WO2010109798A1 - ガス化システム及びガス化方法 - Google Patents

ガス化システム及びガス化方法 Download PDF

Info

Publication number
WO2010109798A1
WO2010109798A1 PCT/JP2010/001799 JP2010001799W WO2010109798A1 WO 2010109798 A1 WO2010109798 A1 WO 2010109798A1 JP 2010001799 W JP2010001799 W JP 2010001799W WO 2010109798 A1 WO2010109798 A1 WO 2010109798A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
gasification
biomass
crude vinegar
powder
Prior art date
Application number
PCT/JP2010/001799
Other languages
English (en)
French (fr)
Inventor
梶谷史朗
張岩
芦澤正美
Original Assignee
財団法人電力中央研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人電力中央研究所 filed Critical 財団法人電力中央研究所
Priority to CN2010800034934A priority Critical patent/CN102227492A/zh
Priority to EP10755602.9A priority patent/EP2412788A4/en
Priority to AU2010228721A priority patent/AU2010228721B2/en
Publication of WO2010109798A1 publication Critical patent/WO2010109798A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0909Drying
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0926Slurries comprising bio-oil or bio-coke, i.e. charcoal, obtained, e.g. by fast pyrolysis of biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/094Char
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0986Catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin

Definitions

  • the present invention relates to a gasification system and a gasification method. More specifically, the present invention relates to a gasification system and a gasification method suitable for gasifying by using coal and biomass together.
  • coal gasification technology using coal is a typical example of a high efficiency and low environmental impact energy conversion system for coal.
  • coal gasification combined power generation is expected to be put into practical use as a highly efficient and environmentally friendly power generation system, and various technologies are being developed.
  • the present invention can reduce carbon dioxide emission by effectively using biomass while suppressing the cost for gasification, and also enhances gasification reactivity compared with the case of gasification with coal alone. It is an object of the present invention to provide a gasification system and a gasification method capable of performing the above.
  • Another object of the present invention is to produce a gasified fuel that has a gasification reactivity superior to that of coal and can reduce carbon dioxide emissions.
  • the inventors of the present application have made extensive studies and pulverized coal in an existing coal gasification system to pulverize coal into coal powder such as coarse coal and pulverized coal, etc.
  • the plant-derived biomass raw material is fibrous, it could not be sufficiently pulverized, and there was concern that unreacted components would be generated when it was used in a coal gasification furnace.
  • the inventors of the present application conducted further studies. As a result, by carbonizing plant-derived biomass raw material into biomass carbide, it is possible to break down the fiber and improve grindability, and by using a coal grinding device such as a mill in an existing coal gasification system It was found that it can be sufficiently finely divided. In addition, by mixing coal powder obtained by pulverizing coal and biomass carbide powder and reacting with the gasifying agent, the gasification reactivity is improved as compared with the case where the coal powder alone is reacted with the gasifying agent. I found out that I can do it.
  • the inventors of the present invention made the crude vinegar liquid obtained when carbonizing a plant-derived biomass material mixed with coal powder obtained by pulverizing coal and biomass carbide powder powder, and then reacted with a gasifying agent. As a result, it was found that the gasification reactivity is improved as compared with the case where coal powder obtained by pulverizing coal and biomass carbide powder are mixed and reacted with a gasifying agent.
  • the gasification system of the present invention includes a coal pulverization apparatus that pulverizes coal to obtain coal powder, a coal gasification furnace that reacts the coal powder with a gasifying agent to generate combustible gas, and a coal pulverization apparatus.
  • a gasification system comprising at least a coal powder supply device for supplying the obtained coal powder to a coal gasification furnace, comprising a biomass carbide supply device for supplying biomass carbide obtained by carbonizing a plant-derived biomass raw material to a coal pulverizer It is supposed to be.
  • the gasification system of the present invention further includes a crude vinegar solution supply device that supplies a crude vinegar solution obtained when carbonizing a biomass material derived from a plant to a coal pulverizer.
  • a carbonization treatment device that carbonizes a plant-derived biomass raw material, and a biomass raw material by cooling volatile matter generated in the carbonization treatment device
  • a crude vinegar liquid recovery device for recovering the crude vinegar liquid derived from the biomass, and the biomass carbide produced by the carbonization processing device is supplied to the coal pulverizer by the biomass carbide supply device and the crude vinegar liquid recovery device collects the crude It is preferable that the vinegar is supplied to the coal pulverizer by the crude vinegar supply device.
  • a carbonization treatment device and a crude vinegar solution recovery device when a carbonization treatment device and a crude vinegar solution recovery device are provided, light gas that is not recovered by the crude vinegar solution recovery device among the volatile matter generated in the carbonization treatment device is coal gasified. It is preferable to further include a light gas supply device that supplies the furnace.
  • a bio-oil recovery device that separates and recovers bio-oil from the volatile matter generated in the carbonization processing device, and a bio-oil supply device that supplies the bio-oil recovered by the bio-oil recovery device to the coal gasifier Preferably.
  • a crude vinegar solution supply device when a crude vinegar solution supply device is provided, it is preferable to further include a gasification catalyst supply device that supplies the gasification catalyst-containing material to the coal pulverization device.
  • the crude vinegar solution supply device may be provided in place of the biomass carbide supply device.
  • a gasification fuel obtained by mixing coal powder obtained by pulverizing coal and biomass carbide powder obtained by pulverizing biomass carbide obtained by carbonizing a plant-derived biomass raw material is reacted with a gasifying agent.
  • a gasifying agent obtained by mixing coal powder obtained by pulverizing coal and biomass carbide powder obtained by pulverizing biomass carbide obtained by carbonizing a plant-derived biomass raw material.
  • gasification fuel obtained by mixing crude vinegar obtained when carbonizing a plant-derived biomass raw material is gasified It is preferable to react with an agent to produce a combustible gas.
  • gasification fuel obtained by mixing a gasification catalyst-containing substance is further reacted with a gasifying agent to make it combustible. It is preferable to generate gas.
  • the method for producing gasified fuel of the present invention includes a mixing step of mixing coal powder obtained by pulverizing coal and biomass carbide powder obtained by pulverizing biomass carbide obtained by carbonizing a plant-derived biomass raw material.
  • a crude vinegar solution obtained when carbonizing a plant-derived biomass raw material is mixed. It is preferable.
  • the mixing step it is preferable to further mix a gasification catalyst-containing substance in addition to the coal powder, the biomass carbide powder and the crude vinegar.
  • a coal pulverizer for pulverizing coal to obtain coal powder can be mixed while pulverizing biomass carbide whose pulverizability is improved by carbonization with coal, Gasified fuel obtained by mixing coal powder and biomass carbide powder can be supplied to the coal gasifier. Therefore, the gasification reactivity can be increased as compared with the case where only the coal powder is supplied to the coal gasification furnace and reacted with the gasifying agent, and the gasification efficiency of the entire system can be improved. In addition, since carbonized carbonaceous biomass derived from plants is used, carbon dioxide emissions can be reduced.
  • the gasification system of Claim 2 it mixes, while pulverizing the biomass carbide
  • the crude vinegar can be mixed, and the gasified fuel obtained by mixing the coal powder, the biomass carbide powder and the crude vinegar can be supplied to the coal gasifier. Therefore, the gasification reactivity can be further increased as compared with the case where only coal powder is supplied to the coal gasification furnace and reacted with the gasifying agent, and the gasification efficiency of the entire system can be further improved.
  • the crude vinegar liquid collect
  • the components generated from the biomass raw material are used more efficiently. be able to.
  • the gasification catalyst supply device for supplying the gasification catalyst-containing material to the coal pulverization apparatus since the gasification catalyst supply device for supplying the gasification catalyst-containing material to the coal pulverization apparatus is further provided, the gasification catalyst component contained in the gasification catalyst-containing material Is dissolved in the crude vinegar solution, and this gasification catalyst component is uniformly dispersed and supported on the surfaces of the coal powder and the biomass carbide powder. Therefore, the gasification reactivity of the gasified fuel can be further improved, and the gasification efficiency of the entire system can be further improved.
  • the crude vinegar can be mixed while pulverizing the coal by the coal pulverizer for pulverizing the coal to obtain the coal powder.
  • the crude vinegar liquid obtained from a biomass raw material derived from a plant is utilized, it becomes possible to aim at reduction of carbon dioxide discharge.
  • gasified fuel obtained by mixing coal powder obtained by pulverizing coal and biomass carbide powder obtained by pulverizing biomass carbide obtained by carbonizing a plant-derived biomass material is gasified. Since it is made to react with an agent, gasification reactivity can be improved rather than the case where only coal powder is made to react with a gasifier. In addition, since carbonized carbonaceous biomass derived from plants is used, carbon dioxide emissions can be reduced.
  • gasification method when carbonizing coal powder obtained by pulverizing coal, biomass carbide powder obtained by pulverizing biomass carbide obtained by carbonizing a plant-derived biomass material, and plant-derived biomass material. Since it is made to react with the gasifying agent obtained by mixing the crude vinegar liquid obtained by this, gasification reactivity can be improved rather than the case where coal powder and biomass carbide powder are mixed. And since not only the carbide
  • the gasification catalyst-containing substance is further mixed in addition to the coal powder, the biomass carbide powder, and the crude vinegar solution, the gasification catalyst is added to the crude vinegar solution.
  • the gasification catalyst component contained in the contained material dissolves, and the gasification catalyst component is uniformly dispersed and supported on the surfaces of the coal powder and the biomass carbide powder. Accordingly, it is possible to further improve the gasification reactivity of the gasified fuel and further improve the gasification efficiency.
  • the method includes a step of mixing coal powder obtained by pulverizing coal and biomass carbide powder obtained by pulverizing biomass carbide obtained by carbonizing a plant-derived biomass raw material. Therefore, a gasified fuel having higher reactivity with the gasifying agent than coal powder can be obtained. In addition, since this gasified fuel is blended with a carbide derived from a plant-derived biomass material, it is possible to reduce carbon dioxide emissions.
  • coal powder obtained by pulverizing coal biomass carbide powder obtained by pulverizing biomass carbide obtained by carbonizing a plant-derived biomass material, and carbonizing plant-derived biomass material. Since it includes the step of mixing the crude vinegar obtained at the time of processing, a gasified fuel having a higher reactivity with the gasifying agent than a mixture of coal powder and biomass carbide powder is obtained. And since this gasification fuel uses not only the carbide
  • the gasification catalyst component contained in the gasification catalyst-containing material is dissolved in the crude vinegar, and the gasification catalyst component is the surface of the coal powder and the biomass carbide powder. Are uniformly dispersed and supported. Therefore, the gasification reactivity of the gasified fuel can be further improved.
  • a gasification fuel obtained by mixing coal powder obtained by pulverizing coal and biomass carbide powder obtained by pulverizing biomass carbide obtained by carbonizing a plant-derived biomass raw material with a gasifying agent is allowed to react. Gas is generated.
  • gasification reactivity can be improved as compared with the case where the coal powder obtained by pulverizing coal alone is reacted with the gasifying agent.
  • the gasifying agent for example, oxygen, oxygen-enriched air, air, carbon dioxide, water vapor, or the like can be used.
  • the gasification method of the present invention further carbonizes the plant-derived biomass material.
  • the combustible gas is produced by reacting the gasified fuel obtained by mixing the crude vinegar obtained at the time with a gasifying agent.
  • coal used in the present invention general coal used for coal gasification, such as bituminous coal and subbituminous coal, can be used.
  • particle size of coal powder it selects suitably according to the coal supply system of a coal gasifier.
  • so-called pulverized coal having a particle size of about 10 ⁇ m to 100 ⁇ m is selected when a spouted bed type gasifier is used, and so-called pulverized coal having a particle size of 0.5 to 3 mm when a fluidized bed type gasifier is used.
  • Coarse coal is selected.
  • biomass carbide used in the present invention one obtained by carbonizing a plant-derived biomass raw material or one already carbonized can be used. By carbonizing the plant-derived biomass material, the fiber of the plant-derived biomass material is destroyed. As a result, biomass charcoal has extremely good grindability compared to plant-derived biomass raw materials.
  • the particle size of the biomass carbide powder is preferably set to such an extent that no unreacted component is produced when the biomass carbide powder is reacted with the gasifying agent, that is, the same particle size as that of the coal powder.
  • the biomass carbide powder having this particle size can be easily obtained by pulverization using a coal pulverizer such as a mill generally used in the field of coal gasification. However, the pulverization may be performed by using a device other than a coal pulverizer such as a mill generally used in the field of coal gasification.
  • the biomass raw material derived from the plant as the raw material of the biomass carbide used in the present invention includes a biomass raw material containing sodium, potassium, calcium, etc., which are elements functioning as a gasification catalyst, as an ash component, such as a woody biomass raw material.
  • a biomass raw material containing sodium, potassium, calcium, etc. which are elements functioning as a gasification catalyst, as an ash component, such as a woody biomass raw material.
  • a woody biomass raw material for example, cedar chips, cedar bark, etc.
  • herbaceous biomass raw materials for example, bamboo, rice husk, sugar cane, rice straw, tea bowl, etc.
  • plant residues for example, fruit peel, coffee roasted rice cake, etc.
  • the mixing ratio of coal powder and biomass carbide powder can be appropriately changed according to the supply balance of coal and plant-derived biomass raw material, and is not particularly limited.
  • the pulverization property is enhanced by making the plant-derived biomass raw material a carbide, fine pulverization is easy, and even if the mixing ratio of the biomass raw material to coal is increased, unreacted components are generated. It is also difficult to increase the mixing ratio of biomass raw materials. That is, by using the biomass raw material in the form of carbides, it is possible to easily increase the mixing ratio of biomass to coal, and the use of biomass can be expanded.
  • the crude vinegar used in the present invention is an acidic water-soluble liquid recovered by cooling the volatile matter generated when carbonizing a plant biomass raw material.
  • a specific method for producing the crude vinegar is described in Japanese Patent Application Laid-Open No. 2008-179802 as its “acidic biomass water-soluble liquid”, and a detailed description thereof is omitted. It can be recovered by cooling and condensing the volatile matter generated when carbonizing at least one of the biomass biomass material, the herbaceous biomass material and the plant-derived food residue.
  • water-soluble by-products such as vinegars recovered in the manufacturing process of charcoal and bio-oil can also be used as the crude vinegar in the present invention.
  • Coal pulverized coal powder and biomass carbide powder are mixed with crude vinegar to further add calcium, which is an ash component of coal, and sodium, potassium, and calcium, which are ash components of biomass carbide, to crude vinegar. It dissolves in the liquid, and these are uniformly dispersed and supported on the surface of the coal powder and biomass carbide to exhibit catalytic activity.
  • the gasification reactivity is improved as compared with the case where the coal powder alone is reacted with the gasification agent, and the gasification fuel obtained by mixing the coal powder and the biomass carbide powder is used as the gasification agent. It is possible to improve the gasification reactivity as compared with the case of reacting with.
  • the use of crude vinegar obtained when carbonizing plant-derived biomass materials is used to further expand the use of biomass materials.
  • the supply form to the coal gasification furnace of gasification fuel according to the coal supply system of a coal gasification furnace.
  • the coal powder, the biomass carbide powder, and the crude vinegar solution are mixed and then dried.
  • the coal powder, the biomass carbide powder, and the crude vinegar solution may be mixed and dried, or may be made into a slurry by further adding water.
  • the crude vinegar liquid recovered when carbonizing the biomass material derived from plants is usually a water-soluble liquid having a pH of 2 to 3, but as long as it exhibits acidity, the ash component of coal or the ash component of biomass carbide is used. The effect of melting is exerted. Therefore, the crude vinegar solution may be appropriately diluted with water as long as the wettability with respect to the coal powder and the biomass carbide powder can be sufficiently secured.
  • biomass carbide powder obtained by carbonizing a plant-derived biomass material obtained by carbonizing a plant-derived biomass material
  • crude vinegar obtained when carbonizing a plant-derived biomass material further a gasification catalyst
  • the contained substances may be mixed.
  • gasification catalyst components further contained in the gasification catalyst-containing material
  • the amount of catalyst supported on the surface of the coal powder and biomass carbide powder can be increased, and the gasification reactivity can be further improved.
  • coal ash in particular, coal ash recovered after reacting coal carrying the gasification catalyst, recovered after reacting in a fluidized bed or fixed bed gasification furnace.
  • examples include, but are not limited to, biomass ash obtained by incineration of ash and biomass raw materials, and fluxes such as limestone used to lower the melting point of the ash component.
  • the gasification system 1 includes a coal pulverizer 2 that pulverizes coal 31 to obtain coal powder, a coal gasifier 3 that reacts the coal powder with a gasifying agent 36 to generate a combustible gas, and a coal pulverizer.
  • the carbonization processing apparatus 5 which carbonizes the biomass raw material 32 derived from a plant, and the carbonization processing apparatus 5
  • a crude vinegar liquid recovery device 6 that cools the generated volatile matter 34 and recovers a crude vinegar liquid derived from the biomass raw material 32
  • a biomass carbide supply device that supplies biomass carbide produced by the carbonization treatment device 5 to the coal crusher 2.
  • 7 and a crude vinegar solution supply device 8 for supplying the crude vinegar solution recovered by the crude vinegar solution recovery device 6 to the coal pulverization device 2.
  • the light gas supply apparatus 10 which supplies the light gas which is not collect
  • a bio-oil recovery device 11 that separates and recovers bio-oil from volatile matter generated in the carbonization treatment device 5;
  • a bio-oil supply device 13 that supplies the bio-oil recovered by the bio-oil recovery device 11 to the coal gasification furnace 3;
  • a gas-liquid separation device 20 is provided as a device for separating the crude vinegar solution, bio-oil and light gas from the volatile matter generated in the carbonization treatment device 5.
  • the gas-liquid separator 20 includes a crude vinegar liquid recovery device 6 and a bio-oil recovery device 11, and light gas components that are not recovered by these are supplied to the coal gasification furnace 3 by the light gas supply device 10. It is supposed to be.
  • symbol 37 is the slag or ash discharged
  • symbol 38 is the produced gas, char, or ash discharged
  • FIG. 1 the code
  • symbol 37 is the slag or ash discharged
  • symbol 38 is the produced gas, char, or ash discharged
  • coal pulverization apparatus 2 in the gasification system 1 of the present embodiment general coal (for example, bituminous coal, subbituminous coal, etc.) used for coal gasification is pulverized, and is coarsened according to the method of the coal gasifier.
  • a coal pulverizer, such as a mill, that is usually used in an existing coal gasification system that can obtain coal powder such as pulverized coal or pulverized coal can be used.
  • the coal powder obtained by pulverizing coal is made to react with a gasifying agent (for example, oxygen, oxygen-enriched air, air, carbon dioxide, water vapor, etc.) and combustible.
  • a gasifying agent for example, oxygen, oxygen-enriched air, air, carbon dioxide, water vapor, etc.
  • generates property gas can be employ
  • known or new various types of coal gasification furnaces such as a fixed bed system, a fluidized bed system, a spouted bed system, and a pressurized entrained bed system can be appropriately employed.
  • a coal powder supply device 4 in the gasification system 1 of the present embodiment a coal powder supply device that is usually used in an existing coal gasification system, such as a lock hopper device or a slurry pump, can be used.
  • the carbonization device 5 in the gasification system 1 of the present embodiment is not particularly limited as long as it is a device that can generate crude vinegar or biomass carbide from a plant-derived biomass raw material.
  • the biomass raw material can be heat-treated at a temperature substantially not containing oxygen, preferably an oxygen-free condition, at 300 ° C. or higher, preferably 300 ° C. to 500 ° C., more preferably about 400 ° C.
  • a general drying apparatus, a carbonizer, etc. can be used.
  • exhaust heat in the system for example, exhaust heat generated in the coal gasification furnace 3 may be used as a heat source for carbonization. By using the system exhaust heat, the gasification efficiency can be further improved.
  • Biomass carbide produced by the carbonization treatment device 5 is supplied to the coal crushing device 2 by the biomass carbide supply device 7.
  • the biomass carbide supply device 7 is, for example, a belt conveyor.
  • the crude vinegar solution recovery device 6 cools the volatile matter 34 generated from the carbonization device 5 and recovers the crude vinegar solution.
  • the volatile matter 34 generated from the carbonization apparatus 5 contains light gas that does not condense even when cooled.
  • the volatile matter 34 contains bio oil.
  • the bio-oil is separated from the volatile matter generated in the light gas supply device 10 that supplies the light gas to the coal gasification furnace 3 and the carbonization treatment device 5 in order to effectively use light gas and bio-oil. And a bio-oil recovery device 11 that recovers the bio-oil, and a bio-oil supply device 13 that supplies the bio-oil recovered by the bio-oil recovery device 11 to the coal gasification furnace 3.
  • the gas-liquid separation device 20 separates and collects the crude vinegar solution, light gas, and bio-oil from the volatile matter 34 generated from the carbonization treatment device 5.
  • an example of a method for separating the crude vinegar solution, light gas, and bio-oil using the gas-liquid separator 20 will be described with reference to FIG.
  • the discharge from the pipe 21 of the carbonization apparatus 5 is introduced into the first container 22.
  • the first container 22 is kept warm by a warming heater 23.
  • the temperature of the heat retaining heater 23 is controlled by a thermocouple 24.
  • the temperature at which heavy components such as bio oil and solids contained in the discharge from the carbonization apparatus 5 and solids can be captured and moisture evaporates for example, the temperature in the vicinity of the introduction portion of the pipe 25 is set to 100. Set to °C -110 °C.
  • the bio-oil contained in the discharge from the pipe 21 of the carbonization apparatus is collected in the first container 22, and the gas component that has not been collected in the first container 22 is introduced into the pipe 25. That is, in the present embodiment, the first container 22, the heat retaining heater 23, and the thermocouple 24 function as the bio-oil recovery device 11.
  • the bio-oil collected in the first container 22 is supplied to the coal gasifier 3 by the bio-oil supply device 13.
  • the bio-oil supply device 13 is, for example, a pipe that connects the first container 22 of the bio-oil recovery apparatus 11 and the coal gasification furnace 3, and the bio-oil is supplied from the first container 22 to the coal gasification furnace 3 through this pipe.
  • This is a pump for feeding liquid.
  • Bio-oil obtained by thermally decomposing plant-derived biomass material at about 400 ° C. has fluidity and can be supplied by a pump.
  • the bio-oil supply device 13 is not limited to this configuration.
  • the pump may be omitted so that the bio-oil flows down in the pipe by gravity.
  • the discharge from the pipe 25 is introduced into the second container 26.
  • the pipe 25 is provided with a cooling device 27 (for example, a Liebig cooler), and gas components that have not been recovered in the first container 22 are aggregated and recovered.
  • This aggregate is a crude vinegar solution.
  • the cooling device 27 is not limited to the case where it is provided in the pipe 25.
  • the crude vinegar solution may be recovered by cooling the second container 26 itself.
  • the gas discharged from the pipe 25 can be recovered at 0 ° C. to room temperature, the discharge temperature from the pipe 25 may be recovered by lowering the cooling temperature below this temperature range.
  • the second container 26 and the cooling device 27 function as the crude vinegar solution recovery device 6.
  • the crude vinegar recovered in the second container 26 is supplied to the coal pulverizer 2 by the crude vinegar supply device 8.
  • the crude vinegar liquid supply device 8 is, for example, a pipe connecting the second container 26 and the coal pulverizer 2 and a pump for feeding the crude vinegar liquid from the second container 26 to the coal pulverizer 2 via this pipe. It is.
  • the crude vinegar solution supply device 8 is not limited to this configuration.
  • the pump may be omitted so that the crude vinegar liquid flows down in the pipe due to gravity.
  • the light gas that has not been collected in the second container 26 is supplied to the coal gasification furnace 3 by the light gas supply device 10 as gasified fuel.
  • the light gas supply device 10 is, for example, a pipe for supplying light gas that has not been collected in the second container 26 to the coal gasification furnace 3, and a blower or the like may be used in some cases.
  • the gas-liquid separation device 20 shown in FIG. 9 is an example of a device that separates and recovers volatile matter generated from the carbonization treatment device 5 into light gas, crude vinegar solution, and bio-oil. It is not limited. For example, only the first container 22 is provided, and the first container 22 is cooled to collect the crude vinegar solution together with the bio-oil, and then separated into a bio-oil phase and a crude vinegar liquid phase by a liquid-liquid extraction process or the like. May be recovered.
  • the coal pulverization apparatus 2 the coal and the biomass carbide supplied by the biomass carbide supply apparatus 7 are mixed while being pulverized and the crude vinegar liquid supplied by the crude vinegar supply apparatus 8 is mixed. Mixed with these.
  • the coal pulverization apparatus normally used in the existing coal gasification system is provided with an apparatus for supplying gasified fuel in a suitable form according to the coal supply system to the coal gasification furnace.
  • a dry coal pulverizer equipped with a heating device such as a heater for drying and removing 5 to 20% of moisture contained in coal is used.
  • a wet coal pulverizer equipped with a slurry generator for adding water to the coal powder to form a slurry is used. Therefore, in the coal pulverizing apparatus 2, the gasification fuel in which the catalyst components are uniformly dispersed and supported on the entire surface of the coal powder and the biomass carbide powder in the form suitable for the coal gasification method to the coal gasification furnace is obtained. It is supplied to the gasifier 3.
  • coal pulverizer 2 When the coal pulverizer 2 is not provided with a heating device or a slurry generator, these devices are installed in the coal pulverizer itself or the coal powder supply device 4 so as to be supplied to the coal gasifier. What is necessary is just to obtain the gasification fuel of a suitable form according to a charcoal system.
  • the gasification system according to the present embodiment further includes a gasification catalyst supply device 14 for supplying the gasification catalyst-containing material to the coal pulverization device 2. Accordingly, the gasification catalyst-containing substance is supplied to the coal pulverizer 2, the gasification catalyst component is dissolved in the crude vinegar, and is dispersed and supported on the coal powder and the biomass carbide powder, thereby improving the gasification reactivity.
  • the gasification catalyst supply device 14 is, for example, a belt conveyor.
  • a water supply device may be provided in order to dilute the crude vinegar solution collected by the crude vinegar solution collection device 6 with water.
  • the container for example, the second container 26 in FIG. 9
  • the water supply device may be used in combination with the gasification catalyst supply device 14.
  • the gasification catalyst supply device 14 is a pipe and a liquid feed pump, and water is supplied to the coal pulverization device 2 by supplying the gasification catalyst to the coal pulverization device 2 while being dispersed in water. May be.
  • the biomass carbide 41 and the crude vinegar liquid 40 are supplied independently without including the carbonization treatment device 5. Yes. That is, without using the carbonization apparatus 5 for carbonizing the biomass raw material 32 derived from the plant, the gasification reaction is achieved by using the biomass carbide 41 or the crude vinegar liquid 40 that is expected to be effectively used as a surplus. It is also possible to improve the property and reduce carbon dioxide emissions.
  • the crude vinegar solution supply device 6 is further omitted from the gasification system 1a in the second embodiment. That is, by using the biomass carbide 41 that is expected to be effectively used as a surplus without the carbonization treatment device 5 and the crude vinegar solution supply device 8 for carbonizing the plant-derived biomass raw material 32, It is also possible to improve gasification reactivity and reduce carbon dioxide emissions.
  • the above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention.
  • the coal powder, the biomass carbide powder, and the crude vinegar liquid are mixed with the coal pulverizer 2, but the coal powder and the biomass carbide powder are separately obtained
  • a gasified fuel may be obtained in advance by adding a crude vinegar and mixing and drying, or by slurrying. In this case, gasification can be performed by supplying gasified fuel directly to the coal powder supply device 4 (for example, a lock hopper device).
  • the process of drying after mixing the coal powder, the biomass carbide powder and the crude vinegar liquid may be forced by a heating device or the like, but after mixing the coal powder, the biomass carbide powder and the crude vinegar liquid, It may be allowed to stand until it is used as a gasified fuel and dried naturally.
  • a coal pulverization apparatus 2 that pulverizes coal to obtain coal powder
  • a coal gasification furnace 3 that reacts the coal powder with a gasifying agent 36 to generate a combustible gas
  • coal pulverization
  • a gasification system comprising at least a coal powder supply device 4 for supplying the coal powder obtained by the device 2 to the coal gasification furnace 3, the crude vinegar solution 40 obtained when carbonizing a plant-derived biomass raw material is coal.
  • the gasification system 1c provided with the crude vinegar liquid supply apparatus 8 supplied to a grinding
  • the core tube of the electric furnace 5 is a vertical type, and a perforated plate (eye plate) having a plurality of through holes and quartz wool are arranged so as to block the core tube, and the biomass raw material charged into the core tube is the core. It was held in the tube. Then, by supplying an inert gas from the upper part of the furnace core tube, the gas generated during the carbonization treatment is forcibly exhausted from the pipe 21 toward the first container 22.
  • the discharge from the pipe 21 was introduced into the first container 22, and the first container 22 was kept warm by the heat insulation heater 23.
  • the temperature of the heat retaining heater 23 was controlled by a thermocouple 24, and the temperature in the vicinity of the introduction portion of the pipe 25 for guiding the gas to the second container 26 was set to 100 ° C. to 110 ° C.
  • the bio-oil contained in the discharge from the pipe 21 is collected in the first container 22, and the gaseous discharge that has not been collected in the first container 22 and the components once collected in the first container 22 are collected.
  • the component that evaporates at the set temperature of the heat retaining heater 23 is introduced into the pipe 25 for guiding the gas to the second container 26.
  • the discharge from the pipe 25 was introduced into the second container 26.
  • the pipe 25 is provided with a Liebig cooler which is a water circulation type cooling device, and the gaseous discharge that has not been recovered in the first container 22 and the components of the heat retaining heater 23 among the components once recovered in the first container 22.
  • the components evaporated at the set temperature were cooled, and the aggregate was collected in the second container 26.
  • the low-boiling organic components that were not recovered in the second container 26 were introduced into the pipe for guiding the gas to the third container. Water was put in the third container, and the low-boiling organic component was recovered by bubbling the gas discharged from the pipe.
  • the char was prepared by the following method. First, after drying a sample at 107 ° C., it was charged in an infrared electric furnace, held for 1 minute and dry-distilled to prepare a char. By this treatment, the gas phase-gas phase reaction, which is a thermal decomposition reaction that occurs in the early stage of the gasification reaction, is performed in advance, and only the gas phase-solid phase reaction of the gasifying agent and char, which becomes the rate-limiting reaction in the entire gasification reaction, is performed. Can be measured in subsequent experiments.
  • the char gasification reaction rate was measured by a constant temperature measurement method using an upper plate type thermobalance (device name: TGA-DTA2000S, manufactured by Mac Science). 5 mg of char was charged into a 5 mm ⁇ cell, and the temperature was raised to 850 ° C. or 900 ° C. at an increase rate of 15 ° C./min in an argon atmosphere (450 cc / min). Then, while maintaining the temperature at 850 ° C. or 900 ° C., the supply of argon is stopped, carbon dioxide gas is supplied at 450 cc / min, and the gasification of char proceeds at a gasifying agent concentration of 100%. The amount of weight loss was monitored.
  • the gasification reaction rate x and the gasification reaction rate r were defined by the TG curve shown in FIG. That is, the weight reduction amount from time T 1 when the weight reduction started to time T 2 when no weight reduction was observed was defined as W 0, and the weight reduction amount at each time T was defined as W. And the gasification reaction rate x was calculated
  • Example 1 The coal powder and the crude vinegar were mixed and stirred at the ratio shown below (ratio (weight) when the coal powder was 1) and dried, and the gasification reaction rate was measured. The measurement temperature was 900 ° C.
  • Example 2 The gasification reaction rate was measured and compared for the case of mixing coal powder and biomass carbide powder and the case of mixing coal powder, biomass carbide powder and crude vinegar.
  • the measurement temperature was 850 ° C.
  • the mixing ratio was determined by calculation assuming a mixing ratio of 50 wt% based on the original biomass.
  • Coal powder: biomass carbide powder: crude vinegar liquid 1: 0.35: 0.35 (weight ratio)
  • Biomass carbide powder was used by pulverizing what was generated when crude vinegar was obtained from cedar bark. Moreover, the coal type of the coal powder was the same as in Example 1.
  • (e) is a gasification reaction rate when coal powder is used alone.
  • (F) is a gasification reaction rate when coal powder and biomass carbide are mixed.
  • (G) is the gasification reaction rate when coal powder, biomass carbide and crude vinegar are mixed.
  • the same experiment was carried out by changing the coal type of the coal powder.
  • the measurement temperature was 900 ° C.
  • (h) is a gasification reaction rate when coal powder is used alone.
  • (I) is the gasification reaction rate when coal powder and crude vinegar are mixed.
  • (J) is the gasification reaction rate when coal powder and biomass carbide are mixed.
  • (K) is the gasification reaction rate when coal powder, biomass carbide and crude vinegar are mixed.
  • gasification reactivity can be improved by mixing coal powder and biomass carbide powder, and gasification reactivity can be improved by mixing coal powder, biomass carbide powder and crude vinegar. It became clear that it could be further improved. In addition, it became clear by mixing coal powder and crude vinegar that gasification reactivity can be improved rather than the case of coal powder alone.
  • the gasification system, the gasification method, and the gasification fuel production method of the present invention can be used in the field of coal gasification technology and improve carbonization reactivity, while also increasing carbon dioxide emissions by using biomass.
  • the amount can be reduced. It also contributes to effective use of biomass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 石炭31を粉砕して石炭粉末を得る石炭粉砕装置2と、石炭粉末をガス化剤36と反応させて可燃性ガスを生成する石炭ガス化炉3と、石炭粉砕装置2で得られた石炭粉末を石炭ガス化炉3に供給する石炭粉末供給装置4とを備えるガス化システムにおいて、植物由来のバイオマス原料32を炭化処理する炭化処理装置5と、炭化処理装置5で発生する揮発分を冷却してバイオマス原料由来の粗酢液を回収する粗酢液回収装置6と、炭化処理装置5で生成されるバイオマス炭化物を石炭粉砕装置2に供給するバイオマス炭化物供給装置7と、粗酢液回収装置6で回収された粗酢液を石炭粉砕装置2に供給する粗酢液供給装置8とを備えるものとした。

Description

ガス化システム及びガス化方法
 本発明は、ガス化システム及びガス化方法に関する。さらに詳述すると、本発明は、石炭とバイオマスを共利用してガス化するのに好適なガス化システム及びガス化方法に関する。
 近年、地球温暖化問題の高まりの中で、石炭利用に伴う二酸化炭素排出量の削減が重要な課題となっており、石炭の高効率・低環境負荷エネルギー変換システムの開発が急務となっている。
 石炭の高効率・低環境負荷エネルギー変換システムの代表的なものとして、石炭を利用したガス化技術が挙げられる。特に、石炭ガス化複合発電は、高効率且つ環境性に優れた発電システムとして早期実用化が期待されており、様々な技術が開発されつつある。
 ところで、近年、バイオマスを利用することにより二酸化炭素排出量を削減する試みが様々な分野において実施されつつある。バイオマスは動植物由来の再生可能エネルギーであることから、カーボンニュートラルの概念が適用できる。したがって、バイオマスから発生する二酸化炭素は規制されない。石炭火力発電の分野においては、既に石炭とバイオマスとの混焼技術の開発が進められており、例えば、特許文献1では、バイオマスを単独粉砕する第1の粉砕機と石炭を単独粉砕する第2の粉砕機にそれぞれ対応した燃料供給ノズルをボイラ火炉に設けて、ボイラ火炉内でバイオマス粉体と石炭粉体とを混合して燃焼させる手法が提案されている。そこで、石炭の高効率・低環境負荷エネルギー変換システムである石炭を利用したガス化技術の分野においても、バイオマスの有効利用を図ることにより二酸化炭素排出量を削減することが望まれている。
特開2008-82651号公報
 しかしながら、特許文献1で提案されている技術では、石炭の粉砕機とは別の粉砕機をバイオマスを粉砕するために設けることが必要となることから、ガス化システムの構築のための初期費用が嵩むと共に、二つの粉砕機を稼働させることにより運転コストが嵩み、ガス化にかかるコストが上昇してしまう問題がある。
 また、石炭を利用したガス化技術を普及させるためには、単にバイオマスの有効利用による二酸化炭素排出量の削減を図るだけでなく、ガス化反応性を向上させて、エネルギー変換効率を高めることが極めて重要な要素となる。したがって、バイオマス原料を石炭に混合することによって、石炭単独でガス化に供した場合よりもガス化反応性を向上させる手法の確立が望まれる。
 本発明は、ガス化にかかるコストを抑えながらも、バイオマスの有効利用を図ることにより二酸化炭素排出量を削減することができ、しかも石炭単独でガス化した場合よりもガス化反応性を高めることができるガス化システム及びガス化方法を提供することを目的とする。
 また、本発明は、石炭よりもガス化反応性に優れ、しかも二酸化炭素排出量を削減することのできるガス化燃料を製造することを目的とする。
 かかる課題を解決するため、本願発明者等は鋭意検討を行い、既存の石炭ガス化システムにおいて石炭を粉砕して粗粉炭や微粉炭といった石炭粉末とするために設けられているミル等の石炭粉砕装置によって、石炭と同時に植物由来のバイオマス原料を粉砕することについて検討した。しかしながら、植物由来のバイオマス原料は繊維質であることから、十分に粉砕することができず、石炭ガス化炉に供した場合に未反応分が発生することが懸念された。
 そこで、本願発明者等はさらなる検討を行った。その結果、植物由来のバイオマス原料を炭化処理してバイオマス炭化物とすることによって、その繊維質を破壊して粉砕性を向上させることができ、既存の石炭ガス化システムにおけるミル等の石炭粉砕装置によって十分に微粉化できることを知見した。しかも、石炭を粉砕した石炭粉末とバイオマス炭化物粉末とを混合してガス化剤と反応させることによって、石炭粉末単独でガス化剤と反応させた場合と比較して、ガス化反応性を向上させることができることを知見した。
 さらに、本願発明者等は、植物由来のバイオマス原料を炭化処理する際に得られた粗酢液を、石炭を粉砕した石炭粉末とバイオマス炭化物粉末とに混合し乾燥した後にガス化剤と反応させてみたところ、石炭を粉砕した石炭粉末とバイオマス炭化物粉末とを混合してガス化剤と反応させた場合と比較して、ガス化反応性が向上することを知見した。
 本願発明者等は、これらの知見に基づき、植物由来のバイオマス原料による石炭のガス化反応性向上効果を最大限に引き出すことのできるガス化システム及びガス化方法についてさらなる検討を行い、本願発明を完成するに至った。
 即ち、本発明のガス化システムは、石炭を粉砕して石炭粉末を得る石炭粉砕装置と、石炭粉末をガス化剤と反応させて可燃性ガスを生成する石炭ガス化炉と、石炭粉砕装置で得られた石炭粉末を石炭ガス化炉に供給する石炭粉末供給装置とを少なくとも備えるガス化システムにおいて、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を石炭粉砕装置に供給するバイオマス炭化物供給装置を備えるものとしている。
 ここで、本発明のガス化システムにおいて、植物由来のバイオマス原料を炭化処理する際に得られる粗酢液を石炭粉砕装置に供給する粗酢液供給装置をさらに備えるものとすることが好ましい。
 また、本発明のガス化システムにおいて、粗酢液供給装置が備えられる場合には、植物由来のバイオマス原料を炭化処理する炭化処理装置と、炭化処理装置で発生する揮発分を冷却してバイオマス原料由来の粗酢液を回収する粗酢液回収装置とをさらに備え、炭化処理装置で生成されるバイオマス炭化物がバイオマス炭化物供給装置により石炭粉砕装置に供給され、粗酢液回収装置で回収された粗酢液が粗酢液供給装置により石炭粉砕装置に供給されるものとすることが好ましい。
 そして、本発明のガス化システムにおいて、炭化処理装置と粗酢液回収装置が備えられる場合には、炭化処理装置で発生する揮発分のうち粗酢液回収装置で回収されない軽質ガスを石炭ガス化炉に供給する軽質ガス供給装置をさらに備えるものとすることが好ましい。また、炭化処理装置で発生する揮発分からバイオオイルを分離して回収するバイオオイル回収装置と、バイオオイル回収装置で回収されたバイオオイルを石炭ガス化炉に供給するバイオオイル供給装置とをさらに備えるものとすることが好ましい。
 また、本発明のガス化システムにおいて、粗酢液供給装置が備えられる場合には、ガス化触媒含有物質を石炭粉砕装置に供給するガス化触媒供給装置をさらに備えるものとすることが好ましい。
 さらに、本発明のガス化システムにおいて、粗酢液供給装置はバイオマス炭化物供給装置に替えて備えるようにしてもよい。
 次に、本発明のガス化方法は、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末とを混合したガス化燃料をガス化剤と反応させて可燃性ガスを生成するようにしている。
 ここで、本発明のガス化方法において、石炭粉末とバイオマス炭化物粉末とに加えて、さらに植物由来のバイオマス原料を炭化処理する際に得られる粗酢液を混合して得られるガス化燃料をガス化剤と反応させて可燃性ガスを生成することが好ましい。
 また、本発明のガス化方法において、石炭粉末とバイオマス炭化物粉末と粗酢液とに加えて、さらにガス化触媒含有物質を混合して得られるガス化燃料をガス化剤と反応させて可燃性ガスを生成することが好ましい。
 次に、本発明のガス化燃料の製造方法は、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末とを混合する混合工程を含むようにしている。
 ここで、本発明のガス化燃料の製造方法において、混合工程では、石炭粉末とバイオマス炭化物粉末とに加えて、さらに植物由来のバイオマス原料を炭化処理する際に得られる粗酢液とを混合することが好ましい。
 また、本発明のガス化燃料の製造方法において、混合工程では、石炭粉末とバイオマス炭化物粉末と粗酢液とに加えて、さらにガス化触媒含有物質を混合することが好ましい。
 本発明のガス化システムによれば、石炭を粉砕して石炭粉末を得るための石炭粉砕装置によって、石炭と共に炭化処理により粉砕性が向上しているバイオマス炭化物を粉砕しながら混合することができ、石炭粉末とバイオマス炭化物粉末とを混合して得られるガス化燃料を石炭ガス化炉に供給することができる。したがって、石炭粉末のみを石炭ガス化炉に供給してガス化剤と反応させた場合よりもガス化反応性を高めることができ、システム全体としてのガス化効率を向上させることが可能となる。しかも、植物由来のバイオマス原料の炭化物を利用していることから、二酸化炭素排出量の削減を図ることが可能となる。
 また、請求項2に記載のガス化システムによれば、石炭を粉砕して石炭粉末を得るための石炭粉砕装置によって、石炭と共に炭化処理により粉砕性が向上しているバイオマス炭化物を粉砕しながら混合し、さらに粗酢液を混合することができ、石炭粉末とバイオマス炭化物粉末と粗酢液を混合して得られるガス化燃料を石炭ガス化炉に供給することができる。したがって、石炭粉末のみを石炭ガス化炉に供給してガス化剤と反応させた場合よりもガス化反応性をさらに高めることができ、システム全体としてのガス化効率をさらに向上させることが可能となる。しかも、植物由来のバイオマス原料の炭化物だけでなく、さらに粗酢液を利用していることから、二酸化炭素排出量のさらなる削減を図ることが可能となる。
 さらに、請求項3に記載のガス化システムによれば、植物由来のバイオマス原料を炭化処理装置で炭化処理して生成されるバイオマス炭化物と炭化処理の際に発生する揮発分から回収される粗酢液を石炭粉砕装置に供給するようにしているので、バイオマス炭化物を得るためのバイオマス原料と粗酢液を得るためのバイオマス原料を同一のものとすることができる。したがって、バイオマス原料を無駄なく使用しつつ、ガス化反応性を向上させることができる。換言すれば、植物由来のバイオマス原料によるガス化反応性向上効果を最大限に引き出すことができる。
 請求項4に記載のガス化システムによれば、植物由来のバイオマス原料から得られ、粗酢液として回収されることのない軽質ガスをも石炭ガス化炉に供給するようにしているので、バイオマス原料から発生する成分をさらに無駄なく利用することができる。
 請求項5に記載のガス化システムによれば、植物由来のバイオマス原料から得られるバイオオイルをも石炭ガス化炉に供給するようにしているので、バイオマス原料から発生する成分をさらに無駄なく利用することができる。
 請求項6に記載のガス化システムによれば、ガス化触媒含有物質を石炭粉砕装置に供給するガス化触媒供給装置をさらに備えるものとしているので、ガス化触媒含有物質に含まれるガス化触媒成分が粗酢液に溶け込んで、このガス化触媒成分が石炭粉末及びバイオマス炭化物粉末の表面に均一に分散担持される。したがって、ガス化燃料のガス化反応性をさらに向上させることができ、システム全体としてのガス化効率をさらに向上させることが可能となる。
 請求項7に記載のガス化システムによれば、石炭を粉砕して石炭粉末を得るための石炭粉砕装置によって、石炭を粉砕しながら粗酢液を混合することができ、石炭粉末と粗酢液とを混合して得られるガス化燃料を石炭ガス化炉に供給することができる。したがって、石炭粉末のみを石炭ガス化炉に供給してガス化剤と反応させた場合よりもガス化反応性を高めることができ、システム全体としてのガス化効率を向上させることが可能となる。しかも、植物由来のバイオマス原料から得られる粗酢液を利用していることから、二酸化炭素排出量の削減を図ることが可能となる。
 請求項8に記載のガス化方法によれば、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末とを混合して得られるガス化燃料をガス化剤と反応させるようにしているので、石炭粉末のみをガス化剤と反応させた場合よりも、ガス化反応性を高めることができる。しかも、植物由来のバイオマス原料の炭化物を利用していることから、二酸化炭素排出量の削減を図ることが可能となる。
 請求項9に記載のガス化方法によれば、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末と、植物由来のバイオマス原料を炭化処理する際に得られる粗酢液とを混合して得られるガス化剤と反応させるようにしているので、石炭粉末とバイオマス炭化物粉末とを混合した場合よりもガス化反応性を高めることができる。しかも、植物由来のバイオマス原料の炭化物だけでなく、さらに粗酢液を利用していることから、二酸化炭素排出量のさらなる削減を図ることが可能となる。
 請求項10に記載のガス化方法によれば、石炭粉末とバイオマス炭化物粉末と粗酢液とに加えて、さらにガス化触媒含有物質を混合するようにしているので、粗酢液にガス化触媒含有物質に含まれるガス化触媒成分が溶け込んで、このガス化触媒成分が石炭粉末及びバイオマス炭化物粉末の表面に均一に分散担持される。したがって、ガス化燃料のガス化反応性をさらに向上させて、ガス化効率のさらなる向上を図ることが可能となる。
 請求項11に記載のガス化燃料の製造方法によれば、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末とを混合する工程を含むようにしているので、ガス化剤との反応性が石炭粉末よりも高いガス化燃料が得られる。しかも、このガス化燃料は、植物由来のバイオマス原料の炭化物を配合していることから、二酸化炭素排出量の削減を図ることが可能なものとなる。
 請求項12に記載のガス化燃料の製造方法によれば、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末と、植物由来のバイオマス原料を炭化処理する際に得られる粗酢液とを混合する工程を含むようにしているので、ガス化剤との反応性が石炭粉末とバイオマス炭化物粉末との混合物よりも高いガス化燃料が得られる。しかも、このガス化燃料は、植物由来のバイオマス原料の炭化物だけでなく、さらに粗酢液を利用していることから、二酸化炭素排出量のさらなる削減を図ることが可能なものとなる。
 請求項13に記載のガス化燃料の製造方法によれば、粗酢液にガス化触媒含有物質に含まれるガス化触媒成分が溶け込んで、このガス化触媒成分が石炭粉末及びバイオマス炭化物粉末の表面に均一に分散担持される。したがって、ガス化燃料のガス化反応性をさらに向上させることが可能となる。
本発明のガス化システムの第1の実施形態を示す図である。 本発明のガス化システムの第2の実施形態を示す図である。 本発明のガス化システムの第3の実施形態を示す図である。 重量減少Wと総重量減少Wの定義を説明する図である。 石炭粉末に粗酢液を混合した場合のガス化反応率を示す図である。 石炭粉末に粗酢液を混合した場合のガス化反応速度を示す図である。 石炭粉末にバイオマス炭化物と粗酢液を混合した場合のガス化反応率を示す図である。 石炭粉末の炭種と測定温度を変えて図7の測定結果が得られた実験と同様の実験を行った場合のガス化反応率を示す図である。 気液分離装置の一例を示す図である。 本発明のガス化システムの他の実施形態を示す図である。
 以下、本発明を実施するための形態について、図面に基づいて詳細に説明する。
 本発明のガス化方法は、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末とを混合したガス化燃料をガス化剤と反応させて可燃性ガスを生成するようにしている。この場合には、石炭を粉砕した石炭粉末単独でガス化剤と反応させた場合と比較して、ガス化反応性を向上させることができる。ここで、ガス化剤としては、例えば、酸素、酸素富化空気、空気、二酸化炭素または水蒸気等を用いることができる。また、本発明のガス化方法は、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末とに加えて、さらに植物由来のバイオマス原料を炭化処理する際に得られる粗酢液を混合したガス化燃料をガス化剤と反応させて可燃性ガスを生成するようにしている。この場合には、石炭を粉砕した石炭粉末単独でガス化剤と反応させた場合と比較して、ガス化反応性を向上させることができるのは勿論のこと、石炭粉末とバイオマス炭化物粉末とを混合したガス化燃料よりもガス化反応性を向上させることができる。
 本発明において使用される石炭としては、石炭ガス化に供される一般的な石炭、例えば瀝青炭や亜瀝青炭等を利用することができる。また、石炭粉末の粒径については、石炭ガス化炉の供炭方式に応じて適宜選択される。例えば噴流床方式のガス化炉を採用する場合には粒径10μm~100μm程度の所謂微粉炭が選択され、流動層方式のガス化炉を採用する場合には粒径0.5~3mmの所謂粗粉炭が選択される。
 本発明において使用されるバイオマス炭化物としては、植物由来のバイオマス原料を炭化処理したもの、あるいは既に炭化処理されたものを用いることができる。植物由来のバイオマス原料を炭化処理することによって、植物由来のバイオマス原料の繊維質が破壊される。その結果、バイオマス炭化物は植物由来のバイオマス原料と比較して粉砕性が極めて良好なものとなる。バイオマス炭化物粉末の粒径は、ガス化剤と反応させた際に未反応分が生じない程度、即ち、石炭粉末と同程度の粒径とするのが好適である。尚、この粒径のバイオマス炭化物粉末は、石炭ガス化の分野において一般的に用いられているミル等の石炭粉砕装置を用いて粉砕を行うことで容易に得られるものである。但し、石炭ガス化の分野において一般的に用いられているミル等の石炭粉砕装置以外を用いて粉砕を行うようにしても勿論よい。
 尚、本発明において使用されるバイオマス炭化物の原料としての植物由来のバイオマス原料には、ガス化触媒として機能する元素であるナトリウム、カリウム及びカルシウム等を灰成分として含むバイオマス原料、例えば木質系バイオマス原料(例えば杉チップ、杉バーク等)、草本系バイオマス原料(例えば竹、籾殻、サトウキビ、稲わら、茶滓等)、植物残渣(例えば果実皮、コーヒー焙煎滓等)等を幅広く利用することができる。
 石炭粉末とバイオマス炭化物粉末との混合割合については、石炭と植物由来のバイオマス原料の供給バランスに応じて適宜変更することができ、特に限定されるものではない。本発明では、植物由来のバイオマス原料を炭化物とすることによってその粉砕性を高めていることから、微粉砕が容易であり、石炭に対するバイオマス原料の混合割合を高めても、未反応分が発生しにくく、バイオマス原料の混合割合を高めやすい点にも特徴がある。つまり、バイオマス原料を炭化物の形態で用いることによって、石炭に対するバイオマスの混合割合を増加させやすくすることができ、バイオマスの利用拡大を図ることができる。
 本発明において使用される粗酢液は、植物性のバイオマス原料を炭化処理する際に発生する揮発分を冷却することにより回収される酸性の水溶性液体である。粗酢液の具体的な生成方法については、特開2008-179802号公報に「酸性のバイオマス水溶性液」としてその回収方法が記載されており、詳細な説明は省略するが、要は、木質系バイオマス原料、草本系バイオマス原料及び植物由来の食品残渣のうちの少なくともいずれかを炭化処理する際に発生する揮発分を冷却して凝縮することにより回収することができる。尚、木炭やバイオオイルの製造プロセスにおいて回収される酢液類等の水溶性副生成物も本発明における粗酢液として用いることができる。
 石炭を粉砕した石炭粉末とバイオマス炭化物粉末とに加えて、さらに粗酢液を混合することによって、石炭の灰成分であるカルシウム、さらにはバイオマス炭化物の灰成分であるナトリウム、カリウム、カルシウムが粗酢液に溶け込み、これらが石炭粉末及びバイオマス炭化物の表面に均一に分散担持されて触媒活性を呈するようになる。その結果、石炭粉末単独でガス化剤と反応させた場合よりもガス化反応性が向上するのは勿論のこと、石炭粉末とバイオマス炭化物粉末とを混合して得られるガス化燃料をガス化剤と反応させた場合よりもガス化反応性を向上させることが可能となる。しかも、植物由来のバイオマス原料を炭化処理して得られるバイオマス炭化物に加えて、植物由来のバイオマス原料を炭化処理する際に得られる粗酢液を用いることによって、バイオマス原料のさらなる利用拡大を図ることができ、ガス化反応性の向上と二酸化炭素排出量の削減を図ることとを容易に両立させることができるようになる。尚、ガス化燃料の石炭ガス化炉への供給形態は石炭ガス化炉の供炭方式に応じて適宜選択すればよい。例えば、乾式供炭方式の場合には、石炭粉末とバイオマス炭化物粉末と粗酢液とを混合した後、乾燥させるようにすればよい。また、湿式供炭方式の場合には、石炭粉末とバイオマス炭化物粉末と粗酢液とを混合し乾燥させることなく、またはさらに水を添加することによりスラリー状とすればよい。
 ここで、植物由来のバイオマス原料を炭化処理する際に回収される粗酢液は通常pH2~3の水溶性液体であるが、酸性を呈しさえすれば、石炭の灰成分やバイオマス炭化物の灰成分を溶け込ませる効果は発揮する。したがって、石炭粉末とバイオマス炭化物粉末とに対する濡れ性を十分に確保しうる範囲で、粗酢液を適宜水で薄めて使用するようにしてもよい。
 ここで、石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物粉末と、植物由来のバイオマス原料を炭化処理する際に得られる粗酢液とに加えて、さらにガス化触媒含有物質を混合してもよい。この場合には、石炭に灰成分として含まれているカルシウム、バイオマス炭化物が灰成分として有しているナトリウム、カリウム、カルシウムに加えて、さらにガス化触媒含有物質に含まれているガス化触媒成分が粗酢液に溶け込むことによって、石炭粉末及びバイオマス炭化物粉末の表面への触媒の分散担持量を増加させ、ガス化反応性をさらに向上させることができる。
 尚、ガス化触媒含有物質としては、例えば石炭灰、特に、ガス化触媒が担持された石炭を反応させた後に回収される石炭灰、流動床や固定床のガス化炉で反応させた後に回収される灰やバイオマス原料を焼却処理して得られるバイオマス灰、灰成分の融点を降下させるために用いられる石灰石等のフラックス等が挙げられるがこれらに限定されるものではない。
 次に、本発明のガス化システムを実現するための例として、本発明のガス化システムの第1の実施形態を図1に示す。このガス化システム1は、石炭31を粉砕して石炭粉末を得る石炭粉砕装置2と、石炭粉末をガス化剤36と反応させて可燃性ガスを生成する石炭ガス化炉3と、石炭粉砕装置2で得られた石炭粉末を石炭ガス化炉3に供給する石炭粉末供給装置4とを備えるガス化システムにおいて、植物由来のバイオマス原料32を炭化処理する炭化処理装置5と、炭化処理装置5で発生する揮発分34を冷却してバイオマス原料32由来の粗酢液を回収する粗酢液回収装置6と、炭化処理装置5で生成されるバイオマス炭化物を石炭粉砕装置2に供給するバイオマス炭化物供給装置7と、粗酢液回収装置6で回収された粗酢液を石炭粉砕装置2に供給する粗酢液供給装置8とを備えるものとしている。
 また、図1に示すガス化システム1では、炭化処理装置5で発生する揮発分のうち粗酢液回収装置6で回収されない軽質ガスを石炭ガス化炉3に供給する軽質ガス供給装置10と、炭化処理装置5で発生する揮発分からバイオオイルを分離して回収するバイオオイル回収装置11と、バイオオイル回収装置11で回収されたバイオオイルを石炭ガス化炉3に供給するバイオオイル供給装置13と、ガス化触媒含有物質33を石炭粉砕装置2に供給するガス化触媒供給装置14とをさらに備えるものとしている。
 尚、図1では、炭化処理装置5で発生する揮発分から粗酢液とバイオオイルと軽質ガスとを分離する装置として、気液分離装置20を設けるようにしている。気液分離装置20には、粗酢液回収装置6とバイオオイル回収装置11とが備えられており、これらに回収されない軽質ガス成分が軽質ガス供給装置10により石炭ガス化炉3に供給されるものとしている。また、図1において、符号37は石炭ガス化炉3から排出されるスラグまたは灰であり、符号38は石炭ガス化炉3から排出される生成ガス、チャーまたは灰である。
 本実施形態のガス化システム1における石炭粉砕装置2としては、石炭ガス化に供される一般的な石炭(例えば瀝青炭や亜瀝青炭等)を粉砕して、石炭ガス化炉の方式に応じて粗粉炭や微粉炭といった石炭粉末を得ることができる既存の石炭ガス化システムにおいて通常用いられている石炭粉砕装置、例えばミル等を用いることができる。
 本実施形態のガス化システム1における石炭ガス化炉3としては、石炭を粉砕した石炭粉末をガス化剤(例えば、酸素、酸素富化空気、空気、二酸化炭素、水蒸気等)と反応させて可燃性ガスを生成する既存の石炭ガス化システムにおいて通常用いられている石炭ガス化炉を採用することができ、ガス化方式は特に限定されない。例えば、固定床方式、流動床方式、噴流床方式、加圧噴流床方式等の公知あるいは新規の各種方式の石炭ガス化炉を適宜採用することができる。
 本実施形態のガス化システム1における石炭粉末供給装置4としては、既存の石炭ガス化システムにおいて通常用いられている石炭粉末供給装置、例えばロックホッパ装置やスラリーポンプ等を用いることができる。
 本実施形態のガス化システム1における炭化処理装置5は、植物由来のバイオマス原料から粗酢液やバイオマス炭化物を生成できる装置であれば特に限定されるものではない。例えば、バイオマス原料を実質的に酸素を含まない条件下、好適には無酸素条件下で、300℃以上、好適には300℃~500℃、より好適には400℃程度で熱処理することのできる一般的な乾燥装置やカーボナイザー等を使用することができる。ここで、炭化処理の熱源としてシステム内の排熱、例えば石炭ガス化炉3において発生する排熱等を用いるようにしてもよい。システム排熱を利用することにより、ガス化効率をさらに向上させることができる。
 炭化処理装置5で生成されるバイオマス炭化物は、バイオマス炭化物供給装置7により石炭粉砕装置2に供給される。バイオマス炭化物供給装置7は、例えばベルトコンベア等である。
 粗酢液回収装置6では、炭化処理装置5から発生する揮発分34を冷却して粗酢液を回収する。ここで、炭化処理装置5から発生する揮発分34には、冷却しても凝縮しない軽質ガスが含まれている。また、揮発分34には、バイオオイルが含まれている。本実施形態では、軽質ガスやバイオオイルについても有効利用を図るべく、軽質ガスを石炭ガス化炉3に供給する軽質ガス供給装置10と、炭化処理装置5で発生する揮発分からバイオオイルを分離して回収するバイオオイル回収装置11と、バイオオイル回収装置11で回収されたバイオオイルを石炭ガス化炉3に供給するバイオオイル供給装置13とを備えるようにしている。
 本実施形態では、気液分離装置20によって、炭化処理装置5から発生する揮発分34から、粗酢液と軽質ガスとバイオオイルとを分離して回収するようにしている。以下、気液分離装置20を利用した粗酢液と軽質ガスとバイオオイルの分離方法の一例について図9に基づいて説明する。
 炭化処理装置5の配管21からの排出物は第一容器22に導入される。第一容器22は、保温ヒータ23により保温されている。保温ヒーター23の温度は、熱電対24により制御される。具体的には、炭化処理装置5からの排出物に含まれるバイオオイル等の重質成分と固形物とを捕捉でき、且つ、水分が蒸発する温度、例えば配管25の導入部近傍の温度を100℃~110℃に設定する。これにより、炭化処理装置の配管21からの排出物に含まれるバイオオイルが第一容器22に回収されて、第一容器22に回収されなかったガス成分が配管25に導入される。つまり、本実施形態では、第一容器22と、保温ヒータ23と、熱電対24とがバイオオイル回収装置11として機能する。
 第一容器22で回収されたバイオオイルは、バイオオイル供給装置13により石炭ガス化炉3に供給される。バイオオイル供給装置13は、例えばバイオオイル回収装置11の第一容器22と石炭ガス化炉3とを接続する配管と、この配管を介して第一容器22から石炭ガス化炉3へバイオオイルを送液するためのポンプである。400℃程度で植物由来のバイオマス原料を熱分解して得られるバイオオイルは流動性を有することから、ポンプで供給可能である。但し、バイオオイル供給装置13はこの構成には限定されない。例えば、バイオオイルが配管内を重力で流れ落ちるようにしてポンプを省略してもよい。
 配管25からの排出物は、第二容器26に導入される。配管25には冷却装置27(例えばリービッヒ冷却器)が備えられ、第一容器22にて回収されなかったガス成分が凝集して回収される。この凝集物が粗酢液である。尚、冷却装置27は、配管25に備えられる場合には限定されず、例えば第二容器26自体を冷却することによって粗酢液を回収するようにしてもよい。また、配管25から排出されるガスは、0℃~室温で回収することができるが、この温度範囲よりも冷却温度をさらに低くして配管25からの排出物を回収するようにしてもよい。本実施形態では、第二容器26と、冷却装置27とが粗酢液回収装置6として機能する。
 第二容器26で回収された粗酢液は、粗酢液供給装置8により石炭粉砕装置2に供給される。粗酢液供給装置8は、例えば第二容器26と石炭粉砕装置2とを接続する配管と、この配管を介して第二容器26から石炭粉砕装置2へ粗酢液を送液するためのポンプである。但し、粗酢液供給装置8はこの構成には限定されない。例えば、粗酢液が配管内を重力で流れ落ちるようにしてポンプを省略してもよい。
 第二容器26に回収されなかった軽質ガスは、ガス化燃料として軽質ガス供給装置10により石炭ガス化炉3に供給される。軽質ガス供給装置10は、例えば第二容器26に回収されなかった軽質ガスを石炭ガス化炉3に供給するための配管であり、場合によってはブロワー等を併用するようにしてもよい。
 尚、図9に示す気液分離装置20は、炭化処理装置5から発生する揮発分を軽質ガスと粗酢液とバイオオイルとに分離して回収する装置を示す一例であって、この装置に限定されるものではない。例えば、第一容器22のみを備えて、第一容器22を冷却することにより、バイオオイルと共に粗酢液を回収した後に、液液抽出処理等によりバイオオイル相と粗酢液相とに分離して回収するようにしてもよい。
 以上の構成により、石炭粉砕装置2では、石炭と、バイオマス炭化物供給装置7により供給されるバイオマス炭化物とが粉砕されながら混合されると共に、粗酢液供給装置8により供給される粗酢液とがこれらに混合される。その過程で石炭の灰成分であるカルシウムと、バイオマス炭化物の灰成分であるナトリウム、カリウム、カルシウムが粗酢液に溶け込む。ここで、既存の石炭ガス化システムにおいて通常用いられる石炭粉砕装置は、石炭ガス化炉への供炭方式に応じて好適な形態でガス化燃料を供給するための装置が備えられている。例えば乾式供炭方式の場合には、石炭に含まれる5~20%の水分を乾燥して除去するためのヒーター等の加熱装置を備える乾式石炭粉砕装置が用いられる。また、湿式供炭方式の場合には、石炭粉末に水分を加えてスラリー化するスラリー生成装置を備える湿式石炭粉砕装置が用いられる。したがって、石炭粉砕装置2において石炭ガス化炉への供炭方式に応じて好適な形態で、尚且つ石炭粉末とバイオマス炭化物粉末の表面全体に触媒成分が均一に分散担持されたガス化燃料が石炭ガス化炉3に供給される。尚、石炭粉砕装置2に加熱装置やスラリー生成装置が備えられていない場合には、石炭粉砕装置自体あるいは石炭粉末供給装置4にこれらの装置を設置するようにして、石炭ガス化炉への供炭方式に応じて好適な形態のガス化燃料を得るようにすればよい。
 ここで、本実施形態におけるガス化システムにおいては、ガス化触媒含有物質を石炭粉砕装置2に供給するガス化触媒供給装置14をさらに備えるようにしている。したがって、石炭粉砕装置2にガス化触媒含有物質が供給されてガス化触媒成分が粗酢液に溶け込み、石炭粉末及びバイオマス炭化物粉末に分散担持され、ガス化反応性が向上する。ガス化触媒供給装置14は、例えばベルトコンベア等である。
 尚、図示省略しているが、粗酢液回収装置6で回収された粗酢液を水で希釈するために、水供給装置を備えるようにしてもよい。回収された粗酢液の量が少なく、石炭粉末とバイオマス炭化物粉末の濡れ性が十分に確保できない場合には、粗酢液を回収した容器(例えば図9における第二容器26)、粗酢液供給装置8、あるいは石炭粉砕装置2に水供給装置により水を適宜供給することによって、濡れ性を確保し、石炭粉末及びバイオマス炭化物粉末の表面への触媒成分の分散担持状態を良好なものとするようにしてもよい。尚、水供給装置は、ガス化触媒供給装置14と併用するようにしてもよい。例えば、ガス化触媒供給装置14を配管と送液ポンプとし、ガス化触媒を水に分散させた状態で石炭粉砕装置2に供給することにより、石炭粉砕装置2への水の供給を行うようにしてもよい。
 次に、本発明のガス化システムの第2の実施形態について図2に基づいて説明する。図2に示すガス化システム1aでは、第1の実施形態におけるガス化システム1とは異なり、炭化処理装置5を備えることなく、バイオマス炭化物41と粗酢液40とをそれぞれ独立に供給するものとしている。つまり、植物由来のバイオマス原料32を炭化処理するための炭化処理装置5を備えることなく、余剰分としてその有効活用が期待されているバイオマス炭化物41や粗酢液40を用いることによって、ガス化反応性の向上と、二酸化炭素排出量の削減とを実現することも可能である。
 さらに、本発明のガス化システムの第3の実施形態について図3に基づいて説明する。図3に示すガス化システム1bでは、第2の実施形態におけるガス化システム1aからさらに粗酢液供給装置6を省略したものである。つまり、植物由来のバイオマス原料32を炭化処理するための炭化処理装置5と粗酢液供給装置8とを備えることなく、余剰分としてその有効活用が期待されているバイオマス炭化物41を用いることによって、ガス化反応性の向上と、二酸化炭素排出量の削減とを実現することも可能である。
 上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態では、石炭粉末とバイオマス炭化物粉末と粗酢液とを石炭粉砕装置2で混合するようにしていたが、石炭粉末とバイオマス炭化物粉末とをそれぞれ別々に得ておき、これらに粗酢液を加えて混合し乾燥させることによって、あるいはスラリー化することによって、予めガス化燃料を得るようにしてもよい。この場合には、石炭粉末供給装置4(例えばロックホッパ装置)に直接ガス化燃料を供給してガス化を行うことができる。また、石炭粉末とバイオマス炭化物粉末と粗酢液とを混合した後に乾燥する処理は、加熱装置等による強制的なものとしてもよいが、石炭粉末とバイオマス炭化物粉末と粗酢液と混合した後、ガス化燃料として使用するまで静置しておいて、自然に乾燥させるようにしてもよい。
 また、図10に示すように、石炭を粉砕して石炭粉末を得る石炭粉砕装置2と、石炭粉末をガス化剤36と反応させて可燃性ガスを生成する石炭ガス化炉3と、石炭粉砕装置2で得られた石炭粉末を石炭ガス化炉3に供給する石炭粉末供給装置4とを少なくとも備えるガス化システムにおいて、植物由来のバイオマス原料を炭化処理する際に得られる粗酢液40を石炭粉砕装置に供給する粗酢液供給装置8を備えるガス化システム1cとしてもよい。石炭粉末と粗酢液40とを混ぜることで、石炭粉末のガス化反応性を向上させ、且つ植物由来のバイオマス原料を炭化処理する際に得られる粗酢液40を用いることにより、バイオマスを有効利用して二酸化炭素排出量削減を図ることができる。
 以下に本発明の実施例を説明するが、本発明はこれら実施例に限られるものではない。
(実験方法)
(1)粗酢液の生成
 粗酢液は、杉バークを原料として、特開2008-179802号公報の実施例2と同様の方法で生成した。即ち、電気炉5の炉内温度を400℃に設定し、炉心管を窒素雰囲気(流量1000cc/min)として、バイオマス原料粉末を炭化処理した。炭化処理中に発生したガスは図9に示す気液分離装置の第一容器22と第二容器26、さらに第二容器の後段に設置された水が入った第三容器に回収し、第二容器26に回収された凝集物を粗酢液として使用した。得られた粗酢液のpHは2~3であった。
 尚、電気炉5の炉心管は縦型とし、複数の貫通孔を有する多孔板(目皿)と石英ウールとを炉心管を遮るように配置して、炉心管に投入されるバイオマス原料が炉心管内で保持されるようにした。そして、不活性ガスを炉心管の上部から供給することによって、炭化処理の際に発生するガスが、配管21から第一容器22に向かって強制排気されるようにした。
 配管21からの排出物は第一容器22に導入されるようにして、第一容器22を保温ヒーター23により保温した。保温ヒーター23の温度は、熱電対24により制御し、ガスを第二容器26へ導くための配管25の導入部近傍の温度を100℃~110℃に設定した。これにより、配管21からの排出物に含まれるバイオオイルを第一容器22に回収し、第一容器22に回収されなかったガス状の排出物と、第一容器22に一旦回収された成分のうち保温ヒータ23の設定温度で蒸発する成分とがガスを第二容器26へ導くための配管25に導入されるようにした。
 配管25からの排出物は、第二容器26に導入した。配管25には水循環方式の冷却装置であるリービッヒ冷却器を備えて、第一容器22に回収されなかったガス状の排出物と、第一容器22に一旦回収された成分のうち保温ヒータ23の設定温度で蒸発する成分とを冷却して、第二容器26に凝集物を回収した。
 ガスを第三容器へ導くための配管には、第二容器26で回収されなかった低沸点の有機成分が導入されるようにした。第三容器には水を入れておき、配管から排出されるガスをバブリングすることによって、低沸点の有機成分を回収するようにした。
(2)チャーのガス化実験
 試料は、以下の方法によりチャー調製した。まず、試料を107℃で乾燥させた後、これを赤外電気炉に装入し、1分間保持して乾留し、チャー調製を行った。この処理により、ガス化反応初期に起こる熱分解反応である気相-気相反応をあらかじめ行わせて、ガス化反応全体において律速反応となるガス化剤とチャーとの気相-固相反応のみを以降の実験で測定できるようにした。
(3)チャーのガス化反応速度測定
 チャーのガス化反応速度の測定は、上皿式熱天秤(装置名:TGA-DTA2000S、マック・サイエンス社製)を用いて定温測定法により行った。5mmφのセル中にチャーを5mg装入し、アルゴン雰囲気下(450cc/min)、昇温速度15℃/minで850℃または900℃まで昇温した。そして、850℃または900℃に維持したまま、アルゴンの供給を止めて、炭酸ガスを450cc/minで供給し、100%のガス化剤濃度でチャーのガス化を進行させて、時刻Tにおけるチャーの重量減少量をモニタリングした。
 ガス化反応率xとガス化反応速度rは図4に示すTG曲線により定義した。即ち、重量減少が始まった時刻Tから重量減少が見られなくなった時間Tまでの重量減少量をWとし、各時刻Tでの重量減少量をWとした。そして、ガス化反応率xは数式1により求めた。ガス化反応速度rは、数式2に示す反応率の時間微分より求めた。
  [数式1]x=W/W
  [数式2]r=dx/dt=(dW/dt)/W
(実施例1)
 石炭粉末と粗酢液とを以下に示す比率(石炭粉末を1とした場合の比率(重量))で混合攪拌して乾燥し、ガス化反応率を測定した。尚、測定温度は900℃とした。
条件(a):粗酢液0
条件(b):粗酢液0.11
条件(c):粗酢液0.25
条件(d):粗酢液1
 測定結果を図5に示す。この結果から、粗酢液を混合することによって、ガス化反応性が向上することが明らかとなった。
 次に、石炭粉末に対する粗酢液の混合比率とガス化反応速度との関係について検討した。測定結果を図6に示す。この結果から、石炭粉末に粗酢液を混合し乾燥する処理を行うだけで、ガス化反応速度がおよそ2倍向上することが明らかとなった。また、石炭粉末:粗酢液=1:0.25(重量比)とすることで、十分なガス化反応性向上効果が得られることが明らかとなった。このことから、石炭粉末:粗酢液=1:0.25(重量比)とすることが、ガス化反応性を高めながらも、乾燥に必要な熱量を低減する上で非常に好ましいことが明らかとなった。
(実施例2)
 石炭粉末とバイオマス炭化物粉末とを混合した場合と、石炭粉末とバイオマス炭化物粉末と粗酢液とを混合した場合とについて、ガス化反応率の測定を行い、比較検討した。尚、測定温度は850℃とした。また、混合比率は、元のバイオマス基準の混合率50wt%を想定して計算して決定した。
石炭粉末:バイオマス炭化物粉末:粗酢液=1:0.35:0.35(重量比)
 バイオマス炭化物粉末は杉バークから粗酢液を得る際に発生したものを粉砕して用いた。また、石炭粉末の炭種は実施例1と同じものとした。
 測定結果を図7に示す。図7において、(e)は石炭粉末を単独で使用した場合のガス化反応率である。(f)は石炭粉末とバイオマス炭化物を混合した場合のガス化反応率である。(g)は石炭粉末とバイオマス炭化物と粗酢液を混合した場合のガス化反応率である。この結果から、石炭粉末とバイオマス炭化物粉末を混合することで、石炭粉末を単独で使用した場合よりもガス化反応性が大幅に向上することが明らかとなった。また、石炭粉末とバイオマス炭化物粉末と粗酢液とを混合することで、石炭粉末とバイオマス炭化物粉末を混合した場合よりもガス化反応性がさらに向上することが明らかとなった。
 次に、同様の実験を石炭粉末の炭種を変更して実施した。但し、測定温度は900℃とした。
 測定結果を図8に示す。図8において、(h)は石炭粉末を単独で使用した場合のガス化反応率である。(i)は石炭粉末と粗酢液を混合した場合のガス化反応率である。(j)は石炭粉末とバイオマス炭化物を混合した場合のガス化反応率である。(k)は石炭粉末とバイオマス炭化物と粗酢液を混合した場合のガス化反応率である。この結果においても、上記と同様、石炭粉末とバイオマス炭化物粉末を混合することで、石炭粉末を単独で使用した場合よりもガス化反応性が向上することが明らかとなった。また、石炭粉末とバイオマス炭化物粉末と粗酢液とを混合することで、石炭粉末とバイオマス炭化物粉末を混合した場合よりもガス化反応性がさらに向上することが明らかとなった。尚、石炭粉末と粗酢液を混合することで、石炭粉末単独の場合よりもガス化反応性が向上することも明らかとなった。
 以上の結果から、石炭粉末とバイオマス炭化物粉末を混合することで、ガス化反応性を向上させることができ、石炭粉末とバイオマス炭化物粉末と粗酢液とを混合することで、ガス化反応性をさらに向上させることができることが明らかとなった。尚、石炭粉末と粗酢液を混合することで、石炭粉末単独の場合よりもガス化反応性を向上させることができることも明らかとなった。
 本発明のガス化システム、ガス化方法及びガス化燃料の製造方法は、石炭を利用したガス化技術分野に利用可能であり、ガス化反応性を向上させながらも、バイオマスの利用による二酸化炭素排出量の削減を図ることができる。また、バイオマスの有効利用にも寄与するものである。
1  ガス化システム
2  石炭粉砕装置
3  石炭ガス化炉
4  石炭粉末供給装置
5  炭化処理装置
6  粗酢液回収装置
7  バイオマス炭化物供給装置
8  粗酢液供給装置
10 軽質ガス供給装置
11 バイオオイル回収装置
13 バイオオイル供給装置
14 ガス化触媒供給装置
31 石炭
32 バイオマス原料
33 ガス化触媒含有物質
34 揮発分
36 ガス化剤

Claims (13)

  1. 石炭を粉砕して石炭粉末を得る石炭粉砕装置と、前記石炭粉末をガス化剤と反応させて可燃性ガスを生成する石炭ガス化炉と、前記石炭粉砕装置で得られた前記石炭粉末を前記石炭ガス化炉に供給する石炭粉末供給装置とを少なくとも備えるガス化システムにおいて、
    植物由来のバイオマス原料を炭化処理したバイオマス炭化物を前記石炭粉砕装置に供給するバイオマス炭化物供給装置を備えることを特徴とするガス化システム。
  2. 植物由来のバイオマス原料を炭化処理する際に得られる粗酢液を前記石炭粉砕装置に供給する粗酢液供給装置をさらに備える請求項1に記載のガス化システム。
  3. 植物由来のバイオマス原料を炭化処理する炭化処理装置と、前記炭化処理装置で発生する揮発分を冷却して前記バイオマス原料由来の粗酢液を回収する粗酢液回収装置とをさらに備え、前記炭化処理装置で生成されるバイオマス炭化物が前記バイオマス炭化物供給装置により前記石炭粉砕装置に供給され、前記粗酢液回収装置で回収された前記粗酢液が前記粗酢液供給装置により前記石炭粉砕装置に供給される請求項2に記載のガス化システム。
  4. 前記炭化処理装置で発生する前記ガスのうち前記粗酢液回収装置で回収されない軽質ガスを前記石炭ガス化炉に供給する軽質ガス供給装置をさらに備える請求項3に記載のガス化システム。
  5. 前記炭化処理装置で発生する前記揮発分に含まれるバイオオイルを分離して回収するバイオオイル回収装置と、前記バイオオイル回収装置で回収された前記バイオオイルを前記石炭ガス化炉に供給するバイオオイル供給装置とをさらに備える請求項3に記載のガス化システム。
  6. ガス化触媒含有物質を前記石炭粉砕装置に供給するガス化触媒供給装置をさらに備える請求項2に記載のガス化システム。
  7. 前記粗酢液供給装置は前記バイオマス炭化物供給装置に替えて備えられている請求項2に記載のガス化システム。
  8. 石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末とを混合して得られるガス化燃料をガス化剤と反応させて可燃性ガスを生成することを特徴とするガス化方法。
  9. 前記ガス化燃料には、さらに植物由来のバイオマス原料を炭化処理する際に得られる粗酢液が混合されている請求項8に記載のガス化方法。
  10. 前記ガス化燃料には、さらにガス化触媒含有物質が混合されている請求項9に記載のガス化方法。
  11. 石炭を粉砕した石炭粉末と、植物由来のバイオマス原料を炭化処理したバイオマス炭化物を粉砕したバイオマス炭化物粉末とを混合する混合工程を含むことを特徴とするガス化燃料の製造方法。
  12. 前記混合工程において、さらに植物由来のバイオマス原料を炭化処理する際に得られる粗酢液とを混合する請求項11に記載のガス化燃料の製造方法。
  13. 前記混合工程において、さらにガス化触媒含有物質を混合する請求項12に記載のガス化燃料の製造方法。
PCT/JP2010/001799 2009-03-25 2010-03-12 ガス化システム及びガス化方法 WO2010109798A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800034934A CN102227492A (zh) 2009-03-25 2010-03-12 气化系统及气化方法
EP10755602.9A EP2412788A4 (en) 2009-03-25 2010-03-12 GASIFICATION SYSTEM AND GASIFICATION METHOD
AU2010228721A AU2010228721B2 (en) 2009-03-25 2010-03-12 Gasification system and gasification process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-073527 2009-03-25
JP2009073527A JP5432554B2 (ja) 2009-03-25 2009-03-25 ガス化システム

Publications (1)

Publication Number Publication Date
WO2010109798A1 true WO2010109798A1 (ja) 2010-09-30

Family

ID=42780498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001799 WO2010109798A1 (ja) 2009-03-25 2010-03-12 ガス化システム及びガス化方法

Country Status (5)

Country Link
EP (1) EP2412788A4 (ja)
JP (1) JP5432554B2 (ja)
CN (1) CN102227492A (ja)
AU (1) AU2010228721B2 (ja)
WO (1) WO2010109798A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236587A1 (en) * 2009-04-02 2010-10-06 General Electric Company Modified bio-slurry and process for its production and gasification
CN111718762A (zh) * 2020-06-16 2020-09-29 大连理工大学 一种流化床煤气化与生物质低温炭化耦合系统及其工作方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013011377A (ja) * 2011-06-28 2013-01-17 Central Research Institute Of Electric Power Industry 石炭燃焼方法及び石炭燃焼システム
JP5963239B2 (ja) * 2012-02-21 2016-08-03 一般財団法人電力中央研究所 石炭ガス化設備及び石炭ガス化発電システム
KR101195418B1 (ko) 2012-08-08 2012-10-30 한국에너지기술연구원 2단계 건조공정을 이용한 바이오매스 유래 탄소성분이 코팅된 고발열량 하이브리드 석탄의 제조방법 및 그에 의하여 제조된 고발열량 하이브리드 석탄
KR101195417B1 (ko) * 2012-03-06 2012-10-30 한국에너지기술연구원 고농도 하이브리드 석탄 슬러리의 제조방법 및 그에 의하여 제조된 고농도 하이브리드 석탄 슬러리
WO2013129744A1 (ko) * 2012-02-29 2013-09-06 한국에너지기술연구원 바이오매스 유래 탄소성분이 코팅된 고발열량 하이브리드 석탄, 고농도 하이브리드 석탄 슬러리 및 그들의 제조방법
KR101195416B1 (ko) * 2012-02-29 2012-10-29 한국에너지기술연구원 바이오매스 유래 탄소성분이 코팅된 고발열량 하이브리드 석탄 및 그 제조방법
KR101210928B1 (ko) * 2012-09-21 2012-12-11 한국에너지기술연구원 글리세롤이 함침된 고발열량 하이브리드 석탄의 제조방법 및 그에 의하여 제조된 글리세롤이 함침된 고발열량 하이브리드 석탄
DE102013111145A1 (de) * 2013-10-09 2015-04-09 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zur Erzeugung eines Synthesegases aus kohlenstoffhaltigem Brennstoff mit niedrigem fixem Kohlenstoffgehalt
KR101464920B1 (ko) * 2014-06-25 2014-11-26 한국에너지기술연구원 소수성 바이오액 또는 오일을 이용한 하이브리드 연료, 장치 및 그의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136093A (ja) * 1990-09-26 1992-05-11 Babcock Hitachi Kk 微粉固体原料ガス化方法
JP2001279266A (ja) * 2000-03-29 2001-10-10 Mitsubishi Heavy Ind Ltd 石炭のガス化方法及びメタノール合成システム
JP2005272530A (ja) * 2004-03-23 2005-10-06 Central Res Inst Of Electric Power Ind バイオマス発電システム
JP2008082651A (ja) 2006-09-28 2008-04-10 Mitsubishi Heavy Ind Ltd 石炭・バイオマス混焼システム及び混焼方法
JP2008179802A (ja) 2006-12-27 2008-08-07 Central Res Inst Of Electric Power Ind ガス化触媒担持石炭の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUT41278A (en) * 1985-08-27 1987-04-28 Magyar Szenhidrogenipari Method for intensifying the crushing of black coals
JP2003130308A (ja) * 2001-10-30 2003-05-08 Hitachi Ltd 固体燃料の燃焼方法及び固体燃料燃焼設備
JP2004347241A (ja) * 2003-05-22 2004-12-09 Mitsubishi Heavy Ind Ltd 石炭・有機物燃料混合粉砕装置
US20050247553A1 (en) * 2004-03-23 2005-11-10 Central Research Institute Of Electric Power Industry Carbonization and gasification of biomass and power generation system
JP4876465B2 (ja) * 2005-07-21 2012-02-15 宇部興産機械株式会社 バイオマス燃料の供給システム
CN100410352C (zh) * 2006-04-21 2008-08-13 江苏大学 一种生物质与煤共气化的气化工艺及其装置
CN100445352C (zh) * 2006-06-24 2008-12-24 中国科学院山西煤炭化学研究所 一种生物质与煤流化床共气化制备燃料气的方法
CN1931959B (zh) * 2006-09-28 2010-10-20 武汉凯迪工程技术研究总院有限公司 利用生物质制造合成气的复合循环式高温气化工艺方法
JP2008209080A (ja) * 2007-02-27 2008-09-11 Mitsubishi Heavy Ind Ltd 炭化物混合装置及び方法
CN101220299B (zh) * 2008-01-30 2010-12-01 王子国 固定床造气炉生产合成气节能减排的装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04136093A (ja) * 1990-09-26 1992-05-11 Babcock Hitachi Kk 微粉固体原料ガス化方法
JP2001279266A (ja) * 2000-03-29 2001-10-10 Mitsubishi Heavy Ind Ltd 石炭のガス化方法及びメタノール合成システム
JP2005272530A (ja) * 2004-03-23 2005-10-06 Central Res Inst Of Electric Power Ind バイオマス発電システム
JP2008082651A (ja) 2006-09-28 2008-04-10 Mitsubishi Heavy Ind Ltd 石炭・バイオマス混焼システム及び混焼方法
JP2008179802A (ja) 2006-12-27 2008-08-07 Central Res Inst Of Electric Power Ind ガス化触媒担持石炭の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412788A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236587A1 (en) * 2009-04-02 2010-10-06 General Electric Company Modified bio-slurry and process for its production and gasification
CN111718762A (zh) * 2020-06-16 2020-09-29 大连理工大学 一种流化床煤气化与生物质低温炭化耦合系统及其工作方法

Also Published As

Publication number Publication date
AU2010228721B2 (en) 2013-06-27
JP5432554B2 (ja) 2014-03-05
CN102227492A (zh) 2011-10-26
AU2010228721A1 (en) 2011-10-27
EP2412788A4 (en) 2013-08-28
EP2412788A1 (en) 2012-02-01
JP2010222517A (ja) 2010-10-07

Similar Documents

Publication Publication Date Title
WO2010109798A1 (ja) ガス化システム及びガス化方法
JP4267968B2 (ja) バイオマス処理法
JP5606624B2 (ja) 低温バイオマス熱分解並びに高温バイオマスガス化方法および装置
JP4276973B2 (ja) バイオマス発電システム
JP4377824B2 (ja) バイオマスを利用する廃棄物溶融処理方法
JP5857340B2 (ja) 石炭をチャー・原料ガス製造と発電に利用する複合システム
JP5316948B2 (ja) バイオマス熱分解装置
JP3916179B2 (ja) 廃棄物の高温ガス化方法及び装置
JP2010121049A (ja) 有機物原料のガス化装置及び方法
JP2009191085A (ja) 固体燃料製造方法及びシステム、並びに固体燃料
JP4855539B2 (ja) 微粉炭燃焼ボイラを用いたバイオマスの利用装置およびそれを用いたバイオマスの利用方法
JP6130114B2 (ja) 発電システム
WO2012147752A1 (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP4731988B2 (ja) 炭素質資源のガス化方法及びその装置
JP2005249279A (ja) バイオマスを利用する廃棄物溶融処理方法
JP3559163B2 (ja) バイオマスと化石燃料を用いたガス化方法
JP2005249310A (ja) 塊状バイオマスを利用する廃棄物溶融処理方法
JP2012214578A (ja) 低品位炭供給設備及び低品位炭を用いたガス化複合発電システム
JP2013011377A (ja) 石炭燃焼方法及び石炭燃焼システム
JP2005241054A (ja) 粉状バイオマスを利用する廃棄物溶融処理方法
JP5347763B2 (ja) バイオマス熱分解方法
JP6008514B2 (ja) ガス化ガスのガス精製装置
JP2013167378A (ja) 流動層乾燥設備及び石炭を用いたガス化複合発電システム
JP2018012756A (ja) ガス化原料の製造方法及びガス化原料の製造装置
JP5575565B2 (ja) ガス化炉燃料供給方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003493.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010755602

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010228721

Country of ref document: AU

Date of ref document: 20100312

Kind code of ref document: A