WO2010109893A1 - 光ファイバ母材の製造方法及び光ファイバ - Google Patents

光ファイバ母材の製造方法及び光ファイバ Download PDF

Info

Publication number
WO2010109893A1
WO2010109893A1 PCT/JP2010/002153 JP2010002153W WO2010109893A1 WO 2010109893 A1 WO2010109893 A1 WO 2010109893A1 JP 2010002153 W JP2010002153 W JP 2010002153W WO 2010109893 A1 WO2010109893 A1 WO 2010109893A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
optical fiber
quartz tube
region
fiber preform
Prior art date
Application number
PCT/JP2010/002153
Other languages
English (en)
French (fr)
Inventor
市井健太郎
谷川庄二
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2010109893A1 publication Critical patent/WO2010109893A1/ja
Priority to US13/243,092 priority Critical patent/US8693833B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01838Reactant delivery systems, e.g. reactant deposition burners for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the deposited glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01853Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/04Fibre optics, e.g. core and clad fibre compositions
    • C03C13/045Silica-containing oxide glass compositions
    • C03C13/046Multicomponent glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0095Solution impregnating; Solution doping; Molecular stuffing, e.g. of porous glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/28Doped silica-based glasses containing non-metals other than boron or halide containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/3488Ytterbium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/34Doped silica-based glasses containing metals containing rare earth metals
    • C03C2201/36Doped silica-based glasses containing metals containing rare earth metals containing rare earth metals and aluminium, e.g. Er-Al co-doped
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile

Definitions

  • the present invention relates to an optical fiber in which at least a rare earth element, phosphorus and aluminum are co-added to a core, and a method for manufacturing an optical fiber preform suitable for manufacturing the optical fiber.
  • nonlinear optical effect As a factor that hinders the performance of fiber amplifiers and fiber lasers, a phenomenon called nonlinear optical effect is known. This is a phenomenon that occurs when the power of light propagating through the core of the optical fiber is large, and causes problems such as wavelength conversion of light. For example, in the case of a high-power fiber laser whose output light power exceeds several tens of watts, light having a wavelength slightly longer than the wavelength of the output light is generated by the generation of stimulated Raman scattering, which is a kind of nonlinear optical effect. Amplifying this causes a problem that the spectrum width of the output light is widened. Therefore, it is important to design the optical fiber so as to suppress the occurrence of nonlinear optical effects typified by stimulated Raman scattering.
  • the nonlinear constant ⁇ of the optical fiber is given by the following equation (1).
  • (2 ⁇ / ⁇ ) ⁇ (n 2 / A eff ) (1)
  • is the wavelength
  • n 2 is the nonlinear refractive index
  • a eff is the effective cross-sectional area. As is clear from the equation (1), it is effective to increase A eff in order to suppress the occurrence of the nonlinear optical effect.
  • the following is known about the relationship between the distribution of the relative refractive index difference of the optical fiber and A eff . 6 to 8 exemplify the distribution shape of the relative refractive index difference in the radial cross section of the core of the optical fiber.
  • the horizontal axis represents the radial position
  • the vertical axis represents the relative refractive index difference (%).
  • the magnitude of A eff is “optical fiber in FIG. 6> optical fiber in FIG. 7> optical fiber in FIG. 8” if the core diameter and the relative refractive index difference are the same (see Non-Patent Document 1). As shown in FIGS.
  • the “relative index difference ( ⁇ )” is expressed by the following formula (2).
  • n core represents the refractive index of the core
  • n clad represents the refractive index of the cladding.
  • ⁇ (%) (n core ⁇ n clad ) / n core ⁇ 100 (2)
  • an optical fiber preform by adding ytterbium (Yb) as a rare earth element glass fine particles made of silicon dioxide (SiO 2 ) are deposited in a quartz tube by MCVD, and Yb and aluminum (Al
  • Yb and Al glass fine particles made of silicon dioxide (SiO 2 ) are deposited in a quartz tube by MCVD, and Yb and aluminum (Al
  • Al A method of adding Yb and Al by an immersion method using an aqueous solution containing
  • the distribution shape of the relative refractive index difference of the optical fiber preform manufactured by this method is usually a bell shape shown in FIG. This is because a distribution occurs in the radial direction in the bulk density of the glass fine particles deposited by the MCVD method.
  • the quartz tube is heated from the outer wall surface, so that the temperature is higher as the position is closer to the inner wall surface of the quartz tube, and the bulk density of the glass fine particles is higher.
  • the closer to the center of the quartz tube the lower the temperature and the lower the bulk density.
  • the smaller the bulk density of the glass particles that is, the higher the porosity
  • a method for producing a rare earth-doped optical fiber preform a method is known in which glass fine particles are deposited in a quartz tube by MCVD, and rare earth elements are added to the glass fine particles by immersion. . Further, a method of co-adding Al is known in order to suppress aggregation (clustering) of rare earth ions.
  • a method of adding Al a method of adding by an immersion method (see Patent Document 1), and a method of flowing AlCl 3 gas into a quartz tube when depositing glass particles in the quartz tube by an MCVD method (Patent Document 2). Reference).
  • a method for adding phosphorus (P) a method is disclosed in which POCl 3 gas flows into the quartz tube when glass particles are deposited in the quartz tube by the MCVD method (see Patent Document 3).
  • the present invention has been made in view of the above circumstances, and it is easy to control the concentration of rare earth elements, has a large effective area (A eff ), and effectively generates nonlinear optical effects in fiber amplifiers and fiber lasers. It is an object of the present invention to provide an optical fiber that can be suppressed and a method for manufacturing an optical fiber preform suitable for manufacturing the optical fiber.
  • a first aspect of the present invention is a method of manufacturing an optical fiber preform in which a rare earth element is added to a core, and deposits glass particles mainly made of silicon dioxide in a quartz tube by MCVD. Adding the rare earth element and aluminum to the glass fine particles in the quartz tube by an immersion method; heating the quartz tube while flowing a gas containing phosphorus into the quartz tube, and adding the phosphorus And sintering the glass fine particles in the quartz tube; and heating and collapsing the quartz tube to which the rare earth element, the aluminum and the phosphorus are added.
  • ytterbium and the aluminum to the glass fine particles using an aqueous solution of ytterbium trichloride and aluminum trichloride, or ytterbium trichloride and aluminum trichloride hexahydrate.
  • the gas containing phosphorus is preferably phosphorus oxychloride gas.
  • a second aspect of the present invention is an optical fiber obtained by spinning an optical fiber preform manufactured by the above method, wherein the concentration of aluminum oxide in the radial cross section of the core is dipentapentoxide. There is no region higher than the concentration of phosphorus, or the region where the concentration of diphosphorus pentoxide is higher than the concentration of aluminum oxide than the region where the concentration of aluminum oxide is higher than the concentration of diphosphorus pentoxide. Is wide.
  • the concentration of diphosphorus pentoxide and the concentration of aluminum oxide are substantially equal.
  • the concentration of the rare earth element is easily controlled, the effective area (A eff ) is large, and in the fiber amplifier and the fiber laser, the occurrence of the nonlinear optical effect can be effectively suppressed, and the light An optical fiber preform suitable for fiber production is obtained.
  • FIG. 6 is a graph showing measurement results of a relative refractive index difference in a radial cross section of the optical fiber preform manufactured in Example 1.
  • FIG. 6 is a graph showing an analysis result of concentration distributions of Al 2 O 3 and P 2 O 5 in a radial cross section of the optical fiber preform manufactured in Example 1.
  • FIG. It is a graph which illustrates the distribution shape of the relative refractive index difference of the optical fiber preform produced by adding Y by immersion method and adding P by sintering without adding Yb.
  • 6 is a graph showing the measurement result of the relative refractive index difference of the optical fiber preform produced in Comparative Example 1.
  • radial cross-section of the optical fiber base material manufactured in Comparative Example 1 is a graph showing the analysis results of the concentration distribution of Al 2 O 3 and P 2 O 5 by EPMA. It is a figure which illustrates the distribution shape of the relative refractive index difference in the radial direction cross section of a core about an optical fiber with a large effective cross-sectional area ( Aeff ). It is a figure which shows the other example of the distribution shape of the relative-refractive-index difference in the radial direction cross section of a core about an optical fiber with a large effective area ( Aeff ). It is a figure which illustrates the distribution shape of the relative refractive index difference in the radial cross section of a core about an optical fiber with a small effective area ( Aeff ).
  • the values of the dopant concentration and relative refractive index difference of the optical fiber preform or optical fiber shown below are parts (10 places) that are equidistant from the center of the core in the radial cross section unless otherwise specified. It is the average value of each value in.
  • the method for producing an optical fiber preform of the present invention is a method for producing an optical fiber preform in which a rare earth element is added to a core, and glass fine particles mainly made of silicon dioxide (MCVD (modified chemical vapor deposition) method).
  • MCVD modified chemical vapor deposition
  • a step of depositing soot in the quartz tube hereinafter abbreviated as soot deposition step
  • a step of adding rare earth elements and aluminum to the glass fine particles in the quartz tube by a liquid immersion method hereinafter referred to as a liquid immersion step.
  • a step of heating the quartz tube while allowing a gas containing phosphorus to flow into the quartz tube and sintering the glass particles in the quartz tube while adding phosphorus (hereinafter abbreviated as a sintering step).
  • a process of heating and collapsing the quartz tube to which the rare earth element, aluminum and phosphorus are added (hereinafter referred to as a collapse process) Having, and abbreviated) and.
  • soot deposition process glass fine particles (soot) mainly made of silicon dioxide (SiO 2 ) are deposited in the quartz tube by the MCVD method.
  • the MCVD method may be performed by a normal method.
  • a glass mainly made of silicon dioxide means “silica glass”.
  • deposit in the quartz tube means “deposit on the inner surface of the quartz tube”.
  • Al aluminum
  • P phosphorus
  • AlCl 3 aluminum trichloride
  • P phosphorus oxychloride
  • Al and P it is necessary to adjust the flow rate of the AlCl 3 gas or POCl 3 gas as the raw material gas in order to control the amount of addition.
  • the gas flow rate changes, the bulk density of the deposited glass particles changes greatly, and the concentration of the rare earth element added in the immersion process varies.
  • rare earth elements and Al are added to the glass fine particles deposited in the quartz tube by the liquid immersion method.
  • the rare earth element may be appropriately selected according to the purpose, but ytterbium (Yb), erbium (Er), thulium (Tm), yttrium (Y), holmium (Ho), samarium (Sm), praseodymium (Pr) And neodymium (Nd). These rare earth elements may be used individually by 1 type, and may use 2 or more types together.
  • Yb is particularly preferable in consideration of manufacturing an optical fiber from the manufactured optical fiber preform and configuring a fiber amplifier or a fiber laser therefrom.
  • the liquid immersion method may be performed by a normal method.
  • an aqueous solution of a raw material compound containing a rare earth element or Al may be prepared, and a quartz tube having glass particles deposited thereon may be immersed in the aqueous solution for a predetermined time.
  • the rare earth element raw material compound is preferably a rare earth chloride.
  • YbCl 3 ytterbium trichloride
  • AlCl 3 or aluminum trichloride hexahydrate (AlCl 3 ⁇ 6H 2 O) are preferable.
  • the rare earth element raw material compound usually has a low vapor pressure, it is very difficult to add it in the gas phase in the quartz tube. Therefore, it is extremely difficult to control the concentration of the rare earth element in the core to a desired value. Therefore, in the present invention, rare earth elements are added by the immersion method. Further, the raw material compound of Al has a relatively low gasification temperature. For example, if AlCl 3 is heated at about 200 ° C., it can easily flow into the quartz tube in the gas phase. However, in order to control the concentration of Al in the core to a desired value, it is necessary to heat the gas transfer line and maintain it at a high temperature as described in the soot deposition process. The same applies to the sintering step described later. Therefore, in the present invention, in order to control the concentration of Al, Al is not added in a gas phase but is added by an immersion method.
  • the amount of rare earth element and Al added to the glass fine particles in the quartz tube can be adjusted by adjusting the concentration of the raw material compound in the solution of these raw material compounds used in the immersion method.
  • the quartz tube After immersion, it is preferable to take out the quartz tube and dry the glass particles in the quartz tube.
  • the drying is preferably performed by continuously flowing a gas such as oxygen gas into the quartz tube.
  • the quartz tube is heated while flowing a gas containing phosphorus into the quartz tube in which rare earth elements and Al are added to the glass particles, thereby sintering the glass particles in the quartz tube while adding phosphorus.
  • Sintering may be performed by a normal method except that a gas containing phosphorus is introduced.
  • the gas containing phosphorus POCl 3 is preferable.
  • POCl 3 has a low gasification temperature and can easily flow into the quartz tube in the gas phase.
  • phosphorus is suitable for addition in the gas phase and is not suitable for addition in the liquid immersion process. Therefore, in the present invention, phosphorus is added in the sintering process.
  • the rare earth element and Al are added in the liquid immersion process, and P is added in the sintering process, whereby the Al concentration distribution and the P concentration distribution in the optical fiber preform are obtained.
  • the Al concentration distribution can be confirmed by aluminum oxide (Al 2 O 3 ) concentration distribution
  • the P concentration distribution can be confirmed by diphosphorus pentoxide (P 2 O 5 ) concentration distribution.
  • the optical fiber preform manufactured according to the present invention there is no region where the concentration of Al 2 O 3 is higher than the concentration of P 2 O 5 (hereinafter, abbreviated as Al high concentration region) in the radial cross section of the core.
  • Al high concentration region the region where the concentration of P 2 O 5 is higher than the concentration of Al 2 O 3 (hereinafter, abbreviated as P high concentration region) is wider than the Al high concentration region.
  • the concentration of P 2 O 5 and Al 2 O 3 the difference is smaller radially inner region than 0.5 mol% as the first region, the difference between the density of the density and Al 2 O 3 of P 2 O 5 is 0.5 mol% or more and a concentration of
  • the ratio of the second region to the total of the first region and the second region is preferably 50% or more, and 60% or more. More preferably.
  • the difference between the concentration of P 2 O 5 and the concentration of Al 2 O 3 is smaller in the first region in the radial cross section of the core.
  • the concentration of P 2 O 5 and Al 2 O More preferably, the concentration of 3 is substantially equal. In such a region, P and Al cancel each other's increase in refractive index and become close to the relative refractive index difference of SiO 2 .
  • the optical fiber preform manufactured according to the present invention has the dopant concentration distribution as described above, so that the distribution shape of the relative refractive index difference of the core in the radial cross section is as shown in FIG. 6 or FIG. It is close to a rectangle and has good characteristics.
  • optical fiber according to the present invention obtained by spinning the optical fiber preform manufactured by the method of the present invention has no Al high concentration region in the radial cross section of the core, or more than the Al high concentration region.
  • the P high concentration region is wider.
  • the spinning of the optical fiber preform may be performed by a normal method.
  • the optical fiber of the present invention preferably has a core diameter of 20 to 35 ⁇ m, more preferably 25 to 30 ⁇ m.
  • the core diameter may be increased as described above by reducing the relative refractive index difference represented by the formula (2). Thereby, it is possible to achieve both single mode propagation or minority mode propagation and suppression of the nonlinear optical effect.
  • the optical fiber of the present invention has a distribution shape of a dopant concentration distribution and a relative refractive index difference in the radial cross section, similar to the optical fiber preform. That is, in the optical fiber of the present invention, the distribution shape of the relative refractive index difference is close to a rectangle as shown in FIG. 6 or 7, the electrolytic distribution of light propagating through the core of the optical fiber is widened, and A eff is large. Become. Therefore, it is possible to produce a fiber amplifier or fiber laser in which the generation of nonlinear optical effects such as stimulated Raman scattering is effectively suppressed. Also, the concentration of rare earth elements can be easily controlled.
  • Table 1 shows the addition process of each dopant in the production of the optical fiber preform and the optical characteristics of the obtained optical fiber preform for each of the following Examples and Comparative Examples. Details will be sequentially described below.
  • SiO 2 glass fine particles (soot) were deposited in the quartz tube by the MCVD method.
  • Yb and Al were added to the SiO 2 glass fine particles by a liquid immersion method.
  • a quartz tube on which SiO 2 glass fine particles are deposited is immersed in a solution in which YbCl 3 and AlCl 3 .6H 2 O are dissolved in pure water for 3 hours. After removing the solution, the quartz tube is placed in the quartz tube.
  • the SiO 2 glass fine particles were dried for 6 hours by continuously flowing oxygen gas.
  • the quartz tube was heated with an oxyhydrogen burner to sinter the SiO 2 glass fine particles while adding P.
  • the quartz tube was heated at a higher temperature with an oxyhydrogen burner to perform collapse, thereby producing a solid optical fiber preform.
  • the distribution shape of the relative refractive index difference in the radial cross section of the obtained optical fiber preform was measured. The measurement results are shown in FIG.
  • the optical fiber preform was cut in the radial direction, and the concentration distribution of Al 2 O 3 and P 2 O 5 in the radial direction of the cross section was subjected to line analysis by EPMA.
  • the analysis results are shown in FIG. 1 and 2, only the graph corresponding to the radius portion of the core is shown.
  • the horizontal axis indicates the position in the radial direction, and “0” indicates the center of the core. The same applies to the following drawings.
  • the distribution shape of the relative refractive index difference was similar to the distribution shape of FIG. Further, as shown in FIG. 2, the concentration distribution of Al 2 O 3 and the concentration distribution of P 2 O 5 are different, and the P high concentration region is wider than the Al high concentration region.
  • the concentration of P 2 O 5 and the concentration of Al 2 O 3 In a region where the concentration of P 2 O 5 is 0.5 mol% or more (region where the position in the radial direction is approximately 0 to 0.08), the concentration of P 2 O 5 and the concentration of Al 2 O 3
  • the first region on the radially inner side where the difference is smaller than 0.5 mol% is a region having a position in the radial direction of approximately 0 to 0.05, and the difference between the concentration of P 2 O 5 and the concentration of Al 2 O 3
  • the second region radially outside the first region where the difference is 0.5 mol% or more is a region whose position in the radial direction is approximately 0.05 to 0.08.
  • the ratio of the second area to the total of the first area and the second area is approximately 61%. As shown here, in the first region, the difference between the concentration of P 2 O 5 and the concentration of Al 2 O 3 is small, and the concentration of P 2 O 5 and the concentration of Al 2 O 3 are substantially equal. .
  • Example 1 In the same manner as in Example 1, SiO 2 glass fine particles were deposited in the quartz tube by the MCVD method. Then, except for not using AlCl 3 ⁇ 6H 2 O, in the same manner as in Example 1, by immersion method, the addition of Yb to the SiO 2 glass particles were dried SiO 2 glass particles . Next, POCl 3 was bubbled with oxygen gas and allowed to flow into the quartz tube. At the same time, while the AlCl 3 gas was also allowed to flow into the quartz tube, the quartz tube was heated with an oxyhydrogen burner, and while adding P and Al, SiO 2 Two glass particulates were sintered. Next, collapse was performed in the same manner as in Example 1 to produce an optical fiber preform.
  • the distribution of the relative refractive index difference was measured in the same manner as in Example 1, and the concentration distribution of Al 2 O 3 and P 2 O 5 was linearly analyzed.
  • the measurement result of the relative refractive index difference distribution is shown in FIG. 4, and the analysis result of the concentration distribution is shown in FIG.
  • the distribution of the relative refractive index difference was similar to the profile shown in FIG. 8, close to a bell shape, and was not good.
  • the concentration distribution of Al 2 O 3 and the concentration distribution of P 2 O 5 are substantially the same in the radial cross section, and the increase in the refractive index is canceled out at any position in the radial direction. Since Yb 2 O 3 is added by the immersion method, the concentration distribution of Yb 2 O 3 is similar to the concentration distribution of Al 2 O 3 in the optical fiber preform of Example 1, and the bell It was in the shape.
  • the distribution shape of the relative refractive index difference is considered to be a bell shape as shown in FIG.
  • the obtained optical fiber preform is not good in characteristics, and in addition, in this manufacturing method, Al is added in the gas phase, so the gas transport line needs to be maintained at a high temperature. As a result, there is a problem that the manufacturing apparatus becomes complicated and the manufacturing cost increases.
  • the distribution shape of the relative refractive index difference was close to a bell shape as in Comparative Example 1, and was not good.
  • the concentration distribution of Al 2 O 3 and the concentration distribution of P 2 O 5 are the same as in Comparative Example 1, and for the same reason as in Comparative Example 1, the distribution shape of the relative refractive index difference is bell-shaped. It is thought that it has become.
  • Comparative Example 8 In the same manner as in Example 1, SiO 2 glass fine particles were deposited in the quartz tube by the MCVD method. Next, Yb and P were added to the SiO 2 glass fine particles by a liquid immersion method in the same manner as in Comparative Example 7, and dried. Thereafter, the SiO 2 glass fine particles were sintered and collapsed. However, as in Comparative Example 7, P could not be added at the desired sufficient concentration. Also in this manufacturing method, since Al is added in the gas phase, it is necessary to maintain the gas transport line at a high temperature. As a result, there is a problem that the manufacturing apparatus becomes complicated and the manufacturing cost increases.
  • Example 2 Using the optical fiber preform produced in Example 1, an optical fiber in which Yb, P and Al were co-added to the core was produced. Specifically, it is as follows. After forming a clad part by an external method using an optical fiber preform, the cross-sectional shape in the radial direction of the clad part was processed into a regular heptagon by mechanical polishing. Next, spinning was performed, and the outer periphery was coated with a low refractive index resin having NA (Numerical Aperture) of 0.46. Further, it was coated with a normal high refractive index ultraviolet curable resin to obtain a double clad optical fiber.
  • NA Numerical Aperture
  • the obtained optical fiber had a regular heptagonal cross section in the radial direction and a core diameter (diameter) of 26 ⁇ m.
  • the cutoff wavelength was 1.69 ⁇ m, and the effective area (A eff ) was 393 ⁇ m 2 .
  • the bending loss when used with a diameter of 150 mm was at a level causing no practical problem.
  • Comparative Example 9 Using the optical fiber preform produced in Comparative Example 1, an optical fiber having the same shape and size was produced in the same manner as in Example 2. At this time, the cut-off wavelength was adjusted to 1.69 ⁇ m. The obtained optical fiber had an A eff of 288 ⁇ m 2 . The bending loss when used with a diameter of 150 mm was at a level causing no practical problem.
  • the optical fibers of Example 2 and Comparative Example 9 both have substantially the same A eff even though the cut-off wavelength is the same, and there is a difference of about 1.4 times. This is because the optical fiber preform of Example 1 has a distribution shape of the relative refractive index difference closer to a rectangle, and the electrolytic distribution of the light propagating through the core of the optical fiber is widened.
  • Example 1 ⁇ Evaluation of suppression effect of stimulated Raman scattering>
  • Pulsed seed light with an average output of 1 W at a wavelength of 1060 nm was incident on the core of the optical fiber, and excitation light with an output of 50 W at a wavelength of 915 nm was incident on the cladding to amplify the light with a wavelength of 1060 nm.
  • a filter for cutting light having a wavelength of 1100 nm or more was disposed on the exit side of the amplification optical fiber.
  • first-order stimulated Raman scattered light is generated in the vicinity of a wavelength of 1110 nm. Further, secondary stimulated Raman scattered light is generated in the vicinity of a wavelength of 1160 nm. Therefore, by arranging the filter, the stimulated Raman scattering light is cut from the output light, and the output light near the wavelength of 1060 nm is selectively extracted, thereby suppressing the spread of the wavelength of the output light. As a result, it is possible to solve the problem of chromatic aberration that occurs when light other than the desired wavelength is included and the output light is collected by the lens. Such suppression of wavelength broadening by using a filter is a commonly applied means. The power of the output light obtained through the filter as described above was measured and found to be 32W.
  • Test Example 2 Using the optical fiber manufactured in Comparative Example 9 and measuring the power of the output light obtained through the filter in the same manner as in Test Example 1, it was 27 W.
  • the concentration of the rare earth element is easily controlled, the effective area (A eff ) is large, and in the fiber amplifier and the fiber laser, the occurrence of the nonlinear optical effect can be effectively suppressed, and the light
  • An optical fiber preform manufacturing method suitable for manufacturing a fiber can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Lasers (AREA)
  • Glass Compositions (AREA)

Abstract

 コアに希土類元素が添加された光ファイバ母材の製造方法であって、MCVD法により、主に二酸化ケイ素からなるガラス微粒子を石英管内に堆積させる工程と;液浸法により、前記希土類元素とアルミニウムとを、前記石英管内のガラス微粒子に添加する工程と;前記石英管内にリンを含むガスを流入させながら前記石英管を加熱して、前記リンを添加しながら前記石英管内のガラス微粒子を焼結させる工程と;前記希土類元素、前記アルミニウム及び前記リンを添加した前記石英管を加熱してコラップスする工程と;を有する。

Description

光ファイバ母材の製造方法及び光ファイバ
 本発明は、コアに少なくとも希土類元素、リン及びアルミニウムを共添加した光ファイバと、その製造に好適な光ファイバ母材の製造方法に関する。
 本願は、2009年3月26日に、日本に出願された特願2009-075321号に基づき優先権を主張し、その内容をここに援用する。
 ファイバアンプやファイバレーザの性能を阻害する要因として、非線形光学効果と呼ばれる現象が知られている。これは、光ファイバのコアを伝搬する光のパワーが大きい場合に発生する現象であり、光の波長変換などの問題を生じさせる。例えば、出力光パワーが数十Wを超えるような高出力ファイバレーザの場合、非線形光学効果の一種である誘導ラマン散乱の発生により、出力光の波長よりもやや長い波長の光が発生する。これが増幅されることで、出力光のスペクトル幅が広がるという問題が生ずる。したがって、誘導ラマン散乱に代表される非線形光学効果の発生を抑制するように、光ファイバを設計することが重要である。
 一般に、光ファイバの非線形定数γは、下記式(1)によって与えられる。
 γ=(2π/λ)×(n/Aeff)・・・(1)
 式(1)中、λは波長、nは非線形屈折率、Aeffは有効断面積である。式(1)から明らかなように、非線形光学効果の発生を抑制するためには、Aeffを大きくすることが有効である。
 一方、光ファイバの比屈折率差の分布とAeffとの関係については、以下のことが知られている。図6~8に、光ファイバのコアの径方向断面における比屈折率差の分布形状を例示する。図中、横軸は半径位置、縦軸は比屈折率差(%)を示す。Aeffの大きさは、コア径と比屈折率差が同じであれば、「図6の光ファイバ>図7の光ファイバ>図8の光ファイバ」となる(非特許文献1参照)。図6や図7に示すように、比屈折率差の分布形状が矩形に近いほど、光ファイバのコアを伝搬する光の電解分布が広がり、Aeffが大きくなる。一方、図8に示すように、比屈折率差の分布形状が釣鐘状になると、Aeffが小さくなる。ここで、「比屈折率差(Δ)」は、下記式(2)で表される。式(2)中、ncoreはコアの屈折率を、ncladはクラッドの屈折率をそれぞれ示す。
 Δ(%)=(ncore-nclad)/ncore×100・・・(2)
 例えば、希土類元素としてイッテルビウム(Yb)を添加して光ファイバ母材を製造する方法としては、MCVD法により、石英管内に二酸化ケイ素(SiO)からなるガラス微粒子を堆積させ、Ybとアルミニウム(Al)とを含む水溶液を使用して、液浸法によりYbとAlとを添加する方法が知られている。この方法で作製した光ファイバ母材の比屈折率差の分布形状は、通常、図8に示す釣鐘状となる。これは、MCVD法で堆積させたガラス微粒子のかさ密度に、径方向において分布が生じるからである。MCVD法では、石英管をその外壁面上から加熱するため、石英管の内壁面に近い位置ほど温度が高くなり、ガラス微粒子はかさ密度が高くなる。一方、石英管の中心に近い位置ほど温度が低くなり、かさ密度が低くなる。液浸法においては、ガラス微粒子のかさ密度が小さいほど(すなわち、空孔率が高いほど)ドーパントの添加量が多くなる。したがって、液浸法でYbとAlとを添加すると、比屈折率差の分布形状は図8に示す釣鐘状となる。
 上記のように、希土類添加光ファイバ母材の製造方法としては、MCVD法により、石英管内にガラス微粒子を堆積させ、このガラス微粒子に液浸法により、希土類元素を添加する方法が知られている。また、希土類イオンの凝集(クラスタリング)を抑制するために、Alを共添加する方法が知られている。Alを添加する方法としては、液浸法により添加する方法(特許文献1参照)、MCVD法により石英管内にガラス微粒子を堆積させる際に、AlClガスを石英管内に流入させる方法(特許文献2参照)が開示されている。
 一方、リン(P)の添加方法としては、MCVD法により石英管内にガラス微粒子を堆積させる際に、POClガスを石英管内に流入させる方法(特許文献3参照)が開示されている。
日本国特許第2931026号公報 日本国特開2003-137542号公報 日本国特公平04-059254号公報
Proceeding of the SPIE,Vol.5335,pp.132-139(2004)
 上述の通り、光ファイバ母材の製造時に、希土類元素、Al及びPを添加する方法については、すでに開示されている。そして、上記のようにMCVD法と液浸法を併用して所望のドーパントを添加した後、石英管を加熱してガラス微粒子を焼結させることが必要となる。しかし、希土類元素、Al及びPを共添加する際の、各ドーパントを添加する工程の違いと、光ファイバ母材や光ファイバの特性との関係の詳細については、これまで知られていない。また、ファイバアンプやファイバレーザにおいて、非線形光学効果の発生を抑制できる光ファイバの最適な製造方法は、これまでに開示されていないのが実情である。
 本発明は、上記事情に鑑みてなされたものであり、希土類元素の濃度の制御が容易で、有効断面積(Aeff)が大きく、ファイバアンプやファイバレーザにおいて、非線形光学効果の発生を効果的に抑制できる光ファイバ、及び該光ファイバの製造に好適な光ファイバ母材の製造方法を提供することを課題とする。
 上記課題を解決するため、本発明は以下の手段を採用する。
 すなわち、本発明の第一の態様は、コアに希土類元素が添加された光ファイバ母材の製造方法であって、MCVD法により、主に二酸化ケイ素からなるガラス微粒子を石英管内に堆積させる工程と;液浸法により、前記希土類元素とアルミニウムとを、前記石英管内のガラス微粒子に添加する工程と;前記石英管内にリンを含むガスを流入させながら前記石英管を加熱して、前記リンを添加しながら前記石英管内のガラス微粒子を焼結させる工程と;前記希土類元素、前記アルミニウム及び前記リンを添加した前記石英管を加熱してコラップスする工程と;を有する。
 前記液浸法において、三塩化イッテルビウム及び三塩化アルミニウム、又は三塩化イッテルビウム及び三塩化アルミニウム六水和物の水溶液を使用して、イッテルビウム及び前記アルミニウムを前記ガラス微粒子に添加することが好ましい。
 前記リンを含むガスがオキシ塩化リンガスであることが好ましい。
 また、本発明の第二の態様は、上記方法で製造された光ファイバ母材を紡糸して得られた光ファイバであって、前記コアの径方向断面において、酸化アルミニウムの濃度が五酸化二リンの濃度よりも高い領域が無いか、又は前記酸化アルミニウムの濃度が五酸化二リンの濃度よりも高い領域よりも、前記五酸化二リンの濃度が前記酸化アルミニウムの濃度よりも高い領域の方が広い。
 前記コアの径方向断面のうち、前記五酸化二リンの濃度及び前記酸化アルミニウムの濃度の少なくとも一方が0.5モル%以上である領域において、前記五酸化二リンの濃度と前記酸化アルミニウムの濃度との差が0.5モル%よりも小さい径方向内側の領域を第一領域とし、前記五酸化二リンの濃度と前記酸化アルミニウムの濃度との差が0.5モル%以上である、前記第一領域よりも前記径方向外側の領域を第二領域とした時、前記第一領域と前記第二領域との合計に対する前記第二領域の比率が50%以上であることが好ましい。
 前記第一領域において、前記五酸化二リンの濃度及び前記酸化アルミニウムの濃度が略同等であることが好ましい。
 本発明によれば、希土類元素の濃度の制御が容易で、有効断面積(Aeff)が大きく、ファイバアンプやファイバレーザにおいて、非線形光学効果の発生を効果的に抑制できる光ファイバ、及び該光ファイバの製造に好適な光ファイバ母材が得られる。
実施例1で作製した光ファイバ母材の径方向断面における比屈折率差の測定結果を示すグラフである。 実施例1で作製した光ファイバ母材の径方向断面におけるAlとPの濃度分布の分析結果を示すグラフである。 Ybを添加せず、Alを液浸法で、Pを焼結でそれぞれ添加して作製した光ファイバ母材の比屈折率差の分布形状を例示するグラフである。 比較例1で作製した光ファイバ母材の比屈折率差の測定結果を示すグラフである。 比較例1で作製した光ファイバ母材の径方向断面における、EPMAによるAlとPの濃度分布の分析結果を示すグラフである。 有効断面積(Aeff)が大きい光ファイバについて、コアの径方向断面における比屈折率差の分布形状を例示する図である。 有効断面積(Aeff)が大きい光ファイバについて、コアの径方向断面における比屈折率差の分布形状の他の例を示す図である。 有効断面積(Aeff)が小さい光ファイバについて、コアの径方向断面における比屈折率差の分布形状を例示する図である。
 以下、本発明の実施形態について詳しく説明する。
 なお、以下に示す光ファイバ母材又は光ファイバの、ドーパントの濃度及び比屈折率差の値は、特に断りのない限り、径方向断面において、コアの中心から等距離にある部位(10箇所)における各値の平均値である。
<光ファイバ母材の製造方法>
 本発明の光ファイバ母材の製造方法は、コアに希土類元素が添加された光ファイバ母材の製造方法であって、MCVD(modified chemical vapor deposition)法により、主に二酸化ケイ素からなるガラス微粒子(スート)を石英管内に堆積させる工程(以下、スート堆積工程と略記する)と、液浸法により、希土類元素とアルミニウムとを、前記石英管内のガラス微粒子に添加する工程(以下、液浸工程と略記する)と、前記石英管内にリンを含むガスを流入させながら、該石英管を加熱して、リンを添加しながら該石英管内のガラス微粒子を焼結させる工程(以下、焼結工程と略記する)と、希土類元素、アルミニウム及びリンを添加した前記石英管を加熱してコラップスする工程(以下、コラップス工程と略記する)と、を有する。
(スート堆積工程)
 スート堆積工程では、MCVD法により、主に二酸化ケイ素(SiO)からなるガラス微粒子(スート)を石英管内に堆積させる。MCVD法は、通常の手法で行えば良い。また、本実施形態において、「主に二酸化ケイ素からなるガラス」とは、「シリカガラス」のことである。さらに、「石英管内に堆積させる」とは、「石英管の内表面上に堆積させる」ことを指す。
 スート堆積工程では、例えば、同時にアルミニウム(Al)やリン(P)を気相でガラス微粒子に添加することも可能である。Alを添加する場合には三塩化アルミニウム(AlCl)ガスを使用し、Pを添加する場合にはオキシ塩化リン(POCl)ガスを使用するのが一般的である。しかし、このようにAlやPも添加する場合、これらの添加量を制御するために、原料ガスであるAlClガスやPOClガスの流量を調整する必要がある。ガスの流量が変化すると、堆積させたガラス微粒子のかさ密度が大きく変化してしまい、液浸工程で添加される希土類元素の濃度が変動する。その結果、コア中の希土類元素の濃度を所望の値に制御することが困難となる。さらに、原料ガスからの結晶の析出を防止するために、ガス搬送ライン内において、AlClガスが凝結するのを防止する必要がある。このAlClガスの凝結を防止するために、ガス搬送ラインを加熱して高温に維持する必要がある。その結果、製造装置が複雑になり、製造コストが上昇してしまう。
 そこで、本発明では、スート堆積工程でAlやPなどのドーパントの添加は行わずに、ガラス微粒子を堆積させる。
(液浸工程)
 液浸工程では、液浸法により、希土類元素とAlとを、石英管内に堆積させたガラス微粒子に添加する。
 前記希土類元素は、目的に応じて適宜選択すれば良いが、イッテルビウム(Yb)、エルビウム(Er)、ツリウム(Tm)、イットリウム(Y)、ホルミウム(Ho)、サマリウム(Sm)、プラセオジム(Pr)及びネオジム(Nd)等が例示できる。これら希土類元素は一種を単独で使用しても良いし、二種以上を併用しても良い。本発明においては、作製した光ファイバ母材から光ファイバを作製し、これからファイバアンプやファイバレーザを構成することを考慮すると、Ybが特に好ましい。
 液浸法は、通常の手法で行えば良い。例えば、希土類元素やAlを含有する原料化合物の水溶液を調製し、この水溶液に、ガラス微粒子を堆積させた石英管を所定時間浸漬すれば良い。希土類元素の原料化合物は、希土類の塩化物が好ましい。例えば、希土類元素がYbである場合には、三塩化イッテルビウム(YbCl)が好ましい。また、Alの原料化合物としては、AlCl又は三塩化アルミニウム六水和物(AlCl・6HO)が好ましい。
 希土類元素の原料化合物は、通常、蒸気圧が低いため、石英管内に気相で添加することは極めて困難である。したがって、コア中の希土類元素の濃度を所望の値に制御することは極めて困難である。そこで、本発明においては、希土類元素を液浸法で添加する。
 また、Alの原料化合物は、ガス化する温度が比較的低い。例えば、AlClは200℃程度で加熱すれば、気相で容易に石英管内に流入させることができる。しかし、コア中のAlの濃度を所望の値に制御するためには、スート堆積工程で述べたように、ガス搬送ラインを加熱して高温に維持する必要がある。これは、後述する焼結工程でも同様である。そこで、本発明においては、Alの濃度を制御するために、Alは気相で添加するのではなく、液浸法で添加する。
 石英管内のガラス微粒子に添加する希土類元素とAlの量は、液浸法で使用する、これらの原料化合物の溶液における原料化合物の濃度を調整することで調整できる。
 液浸工程では、使用する原料化合物の溶液中において、希土類元素の原料化合物又はAlの原料化合物と相互作用して沈殿を生じる化合物は、併用できない。したがって、このような沈殿を生じる化合物を原料化合物とするドーパントは、液浸工程では添加できない。例えば、Pの原料化合物として使用されるリン酸(HPO)は、水溶液中でAlClと相互作用することにより、常温で難溶性(高融点)であるリン酸アルミニウム(AlPO)などの沈殿を生じる。また、POClも水溶液中では分解されてHPOとなる。したがって、本発明において、Pは、液浸法では添加しない。
 浸漬後は、石英管を取り出し、石英管内のガラス微粒子を乾燥させることが好ましい。そして、乾燥は、石英管内に酸素ガス等のガスを継続して流入させることにより行うことが好ましい。
(焼結工程)
 焼結工程では、ガラス微粒子に希土類元素とAlを添加した石英管内にリンを含むガスを流入させながら、該石英管を加熱することにより、リンを添加しながら該石英管内のガラス微粒子を焼結させる。
 焼結は、リンを含むガスを流入させること以外は、通常の手法で行えば良い。
 リンを含むガスとしては、POClが好ましい。POClは、ガス化する温度が低く、気相で容易に石英管内に流入させることができる。
 また、焼結工程では、スート堆積工程とは異なり、リンを含むガスの流量を調整しても、希土類元素の濃度制御が困難になることも無い。
 このように、リンは気相での添加に適しており、液浸工程での添加に適さないので、本発明においては、焼結工程で添加する。
(コラップス工程)
 コラップス工程では、希土類元素、Al及びPを添加した前記石英管を加熱してコラップスする。コラップスは、前記石英管を使用すること以外は、通常の手法で行えば良い。コラップス工程を行うことで、光ファイバ母材が得られる。
 以上のように、本発明においては、希土類元素とAlを液浸工程で、Pを焼結工程でそれぞれ添加することで、光ファイバ母材中のAlの濃度分布と、Pの濃度分布とを制御できる。例えば、Alの濃度分布は酸化アルミニウム(Al)の濃度分布で、Pの濃度分布は五酸化二リン(P)の濃度分布でそれぞれ確認できる。
 本発明により製造された光ファイバ母材においては、コアの径方向断面において、Alの濃度がPの濃度よりも高い領域(以下、Al高濃度領域と略記する)が無いか、又はAl高濃度領域よりも、Pの濃度がAlの濃度よりも高い領域(以下、P高濃度領域と略記する)の方が広いことが好ましい。さらに、コアの径方向断面のうち、Pの濃度及びAlの濃度の少なくとも一方が0.5モル%以上である領域においては、Pの濃度とAlの濃度との差が0.5モル%よりも小さい径方向内側の領域を第一領域とし、Pの濃度とAlの濃度との差が0.5モル%以上である、前記第一領域よりも径方向外側の領域を第二領域とした時、第一領域と第二領域との合計に対する第二領域の比率は50%以上であることが好ましく、60%以上であることがより好ましい。このようにすることで、比屈折率差の分布形状が矩形に近づき、良好な特性となる。
 さらに、コアの径方向断面のうち、前記第一領域においては、Pの濃度とAlの濃度との差がより小さい方が好ましく、Pの濃度及びAlの濃度が略同等であることがより好ましい。このような領域では、PとAlが互いに屈折率上昇を打ち消し合い、SiOの比屈折率差に近いものとなる。
 本発明により製造された光ファイバ母材は、上記のようなドーパントの濃度分布を有することにより、径方向断面におけるコアの比屈折率差の分布形状が、図6又は図7に示すように、矩形に近くなり、良好な特性を有する。
<光ファイバ>
 上記本発明の方法で製造された光ファイバ母材を紡糸して得られた本発明に係る光ファイバは、コアの径方向断面において、Al高濃度領域が無いか、又はAl高濃度領域よりもP高濃度領域の方が広い。
 光ファイバ母材の紡糸は、通常の手法で行えば良い。
 本発明の光ファイバは、コア直径が20~35μmであることが好ましく、25~30μmであることがより好ましい。
 ファイバレーザにおいては、出力光のビーム品質を良好なものとするために、出力光をコア中でシングルモード伝搬又は少数モード伝搬させることが好ましい。そのためには、前記式(2)で表される比屈折率差を小さくして、上記のようにコア直径を大きくすればよい。これにより、シングルモード伝搬又は少数モード伝搬と、非線形光学効果の抑制とを両立できる。
 本発明の光ファイバは、前記光ファイバ母材と同様の、径方向断面におけるドーパントの濃度分布及び比屈折率差の分布形状を有する。
 すなわち、本発明の光ファイバは、比屈折率差の分布形状が、図6又は図7に示すように矩形に近くなり、光ファイバのコアを伝搬する光の電解分布が広がり、Aeffが大きくなる。したがって、誘導ラマン散乱等の非線形光学効果の発生が効果的に抑制されたファイバアンプやファイバレーザを作製できる。また、希土類元素の濃度の制御も容易である。
 以下、具体的実施例により、本発明についてさらに詳細に説明する。ただし、本発明は、以下の実施例に限定されるものではない。
 表1は、下記実施例及び比較例それぞれについて、光ファイバ母材の製造における各ドーパントの添加工程と、得られた光ファイバ母材の光特性を示したものである。詳細については、以下、順次説明する。
Figure JPOXMLDOC01-appb-T000001
 なお、表1中、「Yb濃度の制御性」の評価基準は、以下の通りである。
 Good:再現性が良く、容易に制御できる
 Poor:再現性が悪く、制御が困難である
 Bad:再現性が極めて悪く、制御できない
<光ファイバ母材の製造>[実施例1]
 MCVD法により、石英管内にSiOガラス微粒子(スート)を堆積させた。
 次いで、液浸法により、前記SiOガラス微粒子にYb及びAlを添加した。具体的には、YbClとAlCl・6HOを純水に溶解させた溶液に、SiOガラス微粒子を堆積させた石英管を3時間浸漬し、前記溶液を除去した後、石英管内に酸素ガスを継続して流入させることにより、SiOガラス微粒子を6時間乾燥させた。
 次いで、POClを酸素ガスでバブリングして石英管内に流入させながら、石英管を酸水素バーナで加熱し、Pを添加しながらSiOガラス微粒子を焼結させた。
 次いで、石英管内の内圧を調整しながら、石英管を酸水素バーナでさらに高温で加熱してコラップスを行い、中実な光ファイバ母材を作製した。
 プリフォームアナライザを使用して、得られた光ファイバ母材の径方向断面における比屈折率差の分布形状を測定した。測定結果を図1に示す。また、光ファイバ母材を、その径方向で輪切りにし、EPMAにより、その断面の径方向におけるAlとPの濃度分布を線分析した。分析結果を図2に示す。なお、図1及び2では、コアの半径部分に相当するグラフのみを示している。横軸は半径方向における位置を示し、「0」はコアの中心を示す。これらは、以降の図においても同様である。
 その結果、図1に示すように、比屈折率差の分布形状は、図7の分布形状と類似しており、矩形に近く、良好であった。また、図2に示すように、Alの濃度分布とPの濃度分布が異なっており、Al高濃度領域よりもP高濃度領域の方が広くなっていた。そして、Pの濃度が0.5モル%以上である領域(半径方向における位置がおよそ0~0.08の領域)において、Pの濃度とAlの濃度との差が0.5モル%よりも小さい径方向内側の第一領域は、半径方向における位置がおよそ0~0.05の領域であり、Pの濃度とAlの濃度との差が0.5モル%以上である前記第一領域よりも径方向外側の第二領域は、半径方向における位置がおよそ0.05~0.08の領域である。第一領域と第二領域との合計に対する第二領域の比率は、およそ61%となっている。ここに示すように第一領域においては、Pの濃度とAlの濃度との差が小さく、Pの濃度及びAlの濃度が略同等となっている。
 AlとPが等モル量添加されている領域では、互いに屈折率上昇を打ち消し合い、SiOの屈折率に近付く。また、P高濃度領域においては、過剰なPが屈折率上昇に寄与する。図3は、Ybを添加せず、Alの濃度分布とPの濃度分布が、実施例1(図2)と同じになるように、Alを液浸法で、Pを焼結でそれぞれ添加して作製した光ファイバ母材の比屈折率差の分布形状を示すグラフである。AlやPを含有する領域の中央付近では、AlとPの含有量が等モルになっているので、SiOと略同等の比屈折率差になっている。AlやPを含有する領域の外側では、前記理由から、過剰なPが寄与して比屈折率差が上昇している。
 一方、Ybの濃度が実施例1と同じになるように、Ybを液浸法で添加して作製した光ファイバ母材では、Ybの濃度分布は、実施例1でのAlの濃度分布と類似した釣鐘状となる。Ybは、SiOガラスの屈折率を上昇させるドーパントであるため、比屈折率差の分布は図8に示すような釣鐘状となる。そして、Ybの屈折率上昇分と、図3における屈折率上昇分とを足し合わせると、図1に示すような、矩形に近い比屈折率差の分布となる。
[比較例1]
 実施例1と同様の方法で、MCVD法により、石英管内にSiOガラス微粒子を堆積させた。
 次いで、AlCl・6HOを使用しなかったこと以外は、実施例1と同様の方法で、液浸法により、前記SiOガラス微粒子にYbを添加し、SiOガラス微粒子を乾燥させた。
 次いで、POClを酸素ガスでバブリングして石英管内に流入させ、この時同時に、AlClガスも石英管内に流入させながら、石英管を酸水素バーナで加熱し、PとAlを添加しながらSiOガラス微粒子を焼結させた。
 次いで、実施例1と同様の方法でコラップスを行い、光ファイバ母材を作製した。
 得られた光ファイバ母材について、実施例1と同様に、比屈折率差の分布を測定し、AlとPの濃度分布を線分析した。比屈折率差の分布の測定結果を図4に、濃度分布の分析結果を図5にそれぞれ示す。
 その結果、比屈折率差の分布は、図8に示すプロファイルに類似しており、釣鐘状に近く、良好ではなかった。また、Alの濃度分布とPの濃度分布は、径方向断面においてほぼ同じになっており、径方向のいずれの位置においても、屈折率上昇を打ち消し合うものであった。また、Ybは液浸法で添加しているので、Ybの濃度分布は、実施例1の光ファイバ母材におけるAlの濃度分布とパターンが似ており、釣鐘状であった。Ybは、SiOガラスの屈折率を上昇させるドーパントであるため、比屈折率差の分布形状は図4に示すように釣鐘状になったと考えられる。
 このように、得られた光ファイバ母材は特性が良好ではなく、加えて、この製造方法では、Alを気相で添加するので、ガス搬送ラインを高温に維持する必要がある。その結果、製造装置が複雑になり、製造コストが上昇するという問題点がある。
[比較例2]
 MCVD法により、石英管内に、Alを添加したSiOガラス微粒子を堆積させた。Alは、日本国特開2003-137542に記載の方法で、気相で添加した。すなわち、AlClガスを石英管内に流入させながら、SiOガラス微粒子を堆積させた。
 次いで、比較例1と同様の方法で、液浸法により、前記SiOガラス微粒子にYbを添加し、SiOガラス微粒子を乾燥させた。
 次いで、実施例1と同様の方法で、Pを添加しながらSiOガラス微粒子を焼結させ、実施例1と同様の方法でコラップスを行い、光ファイバ母材を作製した。
 そして、得られた光ファイバ母材について、実施例1と同様に、比屈折率差の分布を測定し、AlとPの濃度分布を線分析した。
 その結果、比屈折率差の分布形状は、比較例1の場合と同様に釣鐘状に近く、良好ではなかった。また、Alの濃度分布とPの濃度分布も比較例1の場合と同様であり、比較例1の場合と同様の理由で、比屈折率差の分布形状が釣鐘状になってしまったと考えられる。
 さらに、この製造方法では、光ファイバ母材のYb濃度の制御が困難であった。スート堆積時にAlの添加量を制御するために、AlClガスの流量を変化させたため、SiOガラス微粒子のかさ密度が大きく変化し、液浸法で添加されるYbの濃度が変動してしまったことが原因と考えられる。このように、Yb濃度を再現性良く制御できないという問題点が発生した。
 加えて、この製造方法でも、比較例1の場合と同様に、Alを気相で添加するので、ガス搬送ラインを高温に維持する必要がある。その結果、製造装置が複雑になり、製造コストが上昇するという問題点がある。
[比較例3]
 MCVD法により、石英管内に、Pを添加したSiOガラス微粒子を堆積させた。Pは、POClを酸素ガスでバブリングして石英管内に流しながら、SiOガラス微粒子を合成することで添加した。
 次いで、実施例1と同様の方法で、液浸法により、前記SiOガラス微粒子にYbとAlとを添加し、SiOガラス微粒子を乾燥させた。
 次いで、POClやAlClガスを流入させずに、石英管を酸水素バーナで加熱し、SiOガラス微粒子を焼結させた。
 次いで、実施例1と同様の方法でコラップスを行い、光ファイバ母材を作製した。
 そして、得られた光ファイバ母材について、実施例1と同様に、比屈折率差の分布を測定し、AlとPの濃度分布を線分析した。
 その結果、比屈折率差の分布形状は、矩形に近く、良好であった。AlとPの濃度分布は、実施例1の場合と同様であった。
 しかし、この製造方法でも、光ファイバ母材のYb濃度の制御が困難であった。すなわち、スート合成時にPの添加量を制御するために、POClガスの流量を変化させたことで、SiOガラス微粒子のかさ密度が大きく変化し、比較例2の場合と同様に、液浸法で添加されるYbの濃度が変動してしまったことが原因と考えられる。このように、Yb濃度を再現性良く制御できないという問題点が発生した。
[比較例4]
 MCVD法により、石英管内に、PとAlとを添加したSiOガラス微粒子を堆積させた。この時、POClを酸素ガスでバブリングして石英管内に流入させ、同時に、AlClガスも石英管内に流入させながら、SiOガラス微粒子を堆積させることで、PとAlを添加した。
 次いで、比較例1と同様の方法で、液浸法により、前記SiOガラス微粒子にYbを添加し、SiOガラス微粒子を乾燥させた。
 次いで、比較例3と同様の方法で、POClガスやAlClガスを流入させずに、石英管を酸水素バーナで加熱し、SiOガラス微粒子を焼結させた。
 次いで、実施例1と同様の方法でコラップスを行い、光ファイバ母材を作製した。
 そして、得られた光ファイバ母材について、実施例1と同様に、比屈折率差の分布を測定し、AlとPの濃度分布を線分析した。
 その結果、比屈折率差の分布形状は、比較例1の場合と同様に釣鐘状に近く、良好ではなかった。AlとPの濃度分布も比較例1の場合と同様であった。
 また、この製造方法でも、光ファイバ母材のYb濃度の制御が困難であった。これは、比較例2又は3の場合と同様に、スート堆積時に、Pの添加量を制御するためにPOClガスの流量を変化させ、かつ、Alの添加量を制御するためにAlClガスの流量をそれぞれ変化させたことが原因と考えられる。特に、この製造方法では、スート堆積時にPとAlとの両方を添加しているため、比較例2及び3の場合よりも、一層、Yb濃度の制御が困難であった。このように、Yb添加濃度を再現性良く制御できないという問題点が発生した。
 加えて、この製造方法でも、比較例1及び2の場合と同様に、Alを気相で添加するので、ガス搬送ラインを高温に維持する必要がある。その結果、製造装置が複雑になり、製造コストが上昇するという問題点がある。
[比較例5]
 比較例3と同様の方法で、MCVD法により、石英管内に、Pを添加したSiOガラス微粒子を堆積させた。
 次いで、比較例1と同様の方法で、液浸法により、前記SiOガラス微粒子にYbを添加し、SiOガラス微粒子を乾燥させた。
 次いで、AlClガスを石英管内に流入させながら、石英管を酸水素バーナで加熱し、Alを添加しながらSiOガラス微粒子を焼結させた。
 次いで、実施例1と同様の方法でコラップスを行い、光ファイバ母材を作製した。
 そして、得られた光ファイバ母材について、実施例1と同様に、比屈折率差の分布を測定し、AlとPの濃度分布を線分析した。
 その結果、比屈折率差の分布形状は、比較例1の場合と同様に釣鐘状に近く、良好ではなかった。AlとPの濃度分布も比較例1の場合と同様であった。
 また、この製造方法でも、比較例3の場合と同様に、光ファイバ母材のYb濃度の制御が困難であり、Yb濃度を再現性良く制御できないという問題点が発生した。
 加えて、この製造方法でも、Alを気相で添加するので、ガス搬送ラインを高温に維持する必要がある。その結果、製造装置が複雑になり、製造コストが上昇するという問題点がある。
[比較例6]
 石英管内に堆積させたSiOガラス微粒子に、液浸法でYb、Al及びPを添加するため、液浸溶液の調製を試みた。しかし、YbCl、AlCl・6HO及びHPOを純水に添加して撹拌したところ、白色沈殿が生じ、液浸溶液を調製できなかった。白色沈殿は、リン酸アルミニウム(AlPO)であると考えられる。
[比較例7]
 比較例2と同様の方法で、MCVD法により、石英管内に、Alを添加したSiOガラス微粒子を堆積させた。
 次いで、液浸法により、前記SiOガラス微粒子にYb及びPを添加するため、YbCl及びHPOを純水に溶解させた溶液に石英管を浸漬し、乾燥させた。その後、SiOガラス微粒子の焼結、コラップスを行った。しかしながら、Pを所望の十分な濃度で添加できなかった。理由は明らかではないが、液浸法は、高濃度のPの添加に適していないことが分かった。
 また、この製造方法でも、Alを気相で添加するので、ガス搬送ラインを高温に維持する必要がある。その結果、製造装置が複雑になり、製造コストが上昇するという問題点がある。
[比較例8]
 実施例1と同様の方法で、MCVD法により、石英管内にSiOガラス微粒子を堆積させた。
 次いで、比較例7と同様の方法で、液浸法により、前記SiOガラス微粒子にYb及びPを添加し、乾燥させた。その後、SiOガラス微粒子の焼結、コラップスを行った。しかしながら、比較例7の場合と同様に、Pを所望の十分な濃度で添加できなかった。
 また、この製造方法でも、Alを気相で添加するので、ガス搬送ラインを高温に維持する必要がある。その結果、製造装置が複雑になり、製造コストが上昇するという問題点がある。
<光ファイバの製造>[実施例2]
 実施例1で作製した光ファイバ母材を使用して、コアにYb、P及びAlを共添加した光ファイバを作製した。具体的には、以下の通りである。
 光ファイバ母材を使用して外付け法によりクラッド部を形成させた後、機械研磨によって、クラッド部の径方向における断面形状が正七角形となるように加工した。
 次いで、紡糸を行い、NA(Numerical Aperture)が0.46となる低屈折率の樹脂で外周上を被覆した。さらにその上を、通常の高屈折率紫外線硬化性樹脂で被覆して、ダブルクラッド光ファイバを得た。
 得られた光ファイバは、径方向断面が正七角形状のものであり、コア径(直径)が26μmであった。また、クラッドの径方向断面である正七角形の内接円の直径は約400nmであった。また、カットオフ波長は1.69μm、有効断面積(Aeff)は393μmであった。直径150mmに曲げて使用した時の曲げ損失は、実用上問題ないレベルであった。
[比較例9]
 比較例1で作製した光ファイバ母材を使用し、実施例2と同様の方法で、同様の形状及びサイズの光ファイバを作製した。この時、カットオフ波長が1.69μmとなるように調整した。
 得られた光ファイバは、Aeffは288μmであった。直径150mmに曲げて使用した時の曲げ損失は、実用上問題ないレベルであった。
 上記のように、実施例2及び比較例9の光ファイバは、いずれもカットオフ波長が同じであるにも関わらず、Aeffが大きく異なっており、約1.4倍の違いがあった。これは、実施例1の光ファイバ母材の方が、比屈折率差の分布形状が矩形に近く、光ファイバのコアを伝搬する光の電解分布が広がったためである。
<誘導ラマン散乱の抑制効果の評価>[試験例1]
 実施例2で作製した光ファイバの誘導ラマン散乱の抑制効果を確認するために、ファイバレーザを構成して、レーザ発振実験を行った。具体的には、以下の通りである。
 光ファイバのコアに、波長1060nmで平均出力1Wのパルス状の種光を入射し、クラッドに波長915nmで出力50Wの励起光を入射して、波長1060nmの光を増幅した。増幅用光ファイバの出射口側には、波長1100nm以上の光をカットするフィルタを配置した。波長1060nm付近の出力光を増幅する場合、一次の誘導ラマン散乱光は、波長1110nm付近に発生する。さらに、二次の誘導ラマン散乱光は、波長1160nm付近に発生する。そこで、前記フィルタを配置することで、出力光から誘導ラマン散乱光をカットし、波長1060nm付近の出力光を選択的に取り出すことにより、出力光の波長の広がりを抑制した。これにより、所望の波長以外の光が含まれ出力光をレンズで集光する場合に生ずる色収差の問題を解決できる。このような、フィルタの使用による波長の広がりの抑制は、一般的に適用される手段である。上記のようにフィルタを通して得られた出力光のパワーを測定したところ、32Wであった。
[試験例2]
 比較例9で作製した光ファイバを使用し、試験例1と同様の方法で、フィルタを通して得られた出力光のパワーを測定したところ、27Wであった。
 比較例1の光ファイバ母材を使用して作製した比較例9の光ファイバでは、Aeffが小さいため、誘導ラマン散乱が多く発生して出力光の波長幅が広くなって。このため、長波長の光がフィルタでカットされ、出力光のパワーが低下した。
 一方、実施例1の光ファイバ母材における比屈折率差の分布形状は矩形に近いため、この母材を使用して作製した実施例2の光ファイバは、誘導ラマン散乱の発生が抑制されたものであった。そのため、波長幅の広がりが抑制され、且つエネルギー変換効率が高いファイバレーザが作製できた。
 以上、本発明の好適な実施形態について説明し例証したが、これらはあくまで発明の例示であって限定的に考慮されるべきものではなく、追加、削除、置換及び他の変更は本発明の範囲を逸脱しない範囲で可能である。即ち、本発明は前述した実施形態により限定されるものではなく、請求項の範囲により限定されるものである。
 本発明によれば、希土類元素の濃度の制御が容易で、有効断面積(Aeff)が大きく、ファイバアンプやファイバレーザにおいて、非線形光学効果の発生を効果的に抑制できる光ファイバ、及び該光ファイバの製造に好適な光ファイバ母材の製造方法を提供することができる。

Claims (6)

  1.  コアに希土類元素が添加された光ファイバ母材の製造方法であって、
     MCVD法により、主に二酸化ケイ素からなるガラス微粒子を石英管内に堆積させる工程と;
     液浸法により、前記希土類元素とアルミニウムとを、前記石英管内のガラス微粒子に添加する工程と;
     前記石英管内にリンを含むガスを流入させながら前記石英管を加熱して、前記リンを添加しながら前記石英管内のガラス微粒子を焼結させる工程と;
     前記希土類元素、前記アルミニウム及び前記リンを添加した前記石英管を加熱してコラップスする工程と;
    を有することを特徴とする光ファイバ母材の製造方法。
  2.  前記液浸法において、三塩化イッテルビウム及び三塩化アルミニウム、又は三塩化イッテルビウム及び三塩化アルミニウム六水和物の水溶液を使用して、イッテルビウム及び前記アルミニウムを前記ガラス微粒子に添加することを特徴とする請求項1に記載の光ファイバ母材の製造方法。
  3.  前記リンを含むガスがオキシ塩化リンガスであることを特徴とする請求項1又は2に記載の光ファイバ母材の製造方法。
  4.  請求項1~3のいずれか一項に記載の方法で製造された光ファイバ母材を紡糸して得られた光ファイバであって、
     前記コアの径方向断面において、酸化アルミニウムの濃度が五酸化二リンの濃度よりも高い領域が無いか、又は前記酸化アルミニウムの濃度が五酸化二リンの濃度よりも高い領域よりも、前記五酸化二リンの濃度が前記酸化アルミニウムの濃度よりも高い領域の方が広いことを特徴とする光ファイバ。
  5.  前記コアの径方向断面のうち、前記五酸化二リンの濃度及び前記酸化アルミニウムの濃度の少なくとも一方が0.5モル%以上である領域において、前記五酸化二リンの濃度と前記酸化アルミニウムの濃度との差が0.5モル%よりも小さい径方向内側の領域を第一領域とし、前記五酸化二リンの濃度と前記酸化アルミニウムの濃度との差が0.5モル%以上である、前記第一領域よりも前記径方向外側の領域を第二領域とした時、前記第一領域と前記第二領域との合計に対する前記第二領域の比率が50%以上であることを特徴とする請求項4に記載の光ファイバ。
  6.  前記第一領域において、前記五酸化二リンの濃度及び前記酸化アルミニウムの濃度が略同等であることを特徴とする請求項5に記載の光ファイバ。
PCT/JP2010/002153 2009-03-26 2010-03-26 光ファイバ母材の製造方法及び光ファイバ WO2010109893A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/243,092 US8693833B2 (en) 2009-03-26 2011-09-23 Manufacturing method for optical fiber preform and optical fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009075321A JP5744380B2 (ja) 2009-03-26 2009-03-26 光ファイバ
JP2009-075321 2009-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/243,092 Continuation US8693833B2 (en) 2009-03-26 2011-09-23 Manufacturing method for optical fiber preform and optical fiber

Publications (1)

Publication Number Publication Date
WO2010109893A1 true WO2010109893A1 (ja) 2010-09-30

Family

ID=42780589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002153 WO2010109893A1 (ja) 2009-03-26 2010-03-26 光ファイバ母材の製造方法及び光ファイバ

Country Status (3)

Country Link
US (1) US8693833B2 (ja)
JP (1) JP5744380B2 (ja)
WO (1) WO2010109893A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111470769A (zh) * 2020-04-24 2020-07-31 黄宏琪 一种稀土掺杂少模光纤的制备方法
CN116282882A (zh) * 2023-03-05 2023-06-23 北京工业大学 一种Nd3+掺杂石英光纤预制棒及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815866B (zh) * 2012-08-17 2015-03-11 华中科技大学 一种光纤预制棒的掺杂装置
JP2014143287A (ja) * 2013-01-23 2014-08-07 Mitsubishi Cable Ind Ltd 希土類添加光ファイバ及びその製造方法
CN105916823A (zh) * 2014-01-16 2016-08-31 古河电气工业株式会社 光纤预制棒的制造方法以及光纤的制造方法
CN104445913A (zh) * 2014-11-13 2015-03-25 连云港市盛昌照明电器有限公司 一种光子晶体光纤预制棒的制备方法
DE102016123343A1 (de) * 2016-12-02 2018-06-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optisches Fasersystem mit Modenfeldanpassung
CN107515205B (zh) * 2017-08-22 2020-04-10 中国工程物理研究院激光聚变研究中心 石英玻璃光纤组分浓度计算方法及系统
US11407671B2 (en) * 2018-06-08 2022-08-09 Council Of Scientific & Industrial Research Process of fabrication of Erbium and Ytterbium-co-doped multi-elements silica glass based cladding-pumped fiber
CN115448590A (zh) * 2022-08-31 2022-12-09 长飞光纤光缆股份有限公司 一种管内法制备稀土掺杂光纤预制棒的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217636A (ja) * 1983-05-23 1984-12-07 Hitachi Cable Ltd 光フアイバ母材の製造方法
JP2003238189A (ja) * 2002-02-14 2003-08-27 Sumitomo Electric Ind Ltd ガラスパイプの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090838A (ja) 1983-10-25 1985-05-22 Shin Etsu Chem Co Ltd 光伝送用石英ガラス母材の製造方法
JP2931026B2 (ja) 1990-02-05 1999-08-09 古河電気工業株式会社 希土類元素ドープガラスの製造方法
JP4014846B2 (ja) 2001-10-29 2007-11-28 株式会社フジクラ 三塩化アルミニウムガスの移送方法
WO2006112071A1 (ja) * 2005-03-30 2006-10-26 Fujitsu Limited 光ファイバ及びその製造方法並びに光増幅器
US7450813B2 (en) * 2006-09-20 2008-11-11 Imra America, Inc. Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217636A (ja) * 1983-05-23 1984-12-07 Hitachi Cable Ltd 光フアイバ母材の製造方法
JP2003238189A (ja) * 2002-02-14 2003-08-27 Sumitomo Electric Ind Ltd ガラスパイプの製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KASIK I: "Properties and fabrication of ytterbium-erbium co-doped silica fibers for high-power fibre lasers", PURE AND APPLIED OPTICS, 1998, pages 457 - 465, XP020070950, DOI: doi:10.1088/0963-9659/7/3/007 *
VLASTIMIL MATEJEC: "PROPERTIES OF OPTICAL FIBER PREFORMS PREPARED BY INNER COATING OF SUBSTRATE TUBES", CERAMICS-SILIKATY, vol. 45, no. 2, 2001, pages 62 - 69 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111470769A (zh) * 2020-04-24 2020-07-31 黄宏琪 一种稀土掺杂少模光纤的制备方法
CN116282882A (zh) * 2023-03-05 2023-06-23 北京工业大学 一种Nd3+掺杂石英光纤预制棒及制备方法
CN116282882B (zh) * 2023-03-05 2024-04-19 北京工业大学 一种Nd3+掺杂石英光纤预制棒及制备方法

Also Published As

Publication number Publication date
US8693833B2 (en) 2014-04-08
JP5744380B2 (ja) 2015-07-08
JP2010228933A (ja) 2010-10-14
US20120014653A1 (en) 2012-01-19

Similar Documents

Publication Publication Date Title
JP5744380B2 (ja) 光ファイバ
US8213758B2 (en) Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
Langner et al. A new material for high-power laser fibers
US20100067860A1 (en) Rare earth-doped core optical fiber
CN109031516A (zh) 一种大模场双包层掺镱光纤
JP5551631B2 (ja) 希土類添加光ファイバ及びその製造方法
WO2018209916A1 (zh) 新波长双包层掺镱光纤及制备方法
JP5612654B2 (ja) ファイバ・レーザおよびファイバ増幅器用の希土類がドープされ有効区域が大きい光ファイバ
EP1927167A2 (en) Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser
JP5033719B2 (ja) 光ファイバ母材の製造方法
Ye et al. Confined-doped ytterbium fibers for beam quality improvement: fabrication and performance
US11245241B2 (en) Optical fiber for a fiber laser, fiber laser, and production method for optical fiber for a fiber laser
JP5758517B2 (ja) 光ファイバ母材の製造方法
Sidharthan et al. Mode selection in large-mode-area step-index multicore fiber laser and amplifier
Zhang et al. Gaussian-shaped gain-dopant distributed fiber for high output power fiber amplifier
JP6794755B2 (ja) 光ファイバ
Saha et al. Large core Yb-doped optical fiber through vapor phase doping technique
US8116607B2 (en) Rare-earth doped optical fiber, method of producing the same, and fiber laser
WO2010097872A1 (ja) 光増幅用光ファイバおよびファイバレーザ
JP2006199550A (ja) 希土類添加光ファイバ母材の製造方法および希土類添加光ファイバ
US20230402808A1 (en) Active lma optical fiber with enhanced transverse mode stability
Zheng et al. Fabrication of nanoporous silica rods from curable nanocomposites and their application in Yb-doped fiber lasers
JP6603779B1 (ja) 光ファイバ母材の製造方法および光ファイバの製造方法
JP5400851B2 (ja) 希土類添加光ファイバ
Sahu et al. Fibers for high-power lasers and amplifiers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755695

Country of ref document: EP

Kind code of ref document: A1