temperature is higher than (Tm ⁇ 20 ° C.)
- the flatness of the film is deteriorated and the thickness unevenness is increased, which is not preferable.
- the heat shrinkage ratio may increase, which is not preferable.
- both ends of the film being gripped can be cut off, the film take-up speed can be adjusted, and the film can be relaxed in the vertical direction.
- the speed of the roll group on the tenter exit side is adjusted.
- the rate of relaxation the speed of the roll group is reduced with respect to the film line speed of the tenter, preferably 0.1 to 2.5%, more preferably 0.2 to 2.3%, particularly preferably 0.3.
- the film is relaxed by performing a speed reduction of ⁇ 2.0% (this value is referred to as “relaxation rate”), and the longitudinal heat shrinkage rate is adjusted by controlling the relaxation rate.
- the width of the film in the horizontal direction can be reduced in the process until both ends are cut off, and a desired heat shrinkage rate can be obtained.
- the white film for a reflector of the present invention can be formed by the sequential biaxial stretching method as described above, but can also be formed by using the simultaneous biaxial stretching method instead of the sequential biaxial stretching method.
- the stretching ratio is, for example, 2.7 to 4.3 times, preferably 2.8 to 4.2 times in both the longitudinal direction and the transverse direction.
- PET means polyethylene terephthalate
- IPA means isophthalic acid.
- Luminance The luminance of the display device when used as a reflector in a liquid crystal display device was evaluated.
- a weight (a load of 300 g) was dropped on the strike core from an appropriate position, and it was observed whether or not the sample film under the strike core was cracked. In the determination of the presence or absence of cracks, it was not determined that there were cracks in the sample film that had been pulled out in a circular shape, but only those samples that had cracks were determined to have cracks.
- the drop height was increased in 1 cm increments until the sample film was cracked, and a preliminary test was performed until the sample film was cracked.
- Occurrence ratio (%) number of occurrences / 50 (9)
- Intrinsic viscosity Add 0.3 ml of o-chlorophenol to 0.3 g of thermoplastic polyester peeled for each layer from the white film, dissolve at 100 ° C and dissolve After that, it was measured in a state cooled to 25 ° C. Those containing inorganic particles are dissolved in o-chlorophenol and then centrifuged at 12000 rpm for 30 minutes using a centrifugal separator (CF-15RXII type, manufactured by Hitachi Koki Co., Ltd.). After separating from the thermoplastic polyester dissolved in phenol, the intrinsic viscosity was measured and calculated. The intrinsic viscosity was determined by the following conversion formula.
- Intrinsic viscosity measured value / ⁇ (100 ⁇ inorganic particle concentration) / 100 ⁇ (10) Glass transition temperature (Tg), melting point (Tm) Using a differential scanning calorimeter (TA Instruments 2100 DSC), the measurement was performed at a heating rate of 20 m / min. (11) Stretchability It was observed whether the film could be stably formed during film formation in the examples, and evaluated according to the following criteria.
- a vertical direction is a continuous film-forming direction of a film, and a horizontal direction is a direction orthogonal to this.
- the longitudinal Young's modulus is the measurement direction in the longitudinal direction (MD direction) of the film
- the lateral Young's modulus is the measurement direction in the lateral direction (width direction) of the film.
- Each Young's modulus was measured 10 times and the average value was used.
- (13) Ratio of maximum peak temperature of loss tangent tan ⁇ and storage elastic modulus by dynamic viscoelasticity measurement Using a dynamic viscoelasticity measuring device, measurement frequency 11 Hz, dynamic displacement ⁇ 2.5 ⁇ 10 ⁇ 4 cm The maximum peak temperature of the loss tangent tan ⁇ is obtained, and the storage elastic modulus represented by the ratio of the storage elastic modulus E ′ (120 ° C.) at 120 ° C.
- Example 1 132 parts by weight of dimethyl terephthalate, 18 parts by weight of dimethyl isophthalate (12 mol% based on the total dicarboxylic acid component of the polyester), 98 parts by weight of ethylene glycol, 1.0 part by weight of diethylene glycol, 0.05 part by weight of manganese acetate, acetic acid 0.012 parts by weight of lithium was charged into a rectification column and a flask equipped with a distillation condenser, and heated to 150 to 235 ° C. with stirring to distill methanol to conduct a transesterification reaction. After the methanol was distilled off, 0.03 part by weight of trimethyl phosphate and 0.04 part by weight of germanium dioxide were added, and the reaction product was transferred to the reactor.
- thermoplastic polyester As the thermoplastic polyester of the support layer and the light reflection layer, a master batch of barium sulfate having an average particle size of 1.2 ⁇ m was prepared.
- the thermoplastic polyester composition of the support layer was 4% by weight, The addition amount was adjusted to 55% by weight in the thermoplastic polyester composition of the light reflection layer.
- each was supplied to two extruders heated to 275 ° C., and the thermoplastic polyester composition of the support layer and the thermoplastic polyester composition of the light reflection layer were combined into the support layer / light reflection layer /
- the layers were merged and formed into a sheet shape from a die while maintaining the laminated state.
- the thickness ratio of the support layer / light reflection layer / support layer was adjusted by the discharge amount of each extruder so that it became 4/92/4 after biaxial stretching. Further, an unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 23 ° C.
- Example 2 In Example 1, the addition amount of the barium sulfate particles in the support layer and the light reflecting layer was changed to 6% by weight and 60% by weight, respectively, and the average particle diameter (d50) of the barium sulfate particles was changed as shown in Table 1. A white film was prepared in the same manner as in Example 1. The evaluation results are summarized in Table 3.
- Example 3 In Example 1, the support layer polyester was polymerized using only dimethyl terephthalate instead of dimethyl isophthalate as the dicarboxylic acid component in the polymerization stage, and a master batch of this barium sulfate was prepared. A white film was prepared under the stretching conditions shown in Table 2 so that the ratios were as described. The evaluation results are summarized in Table 3.
- Example 4 In Example 3, the inorganic particles in the support layer were changed to rutile titanium dioxide particles having an average particle size (d50) of 0.2 ⁇ m, and the barium sulfate particles in the light reflecting layer had an average particle size (d50) of 1.2 ⁇ m.
- a white film was prepared in the same manner as in Example 3 except that it was used. The evaluation results are summarized in Table 3.
- Example 5-9 A white film was obtained in the same manner as in Example 1 except that the conditions were changed to those described in Table 1. In Example 9, a two-layer laminated film was prepared, but all were evaluated from the light reflecting layer side. The evaluation results are summarized in Table 3.
- Comparative Examples 1-7 A white film was obtained in the same manner as in Example 1 except that the conditions were changed to those described in Table 1. In Comparative Example 5, no sample was obtained because the film-forming property was very poor and the film was broken. The evaluation results are summarized in Table 3.
- the white film for a reflector of the present invention can be suitably used as a reflective film for a liquid crystal display device.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Laminated Bodies (AREA)
- Optical Elements Other Than Lenses (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
本発明における光反射層は、白色の着色剤を熱可塑性樹脂中に含有させることによって白色を呈するようにした層またはボイド形成物質を熱可塑性樹脂中に含有させて延伸することにより熱可塑性樹脂とボイド形成物質との界面にボイドを形成することで白色を呈するにようした熱可塑性樹脂組成物の層である。
本発明における光反射層の熱可塑性樹脂としては、好ましくは熱可塑性ポリエステルを用いる。熱可塑性ポリエステルを用いる場合、ジカルボン酸成分とジオール成分とからなるポリエステルを用いる。このジカルボン酸としては、例えばテレフタル酸、イソフタル酸、2,6―ナフタレンジカルボン酸、4,4’―ジフェニルジカルボン酸、アジピン酸、セバシン酸を挙げることができる。ジオールとしては、例えばエチレングリコール、1,4―ブタンジオール、1,4―シクロヘキサンジメタノール、1,6―ヘキサンジオールを挙げることができる。これらのポリエステルのなかでも熱可塑性芳香族ポリエステルが好ましく、なかでもポリエチレンテレフタレートが好ましい。ポリエチレンテレフタレートは、ホモポリマーであってもよいが、共重合ポリマーが好ましく、イソフタル酸共重合ポリエチレンテレフタレートが特に好ましい。
光反射層の白色の着色剤としては、白色無機粒子を用いる。ボイド形成物質としては、白色無機粒子、有機粒子または非相溶樹脂を用いる。白色無機粒子としては、例えば、硫酸バリウム粒子、二酸化チタン粒子、二酸化珪素粒子、炭酸カルシウム粒子を用いることができ、硫酸バリウム粒子が特に好ましい。
支持層は二軸延伸ポリエステルフィルムからなる。この支持層は熱可塑性ポリエステルから構成され、熱可塑性ポリエステルとして、芳香族ジカルボン酸成分とジオール成分とからなる熱可塑性芳香族ポリエステルが好ましく、なかでもポリエチレンテレフタレートが好ましい。ポリエチレンテレフタレートは、ホモポリマーであってもよいが、共重合ポリマーが好ましい。共重合ポリマーである場合、支持層の熱可塑性芳香族ポリエステルは、好ましくは、全ジカルボン酸成分を基準としてテレフタル酸成分95~99.9モル%およびイソフタル酸成分0.1~5モル%をジカルボン酸成分としてなる共重合ポリエチレンテレフタレートである。この範囲でイソフタル酸成分を共重合することによって、支持層の特に良好な打ち抜き性を得ることができる。イソフタル酸成分の共重合量は、さらに好ましくは0.1~4モル%、特に好ましくは0.1~3モル%である。
本発明の反射板用白色フィルムは、共押出法により製造されたものであることが好ましい。すなわち、光反射層と支持層とは共押出法により積層されていることが好ましい。
本発明の反射板用白色フィルムは、落下衝撃試験による打ち抜きエネルギーが0.10~0.30Jであることが必要である。0.10J未満であるとフィルム自体が割れ易く、0.30Jを超えるとヒゲ状物やカエリが発生する。
本発明の反射板用白色フィルムの光反射率は、波長550nmにおける光反射率として、好ましくは98.0%以上、さらに好ましくは98.5%以上、特に好ましくは99.0%以上である。光反射率が98.0%以上であることによってバックライトユニットに用いたときに高い輝度を得ることができる。
本発明の反射板用白色フィルムは、動的粘弾性測定による損失正接tanδの最高ピーク温度が110℃以上であることが好ましい。損失正接tanδの最高ピーク温度が110℃未満であると、冷陰極管からの熱による温度上昇によりフィルムの撓みが発生する。
本発明の反射板用白色フィルムは、動的粘弾性測定による120℃での貯蔵弾性率E’(120℃)と50℃での貯蔵弾性率E’(50℃)との比(E’(120℃)/E’(50℃))が、好ましくは0.25~1.00、さらに好ましくは0.27~1.00である。この比(E’(120℃)/E’(50℃))が0.25未満であると冷陰極管から熱がかかった場合にフィルムが達する温度域で、フィルムのヤング率を保持できなくなり、反射フィルムの撓みが発生する。熱可塑性ポリエステルの性質上1.00を超えることはない。この比(E’(120℃)/E’(50℃))が0.25~1.00であることで、光源から熱を受けても良好な平面性を保つことができる。
本発明の反射板用白色フィルムは、少なくとも一方向のヤング率が3000MPa以上であることが好ましい。ヤング率が3000MPa未満であると熱撓みが発生する。
本発明の反射板用白色フィルムは、85℃の熱収縮率が、直交する2方向ともに、好ましくは0.5%以下、さらに好ましくは0.4%以下、特に好ましくは0.3%以下である。この範囲の熱収縮率であることによって、高温にさらされたときもフィルムの平面性が維持されるので好ましい。
本発明の反射板用白色フィルムに蛍光増白剤を配合してもよい。蛍光増白剤を配合する場合には、配合する層の熱可塑性ポリエステル組成物100重量%あたり、例えば0.005~0.2重量%、好ましくは0.01~0.1重量%である。蛍光増白剤が0.005重量%未満であると350nm付近の波長域の反射率が十分でないので添加する意味が乏しく、0.2重量%を越えると蛍光増白剤の持つ特有の色が現れてしまうため好ましくない。蛍光増白剤としては、例えばOB-1(イーストマン社製)、Uvitex-MD(チバガイギー社製)、JP-Conc(日本化学工業所製)を用いることができる。
以下、本発明の反射板用白色フィルムを製造する方法の一例を説明する。以下、ポリマーのガラス転移温度をTg、融点をTmということがある。白色無機粒子の熱可塑性ポリエステル組成物への配合は、熱可塑性ポリエステルの重合時におこなってもよく、重合後に行ってもよい。重合時に行う場合、エステル交換反応もしくはエステル化反応終了前に配合してもよく、重縮合反応開始前に配合してもよい。
(1)光反射率
分光光度計(島津製作所製UV-3101PC)に積分球を取り付け、BaSO4白板を100%としたときのサンプルフィルムの光反射率を波長550nmで測定した。
(2)輝度
液晶表示装置に反射板として用いたときの表示装置の輝度を評価した。ソニー(株)製32インチテレビ(ブラビアKDL-32V2500)のバックライトの反射フィルムを取り外し、かわりに評価対象のサンプルフィルムを設置し、輝度計(大塚電子製Model MC-940)を用いて、バックライトの中心を真正面より測定距離500mmで輝度を測定した。
(3)無機粒子の平均粒径
粒度分布計(堀場製作所製LA-950)にて、粒子の粒度分布を求め、d50での粒子径を平均粒径とした。
(4)落下衝撃試験による打ち抜きエネルギー
デュポン式衝撃試験(JIS K5600-5-3、ISO6272)に基づき実施した。25℃、50%RH環境下で調整されたサンプルフィルム(30mm×30mm)を受台の上にセットし、撃芯(直径4mmの円柱状、材質SUS)をサンプルフィルムの上に設置した。おもり(荷重300g)を適当な位置より撃芯の上に落下させ、撃芯の下のサンプルフィルムに割れが生じたかどうかを観察した。割れの有無の判定では、サンプルフィルムの伸びにより円状に抜けきれたものは割れがあるとは判定せず、サンプルフィルムにヒビ割れの生じたもののみを割れがあると判定した。サンプルフィルムの割れが発生するまで落下高さを1cm刻みで高くして、サンプルフィルムに割れが生じるまで予備テストを行った。サンプルフィルムに割れが発生した場合には落下高さを1cm低くし、割れが発生しない場合には落下高さを1cm高くすることを繰り返した。サンプルフィルム50枚についてこのテスト行い、サンプルフィルムの半数に割れが生じる落下高さを求めた。落下高さに荷重を掛けて、落下衝撃試験による打ち抜きエネルギー(J)とした。
(5)ボイド体積率
光反射層のポリマーの密度および無機粒子の密度と、光反射層におけるこれらの配合比率から、光反射層にボイドがない場合の光反射層の計算上の密度を求めた。この計算で用いた密度は、ポリエチレンテレフタレートが1.39g/cm3、硫酸バリウム粒子が4.5g/cm3である。他方、白色フィルムから光反射層のみを分離し、単位体積あたりの重量を計り、光反射層の実密度を求めた。ボイド体積率を下記式で算出した。
ボイド体積率(%)=(1-実密度/ボイドがない場合の計算上の密度)×100
(6)各層の厚み比
日立製作所製S-4700形電界放出形走査電子顕微鏡を用い、倍率500倍にて、フィルムの断面を観察し、測定数5点の平均にてフィルムの各層の厚み比を求めた。
(7)フィルムの厚み
接触式厚み計(アンリツ製 K-402B)を用いてフィルム厚みを測定した。
(8)打ち抜き性
穴あけ治具CARL CP-5を用いて、フィルムを50回打ち抜き(円形状の穴の直径は6mm、打ち抜く速度は50回/1分間とした)、打ち抜いた端部を光学顕微鏡にて倍率25倍にて観察しヒゲ状物の発生の有無とカエリの発生の有無を観察した。ヒゲ状物については、打ち抜き部分から長さ1mm以上飛び出しているヒゲ状物がある打ち抜き穴を「発生有」とし、カエリについては、打ち抜き部分の一部または全部がフィルム平面を基準として0.5mm以上盛り上がっている打ち抜き穴を「発生有」とした。ヒゲ状物およびカエリのそれぞれについて、下記式で発生割合を算出した。
発生割合(%)=「発生有」の個数/50個
(9)固有粘度
白色フィルムから各層ごとに剥離した熱可塑性ポリエステル0.3gに対し、o-クロロフェノール25ml加え100℃で溶解し、溶解後25℃に冷却された状態で測定した。なお、無機粒子を含んでいるものは、o-クロロフェノールに溶解後、遠心分離装置(日立工機製CF-15RXII型)を用いて12000rpmにて30分間遠心分離を行い、無機粒子とo-クロロフェノールに溶解した熱可塑性ポリエステルとを分離した後、固有粘度を測定、算出した。固有粘度は下記換算式にて求めた。
固有粘度=測定値/{(100-無機粒子濃度)/100}
(10)ガラス転移温度(Tg)、融点(Tm)
示差走査熱量測定装置(TA Instruments 2100 DSC)を用い、昇温速度20m/分で測定を行った。
(11)延伸性
実施例におけるフィルム製膜に際して安定に製膜できるか観察し、下記基準で評価した。なお、縦方向はフィルムの連続製膜方向であり、横方向はこれに直交する方向である。
A: 2時間以上安定して製膜できる。
B: 1時間以上2時間未満安定して製膜できる。
C: 1時間未満に切断が発生し、安定して製膜ができない。
(12)ヤング率
フィルムを150mm長×10mm幅に切り出した試験片を用い、オリエンテック社製テンシロンUCT-100型を用いて、温度20℃、湿度50%に調節された室内において、チャック間100mmにして引張速度10mm/分、チャート速度500mm/分で引張り、得られる荷重―伸び曲線の立ち上り部の接線よりヤング率を計算する。なお、縦方向のヤング率とはフィルムの縦方向(MD方向)を測定方向としたものであり、横方向のヤング率とはフィルムの横方向(幅方向)を測定方向としたものである。各ヤング率はそれぞれ10回測定し、その平均値を用いた。
(13)動的粘弾性測定による損失正接tanδの最高ピーク温度および貯蔵弾性率の比
動的粘弾性測定装置を用いて、測定周波数11Hz、動的変位±2.5×10-4cmにて損失正接tanδの最高ピーク温度を求め、また、120℃での貯蔵弾性率E’(120℃)と50℃での貯蔵弾性率E’(50℃)との比で表される貯蔵弾性率の比(E’(120℃)/E’(50℃))を求めた。
(14)熱撓み
評価用に用意した液晶テレビ(SHARP社製AQUOS-65V)の直下型バックライト(65インチ)ユニットから、元々組み込まれていた光反射シートを取り外し、測定対象とするフィルムサンプルを組み込んだ。電源を入れて温度40℃、湿度50%の環境下で24hr放置後、評価用サンプルを取り出し、特に平面精度の高い平板上に評価用サンプルを広げてフィルムの撓み具合を評価した。以下の基準に基づき判定した。A判定のみバックライトに組み込んだ場合の使用に耐え得る。
A: 撓みが殆ど見られない
B: 若干の撓みが見られる
C: 大きな撓みが見られる
テレフタル酸ジメチル132重量部、イソフタル酸ジメチル18重量部(ポリエステルの全ジカルボン酸成分を基準に12モル%)、エチレングリコール98重量部、ジエチレングリコール1.0重量部、酢酸マンガン0.05重量部、酢酸リチウム0.012重量部を精留塔、留出コンデンサを備えたフラスコに仕込み、撹拌しながら150~235℃に加熱しメタノールを留出させエステル交換反応を行った。メタノールが留出した後、リン酸トリメチル0.03重量部、二酸化ゲルマニウム0.04重量部を添加し、反応物を反応器に移した。ついで撹拌しながら反応器内を徐々に0.5mmHgまで減圧するとともに290℃まで昇温し、重縮合反応を行い、熱可塑性ポリエステルを得た。得られた熱可塑性ポリエステルを支持層および光反射層の熱可塑性ポリエステルとして用い、平均粒径1.2μmの硫酸バリウムのマスターバッチを作製し、支持層の熱可塑性ポリエステル組成物には4重量%、光反射層の熱可塑性ポリエステル組成物には55重量%の含有量になるように添加量を調整した。
実施例1において支持層および光反射層の硫酸バリウム粒子の添加量をそれぞれ6重量%と60重量%に変更し、硫酸バリウム粒子の平均粒径(d50)を表1記載のとおり変更した以外は実施例1同様にして白色フィルムを作成した。評価結果を表3にまとめる。
実施例1において支持層のポリエステルを重合の段階でジカルボン酸成分としてイソフタル酸ジメチルを用いず、テレフタル酸ジメチルのみを用いて重合を行い、これの硫酸バリウムのマスターバッチを作成して、表1に記載の割合になるようにし、表2記載の延伸条件にて白色フィルムを作成した。評価結果を表3にまとめる。
実施例3において、支持層の無機粒子を平均粒子径(d50)0.2μmのルチル型二酸化チタン粒子に変更し、光反射層の硫酸バリウム粒子として平均粒径(d50)1.2μmのものを用いた他は、実施例3と同様にして白色フィルムを作成した。評価結果を表3にまとめる。
表1に記載された条件に変更する他は実施例1と同様にして白色フィルムを得た。なお実施例9は2層積層フィルムを作成したが、全て光反射層側から評価を行った。評価結果を表3にまとめる。
表1に記載された条件に変更する他は実施例1と同様にして白色フィルムを得た。なお比較例5は製膜性が非常に悪くフィルム破断のためサンプルが得られなかった。評価結果を表3にまとめる。
Claims (11)
- ボイド体積率が55~80%である光反射層、およびその少なくとも一方の面に設けられた二軸延伸ポリステルフィルムの支持層からなり、光反射層の厚みの合計と支持層の厚みの合計との比が85:15~98:2であり、フィルムの光線反射率が98.0%以上であり、かつ落下衝撃試験による打ち抜きエネルギーが0.10~0.30Jであり、フィルム厚みが150~250μmであることを特徴とする、反射板用白色フィルム。
- 光反射層が、熱可塑性ポリエステル40~48重量%および白色無機粒子52~60重量%からなる組成物からなる、請求項1記載の反射板用フィルム。
- 光反射層の熱可塑性ポリエステルの固有粘度が0.40~0.53dl/gである、請求項2記載の反射板用フィルム。
- 光反射層の熱可塑性ポリエステルが、イソフタル酸共重合ポリエチレンテレフタレートである、請求項2記載の反射板用フィルム。
- 光反射層の白色無機粒子が、硫酸バリウム、二酸化チタン、炭酸カルシウムおよび二酸化珪素からなる群から選ばれる少なくとも一種からなる平均粒径0.1~3.0μmの粒子である、請求項2記載の反射板用フィルム。
- 支持層の二軸延伸ポリエステルフィルムが、熱可塑性ポリエステル99.9~90重量%および無機粒子0.1~10重量%からなる、請求項1記載の反射板用フィルム。
- 支持層について測定した熱可塑性ポリエステルの固有粘度が0.54~0.65dl/gである、請求項6記載の反射板用フィルム。
- フィルムの損失正接tanδの最高ピーク温度が110℃以上である、請求項1記載の反射板用フィルム。
- フィルムの120℃での貯蔵弾性率E’(120℃)と50℃での貯蔵弾性率E’(50℃)との比(E’(120℃)/E’(50℃))が0.25~1.00である、請求項1記載の反射板用フィルム。
- フィルムの少なくとも一方向のヤング率が3000MPa以上である、請求項1記載の反射板用フィルム。
- 液晶表示装置のバックライトユニットの反射フィルムとして用いられる、請求項1記載の反射板用フィルム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080013427.5A CN102362217B (zh) | 2009-03-25 | 2010-03-19 | 反射板用白色膜 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-074269 | 2009-03-25 | ||
JP2009074269A JP2010224446A (ja) | 2009-03-25 | 2009-03-25 | 液晶表示装置のバックライトユニットの反射フィルム用白色フィルム |
JP2009-155283 | 2009-06-30 | ||
JP2009155283A JP5629064B2 (ja) | 2009-06-30 | 2009-06-30 | 反射板用白色フィルム |
JP2009-155284 | 2009-06-30 | ||
JP2009155284A JP5502379B2 (ja) | 2009-06-30 | 2009-06-30 | 白色反射フィルム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010110211A1 true WO2010110211A1 (ja) | 2010-09-30 |
Family
ID=42780906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054820 WO2010110211A1 (ja) | 2009-03-25 | 2010-03-19 | 反射板用白色フィルム |
Country Status (4)
Country | Link |
---|---|
KR (1) | KR101640273B1 (ja) |
CN (1) | CN102362217B (ja) |
TW (1) | TWI488743B (ja) |
WO (1) | WO2010110211A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104603647A (zh) * | 2012-08-03 | 2015-05-06 | 帝人杜邦薄膜日本有限公司 | 白色反射性膜 |
JP2017026676A (ja) * | 2015-07-16 | 2017-02-02 | 帝人フィルムソリューション株式会社 | 大型ディスプレイ用白色反射フィルム |
JP2017044886A (ja) * | 2015-08-27 | 2017-03-02 | 帝人フィルムソリューション株式会社 | 大型ディスプレイ用白色反射フィルム |
JP2017187681A (ja) * | 2016-04-07 | 2017-10-12 | 帝人フィルムソリューション株式会社 | 大型ディスプレイ用白色反射フィルム |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102606980A (zh) * | 2012-03-05 | 2012-07-25 | 昆山市诚泰电气股份有限公司 | 反射板 |
CN102606981A (zh) * | 2012-03-30 | 2012-07-25 | 昆山市诚泰电气股份有限公司 | 反射片 |
CN103091733B (zh) * | 2013-01-23 | 2015-03-18 | 昆山乐凯锦富光电科技有限公司 | 一种背光模组用光学反射膜 |
CN103454701B (zh) * | 2013-09-16 | 2016-04-06 | 宁波东旭成新材料科技有限公司 | 一种高挺度复合反射膜 |
CN103660465B (zh) * | 2013-11-29 | 2016-08-17 | 北京康得新复合材料股份有限公司 | 反射片及其制备方法 |
KR102231849B1 (ko) * | 2019-03-28 | 2021-03-25 | 도레이첨단소재 주식회사 | 이축 배향 폴리에스테르 반사필름 및 그 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007069541A1 (ja) * | 2005-12-12 | 2007-06-21 | Mitsubishi Plastics, Inc. | 反射フィルム |
JP2007233344A (ja) * | 2006-02-03 | 2007-09-13 | Toray Ind Inc | 極細繊維からなる光反射シート及びそれを備えた液晶ディスプレイ |
JP2007328150A (ja) * | 2006-06-08 | 2007-12-20 | Teijin Dupont Films Japan Ltd | 白色反射フィルム |
JP2008065142A (ja) * | 2006-09-08 | 2008-03-21 | Denki Kagaku Kogyo Kk | 光拡散シート |
JP2008088207A (ja) * | 2006-09-29 | 2008-04-17 | Asahi Kasei Chemicals Corp | ポリトリメチレンテレフタレート樹脂組成物発泡シート及びその製造方法 |
JP2009042421A (ja) * | 2007-08-08 | 2009-02-26 | Toray Ind Inc | 液晶ディスプレイ反射板用白色ポリエステルフイルム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6362104A (ja) | 1986-09-01 | 1988-03-18 | 株式会社明拓システム | 電飾用光源装置 |
JPH0816175A (ja) | 1994-06-27 | 1996-01-19 | Calsonic Corp | 能動型消音器 |
JP4194686B2 (ja) | 1998-07-22 | 2008-12-10 | 帝人株式会社 | 白色ポリエステルフィルムおよびそれを基材とする受像シート |
JP4245795B2 (ja) * | 2000-11-02 | 2009-04-02 | 帝人株式会社 | 積層白色ポリエステルフィルム |
JP2004050479A (ja) | 2002-07-17 | 2004-02-19 | Teijin Dupont Films Japan Ltd | 積層白色ポリエステルフィルム |
JP3946183B2 (ja) | 2003-10-27 | 2007-07-18 | 帝人デュポンフィルム株式会社 | 白色ポリエステルフィルム |
TWI396902B (zh) * | 2007-03-14 | 2013-05-21 | Toray Industries | 反射板用聚酯薄膜 |
-
2010
- 2010-03-19 CN CN201080013427.5A patent/CN102362217B/zh not_active Expired - Fee Related
- 2010-03-19 KR KR1020117020486A patent/KR101640273B1/ko active IP Right Grant
- 2010-03-19 WO PCT/JP2010/054820 patent/WO2010110211A1/ja active Application Filing
- 2010-03-24 TW TW099108704A patent/TWI488743B/zh not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007069541A1 (ja) * | 2005-12-12 | 2007-06-21 | Mitsubishi Plastics, Inc. | 反射フィルム |
JP2007233344A (ja) * | 2006-02-03 | 2007-09-13 | Toray Ind Inc | 極細繊維からなる光反射シート及びそれを備えた液晶ディスプレイ |
JP2007328150A (ja) * | 2006-06-08 | 2007-12-20 | Teijin Dupont Films Japan Ltd | 白色反射フィルム |
JP2008065142A (ja) * | 2006-09-08 | 2008-03-21 | Denki Kagaku Kogyo Kk | 光拡散シート |
JP2008088207A (ja) * | 2006-09-29 | 2008-04-17 | Asahi Kasei Chemicals Corp | ポリトリメチレンテレフタレート樹脂組成物発泡シート及びその製造方法 |
JP2009042421A (ja) * | 2007-08-08 | 2009-02-26 | Toray Ind Inc | 液晶ディスプレイ反射板用白色ポリエステルフイルム |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104603647A (zh) * | 2012-08-03 | 2015-05-06 | 帝人杜邦薄膜日本有限公司 | 白色反射性膜 |
JP2017026676A (ja) * | 2015-07-16 | 2017-02-02 | 帝人フィルムソリューション株式会社 | 大型ディスプレイ用白色反射フィルム |
JP2017044886A (ja) * | 2015-08-27 | 2017-03-02 | 帝人フィルムソリューション株式会社 | 大型ディスプレイ用白色反射フィルム |
JP2017187681A (ja) * | 2016-04-07 | 2017-10-12 | 帝人フィルムソリューション株式会社 | 大型ディスプレイ用白色反射フィルム |
Also Published As
Publication number | Publication date |
---|---|
TWI488743B (zh) | 2015-06-21 |
CN102362217A (zh) | 2012-02-22 |
CN102362217B (zh) | 2015-09-30 |
TW201041743A (en) | 2010-12-01 |
KR20110130411A (ko) | 2011-12-05 |
KR101640273B1 (ko) | 2016-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010110211A1 (ja) | 反射板用白色フィルム | |
KR101084903B1 (ko) | 광확산성 필름 | |
JP5502379B2 (ja) | 白色反射フィルム | |
JP4734237B2 (ja) | 反射板用積層フィルムの製造方法 | |
JP5629064B2 (ja) | 反射板用白色フィルム | |
TW201809738A (zh) | 白色反射性薄膜 | |
JP2011025473A (ja) | 光反射板用白色フィルム | |
JP5623892B2 (ja) | 2軸延伸白色ポリエステルフィルム | |
JP4971690B2 (ja) | 二軸延伸フィルム | |
JP2010138261A (ja) | 合わせガラス用ポリエステルフィルムおよびその積層体 | |
JP2010224446A (ja) | 液晶表示装置のバックライトユニットの反射フィルム用白色フィルム | |
JP2007328150A (ja) | 白色反射フィルム | |
JP5021974B2 (ja) | 積層フィルム | |
JP4782617B2 (ja) | ポリエステル積層フィルムのロール | |
JP2010138024A (ja) | 合わせガラス用ポリエステルフィルムおよび合わせガラス | |
JP5230998B2 (ja) | ポリエステルフィルム | |
JP2010138262A (ja) | 合わせガラス用ポリエステルフィルムおよびその積層体 | |
JP4563822B2 (ja) | 二軸配向積層フィルム | |
JP2010221455A (ja) | 白色積層ポリエステルフィルム | |
JP5147470B2 (ja) | 積層二軸延伸ポリエテルフィルム | |
JP4896454B2 (ja) | 積層フィルム | |
JP2009214489A (ja) | 積層二軸延伸ポリエテルフィルムの製造方法 | |
JP5108271B2 (ja) | 二軸延伸された積層ポリエステルフィルム | |
JP2009051175A (ja) | 反射板用二軸延伸積層フィルム | |
JP2007322875A (ja) | 反射フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080013427.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10756008 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20117020486 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10756008 Country of ref document: EP Kind code of ref document: A1 |