WO2010109985A1 - 電子部品の製造方法 - Google Patents

電子部品の製造方法 Download PDF

Info

Publication number
WO2010109985A1
WO2010109985A1 PCT/JP2010/052401 JP2010052401W WO2010109985A1 WO 2010109985 A1 WO2010109985 A1 WO 2010109985A1 JP 2010052401 W JP2010052401 W JP 2010052401W WO 2010109985 A1 WO2010109985 A1 WO 2010109985A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing layer
layer
electronic component
shield layer
manufacturing
Prior art date
Application number
PCT/JP2010/052401
Other languages
English (en)
French (fr)
Inventor
北村俊輔
勝部彰夫
神凉康一
片岡祐治
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2010109985A1 publication Critical patent/WO2010109985A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/284Applying non-metallic protective coatings for encapsulating mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/0218Reduction of cross-talk, noise or electromagnetic interference by printed shielding conductors, ground planes or power plane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/0707Shielding
    • H05K2201/0715Shielding provided by an outer layer of PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1316Moulded encapsulation of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0044Mechanical working of the substrate, e.g. drilling or punching
    • H05K3/0052Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards

Definitions

  • This invention relates to a method of manufacturing an electronic component having a package structure in which an insulating sealing layer is provided on an element mounting substrate.
  • an electronic component is formed by covering a sealing layer for sealing an element mounting substrate on which an element such as a semiconductor bare chip is mounted with a conductive shield layer.
  • An electromagnetic wave shielding function may be provided (see, for example, Patent Documents 1 to 3).
  • the package structure disclosed in Patent Document 1 is obtained by covering an element mounting substrate with a conductive deformation film and forming a sealing layer on the deformation film.
  • the sealing film is formed in a state in which the deformable film is deformed by suction from a hole provided in the substrate and the deformed film is conducted to the ground electrode of the substrate. For this reason, a board
  • the package structure disclosed in Patent Document 2 is such that an element mounting substrate on which a sealing layer is laminated is heated in a decompression pack to fill a gap between the substrate and the element with a resin.
  • This package structure is strong, but does not include a shield layer.
  • the package structure disclosed in Patent Document 3 is provided with a post electrode penetrating the sealing layer, and the shield layer is grounded through the post electrode.
  • This package structure is strong and includes a shield layer.
  • Patent Document 3 The package structure disclosed in Patent Document 3 is manufactured by laminating a composite sheet including a shield layer and a sealing layer on a substrate provided with a post electrode. Therefore, it is necessary to prepare a composite sheet separately, and there is a problem that the manufacturing cost remains high. Therefore, it is conceivable to reduce the manufacturing cost by forming a shield layer continuously after forming the sealing layer.
  • the post electrode Before the shield layer is formed, it is necessary to expose the post electrode on the same plane as the surface of the sealing layer in advance, so that the post electrode and the shield layer are reliably conducted.
  • the post electrode cannot necessarily be exposed from the sealing layer, and it becomes difficult to make the post electrode and the shield layer conductive.
  • the surface of the post electrode is contaminated with a deposit or the like, there is a possibility that the conduction between the two is hindered, and it is necessary to take measures such as removing the deposit from the surface of the post electrode.
  • an object of the present invention is to provide a method for manufacturing an electronic component that can reliably connect a post electrode and a shield layer, and can continuously form a shield layer after forming a sealing layer.
  • the method for manufacturing the electronic component of the present invention includes a laminate forming step, a curing step, and a shield layer forming step.
  • a laminated body formation process forms a laminated body.
  • the laminate includes a substrate, an element, a post electrode, and a sealing layer.
  • the substrate includes a ground electrode.
  • the element is mounted on the substrate.
  • the post electrode is electrically connected to the ground electrode and stands up above the top surface of the element.
  • the sealing layer is laminated on the substrate to seal the element.
  • curing step curing of the sealing layer laminated on the substrate is advanced to cause shape shrinkage in the sealing layer.
  • the shield layer is formed by conducting to the end portion of the post electrode protruding from the sealing layer in which the shape shrinkage occurs.
  • the shield layer is conductive and covers the top surface of the sealing layer.
  • the end of the post electrode gradually protrudes from the surface of the sealing layer as the shape shrinkage of the sealing layer progresses in the curing process. This increases the surface area of the post electrode that comes into contact with the shield layer in the subsequent shield layer forming step, and the shield layer and the post electrode can be reliably connected. In addition, it is possible to reduce the manufacturing cost by continuously forming the shield layer after forming the sealing layer.
  • the method for manufacturing an electronic component of the present invention includes a laminated body forming step, a polishing step, and a shield layer forming step.
  • the top surface of the laminate is polished using a polishing body.
  • the polishing body is deformed according to the top surface shape of the laminate.
  • the sealing layer and the post electrode have different hardness, and the sealing layer is more easily polished than the post electrode. Therefore, as the polishing progresses in the polishing process, the end portion of the post electrode gradually protrudes from the surface of the sealing layer. As a result, the surface area of the post electrode that conducts to the shield layer in the subsequent shield layer forming step is increased, and the shield layer and the post electrode can be reliably connected. In addition, it is possible to reduce the manufacturing cost by continuously forming the shield layer after forming the sealing layer.
  • the present invention has a curing step in which curing of the polished sealing layer is progressed to cause shape shrinkage in the sealing layer. That is, in the above-described polishing step, the soft sealing layer before being completely cured is polished. Furthermore, the shape of the sealing layer shrinks in the curing step, so that the end portion of the post electrode protrudes greatly from the surface of the sealing layer. Therefore, it becomes easy to project the end portion of the post electrode from the surface of the sealing layer.
  • the polishing body of the present invention preferably comprises a polishing buff and an abrasive.
  • a polishing buff having a long bristles, it becomes easy to project only the post electrode while polishing the sealing layer almost flatly to the vicinity of the edge with the post electrode.
  • the top surface of the laminate is ground to expose the post electrode from the sealing layer.
  • the shield layer forming step of the present invention it is preferable to form a shield layer by bonding a sealing layer and a metal foil using a resin layer.
  • a resin layer it is preferable to form a shield layer by bonding a sealing layer and a metal foil using a resin layer.
  • the resin layer of the present invention is preferably an anisotropic conductive resin layer in which conductive particles that are conducted by pressure in the thickness direction are dispersed. Thereby, even if the metal foil is extremely thin, a sufficient electromagnetic wave shielding function can be obtained. Further, the connection between the metal foil and the post electrode can be performed more reliably than the configuration in which a simple insulating resin layer is penetrated through the post electrode to conduct to the metal foil.
  • the present invention has a half-cut step of forming a half-cut groove reaching the position covering at least the side surface of the element from the top surface of the laminated body before the shield layer forming step. It is preferable to form a shield layer also in the groove. As a result, an electromagnetic wave shielding function can be obtained also on the side surface of the package.
  • the shield layer can be more reliably grounded by the ground electrode and the post electrode.
  • the laminate is put in a pack having gas barrier properties and sealed under reduced pressure, and pressure is applied to the pack.
  • joining to the laminated body of a shield layer can be strengthened, and apparatus cost can be reduced rather than the case where a press etc. are used.
  • the shield layer forming step of the present invention it is preferable to heat the laminated body enclosed in the pack.
  • the solvent component and the like can be volatilized from the shield layer, and the shield layer such as voidless can be improved in quality. Therefore, the shield layer and the post electrode can be more reliably connected.
  • the post electrode protrudes from the sealing layer by utilizing the progress of shape shrinkage due to the hardening of the sealing layer and the difference in the polishing amount due to the difference in the hardness property between the sealing layer and the post electrode. Let Thereby, a connection with a post electrode and a shield layer can be performed reliably. In addition, it is possible to reduce the manufacturing cost by forming the shield layer continuously after forming the sealing layer.
  • FIG. 1 is a cross-sectional view showing a state in each process of the first half of the electronic component manufacturing method according to the present embodiment.
  • FIG. 1 (A1) is a state diagram in the element mounting process.
  • the substrate 1 is a ceramic substrate such as alumina or a resin substrate such as glass epoxy, and includes a ground electrode 1A.
  • the ground electrode 1A is formed of a top electrode, an internal electrode, and a bottom electrode.
  • a substrate 1 is prepared, and elements 2A and 2B are mounted on a plurality of top surface electrodes of the substrate 1 by a solder paste or a metal nanoparticle paste in a face-down manner.
  • a plurality of elements 2A and 2B are mounted in order to manufacture a plurality of electronic components at once with the substrate 1.
  • the process proceeds to the next post electrode forming step.
  • FIG. 1 (A2) is a state diagram in the post electrode forming step.
  • the post electrode 3 is formed.
  • the post electrode 3 is electrically connected to the ground electrode 1A, and the tip is located on the top surface side of the elements 2A and 2B.
  • the post electrode 3 is formed on the terminal electrode of the element 2B that is electrically connected to the ground electrode 1A by an inkjet method in which a liquid conductive paste is discharged from the head 3A.
  • FIG. 1 (A3) is a state diagram in the sealing layer forming step.
  • an insulating sealing layer 4 is formed.
  • the sealing layer 4 is formed with a layer thickness that embeds the entire elements 2 A and 2 B and the post electrode 3, and seals the elements 2 A and 2 B and the post electrode 3 to the substrate 1.
  • the sealing layer 4 is formed by application of a thermosetting semi-liquid resin paste.
  • FIG. 1 (A4) is a state diagram in the primary curing step.
  • the sealing layer 4 is heated under semi-curing conditions to make the sealing layer 4 thick.
  • the solvent component of the resin paste is volatilized and the crosslinking between the resin particles progresses, the resin paste becomes a solid semi-cured state, and the shape shrinkage progresses in the sealing layer 4.
  • This semi-curing condition is a lower heating temperature or shorter heating time than a condition in which the resin paste is completely cured.
  • the coating thickness of the sealing layer 4 is previously set so that the tip of the post electrode 3 is at a specified depth below the surface of the sealing layer 4 and within a predetermined error range. Keep in control. When this process is finished, the process proceeds to the next grinding process.
  • FIG. 1 (A5) is a state diagram in the grinding process.
  • the tips of the sealing layer 4 and the post electrode 3 are ground by a dicer or a grinding roller 4A so that the post electrode 3 is exposed on the same plane as the surface of the sealing layer 4 in this step.
  • the grinding depth is set in advance so that the post electrode 3 is reliably exposed from the surface of the sealing layer 4.
  • the “laminate formation step” of the present invention includes the above steps. Then, a laminate having a configuration including the substrate 1, the elements 2 ⁇ / b> A and 2 ⁇ / b> B, the post electrode 3, and the sealing layer 4 is formed by this “laminated body forming step”. When this “laminated body forming process” is completed, the process proceeds to the next secondary curing process.
  • FIG. 2 is a cross-sectional view showing a state in each step in the latter half of the electronic component manufacturing method according to the present embodiment.
  • FIG. 2 (A6) is a state diagram in the secondary curing step.
  • the sealing layer 4 is heated at a heating temperature and a heating time that satisfy the curing conditions of the resin paste to volatilize the solvent component of the resin paste and advance the crosslinking between the resin particles.
  • contraction of the resin paste progresses and it will be in a hardening state, and the sealing layer 4 will further become a book thickness.
  • the sealing layer 4 becomes thinner, the surface of the sealing layer 4 sinks than the tip of the post electrode 3, and the end of the post electrode 3 protrudes from the surface of the sealing layer 4.
  • the above-described semi-curing conditions are set so that the protruding amount of the post electrode 3 falls within a predetermined error range at this time.
  • FIG. 2 (A7) is a state diagram in the shield layer forming step.
  • a conductive resin sheet is set so as to cover the top surface of the sealing layer 4, and heated and pressurized using a hot plate press facility 6B (in some cases in a vacuum). Thereby, the resin sheet is solidified and the shield layer 6 is formed. At this time, the shield layer 6 is covered with the end portion of the post electrode 3 to make the shield layer 6 and the post electrode 3 conductive.
  • the process proceeds to the next individualization process.
  • FIG. 2 (A8) is a state diagram in the individualization process. In this step, positions where the plurality of electronic components are partitioned are cut using a dicer or a breaker to form a plurality of electronic components.
  • the electronic component manufacturing method of this embodiment has the above series of steps. Therefore, after forming a sealing layer, a shield layer can be formed continuously and manufacturing cost can be reduced. In addition, since the end portion of the post electrode 3 protrudes from the surface of the sealing layer 4 in the secondary curing step, the shield layer 6 can be reliably conducted to the end portion of the post electrode 3 in the subsequent shield layer forming step. .
  • the thickness of the electronic component is set with high accuracy using the primary curing process and the grinding process, but the primary curing process and the grinding process are not necessarily used.
  • the sealing resin is applied with the same thickness as the post electrode formation height in the sealing layer forming step, sealing is performed in the secondary curing step without performing the primary curing step and the grinding step.
  • the post electrode can be projected by shape shrinkage when the layer is cured.
  • the shield layer forming step is not limited to the method described above, and any method may be used. For example, you may apply a pressure using a hydrostatic pressure apparatus, without using a press apparatus.
  • Second Embodiment An electronic component manufacturing method according to a second embodiment of the present invention will be described.
  • This embodiment has substantially the same steps as the first half steps (A1 to A5) of the electronic component manufacturing method according to the first embodiment. That is, the element mounting process, the post electrode forming process, the sealing layer forming process, the primary curing process, and the grinding process shown in FIG. 1 are included in the “laminated body forming process” of the present invention.
  • the primary curing step the resin paste is heated under curing conditions.
  • this “laminated body forming process” is completed, the process proceeds to a polishing process.
  • FIG. 3 is a cross-sectional view showing the state of each process in the latter half of the method for manufacturing an electronic component according to this embodiment.
  • FIG. 3 (B6) is a state diagram in the polishing process.
  • the sealing layer 4 is polished using the polishing buff 4B to which an abrasive is attached as a polishing body.
  • the surface of the sealing layer 4 is grind
  • the post electrode 3 has a higher hardness than the sealing layer 4, and the amount of polishing by this process is significantly smaller than that of the sealing layer 4. Therefore, as the sealing layer 4 becomes thinner, the surface of the sealing layer 4 sinks than the tip of the post electrode 3, and the end of the post electrode 3 protrudes from the surface of the sealing layer 4.
  • the polishing buff 4B is deformed along the top surface shape of the sealing layer 4 and the post electrode 3, and the sealing layer 4 is moved to the vicinity of the edge with the post electrode 3. It can be polished almost flatly.
  • the number of reciprocations of the polishing body is set in advance so that the protruding amount of the post electrode 3 falls within a predetermined error range during this polishing.
  • FIG. 3 (B7) is a state diagram in the shield layer forming step.
  • a conductive resin sheet is set so as to cover the top surface of the sealing layer 4, and heated and pressurized using a hot plate press facility 6B (in some cases in a vacuum). Thereby, the sheet resin is solidified and the shield layer 6 is formed. At this time, the shield layer 6 covers the end portion of the post electrode 3, and the shield layer 6 and the post electrode 3 are electrically connected.
  • the process proceeds to the next individualization process.
  • Fig. 3 (B8) is a state diagram in the individualization process. In this step, the positions where the plurality of electronic components are partitioned are cut using a dicer or a breaker to form a plurality of electronic components.
  • the electronic component manufacturing method of this embodiment has the above series of steps. Therefore, after forming a sealing layer, a shield layer can be formed continuously and manufacturing cost can be reduced. Further, since the end portion of the post electrode 3 is greatly protruded from the surface of the sealing layer 4 in the polishing step, the shield layer 6 can be reliably conducted to the end portion of the post electrode 3 in the subsequent shield layer forming step. Moreover, since the secondary curing step can be omitted, the heating time of the resin sheet can be suppressed, and the time required for manufacturing the electronic component can be shortened.
  • FIG. 4 is a cross-sectional view showing a state in each process in the latter half of the electronic component manufacturing method according to the present embodiment.
  • FIG. 4 (C6) is a state diagram in the polishing process.
  • the semi-cured sealing layer 4 that is softer than that of the second embodiment is polished.
  • the end of the post electrode 3 can be projected by polishing the surface of the sealing layer 4 to a predetermined depth.
  • FIG. 4 (C7) is a state diagram in the secondary curing process.
  • the sealing layer 4 is heated at a heating temperature and a heating time that satisfy the curing conditions of the resin paste to volatilize the solvent component of the resin paste and advance the crosslinking between the resin particles.
  • the resin paste becomes a cured state and the shape shrinkage progresses, and the sealing layer 4 is further thickened.
  • the sealing layer 4 becomes thinner, the surface of the sealing layer 4 further sinks, and the end of the post electrode 3 protrudes greatly from the surface of the sealing layer 4.
  • the process proceeds to the next shield layer forming step.
  • FIG. 4 (C8) is a state diagram in the shield layer forming step, and in this step, the shield layer 6 is formed. When this process is finished, the process proceeds to the next individualization process.
  • FIG. 4 (C9) is a state diagram in the individualization process, and a plurality of electronic components are formed in this process.
  • the electronic component manufacturing method of this embodiment has the above series of steps. Therefore, after forming a sealing layer, a shield layer can be formed continuously and manufacturing cost can be reduced. Further, since the end portion of the post electrode 3 is greatly protruded from the surface of the sealing layer 4 in the polishing step and the secondary curing step, the shield layer 6 is conducted to the end portion of the post electrode 3 in the subsequent shield layer forming step. The shield layer 6 and the post electrode 3 can be reliably connected.
  • FIG. 5 is a cross-sectional view showing the state of each process in the latter half of the method for manufacturing an electronic component according to this embodiment.
  • FIG. 5 (D6) is a state diagram in the secondary curing process.
  • the sealing layer 4 is heated to make the sealing layer 4 thick, and the end portion of the post electrode 3 protrudes from the surface of the sealing layer 4.
  • this embodiment can employ
  • the process proceeds to the shield layer forming step.
  • FIG. 5 (D7-1) is a state diagram in the first half of the shield layer forming step
  • FIG. 5 (D7-2) is a state diagram in the second half of the shield layer forming step.
  • the anisotropic conductive resin layer 6A is formed so as to cover the top surface of the sealing layer 4.
  • the metal foil 6C is attached to the upper surface of the resin layer 6A, and the resin layer 6A and the metal foil 6C are pressed using a press facility.
  • the anisotropic conductive resin layer 6A is obtained by dispersing a metal filler having a spherical shape, a scale shape, a needle shape, or the like in a resin at a predetermined ratio, for example, a highly viscous seal-like sheet. However, it may be formed by applying an anisotropic conductive paste on the top surface of the sealing layer 4.
  • the metal fillers in the resin layer are brought into contact with each other in the vertical direction to exhibit conductivity, and the metal foil 6C and the post electrode 3 are electrically connected via the metal filler of the resin layer 6A. To do.
  • this process proceeds to the next individualization process.
  • FIG. 5 (D8) is a state diagram in the individualization process, and a plurality of electronic components are formed in this process.
  • the electronic component manufacturing method of this embodiment has the above steps.
  • the anisotropic conductive resin layer 6A in the shield layer forming step, the amount of metal used for the shield layer can be reduced.
  • the anisotropically conductive resin layer 6A is formed in advance as a seal-like sheet and is attached to the sealing layer 4 or the metal foil 6C, the cost is high as in the resin paste application process. It can be formed without using a simple process. Therefore, the manufacturing cost can be suppressed. Even in this case, it is possible to ensure high connectivity with the post electrode and a high-performance electromagnetic shielding function.
  • FIG. 6 is a cross-sectional view showing a state in each step in the latter half of the electronic component manufacturing method according to the present embodiment.
  • FIG. 6 (E6) is a state diagram in the secondary curing process.
  • this embodiment can employ
  • this step is finished, the process proceeds to the next shield layer forming step.
  • FIG. 6 (E7-1) is a state diagram in the first half of the shield layer forming step
  • FIG. 6 (E7-2) is a state diagram in the second half of the shield layer forming step.
  • the insulating resin layer 6A is formed so as to cover the top surface of the sealing layer 4.
  • the metal foil 6C is attached to the upper surface of the resin layer 6A, and the resin layer 6A and the metal foil 6C are pressed using a press facility.
  • the insulating resin layer 6A is formed by sticking a highly viscous seal-like sheet such as an adhesive layer on the top surface of the sealing layer 4 that does not include a conductor such as a metal filler.
  • the resin layer 6A is pierced at the tip of the post electrode 3 by pressing to ensure conduction between the metal foil 6C and the post electrode 3.
  • the process proceeds to the next individualization process.
  • FIG. 6 (E8) is a state diagram in the individualization process, and a plurality of electronic components are formed in this process.
  • the electronic component manufacturing method of this embodiment has the above steps.
  • the amount of metal used for the shield layer can be further reduced.
  • the resin layer 6A is formed in advance as a seal-like sheet and is attached to the sealing layer 4 or the metal foil 6C, a complicated and expensive process such as a resin paste application process is performed. It can be omitted.
  • FIG. 7 is a cross-sectional view showing a state in each process in the latter half of the electronic component manufacturing method according to the present embodiment.
  • FIG. 7 (F6) is a state diagram in the half-cut process.
  • half-cut grooves 5 are formed using a dicer at positions where a plurality of electronic components are partitioned.
  • the half cut groove 5 is formed at a depth from the surface of the sealing layer 4 to the internal electrode of the substrate 1.
  • the half-cut groove 5 is cut to the extent that the cut surface of the ground electrode internal electrode 1 ⁇ / b> A is exposed on the side surface of the half-cut groove 5.
  • the “laminated body forming step” of the present invention includes an element mounting step, a post electrode forming step, a sealing layer forming step, a primary curing step, a grinding step, and a half cut step shown in FIG. Then, by this “laminated body forming step”, a laminated body including the substrate 1, the elements 2 ⁇ / b> A and 2 ⁇ / b> B, the post electrode 3, and the sealing layer 4 and provided with the half cut groove 5 is formed.
  • FIG. 7 (F7) is a state diagram in the secondary curing process.
  • the sealing layer 4 is heated to make the sealing layer 4 thick, and the end portion of the post electrode 3 protrudes from the surface of the sealing layer 4.
  • this embodiment can employ
  • this step is finished, the process proceeds to the next shield layer forming step.
  • FIG. 7 (F8-1) is a state diagram in the first half of the shield layer forming step
  • FIG. 7 (F8-2) is a state diagram in the second half of the shield layer forming step.
  • a conductive resin layer 6A is provided so as to cover the top surface of the sealing layer 4, and is set in the hot plate press facility 6B.
  • the conductive resin layer 6A is heated and pressurized using the hot plate press facility 6B (in some cases in a vacuum).
  • the resin layer 6 ⁇ / b> A flows and enters the half cut groove 5, thereby forming the shield layer 6.
  • the shield layer 6 covers the tip of the post electrode 3 and the shield layer 6 covers the position where the cut surface of the internal electrode which is the ground electrode 1A is exposed, and the shield layer 6 and the post electrode 3 are electrically connected. .
  • the process proceeds to the next individualization process.
  • FIG. 7 (F9) is a state diagram in the individualization process.
  • a plurality of electronic components are formed using a dicer or breaker along the center line of the position where the half-cut groove 5 was formed. .
  • the electronic component manufacturing method of this embodiment has the above steps. As a result, an electromagnetic wave shielding function can be obtained also on the package side surface of each electronic component. Further, the shield electrode 6 can be more reliably grounded by the ground electrode 1A and the post electrode 3.
  • FIG. 8 is a cross-sectional view showing a state in each step in the latter half of the electronic component manufacturing method according to the present embodiment.
  • FIG. 8 (G6) is a state diagram in the half-cut process.
  • half-cut grooves 5 are formed using a dicer at positions where a plurality of electronic components are partitioned.
  • the half-cut groove 5 reaches the substrate 1 from the surface of the sealing layer 4 and is formed to a depth that does not expose the internal electrode of the ground electrode 1A.
  • the process proceeds to the next secondary curing step.
  • FIG. 8 (G7) is a state diagram in the secondary curing process.
  • this embodiment can employ
  • FIG. 8 (G8-1) is a state diagram in the first half of the shield layer forming step
  • FIG. 8 (G8-2) is a state diagram in the second half of the shield layer forming step.
  • the shield layer 6 covers the tip of the post electrode 3 and the shield layer 6 and the post electrode 3 are electrically connected.
  • FIG. 8 (G9) is a state diagram in the individualization process.
  • the electronic component manufacturing method of this embodiment has the above steps. Therefore, an electromagnetic wave shielding function can be obtained on the package side surface of each electronic component. According to this embodiment, even if it is difficult to expose the ground electrode from the side surface by half-cutting as compared with the sixth embodiment, the electromagnetic wave shielding function on the side surface of the package can be obtained while being downsized.
  • FIG. 9 (H8-1) is a state diagram in the first step of the shield layer forming step.
  • the conductive resin layer 6 ⁇ / b> A is set so as to cover the top surface of the sealing layer 4 and is put in the pack 30.
  • the pack 30 As the pack 30, a laminate pack having flexibility and gas barrier properties and having a sealant layer as an inner layer is used.
  • the process proceeds to the second process of this process.
  • FIG. 9 (H8-2) is a state diagram in the second step of the shield layer forming step.
  • the pack 30 containing the substrate is set on a heating stage 51 in a vacuum chamber (not shown), the inside of the pack is depressurized to a predetermined degree of vacuum (about 50 to 150 Pa), and the resin layer 6A is cured. Heating is performed under predetermined heating conditions below the temperature. Thereby, the solvent component in resin layer 6A becomes easy to volatilize, and also a void can be efficiently removed.
  • the process proceeds to the third process.
  • FIG. 9 is a state diagram in the third step of the shield layer forming step.
  • the pack 30 is sealed and sealed using the seal heater 52 and the sealing plate 53, and then the vacuum chamber is opened and returned to atmospheric pressure.
  • the process proceeds to the fourth process of this process.
  • FIG. 9 (H8-4) is a state diagram in the fourth step of the shield layer forming step. Since the inside of the pack 30 is depressurized, pressure is applied to the pack 30 due to the difference from the atmospheric pressure of the outside air, the resin layer 6 ⁇ / b> A flows in the pack 30, and the resin layer 6 ⁇ / b> A flows into the half cut groove 5. In addition, when a pressurizing apparatus such as a hydrostatic pressure apparatus is used, the flow of the resin layer 6A to the half cut groove 5 becomes easier.
  • a shield layer can be formed without using a press, and the shield layer forming step can be performed at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

 絶縁性の封止層で基板にチップ状の素子を封止したパッケージ構造であって、電磁波シールド機能を持つ電子部品を製造する。まず積層体を形成する。積層体は、基板(1)と素子(2A,2B)とポスト電極(3)と封止層(4)とを備える。基板(1)はグランド電極(1A)を備え、素子(2A,2B)が実装される。ポスト電極(3)はグランド電極(1A)に導通し、先端が素子(2A,2B)よりも天面側に位置する。そして、封止層(4)の硬化を進展させて、封止層(4)に形状収縮を生じさせる。または、天面形状に応じて変形する研磨体を用いて積層体の天面を研磨する。その後、封止層(4)の天面を覆うシールド層(6)を形成する。シールド層(6)は、封止層(4)から突出するポスト電極(3)に導通する。

Description

電子部品の製造方法
 この発明は、素子搭載基板に絶縁性の封止層を設けたパッケージ構造の電子部品を製造する方法に関するものである。
 従来、封止層を設けたパッケージ構造の電子部品の製造方法では、半導体ベアチップ等の素子を搭載した素子搭載基板を封止する封止層を、導電性シールド層で覆うことで、電子部品に電磁波シールド機能を具備させることがある(例えば特許文献1~3参照)。
 特許文献1に開示されたパッケージ構造は、素子搭載基板を導電性の変形フィルムで被覆し、変形フィルム上に封止層を形成したものである。このパッケージ構造では、基板に設けた孔からの吸気により変形フィルムを変形させて、基板のグランド電極に変形フィルムを導通させた状態で、封止層が形成される。このため、孔の分だけ基板サイズが大型化し、素子搭載基板と変形フィルムとの間の隙間部分での接合強度が不足することがある。
 特許文献2に開示されたパッケージ構造は、封止層を積層した素子搭載基板を減圧パック内で加熱することで、基板と素子との隙間に樹脂を充填させたものである。このパッケージ構造は強固であるが、シールド層を備えるものではない。
 特許文献3に開示されたパッケージ構造は、封止層を貫通するポスト電極を設け、このポスト電極を介してシールド層を接地するものである。このパッケージ構造は強固であり、シールド層を備える。
特開2001-176995号公報 再公表特許WO2005/071731号公報 特開2000-223647号公報
 特許文献3に開示されたパッケージ構造は、シールド層および封止層を備える複合シートをポスト電極を設けた基板に積層し、製造される。そのため、別途、複合材シートを用意する必要が有り、製造コストが高止まりする問題がある。そこで、封止層を形成した後に連続してシールド層を形成して、製造コストを低減することが考えられる。
 その場合、シールド層を形成する前に予め、封止層の表面と同一平面上にポスト電極を露出させておき、ポスト電極とシールド層とを確実に導通させる必要が有る。しかしながら、ポスト電極や封止層の形成高さに大きな誤差が生じた場合、ポスト電極を必ずしも封止層から露出させることができず、ポスト電極とシールド層とを導通させることが困難になる。また、ポスト電極の表面が付着物などで汚染された場合には、両者の導通が阻害される虞があり、ポスト電極の表面から付着物を除去するなどの対処が必要になる。
 そこで、この発明の目的は、ポスト電極とシールド層とを確実に接続でき、封止層を形成した後に連続してシールド層を形成できる電子部品の製造方法を提供することにある。
 この発明の電子部品を製造する方法は、積層体形成工程、硬化工程、および、シールド層形成工程を有する。積層体形成工程は積層体を形成する。積層体は、基板、素子、ポスト電極、および、封止層を備える。基板はグランド電極を備える。素子は基板に実装される。ポスト電極はグランド電極に導通するとともに素子の天面よりも上方まで立設する。封止層は基板に積層されて素子を封止する。硬化工程は基板に積層した封止層の硬化を進展させて、封止層に形状収縮を生じさせる。シールド層形成工程は、形状収縮が生じた封止層から突出しているポスト電極の端部に導通させてシールド層を形成する。シールド層は導電性のものであり封止層の天面を覆う。
 前述の構成において、硬化工程で封止層の形状収縮が進展するのに伴ってポスト電極の端部が封止層の表面から次第に大きく突出していく。これにより、後のシールド層形成工程でシールド層に接触するポスト電極の表面積が大きくなり、シールド層とポスト電極との接続を確実に行える。また、封止層を形成した後に連続してシールド層を形成して、製造コストを低減することが可能になる。
 本発明の電子部品の製造方法は、積層体形成工程、研磨工程、および、シールド層形成工程を有する。研磨工程は、研磨体を用いて積層体の天面を研磨する。研磨体は積層体の天面形状に応じて変形する。
 一般に、封止層とポスト電極とは硬度が異なり、ポスト電極よりも封止層のほうが研磨されやすい。したがって、研磨工程で研磨が進展するのに伴ってポスト電極の端部が封止層の表面から次第に大きく突出していく。これにより、後のシールド層形成工程でシールド層に導通するポスト電極の表面積が大きくなり、シールド層とポスト電極との接続を確実に行える。また、封止層を形成した後に連続してシールド層を形成して、製造コストを低減することが可能になる。
 この発明は、研磨が施された封止層の硬化を進展させて、封止層に形状収縮を生じさせる硬化工程を有すると好適である。すなわち、前述の研磨工程では、完全に硬化する前の柔らかい封止層を研磨することになる。さらには、硬化工程で封止層が形状収縮することで、ポスト電極の端部が封止層の表面から大きく突出していくことになる。したがって、ポスト電極の端部を封止層の表面から突出させることが容易になる。
 この発明の研磨体は、研磨バフおよび研磨剤を備えると好適である。毛足の長い研磨バフを用いることで、封止層をポスト電極とのエッジ付近までほぼ平坦に研磨しながら、ポスト電極のみを突出させることが容易になる。
 この発明の積層体形成工程は、積層体の天面を研削して、ポスト電極を封止層から露出させる。これにより、ポスト電極や封止層の形成高さの誤差が大きくても、確実にポスト電極を封止層から露出させられる。
 この発明のシールド層形成工程は、樹脂層を用いて封止層と金属箔とを接着してシールド層を形成すると好適である。これにより、シールド層を導電性ペーストの塗布のみにより形成する場合に比べて、シールド層の金属フィラー量を低減できる。また、封止層側あるいは金属箔側に予めシール状の樹脂層を貼付しておき、それにより封止層と金属箔とを接着するようにすれば、樹脂層の塗布工程を省くことができる。したがってシールド層形成工程の低コスト化を実現できる。
 この発明の樹脂層は、厚み方向の加圧によって導通する導電粒子が分散された異方導電性の樹脂層であると好適である。これにより、金属箔が極めて薄くても十分な電磁波シールド機能を得ることが可能になる。また、ポスト電極に単なる絶縁性の樹脂層を突き抜けさせて金属箔に導通させる構成よりも、金属箔とポスト電極との接続を確実に行える。
 この発明は、シールド層形成工程よりも前に、積層体の天面から少なくとも素子の側面を覆う位置まで到達するハーフカット溝を形成するハーフカット工程を有し、シールド層形成工程は、ハーフカット溝にもシールド層を形成すると好適である。これにより、パッケージ側面にも電磁波シールド機能が得られる。
 この発明のハーフカット工程は、グランド電極をハーフカット溝に露出させると好適である。これにより、グランド電極とポスト電極とによってシールド層の接地をより確実にとることができる。
 この発明のシールド層形成工程は、ガスバリア性を備えたパックに積層体を入れて減圧下で密封し、パックに対して圧力を加えると好適である。これにより、シールド層の積層体への接合をより強固にでき、プレス機などを用いる場合よりも装置コストを低減できる。
 この発明のシールド層形成工程は、パックに封入された積層体を加熱すると好適である。これにより、シールド層から溶剤成分などを揮発させることができ、ボイドレス化などシールド層を高品位化できる。したがって、シールド層とポスト電極との接続をより確実に行える。
 この発明によれば、封止層の硬化に伴う形状収縮の進展や、封止層とポスト電極との硬度物性の違いに伴う研磨量の差を利用して、ポスト電極を封止層から突出させる。これにより、ポスト電極とシールド層との接続を確実に行える。その上、封止層を形成した後に連続してシールド層を形成して、製造コストを低減することが可能になる。
本発明の第1の実施形態に係る電子部品の製造方法の前半の各工程での状態図である。 本発明の第1の実施形態に係る電子部品の製造方法の後半の各工程での状態図である。 本発明の第2の実施形態に係る電子部品の製造方法の後半の各工程での状態図である。 本発明の第3の実施形態に係る電子部品の製造方法の後半の各工程での状態図である。 本発明の第4の実施形態に係る電子部品の製造方法の後半の各工程での状態図である。 本発明の第5の実施形態に係る電子部品の製造方法の後半の各工程での状態図である。 本発明の第6の実施形態に係る電子部品の製造方法の後半の各工程での状態図である。 本発明の第7の実施形態に係る電子部品の製造方法の後半の各工程での状態図である。 本発明の第8の実施形態に係る電子部品の製造方法の後半の各工程での状態図である。
《第1の実施形態》
 この発明の第1の実施形態に係る電子部品の製造方法について説明する。
 図1は、本実施形態に係る電子部品の製造方法の前半の各工程での状態を示す断面図である。
 図1(A1)は、素子実装工程での状態図である。基板1はアルミナ等のセラミック基板、または、ガラスエポキシ等の樹脂基板であり、グランド電極1Aを備える。グランド電極1Aは天面電極、内部電極、および、底面電極から形成されている。この工程では、まず基板1を用意し、基板1の複数の天面電極に半田ペーストあるいは金属ナノ粒子ペースト等により、素子2A,2Bをフェイスダウン方式で実装する。本実施形態では、基板1で一度に複数の電子部品を製造するために、素子2A,2Bをそれぞれ複数個、実装する。この工程を終えると次のポスト電極形成工程に移行する。
 図1(A2)は、ポスト電極形成工程での状態図である。この工程ではポスト電極3を形成する。ポスト電極3はグランド電極1Aに導通するとともに、素子2A,2Bよりも天面側に先端が位置する。本実施形態では、グランド電極1Aに導通する素子2Bの端子電極上に、ヘッド3Aから液状の導電性ペーストを吐出するインクジェット方式でポスト電極3を形成する。この工程を終えると次の封止層形成工程に移行する。
 図1(A3)は、封止層形成工程での状態図である。この工程では絶縁性の封止層4を形成する。封止層4は、素子2A,2Bおよびポスト電極3の全体を埋設する層厚で形成され、基板1に素子2A,2Bおよびポスト電極3を封止する。本実施形態では、熱硬化性がある半液状の樹脂ペーストの塗布により封止層4を形成する。この工程を終えると次の1次硬化工程に移行する。
 図1(A4)は、1次硬化工程での状態図である。本実施形態では、この工程で半硬化条件のもとで封止層4を加熱して、封止層4を簿肉化させる。加熱により、樹脂ペーストの溶剤成分が揮散するとともに樹脂粒子間の架橋が進展し、樹脂ペーストが固体状の半硬化状態になって封止層4で形状収縮が進展する。この半硬化条件は、樹脂ペーストが完全に硬化する条件よりも低い加熱温度や短い加熱時間である。また、この工程での加熱によって、ポスト電極3の先端が封止層4の表面下の規定深さであって所定誤差範囲内に収まる位置になるように、予め封止層4の塗布厚を制御しておく。この工程を終えると次の研削工程に移行する。
 図1(A5)は、研削工程での状態図である。本実施形態では、この工程で封止層4の表面と同一平面上にポスト電極3が露出するように、ダイサまたは研削ローラ4Aにより封止層4およびポスト電極3の先端を研削する。この際、封止層4の表面からポスト電極3が確実に露出するように、予め研削深さを設定しておく。
 本発明の「積層体形成工程」は、以上の各工程を有する。そして、この「積層体形成工程」により、基板1と素子2A,2Bとポスト電極3と封止層4とを備える構成の積層体が形成される。この「積層体形成工程」を終えると次の2次硬化工程に移行する。
 図2は、本実施形態に係る電子部品の製造方法の後半の各工程での状態を示す断面図である。
 図2(A6)は、2次硬化工程での状態図である。この工程では、樹脂ペーストの硬化条件を満足する加熱温度および加熱時間で封止層4を加熱し、樹脂ペーストの溶剤成分を揮散させるとともに樹脂粒子間の架橋を進展させる。これにより、封止層4では樹脂ペーストの形状収縮が進展して硬化状態になり、封止層4がさらに簿肉化する。封止層4の薄肉化に伴い、封止層4の表面がポスト電極3の先端よりも沈下し、ポスト電極3の端部が封止層4の表面から突出することになる。本実施形態では、この際にポスト電極3の突出量が所定の誤差範囲に収まるように、前述の半硬化条件を設定しておく。この工程を終えると次のシールド層形成工程に移行する。
 図2(A7)は、シールド層形成工程での状態図である。この工程では、封止層4の天面を覆うように導電性の樹脂シートをセットし、熱板プレス設備6Bを用いて(場合によっては真空中で)加熱・加圧する。これにより樹脂シートが固化してシールド層6が形成される。この際、シールド層6にポスト電極3の端部を被覆させて、シールド層6とポスト電極3とを導通させる。この工程を終えると次の個別化工程に移行する。
 図2(A8)は個別化工程での状態図である。この工程では、複数の電子部品を区画する位置をダイサやブレイカを用いてカットし、複数の電子部品を形成する。
 以上の一連の工程を本実施形態の電子部品の製造方法は有する。したがって封止層を形成した後に連続してシールド層を形成して製造コストを低減できる。また、2次硬化工程でポスト電極3の端部を封止層4の表面から突出させるので、後のシールド層形成工程でポスト電極3の端部にシールド層6を確実に導通させることができる。
 なお、本実施形態では1次硬化工程と研削工程とを用いて、電子部品の厚みを高精度に設定するようにしたが、1次硬化工程と研削工程とは必ずしも用いなくてもよい。例えば、封止層形成工程でポスト電極の形成高さとほとんど同じ厚みで封止樹脂を塗布しておけば、1次硬化工程と研削工程とを実施しなくても、2次硬化工程で封止層を硬化させる際の形状収縮によってポスト電極を突出させることができる。
 また、シールド層形成工程は上述した方法に限らず、どのような方法であってもよい。例えば、プレス装置を用いずに静水圧装置を用いて圧力を加えてもよい。
《第2の実施形態》
 この発明の第2の実施形態に係る電子部品の製造方法について説明する。
 本実施形態は、第1の実施形態に係る電子部品の製造方法の前半の各工程(A1~A5)と略同一の工程を有する。即ち、図1に示す素子実装工程、ポスト電極形成工程、封止層形成工程、1次硬化工程、および、研削工程を、本発明の「積層体形成工程」として有する。なお、1次硬化工程では、樹脂ペーストを硬化条件の下で加熱しておくものとする。この「積層体形成工程」を終えると研磨工程に移行する。
 図3は、本実施形態に係る電子部品の製造方法の後半の各工程での状態を示す断面図である。
 図3(B6)は、研磨工程での状態図である。この工程では、研磨剤を付着させた研磨バフ4Bを研磨体として封止層4を研磨する。これにより、封止層4の表面が研磨されて、封止層4が簿肉化する。ポスト電極3は封止層4よりも硬度が高く、封止層4に比べて本工程による研磨量が著しく少ない。したがって、封止層4の薄肉化に伴い、封止層4の表面がポスト電極3の先端よりも沈下し、ポスト電極3の端部が封止層4の表面から突出することになる。研磨バフ4Bとして毛足の長いものを利用することで、研磨バフ4Bは封止層4およびポスト電極3の天面形状に沿って変形し、封止層4をポスト電極3とのエッジ付近まで略平坦に研磨できる。本実施形態では、この研磨の際にポスト電極3の突出量が所定の誤差範囲に収まるように研磨体の往復回数を予め設定しておく。この工程を終えると次のシールド層形成工程に移行する。
 図3(B7)は、シールド層形成工程での状態図である。この工程では、封止層4の天面を覆うように導電性の樹脂シートをセットし、熱板プレス設備6Bを用いて(場合によっては真空中で)加熱・加圧する。これによりシート樹脂が固化してシールド層6が形成される。この際、シールド層6がポスト電極3の端部を被覆して、シールド層6とポスト電極3とが導通する。この工程を終えると次の個別化工程に移行する。
 図3(B8)は個別化工程での状態図である。この工程では複数の電子部品を区画する位置をダイサやブレイカを用いてカットし、複数の電子部品を形成する。
 以上の一連の工程を本実施形態の電子部品の製造方法は有する。したがって封止層を形成した後に連続してシールド層を形成して製造コストを低減できる。また、研磨工程でポスト電極3の端部を封止層4の表面から大きく突出させるので、後のシールド層形成工程でポスト電極3の端部にシールド層6を確実に導通させられる。また、2次硬化工程を省くことができるので、樹脂シートの加熱時間を抑制でき、電子部品の製造に要する時間を短縮できる。
《第3の実施形態》
 この発明の第3の実施形態に係る電子部品の製造方法について説明する。
 本実施形態は、第2の実施形態に係る電子部品の製造方法の前半の各工程(A1~A5)と略同一の工程を有するが、1次硬化工程では樹脂ペーストを半硬化条件の下で加熱し、研磨工程の後に樹脂ペーストを硬化条件の下で加熱する2次硬化工程を有する。
 図4は、本実施形態に係る電子部品の製造方法の後半の各工程での状態を示す断面図である。
 図4(C6)は、研磨工程での状態図である。この工程では、前述の第2の実施形態よりも柔らかい半硬化状態の封止層4を研磨する。これにより、研磨バフ4Bの往復回数が少なくても、封止層4の表面を所定深さに研磨してポスト電極3の端部を突出させられる。この工程を終えると次の2次硬化工程に移行する。
 図4(C7)は、2次硬化工程での状態図である。この工程では、樹脂ペーストの硬化条件を満足する加熱温度および加熱時間で封止層4を加熱し、樹脂ペーストの溶剤成分を揮散させるとともに樹脂粒子間の架橋を進展させる。これにより、封止層4では樹脂ペーストが硬化状態になるとともに形状収縮が進展し、封止層4がさらに簿肉化する。封止層4の薄肉化に伴い、封止層4の表面がさらに沈下し、ポスト電極3の端部が封止層4の表面から大きく突出する。この工程を終えると次のシールド層形成工程に移行する。
 図4(C8)は、シールド層形成工程での状態図であり、この工程ではシールド層6を形成する。この工程を終えると次の個別化工程に移行する。図4(C9)は個別化工程での状態図であり、この工程では複数の電子部品を形成する。
 以上の一連の工程を本実施形態の電子部品の製造方法は有する。したがって封止層を形成した後に連続してシールド層を形成して製造コストを低減できる。また、研磨工程および2次硬化工程でポスト電極3の端部を封止層4の表面から大きく突出させるので、後のシールド層形成工程でポスト電極3の端部にシールド層6を導通させて、シールド層6とポスト電極3との接続を確実に行える。
《第4の実施形態》
 この発明の第4の実施形態に係る電子部品の製造方法について説明する。
 本実施形態は、第1の実施形態に係る電子部品の製造方法の前半の各工程(A1~A5)と略同一の工程を有する。
 図5は、本実施形態に係る電子部品の製造方法の後半の各工程での状態を示す断面図である。
 図5(D6)は、2次硬化工程での状態図である。この工程では、封止層4を加熱して封止層4を簿肉化させ、ポスト電極3の端部を封止層4の表面から突出させる。なお、本実施形態は、この2次硬化工程に替えて研磨工程を採用することもできる。この工程を終えるとシールド層形成工程に移行する。
 図5(D7-1)は、シールド層形成工程の前半過程における状態図であり、図5(D7-2)は、シールド層形成工程の後半過程での状態図である。この工程の前半過程では、封止層4の天面を覆うように異方導電性の樹脂層6Aを形成する。また、この工程の後半過程では、樹脂層6Aの上面に金属箔6Cを貼り付け、プレス設備を用いて樹脂層6Aおよび金属箔6Cをプレスする。ここで、異方導電性の樹脂層6Aは、樹脂中に球状、鱗片状、針状等の形状を有する金属フィラーを所定の割合で分散させたものであり、例えば粘性の高いシール状のシートを封止層4の天面に貼付することにより形成されるが、異方導電性のペーストを封止層4の天面に塗布することにより形成してもよい。この樹脂層6Aがプレスされることで、樹脂層内の金属フィラー同士が鉛直方向に接触して導電性を発現し、樹脂層6Aの金属フィラーを介して金属箔6Cとポスト電極3とが導通する。この工程を終えると次の個別化工程に移行する。
 図5(D8)は個別化工程での状態図であり、この工程では複数の電子部品を形成する。
 以上の各工程を本実施形態の電子部品の製造方法は有する。シールド層形成工程で異方導電性の樹脂層6Aを採用することにより、シールド層に使用する金属量を低減できる。また、異方導電性の樹脂層6Aを予めシール状のシートとしておき、それを封止層4または金属箔6Cに貼り付けることにより形成した場合には、樹脂ペーストの塗布工程のような高コストな工程を用いずに形成することができる。したがって製造コストを抑制できる。その場合であっても、ポスト電極との高い接続性と高性能な電磁波シールド機能とを確保することが可能である。
《第5の実施形態》
 この発明の第5の実施形態に係る電子部品の製造方法について説明する。
 本実施形態は、樹脂層6Aとして金属フィラーを設けない絶縁性のものを採用する。
 図6は、本実施形態に係る電子部品の製造方法の後半の各工程での状態を示す断面図である。
 図6(E6)は、2次硬化工程での状態図である。なお、本実施形態は、この2次硬化工程に替えて研磨工程を採用することもできる。この工程を終えると次のシールド層形成工程に移行する。
 図6(E7-1)は、シールド層形成工程の前半過程における状態図であり、図6(E7-2)は、シールド層形成工程の後半過程における状態図である。この工程の前半過程では、封止層4の天面を覆うように絶縁性の樹脂層6Aを形成する。また、この工程の後半過程では、樹脂層6Aの上面に金属箔6Cを貼り付け、プレス設備を用いて樹脂層6Aと金属箔6Cとをプレスする。ここで、絶縁性の樹脂層6Aは、金属フィラーなどの導体を含んでいない、例えば接着剤層のような粘性の高いシール状のシートを封止層4の天面に貼付することにより形成されるが、液状の接着剤を封止層4の天面に塗布することにより形成してもよい。また、この工程では、プレスによってポスト電極3の先端に樹脂層6Aを突き破らせて、金属箔6Cとポスト電極3との導通を確保する。この工程を終えると次の個別化工程に移行する。
 図6(E8)は個別化工程での状態図であり、この工程では複数の電子部品を形成する。
 以上の各工程を本実施形態の電子部品の製造方法は有する。金属フィラーを含まない樹脂層6Aを採用することにより、シールド層に使用する金属量をさらに低減できる。また、樹脂層6Aを予めシール状のシートとしておき、それを封止層4あるいは金属箔6Cに貼り付けることにより形成した場合には、樹脂ペーストの塗布工程のような複雑で高コストな工程を省くことができる。
《第6の実施形態》
 この発明の第6の実施形態に係る電子部品の製造方法について説明する。
 本実施形態は、第1の実施形態に係る電子部品の製造方法の前半の各工程(A1~A5)と略同一の工程を有する。
 図7は、本実施形態に係る電子部品の製造方法の後半の各工程での状態を示す断面図である。
 図7(F6)は、ハーフカット工程での状態図である。この工程では、複数の電子部品を区画する位置に、ダイサを用いてハーフカット溝5を形成する。ハーフカット溝5は、封止層4の表面から基板1の内部電極に至る深さで形成する。本実施形態では、ハーフカット溝5の側面にグランド電極の内部電極1Aの切断面が露出する程度まで、ハーフカット溝5を切り込んでいる。
 本発明の「積層体形成工程」は、図1に示す素子実装工程、ポスト電極形成工程、封止層形成工程、1次硬化工程、研削工程、および、図7に示すハーフカット工程を有する。そして、この「積層体形成工程」により、基板1と素子2A,2Bとポスト電極3と封止層4とを備え、ハーフカット溝5が設けられた構成の積層体が形成される。
 図7(F7)は、2次硬化工程での状態図である。この工程では、封止層4を加熱して封止層4を簿肉化させ、ポスト電極3の端部を封止層4の表面から突出させる。なお、本実施形態は、この2次硬化工程に替えて研磨工程を採用することもできる。この工程を終えると次のシールド層形成工程に移行する。
 図7(F8-1)は、シールド層形成工程の前半過程における状態図であり、図7(F8-2)は、シールド層形成工程の後半過程における状態図である。この工程の前半過程では、封止層4の天面を覆うように導電性の樹脂層6Aを設け、熱板プレス設備6Bにセットする。この工程の後半過程では、熱板プレス設備6Bを用いて(場合によっては真空中で)導電性の樹脂層6Aを加熱・加圧する。これにより樹脂層6Aが流動してハーフカット溝5に入り込み、シールド層6が形成される。この際、シールド層6がポスト電極3の先端を被覆するとともにシールド層6がグランド電極1Aである内部電極の切断面が露出した位置を被覆して、シールド層6とポスト電極3とが導通する。この工程を終えると次の個別化工程に移行する。
 図7(F9)は個別化工程での状態図であり、この工程では、ハーフカット溝5が形成されていた位置の中心線に沿って、ダイサやブレイカを用いて複数の電子部品を形成する。
 以上の各工程を本実施形態の電子部品の製造方法は有する。これにより各電子部品のパッケージ側面にも電磁波シールド機能が得られる。また、グランド電極1Aとポスト電極3とによってシールド層6の接地をより確実にとることができる。
《第7の実施形態》
 この発明の第7の実施形態に係る電子部品の製造方法について説明する。
 本実施形態は、第6の実施形態に係る電子部品の製造方法とハーフカット工程でのハーフカット溝の形成深さが相違する。
 図8は、本実施形態に係る電子部品の製造方法の後半の各工程での状態を示す断面図である。
 図8(G6)は、ハーフカット工程での状態図である。この工程では、複数の電子部品を区画する位置に、ダイサを用いてハーフカット溝5を形成する。ハーフカット溝5は、封止層4の表面から基板1に至り、グランド電極1Aの内部電極が露出することのない深さで形成する。この工程を終えると次の2次硬化工程に移行する。
 図8(G7)は、2次硬化工程での状態図である。なお、本実施形態は、この2次硬化工程に替えて研磨工程を採用することもできる。この工程を終えると次のシールド層形成工程に移行する。図8(G8-1)は、シールド層形成工程の前半過程における状態図であり、図8(G8-2)は、シールド層形成工程の後半過程における状態図である。この工程では、シールド層6がポスト電極3の先端を被覆して、シールド層6とポスト電極3とが導通する。この工程を終えると次の個別化工程に移行する。図8(G9)は個別化工程での状態図である。
 以上の各工程を本実施形態の電子部品の製造方法は有する。したがって各電子部品のパッケージ側面にも電磁波シールド機能が得られる。本実施形態によれば、第6の実施形態に比べて基板が薄くハーフカットにより側面からグランド電極を露出させることが難しくても、小型化したままパッケージ側面での電磁波シールド機能が得られる。
《第8の実施形態》
 この発明の第8の実施形態に係る電子部品の製造方法について説明する。
 本実施形態は、前述の第6、および第7の実施形態に係る電子部品の製造方法とは、シールド層形成工程の過程が相違する。
 図9(H8-1)は、シールド層形成工程の第1過程における状態図である。この第1過程では、封止層4の天面を覆うように導電性の樹脂層6Aをセットして、パック30に入れる。パック30としては、柔軟性とガスバリア性を備え、内層にシーラント層を有するラミネートパックを用いる。この第1過程を終えると、この工程の第2過程に移行する。
 図9(H8-2)は、シールド層形成工程の第2過程における状態図である。この第2過程では、基板を入れたパック30を不図示の真空チャンバー内の加熱ステージ51にセットし、パック内を所定の真空度(50~150Pa程度)に減圧するとともに、樹脂層6Aの硬化温度未満の所定の加熱条件で加熱する。これにより、樹脂層6A中の溶剤成分が揮発しやすくなり、さらにボイドを効率的に抜くことができる。この第2過程を終えると、この工程の第3過程に移行する。
 図9(H8-3)は、シールド層形成工程の第3過程における状態図である。この第3過程では、パック30をシールヒータ52およびシール用当て板53を用いてシールして密封した後、真空チャンバーを開放して大気圧下に戻す。この第3過程を終えると、この工程の第4過程に移行する。
 図9(H8-4)は、シールド層形成工程の第4過程における状態図である。パック30内は減圧されているため、外気の大気圧との差でパック30内に圧力がかかり、パック30内で樹脂層6Aが流動してハーフカット溝5に樹脂層6Aが流れ込む。なお、静水圧装置のような加圧装置を用いると、樹脂層6Aのハーフカット溝5への流動がより容易になる。
 本実施形態によれば、溶剤などによるボイドを効率的に抜くことができる。また、プレス機を使用することなくシールド層を形成でき、シールド層形成工程を低コストに実施できる。
 1…基板
 1A…グランド電極
 2A,2B…素子
 3…ポスト電極
 3A…ヘッド
 4…封止層
 4A…研削ローラまたはダイサ
 4B…研磨バフ
 5…ハーフカット溝
 51…加熱ステージ
 6…シールド層
 6A…樹脂シート(樹脂層)
 6B…熱板プレス設備
 6C…金属箔

Claims (11)

  1.  グランド電極を備える基板と、前記基板に実装されるチップ状の素子と、前記グランド電極に導通するとともに前記素子の天面よりも上方まで立設するポスト電極と、前記基板に積層されて前記素子を封止する絶縁性の封止層と、を備える積層体を形成する積層体形成工程と、
     前記基板に積層した前記封止層の硬化を進展させて、前記封止層に形状収縮を生じさせる硬化工程と、
     前記形状収縮が生じた前記封止層から突出している前記ポスト電極の端部に導通させて、前記封止層の天面を覆う導電性のシールド層を形成するシールド層形成工程と、を有する電子部品の製造方法。
  2.  グランド電極を備える基板と、前記基板に実装されるチップ状の素子と、前記グランド電極に導通するとともに前記素子の天面よりも上方まで立設するポスト電極と、前記基板に積層されて前記素子を封止する絶縁性の封止層と、を備える積層体を形成する積層体形成工程と、
     前記積層体の天面形状に応じて変形する研磨体を用いて、前記積層体の天面を研磨する研磨工程と、
     研磨が施された前記封止層から突出している前記ポスト電極の端部に導通させて、前記封止層の天面を覆う導電性のシールド層を形成するシールド層形成工程と、を有する電子部品の製造方法。
  3.  研磨が施された前記封止層の硬化を進展させて、前記封止層に形状収縮を生じさせる硬化工程を有する、請求項2に記載の電子部品の製造方法。
  4.  前記研磨体は、研磨バフおよび研磨剤を備える請求項2または3に記載の電子部品の製造方法。
  5.  前記積層体形成工程は、前記積層体の天面を研削して、前記ポスト電極を前記封止層から露出させる、請求項1~4のいずれかに記載の電子部品の製造方法。
  6.  前記シールド層形成工程は、樹脂層を用いて前記封止層と金属箔とを接着して前記シールド層を形成する、請求項1~5のいずれかに記載の電子部品の製造方法。
  7.  前記樹脂層は、厚み方向の加圧により互いに接触する導電粒子が分散させた異方導電性の樹脂層である、請求項6に記載の電子部品の製造方法。
  8.  前記シールド層形成工程よりも前に、前記積層体の天面から少なくとも前記素子の側面を覆う位置まで到達するハーフカット溝を形成するハーフカット工程を有し、
     前記シールド層形成工程は、前記ハーフカット溝にも前記シールド層を形成する、請求項1~7のいずれかに記載の電子部品の製造方法。
  9.  前記ハーフカット工程は、前記グランド電極を前記ハーフカット溝に露出させる、請求項8に記載の電子部品の製造方法。
  10.  前記シールド層形成工程は、ガスバリア性を備えたパックに前記積層体を入れて減圧下で密封し、前記パックに対して圧力を加える、請求項1~9のいずれかに記載の電子部品の製造方法。
  11.  前記シールド層形成工程は、前記パックに封入された前記積層体を加熱する、請求項10に記載の電子部品の製造方法。
PCT/JP2010/052401 2009-03-25 2010-02-18 電子部品の製造方法 WO2010109985A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-073485 2009-03-25
JP2009073485 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010109985A1 true WO2010109985A1 (ja) 2010-09-30

Family

ID=42780681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052401 WO2010109985A1 (ja) 2009-03-25 2010-02-18 電子部品の製造方法

Country Status (1)

Country Link
WO (1) WO2010109985A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056880A (ja) * 2012-09-11 2014-03-27 Nec Corp モジュール部品及びその製造方法
JP2016093874A (ja) * 2014-11-17 2016-05-26 株式会社ディスコ パッケージ基板の加工方法
WO2016158935A1 (ja) * 2015-03-30 2016-10-06 東レエンジニアリング株式会社 半導体装置の製造方法、半導体実装装置および半導体装置の製造方法で製造されたメモリデバイス
JP2018093236A (ja) * 2018-03-07 2018-06-14 東洋インキScホールディングス株式会社 電子部品モジュールの製造方法
JP2019091866A (ja) * 2017-11-17 2019-06-13 東洋インキScホールディングス株式会社 電子素子の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243754A (ja) * 1999-02-24 2000-09-08 Sanyo Electric Co Ltd 半導体装置
JP2001223321A (ja) * 1999-11-29 2001-08-17 Matsushita Electric Ind Co Ltd 半導体パッケージ及び半導体パッケージの製造方法
JP2005311230A (ja) * 2004-04-26 2005-11-04 Murata Mfg Co Ltd 回路モジュールおよびこの回路モジュールを用いた回路装置
JP2008130955A (ja) * 2006-11-24 2008-06-05 Murata Mfg Co Ltd 部品内蔵多層配線基板装置及びその製造方法
WO2008136251A1 (ja) * 2007-05-02 2008-11-13 Murata Manufacturing Co., Ltd. 部品内蔵モジュール及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243754A (ja) * 1999-02-24 2000-09-08 Sanyo Electric Co Ltd 半導体装置
JP2001223321A (ja) * 1999-11-29 2001-08-17 Matsushita Electric Ind Co Ltd 半導体パッケージ及び半導体パッケージの製造方法
JP2005311230A (ja) * 2004-04-26 2005-11-04 Murata Mfg Co Ltd 回路モジュールおよびこの回路モジュールを用いた回路装置
JP2008130955A (ja) * 2006-11-24 2008-06-05 Murata Mfg Co Ltd 部品内蔵多層配線基板装置及びその製造方法
WO2008136251A1 (ja) * 2007-05-02 2008-11-13 Murata Manufacturing Co., Ltd. 部品内蔵モジュール及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014056880A (ja) * 2012-09-11 2014-03-27 Nec Corp モジュール部品及びその製造方法
JP2016093874A (ja) * 2014-11-17 2016-05-26 株式会社ディスコ パッケージ基板の加工方法
WO2016158935A1 (ja) * 2015-03-30 2016-10-06 東レエンジニアリング株式会社 半導体装置の製造方法、半導体実装装置および半導体装置の製造方法で製造されたメモリデバイス
US10181460B2 (en) 2015-03-30 2019-01-15 Toray Engineering Co., Ltd. Method for manufacturing semiconductor device, semiconductor mounting device, and memory device manufactured by method for manufacturing semiconductor device
JP2019091866A (ja) * 2017-11-17 2019-06-13 東洋インキScホールディングス株式会社 電子素子の製造方法
JP2018093236A (ja) * 2018-03-07 2018-06-14 東洋インキScホールディングス株式会社 電子部品モジュールの製造方法

Similar Documents

Publication Publication Date Title
CN105309055B (zh) 导电膏的填充方法、以及多层印刷布线板的制造方法
TWI575617B (zh) An electronic component, an electronic component manufacturing method, and an electronic component manufacturing apparatus
WO2010109985A1 (ja) 電子部品の製造方法
CN102215639A (zh) 半导体芯片内置配线基板及其制造方法
WO2010070806A1 (ja) 半導体装置とフリップチップ実装方法およびフリップチップ実装装置
JP2005039094A (ja) 半導体チップ内蔵配線板、半導体チップ内蔵配線板の製造方法
US10319759B2 (en) Image pickup element mounting substrate and image pickup device
JP5083161B2 (ja) 電子部品の製造方法及び製造装置
JP6017398B2 (ja) 半導体装置の製造方法
JP5223657B2 (ja) 電子部品の製造方法及び製造装置
JP5273154B2 (ja) 電子部品モジュールの製造方法
WO2017110614A1 (ja) 半導体装置およびその製造方法
JP2010272848A (ja) 電子部品の製造方法
JP2010278421A (ja) 電子部品の製造方法
JP5081267B2 (ja) 回路部品内蔵モジュールおよび回路部品内蔵モジュールの製造方法
JP4842177B2 (ja) 回路基板及びパワーモジュール
JP2012253263A (ja) 半導体チップおよびその製造方法
JP2008108782A (ja) 電子装置およびその製造方法
JP3833938B2 (ja) リードフレームおよびその製造方法、ならびに熱伝導性基板の製造方法
JP5451053B2 (ja) フリップチップ実装方法とフリップチップ実装装置
JP4977194B2 (ja) 電子部品の実装方法
JP3854979B2 (ja) 電子部品の実装方法及び基板モジュール
JP3912342B2 (ja) 電子部品実装方法
JP2007049100A (ja) 貼着装置、膜の貼着方法、半導体装置及び表示装置
WO2010095210A1 (ja) 部品内蔵モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP